EXECUTIVE SUMMARY

For

POTHUVAI & PAZHAVALAM BLACK GRANITE & QUARTZO-FELDSPATHIC GNEISS QUARRY OVER AN EXTENT OF 40.13.05 Ha

At Survey No: 58/1 (Pothuvai village) & 135/1 (Pazhavalam village)

> Villages: Pothuvai & Pazhavalam Taluk: Gingee District: Villupuram State: Tamil Nadu

> > By

M/s. Tamil Nadu Minerals Limited (Project termed under Schedule 1(a) Mining of Minerals `B1' category as per EIA Notification 2006 and its Amendments and O.M

EIA Consultant

HUBERT ENVIRO CARE SYSTEMS (P) LTD, CHENNAI

April 2023

PROJECT DESCRIPTION

1.1 **PROJECT DETAILS:**

1

The proposed **"Pothuvai & Pazhavalam black granite & Quartzo-Feldspathic gneiss quarry"** over an extent of 40.13.05Ha is located at S.F.No.58/1& 135/1, Pothuvai & Pazhavalam villages, Gingee taluk, Villupuram District, Tamil Nadu State.

The project falls under B1 Category, Schedule 1(a) Mining of Minerals as per MoEF&CC Notification 14.09.2006 and 14.08.2018. The land use classification of the project site is government Poramboke land. TAMIN obtained lease vide G.O. (3D) No.66, Industries (MME.1) Department, dated: 05.12.2011.

Survey No.	S.F.No.58/1 & 135/1		
Village	Pothuvai & Pazhavalam Villages		
Taluk and District	Gingee Taluk, Villupuram District		
State	Tamil Nadu		
Toposheet No.	D44T4 & D44T8		
Latitude	79°15'39.40"E to 79°16'08.11"E		
Longitude	12°08'15.47"N to 12°08'45'2.41"N		
Current Quarry Status	Now not in operation		
Extent Area	40.13.05 Ha		
Lease Period	30 years		
Estimated Geological Reserves (ROM) m3	Black Granite-4,79,221 M ³ & Quartzo Feldspathic Gneiss-1,08,13,395 M ³		
Estimated Mineable Reserves (ROM) M ³	Black Granite-3,37,609 M ³ & Quartzo feldspathic Gneiss-77,39,961 M ³		
Black Granite production per annum M ³	Black Granite-1811 M^3 & Quartzo Feldspathic Gneiss-7,52,124 M^3		
Depth of Mining	30m from the surface level and the top surface of the granite body		
Method of Mining	Open cast semi mechanized method		

Table - 1 Salient Features of the Project Site

2. PROJECT PROCESS DESCRIPTION

2.1. Method of Quarrying

An open cast quarrying by semi-mechanized method will be adopted to operate the quarry. Annual production of Black Granite-1811 M³ & Quartzo Feldspathic Gneiss are estimated as 7,52,124 M³.

Conceptual Quarry Plan

Black Granite:-

The Geological reserves of Black granite have been computed based on the Geological Plan & Sections up to the economically workable average depth of 40m from the top of the hill works out to 4,79,221 M³. By applying 10% recovery the effective Geological reserves works out 47,922 M³

Mineable Reserves have been computed as 3,37,609 M³ after deleting the reserves locked up in safety barrier and benches based on the Conceptual Plan and sections, the effective(Saleable) Mineable Reserves have been worked out as 33,761 M³ by applying the recovery factor 10%. The annual peak production per year would be 18,108 M³ of ROM. The five year Modified Mining Plan is given below.

S. No	Year	ROM (M ³)	Recovery@1 0% (M ³)	Granite Waste @ 90 % (M ³)	Over Burden (M ³)
1	2022-2023	18,108	1,811	17,588	1,291
2	2023-2024	18,049	1,805	16,244	
3	2024-2025	18,029	1,803	17,773	1,547
4	2025-2026	18,104	1,810	17,293	999
5	2026-2027	18,008	1,801	18,402	2,195
	Total	90,298	9,030	87,300	6,032

 Table - 2 Black Granite Recovery as per Modified Mining Plan

Quartzo-Feldspathic Gneiss:-

The Geological reserves of Quartzo Feldspathic Gneiss have been computed based on the Geological Plan & Sections up to the economically workable average depth of 30m from the top of the hill works out to 1,08,13,395 M³. By applying 100% recovery the effective Geological reserves works out 1,08,13,395³.

Mineable Reserves have been computed as 77,39,961 M³ after deleting the reserves locked up in safety barrier and benches based on the Conceptual Plan and sections, the effective(Saleable) Mineable Reserves have been worked out as

77,39,961 M³ by applying the recovery factor 100%. The annual peak production per year would be 7,52,124m³ of ROM . The five year Modified Mining plan period at the rate of 100% recovery is given below.

S. No	Year	ROM (M ³)	Recovery@100% (M ³)
1	2022-2023	6,52,162	6,52,162
2	2023-2024	7,41,536	7,41,536
3	2024-2025	7,25,299	7,25,299
4	2025-2026	7,24,900	7,24,900
5	2026-2027	7,52,124	7,52,124
	Total	35,96,021	35,96,021

Table - 3 Quartzo Feldspathic Gneiss Recovery as per Mining Plan

3. IMPACTS AND MITIGATION MEASURES

Impacts due to Mining Activity:

Various environmental impacts, which have been identified due to the mining operations proposed project, are discussed in the following sections. The environmental parameters most commonly affected by mining activities are:

3.1. Impacts- Soil Contamination

Potential impacts on land environment are envisaged due to hazardous and nonhazardous wastes generated due to various operations in the project site like municipal waste from domestic use and waste diesel oil from quarry machineries. Poor management of such materials/wastes from the operations is a potential risk of soil contamination.

3.1.1.Soil – Mitigation Measures

Good housekeeping and best practices of waste handling shall be adopted to eliminate/minimize the risks of soil contamination. The wastes generated will be stored in temporary storage facility and transferred to nearby municipal disposal bins. Waste oil generated from quarry machineries and the same is disposed through TNPCB Authorized dealers.

3.2. Land Environment

3.2.1. Land Degradation

The impact on land pattern in the area has been and will be due to the following:

- Land degradation due to disposal of large volume of waste materials.
- Creation of infrastructural facilities like office, rest shelter, first-aid centre and other service facilities.
- Exposure of topsoil to wind and water erosion.

3.2.2. Mitigation Measures

- > Dust suppression on exposed areas using water tankers.
- > Contour overburden dump to minimize erosion
- Plantation around service building, along road, in and around safety zone using native plant sapling.

3.3. Impact on Air Environment

The main source of air pollution is from open cast mining activities is dust generation from excavation of granite, movement of vehicles for transportation of product to consumers, drilling, loading and unloading operation and wind erosion of dumps and also gaseous emission due to operation of diesel driven mining equipment. The sources of air emission are detailed below in Table

 Table - 4 Sources of air pollution at quarry

S. No	Source of emission	Pollutant
1.	Excavation of Granite	PM
2.	Operation of diesel driven equipment	Gaseous emission
3.	Transportation of product	PM

The major air pollution sources from the mining operations are DG sets, mining activities like drilling, and transportation. The DG sets are provided with stacks of adequate height to disperse the emanating flue gases containing suspended particulate matter, oxides of Sulphur and nitrogen without affecting the ground level concentrations.

The emissions mainly generated from the mining activities are Blasting, Drilling, Excavation, Loading, Unloading, and transportation etc. Machinery like compressors and jack hammers are used for Drilling.

3.3.1. Mitigation measures

- > Use of dust aprons on drilling equipment and adopting wet drilling methods.
- > Delay blasting under unfavorable wind and atmospheric conditions

- The production of blast fumes containing noxious gases will be reduced by the following methods:
 - Use of adequate booster/primer.
 - Proper stemming of the blast hole.
 - Development of greenbelt.

Table – 5 Fugitive dust control in mine

S. No	Activities	Best practices		
1	Drilling	Drills should be provided with dust extractors (dry		
		or wet system)		
2	Blasting	 Water spray before blasting 		
		Water spray on blasted material prior to transportation		
		Use of control blasting technique		
3	Transportation	Covering of the trucks/dumpers to avoid spillage		
	of mined	Compacted haul road		
	material	Speed control on vehicles		
		Development of a green belt of suitable width on both		
		sides of road, which acts as wind break and traps		
		fugitive dust		

Table – 6 Dust control measures in quarry

S.	Operation or	Control options		
No	source			
1	Drilling	 Liquid injection (water or water plus a wetting agent) Capturing and venting emissions to a control device. 		
2	Blasting	Water spray before blasting		
		Water spray on blasted material prior to		
		transportation		
		Use of control blasting technique		
3	Loading	> Water spray		
4	Hauling	Water spray, treatment with surface agents, soil		
	(emissions from	stabilization, paving, traffic control.		
	roads)			

4.1.3.1 Emission dispersion models Table – 7 Total maximum GLCs from emissions

Pollutant	Max. Base Line Conc. (µg/m³)	Estimated Incremental Conc. (µg/m ³)	Total Conc. (µg/m³)	NAAQ standard	% contribution of concentration above Base line
TSPM	171.35	39.28	210.63	500	22.92
PM ₁₀	68.54	7.86	76.4	100	11.47
PM _{2.5}	39.27	4.74	44.01	60	12.07
SO ₂	17.26	0.07	17.33	80	0.41
NO _X	30.35	1.66	32.01	80	5.47

The maximum ground level concentration observed due to mining activities and traffic movement through Air Modelling for TSPM, PM_{10} , $PM_{2.5}$, SO_2 and NO_x are $173\mu g/m^3$, $69\mu g/m^3$, $39\mu g/m^3 17\mu g/m^3$, and $35\mu g/m^3$ respectively.

3.4. Impacts due to Transportation

The Granite is transported to consumer directly as per buyer's requirement. The granite will be transported through existing road by tippers and approx. no. of trips required is 2 times per week. This minimum trip does not create impact on existing transportation. The vehicular movement for the proposed project is given in **Table - 12**.

Table – 8 Traffic Volume after Implementation of the Project

For the Road	Volume of Traffic	Volume (V)	Road Capacity (C)	V/C Ratio	LOS Category*	Traffic Classification
Existing	252	457.85	1500	0.31	"A″	Free Flow Traffic
After implementation	272	505.8	1500	0.34	"A″	Free Flow Traffic

*LOS (Level of Service) categories are A-Free Flow, B- Reasonably Free Flow, C-Stable Flow, D-Approaching unstable flow, E- Unstable flow, F- Forced or breakdown flow

Due to propose project there will be slight increment in the vehicle movement but the level of service (LOS) anticipated will be Free Flow.

3.4.1. Mitigation Measures

- > Regular water sprinkling on haul and access roads.
- > Watering of haul roads and other roads at regular intervals
- > Provision of green belt by vegetation for trapping dust.
- Greenbelt development along the haul roads, dumps and along the boundaries of the lease area.
- Utmost care will be taken to prevent spillage of sand and stone from the trucks.

3.5. Wastewater Generation

There is no process effluent generation. The domestic sewage of 1.27 KLD will be disposed through septic tank followed by soak pit.

3.5.1. Mitigation Measures

3.5.1.1. Surface Water Pollution Control Measures

A safety distance of 50m has been provided in the Southern side of the applied area and running through Patta lands of the Pothuvai & Pazhavalam village.

- Construction of garland drains of suitable size around mine area and dumps to prevent rain water descent into active mine areas.
- During monsoon season, the rain water will be collected by natural slope of area to water fed tank of the mine and it will be utilized for dust suppression and greenbelt development.
- The dump tops will be provided with inner slopes to control water flow to prevent erosion washouts. The dumps tops and slopes of in active areas will be covered with grasses, shrubs, mulching, etc, to prevent erosion, till final backfilling of dumps into mined out areas.
- Retaining walls of adequate dimensions will be provided at the top of dumps and the unstable OB benches within the mine to prevent wash off from dumps and sliding of material from benches. This will help in preventing silting of water drains/channels
- The water channels/drains carrying the rain water from the mine will be provided with baffles and settling pits to arrest the suspended solids, if any, present in this water
- The worked out slopes will be stabilized by planting appropriate shrub/grass species on the slopes.

3.5.1.2. Ground Water Pollution Control Measures

- > The domestic sewage from the toilets will be routed to septic tanks.
- Regular monitoring of water levels and quality in the existing open wells and bore well in the vicinity will be carried out.

3.5.1.3. Rain Water Harvesting

- The rainwater will be diverted towards the middle of the mine to prevent water entering the mine working. The rainwater flows will also contain fines both from surface and waste dumps during seasonal flows. As such, it is proposed to have structures in such a way to act as settling pond and also for rainwater harvesting.
- > Divert the water to de-silting cum rainwater harvesting pond in the mine area.
- Provide necessary overflow arrangement to maintain the natural drainage system.

3.5.1.4. Drainage pattern and Hydrogeology

Catchment area inside the mine will be affected.

3.5.1.5. Mitigation measures

The study has recommended new alignment in line with upstream drainage slope of the area to facilitate smooth entry of water into the diversion channel and ultimate discharge of water into the original stream. No reduction in surface run-off is envisaged.

3.6. Impact of Noise / Vibrations & Mitigation Measures

3.6.1. Impact of Noise on Working Environment

The main sources of noise in the mine are as follows:

- Transportation vehicles
 - Loading & unloading of minerals.
 - Drilling

3.6.2. Noise due to Drilling, Excavation and Transportation

The noise levels in the working environment will be maintained within the standards prescribed by Occupational Safety and Health Administration (OSHA). These standards were established with the emphasis on reducing the hearing loss.

3.6.3. Noise Due to Blasting

Blasting activities are involved in this Quarry as green belt will be developed around the mine which restricts the propagation of noise. The main source of noise in quarrying is due to usage of machinery like excavators, mining tippers and compressors and diesel generators.

Following mitigation measures should be taken to control noise pollution:

- Wherever the noise levels exceed 85 dB (A), workers should be provided with earmuffs, ear plugs etc.
- All vehicles and machinery will be properly lubricated and maintained regularly.
- Speed of the Vehicles entering and leaving the quarrying lease will be limited to 25 kmph.

> Unnecessary use of horns by the drivers of the vehicles shall be avoided.

3.6.3.1. Mitigate Measures

- Controlled blasting with proper spacing, burden and stemming will be maintained
- Minimum quantity of detonating fuse will be consumed by using alternatively Excel non-electrical initiation system.
- > The blasting will be carried out during favorable atmospheric condition and less human activity timings.
- > The prime movers/diesel engines will be properly maintained.
- Provision of sound insulated chambers for the workers deployed on machines.

3.7. Impact of Vibration

Blasting activities are involved in Granite Quarry operations. The vibration during the moment of machinery will be minimal for a short span that will be well within the prescribed limits. Proposed Peripheral green belt will be developed in 7.5m safety zone around the quarry. This will mitigate the Vibration.

3.7.1.1. Mitigation Measures

- Proper quantity of explosive, suitable stemming materials and appropriate delay system are to be adopted for safe blasting.
- > Safe blasting zones are kept around the periphery of the quarry.
- > Overcharging will be avoided. The charge per delay will be minimized and preferably more number of delays will be used per blasts.

3.8. Impact on Human Settlement

There are no monuments or places of worships in mine area. Ground vibration and noise pollution is maintained minimal and confined to the mine area. The quality of water both surface and ground water is good and all parameters of drinking water are as per IS standards. Water quality analysis will be carried out at periodical intervals during post project monitoring.

The PM, NOx and SO₂ have been observed to be below the prescribed limit. Noise levels have also been found to be below the permissible limits at all the locations. Further, the noise generated in the lease area will get attenuated due to plantation and green belt all around the lease area. As preventive measures, greenbelt development around the mine lease area will be further strengthening for control of air emission to environment.

All the employees when inducted will be medically examined. Further, they will also be medically examined at periodical interval.

3.9. Biological Environment

3.9.1. Mining activities and their impact on biodiversity

Table -	9	Im	pacts	on	Biodiversity
---------	---	----	-------	----	---------------------

S. No	Activity	Examples of aspects	Examples of biodiversity impact
1	Extraction	Land clearing	Loss of habitat, introduction of plant diseases, Siltation of water courses
2	Blasting, Digging and hauling	Dust, noise ,vibration, water pollution	Disruption of water courses , impacts on aquatic ecosystems due to changes in hydrology and water

3	Waste dumping	Clearing, water and soil pollution	Loss of habitat, soil and water contamination, sedimentation.
4	Air emissions	Air pollution	Loss of habitat or species
5	Waste disposal	Oil and water pollution	Encouragement of pests, disease transfer, contamination of groundwater and soil
6	Building power lines	Land clearing	Loss or fragmentation of habitat
7	Provision of accommodation	Land clearing, soil and water pollution, waste generation	Loss of habitat, sewage disposal and disease impacts
8	Access roads	Land clearing	Habitat loss or fragmentation, water logging upslope and drainage shadows down slope
9	Population growth	Land clearing or increased hunting	Loss of habitat or species, stress on local and regional resources, pest introduction, clearing
10	Water supply (potable or industrial)	Water abstraction or mine dewatering	Loss or changes in habitat or species composition

3.9.1.1. Mitigate Measures

To reduce the adverse effects on flora/fauna status that are found in project area due to deposition of dust generating from mining operations, water sprinkling and water spraying systems will be ensured in all dust prone areas to arrest dust generation.

3.10. Impacts on Occupational Health due to project operations

Anticipated occupational illness sequel to mining activities involved in the project. Occupational health problems due to dust & noise and Occupational illness by quarry activities are as follows;

- > Dust related pneumonia
- > Tuberculosis
- Rheumatic arthritis
- Segmental vibration

3.10.1.1. Mitigate Measures for Occupational Health

- Adoption of dust suppression measures like spraying water, use of drill with dust collection system or wet drills etc.
- > Use of personal protective equipment. Compliance with DGMS circulars.
- Emergency response plan that includes installation of emergency response equipment to combat events such as fire.

On-site first aid facilities will be provided and employees will be extended to the local community in emergencies.

S. No	Activity	Mitigation measures			
1	Excavation	Planned excavation, avoid haphazard mining			
2	Drilling and blasting	In addition, the operators and other workers should be provided with masks, helmets, gloves and earplugs.			
3	Safety zone	 Provisions for a buffer zone between the local habitation and the mine lease in the form of a green belt of suitable width. Restricted entry, use of sirens and cordoning of the lasting area are some of the good practices to avoid accidents. 			
4	Overburden stabilization	 Accidents are known to happen due to overburden collapse. Therefore, slope stabilization and dump stability are critical issues for safety and environment. Proper measures will be taken care. 			
5	Worker's health surveillance	 Health survey program for workers and local community. Regular training and awareness of employees to be conducted to meet health and safety objectives. 			

Table – 10 Mitigation for occupational health and safety

3.10.1.2. Mitigate Measures for Safety Aspects

- To reduce pollution emanation from quarry operations, carry out splitting of sheet rock by diamond wire saw which largely reduces the dust and noise generation.
- > Water sprinkling on haul roads and dumping yards, etc.
- Green belt creation wherever possible to arrest dust and reduce noise propagation.
- All staff and workers will be provided with PPE to guard against excess noise levels
- Provision of safety Helmets, goggles, safety boots, ear muffs, gas masks, etc.

4. PROECT COST & ESTIMATED TIM EOF COMPLETION:

4.1. Project Cost:

The estimated project cost is given below

	Table – 11 Project cost				
S. No	Description of the Cost	Amount in Rs.			
Α.	Fixed Cost				
1	Land Cost	Nil. Because Govt. land			
2	Labour shed	50,000/-			
3	Sanitary facilities	50,000/-			
4	Fencing Cost	1,25,000/-			
	Total	2,25,000/-			
В.	Operational Cost				
1	Jack Hammers	1,98,000/-			
2	Compressor	19,82,000/-			
3	Diamond wire saw	4,87,000/-			
4	Diesel General	4,00,000/-			
5	Excavators	6,00,000/-			
6	Tippers	58,00,000/-			
7	Drinking water facilities for the labors	50,000/-			
8	Safety kits	50,000/-			
Total Operational Cost		95,67,000/-			
C.	EMP Cost				
1	Afforestation	30,000/-			
2	Water Sprinkling	50,000/-			
3	Water Quality test	25,000/-			
4	Air Quality test	25,000/-			
5	Noise/Vibration test	25,000/-			
6	CSR activities	50,000/-			
	Total EMP Cost	2,05,000/-			
	Total Cost of the Project (A+B+C)	99,97,000/- (Say 1 Crore)			

4.3.

4.3. Proposed schedule for approval and implementation The time schedule for the completion of the proposed mining project is given in the below as,

Table –	12	Project	Schedule
---------	----	---------	----------

Particulars	Time Schedule
Preparation of PFR, FORM – I and obtaining ToR	December 2022
ToR obtained	09.02.2023
Submission of DRAFT EIA/EMP	May 2023
Conduciting Public Hearing and submitting final	June 2023
EIA/EMP and PoD	
Presentation before SEAC and Obtaining EC	July 2023
Commencing of Mining affecter getting EC & CTO	Jyly2023
Completion of Mining Activity	As per Mining Plan & G.O

5. MINING CLOSURE PLAN

6.1. Progressive Mine Closure Plan

The various schedules for mining activities regarding mining of granite block, waste disposal, proposed land use pattern, environmental preservation measures, disaster management plan, etc. have been fully covered in the EIA/EMP report. Pit boundaries shall be safely fenced and used for agriculture purpose then the pit is filled with underground seepage or rain water. Afforestation and green belt development will be maintained in all the boundaries, till the trees attained the stabilized level.

8. REHANILITATION AND RESETTLEMENT

There will be no Rehabilitation and Resettlement in this proposed project.

9. SITE ANALYSIS

Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features are given below.

9.1. Environmentally/Ecologically Sensitive areas

This section details with the environmentally sensitive areas present within the project site and surrounding environs. It included national parks, state forest, essential habitats etc. The environmental sensitive areas covering an aerial distance of 15 km from the project boundary is given in below table.

S.No	Monuments	Distance (~km)	Direction
1.	Talagiriswara Temple and Cave containing an image of Durga and Pallava inscriptions togrther with adjacent land	12.65	ESE

Table - 13List of Monuments

Table – 14 Lists of Water Bodies

S.No	Water bodies	Distance (~km)	Direction
1.	Pattuvoy Lake	Adjacent to Site	Ν
2.	Palavalam Lake	0.06	E
3.	Vettavalam Lake	1.94	SSW
4.	Nandan Kalva	4.11	NNW
5.	Canal Near	4.12	NNW

	Nallampillaipetral		
6.	Nandan Kava	5.18	E
7.	Varaha Nadi	6.16	N
8.	Adukkam Lake	7.24	SSE
9.	Pillaiyarkovil Odai	8.22	SSE
10.	Chunnambu Odai	8.28	NE
11.	Nari Ar	10.68	ENE
12.	Karungalikuppam	11.37	NNW
13.	Panamalai Eri	11.50	ESE
14.	Turinjal Ar	11.71	W
15.	Pambai Ar	12.34	SSE

Table – 15 Lists of Reserve Forests

S.No	Reserve Forests	Distance(km)	Direction
1.	Pakkammalai RF	0.80	E
2.	Pulanji Malai RF	2.88	SSE
3.	Gengavaram RF	3.22	SE
4.	Adukkam RF	4.90	S
5.	Turinjikadu RF	5.71	SSE
6.	Tandavasamudram RF	8.54	Е
7.	Padippallam RF	9.20	ENE
8.	Odaiyanattam RF	9.47	SE
9.	Nayanur RF	11.63	SSW
10.	Muttakadu RF	13.16	NE
11.	Tippakkadu RF	13.31	W
12.	Siruvadi RF	14.46	NE
13.	Karai RF	14.61	ENE
14.	Attippakkam RF	14.82	SW

10. BASELINE STUDY

10.1. Study Period

The baseline environmental surveys were carried out during (mid January 2023 -

mid April 2023) within the study area.

10.2. Summary of Baseline Studies:

- Site has an undulating terrain with level 156 291m Above MSL.
- The project site falls under Zone- III (Low Risk Zone) as per IS 1893 (Part-I).
- The predominant wind direction is South East during study period.
- Max Temperature: 38^oCMin Temperature: 21^oC&Avg Temperature: 28.32^oC
- Average Relative Humidity: 74.44 %
- Average Wind Speed : 3.01 m/s

10.3. Ambient Air Quality

To evaluate the baseline air quality of the study area, Eight (08) monitoring locations have been identified as per annual wind predominance of Cuddalore from IMD data (1991-2020). The wind predominance during study period (mid of January 2023 to mid of April 2023) is from South East.

S.No	Parameters (µg/m³)	Minimum	Maximum	NAAQ Standards
1.	PM10 (μg/m³)	50.37	57.68	100
2.	PM2.5 (µg/m³)	28.94	33.55	60
3.	SO2 (µg/m³)	11.32	14.52	80
4.	NO2 (µg/m³)	21.03	26.64	80

Table – 16 Summary of Ambient Air Quality Monitoring

10.4. Noise Environment

Ambient noise levels were monitored using precision noise level meter in and around the project site at 10 km radius at 8 locations during study period.

S.No	Noise level in dB(A) Leq	СРСВ	Environmental
1.	Minimum	Maximum	Standards	Setting
2.	50.1	50.1	75 dB(A)	
			Day	Industrial
3.	47.6	47.6	70 dB(A)	
			Night	
4.	51.6	53.1	55 dB(A)	
			Day	Residential
5.	39.8	43.2	45 dB(A)	
			Night	

Table – 17 Summary of Noise Monitoring

10.5. Water Environment

The prevailing status of water quality at 08 locations for surface water and 8 locations for ground water have been assessed during the study period. The standard methods prescribed in IS were followed for sample collection, preservation and analysis in the laboratory for various physiochemical parameters.

10.5.1. Surface water quality

S.No	Parameters	Minimum	Maximum	IS 2296:1992 Standards
1.	pН	6.98	7.63	6.5 - 8.5
2.	TDS (mg/l)	317	441	500
3.	COD (mg/l)	24	63	-
4.	BOD (mg/l)	2.8	9.4	2

10.5.2. Ground Water Quality

S. No	Downstein	Minimum	Maria	IS 10500: 20)500: 2012 Standards	
	Farameters	Minimum	Maximum	Acceptable Limit	Permissible Limit	
1.	рН	6.98	8.12	6.5 - 8.5	NR	
2.	Total Dissolved Solids (mg/l)	821	1353	500	2000	
3.	Total Hardness (mg/l)	345	726	200	600	
4.	Sulphate (mg/l)	111	236	200	400	
5.	Chloride (mg/l)	372	512	250	1000	

• It is observed that all the collected ground water samples meets the drinking water standards (IS 10500:2012) and can be used for drinking.

10.6. Land Environment

Assessment of soil characteristics is of paramount importance since the vegetation growth, agricultural practices and production is directly related to the soil fertility and quality. Soil sampling was carried out at eight (08) locations in the study area.

S.No	Parameters (µg/m³)	Minimum	Maximum
1.	рН	6.69	7.54
2.	Electrical conductivity (µmho/cm)	254	354
3.	Nitrogen (mg/kg)	219	491
4.	Phosphorus (mg/kg)	12.5	34.6
5.	Potassium (mg/kg)	46.7	98

Table –	20 Summary	of Soil	Oualitv	Monitorina
			2	· · · · · · · · · · · · · · · · · · ·

11. HAZARD WASTE HANDLING

11.1. Solid Waste Management

The municipal solid waste generation and management details are given in Error!

Reference source not found..

Table – 21 Municipal Solid Waste generation & Management						
S. No	Туре	Quantity Kg/day	Disposal method			
1	Organic	8.1	Municipal bin including food waste			
2	Inorganic	5.4	TNPCB authorized recyclers			
	Total	13.5				

Table – 21 Municipal Solid Waste generation & Management

As per CPHEEO guidelines: MSW per capita/day =0.45

11.2. Hazardous waste Management

The type of hazardous waste and the quantity generated are detailed in Table- 15.2

Table – 22	Hazardous	Waste	Management
------------	-----------	-------	------------

Waste Category No	Description	Quantity (L/Year)	Mode of Disposal	
5.1	Waste Oil	3.0	Will be Collected in leak proof containers and disposed to TNPCB Authorized Agencies for Reprocessing/Recycling	

12. POST PROJECT MONITORING

12.1. Post Project Environmental Monitoring

It is imperative that the Project Authorities set up regular monitoring stations to assess the quality of the neighboring environment of the project. An environmental monitoring programme is important as it provides useful information and helps to:

S. No	Area of Monitoring	Number of Sampling Stations	Frequency of Sampling	Parameters to be Analyzed
1.	Meteorology	One	Hourly and Daily basis.	Wind speed and direction, Temperature, Relative Humidity, Atmospheric pressure, Rainfall.
2.	Ambient Air Quality	2 Stations (In downwind)	Twice a week:24 hourly period	PM_{10} , $PM_{2.5}$, SO_2 , and NO_2
3.	Noise	2 (two within core area and two in buffer area)	Once every season	Ambient Equivalent continuous Sound Pressure Levels (Leq) at day and Night time.

 Table – 23 Post Project Environmental Monitoring Program

4	Exhaust from DG set	Stack of DG set	Quarterly	PM ₁₀ , PM _{2.5} , SO ₂ & CO
5	Vehicular Emissions	Parking area	Periodic monitoring of vehicles	Air emission and noise, PCU
6	Soil	Two Locations within the Project Site	Yearly Once	Physico chemical properties, Nutrients, Heavy metals
7	Terrestrial Ecology	Within 10km, around the project	Once in three years	Symptoms of injuries on plants
8	Surface/ Ground water quality	Two Locations Within Project Site	Yearly Once	As per ISO 10500 Standard parameters

13. CONCLUSION

The proposed **"Pothuvai & Pazhavalam black granite & quartzo-feldspathic gneiss quarry"** will be beneficial for the development of the nearby villages. Some environmental aspects like dust emission, noise, siltation due to surface run-off, etc. will have to be controlled within the permissible limit to avoid impacts on the surrounding environment.

Necessary pollution control equipment like water sprinkling, plantation, personal protective equipments, etc., will form regular practice in the project. Additional pollution control measures and environmental conservation measures will be adopted to control/minimize impacts on the environment and socio-economic environment of the area. Measures like development of green belt and plantation along with transport road, and river banks will be implemented.

The CSR measures proposed to be adopted by the quarry management will improve the social, economic status of the nearby villages.

The overall impacts of the quarry will be positive and will result in overall socio- economic growth of nearby villages.