GTMS/QMS/EIA-DRAFT/2024

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT AND ENVIRONMENT MANAGEMENT PLAN

FOR OBTAINING

Environmental Clearance under EIA Notification – 2006

Schedule Sl. No. 1 (a) (i): Mining Project

"B1" CATEGORY - MINOR MINERAL - CLUSTER - NON-FOREST LAND

CLUSTER EXTENT = 6.00.0 hectares

At

Kondappanayanapalli Village, Krishnagiri Taluk,

Krishnagiri District, Tamil Nadu State

ToR letter No. Lr. No. SEIAA-TN/F.No.10368/SEAC/1(a)ToR-1612/2023

Dated:06.11.2023

NAME AND ADDRESS OF THE PROPOSED PROJECT PROPONENT

Name and Address	Extent & S.F.No.	Mineral Production
M/s. Sri Venkateshwara Blue Metals		
Prop.A.M.Murugan, S/o.Mannathan,	3.00.0 Ha &	Rough Stone-1218973 m ³
No.4/4, 109, Mutthampatty Post,	202/1 (Part-A)	
Mettur Taluk, Salem District		

ENVIRONMENTAL CONSULTANT

GEO TECHNICAL MINING SOLUTIONS

No: 1/213-B, Ground Floor, Natesan Complex Oddapatti, Collectorate Post office, Dharmapuri-636705. Tamil Nadu. E-mail: <u>info.gtmsdpi@gmail.com</u>, Website: <u>www.gtmsind.com</u> NABET ACC. NO: NABET/EIA/2124/SA 0184 Valid till: 02/04/2024

ENVIRONMENTAL LAB

Ekdant Enviro Services (P) Limited R-7/1, AVK Towers, Ground Floor, North main road Anna Nagar, West Extn, Chennai - 101, Tamil Nadu NABL Certificate Number: TC-11742, Valid Until : 31.05.2025 Baseline Study Period – October 2023 through December 2023

TERMS OF REFERENCE (ToR) COMPLIANCE ToR issued vide

Lr No. SEIAA-TN/F.No.10368/SEAC/1(a)ToR-1612/2023 Dated:06.11.2023 for M/s. Sri Venkateshwara Blue Metals Rough stone Quarry

1	The st	tructures within the radius of (i) 50 m,	The map showing the structures such as
	(ii) 10	00 m, (iii) 200 m and (iv) 300 m shall	dwelling houses, places of worship,
	be en	umerated with details such as dwelling	industries, factories, sheds, etc. within
	house	s with number of occupants, whether	the radius of 500m from the proposed
	it bel	ongs to the owner (or) not, place of	project area will be included in the final
	worsh	ip, industries, factories, sheds, etc.	EIA report.
2	The	proponent shall discuss in detail	The details of the drainage pattern is
	regard	ling the drainage pattern and discuss	discussed in the Section 3.1.4 under
	about	the mitigation measures in the EIA	Chapter III, p.29 and the map showing
	report		drainage drainage pattern is shown in the
			Figure 3.4, p.31. The mitigation
			measures are discussed in the Section 4.1
			under Chapter IV, p.90-109.
3	The	proponent shall obtain the details	The details regarding the validity of the
	regard	ling the validity of the lease period	lease period from the AD(Mines) is
	from	the AD (Mines) while submitting the	attached in the Annexure III.
	EIA r	eport.	
		ANNEX	URE-I
1	In the	e case of existing/operating mines, a	letter obtained from the concerned AD
	(Mine	s) shall be submitted and it shall include	e the following:
	(i)	Original pit dimension	
	(ii)	Quantity achieved Vs EC Approved	
		Quantity	As the proposed project is a new lease
	(iii)	Balance Quantity as per Mineable	area, the conditions are not applicable to
		Reserve calculated.	this project.
	(iv)	Mined out Depth as on date Vs EC	
		permitted depth	
	(v)	Details of illegal/illicit mining	

	(vi)	Violation in the quarry during the	
		past working.	
	(vii)	Quantity of material mined out	
		outside the mine lease area	
	(viii)	Condition of Safety zone/benches	
	(ix)	Revised/Modified Mining plan	
		showing the benches of not	
		exceeding 6 m height and ultimate	
		depth of not exceeding 50m.	
2	Detail	s of habitations around the proposed	The VAO certificate is attached in the
	minin	g area and latest VAO certificate	Annexure IV.
	regard	ling the location of habitations within	
	300m	radius from the periphery of the site	
3	The p	proponent is requested to carry out a	The map showing the structures such as
	survey	y and enumerate on the structures	dwelling houses, places of worship,
	locate	d within the radius of (i) 50 m, (ii)	industries, factories, sheds, etc. within
	100 n	n, (iii) 200 m, (iv) 300 m, (v) 500 m	the radius of 500m from the proposed
	with o	details such as dwelling houses with	project area will be included in the final
	numb	er of occupants, whether it belongs to	EIA report.
	the c	owner or not, places of worship,	
	indust	ries, factories, sheds, etc with	
	indica	ting the owner of the building nature	
	of cor	istruction, age of the building, number	
	of res	sidents, their profession and income,	
	The D	P shall submit a detailed hydrological	Detailed hydrogeological study was
4	report	indicating the impact of proposed	carried out. The results have been
	auarra	indicating the impact of proposed	discussed Section 2.2 under Chapter III
	liko lo	water tanks at are located within	np 25 47
		ef the proposed querry	pp.55-47.
5		renerant shall serve set D' l'	The highing the state of 11 1
2	Ine p	three house house his tit time has	The bloalversity study report will be
	study	through reputed institution and the	submitted in the final EIA report.
	same	shall be included in EIA Report.	

6	The DFO letter stating that the proximity	The DFO letter is attached in the
	distance of Reserve Forests, Protected	Annexure V.
	Areas, Sanctuaries, Tiger reserve etc, up to	
	a radius of 25 km from the proposed site.	
7	In the case of proposed lease in an existing	It is a new lease area; the condition is not
	(or old) quarry where the benches are not	applicable.
	formed (or) partially formed as per the	
	approved mining Plan, the Project	
	Proponent (PP) shall the PP shall carry out	
	the scientific studies to assess the slope	
	stability of the working benches to be	
	constructed and existing quarry wall, by	
	involving any one of the reputed Research	
	and Academic Institutions - CSIR-Central	
	Institute of Mining & Fuel Research /	
	Dhanbad, NIRM/Bangalore, Division of	
	Geotechnical Engineering-IIT-Madras, NIT-	
	Dept of Mining Engg. Surathkal, and Anna	
	University Chennai-CEG Campus. The PP	
	shall submit a copy of the aforesaid report	
	indicating the stability status of the quarry	
	wall and possible mitigation measures	
	during the time of appraisal for obtaining	
	the EC.	
8	However, in case of the fresh/virgin	It is a new lease area, the condition is not
	quarries, the Proponent shall submit a	applicable.
	conceptual 'Slope Stability Plan' for the	
	proposed quarry during the appraisal while	
	obtaining the EC, when the depth of the	
	working is extended beyond 30 m below	
	ground level.	
9	The PP Shall furnish the affidavit stating	The affidavit for blasting has been
	that the blasting operation in the proposed	enclosed in the approved mining plan

	quarry is carried out by the statutory	report in Annexure III.
	competent person as per the MMR 1961 such	
	as blaster. mining mate, mine foreman. II/I	
	Class mines manager appointed by the	
	proponent.	
10	The PP shall present a conceptual design for	A conceptual design of blasting has been
	carrying out only controlled blasting	given in Section 2.6 under Chapter II,
	operation involving line drilling and muffle	pp.16-23.
	blasting in the proposed quarry such that the	
	blast-induced ground vibrations are	
	controlled as well as no fly rock travel	
	beyond 30 m from the blast site.	
11	The EIA coordinators shall obtain and	Photographic evidences showing mining
	furnish the details of quarry/quarries	activities of the project proponent will be
	operated by the proponent in the past, either	submitted during the presentation.
	in the same location or elsewhere in the	
	State with video and photographic	
	evidences.	
12	If the proponent has already carried out the m	ining activity in the proposed mining lease
	area after 15.01.2016. then the proponent	shall furnish the following details from
	AD/DD, mines,	
13	What was the period of the operation and	
	stoppage of the earlier mines with last work	
	permit issued by the AD/DD mines?	
14	Quantity of minerals mined out.	As the proposed project is a new lease
	• Highest production achieved in any	area the conditions are not applicable to
	one year	this project
	• Detail of approved depth of mining.	
	• Actual depth of the mining achieved	
	earlier.	
	• Name of the person already mined in	
	that lease area.	

	• If EC and CTO already obtained, the	
	copy of the same shall be submitted.	
	• Whether the mining was carried out	
	as per the approved mine plan (or	
	EC if issued) with stipulated	
	benches.	
15	All corner coordinates of the mine lease	All corner coordinates of the mine lease
	area. superimposed on a High-Resolution	area have been superimposed on a high-
	Imagery/Toposheet, topographic sheet,	resolution Google Earth Image, as shown
	geomorphology, lithology and geology of	in Figure 2.3 under Chapter II, p.12.
	the mining lease area should be provided.	
	Such an Imagery of the proposed area	
	should clearly show the land use and other	
	ecological features of the study area (core	
	and buffer zone).	
16	The PP shall carry out Drone video survey	The drone video will be submitted during
	covering the cluster, green belt, fencing etc.,	presentation.
17	The proponent shall furnish photographs of	Photographs of adequate fencing, green
	adequate fencing, green belt along the	belt along the periphery of the project
	periphery including replantation of existing	area and the photographs showing nearby
	trees & safety distance between the adjacent	water bodies will be included in final
	quarries & water bodies nearby provided as	EIA report.
	per the approved mining plan.	
18	The Project Proponent shall provide the	The Resources and Reserves of Rough
	details of mineral reserves and mineable	Stone were calculated based on cross-
	reserves planned production capacity	section method by plotting sections to
	proposed working methodology with	cover the maximum lease area for the
	justifications. The anticipated impacts of the	proposed project.
	mining operations on the surrounding	The plate used for reserve estimation has
	environment, and the remedial measures for	been presented in Figure 2.4 and 2.4a
	The same.	resources have been shown in Table 2.2
		under Chapter II p 13 $\&$ 14
		under Chapter 11, p.15 & 14.

19	The Project Proponent shall provide the	Details of manpower required for this
	Organization chart indicating the	project have been given in Table 2.14
	appointment of various statutory officials	under Chapter II, p.24.
	and other competent persons to be	
	appointed as per the provisions of Mines	
	Act, 1952 and the MMR, 1961 for carrying	
	out the quarrying operations scientifically	
	and systematically in order to ensure safety	
	and to protect the environment.	
20	The Project Proponent shall conduct the	Detailed hydrogeological study was
	hydro-geological study considering the	carried out. The results have been
	contour map of the water table detailing the	discussed Section 3.2 under Chapter III,
	number of ground water pumping & open	pp.35-47.
	wells, and surface water bodies such as	
	rivers, tanks, canals, ponds etc. within 1 km	
	(radius) along with the collected water level	
	data for both monsoon and non-monsoon	
	seasons from the PWD/ TWAD so as to	
	assess the impacts on the wells due to	
	mining activity. Based on actual monitored	
	data, it may clearly - be shown whether	
	working will intersect groundwater,	
	Necessary data and documentation in this	
	regard may be provided.	
21	The proponent shall furnish the baseline	The baseline data were collected for the
	data for the environmental and ecological	environmental components including
	parameters with regard to surface	land, soil, water, air, noise, biology,
	water/ground water quality, air quality, soil	socio-economy, and traffic and the
	quality & flora/fauna including	results have been discussed under
	traffic/vehicular movement study.	Chapter III, pp. 25-89.
22	The Proponent shall carry out the	Results of cumulative impact study due
	Cumulative impact study due to mining	to mining operations are given in Section
	operations carried out in the quarry	7.4 under Chapter VII, pp.120-123.

	specifically with reference to the specific	
	environment in terms of soil health,	
	biodiversity, air pollution, water pollution,	
	climate change and flood control & health	
	impacts. Accordingly, the Environment	
	Management plan should be prepared	
	keeping the concerned quarry and the	
	surrounding habitations in the mind.	
23	Rain water harvesting management with	As part of rainwater harvesting measures,
	recharging details along with water balance	the rain water from garland drainage
	(both monsoon & non-monsoon) be	system will be diverted to nearby check
	submitted.	dams after treating the water in settling
		tanks.
24	Land use of the study area delineating forest	Land use of the study area delineating
	area, agricultural land, gazing land, wildlife	forest area, agricultural land2grazing
	sanctuary, national park, migratory routes of	land, wildlife sanctuary, national park,
	fauna, water bodies, human settlements and	migratory routes of fauna, water bodies,
	other ecological features should be	human settlements and other ecological
	indicated. Land use plan of the mine lease	features has been discussed in Section
	area should be prepared to encompass	3.1, under Chapter III pp.26-34. The
	preoperational, operational and post	details of surrounding sensitive
	operational phases and submitted. Impact, if	ecological features have been provided in
	any, of change of land use should be given.	Table 3.42 under Chapter III, p.88 & 89.
		Land use plan of the project area
		showing pre-operational, operational and
		post-operational phases are discussed in
		Table 2.8 under Chapter II, p.19.
25	Details of the land for storage of	This condition is not applicable to this
	Overburden/Waste Dumps (or) Rejects	project because no dumps have been
	outside the mine lease. such as extent of	proposed outside the lease area.
	land area, distance from mine lease' its land	
	use, R&R issues. If any, should be	
	provided.	

26	Proximity to Areas declared as 'Critically	Not Applicable.
	Polluted, (or) the project areas which	Project area / Study area is not declared
	attracts the court restrictions for mining	in 'Critically Polluted' Area and does not
	operations. Should also be indicated and	come under 'Aravalli Range.
	where so required. Clearance certifications	
	from the prescribed Authorities, such as the	
	TNPCB (or) Dept. of Geology and Mining	
	should be secured and furnished to the	
	effect that the proposed mining activities	
	could be considered.	
27	Description of water conservation measures	As part of rainwater harvesting measures,
	proposed to be adopted in the Project should	the rain water from garland drainage
	be given. Details of rainwater harvesting	system will be diverted to nearby check
	proposed in the Project, if any, should be	dams after treating the water in settling
	provided.	tanks.
28	Impact on local transport infrastructure due	The traffic density study is given in EIA
	to the project should be indicated.	report, Section 3.7, under Chapter III.
		pp.85-87.
29	A tree survey study shall be carried out	A detailed tree survey was caried out
	(nos., name of the species, age, diameter	within 300 m radius and the results have
	etc,) both within the mining lease applied	been discussed in Section 3.5 under
	area & 300m buffer zone and its	Chapter III, pp.61-78.
	management during mining activity.	
30	A detailed mine closure plan for the	A progressive mine closure plan has been
	proposed project shall be included in	attached with the approved mining plan
	EIA/EMP report which should be site-	report in Annexure III. The budget
	specific.	details for the progressive mine closure
		plan are shown in Table 2.9 under
		Chapter II, p.19.
31	As a part of the study of flora and fauna	The EIA coordinator and the FAE for
	around the vicinity of the proposed site, the	ecology and biodiversity visited the study
	EIA coordinator shall strive to educate the	area and educated the local students
	local students on the importance of	about the importance of protecting the

	preserving local flora and fauna by	biological environment.
	involving them in the study, wherever	
	possible.	
32	The purpose of green belt around the project	A detailed greenbelt development plan
	is to capture the fugitive emissions, carbon	has been provided in Section 4.6 under
	sequestration and to attenuate the noise	Chapter IV, pp.103-106.
	generated, in addition to improving the	
	aesthetics A wide range of indigenous plant	
	species should be planted as given in the	
	appendix-I in consultation with the DFO,	
	State Agriculture University and local	
	school/college authorities. The plant species	
	with dense/moderate canopy of native origin	
	should be chosen. Species of	
	small/medium/tall trees alternating with	
	shrubs should be planted in a mixed	
	manner.	
33	Taller/one year old Saplings raised in	The FAE of ecology and biodiversity has
	appropriate size of bags, preferably eco-	advised the project proponent that
	friendly bags should be planted as per the	saplings of one year old raised in the eco-
	advice of local forest authorities,	friendly bags should be purchased and
	botanist/Horticulture with regard to site	planted with the spacing of 3 m between
	specific choices. The proponent shall	each plant around the proposed project
	earmark the greenbelt area with GPS	area as per the advice of local forest
	coordinates all along the boundary of the	authorities/botanist.
	project site with at least 3 meters wide and	
	in between blocks in an organized manner.	
34	A Disaster management plan shall be	A disaster management plan for the
	prepared and included in the EIA/EMP	project has been provided in Section 7.3
	Report for the complete life of the proposed	under Chapter VII, pp.118-119.
	quarry (or) till the end of the lease period.	
35	A Risk Assessment and management plan	A risk assessment plan for the project has
	shall be prepared and included in the	been provided in Section 7.2 under

	EIA/EMP Report for the complete life of	Chapter VII, p.116-118.
	the proposed quarry (or) till the end of the	
	lease period.	
36	Occupational Health impacts of the Project	Occupational health impacts of the
	should be anticipated and the proposed	project and preventive measures have
	preventive measures spelt out in detail.	been discussed in detail in Section 4.8
	Details of pre-placement medical	under Chapter IV, pp.107 & 108.
	examination and periodical medical	
	examination schedules should be	
	incorporated in the EMP. The project	
	specific occupational health mitigation	
	measures with required facilities proposed	
	in the mining area may be detailed.	
37	Public health implications of the Project and	No public health implications are
	related activities for the population in the	anticipated due to this project. Details of
	impact zone should be systematically	CSR and CER activities have been
	evaluated and the proposed remedial	discussed in Sections 8.6 and 8.7 under
	measures should be detailed along with	Chapter VIII, pp.126 & 127.
	budgetary allocations.	
38	The Socio-economic studies should be	No negative impact on socio-economic
	carried out within a 5 km buffer zone from	environment of the study area is
	the mining activity. Measures of socio-	anticipated and this project shall benefit
	economic significance and influence to the	the socio-economic environment by
	local community proposed to be provided	offering employment for 18 people
	by the Project Proponent should be	directly as discussed in Section 8.1 under
	indicated. As far as possible, quantitative	Chapter VIII, p.125.
	dimensions may be given with time frames	
	for implementation.	
39	Details of litigation pending against the	No litigation is pending in any court
	project, if any, with direction /order passed	against this project.
	by any Court of Law against the Project	
	should be given.	
40	Benefits of the Project if the Project is	Benefits of the project details have been

	implemented should be spelt out. The	given under Chapter VIII, pp.125-127.
	benefits of the Project shall clearly indicate	
	environmental, social, economic,	
	employment potential, etc.	
41	If any quarrying operation were carried out	It is a fresh lease area, the CCR is not
	in the proposed quarrying sile for which	applicable to this project.
	now the EC is sought, the Project Proponent	
	shall furnish the detailed compliance to EC	
	conditions given in the previous EC with	
	the site photographs which shall duly be	
	certified by MoEF & CC, Regional Office,	
	Chennai (or) the concerned DEE/TNPCB.	
42	The PP Shall prepare the EMP for the entire	A detailed environment management
	life/lease period of mine and also Furnish	plan has been prepared following the
	the sworn affidavit starting to Abide the	suggestion made by SEAC, as shown in Chapter V on 120 125. The sworm
	EMP for the entire life of mine.	affidavit stating to abide the EMP for the
		united in stating to dolde the Bin for the
		entire life of mine will be submitted
		entire life of mine will be submitted during final EIA presentation.
43	Concealing any factual information or	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared
43	Concealing any factual information or submission of false/fabricated data and	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated_data_and_failure_ta
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal of this terms of reference besides
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act' 1986.	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal of this terms of reference besides attracting penal provisions in the
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act' 1986.	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal of this terms of reference besides attracting penal provisions in the Environment (Protection) Act, 1986.
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act' 1986.	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal of this terms of reference besides attracting penal provisions in the Environment (Protection) Act, 1986.
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act' 1986. Discussion by SEIAA and the Remarks: - The subject was placed in the 670 th Auth	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal of this terms of reference besides attracting penal provisions in the Environment (Protection) Act, 1986.
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act' 1986. Discussion by SEIAA and the Remarks: - The subject was placed in the 670 th Auth authority noted that the subject was apprai	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal of this terms of reference besides attracting penal provisions in the Environment (Protection) Act, 1986.
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act' 1986. Discussion by SEIAA and the Remarks: - The subject was placed in the 670 th Auth authority noted that the subject was apprai 13.10.2023.	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal of this terms of reference besides attracting penal provisions in the Environment (Protection) Act, 1986.
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act' 1986. Discussion by SEIAA and the Remarks: - The subject was placed in the 670 th Auth authority noted that the subject was apprai 13.10.2023. Based on the presentation and documents for	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal of this terms of reference besides attracting penal provisions in the Environment (Protection) Act, 1986.
43	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act' 1986. Discussion by SEIAA and the Remarks: - The subject was placed in the 670 th Auth authority noted that the subject was apprai 13.10.2023. Based on the presentation and documents for after detailed deliberations, decided to recom	entire life of mine will be submitted during final EIA presentation. The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal of this terms of reference besides attracting penal provisions in the Environment (Protection) Act, 1986.

decided to grant Terms of Reference (ToR) along with Public Hearing under cluster for undertaking the combined Environment Impact Assessment Study and preparation of separate Environment Management Plan subject to the conditions as recommended by SEAC & normal conditions in addition to the following conditions and the conditions in Annexure 'B'ICluster Management Committee shall be framed which must include all the proponents in the cluster as members including the existing as well as proposed quarry.A cluster management committee including the existing as well as proposed constituted for the effective implementation of green belt development plan, water sprinkling, blasting, etc.2The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development Water sprinkling, tree plantation, blasting etc.,The list of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.All the information has been discussed in Section 2.6 under Chapter II, pp.16-23.4Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.It will be informed to the committee.		After detailed discussions, the Authority ac	ecepts the recommendation of SEAC and
for undertaking the combined Environment Impact Assessment Study and preparation of separate Environment Management Plan subject to the conditions as recommended by SEAC & normal conditions in addition to the following conditions and the conditions in Annexure 'B'ICluster Management Committee shall be framed which must include all the proponents in the cluster as members including the existing as well as proposed quarry.A cluster management committee including the existing as well as proposed constituted for the effective implementation of green belt development plan, water sprinkling, blasting, etc.2The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development Water sprinkling, tree plantation, blasting etc.,The Ist of members of the committee formed shall be submitted to AD/Mines3The List of members of the committee formed shall be updated every year to the AD/Mines.The list of members of the committee formed will be submitted to AD/Mines before the execution of mining lease and the submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All the informed to the committee.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.		decided to grant Terms of Reference (ToR)	along with Public Hearing under cluster
of separate Environment Management Plan subject to the conditions as recommended by SEAC & normal conditions in addition to the following conditions and the conditions in Annexure 'B'ICluster Management Committee shall be framed which must include all the including the existing as well as proposed quarry.A cluster management committee including the existing as well as proposed quarry.2The members must coordinate among of EMP as committed including Green Belt bestore the execution of mining lease and the same shall be updated every year to the AD/Mines.The list of members of the committee formed which must include the blasting formed which must include the blasting formed which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All the informed to the committee formed to the committee of haul formed to the committee of haul route map and network.5The committee shall deliberate on risk management plan pertaining to the cluster in route map and network.It will be informed to the committee		for undertaking the combined Environment	Impact Assessment Study and preparation
by SEAC & normal conditions in addition to the following conditions and the conditions in Annexure 'B' 1 Cluster Management Committee shall be framed which must include all the including the existing as well as proposed quarry. A cluster management committee including all the proponents of the rough stone quarrying projects within the including the existing as well as proposed quarry. 2 The members must coordinate among of EMP as committed including Green Belt betweelves for the effective implementation of EMP as committed including Green Belt pevelopment Water sprinkling, tree plantation, blasting etc., The List of members of the committee to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines. The list of members of the committee to AD/Mines before the execution of mining lease and the submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. All the informed to the committee. 5 The committee shall deliberate on risk management plan pertaining to the cluster in It will be informed to the committee.		of separate Environment Management Plan	subject to the conditions as recommended
conditions in Annexure 'B' Annexure 'B' Cluster Management Committee shall be framed which must include all the proponents of the rough proponents in the cluster as members including the existing as well as proposed quarry. A cluster of 500 m radius will be cluster of 500 m radius will be constituted for the effective implementation of green belt development plan, water sprinkling, blasting, etc. 2 The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development Water sprinkling, tree plantation, blasting etc., The list of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines. The list of members of the committee formed which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. All the informed to the committee. 5 The committee shall deliberate on risk management plan pertaining to the cluster in It will be informed to the committee.		by SEAC & normal conditions in addition	on to the following conditions and the
Annexure 'B' 1 Cluster Management Committee shall be framed which must include all the proponents in the cluster as members including the existing as well as proposed quarry. A cluster management committee including all the proponents of the rough stone quarrying projects within the cluster of 500 m radius will be constituted for the effective implementation of green belt development plan, water sprinkling, blasting, etc. 2 The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development Water sprinkling, tree plantation, blasting etc., The List of members of the committee to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines. The list of members of the cluster include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. All the informed to the committee. 5 The committee shall deliberate on risk management plan pertaining to the cluster in It will be informed to the committee.		conditions in Annexure 'B' of this minute.	
1 Cluster Management Committee shall be A cluster management committee framed which must include all the including all the proponents of the rough proponents in the cluster as members including the existing as well as proposed quarry. including all the proponents of the rough stone quarrying projects within the cluster of 500 m radius will be constituted for the effective implementation of green belt development plan, water sprinkling, blasting, etc. 2 The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development Water sprinkling, tree plantation, blasting etc., The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines. 4 Detailed Operational Plan must be All the information has been discussed in submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. All the informed to the committee. 5 The committee shall deliberate on risk management plan pertaining to the cluster in It will be informed to the committee.		Annexu	re 'B'
framed which must include all the proponents in the cluster as members including the existing as well as proposed quary.including all the proponents of the rough stone quarying projects within the cluster of 500 m radius will be constituted for the effective implementation of green belt development plan, water sprinkling, blasting, etc.2The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt plantation, blasting etc.,The members of the cluster management committee will be instructed to carry out EMP in coordination.3The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.The list of members of the committee formed will be submitted to AD/Mines before the cxecution of mining lease and the submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All the informed to the committee.5The committee shall deliberate on risk management plan pertaining to the cluster in the fourteed to the committee.It will be informed to the committee.	1	Cluster Management Committee shall be	A cluster management committee
Image: series of the constituence of the series of the series of the constituence of the series		framed which must include all the	including all the proponents of the rough
including the existing as well as proposed quarry.cluster of 500 m radius will be constituted for the effective implementation of green belt development plan, water sprinkling, blasting, etc.2The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development Water sprinkling, tree plantation, blasting etc.,The members of the cluster management committee will be instructed to carry out EMP in coordination.3The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.The list of members of the committee formed will be submitted to AD/Mines before the execution of mining lease and the submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All the informed to the committee.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.		proponents in the cluster as members	stone quarrying projects within the
quarry.constituted for the effective implementation of green belt development plan, water sprinkling, blasting, etc.2The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development Water sprinkling, tree plantation, blasting etc.,The members of the cluster management committee will be instructed to carry out EMP in coordination.3The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.The list of members of the committee formed will be submitted to AD/Mines before the execution of mining lease and the submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All the informed to the committee.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.		including the existing as well as proposed	cluster of 500 m radius will be
implementationofgreenbeltdevelopmentplan,watersprinkling,blasting, etc.2The membersmust coordinate among themselves for the effective implementation of EMP as committed including Green Belt DevelopmentThe members of the cluster management committee will be instructed to carry out EMP in coordination.3The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.The list of members of the committee formed will be submitted to AD/Mines before the execution of mining lease and the submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All the informed to the committee.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.		quarry.	constituted for the effective
Image: Construct of the spectrum of the spectr			implementation of green belt
Image: 10 black blac			development plan, water sprinkling,
2The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development Water sprinkling, tree plantation, blasting etc.,The nembers of the cluster management committee will be instructed to carry out EMP in coordination.3The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.The list of members of the committee formed will be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.All the information has been discussed in Section 2.6 under Chapter II, pp.16-23.4Detailed Operational Plan must be submitted in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All twill be informed to the committee.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.			blasting, etc.
themselves for the effective implementation of EMP as committed including Green Belt Development Water sprinkling, tree plantation, blasting etc.,committee will be instructed to carry out EMP in coordination.3The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.The list of members of the committee formed will be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.All the information has been discussed in Section 2.6 under Chapter II, pp.16-23.4Detailed Operational Plan must be frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All twill be informed to the committee.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.	2	The members must coordinate among	The members of the cluster management
of EMP as committed including Green Belt Development Water sprinkling, tree plantation, blasting etc.,EMP in coordination.3The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.The list of members of mining lease.4Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All twill be informed to the committee.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.		themselves for the effective implementation	committee will be instructed to carry out
DevelopmentWater sprinkling, tree plantation, blasting etc.,The List of members of the committee3The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.The list of members of mining lease.4Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All twill be informed to the committee.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.		of EMP as committed including Green Belt	EMP in coordination.
plantation, blasting etc.,The List of members of the committee formed shall be submitted to AD/Minesformed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.The ist of members of the committee formed will be submitted to AD/Mines4Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All twill be informed to the committee.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.		Development Water sprinkling, tree	
 The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines. Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. The List of members of the committee The list of members of the committee formed will be submitted to AD/Mines before the execution of mining lease. All the information has been discussed in Section 2.6 under Chapter II, pp.16-23. The committee shall deliberate on risk management plan pertaining to the cluster in 		plantation, blasting etc.,	
formed shall be submitted to AD/Minesformed will be submitted to AD/Minesbefore the execution of mining lease and the same shall be updated every year to the AD/Mines.before the execution of mining lease.4Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.All the information has been discussed in Section 2.6 under Chapter II, pp.16-23.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.	3	The List of members of the committee	The list of members of the committee
 before the execution of mining lease and the same shall be updated every year to the AD/Mines. before the execution of mining lease. AD/Mines. Detailed Operational Plan must be All the information has been discussed in submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. The committee shall deliberate on risk management plan pertaining to the cluster in 		formed shall be submitted to AD/Mines	formed will be submitted to AD/Mines
 same shall be updated every year to the AD/Mines. 4 Detailed Operational Plan must be All the information has been discussed in submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. 5 The committee shall deliberate on risk management plan pertaining to the cluster in 		before the execution of mining lease and the	before the execution of mining lease.
AD/Mines.AD/Mines.4Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.Section 2.6 under Chapter II, pp.16-23.5The committee shall deliberate on risk management plan pertaining to the cluster inIt will be informed to the committee.		same shall be updated every year to the	
 4 Detailed Operational Plan must be All the information has been discussed in submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. 5 The committee shall deliberate on risk management plan pertaining to the cluster in 		AD/Mines.	
 submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. The committee shall deliberate on risk management plan pertaining to the cluster in 	4	Detailed Operational Plan must be	All the information has been discussed in
 frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. The committee shall deliberate on risk management plan pertaining to the cluster in 		submitted which must include the blasting	Section 2.6 under Chapter II, pp.16-23.
 situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network. The committee shall deliberate on risk management plan pertaining to the cluster in 		frequency with respect to the nearby quarry	
 roads by the individual quarry in the form of route map and network. The committee shall deliberate on risk management plan pertaining to the cluster in 		situated in the cluster, the usage of haul	
route map and network. 5 The committee shall deliberate on risk management plan pertaining to the cluster in		roads by the individual quarry in the form of	
5 The committee shall deliberate on risk It will be informed to the committee. management plan pertaining to the cluster in		route map and network.	
management plan pertaining to the cluster in	5	The committee shall deliberate on risk	It will be informed to the committee.
		management plan pertaining to the cluster in	

	a holistic manner especially during natural	
	calamities like intense rain and the	
	mitigation measures considering the	
	inundation of the cluster and evacuation	
	plan.	
6	The Cluster Management Committee shall	It will be advised to the cluster
	form Environmental Policy to practice	management committee to practice
	sustainable mining in a scientific and	sustainable mining in a scientific and
	systematic manner in accordance with the	systematic manner in accordance with
	law. The role played by the committee in	the law. The role played by the
	implementing the environmental policy	committee in implementing the
	devised shall be given in detail.	environmental policy devised will be
		given in detail.
7	The committee shall furnish action plan	A proper action plan regarding the
	regarding the restoration strategy with	restoration will be followed by the
	respect to the individual quarry falling	committee.
	under the cluster in a holistic manner.	
8	The committee shall furnish the Emergency	The committee will submit the
	Management plan within the cluster.	emergency management plan to the
		respective authority in the stipulated time
		period.
9	The committee shall deliberate on the health	The information on the health of the
	of the workers/staff involved in the mining	workers and the local people will be
	as well as the health of the public.	updated periodically.
10	The committee shall furnish an action plan	A proper action plan with reference to
	to achieve sustainable development goals	water, sanitation & safety will be devised
	with reference to water, sanitation & safety.	and submitted by the committee to the
		respective authority.
11	The committee shall furnish the fire safety	The committee will submit the fire safety
	and evacuation plan in the case of fire	and evacuation plan as discussed in
	accidents.	Section 7.3 under Chapter VII, pp.118-
		119.

		Impact study	of Mining
12	Detail	Detailed study shall be carried out in regard to impact of mining around the proposed	
	mine	lease area covering the entire mine lease	e period as per precise area communication
	order	issued from reputed research institutions	s on the following
	a)	Soil health & soil biological,	Soil health and biodiversity have been
		physical land chemical features.	discussed in Sections 3.1 and 3.5
			respectively under Chapter III, pp.26-34
			& pp. 61-78.
	b)	Climate change leading to Droughts,	Climatic condition of the proposed
		Floods etc.	project area has been discussed in
			Section 3.3 under Chapter III, pp.47-57.
	c)	Pollution leading to release of	The information about CO ₂ emission has
		Greenhouse gases (GHG), rise in	been added to Section 4.6 under Chapter
		Temperature, & Livelihood of the	IV, pp.103-106.
		local People.	
	d)	Possibilities of water contamination	Possibilities of both surface and ground
		and impact on aquatic ecosystem	water contamination have been discussed
		health.	in Section 4.3 under Chapter IV, pp.91.
			The impact on aquatic species has been
			discussed in Section 4.6 under Chapter
			IV, pp.103-106.
	e)	Agriculture, Forestry, & Traditional	Sorgum, millet, groundnut, and coconut
		practices.	are the primary crops that are cultivated
			in the study area.
	f)	Hydrothermal/Geothermal effect due	The average geothermal gradient of earth
		to destruction in the Environment.	is 25°C/km. As the proposed depth of
			mining is 92 m below the local ground
			level, the temperature will increase by
			2.3° C at the depth of mining.
	g)	Bio-geochemical processes and its	Data is not included.
		foot prints including environmental	
		stress.	

	h)	Sediment geochemistry in the	The details regarding sediment
		surface streams.	geochemistry is discussed in the Table
			3.4 under Chapter III, p.34.
		Agriculture & A	gro-Biodiversity
13	Impac	t on surrounding agricultural fields	There shall be negligible air emissions or
	aroun	d the proposed mining area.	effluents from the project site. During
			loading the truck, dust generation will be
			likely. This shall be a temporary effect
			and not anticipated to affect the
			surrounding vegetation significantly, as
			shown in Section 4.6 under Chapter IV,
			pp.103-106.
14	Impac	t on soil flora & vegetation around the	The details on flora have been provided
	projec	t site.	in Section 3.5 under Chapter III, pp.61-
			78. There is no schedule I species of
			animals observed within study area as
			per Wildlife Protection Act, 1972 and no
			species falls in vulnerable, endangered or
			threatened category as per IUCN. There
			is no endangered red list species found in
			the study area.
15	Detail	s of type of vegetations including no	Details of vegetation in the lease area
	of tre	ees & shrubs within the proposed	have been provided in Section 3.5 under
	minin	g area shall be given and if so	Chapter III, pp. 61-78. Details about
	transp	lantation of such vegetations all along	transplantation of plants have been
	the bo	oundary of the proposed mining area	provided in Section 4.6 under Chapter
	shall c	committed mentioned in EMP.	IV, pp.103-106.
16	The	Environmental Impact Assessmen	The ecological details have been
	should	d study the biodiversity, the natura	provided in Section 3.5 under Chapter
	ecosys	stem, the soil micro flora, fauna and	III, pp. 61-78 and measures have been
	soil s	eed banks and suggest measures to	provided in Section 4.6 under Chapter
	maint	ain the natural Ecosystem.	IV, pp. 103-106.
17	Action	n should specifically suggest for	· All the essential environmental

	sustainable management of the area and	protective measures will be followed by
	restoration of ecosystem for flow of goods	the proponent to manage the surrounding
	and services.	environment and restore the ecosystem,
		as discussed in Chapter IV, pp.90-109.
18	The project proponent shall study and	The impact of project on the land
	furnish the impact of project on plantations	environment has been discussed in
	in adjoining patta lands, Horticulture,	Section 4.1 under Chapter IV, p.90-109.
	Agriculture and livestock.	
	Fore	sts
19	The project proponent shall study on impact	The project proponent shall do barbed
	of mining on Reserve forests free ranging	wire fencing work and develop a green
	wildlife.	belt around the lease area to prevent
		wildlife from entering the site.
20	The Environmental Impact Assessment	The impacts of the project on ecology
	should study impact on forest, vegetation,	and biodiversity have been discussed in
	endemic, vulnerable and endangered	Section 4.6 under Chapter IV, pp.103-
	indigenous flora and fauna.	106.
21	The Environmental Impact Assessment	The impacts of the project on standing
	should study impact on standing trees and	trees and the existing trees have been
	the existing trees should be numbered and	discussed in Section 4.6 under Chapter
	action suggested for protection.	IV, pp.103-106.
22	The Environmental Impact Assessment	The details of protected areas, National
	should study impact on protected areas,	Parks, Corridors and Wildlife pathways
	Reserve Forests, National parks, corridors	near project site and the list of
	and wildlife pathways, near project site.	environmentally sensitive areas has been
		provided in Table 3.42 under Chapter III,
		pp.88 & 89.
	Water Envi	ironment
23	Hydro-geological study considering the	Detailed hydrogeological study was
	contour map of the water table detailing the	carried out. The results have been
	number of ground water pumping & open	discussed Section 3.2 under Chapter III,
	wells, and surface water bodies such as	pp.35-47.

	rivers, tanks, canals, ponds etc. within 1 km	
	(radius) so as to assess the impacts on the	
	nearby waterbodies due to mining activity.	
	Based on actual monitored data, it may	
	clearly be shown whether working will	
	intersect groundwater. Necessary data and	
	documentation in this regard may be	
	provided, covering the entire mine lease	
	period.	
24	Erosion control measures.	Garland drainage structures will be
		constructed around the lease area to
		control the erosion, as discussed in
		Section 4.3 under Chapter IV, pp.91.
25	Detailed study shall be carried out in regard	The matter has been discussed under
	to impact of mining around the proposed	Chapter IV, pp.90-109.
	mine lease area on the nearby villages,	
	waterbodies/rivers & any ecological fragile	
	areas.	
26	The project proponent shall study impact on	An analysis for food chain in aquatic
	fish habitats and the food WEB/food chain	ecosystem has been discussed in Section
	in the water body and Reservoir.	3.5 under Chapter 3, pp. 61-78.
27	The project proponent shall study and	The impacts of the proposed project on
	furnish the details on potential	the surrounding environment have
	fragmentation impact on natural	discussed in Chapter IV, pp. 90-109.
	environment, by the activities.	
28	The project proponent shall study and	The impact of the proposed project on
	furnish the impact on aquatic plants and	aquatic plants and animals in water
	animals in water bodies and possible scars	bodies has been discussed in Section 4.6
	on the landscape, damages to nearby caves,	under Chapter IV, pp. 103-106.
	heritage site, and archaeological sits	
	possible land form changes visual and	
	aesthetic impacts.	
29.	The Terms of Reference should	The impact of mining on soil

	specifically study impact on soil health, soil	environment has been discussed in
	erosion, the soil physical, chemical	Section 4.2 under Chapter IV, pp.90-91.
	components.	
30	The Environmental Impact Assessment	The impacts on water bodies, streams,
	should study on wetlands, water bodies,	lakes have been discussed in Section 4.3
	rivers streams, lakes and farmer sites.	under Chapter IV, p.91.
	Energy	
31	The measures taken to control Noise, Air,	The measures taken to control noise, air,
	water, Dust control and steps adopted to	water, and dust have been given under
	efficiently utilise the Energy shall be	Chapter IV, pp.90-109.
	furnished.	
	Climate Cha	ange
32	The Environmental Impact Assessment	The carbon emission and the measures to
	shall study in detail the carbon emission and	mitigate carbon emission have been
	also suggest the measures to mitigate carbon	discussed in Section 4.6 under Chapter
	emission including development of carbon	IV, pp. 103-106.
	sinks and temperature reduction including	
	control of other emission and climate	
	mitigation activities.	
33	The Environmental Impact Assessment	The matter has been discussed in Chapter
	should study impact on climate change,	IV, pp. 90-109.
	temperature rise, pollution and above soil &	
	below soil carbon stock.	
	Mine Clos	ure Plan
34	Detailed Mine closure plan covering the	A progressive mine closure plan has been
	entire mine lease period as per precise area	attached with the approved mining plan
	communication order issued.	report in Annexure III. The budget
		details for the progressive mine closure
		plan are shown in Table 2.9 under
		Chapter II, p.19.
	EM	P
35	Detailed Environment Management plan	A detailed Environment Management

	along with adaptation, mitigation &	plan has been given under Chapter X,
	remedial strategies covering the entire mine	pp.129-135.
	lease period as per precise area	
	communication order issued.	
36	The Environmental Impact Assessment	A detailed Environment Management
	should hold detailed study on EMP with	plan has been given in Tables 10.1 &
	budget for green belt development and mine	10.2 under Chapter X, pp.130-135.
	closure plan including disaster management	
	plan.	
	Risk Asse	essment
37	To furnish risk assessment and management	The risk assessment and management
	plan including anticipated vulnerabilities	plan for this project has been provided in
	during operational and post operational	Section 7.2 under Chapter VII, pp.116-
	phases of Mining.	118.
	Disaster Mana	gement Plan
38	To furnish disaster management plan and	The disaster management plan for this
	disaster mitigation measures in regard to all	project has been provided in Section 7.3
	aspects to avoid/reduce vulnerability to	under Chapter VII, pp.118-119.
	hazards & to cope with disaster/untoward	
	accidents in & around the proposed mine	
	lease area due to the proposed method of	
	mining activity & its related activities	
	covering the entire mine lease period as per	
	precise area communication order issued.	
	Othe	ers
39.	The project proponent shall furnish VAO	The VAO certificate of 300 m radius
	certificate with reference to 300 m radius	have been attached in the attached in the
	regard to approved habitations, schools,	Annexure IV.
	Archaeological sites, structures, railway	
	lines, roads, water bodies such as streams,	
	odai, vaari, canal, river, lake pond, tank etc.	
40	As per the MoEF & CC office	The concerns raised during the public

	memorandum F.No.22-65/2017-IA.III	consultation will be submitted in the final
	dated: 30.09.2020 and 20.10.2020 the	EIA report.
	proponent shall address the concerns raised	
	during the public consultation and all the	
	activities proposed shall be part of the	
	Environment Management plan.	
41	The project proponent shall study and	The matter on plastic waste management
	furnish the possible pollution due to plastic	has been given in Section 7.4 under
	and microplastic on the environment. The	Chapter VII, pp.120-123.
	ecological risks and impacts of plastic &	
	microplastics on aquatic environment and	
	fresh water systems due to activities,	
	contemplated during mining may be	
	investigated and reported.	
	STANDARD TERMS O	F REFERENCE
1.	Year-wise production details since 1994	Not applicable. This is not a violation
	should be given, clearly stating the highest	category project. This proposal falls
	production achieved in any one year prior to	under B1 category.
	1994. It may also be categorically informed	
	whether there had been any increase in	
	production after the EIA Notification 1994	
	came into force, w.r.t. the highest	
	production achieved prior to 1994.	
2.	A copy of the document in support of the	The proposed site for quarrying is a
	fact that the proponent is the rightful lessee	private land. A copy of the document
	of the mine should be given.	showing that the proponent is the rightful
		lessee has been enclosed along with the
		approved mining plan in Annexure III.
3.	All documents including approved mine	All the documents related to mining plan,
	plan, EIA and Public Hearing should be	EIA and public hearing are compatible to
	compatible with one another in terms of the	each other and have been provided in the
	mine lease area, production levels, waste	annexure part.
	generation and its management, mining	

	technology etc. and should be in the name	
	of the lessee.	
4.	All corner coordinates of the mine lease	All corner coordinates of the mine lease
	area, superimposed on a High-Resolution	area have been superimposed on a high-
	Imagery/ toposheet, topographic sheet,	resolution Google Earth Image, as shown
	geomorphology and geology of the area	in Figure 2.3 under Chapter II, p.12.
	should be provided. Such an Imagery of the	
	proposed area should clearly show the land	
	use and other ecological features of the	
	study area (core and buffer zone).	
5.	Information should be provided in Survey	Toposheets of Survey of India have been
	of India Toposheet in 1:50,000 scale	used for showing sampling locations of
	indicating geological map of the area,	air, soil, water, and noise, as shown in
	geomorphology of land forms of the area,	Chapter III.
	existing minerals and mining history of the	
	area, important water bodies, streams and	
	rivers and soil characteristics.	
6.	Details about the land proposed for mining	The lease area was inspected by the
	activities should be given with information	officers of Department of Geology along
	as to whether mining conforms to the land	with revenue officials and found that the
	use policy of the State; land diversion for	land is fit for quarrying under the policy
	mining should have approval from State	of State Government.
	land use board or the concerned authority.	
7.	It should be clearly stated whether the	The proponent has framed
	proponent Company has a well laid down	Environmental Policy and the same has
	Environment Policy approved by its Board	been discussed in Section 10.1 under
	of Directors? If so, it may be spelt out in the	Chapter X, pp.129 & 130.
	EIA Report with description of the	
	prescribed operating process/ procedures to	
	bring into focus any infringement/	
	deviation/ violation of the environmental or	
	forest norms/conditions? The hierarchical	
	system or administrative order of the	

	Company to deal with the environmental	
	issues and for ensuring compliance with the	
	EC conditions may also be given. The	
	system of reporting of non-compliances /	
	violations of environmental norms to the	
	Board of Directors of the Company and/or	
	shareholders or stakeholders at large, may	
	also be detailed in the EIA Report.	
8.	Issues relating to Mine Safety, including	It is an opencast quarrying operation
	subsidence study in case of underground	proposed to operate in Manual method.
	mining and slope study in case of open cast	The rough stone formation is a hard,
	mining, blasting study etc. should be	compact and homogeneous body. The
	detailed. The proposed safeguard measures	height and width of the bench will be
	in each case should also be provided.	maintained as 5m with 90^0 bench angles.
		Quarrying activities will be carried out
		under the supervision of Competent
		Persons like Mines Manager, Mines
		Foreman and Mining Mate. Necessary
		permissions will be obtained from
		DGMS after obtaining Environmental
		Clearance.
9.	The study area will comprise of 10 km zone	The study area considered for this study
	around the mine lease from lease periphery	is of 5 km radius for air, soil, water, and
	and the data contained in the EIA such as	noise level sample collections, while the
	waste generation etc., should be for the life	study area is 10 km radius for ecology
	of the mine / lease period.	and biodiversity studies and all data
		contained in the EIA report such as waste
		generation etc., is for the life of the mine
		/ lease period.
10.	Land use of the study area delineating forest	Land use of the study area delineating
	area, agricultural land, grazing land, wildlife	forest area, agricultural land, grazing
	sanctuary, national park, migratory routes of	land, wildlife sanctuary, national park,

	fauna, water bodies, human settlements and	migratory routes of fauna, water bodies,
	other ecological features should be	human settlements and other ecological
	indicated. Land use plan of the mine lease	features has been discussed in Section
	area should be prepared to encompass	3.1 under Chapter III, pp.26-34. The
	preoperational, operational and post	details of surrounding sensitive
	operational phases and submitted. Impact, if	ecological features have been provided in
	any, of change of land use should be given.	Table 3.42 under Chapter III, p.88 & 89.
		Land use plan of the project area
		showing pre-operational, operational and
		post-operational phases are discussed in
		Table 2.8 under Chapter II, p.19.
11.	Details of the land for any over burden	It is not applicable as no dumps have
	dumps outside the mine lease, such as	been proposed outside the lease area. The
	extent of land area, distance from mine	entire quarried out rough stone will be
	lease, its land use, R&R issues, if any,	transported to the needy customers.
	should be given	
12.	Certificate from the Competent Authority in	It is not applicable as there is no forest
	the State Forest Department should be	land involved within the proposed project
	provided, confirming the involvement of	area. The details have been discussed in
	forest land, if any, in the project area. In the	Table 3.42 under Chapter III, pp.88 &
	event of any contrary claim by the Project	89.
	Proponent regarding the status of forests,	
	the site may be inspected by the State Forest	
	Department along with the Regional Office	
	of the Ministry to ascertain the status of	
	forests, based on which, the Certificate in	
	this regard as mentioned above be issued. In	
	all such cases, it would be desirable for	
	representative of the State Forest	
	Department to assist the Expert Appraisal	
	Committees.	
13.	Status of forestry clearance for the broken-	It is not applicable as the proposed
	up area and virgin forestland involved in the	project area does not involve any forest

	Project including deposition of net present	land.	
	value (NPV) and compensatory		
	afforestation (CA) should be indicated. A		
	copy of the forestry clearance should also be		
	furnished.		
14.	forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.	The project doesn't attract Recognition of Forest Rights Act, 2006 as there are neither forests nor forest dwellers / forest dependent communities in the mine lease area. There shall be no forest impacted families (PF) or people (PP). Thus, the	
		rights of Traditional Forest Dwellers will not be compromised on account of the project.	
15.	The vegetation in the RF / PF areas in the	No Reserve Forest is found within the	
	study area, with necessary details, should be	study area. The details of reserve forest	
	given.	within 10km have been discussed Table	
		3.42 under Chapter III, pp.88 & 89. Flora	
		and Fauna vegetation details is attached	
		in the Annexure IV.	
16.	A study shall be got done to ascertain the	There is no any wildlife/protected area	
	impact of the Mining Project on wildlife of	from the periphery of the project area.	
	the study area and details furnished. Impact	Information regarding wildlife /protected	
	of the project on the wildlife in the	area within 10km has been given in	
	surrounding and any other protected area	Table 3.42 under Chapter III, pp.88 &	
	and accordingly, detailed mitigative	89.	
	measures required, should be worked out		
	with cost implications and submitted.		
17.	Location of National Parks, Sanctuaries,	The details of National Parks, Biosphere	
	Biosphere Reserves, Wildlife Corridors,	Reserves, Wildlife Corridors, and	
	Ramsar site Tiger/ Elephant	Tiger/Elephant Reserves within 10 km	

	Reserves/(existing as well as proposed), if	radius from the periphery of the project	
	any, within 10 km of the mine lease should	area has been given in Table 3.42 under	
	be clearly indicated, supported by a location	Chapter III, pp.88 & 89.	
	map duly authenticated by Chief Wildlife		
	Warden. Necessary clearance, as may be		
	applicable to such projects due to proximity		
	of the ecologically sensitive areas as		
	mentioned above, should be obtained from		
	the Standing Committee of National Board		
	of Wildlife and copy furnished		
18.	A detailed biological study of the study area	A detailed biological study was carried	
	[core zone and buffer zone (10 KM radius	out in both core and buffer zones and the	
	of the periphery of the mine lease)] shall be	results have been discussed in Section	
	carried out. Details of flora and fauna,	3.5 under Chapter III, pp. 61-78.	
	endangered, endemic and RET Species duly		
	authenticated, separately for core and buffer		
	zone should be furnished based on such		
	primary field survey, clearly indicating the		
	Schedule of the fauna present. In case of		
	any scheduled-I fauna found in the study		
	area, the necessary plan along with		
	budgetary provisions for their conservation		
	should be prepared in consultation with		
	State Forest and Wildlife Department and		
	details furnished. Necessary allocation of		
	funds for implementing the same should be		
	made as part of the project cost.		
19.	Proximity to Areas declared as 'Critically	Not Applicable.	
	Polluted' or the Project areas likely to come	Project area / Study area is not declared	
	under the 'Aravalli Range', (attracting court	in 'Critically Polluted' Area and does not	
	restrictions for mining operations), should	come under 'Aravalli Range.	
	also be indicated and where so required,		
	clearance certifications from the prescribed		

	Authorities, such as the SPCB or State	
	Mining Department should be secured and	
	furnished to the effect that the proposed	
	mining activities could be considered.	
20.	Similarly, for coastal Projects, A CRZ map	Not Applicable
	duly authenticated by one of the authorized	The project doesn't attract the C.R.Z.
	agencies demarcating LTL. HTL, CRZ area,	Notification, 2018.
	location of the mine lease w.r.t CRZ, coastal	
	features such as mangroves, if any, should	
	be furnished. (Note: The Mining Projects	
	falling under CRZ would also need to obtain	
	approval of the concerned Coastal Zone	
	Management Authority).	
21.	R&R Plan/compensation details for the	Not Applicable.
	Project Affected People (PAP) should be	There are no approved habitations of
	furnished. While preparing the R&R Plan,	SCs/STs and other weaker sections in the
	the relevant State/National Rehabilitation &	lease area. Therefore, R&R Plan /
	Resettlement Policy should be kept in view.	Compensation Plan for the Project
	In respect of SCs /STs and other weaker	Affected People (PAP) are not provided.
	sections of the society in the study area, a	
	need-based sample survey, family-wise,	
	should be undertaken to assess their	
	requirements, and action programmes	
	prepared and submitted accordingly,	
	integrating the sectoral programmes of line	
	departments of the State Government. It	
	may be clearly brought out whether the	
	village(s) located in the mine lease area will	
	be shifted or not. The issues relating to	
	shifting of village(s) including their R&R	
	and socio-economic aspects should be	
	discussed in the Report.	
22.	One season (non-monsoon) [i.e., March-	Baseline data were collected for the

	May (Summer Season); October-December	period of October 2023 - December 2023		
	(post monsoon season); December-February	as per CPCB notification and MoEF &		
	(winter season)] primary baseline data on	CC Guidelines. Primary baseline data		
	ambient air quality as per CPCB	and the results have been included in		
	Notification of 2009, water quality, noise	Sections 3.1-3.8 under Chapter III, pp.		
	level, soil and flora and fauna shall be	26-89.		
	collected and the AAQ and other data so			
	compiled presented date-wise in the EIA			
	and EMP Report. Site-specific			
	meteorological data should also be			
	collected. The location of the monitoring			
	stations should be such as to represent			
	whole of the study area and justified			
	keeping in view the pre-dominant			
	downwind direction and location of			
	sensitive receptors. There should be at least			
	one monitoring station within 500 m of the			
	mine lease in the pre-dominant downwind			
	direction. The mineralogical composition of			
	PM10, particularly for free silica, should be			
	given.			
23.	Air quality modelling should be carried out	Air quality modelling for prediction of		
	for prediction of impact of the project on the	incremental GLCs of pollutants was		
	air quality of the area. It should also take	carried out using AERMOD view 11.2.0.		
	into account the impact of movement of	The model results have been given in		
	vehicles for transportation of mineral. The	Section 4.4 under the Chapter IV, pp.92-		
	details of the model used and input	98.		
	parameters used for modelling should be			
	provided. The air quality contours may be			
	shown on a location map clearly indicating			
	the location of the site, location of sensitive			
	receptors, if any, and the habitation. The			
	wind roses showing pre-dominant wind			
	direction may also be indicated on the map.			
24.	The water requirement for the project, its	The water requirement for the project, its		

	availability and source should be furnished. availability and source have					
	A detailed water balance should also be	provided in Table 2.11 under Chapter II,				
	provided. Fresh water requirement for the	p.22.				
	project should be indicated.					
25.	Necessary clearance from the competent	Not Applicable.				
	Authority for drawl of requisite quantity of	Water for dust suppression, greenbelt				
	water for the project should be provided.	development and domestic use will be				
		sourced from accumulated				
		rainwater/seepage water in mine pits and				
		purchased from local water vendors				
		through water tankers on daily				
		requirement basis. Drinking water will be				
		sourced from the approved water				
		vendors.				
26.	Description of water conservation measures	Part of the working pit will be allowed to				
	proposed to be adopted in the Project should	collect rain water during the spell of rain.				
	be given. Details of rainwater harvesting	The water thus collected will be used for				
	proposed in the Project, if any, should be	greenbelt development and dust				
	provided.	suppression. The mine closure plan has				
		been prepared for converting the				
		excavated pit into rain water harvesting				
		structure and serve as water reservoir for				
		the project village during draught season.				
27.	Impact of the Project on the water quality,	Impact studies and mitigation measures				
	both surface and groundwater, should be	of water environment including surface				
	assessed and necessary safeguard measures,	water and ground water have been				
	if any required, should be provided.	discussed in Section 4.3 under Chapter				
		IV, p.91.				
28.	Based on actual monitored data, it may	Not Applicable.				
	clearly be shown whether working will	The ground water table is found at the				
	intersect groundwater. Necessary data and	depth of 100 m below ground level. The				
	documentation in this regard may be					

	provided. In case the working will intersect	ultimate depth of quarry is 92m (8m	
	groundwater table, a detailed Hydro	above base level & 84m below base	
	Geological Study should be undertaken and	level). Therefore, the mining activity will	
	Report furnished. The Report inter-alia,	not intersect the ground water table. Data regarding the occurrence of groundwater	
	shall include details of the aquifers present		
	and impact of mining activities on these	table have been provided in Section 3.2	
	aquifers. Necessary permission from Central	under Chapter III, pp.35-47.	
	Ground Water Authority for working below		
	ground water and for pumping of ground		
	water should also be obtained and copy		
	furnished.		
29.	Details of any stream, seasonal or	Not Applicable.	
	otherwise, passing through the lease area	There are no streams, seasonal or other	
	and modification / diversion proposed, if	water bodies passing within the project	
	any, and the impact of the same on the	area. Therefore, no modification or	
	hydrology should be brought out.	diversion of water bodies is anticipated.	
30.	Information on site elevation, working	The highest elevation of the project area	
	depth, groundwater table etc. Should be	is 578 m AMSL. Ultimate depth of the	
	provided both in AMSL and BGL. A	mine is 92m (8m AGL + 84m BGL).	
	schematic diagram may also be provided for	Depth to the water level in the area is 100	
	the same.	m BGL.	
31.	A time bound Progressive Greenbelt	Greenbelt development plan has been	
	Development Plan shall be prepared in a	given in Section 4.6 under Chapter IV,	
	tabular form (indicating the linear and	pp. 103-106.	
	quantitative coverage, plant species and		
	time frame) and submitted, keeping in mind,		
	the same will have to be executed up front		
	on commencement of the Project. Phase-		
	wise plan of plantation and compensatory		
	afforestation should be charted clearly		
	indicating the area to be covered under		
	plantation and the species to be planted. The		

	details of plantation already done should be		
	given. The plant species selected for green		
	belt should have greater ecological value		
	and should be of good utility value to the		
	local population with emphasis on local and		
	native species and the species which are		
	tolerant to pollution.		
32.	Impact on local transport infrastructure due	Traffic density survey was carried out to	
	to the Project should be indicated. Projected	analyse the impact of transportation in	
	increase in truck traffic as a result of the	the study area as per IRC guidelines 1961	
	Project in the present road network	and it is inferred that there is no	
	(including those outside the Project area)	significant impact due to the proposed	
	should be worked out, indicating whether it	transportation from the project area.	
	is capable of handling the incremental load.	Details have been provided in Section 3.7	
	Arrangement for improving the	under Chapter III, p.85-87.	
	infrastructure, if contemplated (including		
	action to be taken by other agencies such as		
	State Government) should be covered.		
	Project Proponent shall conduct Impact of		
	Transportation study as per Indian Road		
	Congress Guidelines.		
33.	Details of the onsite shelter and facilities to	Infrastructure & other facilities will be	
	be provided to the mine workers should be	provided to the mine workers after the	
	included in the EIA Report.	grant of quarry lease and the same has	
		been discussed in Section 2.6.7 under	
		Chapter II, p.22.	
34.	Conceptual post mining land use and	Progressive mine closure plan has been	
	Reclamation and Restoration of mined out	prepared for this project and is given in	
	areas (with plans and with adequate number	Section 2.6.4 under Chapter II, p.19.	
	of sections) should be given in the EIA		
	report.		
35.	Occupational Health impacts of the Project	Occupational health impacts of the	
	should be anticipated and the proposed	project and preventive measures have	
	preventive measures spelt out in detail.	been explained in detail in Section 4.8	

	Details of pre-placement medical	under Chapter IV, pp.107 & 108.
	examination and periodical medical	
	examination schedules should be	
	incorporated in the EMP. The project	
	specific occupational health mitigation	
	measures with required facilities proposed	
	in the mining area may be detailed.	
36.	Public health implications of the Project and	No public health implications are
	related activities for the population in the	anticipated due to this project. Details of
	impact zone should be systematically	CSR and CER activities have been
	evaluated and the proposed remedial	discussed in Sections 8.6 and 8.7 under
	measures should be detailed along with	Chapter VIII, pp.126 & 127.
	budgetary allocations.	
37.	Measures of socio-economic significance	No negative impact on socio-economic
	and influence to the local community	environment of the study area is
	proposed to be provided by the Project	anticipated and this project shall benefit
	Proponent should be indicated. As far as	the socio-economic environment by
	possible, quantitative dimensions may be	offering employment for 18 people
	given with time frames for implementation.	directly as discussed in Section 8.1 under
		Chapter VIII, p.125.
38.	Detailed environmental management plan	A detailed Environment Management
	(EMP) to mitigate the environmental	Plan has been prepared and provided in
	impacts which, should inter-alia include the	Tables 10.1 & 10.2 under Chapter X,
	impacts of change of land use, loss of	pp.130-135.
	agricultural and grazing land, if any,	
	occupational health impacts besides other	
	impacts specific to the proposed Project.	
30	Public Hearing points raised and	The outcome of public hearing will be
57.	commitment of the Project Proponent on the	submitted in the final EIA report
	same along with time bound Action Plan	submitted in the mai Envireport.
	with budgetary provisions to implement the	
	same should be provided and also	
	incorporated in the final EIA/EMP Report	
	of the Project.	
40.	Details of litigation pending against the	No litigation is pending in any court

	project, if any, with direction /order passed	against this project.		
	by any Court of Law against the Project			
	should be given.			
41	The cost of the Project (capital cost and	Project Cost is Rs. 89,30,000/-		
	recurring cost) as well as the cost towards	CER Cost is Rs. 5,00,000/-		
	implementation of EMP should be clearly	In order to implement the environmental		
	spelt out.	protection measures, an amount of		
		Rs.13387757 as capital cost and		
		recurring cost as Rs.4641874 as recurring		
		cost/annum is proposed considering		
		present market price considering present		
		market scenario for the proposed project.		
		After the adjustment of 5% inflation per		
		year, the overall EMP cost for 5 years		
		will be Rs.39139043, as shown in Tables		
		10.1 & 10.2 under Chapter X, pp.129-		
		135.		
42	A disaster management Plan shall be	The disaster management plan for this		
	prepared and included in the EIA/EMP	project has been provided in Section 7.3		
	Report.	under Chapter VII, pp.118-119.		
43.	Benefits of the Project if the Project is	Benefits of the project details have been		
	implemented should be spelt out. The	given under Chapter VIII, pp.125-127.		
	benefits of the Project shall clearly indicate			
	environmental, social, economic,			
	employment potential, etc.			
44.	Besides the above, the below mentioned gene	ral points are also to be followed:		
a)	Executive Summary of the EIA/EMP	Executive summary has been enclosed as		
	Report	a separate booklet.		
b)	All documents to be properly referenced	All the documents have been properly		
	with index and continuous page numbering.	referenced with index and continuous		
		page numbering.		
c)	Where data are presented in the Report	List of tables and source of the data		
	especially in Tables, the period in which the	collected have been mentioned.		
	data were collected and the sources should			
	be indicated.			

d)	Project Proponent shall enclose all the	Original Baseline monitoring report will
	analysis/testing reports of water, air, soil,	be submitted in the final EIA report.
	noise etc. using the MoEF & CC/NABL	
	accredited laboratories. All the original	
	analysis/testing reports should be available	
	during appraisal of the Project.	
e)	Where the documents provided are in a	All the documents provided here are in
	language other than English, an English	English language.
	translation should be provided.	
f)	The Questionnaire for environmental	The questionnaire will be attached in the
	appraisal of mining projects as devised	final EIA report.
	earlier by the Ministry shall also be filled	
	and submitted.	
g)	While preparing the EIA report, the	Instructions issued by MoEF & CC O.M.
	instructions for the Proponents and	No. J-11013/41/2006-IA. II (I) dated 4th
	instructions for the Consultants issued by	August, 2009 have been followed while
	MoEF & CC vide O.M. No. J-	preparing the EIA report.
	11013/41/2006-IA. II(I) dated 4th August,	
	2009, which are available on the website of	
	this Ministry, should be followed.	
h)	Changes, if any made in the basic scope and	No changes are made in the basic scope
	project parameters (as submitted in Form-I	and the project parameters.
	and the PFR for securing the TOR) should	
	be brought to the attention of MoEF & CC	
	with reasons for such changes and	
	permission should be sought, as the TOR	
	may also have to be altered. Post Public	
	Hearing changes in structure and content of	
	the draft EIA/EMP (other than	
	modifications arising out of the P.H.	
	process) will entail conducting the PH again	
	with the revised documentation.	
i)	As per the circular no. J-11011/618/2010-	It is fresh lease area and the CCR is not
	IA. II(I) Dated: 30.5.2012, certified report	applicable to this project.
	of the status of compliance of the conditions	

	stipulated in the environment clearance for						
	the existing operations of the project, should						
	be obtained from the Regional Office of						
	Ministry of Environment, Forest and						
	Climate Change, as may be applicable.						
j)	The EIA report should also include (i)	All the plans including surface &					
	surface plan of the area indicating contours	geological plans, and progressive closure					
	of main topographic features, drainage and plan have been included in Annex						
	mining area, (ii) geological maps and						
	sections and (iii) sections of the mine pit						
	and external dumps, if any, clearly showing						
	the land features of the adjoining area.						

CHAPTER		TITLE		PAGE
NO.		IIILE		
I		Introduction		
	1.0	Preamb	le	01
	1.1	Purpose	e of the report	02
	1.2	Environ	mental clearance	02
	1.3	Terms of	of reference (ToR)	03
	1.4	Post en	vironment clearance monitoring	05
	1.5	Transfe	rability of environmental clearance	05
	1.6	Identifie	cation of the project proponent	05
	1.7	Brief de	escription of the project	05
	1.8	Scope o	f the study	06
	1.9	Legisla	tion Applicable to Mining of Mineral Sector	07
II			PROJECT DESCRIPTION	
	2.0	General	introduction	08
	2.1	Descrip	tion of the project	08
	2.2	Location and accessibility		09
	2.3	Leasehold area		11
		2.3.1 Corner Coordinates		11
	2.4	Geology		11
	2.5	Quantity of reserves		14
	2.6	Mining	method	16
		2.6.1	Conceptual Blasting Design	16
		2.6.2	Magnitude of Operation	18
		2.6.3	Extent of mechanization	18
		2.6.4	Progressive quarry closure plan	19
		2.6.5	Quarry closure budget	19
		2.6.6	Conceptual mining plan	22
		2.6.7 Infrastructures		22
		2.6.8 Water requirement		22
		2.6.9 Energy requirement		22
		2.6.10 Capital requirement		23
	2.7	Manpower requirement		24
	2.8	Project	Implementation Schedule	24

TABLE OF CONTENTS
III			DESCRIPTION	NOF THE ENVIRONMENT	
	3.0	General	l		25
	3.1	Land er	nvironment		26
		3.1.1	Geology and Ge	eomorphology	26
		3.1.2	Land Use/Land	Cover	29
		3.1.3	Topography		29
		3.1.4	Drainage pattern	n	29
		3.1.5	Seismic sensitiv	vity	29
		3.1.6	Soil		32
	3.2	Water H	Environment		35
		3.2.1	Surface Water H	Resources and Quality	35
		3.2.2	Ground water R	esources and Quality	35
		3.2.3	Hydrogeological	Studies	35
			3.2.3.1	Rainfall	35
				Groundwater Levels and Flow	
			3.2.3.2	Direction	37
			2 2 2 3 3	Electrical Resistivity Investigation	10
				Electrical Resistivity Investigation	46
	3.3	Air Env	rironment		47
		3.3.1	Meteorology		47
			3.3.1.1	Climatic Variables	47
			3.3.1.2	Wind Pattern	48
		3.3.2	Ambient Air Qu	uality Study	52
	3.4	Noise E	Environment		58
	3.5	Biologi	cal Environment		61
		3.5.1	Flora		63
		3.5.2	Fauna		72
		3.5.3	Agriculture & H	Iorticulture in Krishnagiri district	77
	3.6	Socio-E	Economic environ	ment	78
		3.6.1	Objectives of th	e Study	78
		3.6.2	Scope of work		79
		3.6.3	Socio-Economi	c status of Study area	79
		3.6.4	Recommendation	on and Suggestion	85
		3.6.5	Summary & Co	nclusion	85
	3.7	Traffic	density		85
	3.8	Site Spe	ecific Features		88

IV		ANTICIPATED ENVIRONMENTAL IMPACTS AND			
			MITIGA	ATION MEASURES	
	4.0	General			90
	4.1	Land Er	nvironment		90
		4.1.1	Anticipated Imp	act	90
		4.1.2	Common Mitiga	ation Measures from Proposed Project	90
	4.2	Soil En	vironment		90
		4.2.1	Anticipated Imp	act on Soil Environment	90
		4.2.2	Common Mitiga	ation Measures from Proposed Project	91
	4.3	Water F	Environment		91
		4.3.1	Anticipated Imp	act	91
		4.3.2	Common Mitiga	ation Measures from Proposed Project	91
	4.4	Air Env	vironment		92
		4.4.1	Anticipated imp	act from Proposed Project	92
		4.4.2	Emission Estima	ation	92
			4.4.2.1	Modelling of Incremental Concentration	93
			4.4.2.2	Model Results	93
	4.5	Noise E	nvironment		99
		4.5.1	Anticipated Imp	act	99
		4.5.2	Common Mitiga	ation Measures	100
		4.5.3	Ground Vibratio	ons	101
			4.5.3.1	Common Mitigation Measures	102
	4.6	Ecology	And Biodiversit	у	103
		4.6.1	Impact on Ecolo	ogy and Biodiversity	103
		4.6.2	Mitigation Meas	sures on Flora	103
		4.6.3	Anticipated Imp	act on Fauna	105
		4.6.4	Aquatic Biodive	ersity	105
		4.6.5	Impact on agric Radius	culture and horticulture crops in 1km	105
		4.6.6	Mitigation Mea crops	sures on agriculture and horticulture	106
	4.7	Socio E	conomic Environ	ment	106
		4.7.1	Anticipated Im Projects	pact from Proposed and Existing	106
		4.7.2	Common Mitiga	ation Measures for Proposed Project	106
	4.8	Occupa	tional Health and	Safety	107

		4.8.1	Respiratory Hazards	107	
		4.8.2	Noise	107	
		4.8.3	Physical Hazards	107	
		4.8.4	Occupational Health Survey	108	
	4.9	Mine W	Vaste Management	108	
	4.10	Mine C	losure	108	
		4.10.1	Mine Closure Criteria	108	
			4.10.1.1 Physical Stability	108	
			4.10.1.2 Chemical Stability	109	
			4.10.1.3 Biological Stability	109	
V		ANAL	YSIS OF ALTERNATIVES (TECHNOLOGY AND		
			SITE)		
	5.0	Introdu	ction	110	
	5.1	Factors	behind the Selection of Project Site	110	
	5.2	Analysi	s of Alternative Site	110	
	5.3	Factors	behind Selection of Proposed Technology	110	
	5.4	Analysi	s of Alternative Technology	110	
VI		EN	ENVIRONMENTAL MONITORING PROGRAM		
	6.0	General	l	111	
	6.1	Method	ology of Monitoring Mechanism	111	
	6.2	Implem	entation Schedule of Mitigation Measures	113	
	6.3	Monito	ring Schedule and Frequency	113	
	6.4	Budgeta	ary provision for Environment Monitoring Program	115	
	6.5	Reporti	ng schedules of monitored data	115	
VII			ADDITIONAL STUDIES		
	7.0	General		116	
	7.1	Public (Consultation for Proposed Project	116	
	7.2	Risk As	ssessment for Proposed Project	116	
	7.3	Disaster	r Management Plan for Proposed Project	118	
		7.3.1	Emergency Control Procedure	119	
	7.4	Cumula	tive Impact Study	120	
		7.4.1	Air Environment	121	
			7.4.1.1 Cumulative Impact of Air Pollutants	121	
		7.4.2	Noise Environment	121	
		7.4.3	Socio Economic Environment	122	
		7.4.4	Ecological Environment	123	

	7.5	Plastic	Waste Management Plan For Proposed Project	123	
		7.5.1	Objective	123	
VIII			PROJECTS BENEFITS		
	8.0	General		125	
	8.1	Employ	ment Potential	125	
	8.2	Socio-E	Economic Welfare Measures Proposed	125	
	8.3	Improv	ement in Physical Infrastructure	125	
	8.4	Improv	mprovement in Social Infrastructure		
	8.5	Other T	angible Benefits	126	
	8.6	Corpora	ate Social Responsibility	126	
	8.7	Corpora	ate Environment Responsibility	127	
	8.8	Summa	ry of project benefits	127	
IX		EN	VIRONMENTAL COST BENEFIT ANALYSIS	128	
X		J	ENVIRONMENTAL MANAGEMENT PLAN		
	10.0	General	l	129	
	10.1	Enviror	nmental Policy	129	
		10.1.1	Description of the Administration and Technical Setup	129	
	10.2	Budgeta	ary Provision for Environmental Managemen	130	
	10.3	Conclus	sion	135	
XI			SUMMARY AND CONCLUSION		
	11.1	Introdu	ction	136	
	11.2	Project	Description	136	
	11.3	Descrip	tion of the Environment	136	
		11.3.1	Land Environment	136	
		11.3.2	Soil Characteristics	137	
		11.3.3	Water Environment	137	
		11.3.4	Air Environment	138	
		11.3.5	Noise Environment	138	
		11.3.6	Biological Environment	138	
		11.3.7	Socio-Economic Environment	139	
	11.4	Anticip for Prop	ated Environmental Impacts and Mitigation Measures	139	
		11.4.1	Land Environment	139	
		11.4.2	Water Environment	140	
		11.4.3	Air Environment	140	
		11.4.4	Noise Environment	141	

		11.4.5	Biological Environment	142	
		11.4.6	Socio Economic Environment	143	
		11.4.7	Occupational Health	144	
	11.5	Enviro	nmental Monitoring Program	144	
	11.6	Additic	nal Studies	145	
		11.6.1	Risk Assessment	145	
		11.6.2	Disaster Management Plan	145	
		11.6.3	Cumulative Impact Study	145	
	11.7	Project	Benefits	146	
	11.8	Enviro	nment Management Plan	146	
XII			CHAPTER XII		
			DISCLOSURES OF CONSULTANT		

LIST OF TABLES

TABLE	CONTENTS	PAGE No.	
No.			
1.1	Details of Quarries within the cluster area of 500 m radius	02	
1.2	Details of project proponent	05	
1.3	Salient Features of the P1	06	
2.1	Site connectivity to the project area	11	
2.2	Corner coordinates of proposed project	11	
2.3	Estimated resources and reserves of the project	13	
2.4	Year-wise production details	13	
2.5	Conceptual Blasting Design	16	
2.6	Operational details for proposed project	17	
2.7	Machinery details	17	
2.8	Land use data at present, during scheme of mining, and at the end of mine life	18	
2.9	Mine closure budget	18	
2.10	Ultimate pit dimension	21	
2.11	Water requirement for the project	21	
2.12	Fuel requirement details	22	
2.13	Capital requirement details	22	
2.14	Employment potential for the proposed project	23	

2.15	Expected time schedule	23
3.1	Monitoring attributes and frequency of monitoring	25
3.2	LULC statistics of the study area	29
3.3	Soil sampling locations	32
3.4	Soil quality of the study area	34
3.4a	Assigning Scores to Soil Quality Indicators	34
3.5	Water sampling locations	35
3.6	Ground Water Quality Result	39
3.6a	Surface Water Quality Result	39
3.7	Pre-Monsoon Water Level of Open Wells within 2 km Radius	40
3.8	Post-Monsoon Water Level of Open Wells within 2 km Radius	40
3.9	Pre-Monsoon Water Level of Bore Wells within 2 km Radius	41
3.10	Post-Monsoon Water Level of Bore Wells within 2 km Radius	41
3.11	Vertical Electrical Sounding Data	46
3.12	Onsite Meteorological Data	48
3.13	Methodology and Instrument Used for AAQ Analysis	52
3.14	National Ambient Air Quality Standards	52
3.15	Ambient Air Quality (AAQ) Monitoring Locations	53
3.16	Summary of AAQ Result	55
3.17	Noise Monitoring Locations	58
3.18	Ambient Noise Quality Result	58
	Calculation of Density, Frequency (%), Dominance, Relative	
3.19	Density, Relative Frequency, Relative Dominance & Important	62
	Value Index	
3 20	Calculation of Species Diversity by Shannon - Wiener Index,	62
5.20	Evenness and Richness	02
3.21	Flora in mine lease area	64
3.22	Calculation of Species Diversity mine lease area	65
3.23	Species Richness (Index) in mine lease area	65
3.24	Flora in 300-meter Radius	66
3.25	Calculation of Species Diversity in 300 m Radius	68
3.26	Species Richness (Index) in 300 m Radius	69

3.27	Flora in Buffer Zone	69
3.28	Methodology applied during survey of fauna	72
3.29	Fauna in Core Zone	73
3.30	Fauna in Buffer Zone	74
3.31	Aquatic Fauna and Flora	76
3.32	Major Crops in 1km radius	77
3.33	Major Field Crops & Horticulture cultivation in 1km radius	78
3.34	Kondappanayanapalli Village Population Facts	79
3.35	Population and Literacy Data of Study Area	80
3.36	Details on Educational Facilities, Water, and Drainage & Health Facilities	81
3.37	Workers' Profile of Study Area	83
3.38	Traffic Survey Locations	86
3.39	Existing Traffic Volume	86
3.40	Rough Stone Transportation Requirement	86
3.41	Summary of Traffic Volume	86
3.42	Details of Environmentally Sensitive Ecological Features in the Study Area	88
4.1	Empirical formula for emission rate from overall mine	92
4.2	Estimated emission rate	93
4.3	Incremental & Resultant GLC of PM _{2.5}	93
4.4	Incremental & Resultant GLC of PM ₁₀	94
4.5	Incremental & resultant GLC of SO ₂	94
4.6	Incremental & resultant GLC of NO _X	94
4.7	Activity and noise level produced by machinery	99
4.8	Predicted noise incremental values	100
4.9	Predicted PPV Values due to Blasting	101
4.10	Predicted PPV Values due to Blasting at 100-500 radius	101
4.11	Carbon Released During Five Years of Rough Stone and Gravel Production	103
4.12	CO ₂ Sequestration	104

4.13	Recommended Species for Greenbelt Development Plan	104
4.14	Greenbelt development plan	104
4.15	Budget for Greenbelt Development Plan	104
6.1	Implementation schedule for proposed project	113
6.2	Proposed monitoring schedule post EC for the proposed quarry	114
6.3	Environment monitoring budget	115
7.1	Risk assessment& control measures for proposed project	117
7.2	Salient Features of the Proposed Project P2	120
7.3	Cumulative Production Load of Rough Stone	121
7.4	Cumulative Impact Results from the 2 proposed projects	121
7.5	Cumulative Impact of Noise from 2 Proposed Quarries	122
7.6	Cumulative Effect of Ground Vibrations Resulting from 2	122
7.0	Proposed Quarries	122
7.7	Socio Economic Benefits from 2 Mines	122
7.8	Employment Benefits from 2 Mines	123
7.9	Greenbelt Development Benefits from Mine	123
7.10	Action Plan to Manage Plastic Waste	124
8.1	CER – action plan	127
8.2	Project Benefits to the state Government	127
10.1	EMP budget for proposed project	130
10.2	Estimation of Overall EMP Budget after Adjusting 5% Annual	135
10.2	Inflation	133
11.1	LULC Statistics of the Study Area	137
11.2	Environment Monitoring Budget	144

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
1.1	Location of the proposed and existing rough stone quarries in the cluster of 500m radius	04
2.1	Overall view of proposed project site	09
2.2	Key map showing location of the project site	10
2.3	Google Earth Image Showing Lease Area with Pillars	12

2.4	Surface and Geological Plan	12
2.4a	Surface and Geological Section	12
2.5	Yearwise Development & Production Plan	14
2.5a	Yearwise Development & Production Section	14
2.6	Mine Layout Plan and Land Use Pattern	19
2.7	Conceptual Plan	20
2.7a	Conceptual Sections	20
3.1	Geology Map of 5 km Radius from Proposed Project Site	27
3.2	Geomorphology Map of 5 km Radius from Proposed Project Site	28
3.3	LULC map of 5km radius from proposed project site	30
3.4	Drainage Map of 5 km Radius from Proposed Project Site	31
3.5	Map Showing Soil Sampling Locations within 5 km Radius around Proposed Project Site	33
3.6	Long-Term Monthly Average Rainfall Vs Monthly Rainfall	36
3.7	Map Showing Water Sampling Locations within 5 km Radius around Proposed Project Site	38
3.8	Open Well Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Pre-Monsoon Season	42
3.9	Open well static groundwater elevation map showing the direction of groundwater flow during post-monsoon season	43
3.10	Borewell Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Pre-Monsoon Season	44
3.11	Borewell static groundwater elevation map showing the direction of groundwater flow during post-monsoon season	45
3.12	Graph Showing Occurrence of Water Bearing Fracture Zones at the Depth of 100 m Below Ground Level in Proposed Project	47
3.13	Windrose Diagram for 2019 - 2020 (October to December)	49
3.13a	Windrose Diagram for 2021 - 2022 (October to December)	50
3.14	Onsite Wind Rose Diagram	51
3.15	Map Showing Ambient Air Quality Monitoring Station Locations Around 5 km Radius from Proposed Project Site	54

3.16	Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM _{2.5} Measured from 6 Air Quality Monitoring Stations within 5 km Radius	55
3.17	Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM_{10} Measured from 6 Air Quality Monitoring Stations within 5 km Radius	56
3.18	Bar Chart Showing Maximum, Minimum, and Average Concentrations of SO_2 Measured from 6 Air Quality Monitoring Stations within 5 km Radius	56
3.19	Bar Chart Showing Maximum, Minimum, and Average Concentrations of NO_x Measured from 6 Air Quality Monitoring Stations within 5km Radius	57
3.20	Bar chart showing maximum, minimum, and the average concentrations of pollutants in atmosphere within 5km radius	57
3.21	Bar Chart Showing Day Time Noise Levels Measured in Core and Buffer Zones	59
3.22	Bar Chart Showing Night Time Noise Levels Measured in Core and Buffer Zones	59
3.23	Map Showing Noise Level Monitoring Station Locations around 5 km Radius from Proposed Project Site	60
3.24	Quadrates sampling methods of flora	61
3.25	Species Richness (Index) in Mine lease area	65
3.26	Species Richness paten in 300m Radius	69
3.27	Traffic Density Map	87
4.1	Predicted incremental concentration of PM2.5	95
4.2	Predicted incremental concentration of PM10	96
4.3	Predicted incremental concentration of SO2	97
4.4	Predicted incremental concentration of NO _X	98
6.1	Proposed environmental monitoring chart	112
7.1	Disaster management team Loyout for Proposed Project	119

Annexure No.	Contents	Page No.
Ι	Copy of ToR letter	153-174
II	Copy of 500 m radius letter	175-176
III	Approved mining plan along with mining plan AD/letter/original mining plan plates	177-244
IV	VAO 300m radius letter	245
V	NABET certificate of EIA consultant	246
VI	DFO Latter	247-249

LIST OF ANNEXURES

CHAPTER I INTRODUCTION

1.0 PREAMBLE

Environmental Impact Assessment (EIA) study is a process used to identify the environmental, social and economic impacts of a project prior to decision-making. EIA systematically examines both beneficial and adverse consequences of the proposed project and ensure that these impacts are considered during the project designing. According to the Ministry of Environment and Forests, Govt. of India, EIA notification S.O. 1533(E) of 14th September 2006 and its subsequent amendments as per Gazette Notification S.O. 3977 (E) of 14th August 2018, all the mining projects are broadly classified into two categories, i.e., category A and category B, based on the spatial extent of the projects. The category B projects are further divided in to B1 and B2 on the basis of the guidelines issued of the Ministry of Environment and Forests. All mining projects included in category B1 require an EIA report for obtaining environmental clearance from the State Environment Impact Assessment Authority (SEIAA). As the proposed project falls within the cluster of quarries of overall extent of greater than 5 ha and less than 50 ha in the case of non-coal mine lease, the proposed project falls under the category B1 and the project requires preparation and submission of an EIA report after public consultation to SEIAA for obtaining environmental clearance as per the order dated 04.09.2018 & 13.09.2018 passed by Hon'ble National Green Tribunal, New Delhi in O.A. No. 173 of 2018 & O.A. No, 186 of 2016 and MoEF & CC Office Memorandum F. No. L-11011/175/2018-IA-II (M) Dated: 12.12.2018.

In compliance with ToR obtained vide Lr.No.SEIAA-TN/F.No.10368/SEAC/1(a) ToR-1612/2023 Dated 06.11.2023 this EIA report has been prepared for the project proponent, **M/s.Sri Venkateshwara Blue Metals** applied for rough stone quarry lease in the Government Poramboke land falling in S.F.No.202/1 (Part-A) over an extent of 3.00.0 ha in Kondappanayanapalli Village, Krishnagiri Taluk, Krishnagiri District and Tamil Nadu. This EIA report takes into account the rough stone quarry within the cluster of 500 m radius from the periphery of the proposed project site. The cluster contains two proposed projects known as P1, P2. All the projects mentioned above have been taken for cluster extent calculation as per MoEF & CC Notification S.O. 2269 (E) Dated 1st July 2016. The total extent of all the quarries in the cluster is 6.00.0 ha also known as the cluster extent. The quarries involved in the calculation of cluster extent are shown in Figure 1.1.

Proposed Quarries					
Code	Name of the Owner	S.F. No	Village	Extent (ha)	Status
P1	Sri Venkateshwara Blue Metals Thiru.A.M.Murugan	202/1 (Part-A)	Kondappanayanapalli	3.00.0	Proposed Area
P2	Sri Venkateshwara Blue Metals Thiru.A.M.Murugan	202/1 (Part-B)	Kondappanayanapalli	3.00.0	Applied Area
Existing Quarries					
Expired Quarries					
	Total Cluster Extent6.00.0				

Table 1.1 Details of Quarries within the Cluster Area of 500 m Radius

Source:

DD Letter: Rc.No.170/2018/Mines, Dated:24.05.2023

Note: Cluster area is calculated as per MoEF & CC Notification – S.O. 2269 (E) Dated:

01.07.2016.

1.1 PURPOSE OF THE REPORT

The purpose of the report is to study baseline environmental conditions in and around the proposed project area for the period of **October 2023 to December 2023** according to the provisions of MoEF & CC Office Memorandum dated 29.08.2017 and MoEF & CC Notification, S.O. 996 (E) dated 10.04.2015 to analyse impacts and provide mitigation measures.

1.2 ENVIRONMENTAL CLEARANCE

The Environmental Clearance process for the project will comprise of four stages. These stages are screening, scoping, public consultation & appraisal.

Screening

Screening is the first stage of the EIA process. In this stage, the State level Expert Appraisal Committee (SEAC) examined the application of EC made by the proponent in Form 1 through online (Proposal No. SIA/TN/ MIN/442329/2023, Dated.29.08.2023) and decided

that the project requires detailed environmental studies for the preparation of EIA report. Therefore, the proponent submitted application for Terms of Reference (ToR) on 31.08.2023. *Scoping*

The proposal was placed in the 416th meeting of SEAC on 13.10.2023. Based on the presentation and documents furnished by the project proponent, SEAC decided to recommend the proposal for the grant of Terms of Reference (ToR) and the recommendation for ToR is subjected to the outcome of the Honourable NGT, Principal Bench, New Delhi (O.A No.186 O.A. of 2016 (M.A.No.350/2016) and No.200/2016 and O.A.No.580/2016 (M.A.No.1182/2016) and O.A.No.102/2017 and O.A.No.404/2016 (M.A.No. 758/2016, M.A.No.920/2016, M.A.No.1122/2016, M.A.No.12/2017 & M.A. No. 843/2017) and O.A.No.405/2016 and O.A.No.520 of 2016 (M.A.No. 981/2016, M.A.No.982/2016 & M.A.No.384/2017).

Public Consultation

In this stage, an application along with the draft of EIA and EMP report will be made to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing ensuring public participation at the project site or in its close proximity in the district. During public hearing, an opportunity will be given to the people living nearby the project site to express their opinions about the impact of the proposed project on the environment. The outcome of the public hearing meeting will be updated in the final EIA report for appraisal.

Appraisal

In this stage, an application along with final EIA report including the outcome of the public consultations will be made to the SEIAA. The application thus made will be scrutinized by the SEAC. Then, the SEAC will make recommendations to grant EC or reject the application to the SEIAA.

1.3 TERMS OF REFERENCE (ToR)

The SEAC framed a comprehensive Terms of Reference (ToR) based on the information provided in the Form 1 and information collected from the proposed project site visit and issued ToR to the proponent vide Letter No. SEIAA-TN/F.No.10368/SEAC/1(a) ToR-1612/2023 Dated 06.11.2023 for the preparation of an EIA report.

Figure 1.1 Location of Proposed and Existing Rough Stone Quarry in the Cluster of 500 m Radius

1.4 POST ENVIRONMENT CLEARANCE MONITORING

For category B projects, irrespective of its clearance by MoEF/SEIAA, the project proponent shall prominently advertise in the newspapers indicating that the project has been accorded environmental clearance and the details of MoEF website where it is displayed. After obtaining EC, the project proponent will submit a half-yearly compliance report of stipulated environmental clearance terms and conditions to MoEF & CC Regional Office & SEIAA on 1st June and 1st December of every year.

1.5 TRANSFERABILITY OF ENVIRONMENTAL CLEARANCE

A prior environmental clearance granted for a specific project or activity to an applicant may be transferred during its validity to another legal person entitled to undertake the project or activity on application by the transferor or the transferee with a written "no objection" by the transferor, to, and by the regulatory authority concerned, on the same terms and conditions under which the prior environmental clearance was initially granted, and for the same validity period (EIA Guidance Manual for Mining of Minerals, 2010.

1.6 IDENTIFICATION OF THE PROJECT PROPONENT

The profile of the project proponent who has involved in this quarrying project has been given in Table 1.2.

Name of the Project Proponent	M/s.Sri Venkateshwara Blue Metals
	Prop.A.M.Murugan,
Address	S/o.Mannathan,
	No.4/4, 109,
	Mutthampatty Post,
	Mettur Taluk,
	Salem District.
Status	Proprietor

1.2 Details of Project Proponent

1.7 BRIEF DESCRIPTION OF THE PROJECT

The proposed project deals with excavation of rough stone which is primarily used in construction projects. The method adopted for rough stone excavation is open cast semi mechanized method involving formation of benches with 7 m height and 5 m width. The proposed project site is located in Kondappanayanapalli Village, Krishnagiri Taluk, Krishnagiri District and Tamil Nadu. Some of the important features of the proposed project have been provided in Table 1.3.

1 doie		
Name of the Quarry	M/s. Sri Venkateshwara Blue Metals	
Type of Land	Land Government Poramboke Land	
Extent	3.00.0 ha	
S.F. No	202/1 (Par	t-A)
Toposheet No	57-L/02	2
Highest Elevation	578 m AN	1SL
Latitude	12°39'58.32"N to 12	2°40'05.09"N
Longitude	78°07'42.23"E to 78	8°07'50.93"E
Ultimate Pit Dimension	92m (8 AGL + 84m BGL)	
Goological Pasouroos	Rough stone (m ³)	Top Soil (m ³)
Geological Resources	3384633	29862
Minashla Dasamas	Rough stone (m ³)	Top Soil (m ³)
Willeable Reserves	1292851	25628
Droposed production for 5 years	Rough stone (m ³)	Top Soil (m ³)
Proposed production for 5 years	1218973	25628
Method of Mining	Open cast semi mechaniz	zed mining method
Topography	Hill Terra	ain
	Jack hammer	6
Machinery proposed	Excavator	1
Machinery proposed	Compressor	1
	Tipper	3
Proposed Manpower Deployment	18	
Project Cost	Rs.89,30,000/-	
Proposed Water Requirement	3.5 KLD	

Table 1.3 Salient Features of P1

1.8 SCOPE OF THE STUDY

The main scope of the EIA study is to quantify the cumulative impact of the quarries in the cluster on the study area and formulate the effective mitigation measures for each individual lease. A detailed account of the emission sources, emissions control equipment, back ground air quality levels, meteorological measurements, dispersion model and all other aspects of pollution like effluent discharge, and dust generation has been provided in this report. The baseline monitoring study has been carried out during the period of **October 2023-December**

2023 for various environmental components such as land, soil, air, water, noise, ecology, etc. to assess the anticipated impacts of the cluster quarry projects on the environment and suggest suitable mitigation measures for likely adverse impacts due to the proposed project. The sampling methodologies for the various environmental parameters required for the study, frequency of sampling, method of sample analysis, etc., are given in Table 3.1 in chapter III.

1.9 Legislation Applicable to Mining of Mineral Sector

A few important legislations are given below:

- ✤ The Mines Act, 1952
- The Mines and Mineral (Development and Regulation) Act, 1957
- Mines Rules, 1955
- Mineral Concession Rules, 1960
- Mineral Conservation and Development Rules, 1988
- State Minor Mineral Concession Rules, 1960
- Granite Conservation and Development Rule, 1999
- The Water (Prevention and Control of pollution) Act, 1974
- The Air (Prevention and Control of pollution) Act,1981
- The Environment (Protection) Act, 1986
- The Forest (Conservation) Act, 1988
- ✤ The Wildlife (Protection) Act, 1972.

CHAPTER II

PROJECT DESCRIPTION

2.0 GENERAL INTRODUCTION

The open cast mining method, also known as open-pit mining has been proposed to extract the mineral deposit. It is the most commonly used surface mining method all over the world and is generally suitable for mining low-grade mineral deposits that are found close to the surface of the earth and distributed uniformly over a large area. Open pits are also termed quarries when the pits are used for the extraction of building materials and dimension stones.

Opencast mining starts with the development of benches, the widths of which will be determined in such a way to accommodate the use of heavy machinery. The walls of open pits will be dug at an angle that will be decided based on well-established industry standards to provide safety. In some cases where the walls are composed of weak material such as soil and highly weathered rocks, dewatering holes will be drilled horizontally to relieve the water pressure to avoid wall collapse inside the mine site.

The required mine-related infrastructures will be established close to the open pit. The mining infrastructures may include an administration building, a maintenance garage, and a warehouse. The materials mined from open pits will be brought to the surface using trucks. The waste rocks will be piled up in a suitable location, usually close to the open pit. The structure produced by the waste rock pile is known as a waste dump. The dimension of the waste dump will be determined based on industrial safety standards to prevent the rocks from falling into the surrounding area.

2.1 DECSCRIPTION OF THE PROJECT

The proponent, M/s. Sri Venkateshwara Blue Metals is involved in the undertaking of establishment, construction, development, and closure of opencast mines. He, through the exploration phase, identified the proposed project site as the one that has a great potential of producing an economically viable quantity of rough stone. Therefore, the proponent had applied for quarry lease on 06.02.2018 to extract rough stone. The precise area communication letter was issued by Department of Geology and Mining, Krishnagiri vide (Rc.No.170/2018/Mines Dated 09.03.2018). Based on the precise area communication letter, mining plan was prepared. The mining plan thus prepared was approved by Deputy Director Department of Geology and Mining, Krishnagiri (Rc.No.170/2018/Mines Dated 27.05.2018). The overall view of the project site is shown in Figure 2.1.

Figure 2.1 Overall View of Proposed Project Site 2.2 LOCATION AND ACCESSIBILITY

The proposed quarry project is located in Kondappanayanapalli Village, Krishnagiri Taluk, Krishnagiri District and Tamil Nadu, as shown in Figure 2.2. The area lies between Latitudes from 12°39'58.32"N to 12°40'05.09"N and Longitudes from 78°07'42.23"E to 78°07'50.93"E. The maximum altitude of the project area is 578 m AMSL. Accessibility details to the proposed project site have been given in Table 2.1.

Figure 2.2 Key Map Showing Location of Project Site

Type of Features	Name/Location	Distance (km)	Direction
	NH – 44 Chennai - Bangalore	7.20	S
Nearest Roadways	Village Road Appinayakkankottai - Avalnatham	0.25	Ν
	Village Road Verupasandiram - Gollapalli	8.0	S
	Gollapalli - Krishnagiri	13.5	S
Nearest Railway	Hosur	33.0	W
Nearest Town	Verupasandiram	2.0	Е
Nearest Airport	Bangalore	74.0	W
Nearest Seaport	Chennai	245.0	Е
	Appinayakkankotti	1.9	Ν
Neerest Villeges	Verupasandiram	1.4	Е
incarest villages	Chennasandiram	1.4	S
	Avalnatham	2.0	W

Table 2.1 Site Connectivity to the Project Area

2.3 LEASEHOLD AREA

- The extent of the proposed project site is 3.00.0 ha.
- ✤ The proposed project is site specific.
- There is no mineral beneficiation or processing proposed inside the project area.
- There is no forest land involved in the proposed area and is devoid of major vegetation and trees.

2.3.1 Corner Coordinates

The boundary corner geographic coordinates are given in Table 2.2 and the proposed project site with boundary coordinates has been shown in Figure 2.3.

Pillar ID	Latitude	Longitude
1	12°40'02.44"N	78°07'50.93"E
2	12°39'58.34"N	78°07'50.02"E
3	12°40'05.11"N	78°07'46.34"E
4	12°40'00.00"N	78°07'42.23"E

 Table 2.2 Corner Coordinates of Proposed Project

2.4 GEOLOGY

The lease area geologically occurs over grey hornblende biotite gnesis, commercially called as rough stone. Also, the lease area geomorphologically occurs over Moderately Dissected Structural Hills and Valleys.

Figure 2.3 Google Earth Image Showing Pillar Coordinates of Lease Area

Figure 2.4 Surface and Geological Plan

Figure 2.4a Surface and Geological Section

2.5 QUANTITY OF RESERVES

The resources and reserves of rough stone and gravel were calculated based on cross-section method by plotting sections to cover the maximum lease area for the proposed project. Based on the availability of geological resources, the mineable reserves are calculated by considering excavation system of bench formation and leaving essential safety margins, as shown in Figure 2.5 and deducting the locked-up reserves during bench formation (also called as Bench Loss). The mineable reserves are calculated up to the depth of 92 m considering there is no waste / overburden / side burden (100% Recovery anticipated) for the proposed project. The results of geological resources and reserves have been shown in Table 2.3.

 Table 2.3 Estimated Resources and Reserves of the Project

Resource Type	Rough Stone in m ³	Top Soil in m ³
Geological Resource in m ³	3384633	29862
Mineable Reserves in m ³	1292851	25628
Proposed production for 5 years m ³	1218973	25628

Based on the year wise development and production plan and sections, as exemplified in Figures 2.5 & 2.5a the year wise production results have been provided in Table 2.4.

Table 2.4 Year-Wise I	Production Details
-----------------------	---------------------------

Year	Rough Stone (m ³)	Top Soil (m ³)
Ι	208271	25628
II	299159	
III	241339	
IV	265846	
V	204358	
Total	1218973	25628

Source: Approved Mining Plan & ToR

Figure 2.5a Yearwise Development and Production Plan

Figure 2.5a Yearwise Development and Production Section

2.6 MINING METHOD

The Quarrying operation is proposed to be carried out by open cast semi-mechanized mining method with the bench height and width of 5 m each. The open cast semi-mechanized method involving drilling and blasting is proposed to extract rough stone. The extracted rough stone will be loaded manually to the trucks for dispatch to the customers. In this project, NONEL blasting will be adopted to extract rough stone.

2.6.1 Conceptual Blasting Design

In this project, NONEL blasting will be employed to win rough stone. This method will involve closed spaced perimeter holes to reduce the overbreak/backbreak on a blast. The objective of the blasting design is to prevent fly rocks from damaging the nearby structures.

Rules of Thumb for Blast Design

Based on practical experience and technical information, a set of rules for blasting have been provided as below (<u>Chapter8 (nps.gov</u>)). These rules will be applied to blast rocks in the proposed project.

Rule 1: The detonation velocity (VOD) of the explosive should be close to the same value of the sonic velocity (VSO) of the rock to be blasted.

The sonic velocity of a rock is considered to be a reliable indicator of its structural integrity and resistance to fragmentation. As the VOD of the explosive approaches close to the VSO of the rock, the blasting would result in relatively smaller size of fragmentation with uniformity. There is no value in using an explosive that has a VOD greatly in excess of the VSO of the rock, since there is little or no improvement in fragmentation above the VSO. When selecting an explosive to match up the VSO of a rock mass, variance of <10% in the velocities is acceptable.

Rule 2: Generally, select the densest explosive possible.

When the density of explosives is higher, the potential energy of the explosives can be greater and the more of it can be placed within a borehole of a given size.

Rule 3: Select explosives according to the characteristics of the rock formation to be blasted.

When planes of separation in the rock are smaller than the degree of fragmentation required, the rock can often be blasted by using lower density and lower detonation velocity explosives.

Rule 4: When using slurry or water gel explosives, always determine the critical temperature below which the explosive will fail to reliably detonate.

Almost all slurry explosives have a critical temperature below which they may not detonate, or may not sustain detonation in elongated columns. The explosives should not be used when the temperature of the explosive at time of loading is below that critical temperature.

Rule 5: The distance between holes (spacing) should not be greater than one-half the depth of the borehole.

When the distance between holes in a row is greater than one-half the depth of the hole, the angles of breakage intersect above the bottom of the holes. This causes both a great deal of vertical throw and a very uneven bottom.

Rule 6: Stemming should be equal to the burden.

Stemming is useful to confine and maximize efficient use of the explosive's energy. It also reduces noise as much as possible. If the stemming is greater than the burden, the rock at the top of the borehole will have less cracking from reflection and refraction of compressive and tensile waves. Therefore, stemming should be equal to burden. Drill fines can be used for loading the borehole.

Rule 7: Subdrill (if necessary) should be between 0.3 and 0.5 of spacing/burden.

Subdrill should be equal to 0.3 of burden. It will work when there is row-for-row delay. In blasts where the delay system is both row-for-row and hole-for-hole, the subdrill should be determined by the largest dimension, which can be the spacing or the burden. An average subdrill of 0.4 of spacing is best to use for planning purposes. Based on the above-mentioned rules, blasting design has been conceptualized and has been provided in Table 2.5.

Blasthole Diameter (D) in mm	32
Burden (B) in m	1.5
Spacing (S) in m	1.30
Subdrill in m	0.45
Charge length (C) in m	0.64
Stemming	1.5
Hole Length (L) in m	2.6
Bench Height (BH) in m	2.1
Mass of explosive/hole in g	400
Stemming material size in mm	3.2

 Table 2.5 Conceptual Blasting Design

Burden stiffness ratio	1.43
Blast volume/hole in m ³	4.16
Production of rough stone/day in m ³	903
Number of blastholes/day	217
Blasthole pattern	Staggered / Rectangular
Mass of explosive /day in kg	86.9
Powder factor in kg/m ³	0.10
Loading density	0.63
Type of explosives	Slurry
Diameter of packaging in mm	25
Initiation system	NONEL
Fly rock distance in m	19

2.6.2 Magnitude of Operation

Based on the results of estimated production for the 5 years, details about the size of operation have been provided in Table 2.6.

	Rough Stone / 5 years
Proposed production	1218973
Number of Working Days	270
Production /Day (m ³)	903
No. of Lorry Loads	150

Table 2.6 Operational Details for Proposed Project

2.6.3 Extent of Mechanization

List of machineries proposed for the quarrying operation is given in Table 2.7.

Table 2.7 Machinery Details

S. No	Туре	No.	Size/Conceity	Make/Dia of Hole	Motive Power/		
5.110.		of Unit	Size/Capacity	(mm)	H.P		
1	Jack Hammers	6	Hand Held	25.5 mm/Atlas	Diesel Drive		
1	Jack Hammers	0		Сорсо	60 H.P		
2	Compressor	1	AIR		Diesel Drive		
2	Excavator	1	1 2 M T	L&T or EV200	Diesel Drive		
5			1.2 IVI. I	La I of EA200	120 H.P		
Haulage & Transport Equipment							
1	Tipper	Tipper 3	10 M T	Ashok Levland	Diesel Drive		
+			10 1 11.1	Ashok Leyland	110 H.P		

2.6.4 Progressive Quarry Closure Plan

The progressive quarry closure plan of the proposed project shows past, present, and future land use statistics. According to the land use results, at Present, about 3.00.0 ha of land is designated as unutilized area. Whereas, at the end of the mine life, about 2.51.0 ha of land would have been quarried; about 0.01.0 ha of land would have been used for establishing infrastructures; about 0.02.0 ha of land would have been used for road development; about 0.30.4 ha of land would have been used for green belt development.

Description	Present Area (ha)	Area at the end of life of quarry (ha)	
Area under quarry	Nil	2.51.0	
Infrastructure	Nil	0.01.0	
Roads	Nil	0.02.0	
Green Belt	Nil	0.30.4	
Unutilized area	3.00.0	0.15.6	
Total	3.00.0 ha	3.00.0 ha	

Table 2.8 Land Use Data at Present, During Scheme of Mining, and at The End of Mine Life

2.6.5 Quarry Closure Budget

As the proposed project has the enormous potential for continuous operations even after the expiry of lease period, final mine closure plan is not proposed for now. Based on the environment management plan as discussed in Chapter X, the mine closure cost is given in Table 2.9.

Activity	Capital Cost
600 Plants Inside the Lease Area	120000
900 Plants Outside the Lease Area	270000
Wire Fencing	600000
Garland Drain	30000
Total	1020000

 Table 2.9 Mine Closure Budget

Source: Environment Management Plan

Figure 2.6 Mine Layout Plan and Land Use Pattern

Figure 2.7 Conceptual Plan

Figure 2.7a Conceptual Section

2.6.6 Conceptual Mining Plan

The ultimate pit size is designed based on certain practical parameters such as economical depth of mining, safety zones, permissible area, etc. The ultimate pit dimension derived from Figures 2.7 and 2.7a is provided in Table 2.10.

Pit	Length (m)	Width (m)	Depth (m)
Ι	172	149	92

 Table 2.10 Ultimate Pit Dimension

Source: Approved Mining Plan & ToR

2.6.7 Infrastructures

Infrastructures like mines office, temporary rest shelters for workers, latrine and urinal facilities have been proposed as per the mine rule and will be established after the grant of quarry lease. There is no proposal for the mineral processing or ore beneficiation plants in this project.

Other Infrastructure Requirement

No workshops are proposed inside the project area. Hence, there will not be any process effluent generation from the proposed lease area. Domestic effluent from the mine office will be discharged to septic tank and soak pit. As there is no toxic effluent expected to generate in the form of solid, liquid or gaseous form, there is no requirement of waste treatment plant.

2.6.8 Water Requirement

Details of water requirement in 3.5 KLD is given in Table 2.11.

Purpose	Quantity	Source
Dust Suppression	1.0 KLD	Existing bore wells nearby the lease area
Green Belt development	0.5 KLD	Existing bore wells nearby the lease area
Drinking & Domestic	2.0 KLD	Existing bore wells and approved water vendors
Total	3.5 KLD	

 Table 2.11 Water Requirement for the Project

Source: Prefeasibility Report

2.6.9 Energy Requirement

High speed Diesel (HSD) will be used for quarrying machineries. As per the data shown in Table 2.12, Around **5159873 litres of HSD** will be used for rough stone extraction during this 5 years plan period. The diesel will be brought to the site from nearby diesel pumps.

Fuel Requirement for Excavator							
Details	Rough Stone	Top Soil	Total Diesel				
	(1218973 m ³)	(25628 m ³)	(litre)				
Average Rate of Fuel Consumption (l/hr)	16	10					
Working Capacity (m ³ /hr)	20	60					
Time Required (hours)	60949	427					
Total Diesel Consumption for 5 years (litre)	975178	4271	979450				
Fuel Requirement	nt for Compresso	r					
Average Rate of Fuel Consumption/hole	0.4						
(litre)							
Number of Drillholes/day	217						
Total Diesel Consumption for 5 years (litre)	117180		117180				
Fuel Requirer	nent for Tipper						
Average Rate of Fuel Consumption/Trip	20	0					
(litre)							
Carrying Capacity in m ³	6	6					
Number of Trips / days	150	0					
Number of Trips / 5 years	203162	0					
Total Diesel Consumption for 5 years (litre)	4063243	0	4063243				
Total Diesel Consumption by Excavator, Compressor and Tipper5159873							

Table 2.12 Fuel Requirement Details

2.6.10 Capital Requirement

The project proponent will invest Rs.89,30,000 to the project. The breakup summary of the investment has been given in Table 2.13.

Table 2.13 C	Capital I	Requirement	Details
--------------	-----------	-------------	---------

S. No.	Description	Cost (Rs.)
1	Fixed Asset	65,60,000
2	Machinery	20,00,000
3	EMP	3,70,000
	Total Project Cost	89,30,000

Source: Approved Mining Plan

2.7 MANPOWER REQUIREMENT

The skilled, competent qualified statutory persons will be engaged for quarrying operation, preference will be given to the local community. Number of employees required for this project have been provided in Table 2.14.

S. No.	Category	Role	Nos.
		Operator	2
1	Highly Skilled	Mechanic	1
		Blaster / Mat	1
2	Semi - Skilled	Driver	2
		Musdoor/ Labours	5
3	Unskilled	Cleaners	3
		Office Boy	1
4	Ma	nagement & Supervisory Staff	3
	18		

Table 2.14 Employment Potential for the Proposed Project

Source: Prefeasibility Report

2.8 PROJECT IMPLEMENTATION SCHEDULE

The commercial operation will commence after the grant of Environmental Clearance. CTO and CTE will be obtained from the Tamil Nadu State Pollution Control Board. The conditions imposed during the environmental clearance will be compiled before the start of mining operation. Expected time schedule for the quarrying operation is given Table 2.15.

 Table 2.15 Expected Time Schedule

Particulars	Time Schedule (in Months)		Remarks if any				
	1 st	2 nd	3 rd	4 th	5 th		
Environmental							
Clearance							
Consent to Establish						Project Establishment Period	
Consent to operate						Production starting period.	
Time line may vary; subjected to rules and regulations /& other unforeseen circumstances							
	Particulars Environmental Clearance Consent to Establish Consent to operate ne may vary; subjected	ParticularsTimeImage: Image of the second s	ParticularsTime Schedu1st2ndEnvironmentalIstClearanceIstConsent to EstablishIstConsent to operateIstne may vary; subjected to rules and reg	ParticularsTime Schedule (in 1st1st2nd3rdEnvironmental ClearanceIIConsent to EstablishIIConsent to operateIIne may vary; subjected to rules and regulation	ParticularsTime Schedule (in Mon1st2nd3rd4thEnvironmentalIIIClearanceIIIConsent to EstablishIIIConsent to operateIIIne may vary; subjected to rules and regulations /&	ParticularsTime Schedule (in Months)1st2nd3rd4th5thEnvironmentalIIIIIClearanceIIIIIIConsent to EstablishIIIIIIConsent to operateIIIIIIne may vary; subjected to rules and regulations /& otherIIII	

Source: Anticipated based on Timelines framed in EIA Notification & CPCB Guidelines

CHAPTER III DESCRIPTION OF THE ENVIRONMENT

3.0 GENERAL

This chapter presents a regional background to the baseline data at the very onset, which will help in better appreciation of micro-level field data, generated on several environmental and ecological attributes of the study area. The baseline status of the project environment is described section wise for better understanding of the broad-spectrum conditions. The baseline environment quality represents the background environmental scenario of various environmental components such as land, water, air, noise, biological and socio-economic status of the study area. Field monitoring studies to evaluate the base line status of the project site were carried out covering **October-2023 through December-2023**, with CPCB guidelines. Environmental baseline data were collected by an NABL accredited and MoEF notified **Ekdant Enviro Services (P) Limited** for the environmental attributes including soil, water, air, and noise and by FAEs for ecology and biodiversity, traffic, and socio-economy.

Study Area

The study area has been divided into two zones: core zone and buffer zone. Core zone is considered as lease area and buffer zone as 5 km radius from the periphery of the cluster, except for ecological study, which considers 10 km as buffer zone. Both core and buffer zones are taken as the study area. The data was collected from the study area to understand the existing environment conditions of the above-mentioned environmental components. Sampling methodologies for the various environmental parameters, including frequency of sampling, method of sample analysis, etc., are briefly given in Table 3.1.

Attribute	Parameters	Frequency of Monitoring	No. of Locations	Protocol
Land Use/ Land Cover	Land-use Pattern within 5 km radius of the study area	Once during the study period	Study Area	Satellite Imagery & Primary Survey
*Soil	Physico- Chemical characteristics	Once during the study period	6 (1 in core & 5 in buffer zone)	IS 2720 Agriculture Handbook - Indian Council of Agriculture Research, New Delhi

 Table 3.1 Monitoring Attributes and Frequency of Monitoring
-	1	1		1
*Water Quality	Physical, Chemical and Bacteriological Parameters	Once during the study period	7 (3 surface water & 4 ground water)	IS 10500& CPCB Standards
Meteorology	Wind speed Wind direction Temperature Cloud cover Dry bulb temperature Rainfall	1 hourly continuous mechanical/aut omatic weather station	1	Site specific primary data & secondary data from IMD Station
*Ambient Air Quality	PM ₁₀ PM _{2.5} SO ₂ NO _X	24 hours, twice a week	6 (1 core & 5 buffer)	IS 5182 Part 1-23 National Ambient Air Quality Standards, CPCB
*Noise Levels	Ambient noise	Hourly observation for 24 hours per location	6 (1 core & 5 buffer zone)	IS 9989 As per CPCB Guidelines
Ecology	Existing flora and fauna	Through field visit during the study period	Study area	Primary Survey by Quadrate & Transect Study Secondary Data – Forest Working Plan
Socio Economic Aspects	Socio-economic characteristics, Population statistics and existing infrastructure in the study area	Site visit & Census Handbook, 2011	Study area	Primary Survey, census handbook & need based assessments.

*All monitoring and testing have been carried out as per the Guidelines of CPCB and MoEF & CC.

3.1 LAND ENVIRONMENT

3.1.1 Geology and Geomorphology

Study area is mainly composed of Grey Hornblende biotite gneiss and Biotite hornblende genesis, as shown in Figure 3.1. The lease area occurs in Grey Hornblende biotite gneiss terrain.

Among the geomorphic units, shallow weathered/buried pediplain and pediment dominate the study area, as shown in Figure 3.2. The lease area occurs in shallow weathered/buried pediplain terrain.

Figure 3.1 Geology Map of 5 km Radius from Proposed Project Site

Figure 3.2 Geomorphology Map of 5 km Radius from Proposed Project Site

3.1.2 Land Use/ Land Cover

Land Use and Land Cover (LULC) map, as shown in Figure 3.3 was prepared using Sentinel II image for the study area of 5 km radius to provide a baseline status of the study area covering 5 km radius around the proposed mine site. Totally,8 LULCs were mapped. The areal extent of each LULC is provided in Table 3.2. Of the total area, mining area covers only 10.96 ha accounting for 0.14 %, of which lease area of 3.00.0 ha contributes only about 0.0392 %. This small percentage of mining activities shall not have any significant impact on the land environment.

S. No.	Classification	Area (ha)	Area (%)
1	Crop land	1452.25	18.98
2	Dense Forest	451.66	5.90
3	Fallow land	345.75	4.52
4	Land with or without scrub	4309.69	56.33
5	Mining / Industrial wastelands	10.96	0.14
6	Plantations	973.05	12.72
7	Settlement	19.26	0.25
8	Water bodies	87.54	1.14
	Total	7650.16	100.0

Table 3.2 LULC Statistics of the Study Area

Source: Sentinel II Satellite Imagery 3.1.3 Topography

The proposed lease area is located in a flat terrain with gentle elevation 8 m above surface ground level and slope towards North Eastern side.

3.1.4 Drainage Pattern

Drainage pattern is the pattern formed by the streams, rivers, and lakes in a particular drainage basin over time that reveals characteristics of the kind of rocks and geological structures in a landscape. The proposed area shows dendritic drainage pattern indicating uniform lithology beneath the surface, as shown in Figure 3.4.

3.1.5 Seismic Sensitivity

The proposed lease area is situated in a Seismic Zone II, as defined by National Center for Seismology (<u>Official Website of National Centre of Seismology</u>). The Zone II is defined as the region where only minor damage is expected from seismic events. In this respect, the proposed lease area is located in a low earthquake hazard area.

Figure 3.3 LULC Map of 5 km Radius from Proposed Project Site

Figure 3.4 Drainage Map of 5 km Radius from Proposed Project Site

3.1.6 Soil

Composite soil samples were collected from 6 locations of the study area to determine the baseline soil characteristics of the soil. The locations were selected for soil sampling based on soil types, vegetative cover, and industrial & residential activities including infrastructure facilities. Soil samples were collected up to 90 cm depth, filled in polythene bags, coded and sent to laboratory for analysis. The locations of the sampling sites are shown in Table 3.3 and Figure 3.3. The samples thus collected were analysed for physical and chemical characteristics. The physical and chemical characteristic results of soil samples are provided in Table 3.4.

S.No.	Sampling ID	Location	Distance (km)	Direction	Coordinates
1	S01	Core			12°39'59.74"N 78° 7'46.03"E
2	S02	Nedusalai	1.98	SE	12°39'35.31"N 78° 8'45.81"E
3	S03	Marachandram	3.44	SSE	12°38'28.12"N 78° 8'41.90"E
4	S04	Kathiripalli	4.52	NE	12°41'51.98"N 78° 9'33.60"E
5	S05	Ponnalnatham	4.69	W	12°40'19.75"N 78° 5'47.12"E
6	S06	Mallasandiram	4.41	SW	12°38'40.69"N 78° 5'52.14"E

 Table 3.3 Soil Sampling Locations

Source: Sampling Results by **Ekdant Enviro Services** (**P**) Limited, in Association with GTMS.

Physical Characteristics & Chemical Characteristics

The soil samples in the study area show loamy textures varying between silty clay loam, sandy loam and Clay Loam. pH of the soil varies from 6.8 to 7.9 indicating slightly acidic and alkaline nature. Electrical conductivity of the soil varies from 225 to 263 μ s/cm. Bulk density ranges between 1.15 and 1.65 g/cm³. Potassium ranges between 15.34 and 32.8 mg kg⁻¹. Calcium ranges between 118 and 167 mg kg⁻¹. Organic Matter ranges between 1.25 and 1.63 %. Chlorides ranges between 136 and 149 mg kg⁻¹ soil.

Soil Quality Assessment

Soil quality is the foundation of sustainable crop production. Soil quality assessment helps to understand soil conditions and adopt suitable production practices. It can be done using physical, chemical, and biological properties of soil. For this assessment, four soil quality parameters including PH, EC, OM, CEC and BD were taken into account. The soil quality score for each sample has been provided in Table 3.4a.

Figure 3.5 Map Showing Soil Sampling Locations within 5 km Radius around Proposed Project Site

S. No	Parameters	Unit	S01 core	Minimum	Maximum	Average		
1	pH value @ 25°C	-	7.1	6.8	7.9	7.36		
2	EC @ 25°C	μS /cm	211	225	263	236.6		
3	Texture	-	Silt Loam	Clay Loam, S San	Clay Loam, Sandy Loam, Clay Loam, Sandy Clay Loam			
4	Sand	%	27.60	38.2	63.2	53.86		
5	Silt	%	57.20	14.2	35.2	24.52		
6	Clay	%	15.20	11.5	36.2	21.62		
7	Bulk Density	g/cc	1.46	1.15	1.65	1.38		
8	Water Content	%	2.86	2.62	4.51	3.232		
9	Organic Matter	%	1.03	1.25	1.63	1.43		
10	Alkalinity	mg/kg	65.3	63.23	71.2	67.492		
11	Potassium (K)	mg/kg	35.10	15.34	32.8	25.032		
12	Water Holding Capacity	%	34.6	38.2	66.55	46.796		
13	Calcium (Ca)	mg/kg	131	118	167	141.6		
14	Magnesium (Mg)	mg/kg	26.20	24.56	35.45	28.708		
15	Sodium (Na)	mg/kg	137	143	174	158.4		
16	Iron (Fe)	mg/kg	113.25	63.54	143.42	110.106		
17	Copper (Cu)	mg/kg	BLQ (LOQ=0.05)	BLQ (LOQ=0.05)	BLQ (LOQ=0.0 5)	BLQ (LOQ=0. 5)		
18	Chlorides (Cl)	mg/kg	135	136	149	142.4		

Table 3.4 Soil Quality of the Study Area

Source: Sampling Results by **Ekdant Enviro Services** (P) Limited, in Association with GTMS.

 Table 3.4a Assigning Scores to Soil Quality Indicators

S. No.	ОМ	BD	PH	EC	Total Score	Recommendation		
1	33	7	20	11	71			
2	33	1	20	11	67	The soil requires major and immediate		
3	33	13	20	11	78	treatment		
4	33	2	13	11	60	ucatinent		
5	33	7	13	11	64			
6	33	7	13	11	64			

OM (Organic Matter) BD (Bulk Density) PH (Potential of Hydrogen) EC (Electrical Conductivity)

Source : <u>PSS-2262_Soil_Quality_Monitoring.pdf</u> (okstate.edu)

3.2 WATER ENVIRONMENT

The water resources, both surface and groundwater play a significant role in the development of the area. The purpose of this study is to assess the baseline quality of surface and ground water.

S. No.	Sampling ID	Location	Distance (km)	Direction	Coordinates
1	SW1	Markanda River	1.20	NE	12°40'07.66"N, 78°8'30.19"E
2	SW2	Kondapanayanapalli Lake	0.04	Е	12°39'58.46"N, 78°7'51.34"E
3	SW3	Dasiripalli lake	4.07	NE	12°41'42.80"N, 78°9'17.29"E
4	BW1	Kondappanayanapalli	0.74	NW	12°40'19.92"N, 78°7'26.97"E
5	BW2	Beerapalli	3.99	SW	12°38'42.93"N, 78°5'55.86"E
6	BW3	Avalnatham	2.12	NW	12°41'00.05"N, 78°7'03.63"E
7	OW1	Chennasandiram	2.53	SSE	12°38'37.41"N, 78°8'05.35"E

Table 3.5 Water Sampling Locations

Source: Sampling Results by **Ekdant Enviro Services** (**P**) Limited, in Association with GTMS.

3.2.1 Surface Water Resources and Quality

Markanda River, Kondapanayanapalli Lake and Dasiripalli lake are the three prominent surface water resources present in the study area. The proposed project area is located 1.20 km NE of the lake Markanda River, 0.04 km E of the Kondapanayanapalli Lake and 4.07 km NE Dasiripalli lake as shown in Table 3.5 and Figure 3.7. Totally, three surface water samples, known as SW1, SW2 and SW3 were collected from the river and lakes to assess the baseline water quality. Result for surface water sample in the Table 3.6a indicate that the physical, chemical and biological parameters are within permissible limits in comparison with standards of IS10500:2012.

3.2.2 Ground Water Resources and Quality

Groundwater in the study area occurs in the crystalline rocks of Archaean age and recent alluvium. The movement of the groundwater is controlled by the intensity of weathering and fracturing of crystalline rocks. Dug wells and bore wells are the most common ground water abstraction structures in the area. However, in dry season, people in the study area heavily rely on bore wells for their domestic and agriculture purpose.

Four groundwater samples, known as BW1, BW2, BW3 and OW1 were collected from bore wells and open well were analysed for physico-chemical conditions and bacteriological contents in order to assess baseline quality of ground water. Ground water sampling locations and their distance and direction from the lease area are provided in Table 3.5 and the spatial occurrence of water sampling locations is shown in Figure 3.7. Table 3.6 summarizes ground water quality data of the four samples.

Results for ground water samples in the Table 3.6 indicate that the physical, chemical and biological parameters are within permissible limits in comparison with standards of IS10500:2012.

3.2.3 Hydrogeological Studies

The area within 2 km radius consists of numerous open wells and deep wells. Groundwater level data were collected both from open wells and bore wells for two monsoon seasons as discussed in the following section.

3.2.3.1 Rainfall

Rainfall data for the study area were collected for the period of 1981-2022(<u>POWER |</u> <u>Data Access Viewer (nasa.gov)</u>). Long term monthly average rainfall was estimated from the data of 1981-2022 and compared with the monthly rainfall for the year 2022, shown in Figure 3.6. The Figure 3.6 shows that monthly rainfall in 2022 is generally high in the months of May, August, October when compared to the long term monthly average rainfall.

Figure 3.6 Long-Term Monthly Average Rainfall Vs Monthly Rainfall

3.2.3.2 Groundwater Levels and Flow Direction

Data regarding depth to groundwater levels are essential to infer the direction of groundwater movement within the study area. Knowledge of groundwater flow direction is must in choosing location for background groundwater quality monitoring well and in locating recharge and discharge areas. Therefore, data regarding groundwater elevations were collected from 9 open wells and 9 bore wells at various locations within 2 km radius around the proposed project sites for the period from March through May 2023 (Pre-Monsoon Season) and from October through December, 2023 (Post Monsoon Season).

The open well water level data thus collected onsite are provided in Tables 3.7 and 3.8. According to the data, average depths to the static water table in open wells range from 21.80 to 24.57 m BGL in pre monsoon and 17.92-18.90 m BGL in post monsoon. The bore well data thus collected onsite are provided in Tables 3.9 and 3.10. The average depths to static potentiometric surface in bore wells for the period of October through December 2023 (Post-Monsoon Season) vary from 96.6- 98.1m and from 105.4 - 107.6 m for the period of March through May, 2023 (Pre-Monsoon Season). Data on the depths to static water table and potentiometric surface were used to draw contour lines connecting groundwater elevation (also known as equipotential hydraulic head) to determine the groundwater flow direction perpendicular to the contour lines.

From the maps of open well groundwater flow direction shown in Figures 3.8-3.9, it is understood that most of the open well groundwater for the post- and pre-monsoon seasons flows towards the open well number 1,6 located in southeast direction of the proposed project site. The groundwater flow maps in Figures 3.10-3.11 show that most of the bore well groundwater for the post- and pre-monsoon seasons flow towards the bore well number 5 and 6. It is located in southeast direction of the proposed project site. On the basis of the groundwater flow information, both open wells and bore wells mentioned above can be chosen for water quality monitoring purpose as the wells may get easily affected by the contaminants resulting from the mining activities of the sites in future.

Figure 3.7 Map Showing Water Sampling Locations within 5 km Radius around Proposed Project Site

S.	Paramatars	Units	RESULT		Standards a	s Per IS 10500: 2012	
No.	1 ar anicters	Units	Minimum Limit	Maximum Limit	Average	Acceptable Limit	Permissible Limit
1	pH@ 25°C		6.9	7.6	7.3	6.5-8.5	No relaxation
2	Turbidity	NTU	BI	LQ (LOQ=0.1)	1	300
3	Electrical Conductivity @ 25°C	µs/cm	475	1850	959.8	Not specified	Not specified
4	TSS	mg /l	BI	BLQ (LOQ=0.1)			Not specified
5	TDS	mg /l	432	1230	684.3	500	2000
6	Total Hardness	mg /l	218	282	242.8	200	600
7	Chloride (Cl)	mg /l	123	236	167.5	250	1000
8	Sulphate (SO ₄)	mg /l	46	252	139.0	200	400
9	Iron (Fe)	mg /l	BI	Q (LOQ=0.1)	0.3	No relaxation
10	Silica (SiO ₂)	mg /l		-		Not specified	Not specified
11	Total Coliform	MPN/ 100ml		Absent			Shall not be detectable in any 100 ml water
12	E-Coli	MPN/ 100ml		Absent		Shall not be detectable in any 100 ml water	Shall not be detectable in any 100 ml water

Table 3.6 Ground Water Quality Result

Source: Sampling Results by Ekdant Enviro Services (P) Limited, in association with GTMS

 Table 3.6a Surface Water Quality Results

S. No. Parameters	Parameters	T I * 4		RESULT	Standards as Per IS 10500: 2012		
	Units	Minimum Limit	Maximum Limit	Average	Acceptable Limit	Permissible Limit	
1	pH@ 25°C		7.3	7.5	7.4	6.5-8.5	No relaxation
2	Turbidity	NTU	В	LQ (LOQ=0.	1)	1	5
3	Electrical Conductivity @ 25°C	µs/cm	432	512	472	Not specified	Not specified
4	TSS	mg /l	В	LQ (LOQ=0.	1)	Not specified	Not specified

5	TDS	mg /l	252	267	259.5	500	2000
6	Total Hardness	mg /l	106	122	114	200	600
7	Chloride (Cl)	mg /l	88	152	120	250	1000
8	Sulphate (SO ₄)	mg /l	14	34	24	200	400
9	Iron (Fe)	mg /l	В	LQ (LOQ=0.	0.3	No relaxation	
10	Silica (SiO ₂)	mg /l		-	Not specified	Not specified	
11	Total Coliform	MPN/ 100ml		Absent		Shall not be detectable in any 100 ml water	Shall not be detectable in any 100 ml water
12	E-Coli	MPN/ 100ml		Absent			Shall not be detectable in any 100 ml water

Source: Sampling Results by Ekdant Enviro Services (P) Limited, in association with GTMS Table 3.7 Pre-Monsoon Water Level of Open Wells within 2 km Radius

Station	Depth	to Static Wa	ter Table BG	L (m)	Latitudo	Longitudo
ID	Mar-2023	Apr-2023	May- 2023	Average	Lattude	Longitude
DW01	20.8	21.5	23.4	21.90	12°39'51.30"N	78° 8'6.87"E
DW02	21.2	22.2	23.2	22.20	12°40'17.50"N	78° 8'4.02"E
DW03	20.9	21.4	23.1	21.80	12°40'33.00"N	78° 8'18.80"E
DW04	21.2	22.1	22.4	21.90	12°40'28.89"N	78° 7'34.12"E
DW05	20.4	21.9	23.1	21.80	12°40'9.24"N	78° 8'24.89"E
DW06	21.1	21.8	23.2	22.03	12°39'32.87"N	78° 8'18.83"E
DW07	20.5	26.1	27.1	24.57	12°39'4.56"N	78° 8'9.29"E
DW08	20.8	25.2	27.4	24.47	12°40'34.82"N	78° 7'59.41"E
DW09	21.30	24.8	27	24.37	12°40'42.59"N	78° 8'36.60"E

Source: Onsite monitoring data

Table 3.8 Post-Monsoon Water Level of Open Wells within 2 km Radius

Station ID	Depth	to Static Wat	Latitude	Longitude			
	OCT-2023	NOV- 2023	DEC-2023	Average	Latitude	Longitude	
DW01	19.5	17.8	16.5	17.93	12°39'51.30"N	78° 8'6.87"E	
DW02	19.6	17.4	16.8	17.93	12°40'17.50"N	78° 8'4.02"E	
DW03	20.1	19.2	17.1	18.80	12°40'33.00"N	78° 8'18.80"E	

DW04	19.9	18.5	16.8	18.40	12°40'28.89"N	78° 7'34.12"E
DW05	20.1	19.4	17.2	18.90	12°40'9.24"N	78° 8'24.89"E
DW06	20.2	19.2	16.5	18.63	12°39'32.87"N	78° 8'18.83"E
DW07	19.5	19.6	16.8	18.63	12°39'4.56"N	78° 8'9.29"E
DW08	20.4	19.4	16.4	18.73	12°40'34.82"N	78° 7'59.41"E
DW09	20.60	18.8	17.2	18.87	12°40'42.59"N	78° 8'36.60"E

Source: Onsite monitoring data

Table 3.9 Pre-Monsoon Water Level of Bore Wells within 2 km Radius

Statio	Depth to St	atic Potentio	metric Surfac	I stitude	Longitude		
n ID	Mar-2023	Apr-2023	May- 2023	Average	Latitude	Donghuut	
BW01	105.4	106.1	109.5	107.00	12°40'10.35"N	78° 7'37.52"E	
BW02	105.5	106.4	109.4	107.10	12°40'27.07"N	78° 7'27.80"E	
BW03	105.6	106.5	108.6	106.90	12°40'40.73"N	78° 8'18.30"E	
BW04	106.9	107.4	108.5	107.60	12°40'1.66"N	78° 8'27.32"E	
BW05	104.4	106.3	109.1	106.60	12°39'39.71"N	78° 8'8.90"E	
BW06	104.3	106.4	108.9	106.53	12°39'23.41"N	78° 8'18.67"E	
BW07	103.1	106.5	108.5	106.03	12°39'14.42"N	78° 8'1.91"E	
BW08	104.2	104.2	107.9	105.43	12°40'39.46"N	78° 7'15.11"E	
BW09	104.5	106.4	109.5	106.80	12°40'3.67"N	78° 7'55.95"E	

Source: Onsite monitoring data

Table 3.10 Post-Monsoon Water Level of Bore Wells within 2 km Radius

Station	Depth	to Static Pote				
Station		BGI	Latitude	Longitude		
ID	Oct-2023	Nov-2023	Dec-2023	Average		
BW01	102	96	92	96.67	12°40'10.35"N	78° 7'37.52"E
BW02	103.2	97.2	93.1	97.83	12°40'27.07"N	78° 7'27.80"E
BW03	102.2	97.2	94.1	97.83	12°40'40.73"N	78° 8'18.30"E
BW04	102.9	96.8	93.5	97.73	12°40'1.66"N	78° 8'27.32"E
BW05	103.4	96.6	94.6	98.20	12°39'39.71"N	78° 8'8.90"E
BW06	102.1	96.5	93.5	97.37	12°39'23.41"N	78° 8'18.67"E
BW07	103.6	97.6	93.9	98.37	12°39'14.42"N	78° 8'1.91"E
BW08	103.5	97.8	94.1	98.47	12°40'39.46"N	78° 7'15.11"E
BW09	103.2	98.6	94.5	98.77	12°40'3.67"N	78° 7'55.95"E

Source: Onsite Monitoring Data

Figure 3.8 Open Well Static Groundwater Elevation Map Showing Direction of Groundwater Flow During Pre-Monsoon Season

Figure 3.9 Open Well Static Groundwater Elevation Map Showing Direction of Groundwater Flow During Post-Monsoon Season

Figure 3.10 Borewell Static Groundwater Elevation Map Showing Direction of Groundwater Flow During Pre-Monsoon Season

Figure 3.11 Borewell Static Groundwater Elevation Map Showing Direction of Groundwater Flow During Post-Monsoon Season

3.2.3.3 Electrical Resistivity Investigation

Electrical resistivity investigation is especially useful in the areas where there are no adequate exploratory well data about the aquifer conditions. The present study makes use of vertical electric sounding (VES) to delineate earth's subsurface layers. The electrical resistivity investigation uses four electrodes set up where current is sent through outer electrodes into the ground and the inner electrodes measure the potential difference.

Result

The Geophysical VES data obtained from the project site have been shown in Table 3.11. The field data obtained from a detailed geophysical investigation were plotted using excel spreadsheet for interpretation. The plot for the purpose of interpretation has been shown in Figure 3.12.

Location Coordinates - 12°40'0.09"N 77°7'46.04"E									
S No	AB/2	MN/2	Geometrical	Resistance in	Apparent				
5. 110.	(m)	(m)	Factor (G)	Ω	Resistivity in Ω m				
1	2	2	11.78	12.44	146.5				
2	4	2	49.46	7.42	367.04				
3	6	5	112.26	4.98	559.28				
4	8	5	200.18	2.86	572.71				
5	10	5	75.36	8.49	640.03				
6	15	10	173.49	4.53	786.42				
7	20	10	310.86	3.18	987.56				
8	25	10	487.49	2.29	1118.76				
9	30	10	274.75	5.28	1451.78				
10	35	10	376.8	4.22	1590.54				
11	40	10	494.55	3.33	1649.12				
12	45	10	628	2.75	1729.18				
13	50	10	777.15	2.39	1857.16				
14	65	20	453.6	4.50	2041.05				
15	70	20	989.1	2.17	2149.5				
16	80	20	1256	1.91	2400.45				
17	90	20	1554.3	1.69	2630.93				
18	100	20	1653.6	1.32	2180.44				
19	110	20	1724.10	1.59	2748.98				
20	120	20	1960.00	1.44	2824.56				

 Table 3.11 Vertical Electrical Sounding Data

Figure 3.12 Graph Showing Occurrence of Water Bearing Fracture Zones at the Depth of 100 m Below Ground Level in Proposed Project

The rock formation of low resistivity values indicates occurrence of water at the depth of about 100 m below ground level. The maximum depth proposed for the proposed project is 92 (8 m AGL +84 m BGL). Therefore, the mining operation will not affect the aquifer throughout the entire mine life period.

3.3 AIR ENVIRONMENT

The baseline studies on air environment include identification of specific air pollutants and their existing levels in ambient air. The sources of air pollution in the region are mostly due to vehicular traffic, dust arising from unpaved village road and domestic & agricultural activities.

3.3.1 Meteorology

3.3.1.1 Climatic Variables

A temporary meteorological station was installed at the project sites by covering cluster quarries. The station was installed at a height of 3 m above the ground level as there are no obstructions facilitating flow of wind, wind speed, wind direction, humidity and temperature. Meteorological data obtained from the onsite monitoring station are provided in Table 3.12.

According to the onsite data, the temperature in October, 2023 varied from 15.33° C to 30.59° C with the average of 23.88° C; in November, 2023 from 17.64 to 29.24° C with the average of 22.97° C; and in December, 2023 from 14.63 to 29.40° C with the average of 21.70° C. In October, 2023, relative humidity ranged from 40.81 to 100 % with the average of 81.44%; in November, 2023, from 56.38 to 100% with the average of 88.64%; and in

December, 2023, from 52.31 to 100 % with the average of 85.94%. The wind speed in October, 2023 varied from 0.52 to 7.70m/s with the average of 2.56 m/s; in November, 2023 from 0.54 to 6.49 m/s with the average of 2.99 m/s; and in December, 2023 from 0.72 to 6.64 m/s with the average of 3.33m/s. In October,2023, wind direction varied from 1.07 to 359.60⁰ with the average of 125.70⁰; in November, 2023, from 7.58 to 228.10⁰ with the average of 75.10⁰; and in December, 2023, from 2.36 to 359.83⁰ with the average of 87.66⁰. In October,2023, surface pressure varied from 93.56 to 94.47kPa with the average of 94.08 kPa; in November, 2023, from 93.76 to 94.52 kPa with the average of 94.15 kPa; and in December, 2023, from 93.50 to 94.71 kPa with the average of 94.18kPa.

S. No.	Parameters		OCT,2023	NOV,2023	DEC,2023
		Min	15.33	17.64	14.63
1	Temperature (⁰ C)	Max	30.59	29.24	29.40
		Avg	23.88	22.97	21.70
		Min	40.81	56.38	52.31
2	Relative Humidity (%)	Max	100.00	100.00	100.00
		Avg	81.44	88.64	85.94
		Min	0.52	0.54	0.72
3	Wind Speed (m/s)	Max	7.70	6.49	6.64
		Avg	2.56	2.99	3.33
		Min	1.07	7.58	2.36
4	Wind Direction	Max	359.60	228.10	359.83
	(degree)	Avg	125.70	75.10	87.66
5		Min	93.56	93.76	93.50
	Surface Pressure(kPa)	Max	94.47	94.52	94.71
		Avg	94.08	94.15	94.18

 Table 3.12 Onsite Meteorological Data

Source: Sampling Results by Ekdant Enviro Services (P) Limited, in association with GTMS.

3.3.1.2 Wind Pattern

Wind pattern will largely influence the dispersion pattern of air pollutants and noise from the proposed project site. Analysis of wind pattern requires hourly site-specific data of wind speed and direction. Two types of wind rose were generated: historical seasonal wind rose for the period of October through December of the years from 2019 to 2022 and the seasonal wind rose for the study period of October through December 2023. The wind rose diagrams thus produced are shown in Figures 3.13-3.13a. Figure 3.14 reveals that:

- The measured average wind velocity during the study period is 2.96m/s.
- Predominant wind was dominant in the directions ranging from Northeast to Southwest.

Figure 3.13 Windrose Diagram for 2019-2020 (October to December)

Figure 3.13a Windrose Diagram for 2021-2022 (October to December)

Figure 3.14 Onsite Wind Rose Diagram

3.3.2 Ambient Air Quality Study

The baseline ambient air quality is studied through a scientifically designed ambient air quality monitoring network considering the followings:

- ✤ Meteorological condition on synoptic scale
- Topography of the study area
- Representatives of regional background air quality for obtaining baseline status
- Location of residential areas representing different activities
- ✤ Accessibility and power availability

Table 3.13 Methodology and Instrument Used for AAQ Analysis

Parameter	Method	Instrument
PM _{2.5}	Gravimetric method Beta attenuation method	Fine Particulate Sampler
PM ₁₀	Gravimetric method Beta attenuation method	Respirable Dust Sampler
SO ₂	IS-5182 Part II (Improved West & Gaeke method)	Respirable Dust Sampler with gaseous attachment
NOx	IS-5182 Part II (Jacob & Hoch heiser modified method)	Respirable Dust Sampler with gaseous attachment
Free Silica	NIOSH – 7601	Visible Spectrophotometry

Source: Sampling Methodology based on **Ekdant Enviro Services** (P) Limited & CPCB Notification

			Concentration in ambient air			
		Time	Industrial,	Ecologically		
S. No.	Pollutant	Weighted	Residential,	Sensitive area		
		Average	Rural & other	(Notified by		
			areas	Central Govt.)		
1	$SO_{2}(\mu \alpha/m^{3})$	Annual Avg.*	50.0	20.0		
1	30 ₂ (µg/m)	24 hours**	80.0	80.0		
2	NO $(\mu \alpha/m^3)$	Annual Avg.	40.0	30.0		
2	$MO_x (\mu g/\Pi f)$	24 hours	80.0	80.0		
3	$PM_{10} (\mu g/m^3)$	Annual Avg.	60.0	60.0		
5	1 win (μg/m)	24 hours	100.0	100.0		
1	$PM_{a,z}(ug/m^2)$	Annual Avg.	40.0	40.0		
4	1 w12.5 (μg/m3)	24 hours	60.0	60.0		

Table 3.14 National Ambient Air Quality Standards

Source: NAAQS CPCB Notification No. B-29016/20/90/PCI-I Dated: 18th Nov 2009

Methodology

Ambient air quality monitoring was carried out with a frequency of two samples per week at six (06) locations, adopting a continuous 24 hourly (3 shift of 8-hour) schedule for the period **October through December 2023,** as per the CPCB, MoEF guidelines and notifications.

It was ensured that the equipment was placed preferably at a height of at least 3 ± 0.5 m above the ground level at each monitoring station for negating the effects of wind-blown ground dust. The equipment was placed at space free from trees and vegetation which otherwise act as a sink of pollutants resulting in lower levels in monitoring results. The baseline data of ambient air were generated for PM_{2.5}, PM₁₀, sulphur dioxide (SO₂) and nitrogen dioxide (NO_x). The sampling locations are shown in Figure 3.15 and average concentrations of air pollutants are summarized in Tables 3.15 and are shown in Figures 3.16-3.20.

S.	Location	Monitoring	Distance		Coord	inates
No.	Code	Locations	(km)	Direction	Latitude	Longitude
1	AAQ1	Core			12°39'58.45"N	78° 7'49.90"E
2	AAQ2	Kondappanayanapalli	0.57	NW	12°40'19.00"N	78° 7'33.91"E
3	AAQ3	Kentarpalli	3.89	NNE	12°42'10.21"N	78° 8'5.31"E
4	AAQ4	Dasiripalli	4.45	NE	12°41'45.97"N	78° 9'32.05"E
5	AAQ5	V.Madepalli	4.66	ESE	12°39'30.36"N	78°10'21.93"E
6	AAQ6	Kuppachiparai	2.40	SSE	12°38'46.95"N	78° 8'22.61"E

Table 3.15 Ambient Air Quality (AAQ) Monitoring Locations

Source: On-site monitoring/sampling by **Ekdant Enviro Services** (**P**) Limited in association with GTMS **Results**

As per the monitoring data, $PM_{2.5}$ ranges from 16.6 µg/m³ to 18.4 µg/m³, PM_{10} from 38.8 µg/m³ to 43.1µg/m³, SO₂ from 3.4 µg/m³ to 4.9 µg/m³, NO_x from 10.9µg/m³ to 15.7g/m³. The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

Air quality Index (AQI)

The AQI shows that the air quality of the study area falls within good category 41causing minimal impact to human health.

Figure 3.15 Map Showing Ambient Air Quality Monitoring Station Locations Around 5 km Radius from Proposed Project Site

	PM2.5				PM10			
Station ID	Max	Min	Mean	98 th Percentile	Max	Min	Mean	98 th Percentile
AAQ1	20.2	17.9	19.1	20.0	47.6	42.2	44.8	47.0
AAQ2	18.1	16.9	17.5	18.1	42.4	39.6	40.9	42.3
AAQ3	19.1	17.3	18.0	18.3	41.8	37.8	39.3	41.2
AAQ4	18.3	16.4	17.5	18.2	40.6	36.5	38.8	40.6
AAQ5	16.9	15.4	16.0	16.9	41.3	37.5	39.0	41.2
AAQ6	17.9	15.7	16.6	17.7	44.8	39.2	41.4	44.3
		SO ₂		·	NOx			
AAQ1	5.1	3.8	4.4	5.1	15.8	11.8	13.7	15.8
AAQ2	4.9	3.1	4.1	4.9	15.4	10.1	13.0	15.4
AAQ3	4.9	2.9	3.9	4.2	15.2	9.0	12.1	15.0
AAQ4	3.4	2.6	3.0	3.4	12.9	9.9	11.4	12.9
AAQ5	5.2	3.3	3.8	5.0	16.1	10.2	11.9	15.5
AAQ6	6.0	4.6	5.2	5.9	18.6	14.3	16.0	18.3

Table 3.16 Summary of AAQ Result

Figure 3.16 Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM_{2.5} Measured from 6 Air Quality Monitoring Stations within 5 km Radius

Figure 3.17 Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM₁₀ Measured from 6 Air Quality Monitoring Stations within 5 km Radius

Figure 3.18 Bar Chart Showing Maximum, Minimum, and Average Concentrations of SO₂ Measured from 6 Air Quality Monitoring Stations within 5 km Radius

Figure 3.19 Bar Chart Showing Maximum, Minimum, and Average Concentrations of Nox Measured from 6 Air Quality Monitoring Stations within 5 km Radius

Figure 3.20 Bar Chart Showing Maximum, Minimum, and Average Concentrations of Pollutants in Atmosphere within 5 km Radius

3.4 NOISE ENVIRONMENT

The vehicular movement on road and mining activities is the major sources of noise in the study area. The main objective of noise monitoring in the study area is to establish the baseline noise level, which will in turn be used to assess the impact of the total noise expected to be generated during the project operations around the project site. In order to assess the ambient noise levels within the study area, noise monitoring was carried out at Six (6) locations covering commercial, residential, rural areas within the radius of 5 km. Details of noise monitoring locations are provided in Table 3.17 and spatial occurrence of the locations are shown in Figure 3.23.

S.	Location	Monitoring	Distance	Direction	Coordinates		
No.	Code	Locations	(km)		Latitude	Longitude	
1	N1	Core			12°40'3.01"N	78° 7'49.30"E	
2	N2	Kondappanayanapalli	0.59	NW	12°40'19.86"N	78° 7'33.65"E	
3	N3	Kentarpalli	3.91	NNE	12°42'11.05"N	78° 8'5.79"E	
4	N4	Dasiripalli	4.45	NE	12°41'45.20"N	78° 9'32.80"E	
5	N5	V.Madepalli	4.67	ESE	12°39'29.44"N	78°10'22.08"E	
6	N6	Kuppachiparai	2.43	SSE	12°38'46.15"N	78° 8'22.85"E	

 Table 3.17 Noise Monitoring Locations

Source: On-site Monitoring/Sampling by Ekdant Enviro Services (P) Limited in Association with GTMS

Table 3.18 Ambient Noise Quality Result

Station ID	Location	Environmental setting	Average day noise level (dB(A))	Average night noise level (dB(A))	Day time (6.00 AM – 10.00 PM)	Night time (10.00 PM – 6.00 AM)
					Standard	(L _{eq} in dB
					(A))	
N1	Core	Industrial Area	46.7	38.8	75	70
N2	Kondappanayanapalli		42.2	36.6		
N3	Kentarpalli	Residential	44.8	37.8		
N4	Dasiripalli	Area	40.8	35.4	55	45
N5	V.Madepalli	i i ca	41.2	35.8	1	
N6	Kuppachiparai		49.6	40.8	1	

Source: On-site Monitoring/Sampling by Ekdant Enviro Services (P) Limited in Association with GTMS

The Table 3.18 shows that noise level in core zone was 46.7 dB (A) Leq during day time and 38.8dB(A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 40.8 to 49.6dB (A) Leq and during night time from 35.4 to 40.80dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB. The results are also depicted below in Figures 3.21 and 3.22.

Figure 3.21 Bar Chart Showing Day Time Noise Levels Measured in Core and Buffer Zones

Figure 3.22 Bar Chart Showing Night Time Noise Levels Measured in Core and Buffer Zones

Figure 3.23 Map Showing Noise Level Monitoring Station Locations around 5 km Radius from Proposed Project Site

3.5 BIOLOGICAL ENVIRONMENT

An ecological survey was conducted to collect the baseline data regarding flora and fauna in the study area of 10 km radius. Data were also collected from different sources, i.e., government departments such as District Forest Office, Government of Tamil Nadu. On the basis of onsite observations as well as forest department records the checklist of flora and fauna was prepared.

Methodology

Sampling locations were selected with reference to topography, land use, vegetation pattern, etc. In this study, quadrats of 25 m \times 25 m were laid down to assess trees and quadrats of 10 m \times 10 m were laid down for shrubs.

Figure 3.24 Quadrates Sampling Methods of Flora

Phyto-Sociological Studies

Phyto-sociological parameters, such as *Density, Frequency, Abundance and Importance Value Index* of individual species were determined in randomly placed quadrat of different sizes in the study area, as shown in Table 3.19. Relative frequency, and relative density were calculated and the sum of these three represented Importance Value Index (IVI) for various species. For shrubs, herbs and grasses, *Density, Frequency, Relative Density & Relative Frequency were found*. Sample plots were selected in such a way to get maximum representation of different types of vegetation and plots were laid out in different part of the study area of 10 km radius. Analysis of the vegetation will help in determining the relative importance of each species in the study area and to reveal if any economically valuable species is threatened in the process.
Table 3.19 Calculation of Density, Frequency (%), Dominance, Relative Density,Relative Frequency, Relative Dominance & Important Value Index

Parameters	Formula
Density	Total No. of individuals of species/ Total No. of Quadrats used in sampling
Frequency (%)	(Total No. of Quadrats in which species occur/ Total No. of Quadrats studied)100
Abundance	Total No. of individuals of species/ No. of Quadrats in which they occur
Relative Density	(Total No. of individuals of species/Sum of all individuals of all species) * 100
Relative	(Total No. of Quadrats in which species occur/ Total No. of Quadrats
Frequency	occupied by all species) * 100
Important Value	Relative Density + Relative Frequency
Index	

Shannon – Wiener Index, Evenness and Richness

Biodiversity index is a quantitative measure that reflects how many different types of species, there are in a dataset, and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed among those types of species. The value of biodiversity index increases both when the number of types increases and when evenness increases. For a given number of type of species, the value of a biodiversity index is maximized when all type of species is equally abundant. The corresponding formulas are given in Table 3.20.

Table 3.20 Calculation of Species Diversity by Shannon – Wiener Index, Evenness and Richness

Description	Formula
Species diversity –	$\mathbf{H} = \sum [(\mathbf{p}_i)^* \mathbf{I} \mathbf{n}(\mathbf{p}_i)]$
Shannon – Wien	Where pi: Proportion of total sample represented by species
Index	i: number of individuals of species i/ total number
	samples

Evenness	H/H max
	$H_{max} = ln(s) = maximum diversity possible$
	S=No. of species
Species Richness by	RI = S-1/ln N
Margalef	Where $S = Total$ Number of species in the community
	N = Total Number of individuals of all species in the
	Community

3.5.1 Flora

Flora study was conducted using the above said methodology to inventory the existing terrestrial plants in both core and buffer zones. Details of plants have been described in the succeeding sections.

Flora in mine lease area (core zone)

Taxonomically 17 species belonging to 13 families have been recorded from the core mining lease area. Based on habitat classification of the enumerated plants the majority of species were 3 Tree followed by Herbs & Climbers & Grass 8, Shrubs 6. Details of flora with the scientific name were mentioned in Table.3.21-3.23.

Flora in 300 m radius buffer zone

Taxonomically 39 species belonging to 25 families have been recorded from the 300 m radius buffer zone. Based on habitat classification of the enumerated plants the majority of species were seven Tree 11 followed by Herbs & Climbers & Grass 21, Shrubs 7. Details of flora with the scientific name and species richness index were mentioned in Table.3.24-3.25.

Flora in 10 km radius buffer zone

Similar type of environment also in buffer area but with more flora diversity compare than core zone area, because of nearby agriculture land was found to be dominate in all the directions. Majority of the flat landscape around project unit is occupied by agriculture fields. It contains a total of 89 species belonging to 43 families have been recorded from the buffer zone. The floral (89) varieties among them Trees 37 (42%) Shrubs 13 (14%) and Herbs & Climbers & Creeper & Cactus 39 (44%). Details of flora with the scientific name were mentioned in Table.3.26

Table 3.21 Flora in Mine Lease Area

S. No	Local name	Scientific name	Family name	Total No. of species	Total of Quadrants with species	Total No. of Quadrants	Density	Frequency (%)	Abundance	Relative Density	Relative Frequency	IVI	IUCN Conservation Status
		I	Trees		1				1	1	1		
1	Karuvealan	Prosopis juliflora	Fabaceae	4	3	5	0.8	60.0	1.3	50.0	50.0	100.0	NE
2	Unjai maram	Albizia amara	Fabaceae	9	5	5	1.8	100.0	1.8	15.3	15.6	30.9	NE
3	Vetpalai maram	Wrightia tinctoria	Apocynaceae	3	2	5	0.6	40.0	1.5	37.5	33.3	70.8	NE
			Shrubs										
4	Avaram chadi	Senna auriculata	Fabaceae	4	3	5	0.8	60.0	1.3	21.1	18.8	39.8	NE
5	Earuku	Calotropis gigantea	Apocynaceae	3	3	5	0.6	60.0	1.0	15.8	18.8	34.5	NE
6	Unichadi	Landana camera	Verbenaceae	5	4	5	1.0	80.0	1.3	26.3	25.0	51.3	NE
7	Surai mullui	Ziziphus oenopolia	Rhamnaceae	1	1	5	0.2	20.0	1.0	5.3	6.3	11.5	LC
8	Sapathikalli	Cereus pterogonus	Cactus	4	3	5	0.8	60.0	1.3	21.1	18.8	39.8	NE
9	Karaimullu	Canthium coromandelicum	Rubiaceae	2	2	5	0.4	40.0	1.0	10.5	12.5	23.0	
			Herbs/Clim	ber									
10	Perandai	Cissus quadrangularis	Vitaceae	3	2	5	0.6	40.0	1.5	5.1	6.3	11.3	NE
11	Thathapondu	Tridax procumbens	Asteraceae	8	5	5	1.6	100.0	1.6	13.6	15.6	29.2	NE
12	Kolunji chadi	Tephrosia purpurea	Fabaceae	7	4	5	1.4	80.0	1.8	11.9	12.5	24.4	NE
13	Onnakodi	Ipomoea staphylina	Convolvulaceae	9	5	5	1.8	100.0	1.8	15.3	15.6	30.9	NE
14	Korai	Cyperus rotundus	Cyperaceae	10	5	5	2.0	100.0	2.0	16.9	15.6	32.6	NE
15	Nerunji	Tribulus terrestris	Zygophyllales	7	4	5	1.4	80.0	1.8	11.9	12.5	24.4	NE
16	Nayuruvi	Achyranthes aspera	Amaranthaceae	6	3	5	1.2	60.0	2.0	10.2	9.4	19.5	NE
17	Communist pacha	Chromolaena odorata	Asteraceae	9	4	5	1.8	80.0	2.3	15.3	12.5	27.8	NE

S. No	Local name	Scientific name	No. of Species	Pi	In (Pi)	Pi x In (Pi)			
Trees									
1	Karuvealan	Prosopis juliflora	4	0.50	-0.69	-0.35			
2	Unjai maram	Albizia amara	9	0.13	-2.08	-0.26			
3	Vetpalai maram	Wrightia tinctoria	3	0.38	-0.98	-0.37			
		Shrubs							
1	Avaram chadi	Senna auriculata	4	0.21	-1.56	-0.33			
2	Earuku	Calotropis gigantea	3	0.16	-1.85	-0.29			
3	Unichadi	Landana camera	5	0.26	-1.34	-0.35			
4	Surai mullui	Ziziphus oenopolia	1	0.05	-2.94	-0.15			
5	Sapathikalli	Cereus pterogonus	4	0.21	-1.56	-0.33			
6	Karaimullu	Canthium coromandelicum	2	0.11	-2.25	-0.24			
		Herbs /climb	ber						
11	Perandai	Cissus quadrangularis	3	0.06	-2.81	-0.17			
12	Thathapondu	Tridax procumbens	8	0.16	-1.83	-0.29			
13	Kolunji chadi	Tephrosia purpurea	7	0.14	-1.97	-0.28			
14	Onnakodi	Ipomoea staphylina	9	0.18	-1.71	-0.31			
15	Korai	Cyperus rotundus	10	0.20	-1.61	-0.32			
16	Nerunji	Tribulus terrestris	7	0.14	-1.97	-0.28			
17	Nayuruv	Achyranthes aspera	6	0.12	-2.12	-0.25			

Table 3.22 Calculation of Species Diversity mine lease area

Table 3.23 Species Richness (Index) in mine lease area

Details	Н	H max	Evenness	Species Richness		
Tree	0.97	1.10	0.89	0.96		
Shrubs	1.69	1.79	0.94	1.70		
Herbs	1.90	1.95	0.98	1.53		

Table 3.24 Flora in 300-meter Radius

S. No	Local Name	Scientific name	Family name	Total No. of species	Total of Quadrants with species	Total No. of Quadrants	Density	Frequency (%)	Abundance	Relative Density	Relative Frequency	ΙΛΙ	IUCN Conservation Status
				Tre	e								
1	Nuna maram	Morinda citrifolia	Rubiaceae	5	3	5	1.0	60.0	1.7	10.6	8.3	19.0	Not Listed
2	Vembu	Azadirachtaindica	Meliaceae	6	4	5	1.2	80.0	1.5	12.8	11.1	23.9	Not Listed
3	Echamaram	Phoenix dactylifera L	Arecaceae	3	3	5	0.6	60.0	1.0	6.4	8.3	14.7	Not Listed
4	Velikathan maram	Prosopis juliflora	Fabaceae	2	2	5	0.4	40.0	1.0	4.3	5.6	9.8	Not Listed
5	Pongam oiltree	Pongamia pin nata	Fabaceae	3	2	5	0.6	40.0	1.5	6.4	5.6	11.9	Not Listed
6	Panai maram	Borassus flabellifer	Arecaceae	3	3	5	0.6	60.0	1.0	6.4	8.3	14.7	Not Listed
7	Unjai maram	Albizia amara	Fabaceae	5	4	5	1.0	80.0	1.3	10.6	11.1	21.7	Not Listed
8	Theannai maram	Cocos nucifera	Arecaceae	6	5	5	1.2	100.0	1.2	12.8	13.9	26.7	Not Listed
9	Manga maram	Mangifera indica	Anacardiaceae	9	5	5	1.8	100.0	1.8	19.1	13.9	33.0	Not Listed
10	Teak maram	Tectona grandis	Verbenaceae	3	3	5	0.6	60.0	1.0	6.4	8.3	14.7	Not Listed
11	Puliyamaram	Tamarindus indica	Legumes	2	2	5	0.4	40.0	1.0	4.3	5.6	9.8	Not Listed
				Shru	bs								
1	Unichedi	Lantana camara	Verbenaceae	12	7	10	1.2	70.0	1.7	22.6	18.9	41.6	Not Listed
2	Sundaika	Solanum torvum	Solanaceae	7	5	10	0.7	50.0	1.4	13.2	13.5	26.7	Not Listed
3	Erukku	Calotropis gigantea	apocynaceae	10	6	10	1.0	60.0	1.7	18.9	16.2	35.1	Not Listed
4	Avarai	Senna auriculata	Fabaceae	4	4	10	0.4	40.0	1.0	7.5	10.8	18.4	Not Listed
5	Sappathikalli	Cereus pterogonus	Cactus	9	7	10	0.9	70.0	1.3	17.0	18.9	35.9	Not Listed
6	Kattamanaku	Jatropha gossypiifolia L	Euphorbiaceae	8	5	10	0.8	50.0	1.6	15.1	13.5	28.6	Not Listed

66 | Page

7	Karunochi	Vitex negundo	Lamiaceae	3	3	10	0.3	30.0	1.0	5.7	8.1	13.8	Not Listed
			Herbs,	Climb	ers & G	frass							
1	Thumbai	Leucas aspera	Lamiaceae	11	8	10	1.1	80.0	1.4	8.7	7.5	16.2	Not Listed
2	Kantang kathrikai	Solanum virginianum	Solanaceae	7	6	10	0.7	60.0	1.2	5.6	5.6	11.2	Not Listed
3	Arugampul	Cynodon dactylon	Poaceae	6	5	10	0.6	50.0	1.2	4.8	4.7	9.4	Not Listed
4	Poolai poondu	Aerva lanata	Amaranthaceae	7	7	10	0.7	70.0	1.0	5.6	6.5	12.1	Not Listed
5	Korai	Cyperus rotundus	Cyperaceae	12	8	10	1.2	80.0	1.5	9.5	7.5	17.0	Not Listed
6	Nerunji	Tribulus terrestris	Zygophyllales	8	6	10	0.8	60.0	1.3	6.3	5.6	12.0	Not Listed
7	Nayuruvi	Achyranthes aspera	Amaranthaceae	9	7	10	0.9	70.0	1.3	7.1	6.5	13.7	Not Listed
8	Thottalchinungi	Mimosa pudica	Mimosaceae	8	8	10	0.8	80.0	1.0	6.3	7.5	13.8	Not Listed
9	Mulli	Solanum violaceum Ortega	Solanaceae	5	4	10	0.5	40.0	1.3	4.0	3.7	7.7	Not Listed
10	Kombumul	Acanthospermum hispidum	Asteraceae	8	7	10	0.8	70.0	1.1	6.3	6.5	12.9	Not Listed
11	Ponnangani	Alternanthera pungens	Amaranthaceae	6	5	10	0.6	50.0	1.2	4.8	4.7	9.4	Not Listed
12	wild thulasi	Hyptis suaveolens (L.)	Lamiaceae	4	3	10	0.4	30.0	1.3	3.2	2.8	6.0	Not Listed
13	Gopuram Tangi	Andrographis echioides	Acanthaceae	7	6	10	0.7	60.0	1.2	5.6	5.6	11.2	Not Listed
14	Amman Paccharisi	Euphorbia hirta	Euphorbiaceae	2	2	10	0.2	20.0	1.0	1.6	1.9	3.5	Not Listed
15	Paca poondu	Pavonia gallaensis	Malvaceae	4	3	10	0.4	30.0	1.3	3.2	2.8	6.0	Not Listed
16	Perandai	Cissus quadrangularis	Vitaceae	5	5	10	0.5	50.0	1.0	4.0	4.7	8.6	Not Listed
17	Vishnukrandi	Evolvulus alsinoides	Convolvulaceae	7	7	10	0.7	70.0	1.0	5.6	6.5	12.1	Not Listed
18	Musumusukkai	Mukia maderaspatana	Cucurbitaceae	2	2	10	0.2	20.0	1.0	1.6	1.9	3.5	Not Listed
19	Sirupunaikkali	Passiflora foetida	Passifloraceae	3	3	10	0.3	30.0	1.0	2.4	2.8	5.2	Not Listed
20	Nagathali	Opuntia dillenii	Cactaceae	3	3	10	0.3	30.0	1.0	2.4	2.8	5.2	Not Listed
21	Agave	Agave weberi	Asparagaceae	2	2	10	0.2	20.0	1.0	1.6	1.9	3.5	Not Listed

S. No	Common name	Scientific name	No. of Species	Pi	In (Pi)	Pi x In (Pi)
		Trees	L			()
1	Nuna maram	Morinda citrifolia	5	0.11	-2.24	-0.24
2	Vembu	Azadirachtaindica	6	0.13	-2.06	-0.26
3	Echamaram	Phoenix dactylifera L	3	0.06	-2.75	-0.18
4	Velikathan maram	Prosopis juliflora	2	0.04	-3.16	-0.13
5	Pongam oiltree	Pongamia pin nata	3	0.06	-2.75	-0.18
6	Panai maram	Borassus flabellifer	3	0.06	-2.75	-0.18
7	Unjai maram	Albizia amara	5	0.11	-2.24	-0.24
8	Theannai maram	Cocos nucifera	6	0.13	-2.06	-0.26
9	Manga maram	Mangifera indica	9	0.19	-1.65	-0.32
10	Teak maram	Tectona grandis	3	0.06	-2.75	-0.18
11	Puliyamaram	Tamarindus indica	2	0.04	-3.16	-0.13
		H (Shannon Diversity Index	x) = 2.29			
	Γ	Shrubs	I			
1	Unichedi	Lantana camara	12	0.23	-1.49	-0.34
2	Sundaika	Solanum torvum	7	0.13	-2.02	-0.27
3	Erukku	Calotropis gigantea	10	0.19	-1.67	-0.31
4	Avarai	Senna auriculata	4	0.08	-2.58	-0.20
5	Sappathikalli	Cereus pterogonus	9	0.17	-1.77	-0.30
6	Kattamanaku	Jatropha gossypiifolia L	8	0.15	-1.89	-0.29
7	Karunochi	Vitex negundo	3	0.06	-2.87	-0.16
		H (Shannon Diversity Index	x) = 1.86			
	Γ	HERBS	1			
1	Thumbai	Leucas aspera	11	0.09	-2.44	-0.21
2	Kantang kathrikai	Solanum virginianum	7	0.06	-2.89	-0.16
3	Arugampul	Cynodon dactylon	6	0.05	-3.04	-0.14
4	Poolai poondu	Aerva lanata	7	0.06	-2.89	-0.16
5	Korai	Cyperus rotundus	12	0.10	-2.35	-0.22
6	Nerunji	Tribulus terrestris	8	0.06	-2.76	-0.18
7	Nayuruv	Achyranthes aspera	9	0.07	-2.64	-0.19
8	Thottalchinungi	Mimosa pudica	8	0.06	-2.76	-0.18
9	Mulli	Solanum violaceum Ortega	5	0.04	-3.23	-0.13
10	Kombumul	Acanthospermum hispidum	8	0.06	-2.76	-0.18
	Ponnangani	Alternanthera pungens	6	0.05	-3.04	-0.14
12	wild thulasi	Hyptis suaveolens (L.)	4	0.03	-3.45	-0.11
13	Gopuram Tangi	Andrographis echioides		0.06	-2.89	-0.16
14	Amman Paccharisi	Euphorbia hirta	2	0.02	-4.14	-0.07
15	Paca poondu	Pavonia gallaensis	4	0.03	-3.45	-0.11
16	Perandai	Cissus quadrangularis	5	0.04	-3.23	-0.13
17	Vishnukrandi	Evolvulus alsinoides		0.06	-2.89	-0.16
18	Musumusukkai	Mukia maderaspatana	2	0.02	-4.14	-0.07
19	Sırupunaıkkalı	Passiflora foetida	3	0.02	-3.74	-0.09
20	Nagathali	Opuntia dillenii	3	0.02	-3.74	-0.09
21	Agave	Agave weberi	2	0.02	-4.14	-0.07
		H (Shannon Diversity Index	() = 2 .93			

Table 3.25 Calculation of Species Diversity in 300 m Radius

Details	Н	H max	Evenness	Species Richness		
Tree	2.29	2.40	0.96	2.60		
Shrubs	1.86	1.95	0.96	1.51		
Herbs	2.93	3.04	0.96	4.14		

Table 3.26 Species Richness (Index) in 300 m Radius

Figure 3.26 Species Richness paten in 300m Radius

Table 3.27 Flora in Buffer Zone

				IUCN							
S. No	Local Name	Scientific name	Family name	Conservati							
				on Status							
Trees											
1	Vembu	Azadirachta indica	Meliaceae	Not Listed							
2	Pongam oiltree	Pongamia pinnata	Fabaceae	Not Listed							
3	Karuvelam	Acacia nilotica	Mimosaceae	Not Listed							
4	Thennai maram	Cocos nucifera	Arecaceae	Not Listed							
5	Arasanmaram	Ficus religiosa	Moraceae	Not Listed							
6	Puliyamaram	Tamarindus indica	Legumes	Not Listed							
7	Punnai	Calophyllu inophyllum	Calophyllaceae	Not Listed							
8	Athi	Ficus recemosa	Moraceae	Not Listed							
9	Vazhaimaram	Musa	Musaceae	Not Listed							
10	Kadukkai	Terminalia chebula	Combretaceae	Not Listed							
11	Nettilinkam	Polylathia longifolia	Annonaceae	Not Listed							
12	Amanakku	Ricinus communis	Euphorbiaceae	Not Listed							

13	Perumungil	Bambusa bambos	Poaceae	Not Listed
14	Karungali	Acacia sundra	Legumes	Not Listed
15	Sapota	Manilkara zapota	Sapotaceae	Not Listed
16	Eucalyptus	Eucalyptus globules	Myrtaceae	Not Listed
17	Navalmaram	Sygygium cumini	Myrtaceae	Not Listed
18	Ezhumuchaipalam	Citrus lemon	Rutaceae	Not Listed
19	Alamaram	Ficus benghalensis	Moraceae	Not Listed
20	Panai maram	Borassus flabellifer	Arecaceae	Not Listed
21	Manga	Mangifera indica	Anacardiaceae	Not Listed
22	Thekku	Tectona grandis	Verbenaceae	Not Listed
23	Nelli	Emblica officinalis	Phyllanthaceae	Not Listed
24	Nettilinkam	Polylathia longifolia	Annonaceae	Not Listed
25	Karuvelam maram	Vachellia nilotica	Fabaceae	Not Listed
26	Palamaram	Artocarpus heterophyllus	Moraceae	Not Listed
27	Vadanarayani	Delonix elata	Fabaceae	Not Listed
28	Marudaani	Lawsonia inermis	Lythraceae	Not Listed
29	Manja kadambai	Adina cordifolia	Rubiaceae	Not Listed
30	Pappali maram	Carica papaya L	Caricaceae	Not Listed
31	Nochi	Vitex negundo	Verbenaceae	Not Listed
32	Vilvam	Aegle marmelos	Rutaceae	Not Listed
33	Nuna maram	Morinda citrifolia	Rubiaceae	Not Listed
34	Коууа	Psidium guajava	Myrtaceae	Not Listed
35	Seethapazham	Annona reticulata	Annonaceae	Not Listed
36	Velipparuthi	Murraya koenigii	Asclepiadaceae	Not Listed
37	Moonghil	Bambusa bambo	Poaceae	Not Listed
		Shrubs		
1	Avarai	Senna auriculata	Fabaceae	Not Listed
2	Sundaika	Solanum torvum	Solanaceae	Not Listed
3	Arali	Nerium indicum	Apocynaceae	Not Listed
4	Idlipoo	xoracoc cinea	Rubiaceae	Not Listed
5	Neermulli	Hydrophila auriculata	Acanthaceae	Not Listed
6	Icham	Phoenix pusilla	Arecaceae	Not Listed
7	Chaturakalli	Euphorbia antiquorum	Euphorbiaceae	Not Listed
8	Kattamanakku	Jatropha curcas	Euphorbiaceae	Not Listed
9	Thuthi	Abutilon indicum	Meliaceae	Not Listed
10	Chemparuthi	Hibiscu rosa-sinensis	Malvaceae	Not Listed
11	Kundumani	Abrus precatorius	Fabaceae	Not Listed
12	Erukku	Calotropis gigantea	Apocynaceae	Not Listed
13	Thottalchinungi	Mimosa pudica	Mimosaceae	Not Listed
	Her	bs, Climber, Creeper, Grass &	c Cactus	-

1	Nayuruvi	Achyranthes aspera	Amaranthaceae	Not Listed
2	Vetukaayapoondu	Tridax procumbens	Asteraceae	Not Listed
3	Kaattu piral	Hibiscus hispidissimus	Malvaceae	Not Listed
4	Kuppaimeni	Acalypha indica	Euphorbiaceae	Not Listed
5	Karisilanganni	Eclipta prostata	Asteraceae	Not Listed
6	Korai	Cyperus rotundus	Cyperaceae	Not Listed
7	Kumattikkirai	Allmania nodiflora	Amaranthaceae	Not Listed
8	Kunnakora	Cyperus compressus	Cyperaceae	Not Listed
9	Keelaneeli	Phyllanthus niruri	Phyllanthaceae	Not Listed
10	Kanamvazha	Commelina benghalensis	Commelinaceae	Not Listed
11	Thumbai	Leucas aspera	Lamiaceae	Not Listed
12	Parttiniyam	Parthenium	Asteraceae	Not Listed
13	Thoiya keerai	Digeria muricata	Amarantheceae	Not Listed
14	Pulliyari	Oxalis corniculata	Oxalidaceae	Not Listed
15	Mukurattai	Boerhavia diffusa	Nyctaginaceae	Not Listed
16	Kaduku	Brassica juncea	Brassaceae	Not Listed
17	Thulasi	Ocimum tenuiflorum	Lamiaceae	Not Listed
18	Arugampul	Cynodon dactylon Poaceae		Not Listed
19	Manjal	Curcuma longa Zingiberaceae		Not Listed
20	Manathakkali	Solanumnigrum	Solanaceae	Not Listed
21	Kanamvazha	Commelina benghalensis	Commelinaceae	Not Listed
22	Nai kadugu	Celome viscosa	Capparidaceae	Not Listed
23	Koraikkilangu	Cyperus articulates	Cyperaceae	Not Listed
24	Karisilanganni	Eclipta prostata	Asteraceae	Not Listed
25	Korai	Cyperus rotundus	Cyperaceae	Not Listed
26	Kunnakora	Cyperus compressus	Cyperaceae	Not Listed
27	Mukurattai	Boerhavia diffusa	Nyctaginaceae	Not Listed
28	Kovai	Coccinia grandis	Cucurbitaceae	Not Listed
29	Perandai	Cissus quadrangularis	Vitaceae	Not Listed
30	Mudakkotan	Cardiospermum helicacabum	Sapindaceae	Not Listed
31	Sangupoo	Clitoriaternatia	Fabaceae	Not Listed
32	Malli	Jasminum augustifolium	Oleaceae	Not Listed
33	Vallikeerai	Ipomoea aquatica	Convolvulaceae	Not Listed
34	Siru puladi	Desmodium triflorum	Fabaceae	Not Listed
35	Sithrapaalavi	Euphorbia prostrata	Euphorbiaceae	Not Listed
36	mookuthi poondu	Wedelia trilobata	Asteraceae	Not Listed
37	Pullu	Eragrostis ferruginea	Poaceae	Not Listed
38	Chevvarakupul	Chloris barbata	Amaranthaceae	Not Listed
39	Nagathali	Opuntia dillenii	Nagathali	Not Listed

Forest Vegetation

There Are No Biosphere Reserves or Wildlife Sanctuary or National Parks or Important Bird Areas (Ibas), Kariyanapalli II R.F. Located On 60m South, Veppanapalli Bit II - R.F 2.92km NE, Kumbalam I R.F 3.23km NW. The *Azadirachta Indica, Vachellia Leucophloea, Albizia Amara, Zizyphus Oenoplia, Pterolobium Hexapetalum, Lannea Coromandelica, Melia Azedarach, Mundulea Sericea, Pedalium Murex, Pergularia Daemia, Barleria Prionitis, Lantana Camara, Agave Weberi*. These Types of Plants Are Abundant in The Reserve Forest. From The Study, It Is Confirmed That the Area Under Study (Mine Lease Area and the 10 Km Buffer Zone) Is Not Ecologically Sensitive. The Reserve Forest Details Mention in Table 3.42 **3.5.2 Fauna**

The faunal survey was carried out for Mammals, Birds, Reptiles, Amphibians and Butterflies. There are no rare, endangered, threatened (RET) and endemic species present in Mine lease area.

S. No.	Taxa	Method of Sampling	References
1	Insects	Pandom walk Opportunistic observations	Pollard (1977);
	mseets	Kandom wark, Opportunistic observations	Kunte (2000)
2	Reptiles	Visual encounter survey (Direct Search)	Daniel J.C (2002)
3	Amphibians	Visual encounter survey (Direct Search)	
4	Mammals	Tracks and Signs	Menon V (2014)
5	Avian	Random walk, Opportunistic observations.	Grimmett R (2011);
			Ali S (1941)

 Table 3.28 Methodology applied during survey of fauna

Fauna in Core Zone

A total of 26 varieties of species were observed in the Core zone (Table.3.28). Among them are 8 Insects, 5 Reptiles, 4 Mammals and 9 Avian. A total of 26 species belonging to 20 families were recorded from the core area. The study shows that number of species decreases towards the mining area. This might be due the lack of vegetation. None of these species in the core zone are threatened or endemic. The survey was conducted to identify species listed in IUCN Red List. According to the field data, any species are not of Schedule I and nine species are of schedule IV. There are no critically endangered, endangered, vulnerable and endemic species were observed. Details of fauna in core zone with the scientific name were mentioned in Table 3.29.

Fauna in Buffer Zone

A total of 50 species belonging to 36 families have been recorded from the buffer zone area (Table.3.30). Based on habitat classification the majority of species were Birds 15 (30%), followed by Insects 14 (28%), Reptiles 13 (26%), Mammals 5 (10%) and Amphibians 3 (6%). There are 7 Schedule II species and 27 species are under schedule IV according to Indian wild life Act 1972. A total fifteen species of bird were sighted in the study area. There are no critically endangered, endangered, vulnerable and endemic species were observed.

S. No	Common name/English	Family Name Scientific Name		Schedule list wildlife protection act	IUCN Red List
	Iname			1972	data
			Reptiles		
1	Garden lizard	Agamidae	Calotes versicolor	NE	NE
2	Common house gecko	Gekkonidae	Hemidactylus frenatus	NE	NE
3	Rat snake	Colubridae	Ptyas mucosa	Sch II (Part II)	LC
4	Common krait	Elapid snakes	Bungarus caeruleus	Schedule IV	LC
5	Fan-Throated Lizard	Agamidae	Sitanaponticeriana	NL	LC
			Insects		
1	Plain Tiger	Nymphalidae	Dananuschrysippus	NL	NE
2	Tawny coster	Nymphalidae	Danaus chrysippus	Schedule IV	LC
3	Red-veined	Libellulidae	Sympetrum	NE	LC
	darter		fonscolombii		
4	Grasshopper	Acrididae	Hieroglyphus sp	NL	LC
5	Termite	Blattodea	Hamitermes silvestri	NE	LC
6	Blue tiger	Nymphalidae	Tirumala limniace	Schedule IV	LC
7	Striped tiger	Nymphalidae	Danaus plexippus	Schedule IV	LC
8	Ant	Formicidae	Camponotus vicinus	NL	NL
	1	Γ	Mammals	ſ	
1	Indian Field Mouse	Muridae	Mus booduga	Schedule IV	LC
2	Asian Small Mongoose	Herpestidae	Herpestes javanicus	Schedule II	LC
3	Rat	Murids	Rattusrattus	Schedule IV	LC
4	Rat snake	Colubridae	Ptyas mucosa	Sch II (Part II)	LC
			Avian		
1	Common myna	Sturnidae	Acridotheres tristis	NE	LC
2	Black drongo	Dicruridae	Dicrurus macrocercus	NE	LC
3	Koel	Cucalidae	Eudynamys scolopaceus	Schedule IV	LC
4	Common cuckoo	Cucalidae	Cuculus canorus	NE	LC

 Table 3.29 Fauna in Core Zone

5	House crow	Corvidae	Corvus splendens	NE	LC			
6	Crow Pheasant	Cucalidae	Centropus sinensis	Schedule IV	LC			
7	Rose-ringed	Psittaculidae	Psittacula krameri	Schedule IV	LC			
	parakeet							
8	Asian green	Meropidae	Meropsorientalis	NL	LC			
	bee-eater							
9	Cattle egret	Ardeidae	Bubulcus ibis	NE	LC			

*NE- Not evaluated; LC- Least Concern, NT –Near Threatened, T-Threatened

 Table 3.30 Fauna in Buffer Zone

S. No	Common name/ English Name	Family Name	Scientific Name	Schedule list wildlife Protection act 1972	IUCN Red List data
			Insects		
1	Honey bee	Apidae	Apis cerana	Schedule IV	LC
2	Blue tiger	Nymphalidae	Tirumala limniace	Schedule IV	LC
3	Common Indian crow	Nymphalidae	Euploea core	Schedule IV	LC
4	Tawny coster	Nymphalidae	Danaus chrysippus	Schedule IV	LC
5	Grasshopper	Acrididae	Hieroglyphus sp	NL	LC
6	Jewel beetle	Buprestidae	Eurythyrea austriaca	Schedule IV	NA
7	Red-veined	Libellulidae	Sympetrum	NL	LC
0	darter	Ferreisides	Jonscolombii	NU	NI
8	Ant	Formicidae	Camponotus vicinus	NL	
9	Praying mantis	Mantidae	mantis religiosa	NL	NL
10	Dragonfly	Gomphidae	Ceratogomphus pictus	Schedule IV	LC
11	Milkweed butterfly	Nymphalidae	Danainae	NL	LC
12	Striped tiger	Nymphalidae	Danaus plexippus	Schedule IV	LC
13	Lesser grass blue	Lycaenidae	Zizina otis indica	Schedule IV	LC
14	Common Tiger	Nymphalidae	Danaus genutia	Schedule IV	LC
			Reptiles		
1	Garden lizard	Agamidae	Calotes versicolor	NL	LC
2	Chameleon	Chamaeleonidae	Chameleon	Schedule II	LC
			zeylanicus		
3	Fan-Throated Lizard	Agamidae	Sitanaponticeriana	NL	LC
4	Common house gecko	Gekkonidae	Hemidactylus frenatus	NL	LC

5	Rat snake	Colubridae	Ptyas mucosa	Sch II (Part	LC
				II)	
6	Olive keel back	Natricidae	Atretium schistosum	Sch II (Part	LC
	water snake			II)	
7	Whip Snake	Elapidae	Dryphis nasutus	Sch II (Part	LC
				II)	
8	Common krait	Elapid snakes	Bungarus caeruleus	Schedule IV	LC
9	Indian wall	Gekkonidae	Hemidactylus	Schedule IV	NL
	lizard		flaviviridis		
10	Saw scaled	Elapidae	Echis carinatus	Sch II (Part	LC
	viper			II)	
11	Brahminy	Scincidae	Eutropis carinata	NL	LC
	skink				
12	Russell's viper	Viperidae	Vipera russseli	Sch II (Part	LC
				II)	
13	Common skink	Scincidae	Mabuya carinatus	NL	LC
]	Mammals		
1	Indian palm	Sciuridae	Funambulus	Schedule IV	LC
	squirrel		palmarum		
2	Indian Field	Muridae	Mus booduga	Schedule IV	LC
	Mouse				
3	Indian hare	Leporidae	Lepus nigricollis	Schedule IV	LC
4	Asian Small	Herpestidae	Herpestes javanicus	Schedule	LC
	Mongoose			(Part II)	
5	Brown rat	Muridae	Rattus norwegicus	Schedule IV	LC
			Aves		
1	Koel	Cucalidae	Eudynamys	Schedule IV	LC
2	Cattle egret	Ardeidae	Bubulcus ibis	NL	LC
3	Common myna	Sturnidae	Acridotheres tristis	NL	LC
4	House crow	Corvidae	Corvussplendens	NL	LC
5	Asian green	Meropidae	Meropsorientalis	NL	LC
	bee-eater				
6	Red-vented	Pycnonotidae	Pycnonotuscafer	Schedule IV	LC
	Bulbul				
7	Rose-ringed	Psittaculidae	Psittacula krameri	Schedule IV	LC
	parkeet				
8	Shikra	Accipitridae	Accipiter badius	NL	LC
9	Common quail	Phasianidae	Coturnix coturnix	Schedule IV	LC
10	Black drongo	Dicruridae	Dicrurus	Schedule IV	LC
			macrocercus		
11	Two-tailed	Dicruridae	Passer domesticus	Schedule IV	LC
	Sparrow				

12	Grey Francolin	Phasianidae	Francolinus	Schedule IV	LC	
			pondicerianus			
13	Common Quail	Phasianidae	Coturnix coturnix	Schedule IV	LC	
14	White-breasted	Rallidae	Amaurornis	NL	LC	
	waterhen		phoenicurus			
15	Common Coot	Common Coot Rallidae		Fulica atraSchedule IV		
		A	mphibians			
1	Indian	Dicroglossidae	Sphaerotheca	Schedule IV	LC	
	Burrowing frog		breviceps			
2	Pond Frog	Ranidae	Rana hexadactyla	Schedule IV	LC	
3	Tiger Frog Chordata		Hoplobatrachus Schedule IV		LC	
			tigerinus (Rana			
			tigerina)			

*NL-Not listed, LC-Least concern, NT-Near threatened.

Aquatic Vegetation

The field survey for assessing the aquatic vegetation was also undertaken during the study period. Fish is commonly found in all types of natural water bodies and very common source of food in Easterner South India. The local fishermen were enquired and also the secondary resources were reviewed to collect information on the fishes found in the study area. Few common species are; *Catla (Catla catla), Channa striata, Oreochromis niloticus.*

 Table 3.31 Aquatic Fauna and Flora

Sl. No	Common Name	Scientific name	Family Name	IUCN Red List of Threatened Species			
		Flora					
1	Water hyacinth	Eichornia crassipes	Pontederiaceae	NA			
2	Blue waterlily	Nymphaea nouchali	Nymphaeaceae	LC			
3	Cross Grass	Carex cruciata	Cyperaceae	NA			
4	Scutch grass	Cynodon dactylon	Poaceae	LC			
Fauna							
5	Thilopia	Oreochromis niloticus	Cichlidae	LC			
6	Catla	Catla catla	Cyprinidae	LC			
7	Koravi meen	Channa striata	Channidae	LC			
8	Roghu	Labeo rohita	Cyprinidae	LC			

*LC- Least Concern, NA-Not yet assessed

Phytoplankton's:

Microcystis, Nitzschia, Oscillatoria, Navicula and Pediastrum sps.

Zooplanktons:

These consist of microscopic organisms from groups Protozoa, Rotifers, Cladocera and Copepoda etc. Some common species of zooplanktons are; *Deflandre, Arcella vulgaris, Centropyxis spinosa Arcella discoides, Arcella hemispherica, Centropyxis aculeate, Trigonopyxis arcula, Brachionus calyciflorus, Lecane curvicornis, Brachionus angularis, Polyarthra vulgaris, Filinia longiseta.*

Food chain

The food chain in aquatic ecosystems often begins with the algae or phytoplankton producers, and then the zooplankton that feed on them. This type of food chain is found in nearby lakes and rivers with phytoplankton, zooplankton, fish Artiola gray and humans.

Ex: Phytoplankton \rightarrow Zooplankton \rightarrow small fish \rightarrow large fish \rightarrow Human

3.5.3 Agriculture & Horticulture in Krishnagiri district:

Major horticulture crops cultivated in this district are fruits crops like mango, banana, sapota aonla and guava, vegetables like brinjal, bhendi, capsicum, onion and chillies, spices like turmeric and pepper, and flower crops like rose, gerbera and carnations.

Major Agricultural Crops

Major horticulture crops cultivated in this district are vegetables crops like tomato, brinjal, chillies, onion and turmeric. Details of major field crops and Agricultural in 1km radius is given in Table. 3.32.

S. No	Major crops	Scientific name	Families
1	Sorghum	Sorghum bicolor	Poaceae
2	Gingelly	Sesamum indicum	Pedaliaceae
3	Groundnut	Arachis hypogaea	Legumes
5	Millets	Panicum miliaceum L	Poaceae
6	Sesame	Sesamum indicum	Pedaliaceae
7	Cotton	Gossypium herbaceum	Malvaceae

 Table 3.32 Major Crops in 1km radius

Major Horticulture Crops

Horticulture includes cultivation of fruits, vegetables, nuts, seeds, herbs, sprouts, mushrooms, algae, flowers, seaweeds and non-food crops such as grass and ornamental trees

and plants. It also includes plant conservation, landscape restoration, landscape and garden design.

Horticulture

Major horticulture crops cultivated in Krishnagiri district are fruit crops like mango, banana, Sapota and guava, vegetables like tomato, brinjal, Veandai, chillies, onion and tapioca, spices like turmeric. Details of major field crops and horticulture cultivation in 1km radius is given in Table 3.33.

S. No	Common Name	Scientific Name	Family					
	Major Horticultural Crops							
1	Guava	Psidium guajava	Myrtaceae					
2	Sapota	Manilkara zapota	Sapotaceae					
3	Lemon	Citrus × limon	Rutaceae					
4	Papaya	Carica papaya	Caricaceae					
5	mango	Mangifera indica	Anacardiaceae					
6	banana	Musa $ imes$ paradisiaca	Musaceae					
	Vegetables							
7	Onion	Allium cepa	Amaryllidaceae					
8	Tapioca	Manihot esculenta	Spurges					
9	Brinjal	Solanum melongena	Nightshade					
10	Tomato	Solanum lycopersicum	Nightshade					
11	Bottle Gourd	Lagenaria siceraria	Cucurbits					
12	Veandai kai	Abelmoschus esculentus	Mallows					
13	Moringa	Moringa oleifera	Moringaceae					

Table 3.33 Major Field Crops & Horticulture cultivation in 1km radius.

3.6 SOCIO ECONOMICS ENVIRONMENT

An essential part of environmental study is socio-economic environment incorporating various facts related to socio-economic conditions in the area, which deals with the total environment. Socio economic study includes demographic structure of the area, provision of basic amenities viz., housing, education, health and medical services, occupation, water supply, sanitation, communication, transportation, prevailing diseases pattern as well as feature of aesthetic significance such as temples, historical monuments etc. at the baseline level. This would help in visualizing and predicting the possible impact depending upon the nature and magnitude of the project. Socio-economic study of an area provides a good opportunity to assess the socio-economic condition and possibly makes a change in living and social standards of the particular area benefitted due to the project.

3.6.1 Objectives of the Study

The main objectives of the study are as follows:

- To know the current socio-economic condition in the region to cover the sub sectors education, health, sanitation, and water & food security.
- ✤ To recommend practical strategic interventions in the sector.
- ✤ To help in providing better living standards.
- To understand skill sets and plan for employment opportunities which shall be created.

3.6.2 Scope of Work

- \clubsuit To study the socio-economic environment of the area from the secondary sources
- Data collection & Analysis
- Prediction of project impact
- Mitigation Measures

3.6.3 Socio-Economic Status of Study area

The study area covers 30 villages in which the proposed project site is located, the summary of population facts for the village is exclusively provided in Table 3.34 and for other 8 villages in Tables 3.35 - 3.37.

Kondappanayanapalli						
Number of Households	188					
Population	794					
Male Population	409					
Female Population	385					
Children Population	94					
Sex-ratio	1058					
Literacy	58.57%					
Male Literacy	68.18%					
Female Literacy	48.85%					
Scheduled Tribes (ST) %	0					
Scheduled Caste (SC) %	0					
Total Workers	427					
Main Worker	408					
Marginal Worker	19					

Table 3.34 Kondappanayanapalli Village Population Facts

Village	No of Households	Total Population Person	Total Population Male	Total Population Female	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
Mallasandiram	116	528	286	242	356	217	139	172	69	103
Tankadikuppam	207	1023	517	506	484	271	213	539	246	293
Devarakundani	300	1344	692	652	681	387	294	663	305	358
Edayarapalli	364	1564	790	774	744	428	316	820	362	458
Kathiripalli	147	576	293	283	326	209	117	250	84	166
Naduvanapalli	353	1508	764	744	739	428	311	769	336	433
Puram	74	316	158	158	145	87	58	171	71	100
Appinayakkankottai	154	719	368	351	391	242	149	328	126	202
Avalnatham	237	1021	500	521	464	266	198	557	234	323
Kondappanayanapalli	188	794	409	385	410	240	170	384	169	215
Verupasandiram	226	866	445	421	418	255	163	448	190	258
Dasiripalli	287	1207	627	580	696	408	288	511	219	292
Madepalli	251	1018	496	522	681	379	302	337	117	220
Thattatharai	817	3642	1884	1758	2097	1168	929	1545	716	829
Chinnakothur	76	387	186	201	229	132	97	158	54	104
Chennasandiram	676	2755	1413	1342	1584	957	627	1171	456	715
Beemandapalli	327	1418	706	712	794	442	352	624	264	360
Gunthapalli	141	536	266	270	316	185	131	220	81	139
Lakkabathalapalli	125	495	261	234	294	185	109	201	76	125
Marachandiram	1517	6939	3535	3404	3818	2220	1598	3121	1315	1806
Ponnappa Gownapalli	532	2727	1385	1342	1594	889	705	1133	496	637
Mallasandiram	116	528	286	242	356	217	139	172	69	103

Table 3.35 Population and Literacy Data of Study Area

Kalingavaram	148	640	330	310	311	180	131	329	150	179
Basthalapalli	221	969	485	484	491	301	190	478	184	294
Mudipinayanapalayam	173	850	434	416	278	159	119	572	275	297
Beerepalli	176	789	392	397	458	259	199	331	133	198
Mallanakothur	0	0	0	0	0	0	0	0	0	0
Errandapalli	335	1528	788	740	864	493	371	664	295	369
Balagondarayanadurgam	127	547	285	262	298	184	114	249	101	148
Bikkanapalli	209	981	489	492	539	288	251	442	201	241

Table 3.36 Details on Educational Facilities, Water, and Drainage & Health Facilities

Village	Private Primary School (Numbers)	Govt Vocational Training School/ITI (Numbers)	Primary Health Centre (Numbers)	Tap Water Untreated	River/Canal	Is the Area Covered under Total Sanitation Campaign (TSC)?	Telephone (landlines)	Public Bus Service	Gravel (kutcha) Roads	Commercial Bank	Agricultural Credit Societies	Self - Help Group (SHG)	Nutritional Centres- Anganwadi Centre	Community Centre with/without TV	Power Supply for Domestic Use
Mallasandiram	0	0	0	1	2	1	1	1	1	2	2	1	1	1	1
Tankadikuppam	1	0	1	1	2	1	1	1	1	1	1	1	1	1	1
Devarakundani	0	0	0	1	2	2	2	2	1	2	2	2	2	2	1
Edayarapalli	0	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Kathiripalli	1	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Naduvanapalli	0	0	2	1	1	2	1	1	1	2	2	1	1	2	1
Puram	3	0	1	1	2	2	1	1	1	1	2	1	1	1	1
Appinayakkankottai	0	0	0	1	2	1	1	1	1	2	2	1	1	1	1
Avalnatham	1	0	1	1	2	1	1	1	1	1	1	1	1	1	1

Kondappanayanapalli	0	0	0	1	2	2	2	2	1	2	2	2	2	2	1
Verupasandiram	0	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Dasiripalli	1	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Madepalli	1	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Thattatharai	1	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Chinnakothur	1	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Chennasandiram	1	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Beemandapalli	0	0	0	1	2	2	2	2	1	2	2	2	2	2	1
Gunthapalli	0	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Lakkabathalapalli	1	0	0	1	2	1	1	1	1	1	2	2	2	2	1
Marachandiram	1	0	0	1	2	1	1	1	1	1	2	2	2	2	1
Ponnappa Gownapalli	1	0	0	1	2	1	1	1	1	1	2	2	2	2	1
Mallasandiram	1	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Kalingavaram	0	0	2	1	1	2	1	1	1	2	2	1	1	2	1
Basthalapalli	1	0	1	1	2	1	1	1	1	1	1	1	1	1	1
Mudipinayanapalayam	1	0	1	1	2	1	1	1	1	1	1	1	1	1	1
Beerepalli	1	0	0	1	2	1	1	1	1	1	2	2	2	2	1
Mallanakothur	1	0	0	1	2	1	1	0	1	0	1	1	2	1	0
Errandapalli	1	0	0	1	2	1	1	1	1	2	2	1	1	2	1
Balagondarayanadurgam	0	0	2	1	1	2	1	1	1	2	2	1	1	2	1
Bikkanapalli	1	0	0	1	2	1	1	0	0	1	2	2	1	1	0

Village	Total Worker Population Person	Total Worker Population Male	Total Worker Population Female	Main Working Population Person	Main Working Population Male	Main Working Population Female	Main Cultivator Population Person	Main Agricultural Labourers Population Person	Main Other Workers Population Person	Non-Working Population Person
Mallasandiram	330	188	142	313	179	134	200	71	42	198
Tankadikuppam	624	314	310	221	116	105	12	171	38	399
Devarakundani	849	443	406	412	225	187	17	382	13	495
Edayarapalli	893	477	416	651	347	304	372	223	48	671
Kathiripalli	306	153	153	169	91	78	98	55	15	270
Naduvanapalli	764	406	358	145	84	61	31	72	42	744
Puram	141	99	42	77	57	20	8	6	62	175
Appinayakkankottai	274	208	66	264	204	60	44	154	64	445
Avalnatham	499	286	213	497	285	212	336	131	30	522
Kondappanayanapalli	427	231	196	408	218	190	115	267	23	367
Verupasandiram	533	283	250	522	280	242	37	466	9	333

Table 3.37 Workers' Profile of Study Area

Dasiripalli	718	403	315	698	396	302	63	602	31	489
Madepalli	382	257	125	235	161	74	38	16	176	636
Thattatharai	1915	1142	773	1544	941	603	363	891	267	1727
Chinnakothur	180	111	69	178	109	69	33	122	22	207
Chennasandiram	1382	863	519	1342	841	501	689	316	333	1373
Beemandapalli	838	448	390	777	414	363	367	335	70	580
Gunthapalli	217	165	52	215	163	52	125	50	40	319
Lakkabathalapalli	266	143	123	151	134	17	78	19	52	229
Marachandiram	3307	2046	1261	2624	1692	932	849	414	1062	3632
Ponnappa Gownapalli	1428	791	637	1388	766	622	240	230	552	1299
Mallasandiram	330	188	142	313	179	134	200	71	42	198
Kalingavaram	293	156	137	237	132	105	24	185	26	347
Basthalapalli	531	296	235	528	295	233	120	367	32	438
Mudipinayanapalayam	481	256	225	474	254	220	366	68	39	369
Beerepalli	287	242	45	245	220	25	68	20	148	502
Mallanakothur	0	0	0	0	0	0	0	0	0	0
Errandapalli	645	432	213	542	387	155	67	166	302	883
Balagondarayanadurgam	239	147	92	222	143	79	78	75	69	308
Bikkanapalli	489	300	189	476	293	183	183	74	218	492

3.6.4 Recommendation and Suggestion

- Awareness program should be conducted to make the population aware of education and to get a better livelihood.
- Vocational training programme should be organized to make the people self employed, particularly for women and unemployed youth.
- On the basis of qualification and skills local community may be preferred. Long term and short-term employments should be generated.
- Health care centre and ambulance facility should be provided to the population to get easy access to medical facilities. Apart from that, as these areas are prone to various diseases a hospital with modern facilities should be opened on a priority basis in a central place to provide better health facilities to the villagers around the project.
- While developing an Action Plan, it is very important to identify the population who falls under the marginalized and vulnerable groups. So that special attention can be given to these groups with special provisions while making action plans.

3.6.5 Summary & Conclusion

The socio-economic study in the study area gives a clear picture of its population, average household size, literacy rate and sex ratio etc. It is also found that a part of population is suffering from a lack of permanent job to run their day-to-day life. Their expectation is to earn some income for their sustainability on a long-term basis.

The proposed project will aim to provide preferential employment to the local people there by improving the employment opportunity in the area and in turn the social standards will improve.

3.7 TRAFFIC DENSITY

The traffic survey conducted based on the transportation route of material, the Rough Stone and gravel is proposed to be transported mainly through Village Road and Krishnagiri - Hosur(NH-44) as shown in Table 3.38 and in Figure 3.27. Traffic density measurements were made continuously for 24 hours by visual observation and counting of vehicles under three categories, viz., Heavy motor vehicles, light motor vehicles and two/three wheelers. As traffic densities on the roads are high, two skilled persons were deployed simultaneously at each station. During each shift one person on either direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken. Direction for counting the traffic. At

Station Code	Road Name	Distance and Direction	Type of Road
TS1	Village Road	1.07 Km-E	Village Road
TS2	Krishnagiri - Hosur (NH-44)	7.20 Km-S	Krishnagiri - Hosur (NH-44)

Table 3.38 Traffic Survey Locations

Source: On-site monitoring by GTMS FAE & TM

 Table 3.39 Existing Traffic Volume

Station code	HMV		LMV		2/3 W	heelers	Total PCU
Station code	No	PCU	No	PCU	No	PCU	
TS1	30	90	35	35	80	40	165
TS2	50	150	40	40	98	49	239

Source: On-site monitoring by GTMS FAE & TM

* PCU conversion factor: HMV (Trucks and Bus) = 3, LMV (Car, Jeep and Auto) = 1 and 2/3 Wheelers = 0.5

Table 3.40 Rough Stone Transportation Requirement

Transportation of Rough and Gravel per day							
Capacity of trucksNo. of Trips per dayVolume in PCU							
15 tonnes 150 450							

Source: Approved Mining Plan

 Table 3.41 Summary of Traffic Volume

Route	Existing a traffic	Incremental	Total	Hourly Capacity in
	volume in PCU	traffic due to	traffic	PCU as per IRC –
	volume in FCO	the project	volume	1960guidelines
TS1	165	450	615	1200
TS2	239	450	689	1200

Source: On-site monitoring analysis summary by GTMS FAE & TM

Due to these projects the existing traffic volume will not exceed the traffic limit. As per the IRC 1960 this existing village road can handle 1,200 PCU in hour and Major district road can handle 1500 PCU in hour. Hence there will not be any conjunction due to this proposed transportation.

Figure 3.27 Traffic Density Map

3.8 SITE SPECIFIC FEATURES

There are no Wildlife Sanctuaries and National Park within 10 km radius. Therefore, there will be no need of acquisition/diversion of forest land. The details related to the environmentally sensitive areas around the proposed mine lease area i.e., 10 km radius and the nearby water bodies are given in the Table 3.42.

S. No.	Sensitive Ecological	Name	Areal Distance in km
5.110	Features		
1	National Park /	None	Nil within 10 km radius
1	Wild life Sanctuaries	None	Nil within 10 km radius
		Kariyanapalli II R.F	0.60m -South
		Veppanapalli Bit II - R.F	2.92km – NE
		Kumbalam I R.F	3.23km - NW
		Errandapalli R.F	4.01km – NW
		Veppanapalli Bit I	6.52km – NE
		Thekkalapalli R.F	7.12km -SW
		Naralapalli Extn	7.71km – East
		Theertham R.F	8.42km – N
		Naralapalli R.F	9.71km – East
2		Gangamadugu R.F	10.19km – N
		Veppanapalli Extn R.F	10.14km – N
	Reserve Forest	Shoolagiri R.F	10.98km – SW
		Maharajagadai R.F	12.68km- East
		Kodattur R.F	14.59km – NE
		Settipalli R.F	14.67km -West
		Gollapally R.F	17.84km – NW
		Gullu R.F	18.25km – NE
		Chinnaradoddi R.F	18.26km -NE
		Midethepalli R.F	19.75km -NE
3	Lakes/Reservoirs/ Dams/Streams/Rivers	Margandaiya nadhi	1.8km E

 Table 3.42 Details of Environmentally Sensitive Ecological Features in the Study Area

4	Tiger Reserve/Elephant Reserve/ Biosphere Reserve	None	Nil within 10 km radius
5	Critically Polluted Areas	None	Nil within 10 km radius
6	Mangroves	None	Nil within 10 km radius
7	Mountains/Hills	None	Nil within 10 km radius
8	Centrally Protected Archaeological Sites	None	Nil within 10 km radius
9	Industries/ Thermal Power Plants	None	Nil within 10 km radius
10	Defence Installation	None	Nil within 10 km radius

Source: Survey of India Toposheet

CHAPTER IV

ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 4.0 GENERAL

In order to maintain the environmental commensuration with the mining operation, it is essential to undertake studies on the existing environmental scenario and assess the impact on different environmental components. This would help in formulating suitable management plans sustainable resource extraction. This chapter discusses the anticipated impacts on soil, land, water, air, noise, biological, and socioeconomic environments.

4.1 LAND ENVIRONMENT

4.1.1 Anticipated Impact

- Permanent change on land use and land cover.
- Change in topography of the mine lease area.
- Problems to agricultural land and human habitations due to dust, and noise caused by movement of heavy vehicles
- Degradation of the aesthetic environment of the core zone due to quarrying
- Soil erosion and sediment deposition in the nearby agricultural fields during the rainy season
- Increase in agricultural productivity of land when mine water is discharged to the surrounding lands for irrigation

4.1.2 Common Mitigation Measures from Proposed Project

- Construction of garland drains all around the quarry pits and construction of check dam at strategic location in lower elevations to prevent erosion due to surface runoff during rainfall and also to collect the storm water for various uses within the proposed area.
- Green belt development along the boundary within safety zone. The small quantity of water stored in the mined-out pit will be used for greenbelt
- At conceptual stage, the land use pattern of the quarry will be changed into Greenbelt area and temporary reservoir.
- In terms of aesthetics, natural vegetation surrounding the quarry will be retained (such as in a buffer area i.e., 7.5 m safety barrier and other safety provided) so as to help minimize dust emissions.
- Proper fencing will be carried out at the conceptual stage, Security will be posted round the clock, to prevent inherent entry of the public and cattle.

4.2 SOIL ENVIRONMENT

4.2.1 Anticipated Impact on Soil Environment

Deterioration of soil quality in the surrounding area due to runoff from the project area

Decrease in the agricultural productivity of the surrounding land due to soil quality degradation

4.2.2 Common Mitigation Measures from proposed project

- Construction of garland drains, settling pits, and check dams to prevent runoff and siltation
- Run-off diversion Garland drains will be constructed around the project boundary to prevent surface flows from entering the quarry works areas and will be discharged into the settling tanks to reduce suspended sediment loads before runoff is discharged from the quarry site.
- Retain existing or re-plant the vegetation will be retained at the site wherever possible.
- Monitoring and maintenance Weekly monitoring and daily maintenance of erosion control systems so that they perform as specified specially during rainy season.

4.3 WATER ENVIRONMENT

4.3.1 Anticipated Impact

- Surface and ground water resources may be contaminated due to pit water discharge, domestic sewage, discharge of oil and grease bearing waste water from washing of vehicles and machineries, and washouts from surface exposure or working areas
- As the proposed project acquires 3.5 KLD of water from water vendors, it will not extract water by developing abstraction structures in the lease area. Therefore, the project will not have impact on depletion of aquifer beneath the lease area.

4.3.2 Common Mitigation Measures for the Proposed Project

- Rain water from mine pit will be treated in settling tanks before being used for dust suppression and tree plantation purposes
- Domestic sewage from site office will be discharged in septic tank and then directed to soak pits
- Water from the tipper wash-down facility and machinery maintenance yard will be passed through interceptor traps/oil separators prior to its reuse
- The garland drainage will be connected to settling tank and sediments will be trapped in the settling tanks and only clear water will be discharged to the natural drainage
- Periodic (every 6 month once) analysis of ground water quality of quarry pit water and ground water of nearby villages will be conducted
- Artificial recharge structures will be established in suitable locations as part of the rainwater harvesting management program

4.4 AIR ENVIRONMENT

4.4.1 Anticipated Impact from proposed project

- During mining at various stages of activities such as excavation, drilling and transportation of materials, particular matter (PM), gases such as sulphur dioxide, oxides of nitrogen from vehicular exhaust are the main air pollutants.
- Emissions of noxious gases due to incomplete detonation of explosive may sometimes pollute the air.
- The fugitive dust released from the mining operations may cause effect on the mine workers who are directly exposed to the fugitive dust.
- Simultaneously, the air-borne dust may travel to longer distances and settle in the villages located near the mine lease area.

4.4.2 Emission Estimation

Emission resulting from different mining activities is estimated using relevant empirical formulae developed by Chaulya et al.,2001. The equations used for SPM, SO₂, and NO_x emission estimation have been given in Table 4.1.

	Pollutant	Source	Empirical Equation	Parameters
		Туре		
Overall	SPM	Area	E= [u0.4a0.2{9.7+	u = Wind speed(m/s); p =
Mine			0.01p+b/(4+0.3b)}]	Mineral production (Mt/yr); b =
				Overburden handling (Mm ³ /yr);
				a = Lease area (km^2) ; E =
				Emission rate(g/s).
Overall	SO ₂	Area	$E=a0.14\{u/(1.83+0.93u)\}$	u = Wind speed(m/s); p =
Mine			[{p/(0.48+0.57p)}	Mineral production (Mt/yr); b =
			+{b/(14.37+1.15b)}]	Overburden handling (Mm ³ /yr);
				a = Lease area (km^2) ; E =
				Emission rate(g/s).
Overall	NO _X	Area	$E=a0.25\{u/(4.3+32.5u)\}$	u = Wind speed(m/s); p =
Mine			[1.5p+{b/(0.06+0.08b)}]	Mineral production (Mt/yr); b=
				Overburden handling (Mm ³ /yr);
				a = Lease area (km^2) ; E =
				Emission rate(g/s).

Table 4.1 Empirical Formula for Emission Rate from Overall Mine

The emission rate thus calculated using the empirical formula is used as one of the inputs in the AERMOD modelling. It is important to note that PM_{10} emission rate is derived from the SPM estimation in the background that PM_{10} constitutes 52% of SPM emission. The $PM_{2.5}$, PM_{10} , SO₂ and NO_x emission results have been given in Table 4.2.

Activity	Pollutant	Calculated	Lesse Area in m^2	Calculated	
Activity	Tonutant	Value (g/s)	Lease Area III III	Value (g/s/m ²)	
Overall Mine	PM _{2.5}	0.193010801	30000	6.43369E-06	
Overall Mine	PM ₁₀	1.286738673	30000	4.28913E-05	
Overall Mine	SO_2	0.291564018	30000	9.7188E-06	
Overall Mine	NO _X	0.016733931	30000	5.57798E-07	

 Table 4.2 Estimated Emission Rate

4.4.2.1 Modelling of Incremental Concentration

Anticipated incremental concentration and net increase in emissions due to quarrying activities within 500 m around the project area is predicted by open pit source modelling using AERMOD Software and the incremental values of the air pollutants were added to the base line data monitored at the proposed site to predict total GLC of the pollutants, as shown in Tables 4.3-4.6.

4.4.2.2 Model Results

The post project resultant concentrations of PM_{10} , $PM_{2.5}$, $SO_2 \& NO_X (GLC)$ is given in Tables 4.3-4.6.

lre			PM 2.5 concentrations(µg/m ³)								Ŧ	_	
Station ID	Distance to co area (km)	Direction	Baseline	Predicted	Total	Comparison	against air	quality	standard	$(60 \ \mu g/m^3)$	Magnitude o	change (%)	Significance
AAQ1			19.1	8.86	27.96						46	6.4	
AAQ2	0.57	NW	17.5	5	22.5	landard			28	5.6	nt		
AAQ3	3.89	NNE	18.0	0.5	18.5					2.	.8	nifica	
AAQ4	4.45	NE	17.5	0.5	18			low s			2.	.9	ot sign
AAQ5	4.66	SE	16.0	0.5	16.5			Be			3.	.1	N
AAQ6	2.40	SSE	16.6	0	16.6						0.	.0	

Table 4.3 Incremental & Resultant GLC of PM_{2.5}

Î			PM ₁₀ concentrations(µg/m ³)			u	of (e
Station ID	Station ID Distance to core area (kr		Baseline	Predicted	Total	Compariso against air qualit standard (100 µg/m	Magnitude change (%	Significand
AAQ1			44.8	14	58.8	a	31.3	t
AAQ2	0.57	NW	40.9	5	45.9	dar	12.2	can
AAQ3	3.89	NNE	39.3	0.5	39.8	tan	1.3	nifi
AAQ4	4.45	NE	38.8	0.5	39.3	S M	1.3	Sig
AAQ5	4.66	SE	39.0	0.5	39.5	3elc	1.3	Not
AAQ6	2.40	SSE	41.4	0.5	41.9	Щ	1.2	I

Table 4.4 Incremental & Resultant GLC of PM₁₀

Table 4.5 Incremental & Resultant GLC of SO2

	0 (M		SO ₂ conc	entrations	of	ce		
Station II	Distance t core area (k	Direction	Baseline	Predicted	Total	Comparisc against air qualit standard (80 µg/m ³	Magnitude change (9	Significan
AAQ1			4.4	3.97	8.37	E.	90.2	nificant
AAQ2	0.57	NW	4.1	1	5.1	dare	24.4	
AAQ3	3.89	NNE	3.9	0.1	4	tan	2.6	
AAQ4	4.45	NE	3.0	0.1	3.1) ×	3.3	Sig
AAQ5	4.66	ESE	3.8	0.1	3.9	3elo	2.6	Not
AAQ6	2.40	SSE	5.2	0	5.2		0.0	

Table 4.6 Incremental & Resultant GLC of NOx

			NOx concentrations(µg/m ³)			a	of	e
Station ID	Distance to core area (ki	Direction	Baseline	Predicted	Total	Compariso against air quality standard (80 µg/m ³)	Magnitude change (%	Significanc
AAQ1			13.7	5.18	18.88	5	37.8	nificant
AAQ2	0.57	NW	13.0	1	14	darc	7.7	
AAQ3	3.89	NNE	12.1	0.5	12.6	stan	4.1	
AAQ4	4.45	NE	11.4	0.5	11.9	N N N N N N N N N N N N N N N N N N N	4.4	sig
AAQ5	4.66	ESE	11.9	0	11.9	3elc	0.0	Not
AAQ6	2.40	SSE	16.0	0	16		0.0	

The values of cumulative concentration i.e., background + incremental concentration of pollutant in all the receptor locations are still within the prescribed NAAQ limits without effective mitigation measures. By adopting suitable mitigation measures, the pollutant levels in the atmosphere can be controlled further.

Figure 4.1 Predicted Incremental Concentration of PM_{2.5}

Figure 4.2 Predicted Incremental Concentration of PM₁₀

Figure 4.3 Predicted Incremental Concentration of SO₂

Figure 4.4 Predicted Incremental Concentration of NO_X

4.5 NOISE ENVIRONMENT

Noise modelling has been carried out to assess the impact on surrounding ambient noise levels. Basic phenomenon of the model is the geometric attenuation of sound. Noise at a point generates spherical waves which are propagated outwards from the source through the air at a speed of 1, 100 ft/sec with the first wave making an ever-increasing sphere with time. As the wave spreads the intensity of noise diminishes as the fixed amount of energy is spread over an increasing surface area of the sphere. The assumption of the model is based on point source relationship i.e., for every doubling of the distance the noise levels are decreased by 6 dB (A). For hemispherical sound wave propagation through homogeneous loss free medium, one can estimate noise levels at various locations at different sources using a mathematical model based on first principle.

$Lp_2 = Lp_1 - 20 \log (r_2/r_1) - Ae_{1,2}$

Where, $Lp_1 \& Lp_2$ are sound levels at points located at distances r_1 and r_2 from the source; $Ae_{1,2}$ is the excess attenuation due to environmental conditions. Combined effect of all sources can be determined at various locations by logarithmic addition.

Lp total = 10 log {
$$10^{(Lp1/10)} + 10^{(Lp2/10)} + 10^{(Lp3/10)} + \dots$$
}

4.5.1 Anticipated Impact

The attenuation due to several factors including ground reflection, atmosphere, wind speed, temperature, trees, and buildings as 35.5 dB (A), the barrier effect. Attenuation due to Green Belt has been taken to be 4.9 dB (A). The inputs required for the model are: source data, receptor data, and attenuation factor. Source data has been computed taking into account of all the machinery and activities used in the mining process. Same has been listed in Table 4.7.

S. No.	Machinery /	Impact on	Noise produced in dB(A) at 50 ft from
	activity	environment?	source*
1	Blasting	Yes	94
2	Jack hammer	Yes	88
3	Compressor	No	81
4	Excavator	No	85
5	Tipper	No	84
Total			95.8

Table 4.7 Activity and Noise Level Produced by Machinery

The total noise to be produced by mining activity is calculated to be 95.8 dB (A). We have considered the total noise to be produced by mining activity to be 95.8 dB (A) for noise prediction modelling.

Noise Monitoring Location	Distance From Project Site(m)	Baseline Noise Level (dBA)m During Day Time	Predicted Noise Level (dBA)	Total (dBA)
Core	100	46.7	43.96	48.55
Kondappanayanapalli	590	42.2	28.54	42.38
Kentarpalli	3910	44.8	12.12	44.80
Dasiripalli	4450	40.8	10.99	40.80
V.Madepalli	4670	41.2	10.57	41.20
Kuppachiparai	2430	49.6	16.25	49.60
NAAQ Standards	Industrial Da Residential I	y Time -75 dB (A) Day Time -55 dB (A)	A) & Night Time- A) & Night Time-	70 dB (A) 45 dB (A)

Table 4.8 Predicted Noise Incremental Values

From the above table, it can be seen that the ambient noise levels at all the locations near habitations are within permissible limits of Residential Area (buffer zone) as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000. Therefore, no impact is anticipated on the noise environment due to the project.

4.5.2 Common Mitigation Measures

The following noise mitigation measures are proposed for control of noise:

- ◆ Usage of sharp drill bits while drilling which will help in reducing noise
- Secondary blasting will be totally avoided and hydraulic rock breaker will be used for breaking boulders
- Controlled blasting with proper spacing, burden, stemming and optimum charge/delay will be maintained
- The blasting will be carried out during favourable atmospheric condition and less human activity timings by using nonelectrical initiation system
- Proper maintenance, oiling and greasing of machines will be done every week to reduce generation of noise
- Provision of sound insulated chambers for the workers working on machines (HEMM) producing higher levels of noise
- Silencers / mufflers will be installed in all machineries
- Greenbelt/Plantation will be developed around the project area and along the haul roads.
 The plantation minimizes propagation of noise

- Personal Protective Equipment (PPE) like ear muffs/ear plugs will be provided to the operators of HEMM and persons working near HEMM and their use will be ensured though training and awareness
- Regular medical check-up and proper training to personnel to create awareness about adverse noise level effects

4.5.3 Ground Vibrations

The major source of ground vibration from the quarry is blasting. The major impact of the ground vibrations is observed on the domestic houses located in the villages nearby the mine lease area. The kutcha houses are more prone to cracks and damage due to the vibrations induced by blasting whereas RCC framed structures can withstand more ground vibrations. Apart from this, the ground vibrations may develop a fear factor in the nearby settlements.

Another impact due to blasting activities is fly rocks. These may fall on the houses or agricultural fields nearby the mining lease area and may cause injury to persons or damage to the structures. The ground vibrations due to the blasting in the quarry are calculated using the empirical equation. The empirical equation for assessment of peak particle velocity (PPV) is given below:

$$V = K [R/Q^{0.5}]^{-B}$$

Where,

V = peak particle velocity (mm/s), K = site and rock factor constant (500)

Q = maximum instantaneous charge (kg)

B = constant related to the rock and site (usually 1.6), R = distance from charge (m)

Location	Maximum Charge in kgs	Nearest HabitationPPV in mm/s		Fly rock	Air Blast	
ID				distance	Pressure	Sound
ID		in m	11111/5	in m	(kPa)	Level (dB)
P1	86.90	590	0.65	19	0.33	144

 Table 4.9 Predicted PPV Values due to Blasting

 Table 4.10 Predicted PPV Values due to Blasting at 100-500 m radius

Location	Maximum	Maximum Radial PPV in Fly		Maximum Radial PPV in Fly		Fly rock	Air Blast	
ID	Charge in kgs	Distance in m	mm/s	distance in m	Pressure (kPa)	Sound Level (dB)		
	86.90	100	11.22		2.79	163		
		200	3.70	19	1.21	156		
P1		300	1.93		0.75	151		
		400	1.22		0.53	148		
		500	0.85		0.40	146		

The PPV results shows that the ground vibration is well below the permissible limits set by DGMS through circular 7,1997 for domestic houses near by the lease area at the dominant frequency of <8 Hz.

4.5.3.1 Common Mitigation Measures

- The blasting operations in the cluster quarries are carried out without deep hole drilling and blasting using delay detonators which reduce the ground vibrations
- Proper quantity of explosives, suitable stemming materials and appropriate delay system will be adopted to avoid overcharging and for safe blasting
- Adequate safe distance from blasting will be maintained as per DGMS guidelines
- Blasting shelter will be provided as per DGMS guidelines
- Blasting operations will be carried out only during day time
- The charge per delay will be minimized and preferably a greater number of delays will be used per blasts
- During blasting, other activities in the immediate vicinity will be temporarily stopped
- Drilling parameters like depth, diameter and spacing will be properly designed to give proper blast
- A fully trained explosives blast man (Mining Mate, Mines Foreman, 2nd Class Mines Manager/ 1st Class Mines Manager) will be appointed
- A set of shot firing rules will be drawn up and blasting shall commence outlining the detailed operating procedures that will be followed to ensure that shot firing operations on site take place without endangering the workforce or public
- Sufficient angular stemming material will be used to confine the explosive force and minimise environmental disturbance caused by venting / misfire
- The detonators will be connected in a predetermined sequence to ensure that only one charge is detonated at any one time and a NONEL or similar type initiation system will be used
- The detonation delay sequence shall be designed so as to ensure that firing of the holes is in the direction of free faces so as to minimise vibration effects
- Vibration monitoring will be carried out every 6 months to check the efficacy of blasting practices.

4.6 ECOLOGY AND BIODIVERSITY

4.6.1 Impact on Ecology and Biodiversity

- During loading the truck, dust generation will be likely. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly
- The Number of plants in the mining lease area is given in Chapter III Table 3.21 which vegetation in the lease area may be removed during mining.
- Carbon released from quarrying machineries and tippers during quarrying would be 10243 kg per day, 2765692 kg per year and 13828460 kg over five years, as provided in Table 4.11.

Table 4.11 Carbon Released During Five Years of Rough Stone and Gravel Production

	Per day	Per year	Per five years
Fuel consumption of excavator	726	195890	979450
Fuel consumption of compressor	86.8	23436	117180
Fuel consumption of tipper	3010	812649	4063243
Total fuel consumption in liters	3822	1031975	5159873
Co ₂ emission in kg	10243	2765692	13828460

4.6.2 Mitigation Measures on Flora

- During conceptual stage, the top bench will be re-vegetated by planting local /native species and lower benches will be converted into rainwater harvesting structure following completion of mining activities, which will replace habitat resources for fauna species in this locality over a longer time.
- None of the plants in the lease area will be cut during operational phase of the mine. we recommend uprooting and planting of the 10 trees along the 7.5 m safety zone to prevent environmental pollution during quarrying. As the survival rate due to uprooting was only 30%, 100 seedlings will be procured at the rate of 10 seedlings per tree and planted in 7.5 m safety zone.
- Existing roads will be used; new roads will not be constructed to reduce impact on flora.
- To mitigate carbon emission due to mining activities, we recommend planting trees around the quarry to offset the carbon emission during quarrying. A tree can sequester 35964 kg of carbon per year. Therefore, we recommend 1500 planting large number of trees around the quarry and near school campuses, government wasteland, roadsides etc.
- As per the greenbelt development plan as recommended by SEAC (Table 4.13), about 1500 trees (Table 4.13) will be planted within three months from the beginning of mining. These trees, when grown up would sequester carbon of about 113739 kg of the total carbon, as provided in Table 4.12.

Table 4.12 CO2 Sequestration

CO ₂ sequestration in kg	133	35964	179820
Remaining CO ₂ not sequestered in kg	10110	2729728	13648640
Trees required for environmental compensation	113739		
Area required for environmental compensation in hectares	227		

Table 4.13 Recommended Species for Greenbelt Development Plan

S.	Botanical Name of	Botanical Name of Family Common		tanical Name of Family Common			Dust Capturing
No	No the Plant No		Nomo Nomo		Efficiency		
110	the Fiant				Features		
1	Azadirachta indica	Meliaceae	Neem, Vembu	Tree	Well distinct thick		
2	Techtona grandis	Lamiaceae	Teak	Tree	Well distinct in		
3	Polyalthia longifolia	Annonaceae	Nettilingam	Tree	Palisade &		
4	Albizia lebbeck	Fabaceae	Vagai	Tree	Spongy		
5	Delonix regia	Fabaceae	Cemmayir- konrai	Tree	parenchyma. Spongy parenchyma is		
6	Bauhinia racemose	Fabaceae	Aathi	Tree	present at lower		
7	Cassia fistula	Fabaceae	Sarakondrai	Tree	epidermis Many		
8	Aegle marmelos	Rutaceae	Vilvam	Tree	vascular bundles		
9	Pongamia pinnata	Fabaceae	Pungam	Tree	arranged almost		
10	Thespesia populnea	Malvaceae	Puvarasu	Tree	parallel series		

Table 4.14 Greenbelt Development Plan

	No. of trees proposed for	No. of trees expected to	Area to be		
	plantation	survive @ 80%	covered(m ²)		
Dignitation in the	Number of plants inside the mine lease area				
construction phase (3	600	480	5400		
months)	Number of plan	nts outside the mine lease area	a		
monuis)	900	720	8100		
Total	1500	1200	13500		

Table 4.15 Budget for Greenbelt Development Plan

Activity	Plantation in the construction phase(3Months)	Cost	Capital Cost (Rs.)	Recuring Cost-per annum
Plantation inside the mine lease area (in safety margins)	600	Site clearance, preparation of land, digging of pits / trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area	120000	18000

		and @ 30 per plant maintenance (recurring))"		
Plantation outside the area	900	Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	270000	27000
Total				45000

4.6.3. Anticipated Impact on Fauna

- ✤ Direct impact is anticipated on fauna of core zone
- Insignificant impact is anticipated on fauna in the buffer area due to air emissions, noise, vibration, transportation, waste water discharges, and changes in land use

Mitigation Measures on Flora

Fencing will be constructed around the proposed mine lease area to restrict the entry of stray animals

✤ The workers shall be trained not to harm any wildlife near the project site

4.6.4. Aquatic Biodiversity

Impact

- There is a small pond and lake within 1km around the quarry lease area and the dust generated during the quarrying may affect water bodies.
- Dust generated during quarrying can affect aquatic plants and animals in water bodies.

Mitigation Measures

Planting trees around quarries prevents dust from escaping and prevents dust from spreading into water bodies. Aquatic plants and animals in water bodies are not affected.

4.6.5 Impact on agriculture and horticulture crops in 1km Radius

- Problems to agricultural and horticulture land due to dust caused by movement of heavy vehicles.
- Soil erosion and sediment deposition in the nearby water bodies due to earthworks during the rainy season.
- The fugitive dust released from the mining operations may cause effect on the agricultural and horticulture land who are directly exposed to the fugitive dust.
- Dust from the quarries is likely to affect reproductive systems in nearby agricultural and horticulture lands.
- Dust from quarries can affect plant growth and reduce vegetable yields.

4.6.6 Mitigation Measures on agriculture and horticulture crops.

- The main objective of the green belt is to provide a barrier between the source of pollution and the surrounding areas. In order to compensate the loss of vegetation cover, it is suggested to carry out afforestation program mainly inside and outside of the lease area in different phases.
- It is a granite quarry, no explosives are used, there is no possibility of vibration and dust, thus there is no possibility of damage to the adjacent agricultural land.
- Quarry approach roads are sprayed with water 3 times a day to control dust. Thus, the damage to the nearby farmlands is controlled.
- ✤ A green belt will be created in 7.5 safety zone around the quarry to contain the dust from the quarry and prevent the dust from spreading to the adjacent agricultural land.
- Transportation of material will be carried out during day time and material will be covered with tarpaulin
- The speed of tippers plying on the haul road will be limited to < 20 km/hr to avoid generation of dust.</p>

4.7 SOCIO ECONOMIC ENVIRONMENT

4.7.1 Anticipated Impact from Proposed and Existing Projects

- Dust generation from mining activity can have negative impact on the health of the workers and people in the nearby area.
- ✤ Approach roads can be damaged by the movement of tippers
- Increase in Employment opportunities both direct and indirect thereby increasing economic status of people of the region.

4.7.2 Common Mitigation Measures for Proposed Project

- Good maintenance practices will be adopted for all machinery and equipment, which will help to avert potential noise problems.
- Green belt will be developed in and around the project site as per Central Pollution Control Board (CPCB) guidelines.
- Air pollution control measure will be taken to minimize the environmental impact within the core zone.
- For the safety of workers, personal protective appliances like hand gloves, helmets, safety shoes, goggles, aprons, nose masks and ear protecting devices will be provided as per mines act and rules.

- Benefit to the State and the Central governments through financial revenues by way of royalty, tax, duties, etc.., from this project directly and indirectly.
- From above details, the quarry operations will have highly beneficial positive impact in the area

4.8 OCCUPATIONAL HEALTH AND SAFETY

Occupational health and safety hazards occur during the operational phase of mining and primarily include the following:

- Respiratory hazards
- ✤ Noise
- Physical hazards
- Explosive storage and handling

4.8.1 Respiratory Hazards

Long-term exposure to silica dust may cause silicosis the following measures are proposed:

- ✤ Cabins of excavators and tippers will be enclosed with AC and sound proof
- Use of personal dust masks will be made compulsory

4.8.2 Noise

Workers are likely to get exposed to excessive noise levels during mining activities. The following measures are proposed for implementation

- No employee will be exposed to a noise level greater than 85 dB(A) for a duration of more than 8 hours per day without hearing protection
- The use of hearing protection will be enforced actively when the equivalent sound level over 8 hours reaches 85 dB(A), the peak sound levels reach 140 dB(C), or the average maximum sound level reaches 110 dB(A)
- Ear muffs provided will be capable of reducing sound levels at the ear to at least 85 dB(A)
- Periodic medical hearing checks will be performed on workers exposed to high noise levels.

4.8.3 Physical Hazards

The following measures are proposed for control of physical hazards

- Specific personnel training on work-site safety management will be taken up;
- Natural barriers, temporary railing, or specific danger signals will be provided along rock benches or other pit areas where work is performed at heights more than 2m from ground level;
- Maintenance of yards, roads and footpaths, providing sufficient water drainage and preventing slippery surfaces with an all-weather surface, such as coarse gravel will be taken up.

4.8.4 Occupational Health Survey

All the persons will undergo pre-employment and periodic medical examination. Employees will be monitored for occupational diseases by conducting the following tests: general physical tests, audiometric tests, full chest, X-ray, Lung function tests, spirometry tests, periodic medical examination – yearly, lung function test – yearly, those who are exposed to dust, and eye test

Essential medicines will be provided at the site. The medicines and other test facilities will be provided at free of cost. The first aid box will be made available at the mine for immediate treatment. First aid training will be imparted to the selected employees regularly. The lists of first aid trained members shall be displayed at strategic places.

4.9 Mine Waste Management

No waste is anticipated from any of the proposed quarries.

4.10 Mine Closure

Mine closure plan is the most important environmental requirement in mining project. The mine closure plan should cover technical, environmental, social, legal and financial aspects dealing with progressive and post closure activities. The closure operation is a continuous series of activities starting from the decommissioning of the project. Therefore, progressive mine closure plan should be specifically dealt with in the mining plan and is to be reviewed along with mining plan. As progressive mine closure is a continuous series of activities, it is obvious that the proposals of scientific mining have included most of the activities to be included in the closure plan. While formulating the closure objectives for the site, it is important to consider the existing or the premining land use of the site; and how the operation will affect this activity.

The primary aim is to ensure that the following broad objectives along with the abandonment of the mine can be successfully achieved:

- To create a productive and sustainable after-use for the site, acceptable to mine owners, regulatory agencies, and the public
- \clubsuit To protect public health and safety of the surrounding habitation
- ✤ To minimize environmental damage
- ✤ To conserve valuable attributes and aesthetics
- ✤ To overcome adverse socio-economic impacts.

4.10.1 Mine Closure Criteria

The criteria involved in mine closure are discussed below:

4.10.1.1 Physical Stability

All anthropogenic structures, which include mine workings, buildings, rest shelters etc., remaining after mine decommissioning should be physically stable. They should present no hazard

to public health and safety as a result of failure or physical deterioration and they should continue to perform the functions for which they were designed. The design periods and factors of safety proposed should take full account of extreme events such as floods, hurricane, winds or earthquakes, etc. and other natural perpetual forces like erosion, etc.,

4.10.1.2 Chemical Stability

The solid wastes on the mine site should be chemically stable. This means that the consequences of chemical changes or conditions leading to leaching of metals, salts or organic compounds should not endanger public health and safety nor result in the deterioration of environmental attributes. If the pollutant discharges likely to cause adverse impacts is predicted in advance, appropriate mitigation measures like settling of suspended solids or passive treatment to improve water quality as well as quantity, etc., could be planned. Monitoring should demonstrate that there is no adverse effect of pollutant concentrations exceeding the statutory limits for the water, soil and air qualities in the area around the closed mine.

4.10.1.3 Biological Stability

The stability of the surrounding environment is primarily dependent upon the physical and chemical characteristics of the site, whereas the biological stability of the mine site itself is closely related to rehabilitation and final land use. Nevertheless, biological stability can significantly influence physical or chemical stability by stabilizing soil cover, prevention of erosion/wash off, leaching, etc., A vegetation cover over the disturbed site is usually one of the main objectives of the rehabilitation programme, as vegetation cover is the best long-term method of stabilizing the site. When the major earthwork components of the rehabilitation programme have been completed, the process of establishing a stable vegetation community begins. For re-vegetation, management of soil nutrient levels is an important consideration. Additions of nutrients are useful under three situations.

- Where the nutrient level of spread topsoil is lower than material in-situ e.g., for development of social forestry
- Where it is intended to grow plants with a higher nutrient requirement than those occurring naturally.
- Where it is desirable to get a quick growth response from the native flora during those times when moisture is not a limiting factor. For example, development of green barriers

The Mine closure plan should be as per the approved mining plan. The mine closure is a part of approved mine plan and activities of closure shall be carried out as per the process described in mine closure plan.

CHAPTER V

ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE) 5.0 INTRODUCTION

Consideration of alternatives to a proposed project is a requirement of EIA process. During the scoping process, alternatives to a proposed project can be considered or refined, either directly or by reference to the key issues identified. A comparison of alternatives helps to determine the best method of achieving the project objectives with minimum environmental impacts or indicates the most environmentally friendly and cost-effective options.

5.1 FACTORS BEHIND THE SELECTION OF PROJECT SITE

The proposed project is site specific and has the following advantages:

- The mineral deposit occurs in a non-forest area.
- * There is no habitation within the project area; hence no R & R issues exist.
- * There is no river, stream, nallah and water bodies in the applied mine lease area.
- ♦ Availability of skilled, semi-skilled and unskilled workers in this region.
- All the basic amenities such as medical, firefighting, education, transportation, communication and infrastructural facilities are well connected and accessible.
- The mining operations will not intersect the ground water level. Hence, no impact on ground water environment.
- ✤ As the proposed project area falls in seismic zone II, there is no major history of landslides, earthquake, subsidence etc., recorded in the past history.

5.2 ANALYSIS OF ALTERNATIVE SITE

No alternatives are suggested as the mine site is mineral specific.

5.3 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY

Manual open cast mining method with secondary blasting will be applied to extract rough stone and in the area. The proposed mining lease areas have following advantages:

- As the mineral deposition is homogeneous and batholith formation, opencast method of working is preferred over underground method.
- The material will be loaded with the help of excavators into tractors/tippers and transported to the need by customers.
- Semi-skilled labours fit for quarrying operations are easily available around the nearby villages.

5.4 ANALYSIS OF ALTERNATIVE TECHNOLOGY

Open cast mechanized method has been selected for this project. This technology is having least gestation period, economically viable, safest and less labour intensive. The method has inbuilt flexibility for increasing or decreasing the production as per market condition.

CHAPTER VI

ENVIRONMENTAL MONITORING PROGRAMME

6.0 GENERAL

The monitoring and evaluation of environmental parameters indicates potential changes occurring in the environment, which paves way for implementation of rectifying measures wherever required to maintain the status of the natural environment. Evaluation is also a very effective tool to judge the effectiveness or deficiency of the measures adopted and provides insight for future corrections. The main objective of environmental monitoring is to ensure that the obtained results in respect of environmental attributes and prevailing conditions during operation stage are in conformity with the prediction during the planning stage. In case of substantial deviation from the earlier prediction of results, this forms as base data to identify the cause and suggest remedial measures. Environmental monitoring is mandatory to meet compliance of statutory provisions under the Environment (Protection) Act, 1986, relevant conditions regarding monitoring covered under EC orders issued by the SEIAA-TN as well as the conditions set forth under the order issued by Tamil Nadu Pollution Control Board while granting CTE/CTO.

6.1 METHODOLOGY OF MONITORING MECHANISM

Implementation of EMP and periodic monitoring will be carried out by respective project proponents. A comprehensive monitoring mechanism has been devised for monitoring of impacts due to proposed project; Environmental protection measures like dust suppression, control of noise and blast vibrations, maintenance of machinery and vehicles, housekeeping in the mine premises, plantation, implementation of Environmental Management Plan and environmental clearance conditions will be monitored by the respective mine management. On the other hand, implementation of area level protection measures like green belt development, environmental quality monitoring etc., are taken up by a senior executive who reports to their Mine Management.

An Environment monitoring cell (EMC) will be constituted to monitor the implementation of EMP and other environmental protection measures in the proposed quarry. The responsibilities of this cell will be:

- Implementation of pollution control measures
- ✤ Monitoring programme implementation
- Post-plantation care
- ✤ To check the efficiency of pollution control measures taken
- ✤ Any other activity as may be related to environment

✤ Seeking expert's advice when needed.

The environmental monitoring cell will co-ordinate all monitoring programs at site and data thus generated will be regularly furnished to the State regulatory agencies as compliance status reports.

The sampling and analysis report of the monitored environmental attributes will be submitted to the Tamil Nadu Pollution Control Board (TNPCB) at a frequency of half-yearly and yearly by the proposed project proponent. The half-yearly reports are submitted to Ministry of Environment and Forest, Regional Office and SEIAA-TN as well.

The sampling and analysis of the environmental attributes will be as per the guidelines of Central Pollution Control Board (CPCB)/Ministry of Environment, Forest and Climate Change (MoEF & CC). The Environmental Monitoring Cell will be formed for the proposed project. The structure of the cell will be as shown in Figure 6.1.

Figure 6.1 Proposed environmental monitoring chart

6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES

The mitigation measures proposed in chapter IV will be implemented so as to reduce the impact on the environment due to the operations of the proposed project. Implementation schedule of mitigation measures is given in Table 6.1.

S. No.	Recommendations	Time Period	Schedule
1	Land Environment Control Measures	Before commissioning of the project	Immediately after the commencement of project
2	Soil Quality Control Measures	Before commissioning of the project	Immediately after the commencement of project
3	Water Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
4	Air Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
5	Noise Pollution Control measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
6	Ecological Environment	Phase wise implementation every year along with mine operations	Immediately and as project progress

Table 6.1 Implementation Schedule for Proposed Project

6.3 MONITORING SCHEDULE AND FREQUENCY

Monitoring shall confirm that commitments are being met. This may take the form of direct measurement and recording of quantitative information, such as amounts and concentrations of discharges, emissions and wastes, for measurement against statutory standards. Monitoring may include socio-economic interaction, through local liaison activities or even assessment of complaints.

The environmental monitoring will be conducted in the mine operations as follows:

- ✤ Air quality
- ✤ Water and wastewater quality
- ✤ Noise levels

- ✤ Soil quality and
- ✤ Greenbelt development

The details of proposed monitoring schedule have been provided in Table 6.2.

S.	Environment	Location	Monitoring		Doromotors
No.	Attributes	Location	Duration Frequency		r al ameters
1	Air Quality	2 Locations (1 Core & 1 Buffer)	24 hours	Once in 6 months	FugitiveDust, $PM_{2.5}$, PM_{10} , SO_2 and NO_x .
2	Meteorology	At mine site before start of Air Quality Monitoring & IMD Secondary Data	Hourly / Daily	Continuous online monitoring	Wind speed, Wind direction, Temperature, Relative humidity and Rainfall
3	Water Quality Monitoring	2 Locations (1SW & 1 GW)	-	Once in 6 months	Parameters specified under IS:10500, 1993 & CPCB Norms
4	Hydrology	Water level in open wells in buffer zone around 1 km at specific wells	-	Once in 6 months	Depth in m BGL
5	Noise	2 Locations (1 Core & 1 Buffer)	Hourly – 1 Day	Once in 6 months	Leq, Lmax, Lmin, Leq Day & Leq Night
6	Vibration	At the nearest habitation (in case of reporting)	_	During blasting operation	Peak particle velocity
7	Soil	2 Locations (1 Core & 1 Buffer)	_	Once in six months	Physicalandchemicalcharacteristics
8	Greenbelt	Within the project area	Daily	Monthly	Maintenance

Table 6.2 Proposed Monitoring Schedule Post EC for the Proposed Quarry

Source: Guidance of manual for mining of minerals, February 2010

6.4 BUDGETARY PROVISION FOR ENVIRONMENT MONITORING PROGRAM

The cost in respect of monitoring of environmental attributes, parameter to be monitored, sampling/monitoring locations with frequency and cost provision against each proposal is shown in Table 6.3. Monitoring work will be outsourced to external laboratory approved by NABL / MoEF. The proposed recurring cost for Environmental Monitoring Programme is Rs **2,95,000** /- per annum for the proposed project site.

S. No.	Parameter	Capital Cost	Recurring Cost per annum
1	Air Quality	_	Rs 60,000/-
2	Meteorology	-	Rs 15,000/-
3	Water Quality	_	Rs 20,000/-
4	Water Level Monitoring		Rs 10,000/-
5	Soil Quality	_	Rs 20,000/-
6	Noise Quality	-	Rs 10,000/-
7	Vibration Study	_	Rs 1,50,000/-
8	Greenbelt	-	Rs 10,000/-
	Total	-	Rs 2,95,000 /-

Table 6.3 Environment Monitoring Budget

Source: Field Data

6.5 REPORTING SCHEDULES OF MONITORED DATA

The monitored data on air quality, water quality, noise levels and other environmental attributes will be periodically examined by the Cluster Mine Management Coordinator and Respective Head of Organization for taking necessary corrective measures. The monitoring data will be submitted to Tamil Nadu State Pollution Control Board in the Compliance to CTO Conditions & environmental audit statements every year to MoEF & CC and Half-Yearly Compliance Monitoring Reports to MoEF & CC Regional Office and SEIAA.

Periodical reports to be submitted to:

- ✤ MoEF & CC Half yearly status report
- TNPCB Half yearly status report
- Department of Geology and Mining: quarterly, half yearly annual reports

Besides the Mines Manager/Agent of respective project will submit the periodical reports to:

- Director of mines safety
- Labour enforcement officer
- Controller of explosives as per the norms stipulated by the department.

CHAPTER VII ADDITIONAL STUDIES

7.0 GENERAL

Additional studies deal with:

- Public Consultation for Proposed Project
- Risk Assessment
- Disaster Management Plan
- Cumulative Impact Study

7.1 PUBLIC CONSULTATION FOR PROPOSED PROJECT

Application to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district was made and the public opinions on the proposed project will be updated in the final EIA/EMP report.

7.2 RISK ASSESSMENT FOR PROPOSED PROJECT

Risk Assessment is all about prevention of accidents and to take necessary steps to prevent it from happening. The methodology for the risk assessment is based on the specific risk assessment guidance issued by the Directorate General of Mine Safety (DGMS), Dhanbad, vide circular No.13 of 2002, dated 31st December, 2002. The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention. Further, mechanisms responsible for these hazards are identified and their control measures, set to timetable are recorded along with pinpointed responsibilities. The whole quarry operation will be carried out under the direction of a Qualified Competent Mine Manager holding certificate of competency to manage a metalliferous mine granted by the DGMS, Dhanbad for proposed project.

Factors of risks involved due to human induced activities in connection with these proposed mining & allied activities with detailed analysis of causes and control measures for the mine is given in Table 7.1.

S. No.	Risk factors	Causes of risk	Control measures
1	Accidents due to explosives and heavy mining	Improper handling and unsafe working practice	 All safety precautions and provisions of Mine Act, 1952, Metalliferous Mines Regulation, 1961 and Mines Rules, 1955 will be strictly followed during all mining operations.
	macmnenes.		 ✓ Workers will be sent to the Training in the hearby Group Vocational Training Centre Entry of unauthorized persons will be prohibited. ✓ Fire-fighting and first-aid provisions in the mine
			 office complex and mining area. Provisions of all the safety appliances such as safety boot, helmets, goggles etc. will be made available to the amplexees and regular sheek for their use.
			 Working of quarry, as per approved plans and regularly updating the mine plans. Cleaning of mine faces on daily basis shall be daily
			 done in order to avoid any overhang or undercut. ✓ Handling of explosives, charging and firing shall be carried out by competent persons only under the supervision of a Mine Manager
			 Maintenance and testing of all mining equipment as per manufacturer's guidelines.
2	Drilling	Improper and unsafe practices; Due to high pressure of compressed air, hoses may burst; Drill Rod may break;	 Safe operating procedure established for drilling (SOP) will be strictly followed. Only trained operators will be deployed. No drilling shall be commenced in an area where shots have been fired until the blaster/blasting foreman has made a thorough Examination of all places, Drilling shall not be carried on simultaneously on the benches at places directly one above the other. Periodical preventive maintenance and replacement of worn-out accessories in the compressor and drill equipment as per operator manual. All drills unit shall be provided with wet drilling shall be maintained in efficient working in condition.

Table 7.1 Risk Assessment & Control Measures for Proposed Project

3	Transportation	Potential hazards	\checkmark	Before commencing work, drivers personally
		and unsafe		check the truck/tipper for oil(s), fuel and water
		workings		levels, tyre inflation, general cleanliness and
		contributing to		inspect the brakes, steering system, warning
		accident and		devices including automatically operated audio-
		injuries		visual reversing alarm, rear view mirrors, side
				indicator lights etc., are in good condition.
		Overloading of	\checkmark	Not allow any unauthorized person to ride on the
		material		vehicle nor allow any unauthorized person to
				operate the vehicle.
		While reversal &	\checkmark	Concave mirrors should be kept at all corners
		overtaking of	\checkmark	All vehicles should be fitted with reverse horn
		vehicle		with one spotter at every tipping point
			\checkmark	Loading according to the vehicle capacity
		Operator of truck	\checkmark	Periodical maintenance of vehicles as per operator
		leaving his cabin		manual
		when it is loaded.		
4	Natural	Unexpected	\checkmark	Escape Routes will be provided to prevent
	calamities	happenings		inundation of storm water
			\checkmark	Fire Extinguishers & Sand buckets
5	Failure of Mine	Slope geometry,	\checkmark	Ultimate or over all pit slope shall be below 60°
	Benches and Pit	Geological structure		and each bench height shall be 5m.
	Slope			

Source: Analysed and Proposed by FAE & EC

7.3 DISASTER MANAGEMENT PLAN FOR PROPOSED PROJECT

Natural disasters like Earthquake, Landslides have not been recorded in the past history as the terrain is categorized under seismic zone II. The area is far away from the sea. Hence, the disaster due to heavy floods and tsunamis are not anticipated. The Disaster Management Plan is aimed to ensure safety of life, protection of environment, protection of installation, restoration of production and salvage operations in this same order of priorities. The objective of the Disaster Management Plan is to make use of the combined resources of the mine and the outside services to achieve the following:

- Rescue and medical treatment of casualties;
- Safeguard other people;
- Minimize damage to property and the environment;
- Initially contain and ultimately bring the incident under control;
- Secure the safe rehabilitation of affected area; and
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency.

In case a disaster takes place, despite preventive actions, disaster management will have to be done in line with the descriptions below. There is an organization proposed for dealing with the emergency situations. Structure of the team has been shown in Figure 7.1.

Figure 7.1 Disaster management team layout for proposed project 7.3.1 Emergency Control Procedure

The onset of emergency, will in all probability, commence with a major fire or explosion or collapse of wall along excavation and shall be detected by various safety devices and also by members of operational staff on duty. If located by a staff member on duty, he (as per site emergency procedure of which he is adequately briefed) will go to nearest alarm call point, break glass and trigger off the alarms. He will also try his best to inform about location and nature of accident to the emergency control room. In accordance with work emergency procedure the following key activities will immediately take place to interpret and take control of emergency.

- On site fire crew led by a fireman will arrive at the site of incident with fire foam tenders and necessary equipment.
- Emergency security controller will commence his role from main gate office
- Incident controller shall rush to the site of emergency and with the help of rescue team and will start handling the emergency.
- Site main controller will arrive at MECR with members of his advisory and communication team and will assume absolute control of the site.
- He will receive information continuously from incident controller and give decisions and directions to:
- Incident controller
- Mine control rooms
- Emergency security controller

7.4 CUMULATIVE IMPACT STUDY

The Cumulative Impact is mainly anticipated due to drilling & blasting and excavation and transportation activities in all the quarries within the cluster and major impact anticipated is on Air & Noise Environment and Ground Vibrations due to blasting. For this cumulative study, 2 proposed projects, known as P1, P2 are taken into consideration. The details of P1 have been given in Table 1.2 and the details of P2 is given in the Table 7.2.

Name of the Quarry	M/s. Sri Venkateshwara Blue Metals		
Type of Land	Government Poramboke Land		
Extent	3.00.0 h	a	
S.F. No	202/1 (Par	t-B)	
Toposheet No	57-L/02	2	
Highest Elevation	586 m AM	ISL	
Latitude	12°39'54.24"N to 12	2°39'59.98"N	
Longitude	78°07'40.49"E to 78	8°07'50.02"E	
Ultimate Pit Dimension	92m (14 AGL + 1	78m BGL)	
Gaalagiaal Basauraas	Rough stone (m ³)	Top Soil (m ³)	
Geological Resources	3244878	29232	
Minashla Dasarwas	Rough stone (m ³)	Top Soil (m ³)	
willeable Reserves	1251803	24592	
Droposed production for 5 years	Rough stone (m ³)	Top Soil (m ³)	
roposed production for 5 years	1133657	24592	
Method of Mining	Open cast semi mechaniz	ed mining method	
Topography	Hill Terra	ain	
	Jack hammer	6	
Machinery proposed	Excavator	1	
Machinery proposed	Compressor	1	
	Tipper	3	
Proposed Manpower Deployment	18		
Project Cost	Rs.82,30,000/-		
Proposed Water Requirement	3.5 KLD		

Table 7.2 Salient Features of the Proposed Project P2

7.4.1 Air Environment

As the production of rough stone and gravel plays a vital role in affecting the air environment. The data on the cumulative production resulting from the 2 proposed project have been given in Tables 7.3 and 7.4.

Proposed Production Details							
Quarry	5 Years in	Per Year in	Per Day in	Number of Lorry Load			
Quarry	m ³	m ³	m ³	Per Day			
P1	1218973	243795	902	150			
P2	1133657	2267314	840	140			
Grand Total	2352630	2511109	1742	290			

Table 7.3 Cumulative Production Load of Rough Stone

The cumulative study shows that the overall production of rough stone from the quarry is 1742 m³ per day with a capacity of 290 trips of rough stone per day.

7.4.1.1 Cumulative Impact of Air Pollutants

The results on the cumulative impact of the 2 proposed projects on air environment of the cluster have been provided in Table 7.4. The cumulative values resulting from the 2 projects for each pollutant do not exceed the permissible limits set by CPCB.

Pollutants	Baseline Data	Incremental Values (µg/m ³)		Cumulative Value	
1 011414110	(µg/m ³)	P1	P2	(μg/m ³)	
PM _{2.5}	17.7	8.96	8.33	34.99	
PM10	40.7	14	13.02	67.72	
SO_2	4.1	3.97	3.69	11.76	
NO _x	13.0	5.18	4.82	23	

 Table 7.4 Cumulative Impact Results from the 2 proposed projects

7.4.2 Noise Environment

Noise pollution is mainly due to operation like drilling & blasting and plying of trucks & HEMM. Cumulative Noise modelling has been carried out considering blasting and compressor operation (drilling) and transportation activities. Predictions have been carried out to compute the noise level at various distances around the different quarries within the 500 m radius.

Location ID	Distance (m)	Direction	Background Value (Day) dB(A)	Incremental Value dB(A)	Total Predicted dB(A)	Residential Area Standards dB(A)
Habitation Near P1	590	NW	42.2	28.54	42.38	
Habitation Near P2	660	NW	42.2	27.57	42.35	55
	Cun	45.38				

 Table.7.5 Cumulative Impact of Noise from 2 Proposed Quarries

Source: Lab Monitoring Data

The cumulative analysis of noise due to 2 proposed projects shows that habitation will receive about 45.38dB (A) respectively. The cumulative results for all the villages in consideration do not exceed the limit set by CPCB for residential areas for day time.

Ground Vibrations

Cumulative results of ground vibrations due to mining activities in the all the 2 quarries have been shown in Table 7.6.

Table 7.6 Cumulative Effect of	Ground Vibrations	Resulting from 2	Proposed Quarries
---------------------------------------	--------------------------	-------------------------	--------------------------

Location ID	Maximum Charge in kgs	Nearest Habitation in m	PPV in mm/s
P1	86.90	590	0.65
P2	80.80	660	0.52
	1.17		

Results from the above tables 7.8 indicate that the cumulative PPV value of each habitation is well below the peak particle velocity of 8 mm/s as per Directorate General of Mines Safety for safe level criteria through Circular No. 7 dated 29/8/1997.

7.4.3 Socio Economic Environment

Socio Economic benefits of the proposed project were calculated and the results have been shown in Table 7.7 the project together will contribute Rs. 10,00,000/-towards CER fund.

Location ID	Project Cost	CER Cost
P1	Rs. 89,30,000	Rs. 5,00,000
P2	Rs. 82,30,000	Rs. 5,00,000
Grand Total	Rs.1,71,60,000	Rs. 10,00,000

 Table 7.7 Socio Economic Benefits from 2 Mines

Location ID	Employment
P1	18
P2	18
Grand Total	36

Table 7.8 Employment Benefits from 2 Mines

A total of 36 people will get employment due to 2 proposed mines in cluster **7.4.4 Ecological Environment**

 Table 7.9 Greenbelt Development Benefits from Mine

Code	Number of Trees proposed	Area to be covered (m ²)	No. of Trees expected to be grown @ 80% survival rate	Species recommended
P1	1500	13500	1200	Azadirachta
P2	1500	13500	1200	indica, Albizia
Total	3000	27000	2400	lebbeck, Delonix regia, Techtona grandis, etc.,

Cumulative studies show that the proposed project will plant about 3000 native tree species like *Azadirachta indica*, *Albizia lebbeck*, *Delonix regia*, *Techtona grandis*, etc inside and outside the lease area. It is expected that 80 % of trees, i.e., 2400 trees will survive in this green belt development program.

7.5 PLASTIC WASTE MANAGEMENT PLAN FOR PROPOSED PROJECT

All the Project Proponent shall comply with Tamil Nadu Government Order (Ms) No. 84 Environment and Forest (EC.2) Department Dated: 25.06.2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) Act, 1986.

7.5.1 Objective

- ✤ To investigate the actual supply chain network of plastic waste.
- To identify and propose a sustainable plastic waste management by installing bins for collection of recyclables with all the plastic waste
- Preparation of a system design layout, and necessary modalities for implementation and monitoring.
- A detailed action plan to manage plastic waste has been provided in Table 7.10.

S. No.	Activity	Responsibility
1	Framing of Layout Design by incorporating provision of the	Mines Manager
	Rules, user fee to be charged from waste generators for plastic	
	waste management, penalties/fines for littering, burning plastic	
	waste or committing any other acts of public nuisance.	
2	Enforcing waste generators to practice segregation of bio-	Mines Manager
	degradable, recyclable and domestic hazardous waste.	
3	Collection of plastic waste.	Mines Foreman
4	Setting up of Material Recovery Facilities.	Mines Manager
5	Segregation of Recyclable and Non-Recyclable plastic waste at	Mines Foreman
	Material Recovery Facilities.	
6	Channelization of Recyclable Plastic Waste to registered	Mines Foreman
	recyclers.	
7	Channelization of Non-Recyclable Plastic Waste for use either	Mines Foreman
	in Cement kilns, in Road Construction.	
8	Creating awareness among all the stakeholders about their	Mines Manager
	responsibility.	
9	Surprise checking's of littering, open burning of plastic waste or	Mine Owner
	committing any other acts of public nuisance.	

Table 7.10 Action Plan to Manage Plastic Waste

Source: Proposed by FAEs and EC

CHAPTER VIII PROJECT BENEFITS

8.0 GENERAL

The proposed project at Kondappanayanapalli Village, aims to produce 1218973 m^3 of rough stone over a period of 5 years. This will enhance the socio-economic activities in the adjoining areas and will result in the following benefits:

- ✤ Increase in Employment Potential
- ✤ Improvement in Socio-Economic Welfare
- Improvement in Physical Infrastructure
- ✤ Improvement in Social infrastructure

8.1 EMPLOYMENT POTENTIAL

It is proposed to provide employment to about 18 persons for carrying out mining operations and give preference to the local people in providing employment in this cluster. In addition, there will be an opportunity for indirect employment to the form of contractual jobs, business opportunities, and service facilities etc. Because of this, the economic status of the local people will improve.

8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED

The impact of mining activity in the area will be more positive on the socio-economic environment in the immediate project impact area. The employment opportunities both direct and indirect will contribute to enhanced money incomes to job seekers with minimal skill sets especially among the local communities.

8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE

The proposed quarry project is located in Kondappanayanapalli Village, Krishnagiri Taluk, Krishnagiri District and Tamil Nadu. The area has already well-established communications roads and other facilities. The following physical infrastructure facilities will further improve due to proposed project.

- Road transport facilities
- Communications
- Medical, Educational and social benefits will be made available to the nearby civilian population in addition to the workmen employed in the mine.

8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE

Employment is expected during civil construction period, in trade, garbage lifting, sanitation and other ancillary services, Employment in these sectors will be primarily temporary or contractual and involvement of unskilled labour will be more. A major part of the labour force will be mainly from local villagers who are expected to engage themselves both in agriculture and mining activities. This will enhance their income and lead to overall economic growth of the area.

8.5 OTHER TANGIBLE BENEFITS

The proposed mine is likely to have other tangible benefits as given below

- Indirect employment opportunities to local people in contractual works like construction of infrastructural facilities, transportation, sanitation for supply of goods and services to the mine and other community services
- Additional housing demand for rental accommodation will increase
- Cultural, recreation and aesthetic facilities will also improve
- Improvement in communication, transport, education, community development and medical facilities and overall change in employment and income opportunity
- The State Government will also benefit directly from the proposed mine, through increased revenue from royalties, cess, DMF, GST etc.,

8.6 CORPORATE SOCIAL RESPONSIBILITY

Individual project proponents will take responsibility to develop awareness among all levels of their staff about CSR activities and the integration of social processes with business processes. Those involved with the undertaking of CSR activities will be provided with adequate training and re-orientation.

Under this programme, the project proponents will take-up following programmes for social and economic development of villages within 5 km of the project site. For this purpose, separate budget will be provided every year. For finalization of these schemes, proponent will interact with LSG. The schemes will be selected from the following broad areas –

- Health Services
- Social Development
- ✤ Infrastructure Development
- Education & Sports
- Self-Employment
- CSR Cost Estimation

◆ CSR activities mainly contributing to education, health, training of women self-help groups and infrastructure etc., will be taken up in the Kondappanayanapalli Village. CSR budget is allocated.

8.7 CORPORATE ENVIRONMENT RESPONSIBILITY

Allocation for Corporate Environment Responsibility (CER) shall be made as per Government of India, MoEF & CC Office Memorandum F.No.22-65/2017-IA.III dated 01.05.2018. As per para 6 (II) of the office memorandum, being a green field project & capital investment is ≤ 100 crores, the proposed project shall contribute 2% of capital investment towards CER as per directions of EAC/SEAC. However, the SEAC has suggested to allocate CER fund on the basis of the extent of the project. Therefore, Rs. 5,00,000 is allocated for CER. The proposed utilization of the budget of CER activities is given in Table 8.1.

S.	Activity	Budget (Rs.in
No.		Lakh)
1	The applicant Indents to involve in corporate environment responsibilities (CER) activities such as renovation of existing toilet, plantation within the school premises, donating environment related books to the nearby school library, etc.	Rs.5,00,000
	Total	Rs.5,00,000

Table 8.1 CER Action Plan

Source: Field survey conducted by FAE in consultation with project proponent

8.8 SUMMARY OF PROJECT BENEFITS

The project would pay about Rs.13,21,49,084 to the state government through various ways, as provided in Table 8.2.

Particulars	Budget for Roug
	(Rs.)

Table 8.2 Project Benefits to the State Government	it
--	----

Particulars	Budget for Rough Stone	
	(Rs.)	
CER	5,00,000	
Seigniorage @ Rs.90/m ³ of rough stone	10,97,07,570	
District Mineral Foundation Tax @ 10% of Seigniorage	1,09,70,757	
Green Tax @ 10% of Seigniorage	1,09,70,757	
Total	13,21,49,084	

CHAPTER IX

ENVIRONMENTAL COST BENEFIT ANALYSIS

Not Applicable, Since Environmental Cost Benefit Analysis not recommended at the Scoping stage.

CHAPTER X

ENVIRONMENTAL MANAGEMENT PLAN

10.0 GENERAL

Environment Management Plan (EMP) aims at the preservation of ecological system by considering in-built pollution abatement facilities at the proposed site. Good practices of environmental management plan will ensure to keep all the environmental parameters of the project in respect of ambient air quality, water quality, socio economic improvement standards. Mitigation measures at the source level and an overall environment management plan at the study area are elicited so as to improve the supportive capacity of the receiving bodies. The EMP presented in this chapter discusses the administrative aspects ensuring that mitigative measures are implemented and their effectiveness monitored after approval of the EIA.

10.1 ENVIRONMENTAL POLICY

The project proponent is committed to conduct all its operations and activities in an environmentally responsible manner and to continually improve environmental performance. The Proponent M/s. Sri Venkateshwara Blue Metals will:

- Meet the requirements of all laws, acts, regulations, and standards relevant to its operations and activities.
- Implement a program to train employees in general environmental issues and individual workplace environmental responsibilities.
- ✤ Allocate necessary resources to ensure the implementation of the environmental policy.
- Ensure that an effective closure strategy is in place at all stages of project development and that progressive reclamation is undertaken as early as possible to reduce potential long-term environmental and community impacts.
- Implement monitoring programs to provide early warning of any deficiency or unanticipated performance in environmental safeguards.
- Conduct periodic reviews to verify environmental performance and to continuously strive towards improvement.

10.1.1 Description of the Administration and Technical Setup

The environment monitoring cell discussed under chapter VI will ensure effective implementation of environment management plan and to ensure compliance of environmental statutory guidelines through mine management level of each proposed quarry. The said team will be responsible for:

- Monitoring of the water/ waste water quality, air quality and solid waste generated.
- ✤ Analysis of the water and air samples collected through external laboratory.

- Implementation and monitoring of the pollution control and protective measures/ devices which shall include financial estimation, ordering, installation of air pollution control equipment, waste water treatment plant, etc.
- Co-ordination of the environment related activities within the project as well as with outside agencies.
- Collection of health statistics of the workers and population of the surrounding villages.
- Green belt development.
- Monitoring the progress of implementation of the environmental monitoring program.
- Compliance to statutory provisions, norms of State Pollution Control Board, Ministry of Environment and Forests and the conditions of the environmental clearance as well as the consents to establish and consents to operate.

10.2 Budgetary Provision for Environmental Management

Adequate budgetary provision has been made by the company for execution of Environmental Management Plan. The Table 10.1 gives overall investment on the environmental safeguards and recurring expenditure for successful monitoring and implementation of control measures.

Attribute	Mitigation measures	Provision for Implementation	Capital Cost (Rs.)	Recurring Cost/annu m (Rs.)
	Compaction, gradation and drainage on both sides	Rental Dozer & drainage construction on haul road @ Rs. 10,000/- per hectare and yearly maintenance @ Rs. 10,000/- per hectare	30000	30000
Air Environm ent	Fixed Water Sprinkling Arrangements + Water sprinkling by own water tankers	Fixed sprinkler installation and new water tanker cost for capital; and water sprinkling (thrice a day) cost for recurring	800000	50000
Cit	Air quality will be regularly monitored as per norms within ML area & ambient area	Yearly compliance as per CPCB norms	0	50000
	Muffle blasting – To control fly rocks during blasting	Blasting face will be covered with sand bags / steel mesh / old tyres / used conveyor belts	0	5000

 Table 10.1 EMP Budget for Proposed Project

	Wet drilling procedure / latest eco-friendly drill machine with separate dust extractor unit	Dust extractor @ Rs. 25,000/- per unit deployed as capital & @ Rs. 2500 per unit recurring cost for maintenance	150000	15000
	No overloading of trucks/tippers/tractors	Manual Monitoring through Security guard	0	5000
	Stone carrying trucks will be covered by tarpaulin to avoid escape of fines to the atmosphere	Monitoring if trucks will be covered by tarpaulin	0	10000
	Enforcing speed limits of 20 km/hr within ML area	Installation of Speed Governors @ Rs. 5000/- per tipper/dumper deployed	15000	0
	Regular monitoring of exhaust fumes as per RTO norms	Monitoring of Exhaust Fumes	0	3750
	Regular sweeping and maintenance of roads for at least about 200 m from quarry entrance	Provision for 2 labours @ Rs.10,000/labour (Contractual) / hectare	0	60000
	Installing wheel wash system near exit gate of quarry	Installation + Maintenance + Supervision	50000	20000
	Total Air Enviro	onment	1045000	248750
	Source of noise will be transportation vehicles, and HEMM. For this, proper maintenance will be done at regular intervals.	Provision made in Operating Cost	0	0
Noise Environm ent	Oiling & greasing of Transport vehicles and HEMM at regular interval will be done.	Provision made in Operating Cost	0	0
	Adequate silencers will be provided in all the diesel engines of vehicles.	Provision made in Operating Cost	0	0
	It will be ensured that all transportation vehicles	Provision made in Operating Cost	0	0

	carry a fitness			
	Safety tools and implementations that are required will be kept adequately near blasting site at the time of charging.	Provision made in OHS part	0	0
	Line Drilling all along the boundary to reduce the PPV from blasting activity and implementing controlled blasting.	Provision made in Operating Cost	0	0
	Proper warning system before blasting will be adopted and clearance of the area before blasting will be ensured.	Blowing Whistle by Mining Mate / Blaster / Competent Person	0	0
	Provision for Portable blaster shed	Installation of portable blasting shelter	50000	2000
	NONEL Blasting will be practiced to control Ground vibration and fly rocks	Rs. 30/- per 6 tons of blasted material	0	3413124
	Total Noise Envir	ronment	50000	3415124
Water Environm ent	Water Management	Provision for garland drain @ Rs. 10,000/- per hectare with maintenance of Rs. 5,000/- per annum (4.82.7 ha X 10000)	30000	15000
Total Water Environment			30000	15000
Waste Managem ent	Waste management (Spent Oil, Grease etc.,)	Provision for domestic waste collection and disposal through authorized agency (capital cost, recurring cost for collection /disposal).	25000	20000
		Installation of dust bins	5000	2000
	Bio toilets will be made available outside mine	Provision made in Operating Cost	0	0

	lease on the land of			
	owner itself			
Total Waste Management		30000	22000	
Implement				
ation of	Size 6' X 5' with blue			
EC,	background and white	Fixed display board at the		
Mining	letters as mentioned in	quarry entrance as	10000	1000
Plan &	MoM Appendix II by	permanent structure		
DGMS	the SEAC TN			
Condition				
	Total Implementation of l	EC, Mining Plan	10000	1000
		Provision of PPE @ Rs.		
	Workers will be	4000/- per employee with		
	provided with Personal	recurring based on wear and	72000	18000
	Protective Equipment	tear (say, @ Rs. 1000/- per		
		employee)		
	Health checkup for	IME & PME Health		
	workers will be	checkup @ Rs. 1000/- per	0	18000
	provisioned	employee		
	First aid facility will be	Provision of 2 Kits per	0	12000
	provided	Hectare @ Rs. 2000/-	0	12000
	Mine will have safety	Provision for signages and		
	precaution signages,	boards made	10000	2000
	boards.			
Occupatio	Barbed Wire Fencing to	Per Hectare fencing Cost @		
nal Health	quarry area will be	Rs. 2,00,000/- with	600000	30000
and Safety	provisioned.	Maintenance of Rs 10,000/-		
	No gogling will be	per annum (4.82.7 hectare)		
	provided on the			
	transport routes			
	Separate provision on	Parking area with shelter		
	the south side of the hill	and flags @ Rs. 50,000/-		
	will be made for	per hectare project and Rs.	150000	30000
	vehicles /HEMMs	10,000/- as maintenance		
	Flaggers will be	cost		
	deployed for traffic			
	management			
	Installation of CCTV	Camera 4 Nos, DVR,		
	cameras in the mines	Monitor with internet	30000	5000
	and mine entrance	facility		
		Mines Manager (1 st Class / 2 nd Class / Mine Foreman)		
------------	--------------------------	--	-------------	----------
	Implementation as per	under regulation 34 / 34 (6)		
	Mining Plan and ensure	of MMR, 1961 and Mining	0	780000
	safe quarry working	Mate under regulation 116	0	700000
	sale quality working	of MMR,1961 @ 40,000/-		
		for Manager & @ 25,000/-		
		for Foreman / Mate		
	Total Occupational Hea	lth and Safety	862000	895000
		Site clearance, preparation		
		of land, digging of pits		
		/trenches, soil amendments,		
		transplantation of saplings	120000	19000
	Green belt	@ 200 per plant (capital) for	120000	18000
Developm	development - 500 trees	plantation inside the lease		
ent of	per hectare (200 Inside	area and @ 30 per plant		
Green Belt	Lease Area & 300	maintenance (recurring))"		
	Outside Lease Area)	Avenue Plantation @ 300		
	,	per plant (capital) for		
		plantation outside the lease	270000	27000
		area and @ 30 per plant		
		maintenance (recurring)		
	Total Development of	f Green Belt	390000	45000
	Closure includes 10%	of the amount allotted for		
	Greenbelt development	, wire fencing, and garland		
Mine	drainage (Rule 27 in MCI	OR 2017 for Cat B mines will	0	102000
Closure	pay 2 lakhs per hectar			
	financial assu	rance of 5 lakhs)		
		Section IVA of TNMMCR		
	G.O.(Ms)No.23, Dated:	1959 (@10% of Seigniorage	10070757	0
	28.09.2021	Fee) (Seigniorage Fee for	109/0/5/	U
		Roughstone = $Rs.90$)		
	Total Seigniora	10970757	0	
	-		4641874	
	TOTAL	13387757	(Excl. Mine	
				Closure)

I st Year	II nd Year	III rd Year	IV th Year	V th Year (including Mine Closure Cost)	Total Recurring Cost	Total EMP Cost
4641874	4873968	5117667	5373550	5744227	25751286	39139043

Table 10.2 Estimation of Overall EMP Budget after Adjusting 5% Annual Inflation

In order to implement the environmental protection measures, an amount of **Rs.13387757** as capital cost and recurring cost as **Rs.4641874** as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the overall EMP cost for 5 years will be **Rs.39139043** as shown in Table 10.2.

10.3 CONCLUSION

Various aspects of mining activities were considered and related impacts were evaluated. Considering all the possible ways to mitigate the environmental concerns Environmental Management Plan was prepared and fund has been allocated for the same. The EMP is dynamic, flexible and subjected to periodic review. For project where the major environmental impacts are associated, EMP will be under regular review. Senior Management responsible for the project will conduct a review of EMP and its implementation to ensure that the EMP remains effective and appropriate. Thus, the proper steps will be taken to accomplish all the goals mentioned in the EMP and the project will bring the positive impact in the study area.

CHAPTER XI SUMMARY AND CONCLUSION

11.1 INTRODUCTION

As the proposed rough stone mining project (P1) falls within the quarry cluster of 500 m radius with the total extent of 6.00.0 ha, it requires submission of EIA report for grant of Environmental Clearance (EC) after conducting public hearing. The proposed project falling in S.F.No.202/1 (Part-A) over the extent of 3.00.0 ha is situated in the cluster falling in Kondappanayanapalli Village, Krishnagiri Taluk, Krishnagiri District and Tamil Nadu. The quarries involved in the calculation of cluster extent are three proposed quarries, one existing quarries, and the one expired quarry.

11.2 PROJECT DESCRIPTION

The proposed project area is located between Latitudes from $12^{\circ}39'58.32"N$ to $12^{\circ}40'05.09"N$ and Longitudes from $78^{\circ}07'42.23"E$ to $78^{\circ}07'50.93"E$ in Kondappanayanapalli Village, Krishnagiri Taluk, Krishnagiri District and Tamil Nadu. According to the approved mining plan, about $1218973 m^3$ of rough stone will be mined up to the ultimate depth of 92 m (8 AGL + 84m BGL) in the five years. The quarrying operation is proposed to be carried out by opencast semi mechanized mining method involving drilling, blasting, and formation of benches of the prescribed dimensions.

11.3 DESCRIPTION OF THE ENVIRONMENT

Baseline data were collected to evaluate the existing environmental condition in the core and buffer areas during October to December, 2023 as per CPCB guidelines. The data were collected by both the FAEs and NABL accredited and MoEF notified Excellence Laboratory for the environmental attributes including soil, water, noise, air and by FAEs for ecology and biodiversity, traffic, and socio-economy.

11.3.1 Land Environment

Land use pattern of the area of 5 km radius was studied using Sentinel II imagery. LULC types and their extent are given in Table 1.

S. No.	Classification	Area (ha)	Area (%)
1	Crop land	1452.25	18.98
2	Dense Forest	451.66	5.90
3	Fallow land	345.75	4.52
4	Land with or without scrub	4309.69	56.33
5	Mining / Industrial wastelands	10.96	0.14
6	Plantations	973.05	12.72
7	Settlement	19.26	0.25
8	Water bodies	87.54	1.14
	Total	7650.16	100.0

Table.1 LULC Statistics of the Study Area

Source: Sentinel II Satellite Imagery

11.3.2 Soil Environment

The soil samples in the study area show loamy textures varying between silty clay loam, sandy loam and Clay Loam. pH of the soil varies from 6.8 to 7.9 indicating slightly acidic and alkaline nature. Electrical conductivity of the soil varies from 225 to 263 μ s/cm. Bulk density ranges between 1.15 and 1.65 g/cm³. Potassium ranges between 15.34 and 32.8 mg kg⁻¹. Calcium ranges between 118 and 167 mg kg⁻¹. Organic Matter ranges between 1.25 and 1.63 %. Chlorides ranges between 136 and 149 mg kg⁻¹ soil.

11.3.3 Water Environment

Markanda River, Kondapanayanapalli Lake and Dasiripalli lake are the three prominent surface water resources present in the study area. The proposed project area is located 1.20 km NE of the lake Markanda River, 0.04 km E of the Kondapanayanapalli Lake and 4.07 km NE Dasiripalli lake as shown in Table 3.5 and Figure 3.4. Totally, three surface water samples, known as SW1, SW2 and SW3 were collected from the river and lakes to assess the baseline water quality. Four groundwater samples, known as BW1, BW2, BW3 and OW1 were collected from bore wells and open well were analysed for physico-chemical conditions and bacteriological contents in order to assess baseline quality of ground water. Result for surface water sample in the Table 3.6 indicate that the physical, chemical and biological parameters are within permissible limits in comparison with standards of IS10500:2012.

Data regarding depth to groundwater levels are essential to infer the direction of groundwater movement within the study area. Knowledge of groundwater flow direction is must in choosing location for background groundwater quality monitoring well and in locating recharge and discharge areas. Therefore, data regarding groundwater elevations were collected from 9 open wells and 9 bore wells at various locations within 2 km radius around the proposed project sites for the period from March through May 2023 (Pre-Monsoon Season) and from October through December, 2023 (Post Monsoon Season). According to the data, average depths to the static water table in open wells range from 21.80 to 24.57 m BGL in pre monsoon and 17.92-18.90 m BGL in post monsoon.

11.3.4 Air Environment

As per the monitoring data, $PM_{2.5}$ ranges from 16.6 µg/m³ to 18.4 µg/m³, PM_{10} from 38.8 µg/m³ to 43.1µg/m³, SO₂ from 3.4 µg/m³ to 4.9 µg/m³. NO_X from 10.9µg/m³ to 15.7g/m³. The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

Air quality Index (AQI)

The AQI shows that the air quality of the study area falls within good category 41causing minimal impact to human health.

11.3.5 Noise Environment

Noise level in core zone was 46.7 dB (A) Leq during day time and 38.8dB(A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 40.8 to 49.6dB (A) Leq and during night time from 35.4 to 40.80dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB

11.3.6 Biological Environment

The study found that there is no endemic, endangered migratory fauna found in the area. This area is not also a migratory path of any faunal species. Hence, this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

Flora in mine lease area (core zone)

Taxonomically 17 species belonging to 13 families have been recorded from the core mining lease area. Based on habitat classification of the enumerated plants the majority of species were 3 Tree followed by Herbs & Climbers & Grass 8, Shrubs 6. Details of flora with the scientific name were mentioned in Table.3.21-3.23.

Flora in 300 m radius buffer zone

Taxonomically 39 species belonging to 25 families have been recorded from the 300 m radius buffer zone. Based on habitat classification of the enumerated plants the majority of species were seven Tree 11 followed by Herbs & Climbers & Grass 21, Shrubs 7. Details of flora with the scientific name and species richness index were mentioned in Table.3.24-3.25.

Flora in 10 km radius buffer zone

Similar type of environment also in buffer area but with more flora diversity compare than core zone area, because of nearby agriculture land was found to be dominate in all the directions. Majority of the flat landscape around project unit is occupied by agriculture fields. It contains a total of 89 species belonging to 43 families have been recorded from the buffer zone. The floral (89) varieties among them Trees 37 (42%) Shrubs 13 (14%) and Herbs & Climbers & Creeper & Cactus 39 (44%). Details of flora with the scientific name were mentioned in Table.3.26

Fauna in Core Zone

A total of 26 varieties of species were observed in the Core zone (Table.3.28). Among them are 8 Insects, 5 Reptiles, 4 Mammals and 9 Avian. A total of 26 species belonging to 20 families were recorded from the core area. The study shows that number of species decreases towards the mining area. This might be due the lack of vegetation. None of these species in the core zone are threatened or endemic. The survey was conducted to identify species listed in IUCN Red List. According to the field data, any species are not of Schedule I and nine species are of schedule IV. There are no critically endangered, endangered, vulnerable and endemic species were observed. Details of fauna in core zone with the scientific name were mentioned in Table 3.29.

11.3.7 Socio Economic Environment

The proposed project will provide direct and indirect employment and improve the infrastructural facilities in that area, thus leading to the improvement of people's standard of living.

11.4 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 11.4.1 Land Environment

Anticipated Impact

- Change in land use and land cover and topography of the mine lease area
- Problems to human habitations due to dust and noise caused by movement of heavy vehicles
- Soil erosion and sediment deposition in the nearby water bodies during the rainy season
- Siltation of water course due to wash off from the exposed working area
- Deterioration of soil quality in the surrounding area due to runoff from the project area
- Decrease in the agricultural productivity of the surrounding land due to soil quality degradation

Mitigation Measures

- Construction of garland drains, settling pits, and check dams to prevent runoff and siltation
- Runoff water will be discharged into the settling tanks to reduce suspended sediment loads before runoff is discharged from the quarry site
- The vegetation will be retained at the site wherever possible
- Weekly monitoring and daily maintenance of erosion control systems so that they perform as specified specially during rainy season

11.4.2 Water Environment Anticipated Impact

- Surface and ground water resources may be contaminated due to pit water discharge, domestic sewage, discharge of oil and grease bearing waste water from washing of vehicles and machineries, and washouts from surface exposure or working areas
- As the proposed project acquires 4.0 KLD of water from water vendors, it will not extract water by developing abstraction structures in the lease area. Therefore, the project will not have impact on depletion of aquifer beneath the lease area.

Mitigation Measures

- Rain water from mine pit will be treated in settling tanks before being used for dust suppression and tree plantation purposes
- Domestic sewage from site office will be discharged in septic tank and then directed to soak pits
- Water from the tipper wash-down facility and machinery maintenance yard will be passed through interceptor traps/oil separators prior to its reuse
- The garland drainage will be connected to settling tank and sediments will be trapped in the settling tanks and only clear water will be discharged to the natural drainage
- Periodic (every 6 month once) analysis of ground water quality of quarry pit water and ground water of nearby villages will be conducted
- Artificial recharge structures will be established in suitable locations as part of the rainwater harvesting management program.

11.4.3 AIR ENVIRONMENT

Anticipated Impact

Anticipated increase of the air pollutants due to quarrying activities have been predicted using AERMOD software. The values of cumulative concentration i.e., background

+ incremental concentration of pollutant in all the receptor locations are still within the prescribed NAAQ limits without effective mitigation measures. By adopting suitable mitigation measures, the pollutant levels in the atmosphere can be controlled further

Mitigation Measures

- To control dust at source, wet drilling will be practiced. Where there is a scarcity of water, suitably designed dust extractor will be provided for dry drilling along with dust hood at the mouth of the drill-hole collar
- Controlled blasting will be carried out using suitable explosive charge and short delay detonators, adequate stemming of holes at collar zone
- Blasting will be restricted to a particular time of the day i.e., at the time of lunch hours
- Before loading of material water will be sprayed on blasted material
- Dust mask will be provided to the workers and their use will be strictly monitored
- Water will be sprinkled on haul roads twice a day to avoid dust generation during transportation
- Transportation of material will be carried out during day time and material will be covered with tarpaulin
- The speed of tippers plying on the haul road will be limited to < 20 km/hr to avoid generation of dust
- The un-metaled haul roads will be compacted weekly before being put into use
- It will be ensured that all transportation vehicles carry a valid PUC certificate
- Haul roads and service roads will be graded to clear accumulation of loose materials
- Planting of trees all along main mine haul roads and around the project site will be practiced to prevent the generation of dust
- Dust mask will be provided to the workers and their use will be strictly monitored

11.4.4 Noise Environment

Anticipated Impact

Total noise level in all the sampling areas is well below the CPCB standards for industrial and residential areas. The peak particle velocity produced by the charge of 86.90kg is well below that of 0.3 mm/s as per Directorate General of Mines Safety for safe level criteria through Circular No. 7 dated 29/8/1997.

Mitigation Measures

• The blasting operations in the cluster quarries will use shallow holes and delay detonators to reduce the ground vibrations

- Proper quantity of explosives, suitable stemming materials and appropriate delay system will be used during blasting
- Adequate safe distance from blasting will be maintained as per DGMS guidelines
- Blasting shelter will be provided as per DGMS guidelines
- Blasting operations will be carried out only during day time
- During blasting, other activities in the immediate vicinity will be temporarily stopped
- Drilling parameters like depth, diameter and spacing will be properly designed to give proper blast
- A fully trained explosives blast man (Mining Mate, Mines Foreman, 2nd Class Mines Manager/ 1st Class Mines Manager) will be appointed
- A set of shot firing rules will be drawn up and blasting shall commence outlining the detailed operating procedures that will be followed to ensure that shot firing operations on site take place without endangering the workforce or public
- Sufficient angular stemming material will be used to confine the explosive force and minimise environmental disturbance caused by venting / misfire
- The detonators will be connected in a predetermined sequence to ensure that only one charge is detonated at any one time and a NONEL or similar type initiation system will be used
- The detonation delay sequence shall be designed so as to ensure that firing of the holes is in the direction of free faces so as to minimise vibration effects
- Vibration monitoring will be carried out every 6 months to check the efficacy of blasting practices.

11.4.5 Biological Environment

Impact on Ecology and Biodiversity

- During loading the truck, dust generation will be likely. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly
- The Number of plants in the mining lease area is given in chapter 3 table 3.21 which vegetation in the lease area may be removed during mining.
- Carbon released from quarrying machineries and tippers during quarrying would be 10243 kg per day, 2765692 kg per year and 13828460 kg over five years.

Mitigation Measures on Flora

• During conceptual stage, the top bench will be re-vegetated by planting local /native species and lower benches will be converted into rainwater harvesting structure

following completion of mining activities, which will replace habitat resources for fauna species in this locality over a longer time.

- None of the plants in the lease area will be cut during operational phase of the mine. we recommend uprooting and planting of the 10 trees along the 7.5 m safety zone to prevent environmental pollution during quarrying. As the survival rate due to uprooting was only 30%, 100 seedlings will be procured at the rate of 10 seedlings per tree and planted in 7.5 m safety zone.
- Existing roads will be used; new roads will not be constructed to reduce impact on flora.
- To mitigate carbon emission due to mining activities, we recommend planting trees around the quarry to offset the carbon emission during quarrying. A tree can sequester 35964 kg of carbon per year. Therefore, we recommend 1500 planting large number of trees around the quarry and near school campuses, government wasteland, roadsides etc.
- As per the greenbelt development plan as recommended by SEAC (Table 4.12), about 1500 trees (Table 4.13) will be planted within three months from the beginning of mining. These trees, when grown up would sequester carbon of about 113739 kg of the total carbon.

Anticipated Impact on Fauna

- Direct impact is anticipated on fauna of core zone
- Insignificant impact is anticipated on fauna in the buffer area due to air emissions, noise, vibration, transportation, waste water discharges, and changes in land use

Mitigation Measures on Flora

- Fencing will be constructed around the proposed mine lease area to restrict the entry of stray animals
- The workers shall be trained not to harm any wildlife near the project site

11.4.6 Socio Economic Environment

An essential part of environmental study is socio-economic environment incorporating various facts related to socio-economic conditions in the area, which deals with the total environment. Socio economic study includes demographic structure of the area, provision of basic amenities viz., housing, education, health and medical services, occupation, water supply, sanitation, communication, transportation, prevailing diseases pattern as well as feature of aesthetic significance such as temples, historical monuments etc. at the baseline level. This would help in visualizing and predicting the possible impact depending upon the nature and magnitude of the project. Socio-economic study of an area provides a good opportunity to assess the socio -economic condition and possibly makes a change in living and social standards of the particular area benefitted due to the project.

11.4.7 Occupational Health

- All the persons will undergo pre-employment and periodic medical examination
- Employees will be monitored for occupational diseases by conducting medical tests: General physical tests, Audiometric tests, Full chest, X-ray, Lung function tests, Spiro metric tests, Periodic medical examination – yearly, Lung function test – yearly, those who are exposed to dust and Eye test
- Essential medicines will be provided at the site. The medicines and other test facilities will be provided at free of cost.
- The first aid box will be made available at the mine for immediate treatment. First aid training will be imparted to the selected employees regularly. The lists of first aid trained members shall be displayed at strategic places.

S.	Environment	Location	Mon	itoring	Daramatars	
No.	Attributes	Location	Duration	Frequency	rarameters	
1	Air Quality	2 Locations (1 Core & 1 Buffer)	24 hours	Once in 6 months	Fugitive Dust, PM _{2.5} , PM ₁₀ , SO ₂ and NO _x .	
2	Meteorology	At mine site before start of Air Quality Monitoring & IMD Secondary Data	Hourly / Daily	Continuous online monitoring	Wind speed, Wind direction, Temperature, Relative humidity and Rainfall	
3	Water Quality Monitoring	2 Locations (1SW & 1 GW)	-	Once in 6 months	Parameters specified under IS:10500, 1993 & CPCB Norms	
4	Hydrology	Water level in open wells in buffer zone around 1 km at specific wells	-	Once in 6 months	Depth in m BGL	
5	Noise 2 Locations (1 Co & 1 Buffer)		Hourly – 1 Day	Once in 6 months	Leq, Lmax, Lmin, Leq Day & Leq Night	
6	Vibration	At the nearest habitation (in case of reporting)	_	During blasting operation	Peak particle velocity	
7	Soil	2 Locations (1 Core & 1 Buffer)	_	Once in six months	Physical and chemical characteristics	
8	Greenbelt	Within the project area	Daily	Monthly	Maintenance	

11.5 Environment Monitoring Program

Source: Guidance of manual for mining of minerals, February 2010

11.6 ADDITIONAL STUDIES

11.6.1 Risk Assessment

The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention. The whole quarry operation will be carried out under the direction of a Qualified Competent Mine Manager holding certificate of competency to manage a metalliferous mine granted by the DGMS, Dhanbad for proposed project.

11.6.2 Disaster Management Plan

The objective of the disaster management plan is to make use of the combined resources of the mine and the outside services to:

- Rescue and treat casualties;
- Safeguard other people;
- Minimize damage to property and the environment;
- Initially contain and ultimately bring the incident under control;
- Secure the safe rehabilitation of affected area; and
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency.

11.6.3 Cumulative Impact Study

The results on the cumulative impact of the four proposed projects on air environment of the cluster do not exceed the permissible limits set by CPCB for air pollutants.

- The cumulative results of noise for the habitation in consideration do not exceed the limit set by CPCB for residential areas for day time
- PPV resulting from two proposed project is well below the permissible limit of Peak Particle Velocity of 5 mm/s
- The proposed two projects will allocate Rs. 10,00,000/- towards CER as recommended by SEAC
- The proposed two projects will directly provide jobs to 36 local people, in addition to indirect jobs
- The proposed two projects will plant 3000 about trees in and around the lease area
- The proposed two projects will add 870 PCU per day to the nearby roads.

11.7 Project Benefits

Various benefits are envisaged due to the proposed mine and benefits anticipated from the proposed project to the locality, neighbourhood, region and nation as a whole are:

- Direct employment to 18 local people
- Creation of community assets (infrastructure) like school buildings, village roads/ linked roads, dispensary & health Centre, community Centre, market place etc.,
- Strengthening of existing community facilities through the Community Development Program
- Skill development & capacity building like vocational training.
- Rs. 5,00,000 will be allocated for CER

11.8 ENVIRONMENT MANAGEMENT PLAN

In order to implement the environmental protection measures, an amount of **Rs.13387757** as capital cost and recurring cost as **Rs.4641874** as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the overall EMP cost for 5 years will be **Rs.39139043**.

CHAPTER XII

DISCLOSURES OF CONSULTANT

The Project Proponent, **M/s. Sri Venkateshwara Blue Metals** has engaged **Geo Technical Mining Solutions**, a NABET accredited consultancy for carrying out the EIA study as per the ToR issued.

Address of the consultancy:

No: 1/213B Natesan Complex, Oddapatti, Dharmapuri – 636705, Tamil Nadu, India. Email:<u>info.gtmsdpi@gmail.com</u> Web: <u>www.gtmsind.com</u> Phone: 04342 232777.

The accredited experts and associated members who were engaged in this EIA study are given below:

S.No.	Name of the expert	In house/ Empanelled	Sector	Functional Area	Categ
5.1 (0.	Nume of the expert			i unctional / ii cu	ory
	App	roved Functional Area Ex	perts & E	C	
1	Dr. S. Karuppannan	EIA Coordinator (EC) In-house	1(a)(i)	Mining	В
2 Dr. M. Vijayprabhu		In-house FAE	1(a)(i)	HG, LU, GEO	В
3	Dr. J. Rajarajeswari	In-house, FAE	1(a)(i)	EB, SC	В
4	Dr. G. Prabakaran	In-house, FAE	1(a)(i)	SE	В
5	Dr. R. Arunbalaji	In-house, FAE	1(a)(i)	AP, AQ, NV	В
6	J.N. Manikandan	Empanelled FAE	1(a)(i)	RH, SHW, AP	В
7	Dr. S. Malar	In-house, FAE	1(a)(i)	WP	В
8	G. Umamaheswaran	In-house, FAE	1(a)(i)	HG, LU, GEO	В
9	P. Venkatesh	In-house, FAE	1(a)(i)	AP	В
10	Dr. D.Kalaimurugan	In-house, FAE	1(a)(i)	SC	В
11	A.Kottaimanmathan	Empanelled FAE	1(a)(i)	LU	В
	Ар	proved Functional Area A	Associates		
12	G. Prithiviraj	FAA	1(a)(i)	LU, HG	В
13	C. Kumaresan	FAA	1(a)(i)	NV	В
14	P. Vellaiyan	FAA	1(a)(i)	HG, GEO	В
16	P. Dhatchayini	FAA	1(a)(i)	AQ	В
17	V. Malavika	FAA	1(a)(i)	NV, SHW	В
		Abbreviations			

EC	EIA Coordinator	NV	Noise and Vibration
FAE	Functional Area Expert	SE	Socio Economics
FAA	Functional Area Associates	HG	Hydrology, ground water and water conservation
TM	Team Member	SC	Soil conservation
GEO	Geology	RH	Risk assessment and hazard management
WP	Water pollution monitoring, prevention and control	SHW	Solid and hazardous wastes
AP	Air pollution monitoring, prevention and control	MSW	Municipal Solid Wastes
LU	Land Use	ISW	Industrial Solid Wastes
AQ	Meteorology, air quality modelling, and prediction	HW	Hazardous Wastes
EB	Ecology and bio-diversity	GIS	Geographical Information System

DECLARATION BY EXPERTS CONTRIBUTING TO THE EIA & EMP

I, hereby, certify that I was a part of the EIA team in the following capacity that developed the EIA & EMP report.

:

Signature

In	Dan	2
e		0

Date:Name:Designation:Name of the EIA Consultant Organization:Period of Involvement:

: Dr. S. Karuppannan

- : EIA Coordinator
- : Geo Technical Mining Solutions

Period of Involvement : Till date We, the FAEs and FAAs hereby declare that information furnished in this EIA/EMP report for **M/s.Sri Venkateshwara Blue Metals** rough stone quarry project with the extent of 3.00.0 ha situated in the cluster with the extent of 6.00.0 ha in Kondappanayanapalli Village,

Krishnagiri Taluk, Krishnagiri District and Tamil Nadu is true and correct to the best of our knowledge.

S. No.	Functional Area	Involvement	Name of the Experts	Signature
1	AP	 Identification of different sources of air pollution due to the proposed mine activity Dradiation of air pollution and 	J.N. Manikandan	likept
		 Prediction of air pollution and propose mitigation measures / control measures 	P.Venkatesh	ebeepe P. Uhe

List of Functional Area Experts Engaged in this Project

		• Suggesting water treatment			
		systems, drainage facilities			
	WD	• Evaluating probable impacts of		a march	
2	WP	effluent/waste water discharges		p. man	
		into the receiving	Dr.S. Malar		
		environment/water bodies and			
		suggesting control measures.			
		• Interpretation of ground water			
2		table and predict impact and	G. Uma	an B	
3	HG	propose mitigation measures.	Maheswaran	G Umanney	
		• Analysis and description of aquiler			
		characteristics			
		regional and local geology of the			
		area			
		\circ Preparation of mineral and	Dr M Vijav		
4	GEO	geological maps	Prabhu	M. (Homon	
		• Geology and Geo morphological	Tuonu		
		analysis/description and			
		Stratigraphy/Lithology.			
		• Revision in secondary data as per			
		Census of India, 2011.			
-	95	• Impact Assessment & Preventive		(D) (K :1	
5	SE	SE	Management Plan	Dr. G. Prabhakaran	Training
		• Corporate Environment		1/*	
		Responsibility.			
		o Collection of Baseline data of			
		Flora and Fauna.			
		• Identification of species labelled as			
		Rare, Endangered and threatened	Dr I	and a	
6	EB	as per IUCN list.	Raiaraieshwari	T. Caropy	
		• Impact of the project on flora and	i ujulujesi () uli	0.0	
	fauna. o Sugge	fauna.			
		• Suggesting species for greenbelt			
		development.			
		• Identification of hazards and			
7	RH	hazardous substances		2. Blept	
		• Risks and consequences analysis	J.N. Manikandan		
		• Vulnerability assessment			

		• Preparation of Emergency		
		Preparedness Plan		
		• Management plan for safety.		
		• Construction of Land use Map		
		• Impact of project on surrounding		1
8	LU	land use	A.Kottaimanmathan	IQA
		• Suggesting post closure sustainable		Mannet
		land use and mitigative measures.		
		• Identify impacts due to noise and		
0	NIV	vibrations		R. A. Beller
9	IN V	• Suggesting appropriate mitigation	Dr.K. Arun Dalaji	Instand.
		measures for EMP.		
		o Identifying different source of		
		emissions and propose predictions		
10	AQ	of incremental GLC using	Dr R Arun Balaii	7 1 Labor
10		AERMOD.		E = I
		• Recommending mitigations		
		measures for EMP		
		• Assessing the impact on soil		
11	SC	environment and proposed	Dr.	Am
	50	mitigation measures for soil	D.Kalaimurugan	DNum +
		conservation		
		o Identify source of generation of		
		non-hazardous solid waste and		
		hazardous waste.		160.002
12	SHW	• Suggesting measures for	J.N. Manikandan	Locept
		minimization of generation of		
		waste and how it can be reused or		
		recycled.		

List of Functional Area Associate Engaged in this Project

S.No.	Name	Functional Area	Involvement	Signature
1	G. Prithiviraj	LU, HG	 Site visit with FAE Provide inputs & Assisting FAE for LU and HG 	C3.7
2	C. Kumaresan	NV	• Assistance to FAE in both primary and secondary data collection	Junear

			• Assistance in noise prediction		
			lilodellilig		
			\circ Field visits along with FAE		
3	P. Vellaiyan	HG & GEO	◦ Assistance to FAE in both primary	====	
			and secondary data collection		
			◦ Site visit with FAE		
4	P. Dhatchayini	AQ	• Assistance to FAE in collection of	Pehetchopie	
			both primary and secondary data		
5	V. Malavika	NV, SHW	 Site visit along with FAE Assistance in report preparation 	V-166	
	DECLARATION BY THE HEAD OF THE ACCREDITED CONSULTANT				

ORGANIZATION

I, Dr. S. KARUPPANNAN, Managing Partner, Geo Technical Mining Solutions, hereby, confirm that the above-mentioned functional area experts and team members prepared the EIA/EMP report for M/s. Sri Venkateshwara Blue Metals rough stone quarry project with the extent of 3.00.0 ha situated in the cluster with the extent of 6.00.0 ha in Kondappanayanapalli Village, Krishnagiri Taluk, Krishnagiri District and Tamil Nadu is true and correct to the best of our knowledge.

Signature

(panz :

Date	:	
Name	:	Dr. S. Karuppannan
Designation	:	Managing Partner
Name of the EIA Consultant Organization	:	Geo Technical Mining Solutions
NABET Certificate No & Issue Date	:	NABET/EIA/2124/SA 0184
Validity	:	Till Apr 2024

THIRU.DEEPAK S. BILGI, I.F.S. MEMBER SECRETARY

STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY-TAMILNADU

3rd Floor, Panagal Maaligai, No.1, Jeenis Road, Saidapet, Chennai - 600 015. Phone No. 044-24359973 Fax No. 044-24359975

TERMS OF REFERENCE (ToR)

Lr.No. SEIAA-TN/F.No.10368/SEAC/1(a)ToR-1612 /2023 Dated: 06.11.2023.

To:

M/s. Sri Venkateshwara Blue Metals,

Prop: A.M. Murugan,

S/o. Mannathan.

No. 4:4,109A, Murthampatty Post,

Mettur Taluk,

Salem District - 636 503.

Sir / Madam,

- Sub: SEIAA, Tamil Nada Proposed Rough stone quarry lease over an extent of 3.00.0 Ha at S.F.Nos. 202/1 (PART- A) of Kondappanayanapalli Village, Krishnagiri Talok, Krishnagiri Destrict, Tamil Nada by M/s. Sri Venkateshwara Blue Metals – under project category – "B1" and Schedule S.No.1(a) "Mining of Minerals Projects" – ToR issued along with Public Hearing – preparation of EIA report – Regarding.
- Ref: 1. Online proposal No.SIA/TN/MIN/442329/2023, Dated: 29.08.2023.
 - 2. Your application submitted for Terms of Reference dated: 31.08.2023.
 - 3. Minutes of the 416th SEAC meeting held on 13.10.2023.
 - 4. Minutes of the 670th SEIAA meeting held on 06.11.2023.

Kindly refer to your proposal submitted to the State Level Impact Assessment Authority for Terms of Reference.

MBER SECRETARY SEIAA-IN

The proponent, M/s. Sri Venkateshwara Blue Metals has submitted an application for Terms of Reference (ToR) on 31.08.2023, for the Proposed Rough stone quarry lease over an extent of 3.00.0 Ha at S.F.Nos. 202/1 (PART- A) of Kondappanayanapalli Village, Krishnagiri Taluk, Krishnagiri District, Tamil Nadu.

Discussion by SEAC and the Remarks:-

The proposal was placed for appraisal in this 416° SEAC meeting held on 13.10.2023. The details of the project furnished by the proponent are given in the website (pariveshnic in)

The SEAC noted the following:

- The project proponent, M/s. Sri Venkateshwara Blue Metals has applied for Terms of Reference for the Proposed Rough stone quarry lease over an extent of 3.00.0 Ha at S.F. Nos. 202/1 (PART- A) of Kondappanayanapalli Village, Krishnagiri Taluk, Krishnagiri District, Tamil Nadu.
- The project/activity is covered under Schedule 1(a) "Mining Projects" of the Schedule to the EIA Notification, 2006.
- Obtained EC From DEIAA File No. Lr. No. 03/DEIAA-KGI/ EC No.70/2018, Dated 27.8.2018.

Now, the proposal was placed in the 416th SEAC meeting held on 13.10.2023. Based on the presentation made by the proponent SEAC recommended grant of Terms of Reference (TOR) with **Public Hearing**, subject to the following TORs, as per the **Annexure I** of this minute, in addition to the standard terms of reference for EIA study for non-coal mining projects and details issued by the MOEF & CC to be included in EIA/EMP Report:

- 1. The proponent is requested to carry out a survey and enumerate on the structures located within the radius of (i) 50 m. (ii) 100 m. (iii) 200 m and (iv) 300 m (v) 500m shall be enumerated with details such as dwelling houses with number of occupants, whether it belongs to the owner (or) not, places of worship, industries, factories, sheds, etc with indicating the owner of the building, nature of construction, age of the building, number of residents, their profession and income, etc.
- The proponent shall discuss in detail regarding the drainage pattern and discuss about the mitigation measures in the EIA report.
- The proponent shall obtain the details regarding the validity of the lease period from the AD (Mines) while submitting the ELA report.

MBER SECRETAR

Lr.No. SEIAA-TN/F.No.10368/SEAC/1(a)/ToR- 1612/2023 Dated: 06.11.2023

SEIAA-TN

ANNEXURE I

- In the case of existing/operating mines, a letter obtained from the concerned AD (Mines) shall be submitted and it shall include the following:
 - (i) Original pit dimension
 - (ii) Quantity achieved Vs EC Approved Quantity
 - (iii) Balance Quantity as per Mineable Reserve calculated.
 - (iv) Mined out Depth as on date Vs EC Permitted depth
 - (v) Details of illegal/illicit mining.
 - (vi) Violation in the quarry during the past working.
 - (vii) Quantity of material mined out outside the mine lease area
 - (viii) Condition of Safety zone benches
 - (ix) Revised/Modified Mining Plan showing the benches of not exceeding 6 m height and ultimate depth of not exceeding 50m.
- Details of habitations around the proposed mining area and latest VAO certificate regarding the location of habitations within 300m radius from the periphery of the site.
- 3. The proponent is requested to carry out a survey and enumerate on the structures located within the radius of (i) 50 m, (ii) 100 m, (iii) 200 m and (iv) 300 m (v) 500m shall be enumerated with details such as dwelling houses with number of occupants, whether it belongs to the owner (or) not, places of worship, industries, factories, sheds, etc with indicating the owner of the building, nature of construction, age of the building, number of residents, their profession and meome, etc.
- 4. The PP shall submit a detailed hydrological report indicating the impact of proposed quarrying operations on the waterbodies like lake, water tanks, etc are located within 1 km of the proposed quarry.
- 5 The Proponent shall carry out Bio diversity study through reputed Institution and the same shall be included in EIA Report.
- The DFO letter stating that the proximity distance of Reserve Forests, Protected Areas, Sanctuaries, Tiger reserve etc., up to a radius of 25 km from the proposed site.
- 7. In the case of proposed lease in an existing (or old) quarry where the benches are not formed (or) partially formed as per the approved Mining Plan, the Project Proponent (PP) shall the PP shall carry out the scientific studies to assess the slope stability of the working benches to be constructed and existing quarry wall, by involving any one of the reputed Research

MBER SECRETARY SELAA-TN

and Academic Institutions - CSIR-Central Institute of Mining & Fuel Research / Dhanhad, NIRM/Bangalore, Division of Geotechnical Engineering-IIT-Madras, NIT-Dept of Mining Engg, Surathkal, and Anna University Chennai-CEG Campus. The PP shall submit a copy of the aforesaid report indicating the stability status of the quarry wall and possible mitigation measures during the time of appraisal for obtaining the EC.

- 8. However, in case of the fresh/virgin quarries, the Proponent shall submit a conceptual "Slope Stability Plan' for the proposed quarry during the appraisal while obtaining the EC, when the depth of the working is extended beyond 30 m below ground level.
- 9. The PP shall furnish the affidavit stating that the blasting operation in the proposed quarry is carried out by the statutory competent person as per the MMR 1961 such as blaster, mining mate, mine foreman, II/I Class mines manager appointed by the proponent.
- 10. The PP shall present a conceptual design for carrying out only controlled blasting operation involving line drilling and muffle blasting in the proposed quarry such that the blast-induced ground vibrations are controlled as well as no fly rock travel beyond 30 m from the blast site.
- The EIA Coordinators shall obtain and farmish the details of quarry/quarries operated by the proponent in the past, either in the same location or elsewhere in the State with video and photographic evidences.
- If the proponent has already carried out the mining activity in the proposed mining lease area after 15.01.2016, then the proponent shall furnish the following details from AD/DD, mines,
- 13. What was the period of the operation and stoppage of the earlier mines with last work permit issued by the AD/DD mines?
- 14. Quantity of minerals mined out:
 - Highest production achieved in any one year
 - · Detail of approved depth of mining.
 - Actual depth of the mining achieved earlier.
 - · Name of the person already mined in that leases area.
 - If EC and CTO already obtained, the copy of the same shall be submitted.
 - Whether the mining was carried out as per the approved mine plan (or EC if issued) with stipulated benches.

BER SECRETA

- 15. All corner coordinates of the mine lease area, superimposed on a High-Resolution Imagary/Topo sheet, topographic sheet, geomorphology, lithology and geology of the mining lease area should be provided. Such an Imagary of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
- 16. The PP shall carry out Drone video survey covering the cluster, green belt, fencing, etc.,
- 17. The proponent shall furnish photographs of adequate fencing, green belt along the periphery including replantation of existing trees & safety distance between the adjacent quarries & water bodies nearby provided as per the approved mining plan.
- 18 The Project Proponent shall provide the details of mineral reserves and mineable reserves, planned production capacity, proposed working methodology with justifications, the anticipated impacts of the mining operations on the surrounding environment, and the remedial measures for the same.
- 19. The Project Propotent shall provide the Organization chart indicating the appointment of various statutory officials and other competent persons to be appointed as per the provisions of the Mines Act'1952 and the MMR, 1961 for carrying out the quarrying operations scientifically and systematically in order to ensure safety and to protect the environment.
- 20 The Project Proponent shall conduct the hydro-geological study considering the contour map of the water table detailing the number of groundwater pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds, etc. within 1 km (radius) along with the collected water level data for both monsoon and non-monsoon seasons from the PWD / TWAD so as to assess the impacts on the wells due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided.
- 21. The proponent shall furnish the baseline data for the environmental and ecological parameters with regard to surface water/ground water quality, air quality, soil quality & flora/fauria including traffic/vehicular movement study.
- 22. The Proponent shall carry out the Cumulative impact study due to mining operations carried out in the quarry specifically with reference to the specific environment in terms of soil health, biodiversity, air pollution, water pollution, climate change and flood control & bealth impacts. Accordingly, the Environment Management plan should be prepared keeping the concerned quarry and the surrounding habitations in the mind.

BER SECRE

- 23. Rain water harvesting management with recharging details along with water balance (both monsoon & non-monsoon) be submitted.
- 24. Land use of the study area defineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
- 25 Details of the land for storage of Overburden/Waste Dumps (or) Rejects outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be provided.
- 26. Proximity to Areas declared as 'Critically Polluted' (or) the Project areas which attracts the court restrictions for mining operations, should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the TNPCB (or) Dept. of Geology and Mining should be secured and furnished to the effect that the proposed mining activities could be considered.
- 27. Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided.
- 28. Impact on local transport infrastructure due to the Project should be indicated.
- 29. A tree survey study shall be carried out (nos., name of the species, age, diameter etc.,) both within the mining lease applied area & 300m buffer zone and its management during mining activity.
- 30 A detailed mine closure plan for the proposed project shalf be included in EIA/EMP report which should be site-specific.
- 31. As a part of the study of flora and fauna around the vicinity of the proposed site, the EIA coordinator shall strive to educate the local students on the importance of preserving local flora and fauna by involving them in the study, wherever possible.
- 32. The purpose of Green belt around the project is to capture the fugitive emissions, carbon sequestration and to attenuate the noise generated, in addition to improving the aesthetics. A wide range of indigenous plant species should be planted as given in the appendix-1 in consultation with the DFO, State Agriculture University. The plant species with dense/moderate canopy of native origin should be chosen. Species of small/medium/tall trees alternating with shrubs should be planted in a mixed manner.

HAMBER SECRETA

Lr.No. SEIAA-TN/F.No.10368/SEAC/1(a)/ToR- 1612/2023 Dated: 06.11.2023

- 33. Tailer/one year old Saplings raised in appropriate size of bags, preferably ecofriendly bags should be planted as per the advice of local forest authorities/botanist/Horticulturist with regard to site specific choices. The proponent shall earmark the greenbelt area with GPS coordinates all along the boundary of the project site with at least 3 meters wide and in between blocks in an organized manner.
- 34. A Disaster management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.
- 35. A Risk Assessment and management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.
- 36 Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 37. Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
- 38 The Socio-economic studies should be carried out within a 5 km buffer zone from the mining activity. Measures of socio-economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.
- 39. Details of Inigation pending against the project, if any, with direction (order passed by any Court of Law against the Project should be given.
- 40. Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.
- 41. If any quarrying operations were carried out in the proposed quarrying site for which now the EC is sought, the Project Proponent shall furnish the detailed compliance to EC conditions given in the previous EC with the site photographs which shall duly be certified by MoEF&CC, Regional Office, Chennai (or) the concerned DEE/TNPCB.
- 42. The PP shall prepare the EMP for the entire life of mine and also furnish the sworn affidavit stating to abade the EMP for the entire life of mine.

MEMBER SECRETAR'

43 Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act, 1986.

No	Scientific Name	Tamil Name	Tamil Name	
1	Augle marmalos	Vilvagis	spin-out	
18.6	Adonamiliera par crima	Manjadi	Light to	
3	Albizia lehtsek	Vaagat	67/04	
4	Albizia stemara	Uni	1.56	
5	Bandunoa purpurda	Mantharai	1 with grants	
6	Bauhirria racembra	Aathu	386	
20	Bauhimia tementee	Insvattu	Aneres	
5	Buchanania axillario	Kattoma	BITL BUDT	
9	Bernsone flabellifer	Parus	Upar	
10	Butea monorperma	Muralekamarana	0.58.84070	
11	Befast cuiba	Datas Settulatas	380	
12	Califyingflam mayingflues	Punnai	Unition	
13	Gauste fistule	Serakondras	are Bandara	
14	Cannia roochurghn	Servondrai	GanGalumo	
15	Chloroxylon successin	Puratamacam	Late jent	
16	Cochlospermum religionum	Kongu, Manjallavu	Barrag, Logan	
13	Cordia dichiateena	Naruvula	3.344	
19	Cristeria adaminani	Matalingiam	and automatic	
19	Dillema indica	Uva, Uzha	4.41	
30	Differing positagynie	Suruliva Satrusha	F2 2 . 11	
21	Dioppyro sebenium	Karungali	A STARTO	
22	Dionpyre schlercoylen	Vaganai	Curteren cet	
13	Ficus amplisana	Kalltchi	20 300	
24	Hibercus tiliactou	Astroportarates		
25	Hardunckia huesta	Aacha	1440	
26	Holoptalia integrifolia	Aavili	Teller were market	
27	Lannee coromanActica	Odhiam	100	
雄	Edministrocenta speciona	Poo Marudha	U DAL	
29	Laprenautheur fotesplauthe	Netcottamanan	STALL BATTLE MILL	
10	Linumus acidisminus	Vile maran	elses and	
11	Lithen glutimite	Pinimpaltai	addut Statutan	
12	Madhuca longifetia	Biuppai	Sport	
53	Marrillara hexatulea	ClabkatPastar	ALMARIA LINES	
14	Minnasops clongs	Magizhamaram indipune		
15	Metrapypia partificia	Kadambu Buitu		
6	Morrida pubescente	Nuns	Nuna	
17.	Morinda citrifolia	Vellar Nuta Station autor		
15	Phoenux sylventre	Eachai	*##iont	
9	Pongamia pinnat	Pungam	LUNE	

Appendix -I List of Native Trees Suggested for Planting

IBER-SECRETARY SELAA-TN

40	Prenna mellippina	Muunai	- United at the state
41	Primuna servatifities	Narumonta	3123 Genetistian
42	Promna temenitosa	Malaipoostarasts	LOON LOUP
43	Presentation concerns	Vanni manam	Rowth of Logib
44	Provocorpus contracentos	Venuski	Bestiettet.
:45	Pteratperminin consistent	Vennangu, Tada	Goutenting
46	Prerosperman xylocarpium	Polava	LINCES
47	Patteramerea realmargla	Nampala	A DUTOUT
45	Salvadora persion	Ugan Marson	onal stea
40	Signification consergination	Marupungan. Soapukas	Berlaskatu
50	Sittlet areas	Asoca	ARTIES
51	Stroteus usper	Piray maram	dano unh
52	Strychnas mixeamic	Yeth	an.g
33	Strigefining purtailorium	Therthaug Kottai	BAAANS GATLERL
34	Syzygoun commi	Naval	31944
35	Terminata bellera	Thandri	61935
50	Terminalia arjuna	Ven manadhu	Genet wate
乾	Teena estuata	Sandhana vembra	#54.00 Geudia
58	Thesperist populates	Pavazára	Vera
59:	ProduceraryState	visiouria	BATHD-BUTT
00	Wrightin toursonid	Veppatai	DASKILLTONU
01	Pethnoellebrorn disloc	Kodukkapuli	Sangaantapet

Discussion by SEIAA and the Remarks:-

The subject was placed in the 670th Authority meeting held on 06.11.2023. The authority noted that the subject was appraised in 416th SEAC meeting held on 13.10.2023.

Based on the presentation and documents furnished by the project proponent, SEAC after detailed deliberations, decided to recommend the proposal for the grant of Terms of Reference (ToR).

After detailed discussions, the Authority accepts the recommendation of SEAC and decided to grant Terms of Reference (ToR) along with Public Hearing under cluster for undertaking the combined Environment Impact Assessment Study and preparation of separate Environment Management Plan subject to the conditions as recommended by SEAC & normal conditions in addition to the following conditions and the conditions mentioned in 'Annexure B' of this minute:

Annexure 'B'

Cluster Management Committee

 Cluster Management Committee shall be framed which must include all the proponents in the cluster as members including the existing as well as proposed quarry.

BER SECRE

Page 9 of 22

161

- The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development, Water sprinkling, tree plantation, blasting etc.,
- 3 The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.
- 4. Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.
- 5. The committee shall deliberate on risk management plan pertaining to the cluster in a holistic manner especially during natural calamities like intense rain and the mitigation measures considering the inundation of the cluster and evacuation plan.
- 6. The Cluster Management Committee shall form Environmental Policy to practice sustainable mining in a scientific and systematic manner in accordance with the law. The role played by the committee in implementing the environmental policy devised shall be given in detail.
- The committee shall furnish action plan regarding the restoration strategy with respect to the individual quarry falling under the cluster in a holistic manner.
- 8. The committee shall furnish the Emergency Management plan within the cluster.
- The committee shall deliberate on the health of the workers staff involved in the mining as well as the health of the public.
- The committee shall furnish an action plan to achieve sustainable development goals with reference to water, sanitation & safety.
- 11. The committee shall furnish the fire safety and evacuation plan in the case of fire accidents.

Impact study of mining

- 12. Detailed study shall be carried out in regard to impact of mining around the proposed mine lease area covering the entire mine lease period as per precise area communication order issued from reputed research institutions on the following.
 - a) Soil health & soil biological, physical land chemical features .
 - b) Climate change leading to Droughts, Floods etc.
 - c) Pollution leading to release of Greenhouse gases (GHG), rise in Temperature, & Livelihood of the local people.
 - d) Possibilities of water contamination and impact on aquatic ecosystem health.
 - e) Agriculture, Forestry & Traditional practices.

MBER SECRETARY SELAA-TN

- f) Hydrothermal/Geothermal effect due to destruction in the Environment.
- g) Bio-geochemical processes and its foot prints including environmental stress.
- h) Sediment geochemistry in the surface streams.

Agriculture & Agro-Biodiversity

- 13. Impact on surrounding agricultural fields around the proposed mining Area.
- 14. Impact on soil flora & vegetation around the project site.
- 15. Details of type of vegetations including no. of trees & shrubs within the proposed mining area and. If so, transplantation of such vegetations all along the boundary of the proposed mining area shall committed mentioned in EMP.
- 16. The Environmental Impact Assessment should study the biodiversity, the natural ecosystem, the soil micro flora, fauna and soil seed banks and suggest measures to maintain the natural Ecosystem.
- Action should specifically suggest for sustainable management of the area and restoration of ecosystem for flow of goods and services.
- 18. The project proponent shall study and furnish the impact of project on plantations in adjoining patta lands, Horticulture, Agriculture and livestock.

Forests

- 19. The project proponent shall detailed study on impact of mining on Reserve forests free ranging wildlife.
- The Environmental Impact Assessment should study impact on forest, vegotation, endemic, vulnerable and endangered indigenous flora and finina.
- 21. The Environmental Impact Assessment should study impact on standing trees and the existing trees should be numbered and action suggested for protection.
- The Environmental Impact Assessment should study impact on protected areas, Reserve Forests, National Parks, Corridors and Wildlife pathways, near project site.

Water Environment

23. Hydro-geological study considering the contour map of the water table detailing the number of ground water pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds etc. within 1 km (radius) so as to assess the impacts on the nearby waterbodies due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided, covering the entire mine lease period.

MEMBER SECRETARY

- 24. Erosion Control measures.
- 25. Detailed study shall be carried out in regard to impact of mining around the proposed mine lease area on the nearby Villages, Water-bodies/ Rivers, & any ecological fragile areas.
- The project proponent shall study impact on fish habitats and the food WEB/ food chain in the water body and Reservoir.
- 27. The project proponent shall study and furnish the details on potential fragmentation impact on natural environment, by the activities.
- 28. The project proponent shall study and furnish the impact on aquatic plants and animals in water bodies and possible scars on the landscape, damages to nearby caves, heritage site, and archaeological sites possible land form changes visual and aesthetic impacts.
- 29. The Terms of Reference should specifically study impact on soil health, soil erosion, the soil physical, chemical components and microbial components.
- The Environmental Impact Assessment should study on wetlands, water bodies, rivers streams, lakes and farmer sites.

Energy

31. The measures taken to control Noise, Air. Water, Dust Control and steps adopted to efficiently utilise the Energy shall be furnished.

Climate Change

- 32. The Environmental Impact Assessment shall study in detail the earbon emission and also suggest the measures to mitigate carbon emission including development of carbon sinks and temperature reduction including control of other emission and climate mitigation activities.
- 33. The Environmental Impact Assessment should study impact on climate change, temperature rise, pollution and above soil & below soil carbon stock.

Mine Closure Plan

34. Detailed Mine Closure Plan covering the entire mine lease period as per precise area communication order issued.

EMP

- 35 Detailed Environment Management Plan along with adaptation, mitigation & remedial strategies covering the entire mine lease period as per precise area communication order insued.
- 36. The Environmental Impact Assessment should hold detailed study on EMP with budget for Green belt development and mine closure plan including disaster management plan.

BER SECRETA

164

Risk Assessment

37. To furnish risk assessment and management plan including anticipated vulnerabilities during operational and post operational phases of Mining.

Disaster Management Plan

38. To furnish disaster management plan and disaster mitigation measures in regard to all aspects to avoid/reduce vulnerability to hazards & to cope with disaster/untoward accidents in &around the proposed mine lease area due to the proposed method of mining activity & its related activities covering the entire mine lease period as per precise area communication order issued.

Others

- 39. The project proponent shall furnish VAO certificate with reference to 300m radius regard to approved habitations, schools, Archaeological sites, Structures, railway lines, roads, water bodies such as streams, odai, vaari, canal, channel, river, lake pond, tank etc.
- 40. As per the MoEF& CC office memorandum F.No.22-65/2017-IA.III dated: 30.09.2020 and 20.10.2020 the proponent shall address the concerns raised during the public consultation and all the activities proposed shall be part of the Environment Management Plan.
- 41. The project proponent shall study and furnish the possible pollution due to plastic and microplastic on the environment. The ecological risks and impacts of plastic & microplastics on aquatic environment and fresh water systems due to activities, contemplated during mining may be investigated and reported.

A. STANDARD TERMS OF REFERENCE

- Year-wise production details since 1994 should be given, clearly stating the highest production achieved in any one year prior to 1994. It may also be categorically informed whether there had been any increase in production after the EIA Notification 1994 came into force, w.r.t. the highest production achieved prior to 1994.
- A copy of the document in support of the fact that the Proponent is the rightful lessee of the mine should be given.
- 3) All documents including approved mine plan, EIA and Public Hearing should be compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and should be in the name of the lessee.
- 4) All corner coordinates of the mine lease area, superimposed on a High Resolution Imagery-

BER SECRETARY

topo sheet, topographic sheet, geomorphology and geology of the area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).

- 5) Information should be provided in Survey of India Topo sheet in 1:50,000 scale indicating geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.
- 6) Details about the land proposed for mining activities should be given with information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.
- 7) It should be clearly stated whether the proponent Company has a well laid down Environment Policy approved by its Board of Directors? If so, it may be spelt out in the EIA Report with description of the prescribed operating process/procedures to bring into focus any infringement/deviation/ violation of the environmental or forest norms/ conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the Company and/or shareholders or stakeholders at large, may also be detailed in the EIA Report.
- 8) Issues relating to Mine Safety, including subsidence study in case of underground mining and slope study in case of open cast mining, blasting study etc. should be detailed. The proposed safeguard measures in each case should also be provided.
- 9) The study area will comprise of 10 km zone around the mine lease from lease periphery and the data contained in the EIA such as waste generation etc. should be for the life of the mine / lease period.
- 10) Land use of the study area defineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
- Details of the land for any Over Burden Dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be given.
- 12) Certificate from the Competent Authority in the State Forest Department should be provided,

EMBER SECRETARY

confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for representative of the State Forest Department to assist the Expert Appraisal Committees.

- 13) Status of forestry clearance for the broken up area and virgin forestland involved in the Project including deposition of Net Present Value (NPV) and Compensatory Afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished.
- 14) Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.
- 15) The vegetation in the RF / PF areas in the study area, with necessary details, should be given.
- 15) A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.
- 17) Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger/ Elephant Reserves/(existing as well as proposed), if any, within 10 km of the mine lease should be clearly indicated, supported by a location map duly authenticated by Chief Wildlife Warden. Necessary clearance, as may be applicable to such projects due to proximity of the ecologically sensitive areas as mentioned above, should be obtained from the Standing Committee of National Board of Wildlife and copy furnished.
- 18) A detailed biological study of the study area [core zone and buffer zone (10 km radius of the periphery of the mine lease)] shall be carried out. Details of flora and fauna, endangered, endemic and RET Species duly anthenticated, separately for core and buffer zone should be furnished based on such primary field survey, clearly indicating the Schedule of the fauna present. In case of any scheduled-I fauna found in the study area, the necessary plan along with budgetary provisions for their conservation should be prepared in consultation with State Forest and Wildlife Department and details furnished. Necessary allocation of funds for implementing the same should be made as part of the project cost.
- 19) Proximity to Areas declared as 'Critically Polluted' or the Project areas likely to come under the 'Aravali Range', (attracting court restrictions for mining operations), should

1. Mi MEMBER SECRETARY

167

Page 15 of 22

- also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the SPCB or State Mining Department should be secured and furnished to the effect that the proposed mining activities could be considered.
- 20) Similarly, for Coastal Projects, a CRZ map duly authenticated by one of the authorized agencies demarcating LTL. HTL, CRZ area, location of the mine lease with respect to CRZ, coastal features such as mangroves, if any, should be furnished. (Note: The Mining Projects falling under CRZ would also need to obtain approval of the concerned Coastal Zone Management Authority).
- 21) R&R Plan/compensation details for the Project Affected People (PAP) should be furnished. While preparing the R&R Plan, the relevant State/National Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs /STs and other weaker sections of the society in the study area, a need based sample survey, family-wise, should
- be undertaken to assess their requirements, and action programmes prepared and submitted accordingly, integrating the sectoral programmes of line departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area will be shufted or not. The issues relating to shifting of village(s) including their R&R and socioeconomic aspects should be discussed in the Report.
- 22) One season (non-monsoon) [i.e. March-May (Summer Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and faima shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.
- 23) Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of Vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The wind roses showing pre-dominant wind direction may also be indicated on the map.

MBER SECRETA

Lr.No. SEIAA-TN/F.No.10368/SEAC/1(a)/ToR- 1612/2023 Dated: 06.11.2023

- 24) The water requirement for the Project, its availability and source should be furnished. A detailed water balance should also be provided. Fresh water requirement for the Project should be indicated.
- 25) Necessary clearance from the Competent Authority for drawl of requisite quantity of water for the Project should be provided.
- 26) Description of water conservation measures proposed to be adopted in the Project should be given. Details of ramwater harvesting proposed in the Project, if any, should be provided.
- 27) Impact of the Project on the water quality, both surface and groundwater, should be assessed and necessary safeguard measures, if any required, should be provided.
- 28) Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. In case the working will intersect groundwater table, a detailed Hydro Geological Study should be undertaken and Report furnished. The Report inter-alia, shall include details of the aquifers present and impact of mining activities on these aquifers. Necessary permission from Central Ground Water Authority for working below ground water and for pumping of ground water should also be obtained and copy furnished.
- 29) Details of any stream, seasonal or otherwise, passing through the lease area and modification / diversion proposed, if any, and the impact of the same on the hydrology should be brought out.
- 30) Information on site elevation, working depth, groundwater table etc. Should be provided both in AMSL and bgl. A schematic diagram may also be provided for the same.
- 31) A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution.
- 32) Impact on local transport infrastructure due to the Project should be indicated. Projected increase in truck traffic as a result of the Project in the present road network (including those outside the Project area) should be worked out, indicating whether it is capable of handling the incremental load. Arrangement for improving the infrastructure, if contemplated (including)

EMBER SECRETARY
action to be taken by other agencies such as State Government) should be covered. Project Proponent shall conduct impact of Transportation study as per indian Road Congress Guidelines.

- 33) Details of the onsite shelter and facilities to be provided to the mine workers should be included in the EIA Report.
- 34) Conceptual post mining land use and Reclamation and Restoration of mined out areas (with plans and with adequate number of sections) should be given in the EIA report.
- 35) Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 36) Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
- 37) Measures of socio economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.
- 38) Detailed Environmental Management Plan (EMP) to mitigate the environmental impacts which, should inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project.
- 39) Public Hearing points raised and commitment of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project.
- 40) Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project should be given.
- 41) The cost of the Project (capital cost and recurring cost) as well as the cost towards implementation of EMP should be clearly spelt out.
- 42) A Disaster management Plan shall be prepared and included in the EIA/EMP Report.
- 43) Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.

170

44) Besides the above, the below mentioned general points are also to be followed:-

ENBER SECRETARY

- a) Executive Summary of the EIA/EMP Report
- b) All documents to be properly referenced with index and continuous page numbering.
- c) Where data are presented in the Report especially in Tables, the period in which the data were collected and the sources should be indicated.
- d) Project Proponent shall enclose all the analysis/testing reports of water, air, soil, noise etc. using the MoEF&CC/NABL accredited laboratories. All the original analysis/testing reports should be available during appraisal of the Project.
- e) Where the documents provided are in a language other than English, an English translation should be provided.
- The Questionnaire for environmental appraisal of mining projects as devised earlier by the Ministry shall also be filled and submitted.
- g) While preparing the EIA report, the instructions for the Proponents and instructions for the Consultants issued by MoEF&CC vide O.M. No. J-11013/41/2006-IA.II(I) dated 4th August, 2009, which are available on the website of this Ministry, should be followed.
- h) Changes, if any made in the basic scope and project parameters (as submitted in Form-1 and the PFR for securing the TOR) should be brought to the attention of MoEF&CC with reasons for such changes and permission should be sought, as the ToR may also have to be ahered. Post Public Hearing changes in structure and content of the draft EIA/EMP (other than modifications arising out of the P.H. process) will entail conducting the PH again with the revised documentation.
- As per the circular no. 3-11011/618/2010-IA.II(I) dated 30.5.2012, certified report of the status of compliance of the conditions stipulated in the Environment Clearance for the existing operations of the project, should be obtained from the Regional Office of Ministry of Environment, Forest and Climate Change, as may be applicable.
- j) The EIA report should also include (i) surface plan of the area indicating contours of main topographic features, drainage and mining area, (ii) geological maps and sections and (iii) sections of the mine pit and external dumps, if any, clearly showing the land features of the adjoining area.

In addition to the above, the following shall be furnished:-

The Executive summary of the EIA/EMP report in about 8-10 pages should be prepared incorporating the information on following points:

1. Project name and location (Village, District, State, Industrial Estate (if applicable).

MEMBER SECRETA

Lr.No. SEIAA-TN/F.No.10368/SEAC/1(a)/ToR- 1612/2023 Dated: 06.11.2023

SEIAA-TN

- Process description in brief, specifically indicating the gaseous emission, liquid effluent and solid and hazardous wastes.
- 3. Measures for mitigating the impact on the environment and mode of discharge or disposal.
- 4. Capital cost of the project, estimated time of completion.
- The proponent shall furnish the contour map of the water table detailing the number of wells located around the site and impacts on the wells due to mining activity.
- 6. A detailed study of the lithology of the mining lease area shall be furnished.
- 7. Details of village map, "A" register and FMB sketch shall be furnished.
- Detailed mining closure plan for the proposed project approved by the Geology of Mining department shall be shall be submitted along with EIA report.
- 9. Obtain a letter /certificate from the Assistant Director of Geology and Mining standing that there is no other Minerals/resources like sand in the quarrying area within the approved depth of mining and below depth of mining and the same shall be furnished in the EIA report.
- ElA report should strictly follow the Environmental Impact Assessment Guidance Manual for Mining of Minerals published February 2010.
- Detail plan on rehabilitation and reclamation carried out for the stabilization and restoration of the mined areas.
- 12. The EIA study report shall include the surrounding mining activity, if any,
- 13. Modeling study for Air. Water and noise shall be carried out in this field and incremental increase in the above study shall be substantiated with mitigation measures.
- 14. A study on the geological resources available shall be carried out and reported.
- 15. A specific study on agriculture & livelihood shall be carried out and reported.
- Impact of soil erosion, soil physical chemical and biological property changes may be assumed.
- 17. Site selected for the project Nature of land Agricultural (single/double crop), barren, Govt./ private land, statua of is acquisition, nearby (in 2-3 km.) water body, population, with in 10km other industries, forest, eco-sensitive zones, accessibility, (note - in case of industrial estate this information may not be necessary)
- Baseline environmental data air quality, surface and ground water quality, soil characteristic, flora and fauna, socio-economic condition of the nearby population
- Identification of bazards in handling, processing and storage of hazardous material and safety system provided to mitigate the risk.

MBER SEC

- 20. Likely impact of the project on air, water, land, flora-fauna and nearby population
- 21. Emergency preparedness plan in case of natural or in plant emergencies
- 22 Issues raised during public hearing (if applicable) and response given
- 23. CER plan with proposed expenditure.
- 24. Occupational Health Measures
- 25. Post project monitoring plan
- The project proponent shall carry out detailed hydro geological study through intuitions/NABET Accredited agencies.
- 27 A detailed report on the green belt development already undertaken is to be furnished and also submit the proposal for green belt activities.
- 28. The proponent shall propose the suitable control measure to control the fugitive emissions during the operations of the mines.
- A specific study should include impact on flora & fauna, disturbance to migratory pattern of animals.
- 30. Reserve funds should be earmarked for proper closure plan.
- 31. A detailed plan on plastic waste management shall be furnished. Further, the proponent should strictly comply with, Tamil Nado Government Order (Ms) No.84 Environment and forests (EC 2) Department dated 25,06:2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) Act, 1986. In this connection, the project proponent has to furnish the action plan.

Besides the above, the below mentioned general points should also be followed:-

- a. A note confirming compliance of the TOR, with cross referencing of the relevant sections / pages of the EIA report should be provided.
- All documents may be properly referenced with index, page numbers and continuous page numbering.
- c. Where data are presented in the report especially in tables, the period in which the data were collected and the sources should be indicated.
- d. While preparing the EIA report, the instructions for the proponents and instructions for the consultants issued by MoEF& CC vide O.M. No. J-11013/41/2006-IA.II (I) dated 4th August, 2009, which are available on the website of this Ministry should also be followed.
- e. The consultants involved in the preparation of EIA/EMP report after accreditation with Quality Council of India (QCI)/National Accreditation Board of Education and Training

MEMBER SECRETARY SELAA-TN

173

(NABET) would need to include a certificate in this regard in the EIA/EMP reports prepared by them and data provided by other organization/Laboratories including their status of approvals etc. In this regard circular no F. No.J -11013/77/2004-IA-II(I) dated 2nd December, 2009, 18th March 2010, 28th May 2010, 28th June 2010, 31th December 2010 & 30th September 2011 posted on the Ministry's website http://www.moef.mc.in/ may be referred.

- After preparing the EIA (as per the generic structure prescribed in Appendix-III of the EIA Notification, 2006) covering the above mentioned points, the proponent will take further necessary action for obtaining environmental clearance in accordance with the procedure prescribed under the EIA Notification, 2006.
- The final EIA report shall be submitted to the SEIAA, Tamil Nadu for obtaining Environmental Clearance.
- The TORs with public hearing prescribed shall be valid for a period of three years from the date of issue, for submission of the EIA/EMP report as per OMNo.J-11013/41/2006-IA-II(I) (part) dated 29th August, 2017.

BER SECRET

Copy to:

- The Additional Chief Secretary to Government, Environment & Forests Department, Govt. of Tamil Nadu, Fort St. George, Chennai - 9
- The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD Cum-Office Complex, East Arjun Nagar, New Delhi 110032.
- The Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai-600 032.
- Monitoring Cell, IA Division, Ministry of Environment, Forests & CC, Paryavaran Bhavan, CGO Complex, New Delhi 110003
- 5. The District Collector, Krishnagiri District.

6. Stock File.

- 81 -

From

0

0

0

0

0

0

0

۲

۲

0

۲

۲

0

0

0

0

0

0

Ø

0

0

0

0

0

0

0

Dr. S.Vediappan, M.Sc., Ph.d., Deputy Director, Dept of Geology and Mining, Krishnagiri.

To

Thiru.A.M.Murugan, S/o.Mannathan, No.4/4 - 109 A, Muthampatti Post, Tholasampatti Via, Panapuram, Mettur Taluk, Salem District

Roc.No.170/2018/Mines Dated: 33.05.2023

Sir,

Mines and Minerals - Rough stone - Krishnagiri District - Krishnagiri Taluk - Kondappanayanapalli -Government land S.F.No. 202/1 (Part - A) over an extent of 3.00.0 Hects - Tender Cum Auction conducted - Thiru. A.M.Murugan declared as highest tenderer - Approved Mining Plan and Environmental Clearance obtained lease granted in favour of Thiru. A.M.Murugan - Other quarry situated in 500 mtrs radial distance - requested - Details furnished - reg.

Refi

Sub:

- The District Collector, Krishnagiri Proc.Rc.No.170/2018 /Mines dated: 09.03.2018.
- Mining Plan approved by the Deputy Director of Geology and Mining, Krishnagiri in Rc.no.170/2018/Mines dated: 28.05.2018,
- Thiru: A.M.Murugan, letter dated: 23.05.2023.

Kind attention is invited to the references cited above.

2) Thiru: A.M.Murugan, Krishnagiri has been granted Rough Stone quarrying lease over an extent of 3.00.0 hects of Government land 202/1 (Part - A) of Kondappanayanapalli Village, Krishnagiri Taluk, Krishnagiri District for a period of 10 years vide The District Collector, Krishnagiri Proc. Rc.No. 170/2018 /Mines dated: 28.12.2022, under the provisions of Rule 8 of Tamil Nadu Minor Mineral Concession Rule 1959. The lease deed was executed on 28.12.2022 and the lease period is valid upto 26.08.2028.

3) The Mining plan for Rough Stone in Kondappanayanapalli Village, Krishnagiri Taluk was approved by the Deputy Director of Geology and Mining, Krishnagiri vide letter Rc.No. 170/2018/Mines dated: 28.05.2018.

2 Mirsongh

4) In this connection, the lessee Thiru. A.M.Murugan, has requested vide letter dated: 23.05.2023 to issue the details of other quarries situated within 500 mts radial distance from the subject quarry is furnished as follows.

1. Details of Existing quarries.

0

۲

0

0

0

0

0

0

0000000

۲

•

•

•

۲

•

0 0 0

•

0

SI No	Name of the leases	ROC .NO. dated	Village & Tatuk	S.F No.	Extent in Het	Lease period.
(44)	Thiru.A.M.Murugan, 5/o.Mamathan, No.4/4 - 109 A, Mothampatti Post, Tholasampatti Via, Panapunan, Mettur Taluk, Salem District.	Rc.No.170/2018 /Mines dated: 09.03.2018	Kondappan ayanapalli Village, Kristringiri Tabuk	202/1 (Part - A)	3.00.0	28.12.2022 10 26.09.2028 (Instant Proposal)

II. Details of abandoned/Old quarries.

51. No,	Name of the lesses	ROC .NO. dated	Village & Taluk	S.F No.	Extent In Hot	Lease period.
j –						

III. Details of other Proposed/applied quarries

SI. No.	Name of the lesses	ROC.NO. dated	Village & Tubuk	S.F No.	Extent in Het	Lease period.
1.	Thiru A.M.Murugan, S/o.Mannathan, No.4/4 - 109 A, Muthampatti Post, Tholasampatti Via, Panapuram, Metour Taluk, Salem District.	Br.No.171/2018 /Mines dated 09.03.2018	Kondeppennyana palli Village, Krishnagiti Taluk	202/1 (Puet - 6)	3.00.0	Tender cum Austian Mining Plan Approved Lense nut yet granted

Deputy Director, Dept of Geology and Mining, Krishnagiri.

-33-

uds3

Copy to :-

The Chairman, Tamil Nadu State Environment Impact Assessment Authority, 3rd Floor, Panakal Maligai, No. 1 Jeenes Road, Saidapet, Chennal -15.

~ AM176 Y

	MINING PLAN
	FOR
GRANT OF	ROUGH STONE QUARRY LEASE IN GOVERNMENT PORAMBOKE LAND
	TOTAL LEASE GRANTED PERIOD 10 YEARS
Permanent	PROPOSED PERIOD OF MINING 5 YEARS
treparea	Amendment Under Rale 41 & 42)
f.	LOCATION OF THE APPLIED AREA
	EXTENT : 3.00.0Ha.
6 N N N	S. F. No : 202/I (PART-A)
	VILLAGE : KONDAPPANAYANAPALLI.
	TALUK : KRISHNAGIRI.
	DISTRICT : KRISHNAGIRL
(STATE : TAMIL NADU.
	APPLICANT
	M/8. SRI VENKATESHWARA BLUE METALS,
	PROP: A.M.MURUGAN,
	No.4/4, 109,
	MUTTHAMPATTY POST.
	METTUR TALUK,
	SALEM DISTRICT.
	PREPARED BY:
6	S.DHANASEKAR, M.Sc.,
2	ROPINAS/225/2011/A 8/3 KULLAPPAN STREET
	OPP.INDIAN BANK LINE,
	OMALUR TALUK - 636 455,
	SALEM DISTRICT.
	Email: geodhanaf@vithou.co.ku
P	CELL: 98946-28970 & 73733-74702.

ø

	CONTENTS	NAY I
SL NO.	DESCRIPTION	10 FALL
1.0	INTRODUCTION	
2,0	EXECUTIVE SUMMARY	
3.0	GENERAL INFORMATION	
4.0	LOCATION	
5.0	GEOLOGY AND MINERAL RESERVES	1
6.0	MINING	1
7.0	BLASTING	-
1.0	MINE DRAINAGE	
9.0	OTHER PERMANENT STRUCTURES	
10.0	EMPLOYMENT POTENTIALS & WELFARE MEASURES	
11:0	ENVIRONMENT MANAGEMENT PLAN	
12.0	MINE CLOSURE PLAN	
13.0	ANY OTHER DETAILS INTEND TO FURNISH BY THE APPLICANT	
	1	

SNO DESCRIPTION NO. 1. COPY OF PROCEEDING LETTER ISSUED BY DISTRICT COLLECTOR 1 2. COPY OF DFO CLEARANCE LETTER 11 3. COPY OF DFO CLEARANCE LETTER 11 4. COPY OF THASILDAR REPORT IV 5. COPY OF PARE ACOMBINED SKETCH VI 6. COPY OF FARE ACOMBINED SKETCH VI 7. COPY OF LAND DOCUMENTS VII 8. COPY OF ROP CERTIFICATE IX			ANNEXURES	MAY 2018
1. COPY OF PROCEEDING LETTER ISSUED BY DISTRUCT COLLECTOR 1 2. COPY OF KRISHNAGIRI DISTRUCT GAZETTE II 3. COPY OF CLARANCE LETTER III 4. COPY OF THASELDAR REPORT IV 5. COPY OF VAO STATEMENT V 6. COPY OF FIAS & COMBINED SKETCH VI 7. COPY OF LAND DOCUMENTS VII 8. COPY OF ID PROOF VIII 9. COPY OF ROP CERTIFICATE IX	Ť	S.NO	DESCRIPTION	NO.
2 COPY OF ERISHNAGIRI DISTRICT GAZETTE II 3 COPY OF DIPO CLEARANCE LETTER III 4 COPY OF THASILDAR REPORT IV 5 COPY OF VAO STATEMENT V 6 COPY OF FMB & COMBINED SKETCH VI 7 COPY OF ID PROOF VIII 8 COPY OF ID PROOF VIII 9 COPY OF ROP CERTIFICATE IX		i.	COPY OF PROCEEDING LETTER ISSUED BY DISTRICT COLLECTOR	1
3. COPY OF DPO CLEARANCE LETTER III. 4. COPY OF THASELDAR REPORT IV 5. COPY OF VAO STATEMENT V 6. COPY OF FMB & COMBINED SKETCH VI 7. COPY OF LAND DOCUMENTS VII 8. COPY OF ID PROOF VIII 9. COPY OF ROP CERTIFICATE IX		2.	COPY OF KRISHNAGIRI DISTRICT GAZETTE	1
4. COPY OF THASILDAR REPORT IV 5. COPY OF FMB & COMBINED SKETCH VI 6. COPY OF FMB & COMBINED SKETCH VI 7. COPY OF LAND DOCUMENTS VII 8. COPY OF ID PROOF VIII 9. COPY OF ROP CERTIFICATE IX		3,	COPY OF DPO CLEARANCE LETTER	m
S. COPY OF FMB & COMBINED SKETCH VI 7. COPY OF LAND DOCUMENTS VII 8. COPY OF ID PROOF VIII 9. COPY OF ROP CERTIFICATE IX	1 1	a.	COPY OF THASILDAR REPORT	19
6. COPY OF LAND DOCUMENTS VII 7. COPY OF LAND DOCUMENTS VIII 8. COPY OF ID PROOF VIII 9. COPY OF ROP CERTIFICATE IN		5	COPY OF VAO STATEMENT	v
7. COPY OF LAND DOCUMENTS VII B. COPY OF ID PROOF VIII 9. COPY OF ROP CERTIFICATE IX		б.	COPY OF FMB & COMBINED SKETCH	¥1
K COPY OF ID PROOF VIII 9. COPY OF ROP CERTIFICATE IX		7.	COPY OF LAND DOCUMENTS	νп
9. COPY OF ROP CERTIFICATE IX		L	COPY OF ID PROOF	VIII
		9.	COPY OF RQP CERTIFICATE	IX

-		LIST OF PLA	ATES	2 8 MAY 20
- 11	SL. NO.	DESCRIPTION	PLATE NO.	SCARFINIA
	1	LOCATION PLAN	- TC	NOT TO SCALE
	2	ROUTE MAP	LA	NOT TO SCALE
	1	TOPO SHEET KEY MAP	1B	1:50,000
	4,	SATELLITE IMAGINARY MAP	IC .	1:5000
	5.	MINE LEASE PLAN	11	1:1000
ģ	6.	SURFACE & GEOLOGICAL PLAN	in	PLAN-1:1000
	7,	GEOLOGICAL SECTIONS	: 10-A	SECTION: HOR:1:10 VER:1:1000
	8.	YEAR WISE DEVELOPMENT AND PRODUCTION FLAN	īv	PLAN-1:1000
	9.	YEAR WISE DEVELOPMENT AND	IV- A	SECTION: HOR:1:10
	-	PRODUCTION SECTIONS		VER:111000
	10,	MINE LAYOUT PLAN AND LAND USE PATTERN	×.	1:1000
	11.	CONCEPTUAL/FINAL MINE CLOSURE PLAN	- 19	PLAN-1:1000
	12.	CONCEPTUAL/FINAL MINE CLOSURE SECTIONS	VI- A	SECTION: HOR:1:10 VER:1:1000
	12.	ENVIRONMENTAL PLAN	VII	1.5000
		100		

2 8 MAY 2018 Batteringen Batte

MJL SRI VENKATËSHWARA BLUE METALS, PROP: A.M.MURUGAN, B/0. MANNATHAN, N0.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRICT.

CONSENT LETTER FROM THE APPLICANT

The Mining Plan in respect of Rough Stone quarry over an extent of 3.00.0Hectares of Government Poramboke Land in S.F.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGIRI TALUK, And KRİSHNAGIRI District, Tamil Nadu State has been prepared by Shri, S. Dhanasekar, M.Sc.,Regn.No. RQP/MAS/225/2011/A.

I request the Deputy Director, Department of Goology and Mining, Krishnagiri District to make further correspondence regarding the Mining Plan with the said Recognized Qualified Person on this following address.

> S.DHANASEKAR, M.Sc., RQF/MAS/225/2011/A 8/3, Kullappan Street, Opposite Indian bank Line, Omlar Taluk – 636 455, Salem District. E-Mail: geodlama@yahoo.co.in Coll: 98946-28970

I hereby undertake that all modifications to made in the Mining Plan by the Recognized Qualified

Person may be deemed to have been made with my knowledge and consent and shall be acceptable in my and binding on me in all respects.

> For Signature of the Applicant M/s. SRI VENKATESHWARA BLUE METALS,

man PROP: A.M.MURUGAN,

Place SALEM

Dute:

~ Mmenn

PROP: A.M.MURUGAN, So: MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRUCT. DECLARATION The Mining Plan in respect of Rough Stone quarty over an extent of 3.00.0 Hectares of Government Poramboke Land in S.P.No. 202/1 (PART-A) of KONDAPTANAYANAPALLI Village, KRISHNAGIRI TALUK, And KRISHNAGIRI District, and Tamil Nadu State has been prepared with my consultation and have understood the contents and agree to implement the same in accordance with the Mining Laws. For Signature of the Applicant M/s SRI VENKATESHWARA BLUE METALS, PROP: A.M.MURUGAN, Place: SALEM		Date:
PROP: A.M.MURUGAN, So. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRICT. DECLARATION The Mining Plan in respect of Rough Stone quarty over an extent of 3.00.0 Hectares of Government Poramboke Land in S.P.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGBR TALUK, And KRISHNAGIRI District, and Tamil Nadu State has been perpared with my consultation and have understood the contents and agree to implement the same in accordance with the Mining Laws. For Signature of the Applicant M26. SRI VENNATESHWARA BLUE METALS, M26. SRI VENNATESHWARA BLUE METALS, M26. SRI VENNATESHWARA BLUE METALS, M26. SRI VENNATESHWARA BLUE METALS,		Place: SALEM
PROP: A.M.MURUGAN, So. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRICT. DECLARATION The Mining Plan in respect of Rough Stone quary over an extent of 2.00.0 Histares of Government Poramboke Land is S.F.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGRU TALUK, And KRISHNAGIRI District, and Tamil Nadu State has been prepared with my consultation and have understood the contents and agree to implement the same in accordance with the Mining Laws. For Signature of the Applicant M/s SRI VENKATESHWARA BLUE METALS,		
PROP: A.M.MURUGAN, So. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRICT. DECLARATION The Mining Plan in respect of Rough Stone quarty over an extent of 3.00.0 Hectares of Government Poramboke Land in S.F.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGIRI TALUK, And KRISHNAGIRI District, and Tamil Nadu Sume has been perpared with my consultation and have understood the contents and agree to implement the same in accordance with the Mining Laws. For Signature of the Applicant M/s: SRI VENKATESHWARA BLUE METALS,		PROP: A.M.MURUGAN,
PROP: A.M.MURUGAN, So. MANNATHAN, No.444, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRICT. DECLARATION The Mining Plan in respect of Rough Stone quarty over an extent of 1.00.0 Hectares of Government Porambeke Land is S.P.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGIRI TALUK, And KRISHNAGIRI District, and Tamil Nadu State has been prepared with my consultation and have understood the contents and agree to implement the same in accordance with the Mining Laws. For Signature of the Applicant M/a SRI VENKATESHWARA BLUE METALS,		N
PROP: A.M.MURUGAN, So. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRUCT.	_	For Signature of the Applicant M/s. SRI VENKATESHWARA BLUE METALS,
PROP: A.M.MURUGAN, Sto. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRICT. DECLARATION The Mining Plan in respect of Rough Stone quarty over an extent of 3.00.0 Hectares of Government Puramboke Land in S.F.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGIRU TALUK, And KRISHNAGIRI District, and Tamil Nadu State has been perpared with my consultation and have understood the contents and agree to implement the same in accordance with the Mining Laws.		
PROP: A.M.MURUGAN, So. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRUCT. DECLABATION The Mining Plan in respect of Rough Stone quarty over an extent of 3.00.0 Hectares of Government Poramboke Land in S.F.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGIRI TALUK, And KRISHNAGIRI District, and Tamil Nada State has been prepared with my consultation and have understood the contents and agree to implement the same in accordance with the Mining Lawa.		
PROP: A.M.MURUGAN, Sto. MANNATHAN, No.444, 109, MUTTHAMPATTY POST, METTUR TALL/K, SALEM DISTRUCT. DECLARATION The Mining Plan in respect of Rough Stone quarty over an extent of 3.00.0 Histories of Government Poramboke Land is S.F.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGBRI TALUK, And KRISHNAGIRI District, and Tamil Nadu State has been prepared with my consultation and		have understood the contents and agree to implement the same in accordance with the Mining Laws.
PROP: A.M.MURUGAN, Svo. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRICT: DECLARATION The Mining Plan in respect of Rough Stone quarry over an extent of 3.00.0 Hectures of Government Poramboke Land is S.F.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGR		TALUK, And KRISHNAGIRI District, and Tamil Nadu State has been perpared with my consultation and
PROP: A.M.MURUGAN, So. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRICT. DECLARATION The Mining Plan in respect of Rough Stone quarty over an extent of 3.00.0 Hectares of Government		Puramboke Land in S.F.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGH
PROP: A.M.MURUGAN, Sio. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALL/K, SALEM DISTRUCT. DECLARATION		The Mining Plan in respect of Rough Stone quarty over an extent of 3.00.0 Hectures of Government
PROP: A.M.MURUGAN, Sto. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALL/K, SALEM DISTRUCT.		DECLARATION
PROP: A.M.MURUGAN, Sto. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, SALEM DISTRICT.		
PROP: A.M.MURUGAN, Sto. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST, METTUR TALL/K,		SALEM DISTRICT.
PROP: A.M.MURUGAN, Sv. MANNATHAN, No.4/4, 109, MUTTHAMPATTY POST.	1	METTUR TALLIK,
PROP: A.M.MURUGAN, Sto. MANNATHAN,		No.4/4, 199, MUTTHAMPATTY POST.
PROP: A.M.MURUGAN,		Sto. MANNATHAN,
V SILVE SHOWL ST		PROP: A.M.MURUGAN,

.

Service Tax No - ALIPD67331SD001

6

6

3

6

e

6

9

9

倚

60

8

G

e

e

0

硇

Θ

Θ

8

0

6

ø

ø

Ð

60

0

8

8

۲

0

0

Nos S. DHANASEKAR, M.S. (Geo), M.M.E.A Geologiet / Recognized Quelified person.

ΞĄP

2011

KRK MEMORIAL MINING SERVIC

5/30-8, Anvai Nogar, Pantumar Mines Road, Jagir Ammopoloyum, Solem - 636302. E-mail: krkmenorialminingsonices@gmail.com

CERTIFICATE

This is to certify that, the provisions of Minor Minerals Conservation and Development Rules, 2010 (MMCDR) have been observed in The Mining Plan in respect of Rough Stane quarry over an extent of 3.06.0Hectures of Government Porambolic Land in S.F.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGIRI Tutuk, KRISHNAGIRI District, Tamil Nadu State obtained by M/s, SRI VENKATESHWARA BLUE METALS, PROP: A.M.MURUGAN for Fresh quarry lease.

— Wherever specific permission / exemptions / relaxations or approvals are required, the applicant will approach the concerned authorities of State and Cantral Governments for granting such permissions etc.

Certified

Signature of Recognized Qualified Person. S.DHANASEKAR, MSc. (Gm)

RQP/MAS/225/2011/A

Place: SALEM

19

Date:

Reg.Office : 8/3, Kullappan Street, Opp Indian Bank Line, g

Service Tax No : ALIPD67331SD001

KRK M

讱

倍

e

0

0

0

0

9

倚

(B

0

6

e

6

0

0

愈

۲

8

9

齿

65

٢

倍

10

6

ଙ୍କ

1

⑥

0

3

0

ø

CERTIFICATE

5/30-II. Avei Nagar, Pankumar Mines Road, Jagir Ammapolayum, Salim - 636302 E-mail : krkmemorialminingservices@gmail.com

Certified that, in preparation of Mining Plan in respect of Rough Sinne quarry over an extent of 3.00.0Hectares of Government Porambolas Land in S.F.No. 202/1 (PART-A) of KONDAPPANAYANAPALLI Village, KRISHNAGIRI Taluk, and KRISHNAGIRI District, Tamil Nadu State for M/x. SRI VENKATESHWARA BLUE METALS, PROP: A.M.MURUGAN covers all the provisions of Mines Act, Rules, and Regulations etq made there under and whenever specific permission are required, the applicant will approach the Director General of Mines Safety, Cheunal. The standards prescribed by DGMS in respect of Mines Health will be -+ strictly implemented.

Certified

- 90

MME

Biohand

Hop S. DHANASEKAR, MAR

Geologist / Recognized G

Signature of Recognized Qualified Person. 5.DHANASEKAR,MSL (Set)

Place: SALEM

Date

9	warman and the second s
8	MINING PLAN FOR MINOR MINERALS
3	TOTAL LEASE GRANTED PERIOD 10 YEARS
)	PRPOSED PERIOD OF MINING 5 YEARS
3	Over an extent of 3.00.0 Heetures of Government Poramboke Land in S.F.No. 202/1 (PARPAR #1945.6)
50 94	KONDAPPANAYANAPALLI Village, KRISHNAGIRI Taluk, KRISHNAGIRI District, Tamir Nadu Sizie.
	(Miner Mineral Cantervation and Development reals, 2010 (2 at press, 1959) 19 (1) Tamil Nadu Minor Mineral Concession Roles, 1959)
2	
ØE	1.6 INTRODUCTION AND EXECUTIVE SUMMARY:
Ø.	1. M/S. SRI VENKATESHWARA BLUE METALS, PROP. A.M.MURUGAN S& MANNATHAN.
£.	Residing at No.4/4, 109, MUTTHAMPATTY POST, METTUR TALUK, and SALEM DISTRUCT has
	applied for the grant of quarry lease Under Tender/Austion to quarry Rough Stone over an extent of
Þ	3.00.0/Hectares of Government Foramboke Land in S.F.No.202/1 (PART-A) of
9	KONDAPPANAYANAPALLI Village, KRISHNAGIRI TALUK, KRISHNAGIRI District of Tumu
9	Nadu State for a period of TEN Yana.
	2. The Applicant has been the Successful bidder Highest Bidder Amount Rs 63, 00,000/- in a Tender cum
	public action conducted by the Government of Tainit Nadu and Rough Stone quarry lease had been granted
1	to M/S. SRI VENKATESHWARA BLUE METALS, PROP: A.M.MURUGAN in Government
9	Poramboke Land in S.F.No. 202/1 (PART-A) of KONDAPPANAVANAPALLI Village,
B	KRISHNAGIRI Tatuk, and KRISHNAGIRI District of Tamil Nado State for a period of TEN Years
Э.	Vide Proceeding No. Rc. No. 170/2018/MINES dated: 09.03.2018.
ġ.	3. The District Colleptor, KRISHNAGIRI in his latter Rc. No. 170/2018/MINES dated: 09.03.2018. Has
2	diserted the applicant to produce approved Mining Plan and Environmental Clearance certificate from the
9	District Level Environmental Impact Assessment Authority (DEIAA) for the grant of quarty lease for the
6	wented many lines
8	 Accordingly, Mining Blan is prepared under Rule 19 (1) Tamil Nada Miner Mineral Concession Rules.
3	 Note that you are a second ment under Rule 41 & 42 by incorporation the conditions imposed in the oceans area
	1939 & As per Annual and he incompation all the details expressed in the letter No. DELAA TMOJERT
6 3	communication strict and of membraning an our terms holdows at the terms to strictly system.
	Minerals / 2017 dend 13.05/2017 of Destrict Level Environmental Impact Ameriment Autoorty.
2	5. In the above circumstances M/S. SRI VENKATESHWARA BLUE METALS, PROP-
Ð	A.M.MURUGAN is been by preparing the Mining Plan for approval for Fresh Rough Stone Quarry. And
5	subsequent submission of Form-I and pre Feasibility report to obtain environmental elearance from the
2	DEIAA of Tamil Nadu, Krinhnagiri, S. DHANASEKAR MSc. (Geo)
8	NUT/MAS/225/2011/A

 In order to ensure compliance of the order of the Honourable Supreme Court search 7.02.21.1148 (2) (2.13.2011 In Special Leave Petition SLP(c) No 19638-19639/2009, it has been one defined that mixing projects of minor minerals including their mnewal irrespective of slace of the failt wayling forth require prior environmental clearance. Mining project within the leave area upto leave than 25 including projects or minor mineral with leave area lease then 5He would be recated as canogory B in definin the EIA notification 2006 and will be considered by the state DEIAA notified by MoEF as preseril procedure prencribed under EIA notification 2006. This Mining Plan is proposed by considering the TNMMCR 1939, and as pre the EIA Notification 2006 it are subsequent amendments and julgomenta. The lease period Geological Reserves 3384633M* and Mineable Reserves is retimated as 1292551M² recoverable reserves is estimated as 1292851M² of Rough Stoke after leaving necessary safety dina from the base boundary as indicated in the Lease Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 243795M² of Rough Stoke. Per year. Production Schedule is proposed an average production of 243795M² of Rough Stoke. Per year. There is no interstate houndary around 10Kma radius. There is no selid life animal sanctuary within 10Kms radius form the project site area under Wildlife (Prometion) Act, 1972. Therefore the project seeks clearance only from State Lifevironmental measures to be adopted shall be. Dust suppression at loading point and ramport hauf reads. Noise Control in Proposed Control Blasting, control of fly rock missiles and vibration by doing a particle velocity with in standard as prescribed by the DGMS and MoEF. Vinnecessary land degradation should be avoided as damaged land should be retaimed or rehabilition. 	6.	This Mining Plan is prepared for the fresh Rough Stone Quarty for a period of FIVE Fears
 12.12.2011 in Special Leave Petition SLP(c) No 19628-19629/2009, it has been set the set of the state way have further prior environmental eleazance. Mining project within the leave area upto leave than 25 including projects or minor mineral with leave area leave than 516 would be recated as category B as defining the EIA notification 2006 and will be considered by the state DEIAA notified by MoEF as preserve procedure preserviced under EIA notification 2006. 8. This Mining Plan is prepared by considering the TNMMCR 1959, and as jue the EIA Notification 2006 it are subsequent amendments and julgments. 9. The leave period Geological Reserves 3384633M* and Mineskie Reserves is estimated as 1292851M* recoverable enserves is estimated as 1292851M* of Rough Stone after leaving necessary safety disa from the leave boundary as indicated in the Leave Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 1218973M* of Rough Stone. Pin year: 11. Production Schedule is proposed an average production of 243795M* of Rough Stone. Pin year: Wild(if) (Protection) Act, 1972. Therefore the project seeks clearance only from State Line/viormental Impact Assessment Authority (SEIAA), under B2 Category. 13. Environmental informate while deiting and Proposed Control Blasting. 14. Dout Control at source while deiting and Proposed Control Blasting. 15. Noise Control in Proposed Control Blasting, control of fly rock miniles and vibration by doing a particle velocity with in attachand as prescribed by the DGMS and MoEF. 16. Noise Control in Proposed Control Blasting, control of the reclaimed or relabilities of origination at releasing particle velocity with in attachard as prescribed by the DGMS and MoEF. 17. Unnecessary land degradation should be avoided as damaged land should be reclaimed or reliabilities. 	7.	In order to ensure compliance of the veder of the Honourable Supreme Court deaut 27.02.201 MAY 2010
 mining projects of minor minerals including their mineral irrespective of sizes of the set /li>		12.13.2011 In Special Leave Petition SLP(c) No 19628-19629/2009, it has burning defining that all
 forth require prior environmental clearance. Mining project within the lease area upto less than 25 including projects or minor mineral with lease area less then 5Ha would be reated as category B is define the EIA notification 2006 and will be considered by the state DEIAA notified by MoEF as present procedure preservised under EIA notification 2006. 8. This Mining Plan is prepared by considering the TNMMCR 1939, and as per the EIA Notification 2006 is are subsequent amendmenta and judgmenta. 9. The lease period Geological Reserves 3384633M4' and Minesble Reserves is estimated as 1292851M⁵ recoverable reserves is estimated as 1292851M⁵ of Rough Stone after leaving necessary rafely disa from the beam boundary as indicated in the Lease Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 1218973M¹ of Rough Stone for Five Years. 11. Production Schedule is proposed an average production of 1218973M¹ of Rough Stone. Per year with the is no wild life minual sanctuary within 10Kms radius form the project site area under Wildlife (Protection) Act, 1972. Therefore the project seeks clearance only from State Li Environmental measures to be adopted shall be. 12. Environmental measures to be adopted shall be. 13. Dust Control at source while deilling and Proposed Control Blasting. 14. Dust Control in Proposed Control Blasting, control of fly trock miniles and vibration by doing a particle, velocity with in standard as prescribed by the DGMS and MoEF. 14. Vineocessary land degradation should be avoided as damaged land should be reclaimed ar releabilities of the standard as prescribed by the DGMS and MoEF. 	1	mining projects of minor minerals including their mnewal irrespective of sizes of the second second sizes
 including projects or minor minoral with lease area less then 5He would be treated as caugory B at defining the EIA notification 2006 and will be considered by the state DEIAA notified by MuEF as preseries procedure preseries and and provide the test of the state DEIAA notified by MuEF as preseries are subsequent amendments and judgments. 8. This Mining Plan is prepared by considering the TNMMCR 1939; and as per the EIA Notification 2006 is are subsequent amendments and judgments. 9. The lease period Geological Reserves 3384633M* and Minashle Reserves is estimated as 1292851M* recoverable reserves is estimated as 1292851M* of Rough Stone after leaving necessary safety disa from the lease boundary as indicated in the Lesse Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 1218973M* of Rough Stone. Per year. 11. Production Schedule is proposed an average production of 243795M* of Rough Stone. Per year. 12. Environmental parameters. i) There is no interstate boundary around 10Kms radius form the project site area under Wild(iffe (Protection) Act, 1972. Therefore the project seeks clearance only from State Li Environmental Impact Assessment Authority (SEIAA), under B2 Category 13. Environmental measures to be adopted shall be. i) Dust Control at source while drilling and Proposed Control Blasting. ii) Noise Control in Proposed Control Blasting, control of Proce ministles and vibration by doing 1 particle velocity with in standard as prescribed by the DGMS and MoEF. iv) Unnecessary land degradation should be avoided or damaged land should be reclaimed ur rehabilities and vibration by doing 1 particle velocity with in standard as prescribed by the DGMS and MoEF. 		forth require prior environmental elearance. Mining project within the lease area upto less than 25 ha
 in the EIA notification 2006 and will be considered by the state DELAA notified by MuEF as preseries procedure preseries of an analysis of the state DELAA notification 2006. 8. This Mining Pian is prepared by considering the TNMMCR 1959, and as pice the EIA Notification 2006 is are subsequent amendments and julgments. 9. The lease period Geological Reserves 3384633M⁴ and Minesble Reserves is estimated as 1292851M⁴ of Rough Stone after leaves of receasary tafety disa from the lease boundary as indicated in the Lesse Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 1218973M⁴ of Rough Stone. Per year. 11. Production Schedule is proposed an average production of 243795M⁴ of Rough Stone. Per year. 12. Environmental parameters. i) There is no interstate boundary around 16Kma radius. ii) There is no wild life ministal sanctuary within 10Kms radius form the project site area under Wildlife (Protection) Act, 1972. Therefore the project seeks citatrance only from State Li Environmental Impact Assessment Authority (SEIAA), under B2 Calegory 13. Environmental measures to be adopted shall be. i) Dust control at source while drilling and Proposed Control Blasting. ii) Noise Control in Proposed Control Blasting, control of No Proke ministles and vibration by doing a particle velocity with in standard as prescribed by the DGMS and MoEF. iv) Unnecessary land degradation should be avoided of damaged land should be reclaimed us rehabilities and should be reclaimed us rehabilities. 		including projects or minor mineral with lease area less then 5He would be treated as category B as defined
 procedure prescribed under EIA notification 2006. 8. This Mining Plan is prepared by considering the TNMMCR 1939; and as per the EIA Notification 2006 it are subsequent amendments and judgments. 9. The lease period Geological Reserves 3384633M* and Minashle Reserves is estimated as 1292851M* recoverable reserves is estimated as 1292851M* of Rough Stone after leaving necessary safety disa from the lease boundary as indicated in the Lease Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 1218973M* of Rough Stone. Per year. 11. Production Schedule is proposed an average production of 243795M* of Rough Stone. Per year. 12. Environmental parameters. i) There is no interstate boundary around 10Kms radius form the project sile area under Wildlife (Protection) Act, 1972. Therefore the project seeks clearance only from State L3 Environmental Impact Assessment Authority (SEIAA), onder B2 Category 13. Environmental measures to be adopted shall be. i) Dust control at source while defiling and Proposed Control Blasting. ii) Noise Control in Proposed Control Blasting, control of fly rock minsiles and vibration by doing particle velocity with in standard as prescribed by the DGMS and MoEF. iv) Timesessary land degradation should be avoided se damaged land should be reclaimed ar reliabilities. 		in the EIA notification 2006 and will be considered by the state DEIAA notified by MuEF as prescribed
 This Mining Pian is prepared by considering the TNMMCR 1939, and as per the EIA Notification 2006 it are subsequent amendmenta and judgments. The Insee period Geological Reserves 3384633M* and Minesble Reserves is estimated as 1292851M* recoverable reserves is estimated as 1292851M* of Rough Stone after leaving necessary safety disa from the leave boundary as indicated in the Leave Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 1218973M* of Rough Stone. Per year. Production Schedule is proposed an average production of 243795M* of Rough Stone. Per year. Environmental parameters, There is no interstate boundary around 10Kms radius form the project title area under Wildlife (Prometion) Act, 1972. Therefore the project seeks clanarance only from State Li Environmental Impact Assessment Authority (SEIAA), under B2 Category Environmental measures to be adopted shall be. Dust suppression at loading point and transport heat reads. Noise Control is Proposed Control Blasting. Noise Control in Proposed Control Blasting to the DGMS and MoEF. Noise Control in Proposed Control Blasting to the DGMS and MoEF. Noise Con		procedure prescribed under EIA notification 2006.
 it are subsequent amendmients and julgments. 9. The lease period Geological Reserves 3384633M⁴ and Minsable Reserves is estimated as 1292851M⁴ recoverable reserves is estimated as 1292851M⁴ of Rough Stone after leaving necessary safety disarfrom the lease boundary as indicated in the Lease Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 1218973M⁴ of Rough Stone. Per year. 11. Production Schedule is proposed an average production of 243795M⁴ of Rough Stone. Per year. 12. Environmental parameters. i) There is no interstate boundary around 16Kms radius. ii) There is no wild life anistal sanctuary within 10Kms radius form the project site area under Wildlife (Protection) Act, 1972. Therefore the project seeks classance only from State Li Environmental Impact Assessment Authority (SEIAA), under B2 Category. 13. Environmental measures to be adopted shall be. i) Dust control at source while deiling and Proposed Control Blasting. ii) Noise Control in Proposed Control Blasting, control of fly rock minules and vibration by doing a particle velocity with in standard as prescribed by the DGMS and MoEF. iv) Unnecessary land degradation should be avoided as damaged land should be reclaimed ur reliabilita. 	8,	This Mining Plan is prepared by considering the TNMMCR 1939, and as per the EIA Notification 2006 and
 9. The laste period Geological Reserves 3384633M* and Minesble Reserves is estimated as 1292851M* of Rough Stone after leaving necessary rafely disa from the lease boundary as indicated in the Lesse Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 1218973M* of Rough Stone for Five Years. 11. Production Schedule is proposed an average production of 243795M* of Rough Stone. Per year. 12. Environmental parameters. i) There is no bitterstate boundary around 16Kmt mdim. ii) There is no wild life animal sanctuary within 10Kms radius form the project tile area under Wildlife (Protection) Act, 1972. Therefore the project seeks clearance only from State Li Environmental Impact Asseasment Authority (SEIAA), under B2 Category. 13. Environmental measures to be adopted shall be. i) Dust control at source while deilling and Proposed Control Blasting. iii) Noise Control in Proposed Control Blasting. iii) Noise Control in Proposed Control Blasting, control of Fly rock minsiles and vibration by doing a particle velocity with in standard at prescribed by the DGMS and MoEF. iv) Unnecessary had degradation should be avoided as damaged land should be reclaimed or reliabilities. 		it are subsequent amendments and judgments.
 recoverable reserves is estimated as 1292851M⁴ of Rough Stone after leaving necessary safety disa from the lease boundary as indicated in the Lesse Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 1218973M⁴ of Rough Stone. Pur years. 11. Production Schedule is proposed an average production of 243795M⁵ of Rough Stone. Pur year. 12. Environmental parameters. i) There is no wild life animal sanctaury within 10Kms radius form the project site area under Wildlife (Protection) Act, 1972. Therefore the project seeks clearance only from State IJ Environmental Impact Assessment Authority (SEIAA), under B2 Calegory 13. Environmental measures to be adopted shall be. i) Dust Control at source while deiling and Proposed Control Blasting. ii) Noise Control in Proposed Control Blasting, control of fly rock minsiles and vibration by doing a particle velocity with in standard as prescribed by the DGMS and MOEF. iv) Unnecessary and degradation should be avoided at damaged land should be reclaimed or reliabilitation. 	9,	The lease period Geological Reserves 3384633M ⁴ and Mineable Reserves is estimated as 1292851M ² and
 from the beaux boundary as indicated in the Lesse Granted Proceedings and relevant mining laws in force 10. Production Schedule is proposed an average production of 1218973M* of Rough Stone. For Five Years. 11. Production Schedule is proposed an average production of 243795M* of Rough Stone. Per year. 12. Environmental parameters. i) There is no interstate boundary around 16Kma radius. ii) There is no interstate boundary around 16Kma radius. iii) There is no wild life animal sanctuary within 10Kms radius form the project site area under Wildtife (Protection) Act, 1972. Therefore the project seeks clearance only from State Li Environmental Impact Asseasment Authority (SEIAA), under B2 Category. 13. Environmental measures to be adopted shall be. i) Dust Control at source while deilling and Proposed Control Blasting. ii) Noise Control in Proposed Control Blasting, control of fly rock minsiles and vibration by doing a particle velocity with in standard as prescribed by the DGMS and MOEF. iv) Unnecessary land degradation should be avoided as damaged land should be reclaimed or reliability. 		recoverable reserves is estimated as 1292851M ⁴ of Rough Stone after leaving necessary safety distance
 Production Schedule is proposed an average production of 1218973M* of Rough Store. Par year. Production Schedule is proposed an average production of 243795M* of Rough Store. Par year. Environmental parameters, There is no interstate boundary around 10Kma radius. There is no wild life animal sanctuary within 10Kms radius form the project tile area under Wildtife (Protection) Act, 1972. Therefore the project seeks claarance only from State I. Environmental Impact Assessment Authority (SEIAA), under B2 Category Environmental measures to be adopted shall be, Dust Control at source while deitling and Proposed Control Blasting. Dust suppression at leading point and transport hauf roads, Noise Control in Proposed Control Blasting, control of Py rock minsiles and vibration by doing a particle velocity with in standard as prescribed by the DGMS and MoEF. Unnecessary land degradation should be avoided or damaged land should be reclaimed or reliability. 		from the lease boundary as indicated in the Lease Granted Proceedings and relevant mining laws in force.
 Production Schemale is proposed an average production of 243795M⁹ of Rough Store. Per year. Environmental parameters, There is no interstate boundary around 16Kma radius. There is no wild life assimal sanctuary within 10Kms radius form the project site area under Wildlife (Protection) Act, 1972. Therefore the project seeks clearance only from State I. Environmental Impact Assensment Authority (SEIAA), under B2 Category. Environmental measures to be adopted shall be. Dust Control at source while deilling and Proposed Control Blasting. Dust control at leading point and maniport hauf reads. Noise Control in Proposed Control Blasting, control of fly rock minsiles and vibration by doing particle velocity with in standard as prescribed by the DGMS and MoEF. Unnecessary land degradation should be avoided or damaged land should be reclaimed at reliability 	10,	Production Schedule is proposed an average production of 1215973M ⁴ of Rough Stone for Five Years.
 Environmental parameters, There is no interstate boundary around 10Kms radius. There is no wild life animal sanctuary within 10Kms radius form the project site area under Wildlife (Protection) Act, 1972. Therefore the project tesks citarance only from State Li Environmental Impact Assessment Authority (SEIAA), order B2 Category. Environmental measures to be adopted shall be, Dust Control at source while drilling and Proposed Control Blasting. Dust suppression at leading point and transport heat roads, Noise Control in Proposed Control Blasting, control of fly rock minsiles and vibration by doing a particle velocity with in standard as prescribed by the DGMS and MoEF. Unnecessary land degradation should be avoided ar damaged land should be reclaimed or reliability 	-11,	Production Schedule is proposed an average production of 243795MP of Rough Stone. Per year.
 There is no interstate boundary around 16K ma mdims. There is no wild life animal sanctuary within 10Kms radius form the project site area under Wildlife (Protection) Act, 1972. Therefore the project tesks cinarance only from State Li Environmental Impact Assessment Authority (SEIAA), under B2 Category. Environmental measures to be adopted shall be. Dust Control at source while deilling and Proposed Control Blasting. Dust control at source while deilling control roads. Noise Control in Proposed Control Blasting, control of fly rock minsiles and vibration by doing a particle velocity with in standard at prescribed by the DGMS and MoEF. Unnecessary land degradation should be avoided at damaged land should be reclaimed or reliability 	12.	Environmental parameters,
 ii) There is no wild life minual sanctuary within 10Kms radius form the project site area under Wildlife (Protaction) Act, 1972. Therefore the project seeks clearance only from State 1. Environmental Impact Assessment Authority (SEIAA), under B2 Category. 13. Environmental measures to be adopted shall be. i) Dust Control at source while deilling and Proposed Control Blasting. ii) Dust suppression at leading point and transport hauf roads. iii) Noise Control in Proposed Control Blasting, control of fly rock missiles and vibration by doing a particle velocity with in standard as prescribed by the DGMS and MoEF. iv) Unnecessary land degradation should be availed as damaged land should be reclaimed as reliability. 		i) There is no interstate boundary around 16K ma radius.
 Wildlife (Protection) Act, 1972. Therefore the project tesks clearance only from State 1. Environmental Impact Assessment Authority (SEIAA), under B2 Category 13. Environmental measures to be adopted shall be, i) Dust Control at source while drilling and Proposed Control Blasting. ii) Dust suppression at loading point and transport hauf roads, iii) Noise Control in Proposed Control Blasting, control of fly rock minsiles and vibration by doing particle velocity with in standard as prescribed by the DGMS and MoEF. iv) Unnecessary land degradation should be avoided or damaged land should be reclaimed or rehabilities. 		ii) There is no wild life animal sanctuary within 10Kms radius form the project site area under the
 Environmental Impact Assessment Authority (SEIAA), under B2 Category. 13. Environmental measures to be adopted shall be. i) Dust Control at source while deilling and Proposed Control Blasting. ii) Dust suppression at leading point and transport hauf roads. iii) Noise Control in Proposed Control Blasting, control of fly rock missiles and vibration by doing particle velocity with in standard at prescribed by the DGMS and MoEF. iv) Unnecessary land degradation should be avoided or damaged land should be reclaimed or rehabilities. 		Wildlife (Protection) Act, 1972. Therefore the project seeks clearance only from State Love
 t3. Environmental measures to be adopted shall be, i) Dust Control at source while drilling and Proposed Control Blasting. ii) Dust suppression at leading point and transport hauf roads, iii) Noise Control in Proposed Control Blasting, control of fly rock missiles and vibration by doing particle velocity with in standard at prescribed by the DGMS and MoEF. iv) Unnecessary land degradation should be avoided or damaged land should be reclaimed or rehability 		Environmental Impact Asseasment Authority (SEIAA), under B2 Category.
 i) Dust Control at source while drilling and Proposed Control Blasting. ii) Dust suppression at leading point and transport hauf roads, iii) Noise Control in Proposed Control Blasting, control of fly rock missiles and vibration by doing particle velocity with in standard at prescribed by the DGMS and MoEF. iv) Unnecessary land degradation should be avoided or damaged land should be reclaimed or rehability 	13.	Environmental measures to be adopted shall be,
 iii) Dust suppression at leading point and transport hauf roads, iii) Noise Control in Proposed Control Blasting, control of fly rock missiles and vibration by doing particle velocity with in standard at prescribed by the DGMS and MoEF. iv) Unnecessary land degradation should be avoided or damaged land should be reclaimed or rehability 		i) Dust Control at source while drilling and Proposed Control Blasting.
 iii) Noise Control in Proposed Control Blasting, control of fly rock missiles and vibration by doing particle velocity with in standard as prescribed by the DGMS and MoEF. iv) Unnecessary land degradation should be avoided or damaged land should be reclaimed or reliability 		(ii) Dust suppression at leading point and transport hauf roads,
particle velocity with in standard as prescribed by the DGMS and MoEF. (v) Unnecessary land degradation should be availed as damaged land should be reclaimed or reliability		iii) Noise Control in Proposed Control Blasting, control of fly rock minsiles and vibration by doing peak
iv) Unnecessary land degradation should be avoided or damaged land should be reclaimed or reliability		particle velocity with in standard as prescribed by the DGMS and MoEF.
		iv) Unnecessary land degradation should be avoided at damaged land should be reclaimed or reliabilitated
v) Avoid uneven rat hole mining and follow scientific and systematic mining by sufe bench system		v) Avoid uneven rat hole mining and follow scientific and systematic mining by safe bench system of
open caar mining.		open cast mining.
vi) Mining near major fracture zones if any should be avoided to control ground water fluctuation in		vi) Mining near major fracture zones if any should be avoided to control ground water fluctuation in th
adjacent agricultural lands.		adjacent agricultural lands.
vil) Emission test of vehicles should be in stack to maintain minimum emission level of flue guans.		vii) Emission test of vehicles should be in stack to maintain minimum emission level of flue gauns.

•

.

	 viii) Noise level should not exceed 80db a op road near residential areas. 	៣៨។	the selficies should use only performed & Bow MAY 2	
	ix) Safety zones as prescribed by the Department	ni o	f Geoingy and Mining from adjacent fut astructures	
	should be strictly adhering to		Lagginia and	
	x) And any other conditions as stipulated by the	i co	neerned authorities should be followed to preserved the	
	environment.			
2	8 EXECUTIVE SUMMARY:			
-	Name of the Village	1	KONDAPPANAYANAPALLI	
ь	Name of the Panchayat / Union	1	KONDAPPANAYANAPALLI / KRISHNAGIRI	
4	The proposed total Minable Reserves	4	1292851M* (Total Depth of 120m) Top Soil Im Rough stone 119m) Ground surface above 8m as Ground surface below 112m.	
d	. The proposed quantity of renerves (level of production) for Five Years to be mined is (Recoverable reserves)	1	1218973M ² (Total Depth of 92m) Top Soil Im Rough stone 91m) Ground surface above fim an Ground surface below 84m.	
1	. Total extent of the arna	Ŧ	3.00.0Ha	
1	Proposed Period of mining	1	Five Years	
	. Proposed Depth of mining	1	Total depth - 92m. Top Soil 1m + Rough stone 91 Ground surface above 8m and Ground surface belt 84m.	
1	. Existing Pit Dimension	t	NII	
	Average production per year	ł	243795M*	
	Method of mining / level of mechanization	Opencast, Semi-mochanized Mining with a bench height of 7m and bench width of 5m is proposed.		
7	. Types of Machineries used in the quarty	÷	 Compressive with Jack harmoner Excession of 0.90Chm buckst Capacity 	
7	 Cost of the Project a. Fixed Cost b. Operational Cost c. EMP Cost 		Rs. 55,60,000/- Rs. 29,00,000/- Rs. 3,70,000/-	
	 The area applied for lease is bounded by four corners and the coordinates are Latitude Longitude North East South East North West 	SC4204 CALCER 440 (40) - 541	Toposheet No. 57 – L/02 12° 39° 55.32°'N To 12° 40' 05.09''N 78° 07' 42.23°E To 78° 07' 50.93°E 12° 40' 02.44''N - 78° 07' 50.93°E 12° 39' 58.34''N - 78° 07' 50.02°E 12° 40' 05.11''N - 78° 07' 46.34°E 12° 40' 00.00''N - 78° 07' 42.23°E	
- 3-				

•

•

0

•

0

3.0.0	ENE	AL INFORM	ATION				10	28	Mar
3,1	8.	Name of the A	opticant			M/S.S PROF	SRI VENKATESHAN	AN HULE	101/201
	.н.	Address of the and e-mail ¹ id it 	Applicant with phone any	n No	11	S/o. M No.4/I MUT METT SALE	IANNATHAN, 4, 109, THAMPATTY POST, TUR TALUK, IM DISTRICT.	200	o antina
\vdash	ε.	Status of the A	pplicant		E.	Indivi	dual		
12	2	Mineral Which mine	the Applicant intend	ls to	125	Rough	s Stone		
	Ъ.	Precise area co Lease granted	mmunication letter N Order	lo.	1	Rc. N	o. 170/2018/MINES dat	ed: 09.03.2	1018.
-	Ω,	Period of permission			T	10 Ye	ars		
	d.	Name and Add Mining Plan	irem of the RQP prep	ating		S.Dira RQP/N 6/3, Kr Oppos Omslu Saldin	nanekar, M.Sc., MAS/225/2011/A allappan Street, ile Indian bank Line, ir Tuhuk -636435, District.		3
	ie.	ROP Regn. No	h			Emili RQP0	gindhumi@yabdo.cn.iii AAS7225/2011/A		
_						Valid	op in 12.01.2021.		_
4.0	LOCA	TION: Details	Armat						
5	ATE	DISTRICT	FANCHAT / UNIO	IN	TAL	лж	VILLAGE	S.F.NO	EXTENT
Ten	tilinatiu	Krishnagiri	Kondappanayanapa krishnagiri	an/	Krish	raffara	Kondappanayanapath	PART-A	3.50.004
			.B	OTAL	6 74	£7.000	and Resembolis Inte	i miliek i	3.00.016
D.	porin	aboke / others)	trea (it.youwart)/	- Net	in in jetatic	oover m/culti	vation.	+C.#0060.0	ar 1994 (1977)
÷.,	Owne	eship / Occupan area (Surface ri	cy of the Existing gbts)	: It siv Le	ls a en pe	Govern ocine at	ment Porambuke land	The applie t of Rough	cant had be Stone Quar
d.	Tepo Latin Long	sheet No. with ide and itude		: 10 : 12 : 78	poshe 39'3 07'4	et No. \$8.52*? (2.23*)	57 - 1./02 N To 1.2° 40' 05.09''N E To 78° 07' 50.93''E		
£.	Exist if any distar	ence of Public F nearby the area are	toad / Railway line anil approximate	: AP VE GC Qu	PINA RUP ILLA arty 7	YAKX ASANJ PALLI site is	CANKOTTAI - AVALN DIRAM - GOLLAPALL + KRISHNAGIRI = 13.3 located in Western side	ATHAM 3 J = 8.0 Km 5 Kin at a distar	ris = 0.25K/ 1 1000 of 1.5 1

~ promoly

107-

h. Infrastructures neurby the Existing Lease area. 1. Post Office : VERUPASANDIRAM - 2.0 kms 2. Police Station : SHOOLAGIRI - 1.3 kms 3. G.H : SHOOLAGIRI - 1.3 kms 4. Fite service : MARACHANDRAM - 4.0 kms 5. Relively Station : MARACHANDRAM - 4.0 kms 6. School : VERUPASANDIRAM - 2.0 kms 7. Airport : BANGALORE - 76.0 kms 8. Scaport : CHENNAI - 245.0 kms c Regional Geology : KRISHINAGIRI District is undertimed by the wide range metamorphic rocks of penihuluar genesic complex. Them rocks extensively weathered and overtain by the rocent valley fills c Regional Geology : KRISHINAGIRI District is unfollows: 1 attrainen rocks : inter order genesitize on primes. Charmockitte h granisities and calc-genesises. The geological formation formation for use on of geological formations met within this District is an follows: 1 Recent in Side recent Soil, Albevian 2 Arisharan Genomics med	5.0 GEOLO	GY AND MINERAL RESET Topography	2	The area for pro- gentle elevation (towards Noeth which does not a No major river is No major river is Water table is re- surface in the adj Temperature of maximum of 38 ^d S. Rainfall of this a monacons in a ye	posed quarry level at Hill? Jermin w in above Surface and Hill? Jermin w Eastern side cover of webstition with though Star estain any type of vegetation with though Star found nearby the freth arm. bliced at a depth of 105es from below to acent open wells of the area. the area is reported to be 15°C to C during summer. res is about 800mm to 900 mm during to ar.
Image: Problem interview Soil, Allowium 1. Recent to Side recent Soil, Allowium 2. Archanan Oranites, basic granulites, Peniesaiar Genes, Cale Genies and Charackies d. Geology of the Lease Area 1. The area is mainly composed of Archanan drystall meramorphic complea. 2. The rock type noticed in the area for lease is Gran Gneiss which contains mostly Quartz and Feldspar or some ferromagnesian minerals. 3. The Granite Gneiss is part of peninsular Goetmes, a hyperatic metamorphic rock.		Infrastructures nearby the Existing Lease area. 1. Post Office 2. Police Station 3. G.H 4. Fire service 3. Rellway Station 6. School 7. Airport 8. Seaport Reginnal Geology	 VEJ SHG SHG MA HO2 VEJ BAJ UEJ BAJ CHI KR melt allu are grad velz grad 	UPASANDIRAM OLAGIRI OLAGIRI RACHANDRAM RIR UPASANDIRAM NGALORE ENNAI SHNAGIRI District morphic rocks of pe- natvely weathered a rium at places. The Archaean rocks lik- ulites and calc-gries a and pegmatite. The ogical formations me-	 2.0 kms 13.5kms 13.0kms 33.0kms 33.0kms 30.0kms 20.0 kms 20.0 kms 76.0Kms 245.0 kms 245.0 kms 245.0 kms t is underlined by the wide range ninuular gneissic complex. Them rocks and overtain by the recent valley fills a peological formations found in the District as a follows. The younger formations are Que generalized stratigraphic succession of r within this District is as follows.
	4	Geology of the Lease Area	1. 22	Age Recent to Side race Archaran 1. The arra is a metamorphic co 2. The rock type Gneiss which a some ferromage 3. The Granite Gr grade metamorphic	nt Soil, Alluvium Oranites, hatic granulites, Peninsutur Oranites, hatic granulites, Peninsutur Onnes, Cale Gueles and Chaenockies ainly composed of Archanan crystall mplea. noticed in the area for lease is Gran annains mostly Quartz and Feldspar o estan minerals. ess is part of peninsular Godines, a to hic rock.

0

		<u></u>						15	- entr
					4 Ti di	te general tr p towards N	end of fou E-70°.		S JO" E I
					the genma	1 Benudicus	succession	of the analysis house a	s unner.
					A	J#	R	ock Formalitation	and the second
					I. Re	cent to Sub i	ecenit Se	oil, Altuvhim	2/15 agri
					2. Ar	thann	C	harmockites	122
II					3. Ar	charan	P) G	eninaular Gneiss	and Cal
52	-	Details of 1 already can	Exploration	t 1 any	1. Si nu 2. He G	ane the Rou i needed to e owever, the cologist who	gh Stone is xploration area wa prepared fl	s seen from the Surfa s personally exami the Mining Plan.	ice eseit, i ned by
5.3	A.	Already exe	cavaled in	pìt.			(1997) (1997)		
	-	dimensions					NIL		
		The Thicks Geological wise. The G seil + 119m	esa of Top reserve is icological Rough Str	s soll in thi estimated a reserve of me). Groun	is area is 1.6 a 3384633m Rough stone id surface ab	Im and the n ³ respective and Top so ove Sis and	otal volume ly, at the rat it is calcula Ground sur	r of topmil will be 2 c of 100% recovery of ted upto a depth of 1 face below 112m.	9862m². pro s dopti 20m (1m
			111100	150 2000		the second second	Contraction and	HIGH WEIGHT I FAIL	
					100000000000000000000000000000000000000				
		-	1	1	GEOLOG	SICAL RE	SERVES	Lesser	
		Section	Bench	Length in (m)	GEOLOC Width is (m)	Depth in (m)	Volum in (Cu.m.	e Recoverable Reserve in Cu.m (100%)	Topsoi
		Section	Bench	Length in (m) 189	GEOLOG Width is (m) 158	Depth in (m)	SERVES Volum in (Cu.m.	e Recoverable Reserve in Cu.m (100%)	Topsoi 29862
		Section	Bench 1 11	Length in (m) 189 83	GEOLOG Width in (m) 158 69	Depth in (m)	SERVES Volum in (Cu.m. 40089	e Recoverable Reserve in Cu.m (100%) 40089	Торьо 29862
		Section	Bench 1 11 111	Length in (m) 189 83 189	GEOLOG Width is (m) 158 69 158	Depth in (m) 1 7	SERVES Volum in (Cu.m. 40089 20903-	e Recoverable Reserve in Cu.m (100%) 40089 1 209034	Topso 29862
		Section	Bench 1 11 111 IV	Length in (m) 189 83 189 189	GEOLOG Width in (m) 158 69 158 158	Depth in (m)	SERVES Volum in (Cu.m. 40089 20903- 20903-	e Recoverable Reserve in Cu.m (100%) 40089 40089 1 209034 1 209034	Торко 29862
		Section	Bench 1 11 11 11 11 11 11 11 11 11 11 11 11	Length in (m) 189 83 189 189 189	GEOLOG Width is (m) 158 69 158 158 158 158	ICAL RI Depth in (m) 1 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 20903- 20903- 20903- 20903-	e Recoverable Reserve in Cu.m (100%) 40089 1 209034 1 209034 1 209034	Topsol 29862
		Section	Bench 1 II IV V VI VII	Length in (m) 189 83 189 189 189 189	GEOLOG Width is (m) 158 69 158 158 158 158 158	Depth in (m) 1 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 20903- 20903- 20903- 20903- 20903-	e Recoverable Reserve in Cu.m (100%) 40089 40080 400000000	Topso 29862
		Section	Bench II III IV V VI VII VII	Length in (m) 189 83 189 189 189 189 189 189 189	GEOLOG Width in (m) 158 69 158 158 158 158 158 158 158 158	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 20903- 20903- 20903- 20903- 20903- 20903-	e Recoverable Reserve in Cu.m (100%) 40089 4 209034 4 209034 4 209034 4 209034 4 209034 4 209034 4 209034	Topsol 29862
		Section	Bench 1 11 111 111 111 111 111 111	Length in (m) 189 83 189 189 189 189 189 189 189	GEOLOC Width is (m) 158 69 158 158 158 158 158 158 158 158 158	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 2003- 2003- 2003- 2003- 2003- 2003-	e Recoverable Reserve in Cu.m (100%) 40089 40089 4 209034 4 209034 4 209034 4 209034 4 209034 4 209034 4 209034 4 209034	Topsol 29862
		Section	Bench 1 11 11 111 111 111 111 111	Length in (m) 189 83 189 189 189 189 189 189 189 189	GEOLOG Width in (m) 158 69 158 158 158 158 158 158 158 158 158 158	Depth in (m) 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 20905- 20905- 20905- 2005- 2005- 2005- 2005- 2005- 2005-	e Recoverable Reserve in Cu.m (100%) 40089 40089 40089 40089 40089 4009034 4009034 4009034 4009034 4009034 4009034 4009034 4009034 4009034	Topso 29867
		Section	Bench 1 II III IV V VI VII VII IX XI XI	Length in (m) 189 83 189 189 189 189 189 189 189 189 189 189	GEOLOG Width is (m) 158 69 158 158 158 158 158 158 158 158 158 158	ICAL RI Depth in (m) 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 20903- 20903- 20903- 20903- 20903- 20903- 20903- 20903- 20903- 20903- 20903- 20903-	e Recoverable Reserve in Cu.m (100%) 40089 209034 209034 209034 209034 209034 209034 209034 209034 209034 209034	Topsol 29862
		Section i XY-ABJ	Bench 1 11 111 111 111 111 111 111	Length in (m) 189 83 189 189 189 189 189 189 189 189 189 189	GEOLOG Width is (m) 158 69 158 158 158 158 158 158 158 158 158 158	Depth in (m) 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 2	e Recoverable Reserve in Cu.m (100%) 40089 209034 209034 209034 209034 209034 209034 209034 209034 209034 209034 209034	Topsol 29862
		Section	Bench 1 11 11 11 11 11 11 11 11 11	Length in (m) 189 83 189 189 189 189 189 189 189 189 189 189	GEOLOG Width in (m) 158 69 158 158 158 158 158 158 158 158 158 158	CAL RI Depth in (m) 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 2	e Recoverable Reserve in Cu.m (199%) 40089 4 209034 4 209034	Topso 29867
		Section I XY-ABJ	Bench 1 II III IV V VI VII VII VII	Length in (m) 189 83 189 189 189 189 189 189 189 189 189 189	GEOLOG Width is (m) 158 69 158 158 158 158 158 158 158 158 158 158	CAL R Depth in (m) 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 2	e Recoverable Reserve in Cu.m (100%) 40089 40089 4 209034 4 209034	Topsol 29862
		Section i XY-ABJ	Bench 1 1 1 1 1 1 1 V V V V V V V V V V V V V	Length in (m) 189 81 189 189 189 189 189 189 189 189	GEOLOG Width is (m) 158 69 158 158 158 158 158 158 158 158 158 158	CAL RI Depth in (m) 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 2	e Recoverable Reserve in Cu.m (100%) 40089 40089 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 209034 209034	Topsol
		Section	Bench 1 II III IV V VI VII VII VII	Length in (m) 189 83 189 189 189 189 189 189 189 189 189 189	GEOLOG Width in (m) 158 69 158 158 158 158 158 158 158 158 158 158	Depth in (m) 1 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 2	e Recoverable Reserve in Cu.m (199%) 40089 40089 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 209034 209034 209034 209034 209034	Topsol
		Section I XY-ABJ	Bench 1 1 1 1 1 1 1 1 V V V V V V V V V V V V V	Length in (m) 189 83 189 189 189 189 189 189 189 189 189 189	GEOLOG Width in (m) 158 69 158 158 158 158 158 158 158 158 158 158	CAL RI Depth in (m) 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 2	e Recoverable Reserve in Cu.m (199%) 40089 4 209034 4 209034 209034 209034 209034 209034 209034 209034	Topsoi
		Section I XY-ABJ	Bench 1 1 1 1 1 1 1 1 V V V V V V V V V V V V V	Length in (m) 189 83 189 189 189 189 189 189 189 189 189 189	GEOLOG Width in (m) 158 69 158 158 158 158 158 158 158 158 158 158	CAL R Depth in (m) 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 2	e Recoverable Reserve in Cu.m (199%) 40089 40089 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 209034 209034 209034 209034 209034 209034 209034	Topsol
		Section I XY-ABJ	Bench 1 II III IV V VI VII VII VII	Length in (m) 189 83 189 189 189 189 189 189 189 189 189 189	GEOLOG Width in (m) 158 69 158 158 158 158 158 158 158 158 158 158	CAL R Depth in (m) 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SERVES Volum in (Cu.m. 40089 20903- 2	e Recoverable Reserve in Cu.m (199%) 40089 40089 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 4209034 209034 209034 209034 209034 209034 209034 209034 209034 209034 209034 3384633	29862 29862

		d. Recoverable Top soil: T 25628m ² , 1 respectively Rough Stom	e Reserves The Thickr The ministr , at the rat e). Ground	t nets of Top able reserve e of 100% of 1 surface abo	soli in this is and the scovery upto yve Sm and (area is 1.0 recoverable a depth of s Ground surfs	n and the To reserves are ise. Total De ace below 112	aut Stime at Theme of To 2202851 a H atta-100m (1m top m 000000000000000000000000000000000000	AP 2010 STELL
		Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume in (Cu.m.)	Recoverable Reserve in Cu.m (190%)	Topsoi
		1	1	172	149	1			25628
			H.	73	69	7	35259	35259	
		- 14 I	III	167	148	7	173012	173012	-
			IV	157	143	7	157157	157157	
			V	147	1,55		127547	142902	
			VII	137	128	7	113792	111702	
			Vm	117	121	7	100737	100737	
		100222250	IX	107	118	7	88382	\$8382	
SĽ.		XY-AB	X	97	113	7	76727	76727	
			XI	87	108	7	65772	65772	
			XII	77	103	7	55517	55517	
	-		XIII	67	98	7	45962	45962	
			XIV	37	93	7	37107	37107	-
		2.4	XV	47	88	7	28952	28952	
			XVI	- 37	83	1	21497	21497	-
			XVII	41	78		14/42	14/42	
			Avin	Tant	13	1	1203051	120255	32/48
	6.1	Method of Minin	g 3	2.	Opencast m extract Rou Machinerim hammers is Excavators / Lorries are destination.	ethod of se gh Stone of r like Tracto proposed 1 are proposed proposed f	mi mechanica equired size, e mounted co o drilling and for quarrying or the transpo	d mining will be impressor attache Proposed Contr of Rough Stone rtation of Rough S	adopted if with la of Blastin and Tippe Stone to t
	63	Proposed bench b	eight &	H is a s If we bely Blasting Hydraul the crus jelly to l Bench b Bench v	nmi michar p of compr L block tift tic excevato dring plants 0mm chip eight = 7mt width = 5mts	used quarry essue and j ing using c r and loaded into require s.	ng operation ack hammers runes and w I directly to 0 od size in the	using shor hole d , smooth Propos aute and are ren he tippers and tra crushing planta	nining will ied Contri- soval usie maported t from75mi
-									

	6,4	Details of Mineral I proposed	Overburden roduction for Hive year	(18) 6	Top Soil/ Ov The Thickner of topsoft will	erburde n of lop l be 2567	n product soil notice 28m ³	tinn details fo d in this anta		the total 2 8 M	volume NY 20
		Year wis Rough st The aver proposed a 92m de	e Reserves C tone product age proposed rate of produ pdt (1m Top)	alculation ion detain rate of p action of action of action of	ons : Is as follows: noduction of Rough Stone n Rough Stone	Rough S is sbout 1) Propo	tone is ab 243795m sed Produc	out 12189734 ⁸ ger year, At tion of five Y	n ³ for Five the rate of curs. Ground	years. The 100% recar 1 surface a	Angrian Angrian Sery up Sove B
÷.,		and Grou	ind surface be	uaw 1140		031000	DECEN	ATT-C			_
-		Section	Year	Bench	Length in (m)	Width in (m)	Depti in (m	Volume in (Cu.m.)	Recover Reset in C (100	rrable uve u.m %)	Topso
				1	172	149	1				25628
			I-YEAR	П	73	69	7	35259	352	59	
				111	167	148	7	173012	173	147	
			VEAD	1V V	127	145	7	142002	142	002	_
			III	VI	197	130	7	127547	172	547	
1		XYAB	YEAR	VII	127	128		113792	113	792	
		XY~AB	- Here	VIII	117	123	7	100737	100	737	
			IV-	IX	107	118	7	28382	583	82	
1			TEAK	х	97	113	7	76727	767	27	
				XI	87	108	7	65772	657	72	_
1			V-	XII	- 17	103	7	53517	555	17	_
1			TEAR	XIII	67	98	7	17107	425	02	
			1	111	stal-	193	/	1212021	1314	973	2562
	15	a 1 Ma	los	- 12	Drilling of	wheet had	et will b	terest out	Laxe	ara	und tax
			14		hammer. De 0.25m and b Details of dr Type	pth of ho arden shi illing equ Nos	les shall b all be 0.60 upments a Dia of bole 25.5	e I to 2m ber in from the pr re given belo Size / Capacity Hand	eh Height a eface. *. Make Atlas	Motive power	H.P
					Hammor		mitt	held	copco 23Nes	(1)(1)(1)	
		b Los	ding		Loadin	g of was	the and row	igh strong sha	It be carried	aut by E	xonvato
		14	520.0 00 .01		into 10 tons of loading of	e capacit quipment	y tippers f	rom the work an under,	ing place p	miodically	Demi
					Туре	Nor	Bucket (M	Capacity (T)	Make	Motive power	H.P.
					Hydraulic	- 3	4.2	M ³	LAT or	Diesel	120
			_		1 accevator				TALIN .	-	-

è			63	Transportation	3	Transport	of raw	and wante shall be	oom by Lippe	8 MAY 2010	- A
8					H	Type	hip	Size / Capacity	Www.	Motive	H.P.
2						Tapper	3	10 M.T	Aultain	Diamina di	聖
	10	6.6	-	Disposal of	-	The top a	où of	the lease area in	15628m ³ . To	ptoil formation	10/10
	1.			Overburden		removed a	nd Du	mping to All Side	of the 7.5m &	10.0m boundar	y ba
				21	Т	of the less	et and	t, this will be dor	te only after o	otaining permis	non.
						bud out use	[Proposed Dr	imp Dimensio	tut:	
				9. 			1	op Soil-7124 ≦qm	X 3.60m(H) ~	2562%m ³	
				Sat of the second second			10.00				
ß		6.7		Brief Note on	1	Concep	daval. M	tining Plan is pre	pared with an	object of Five	yes.
				Plan for the entire		depth of a	anyir	utimate pit slo	pe, selection of	failes for constru	actio
3				lease period		infrastruct	ures eb	c.,			
8							Avar	age Ultimate Pit d	immaion in giv	en as Under,	
	1							ULTIMATE	PIT DIMENS	SION	
		-	-				Bench	Length in (m)	Width -	Dopth in (m)	ť.
Ŀ.	- 5						1	172	149	1	
h		1		1			11	73	69	7	
į.		1					m	167	148	2	
81				2 C			V	127	143	7	
ΡŬ		1					VI	137	131	2	
		1					VII	127	128	7	
							VIII	117	123	7	
							FX	107	118	7	
							X	97	113	7	
		1 -	1.		L)	-	XI	87	108	1	ŧ.
		L .					XII VIII		103	1	÷
				i i		-	XIV	57	91	7	ŧ.
옙						1 iter	24.1	1. <u>17 1</u>			8.
	- 2					Ultimate p	nsie p	in designed based	on certain pra	ctical factors suc	i); #5
		1		2		Affine	a corput tortion	ting home memory	d on the bound	dery barrier br	and the second
1						Trees 2	il the	handline information	on station Die	Air Ouality and	hom
						Malanana	Manan	ion providence and	about A conference of the	the sparsty rate	
						(ACCIDE SHEED)	- inter	the MOTE	our consysts y	intrais with the CR	1100
						exity year	an per	me worse normal			
				-							
21		_			1		-			1	
9											the second se

	N			CORT ELLEDISS
3		Energy:	W-DEATE-LINE MER	1.9
í.		Electricity for mines and lights	only at nights (working is restric	red on day time only of any 9Am
		5Pm). Diensi (HSD) will be use	d for quarrying machines around	Property of HSD will benefit
6		for the entire project life. Diese	I will be brought from nearby di	mail boundar the bound to bound the bound of the boundary of the boundary of the bound of the bo
Ē		the project. Lightings on the ni	ght will be taken from nearby cie	cine point atterner and a print
Ē.		from concerned authorities.		
6 I		For Top spil:		
i.		Per hour excavator will contour	= 10 liters / hour	
		Par hour excavator will ancavat	m = 60m ¹ of Top soil	
		For 25628nr ³	- 25628/60	
			= 427.1 hours	
		Dietel commution 620.6 work	ting hours = 427.1 x 10 Titters	CONTRACTOR AND A DESCRIPTION OF A DESCRIPT
		Total diesel consumption	 4271 filters of HSD 	will be utilized for Top soil
		Constant Constant		
Ĩ		Per hour excevator will commun	e = 16 liters / bour	
		Fer hour excevator will excevel	m = 20m ² of rough stan	c
		For 1218973m ³	= 1218973/20	
		28 2 2 1 0	= 60948.65 bours	
		Diesel consume 60948.65 work	ing hours = 60948.65 hours a li	6 liters
				The second se
		Total diesel consumption	= 975178.4 litera of	HSD will be utilized for Rou
		Total diese? consumption	= 975178.4 liters of	HSD will be utilized for Roug
		Total dieset consumption	= 975178.4 liters of	HSD will be utilized for Rou
		Total diesel consumption stone	= 975178.4 liters of	HSD will be utilized for Rou USD for the entire period of life
		Total diesel consumption stone	= 975178.4 liters of round = 979449.4 liters of l	HSD will be utilized for Row
	7.0.83.	Total diesel consumption stone Total diesel consumption is a ASTING	= 975178.4 liters of round = 979449.4 liters of l	HSD will be utilized for Rou USD for the entire period of life
	7.0 BL	Total diesel consumption stone Total diesel consumption is a ASTING Proposed Control Blasting Pattern	= 975178.4 liters of round = 979449.4 liters of l The massive formation shaft by drilling and Proposed Co	HSD will be utilized for Rou USD for the entire period of life be broken into pieces of portable atrol Blasting using jack harmers
	7.9.83.	Total diesel consumption stone Total diesel consumption is a ASTING Proposed Control Ellasting Pattern	= 975178.4 liters of round = 979449.4 liters of l 1 The massive formation shaft by drilling and Proposed Co shat hole Blasting. Powder	HSD will be utilized for Rou ISD for the entire period of life bu broken into pieces of portable nerol Blaning ming jack harmers factor of explosives for bracking a
	7.0.81.	Total diesel consumption stone Total diesel consumption is a ASTING Proposed Control Ellasting Pattern	= 975178.4 liters of round = 979449.4 liters of 1 The massive formation shall try drilling and Proposed Co shalt hole Blasting. Powder hard rock shall be in the explosives.	HSD will be utilized for Rou ISD for the entire period of life in broken into pieces of portable narol Blasting ming jock harmens factor of explosives for broaking p order of 6 to 7 tonoes per K.;
	7.0 81.	Total diesel consumption stone	= 975178.4 liters of round = 979449.4 liters of l The massive formation shaft by drilling and Proposed Co shot hole Blasting. Powder hard rock shall be in the explosives. Proposed Control Blasting	HSD will be utilized for Rou USD for the entire period of life he broken into pieces of pertable nerol Blaning ming jack harmens factor of explosives for branking s order of 6 to 7 tonocs per K.p parameters are as follows.
	7.4.81.	Total diesel consumption stone	= 975178.4 liters of round = 979449.4 liters of I 1 The massive formation shaft by drilling and Proposed Co shat hole Blasting. Powder hard rock shall be in the explosives. Proposed Control Blasting Dumeter of the bale	HSD will be utilized for Rou ISD for the entire period of life be broken into pieces of portable nerol Blaning ming jack homenen factor of explosives for broaking s order of 6 to 7 tonoes per K.g parameters are as follows.
	7.0 81.	Total diesel consumption stone	 975178.4 liters of round = 979449.4 liters of I The massive formation shall by drilling and Proposed Co shalt hole Blasting. Powder hard rock shall be in the explosives. Proposed Control Blasting. Dumeter of the bale. Spacing. Dumb. 	HSD will be utilized for Rou ISD for the entire period of life In broken into pieces of pertable narol Blasting ming jack harmens factor of explosives for bracking s order of 6 to 7 tonoes per K.g parameters are as follows. 12-36 mm 60 Cmi 1 m 1 Sm
	7.0 81.	Total diesel consumption stooe	= 975178.4 liters of round = 979449.4 liters of l The massive formation shaft by drilling and Proposed Co shot hole Blasting. Powder hard rock shall be in the explosives. Proposed Control Blasting Diumeter of the bole Spacing Digits Charge / Hole	HSD will be utilized for Rou USD for the entire period of life he broken into pieces of pertable ntrol Blaning ming jack harmens factor of explosives for branking s order of 6 to 7 tonoes per K.g parameters are as follows. <u>32-36 mm</u> 60 Cmi 1 m 1.5m D.Cord with water or 70 gmi of g
	7.0.89.	Total diesel consumption stone	= 975178.4 liters of round = 979449.4 liters of I The massive formation shaft ty drilling and Proposed Co shot hole Blasting. Powder hard rock shall be in the explosives. Proposed Control Blasting Dumeter of the bale Spacing Digits Charge / Hole Patters of hole	HSD will be utilized for Rou ISD for the entire period of life In broken into pieces of pertaking ntrol Blanting ming jack harmours fautor of explosives for bracking s order of 6 to 7 tonoes per K.g parameters are as follows. <u>32-36 mm</u> 60 Cms 1 to 1.5m D.Cord with water or 70 gent of g pooder or Getause. <i>Zie Zas</i>
	7.0 81.	Total diesel consumption stone	= 975178.4 liters of round = 979449.4 liters of 1 The massive formation shall by drilling and Proposed Co shall hole Blasting. Powdar hard rock shall be in the explosives. Proposed Control Blasting Diumeter of the bale Spacing Digits Charge / Hole Patters of hole Inclination of hole	HSD will be utilized for Rou USD for the entire period of life In broken into pieces of portable nirol Blasting ming jack harmens fautor of explosives for branking s order of 6 to 7 tonnes per K.g parameters us as follows. 32-36 mm 60 Cms 1 to 1.5m D.Cord with water or 70 gent of g pooder or Getatise. Zig Zag 1 70 ⁶ from the borizontal.
	7.4 81.	Total diesel consumption stooe	= 975178.4 liters of round = 979449.4 liters of I The massive formation shaft by drilling and Proposed Co shot hole Blasting. Powder hard rock shall be in the explosives. Proposed Control Blasting Dipute Spacing Dipute Charge / Hole Patters of hole Iscination of hole Iscination of hole	HSD will be utilized for Row ISD for the entire period of life In broken into pieces of portable ntrol Blaning ining jack harmens factor of explosives for branking s order of 6 to 7 tonoes per K.g parameters are as follows. <u>12-36 mm</u> 60 Cmi 1 m 1.5m D.Cord with water or 70 gent of g pooder or Gelause Zig Zag 1 0.45 MT = 2.6 = 1.12 MT
	7.0 80.	Total diesel consumption stone	= 975178.4 liters of round = 979449.4 liters of 1 The massive formation shall by drilling and Proposed Co shat hole Blasting. Powder hard rock shall be in the explosives. Proposed Control Blasting Dipth Charge / Hole Patters of hole becination of hole becination of hole Depth Quantity of rack brokes	HSD will be utilized for Rough ISD for the entire period of life In broken into pieces of portable narol Blasting ming jack harmens factor of explosives for bracking s order of 6 to 7 tonoes per K.g parameters are as follows. 12-36 mm 60 Cmi 1 m 1.5m D.Cord with water or 70 gent of ge pooder or Gelause. Zig Zig 1 70° from the borizontal. 1 0.45 MT ± 2.6 = 1.17 MT 1 1.7 x 90% = 1.05 kT 7 hole
	7.4 81.	Total diesel consumption stone	= 975178.4 liters of round = 979449.4 liters of 1 The massive formation shaft by drilling and Proposed Co shot hole Blasting. Powder hard rock shall be in the explosives. Proposed Control Blasting Diumeter of the bole Spacing Depth Charge / Hole Pattern of hole Inclination of hole Inclination of hole Disastity of rack brokes Proposed Control Blasting distance (0) 90%	HSD will be utilized for Rom USD for the entire period of life In broken into pieces of portable ntrol Binning using jack harmens factor of explosives for bracking s order of 6 to 7 tonoes per K.g parameters are as follows. 32-36 mm 60 Cm 1 m 1.5m 0.Cord with water or 70 prot of p pooder or Gelause 2 Zig Zag 1 70° from the borizontal. 0.45 MT ± 2.6 = 1.17 MT 1 Lt7 x 90% = 1.05kfT / bole
	7.0 80.	Total diesel consumption stone	 975178.4 liters of round = 979449.4 liters of 0 The massive formation shaft by drilling and Proposed Co shat hole Blasting. Powder hard rock shall be in the explosives. Proposed Control Blasting Dipits Charge / Hols Patern of hole Depth Charge / Hols Patern of hole Depth Charge / Hols Proposed Control Blasting Proposed Control Blasting Dipits Charge / Hols Patern of hole Dipits Charge per hole Quantity of rock brokes Charge per hole Quantity of rock brokes per 	HSD will be utilized for Rom ISD for the entire period of life In broken into pieces of portable narol Blaning using jack homenes factor of explosives for bracking s order of 6 to 7 tonoes per K.g parameters are as follows. <u>12-36 mm</u> 60 Cmi 1 m 1.5m D.Cord with water or 70 gent of p pooder or Gelatuse Zig Zag 70° from the borizontal. 0.45 MT ± 2.6 = 1.17 MT 1.17 x 90% = 1.05kTl / bole 140 gent of 25mm dia tarui0ge
and a second second state of the second s	7.0 81.	Total diesel consumption store	 975178.4 liters of The matsuive formation shall by drilling and Proposed Control Blasting. Proposed Control Blasting. Diumeter of the bale. Spacing. Dipth. Origh / Hole. Patters of hole. Batters of hole. Proposed Control Blasting. Origh / Hole. Depth. Origh / Hole. Batters of hole. Spacing. Origh / Hole. Depth. Origh / Hole. Origh / Hole. Depth. Origh / Hole. Origh / Hole. Origh /	HSD will be utilized for Row USD for the entire period of life In broken into pieces of portable narol Blasting ming jack harmens factor of explosives for bracking s order of 6 to 7 tonnes per K.g 132-36 mm 60 Cmi 1 m 1.5m D.Cord with water or 70 gens of go pooder or Celause. Zig Zag 1 70° from the borizontal. 0.45 MT ± 2.6 + 1.17 MT 1.0 gens of 25tom dia sarui0ge 813.64 M*
	7.4 81.	Total diesel consumption is an ASTING: Proposed Control Eliasting Pattern	 975178.4 liters of The massive formation shaft by drilling and Proposet Co shot hole Blasting. Powder hard rock shall be in the explosives. Proposed Control Blasting Diumeter of the bole Sparing Depth Charge / Hole Pattern of hole Inclination of hole Inclination of hole Destity of rack brokes Proposed Control Blasting Digastity of rack brokes Proposed Control Blasting Digastity of rack brokes Proposed Control Blasting Digastity of rack brokes Proposed Control Blasting Charge per hole Quantity of rack brokes per fay 	HSD will be utilized for Row USD for the entire period of life In broken into pieces of portable ntrol Binning ining jack harmens factor of explosives for bracking s order of 6 to 7 tonocs per K.g 12-36 mm 60 Cms 1 m 1.5m D.Cord with water or 70 gent of g pooder or Gelause 2 Zig Zag 1 70° from the borizontal. 0.45 MT = 1.6 1.17 MT 1.40 gent of 25mm dia taituidge

-121-0 out muser, 3 The Applicant is advised to shread explosives a per bit. Storage of Explosives and safety ٩., 7.4 0 Indian Explosives Act, 1958 28 MAY mensures to be taken while 1 2. The explanives to be used in hippy being a small q2018. Proposed Control Blasting the Detrict collector may be appropriated to these the stocks ۲ not exceeding 5kgs at time or any inter-manulty permits 0 by the concerned authorities in a portable magazine of \$2 e B-types. 1. The Applicant is advised to anguge an authorized * auplosive agency to carry out Proposed Control Blasting. 00 4. The Proposed Control Blasting time at a day is proposed to (þ be 5 PM to 6 PM. 5. Flest Aid Box will be keeping ceady at all the time. 傓 Necessary precautionary announcement will be carried out ő: 0 before the Propused Control Blasting operation. 8 6 ۲ 8.0 MINE DRAINAGE: The ground water table is reported as 105m below 8.1 Depth of Water table -50 ground level in neurby wells of this arm, (Mining-8 depth taken as 8m from above ground Surface level and 84m from below ground Surface level (Total 0 depth- 92m) (Im Top soil + 91m Rough stone): æ 14 Now, the present quarry shall be proposed above the e water table. Hence, quarrying muy not affect the ground water. 6 8.2 Arrangement and Places where the mine The ground water may not rise immediately in this 0 water is finally proposed to be discharged type of mining. However, the ruin water percolation and collection of water from the seepage shall be 8 less than 300 lpm and it shall be pumped about 0 periodically by a stated by diesel powered Q Centrifugal pump motivated with 7.5 H.P. Motor. The quality of water is potable and it is not 3 comminated with any hazardoes things. 0 10 ۲ 10 0 æ 14 Ð 196 maps

	9.0_01	HER PERMANENT STRUCT	UR:	tES:	<u> </u>	28 MA	1 200
1	9.1	Habitutions / Village	E.	There use to	o villogers within a radial of Sec	hn. The mai	Est UIB
	Ľ – 1			Judidations:	with the population is Hinde at	minister and	die 1
	Ľ .		Ľ	Direction	Villare	Thundle h	# wiset states
	. 1			Direction	Constant and a second s	in Kms	a naranta tan
	1 - I	2		North	APPINAYAKKANKOTTI	1.9Kma	220
				East	VERUPASANDIRAM	1.4Km	300
	1 I			West	AVALNATHAM	2.0Kms	240
				- 000 Cal			
	9.2	Power lines (HT/LT)	1	There is	no power lines located with	in the safe	ty distance
		hinderen en e		prescribed	under Tamil Nadu Minor Min	erals Conce	stion Rules,
				1959.		5 P 10 P 10 P 10 P 10 P	n stress i teneras a
	9.5	Water bodies (River, Pond,	1	Three is NO) kulan/kanmoi are located wit	hin a radius :	of \$00m.
		Lake, Odal, Channel atc)		F 1		and the second second	12 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
	9,4	Archeological / Historical	1:	There are n	o Archeological / Historical Me	onuments wit	thin a radius
	1-2010	Monuments	m	of 500m.			
	9.5	Road (NH, SH, Village Road	1	APPINAY	AKKANKOTTAI - AVALNA	THAM Via -	0.25Km
		(etc)		VERUPAS	ANDIRAM - GOLLAPALLI	+ 6.0 Km	
-		Part and the second		GOLLAPA	LLI - KRISHNAGIRI = 13.5 K	ទំព័រ	
				Quarry tite	is located in Western side at a	distance of	1.5 km.fmm
			H	Ventperson	Sirum.		
	9.6	Places of Workhip	1:	Them are o	o Places of Worship within a m	dian of 500m	2
	9.7	Reserved Forest / Forest /	ŤŤ	There are r	o Raserved Forest / Ferest / Soc	int Poenst 7.5	Wite Life
		Social Forest / Wild Life		Savetuary	te within a radius of 500m.		
		Sanctuary etc.,					
	9.8	Any Interstate Bonder,	Ť	There are ?	to Inter State border within a m	dius of 10 km	nit.
	E .	Protected areas under the		North Cao	very Wild life Sanctuary locate	d within the	distance of
		Wild Life (Protection) Act,	Ľ	about 23.58	Kms Form Existing lease area	8	
		1972, Critically Polluted	L	Witenoeth	unidary OPS (12* 31* 53.91*N	275.57(3)23	1"E)
		Areas as identified by Central		Quarry Bo	autary GPS (12" 40' 00.00"N	+ 78* 07' 42	23°E)
		Pollution Control Board and		201.0	CO 0 14		
		Notified Eco sensitive areas					
	9.9	Any Other Structures	F	NU			_
	19405.0	Uniter managements		13			
		24					
							20

0 0 0

	10.01	MPI.	Employment Potential (Management & Supremised Potential (Management	1	TULA	1 As per Mines MTHIRU, 19	i sufety dige the	28 .M	N.
			ac current y president			whenever the man 10, it is Mining Mate workers dire supervision	i workers worker i prefirmed in the i to keep all i octiy under his	the production of the producti	
						2. The followin quarrying Ro	g man power is agh Stone during	propose the One	d Y
			71			and Nine N proposed pro-	fonths period to aduction and (a	o achievi o comply	194 1941
	1	L		L	_	provisions of	the Government r	ionine.	1
			L. ES		1.	Shifted	Operator	2 No.	1
							Binterfater	1 510.	
				11	2	Semi - skilled	Drivet	2 Nus	1
					3,	Unskilled	Musdoor / Laboura	5 Nas	
							Cleaners	3Nos	1
	1	1				10	Office Boy	INO.	4
-	1	1	Set a reserve	1	4	Manegement & St	sbeadings and	JP60.	-
	103	_	Walfers Manman	L	-	A			
	10.4	-	P CLAR PRODUCT		0	blog system at the	cite of 11 we par	there and	-1
		b	Sanitary facilities	2	tito to n of d Sen	vided as per the M nake a borehole fo making water and i permanent fatrie	lines Rules, 1960 e providing unint other utilities. es & ormals shal	, It is pro emopted o I be main	po up
2					at o pro sop sha Rui	convenient places visions of Rule (mately for males 0 also be arranged es, 1960.	for use of tabo 33) of the Mind and females Wi I as per rule (30	tes and p es Hules, eshing far i) of the	
		z.	First Aid Facility	(in)	Bei und pro pro app tres	ng a amail mine F er Rule (44) of wided with faciliti scribed. Qualified einted or nominal- trout.	inst Aid station at the Minet Rules es as por the th First Aid person ed to attend emm	i per prov 1960 w int sched neel show rgency fil	「 」 「 」 「 」 」 「 」 」 」 」 」 」 」 」 」 」 」 」
		đ	Labour Health	1	As to t add inju	pet Mines Rule, P e annuged for occ ition to amonding r tries under the Rule	eriodic medical e oparional finalth o nedical irrestmont t 45 (A), 1960.	ince in a y of occupi	in the
		and the internet							

		Precautinnery safety mean Laborers	ureș (tọ the	 Safety provin Duit mask, Ear the circulars an under the guid operation. Nucessary to to all the emple experienced off at quarzying operation. 	tone like helper multiplete helper d amendmenned ance of DGMM tining will be co- styens with the inters to train also ration.	to be crowing the safe of Mune labor and the Consection of Con- montant Consection of Trial help of qualified an out the safe and system
	Generates		10.22	1	RABTR		
	11.0 EN	VIBONMENTAL MANAGI	EME	NTPL	AN		
	111	Exitting Land Use Pattern		SL- NO.	LAND USE	PRESENT AREA (HECT)	AREA IN USE DURING THE QUARRYING PERIOD
					Quarryine Pit	Nil	2510
			H	2	Infrastructure	1981	0.01.0
			11	1.	Roadii	Nil	0:07.0
-	-	Comment of the	14	- 4;	Green-Belt -	- Nil	0.39.4
			11	5	Unutilized	3.00.0	0.15.6
					Total =	3,00.0Ha	3,00.011a
		4) 4)		in new ground (Total presen quarry	by wells of this area. Sorface level and 1 depth- 92m) (1m To 1 quarry shall be pro- ing may not affect the	(Mining depth to Min from below op soid + 91m R oposed above 0 ground water.	aken as \$m from above ground Surface lev ough stone). Now, th te water table. Hence
	113	Flora and Fatina	Ţ	Except fresh i fauna (t anacia bushen, no c Lease area. Further, of zoological interest i	other valuable tr neither flora of a noticed in this	ees als noticed in the botanical utherest no
	11.4	Climatic conditions		General year at east to the ten of 38%	ally sub-tropical clin ad this District receiv monoon. The average operature magni from C during the sommer	uatic condition p ves rain both in minfail is about 18 ⁴ C during wi	revails throughout th South west and Nor 800mm to 900mm ar mei and to a maximum
							1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.

	÷	12.2	1 themes it was		The second		11.1	20 .	1
g)	1.5	14.5	Human Settlement	^k	Loc mares	r naouations with the populatio		NAY	20
1					Direction	Village	Durince	OVerstation	
2					North	APPINAYAKKANKOTTI	1.9Kms	2900 JT	F
Ð.,					East	VERUPASANDIRAM	1,4Kms	360	ľ
Ÿ.					West	AVALNATHAM	2.0Kms	300	
5				L					1
1		11.6	Plan for Air, Dunt Suppression	1	Air or hauling ro	dust expected to be generate ads, places of excevation etc.	of from drill will be su	ing process,	
ŝ.			- collection and a	L	periodical	wetting of land by water sprayin	12. 12.	ppressed. wy	
					For the	sampling of air, high volume	air sampler (l	Model VFC-	
			1	Ĺ	P2410) wa	used (10 meter above and 5 m	ieter away fro	m road) and	1
					the particul thried in a	htten were collected on what m hot uir oven at 105°C for the	nt GPA ginu nd weiebed	The average	
ŝ.					flow rate w	ax about 1.1 cubic meters.			
		11.7	Plan for Noise Control	4	Quarrying	of Rough Stone will be car	ried out by	drilling and	1
					Proposed)	Control Blasting by using low	v power exp	losives, and	ł
		1		Ŀ	monituring	will be carried out to check the	ver, periodica noise level in	and around	
					the quarry	site. In order to amess the ext	ent of puise p	ottution due	
					to vehicula	e traffic different zones viz.,	Silence cone,	Residential	
ŝ.					Zone, Com	mercial zone, Traffic signals on other and automotion and	nd Industrial E Kalahanalal	zones were	1
					Number of	observations Wore made in all	t scienced si	tes fry asing	1
					the sound la	evel meter (I.T Lutron SL-400)	X	1990 B. 1990	ľ
		11.8	Environmental Impact	ħ,	Factors to b	e considered for EIA are,			1
			Assessment Statement		1. D	at generation,			
			mining on the next five		3. St	sbilization and vegetation of du	mps		l
	- 1		years		4. A4	lvetse effect on water regime			
					5 50	cio economic benefits arising o	at of Mining.		l
			a. Dást		Dust is exp	ested to be generated from dril	line hautine i	ondi niace	
			167 SW5290	1	of excevation	on etc and it will be suppressed	by periodica	writing of	
					landa.	INU			
			b. Ladd degradation	1	Land degra	dation is by means of cutting	the trees and	remayal of	l
					years ball b	toen one arise. Propended image	of land for it ion will be sta	artest during	ŀ
					the first yea	r of mining operation itself.	CONTRACTOR AND	CONTRACTOR CONTRACTOR	
		_		. (_				
								1.042	

-	a Dedition		The second will be second and the second sec
	e. Statistization and vegetation of dumps		alope and edges to plant true saplings to ford segetal cover over a damps. Such vegetal cover will prevent marker to the segetal cover over a damps. Such vegetal cover will prevent marker to the segetal cover and the segetal cover will prevent marker to the segetal cover and the segetal cover will prevent marker to the segetal cover and the segetal cover will prevent marker to the segetal cover and the segment of
	d. Socio economic henefits arising out of mining	-1	 To provide Employment opportunities of the Heistay villagers. For the cultural development of the nearby villagers.
1	#. None and vibration	19	Since, no deep hole Proposed Control Blasting is proposed with annull dis explosives are used for breaking the hard sock and bouldets, due noise and vibration will be very Minimum and a within the permissible limits.
11.9	Proposal for Waste Management	(4)P.)	The top soil of the lease area is 25628m ² . Topsoil formation will be removed and Dumping to All Side of the 7.5m & 10.0m boundar barrier of the lease area, this will be done only after obtaining permission and paying necessary seightor age face to the Government. There is no wastes are generated during the minin period. Proposed Dump Dimensions: Top Soil-7124 Sept X 3.60m(H) = 25628m ²
11.10	Proposal of Reclamation of Land affected during mining autivities and at the end of mining.	4.6	The present mining is proposed to an average depth of fim from above ground Surface level and 84m from below ground Surface level. (Total depth- 92m). The mined out area will be fenced on to of open cast working with 51 funcing. Low lying areas with wate logging shall be used for fish culture. No immediate proposals for closure of pit as the rough stone pensist still at deeper level.
11.11	Program for Afforestation	ē	Trees like tamarind, casuarinan etc will be planted along the least boundary and avenues as well as over non-active dumps at a rate 4 trees per annum with an interval of 5m. The rate of survival expected to be 80% in this area.
11.12	Proposed Financial Estimate / Budget for (EMP) Environment Management Management Fixed Asset Cost 1, Land Cost 2, Labour Shed 3, Sanitary Facility 4, Fencing cost Total=	(王) 王 王 王 王	Rs.63,00,000/- (Lenned Tender Amount for Generational Parambolar Land Rs. 60,000/- Rs. 50,000/- Rs. 1,50,000/- Rs.65,60,000/-
	50		24
L		-	

2	14		_					18	- TRAIL
8		Operational Cost:		D- 20 00 0	200		1	1	28 MAN
9		Machinery con	÷	314-20,00,	uuv-			131	
€		EMP.Cont		T-1	-		_	11.68	Cistigenerally
5		1. Drinking water faci	Iny	= 8s. I	,10,000/-				agin agin
2		2. Safety kida		Rs. 5	5,000/-				
87. 11.		3. Water sprinkling		: Rs. 3	5,000/-				
9		4. Afforestation		1 Rs.7	5,000/-				
曲		5. Weter quality test		Ra. 7	0,000- 3,000/-				
69		7. Noise/vibration tes	E.	- Rs. 7	5,000/-				
9		8. Cost towards charit	ty:	: Rs. 2	5,000/-				
9		Total=		Rs.	,70,000/-				
3		Total Project Cast	_	RAS	9,30,000/-		_	-	
9. 9.			-	1.1					
5									
		and the operation of a N							
9	12.0 <u>M</u>	Stees proposed for phased r	estory	ition.	The p	resent mini	ng is peut	icised to	an average der
奥	1.1004.07	reclamation of already mine	d cut	arna.	of 8m	from abo	ve ground	Surface	level 54m fre
9	1				billow	ground So	rfinze level	(Total	depth- 92m), T
3					mined	out area	will be fin	med tm	top of open a
9	-				eattle'	ng wan a sund numbi	e in to the	quarty a	its the city
	12.2	Measures to be under taken	on m	int	: Meau	res will b	e raken as	per the	Acts and Rul
		closure as per Act & Rules	1		The q	uarried pit	will be fer	ated by a	ising Barbed w
					fencin	g, Green I	elt devel	opinent :	as the rate of
		<u></u>			Trees p	ser year wil	i be propo	sed.	with a atlant
#:	12.3	Mitigation measures to be u	matic	aken for	depth	92m only	Am from	n above	ground Sarfa
#: 9)		already mined out area	******	W. 30, 107	Tevel	84m from	below gr	ound So	office level. A
# 9		~			hanco	no need	of mitig	pation a	nd restoration
					reclar	nation of th	n applied)	care are	E.
9 9 9			_						
2 2 2 0									
	-								
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
		L.							
		A.							
		Å							

000

0 0 0

.

۰

	1 man Buideman
13.0 ANY OTHER DETAILS INTEN	D TO FURNISH BY THE APPLICANT
(i) Berningian will be abreign	E 28 MAY 200
from the Boundary burriers	and for shores
(ii) Care and merantimary me	survey will be plose for the aftern of working to and uniford and
(iii) The Applicant will endeav	or every attempt to quarry the Rough Stone scoremically with an
wastage and to improve the	environment and ecology
(iv) The District Collector, KRJ	SHNAGIRU in his letter Rc. No. 170/2018/MINES duted: 09.03.30
Has directed the applican	a to produce approved Mining Plan and Environmental Clears
certificate from the District	t Level Environmental Impact Assessment Authority (DEIAA) for
grant of quarry lease for the	applied quarry area.
(v) Accordingly, Mining Plan	is prepared under Ruin 19 (1) Tamil Nadu Minor Mineral Concess
Rules, 1939 & As per Ame	redment under Rule 41 dt 42 by incorporating the conditions impo
in the precise area commun	ileation letter and by incorporating all the details proposed in the in
No. DELAA-TN/Minor Mir	mrals / 2017 dated 13.06.2017 of District Level Environmental Imp
Assessment Authority	
(vi) In the above circumstant	are MAL SRI VENKATESHWARA BLUE METALS, PRO
A.M.MURUGAN is been	by preparing the Mining Plan fur approval for fresh Rough Sta
Quarry, And subsequent in	of Tamil Made. Kathanana
(with This Mining Plan is premare	of Failur Cook, Kristelager,
(viii) The average proposed	production of Rough more for Five Years is 1218 977 of and even
production per year is 2437	PSin ³ .
 Take to be a state of the state	5775)
The states Plan in poproved trace 1 of	n orondettermen /
instruction issued and in something	The Ha
170/2018 285	orth toga orth
Doplay Conds	S.DHANASEKAR, M.Sc. Sleet
and the second s	RQP/MAS/225/2011/A
Landon an Sule 2010.	
all here	á
Deputy Diretio	Sy and Mining
S.S.Samogin	1. ·
80-118	
0	
08-9 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	19 Mar. 22 Constant of Statistics
1.417	the second se
	2 & Wester Out
	TE Na.) TO TO
2	

B.m.smm, 170/2018/mathau

0

0

0

0

ŵ

b

3

2

Ð

2 8 MAY 2018 unatic acount apparents and an (ushihusi ugguli aquadagan) (073) கிருஷ்ணகிரி. BIN .02.2018

and Buildings

(D) BIT

and it at the second

Gun(Gmi)

களியங்களும் குவாரிகளும் - கிறுகளியம் - சாராரண கற்கள் கிருஷ்ணகிரி மாவட்டம் மற்றும் வட்டம் - கொண்டப்பதாபனப்பள்ளி கிராமம் அரசு புல எஸ் 202/1(பகுதி-ஏ) ல் 3.00.0 ஹெக்டேர் பரப்பளவில் அரசு நில<u>க்க</u>ில் அமைந்துல்ள சசதாரண கற்குவாசிக்கு ក្រោយជ្រាញទៅទាំ angelies. டெண்டாடன் இனைக்க 4700 656,6600.0 டெண்டர்/பொது ஏலம் நடத்தப்பட்டது - பொது ஏலத்தில் அதிக தொகை கோரிய திரு.ஏ.எட்.முருகள் த/பெ மன்நூதன், கதயு என்.4/4-109எ முத்தாம்பிடி அதிசல், தொசைய்பிடி வழி, பானாபரம்-636 503, மேட்டூர் வட்டம், சேலம் மாவட்டம் எள்பவருக்கு சாதாரனா கழ்தவாரி குத்தகை வழங்குதல் தொடர்பாக அங்கிகரிக்கப்பட்ட கரங்கத்திட்டம், தமிழ்நாடு மாநில கற்றுக்குழல் பாதிப்பு மதிப்பீட்டு ஆணையத்தின் தடையின்னடை சான்று மற்றும் துகிழ்நாடு மாக கட்டுப்பாட்டு வாரிய இசைவு ஆகியவற்றை பெற்று வழங்க கோததல் - தொடர்பாக,

ເຫງະພະ

 கிருஷ்ணகிரி மாய்ட்ட அரசிதழ் சிறப்பு வெளியீடு என்.01தார்: 19.01.2018.

- 03.02.2018 அன்று தினமணி நாளிதழில் வெளியிடப்பட்ட பத்திரிக்கை செய்தி.
- திரு.ஏ.எம்.முருகன் த/பெ மன்நாதன், கதவு வன்.4/4-109ஏ முத்தாம்பட்டி அஞ்சல், தொளசம்பட்டி வழி, மானாபரம்-636.503, மேட்டூர் வட்டம், சேலம் மாவட்டம் என்பலரது டென்டர் விண்ணப்பம் நான்: 06.02.2018.

கிருஷ்ணகிரி மாவட்டம் மற்றும் வட்டம், கொண்டப்பநாபனப்பள்ளி கிறாமம் அரசு பல எண். 202/1 (பகுதி-ஏ) ம் 3.00.0 ஹெக்பேர் பாப்பாவில் அமைந்துள்ள சாதரான கற்குவரிக்கு இந்து ஆண்டுகளுக்கு குவாரி சுத்தகை வழங்குவது தொடர்பாக 07.02.2018 அன்று நடைபெற்ற பொது மலத்தில் திரு.ஏ.எம்.முருகன் து/பெ பண்நாதன், கதவு எண்.4/4-105ஏ முத்தாப்பட்டி அஞ்சல், தொளசம்பட்டி வழி, பானாயரம்-636 503, மேட்டூர் வட்டம், சேலம் மாவட்டம் என்பவர் அரசு நிர்ணாயம் செல்த குறைத்தட்டச் குத்தகை தொகையை விட அதிக தொகையான சூ.63,00,000/- (சூபாய் அறுபத்தி மூன்று வட்சம் மட்டும்)து பொது ஏலத்தில் கோரியதால் அலருக்கு தமிழ்நாடு சிறுகனிய சலுகை விதிகள் 1959ன் வதி 8(6)(b)-ன்படி அவருக்கு கீழ்க்கண்ட நியத்தனை களுடன் குவாரி குத்தகை வழங்க உத்தேசிக்கப்பட்டுள்ளது.

Hundy

telestone al

æ

ා

69)

60

e

9

0

ø

Ð

G

曲

ම

63

南

6

ø

e

儆

3

a

18

0

0

÷. 8

ø

@ ·

٥

0

0

۲

0

0000000

0

B.

விதியின்றி விண்ணப்பிக்கும் போது வேற்படி சங்கத்தின் செயல்பாட்டிற்களை வணத்தின் themessand zemustanten gandismsson militar alertemütigen tannifik sitester en die alertemitien Denmäsike tanntok Denem Antica, Granh@is

Bann Buages

Out modelsthe and manage a gas mitage a desamber desamber a shift and an and and and a des gent Begunda Codeligina Cainti Dia Prefarm erendiarrig urauli. Milikult Sirika Cubin Presinan Countifia.

05. Dags. et @memokalusic. ellerinnili upnik VI-B eaflese met 9,104 s. plusi@sterup auguster ant upguk சுரல்க வரி நிலுகையில்லா சான்ற அல்லது கு 20.00 (ருபாம் இருபது மட்டும்) மறிப்புள்ள முத்தின்தத்தின்ற ஆனை உறுதி லாக்குமூலல் தோட்டரி வழக்குளரதுர் அவர்ளிவையில் கையோபல் பெற்று வீண்ணப்பப்படிலத்துடன் இணைக்கப்பட வேண்டும்.

08. gélékung segerpise adaparéhi pigelis agrés (parery distancis allements og 500/- (mont) ygreg ், ஸ்.டும்) மாவட்ட கருழுலத்தில் செலுத்தி அசல் செலுத்துச் சீட்டை விளின்ப்படங்கத்துடன் தினைக்க வேலிடும்.

த் 🗧 🖓 என்றலாரிகளுக்கான குவரிக் சூத்தகை உரிய சங்கல்லின் (துல்லது) குழுவின் வெளிவேயே வழங்கப்படும். தனி But Quality applicates with 182

08. unait at anna genuurde Generatich, unait, sumi A unait anges persit and analysis வாஸ்பி ஒன்றியத் தலைவரை உறப்பினாகக் கொண்டும், வாக உலர்ச்சித் துறையே கூடுதல் ஆட்சியர் புலகேக் திணைபான அதுவன் மற்றும் புலியியல் மற்றும் வந்தத்துறை துரண இயற்குதரை அதுவல் சலந்த உறுப்போராக கோண்டு துலைத்துள்ள சிறப்பு குழுவின் முன்னினையில் மனுக்கள் பரிசீவிக்கப்பட்டு 00 நாட்களுக்குள் இறுகி - ஆனை மேப்ரிக்கப்படுப்

09. இய்வித்வின் கீழ் வழங்கம்.இம் குவரியின் குத்தகை காலம் (05 (ஐந்த)) ஆண்டுகளாகும், சூழ்நிலைக் கேற்பவும், பொது நவன் கருதியும் கனியத்தின் அன்றைல் பொறுத்தும் குயுளி குத்தனக் காலத்தை தந்து ஆண்டுகளுக்கு குறைவாக திர்ணாமம் செய்ய மாவட்ட ஆட்சியருக்கு அறிகாரம் உண்டு. தமிழ்நாடு சிது களிமச் சற்றகை விதிகளின் விதி 6 (10–A) ஸ்பர angebennigin fills mennik maganame uptersta Sumas

10. ஒரே குவளிக்கு குத்தகை வேளி கல் உதலிக் குழுவும் மற்றும் விடுவிக்கப்பட்ட கொத்தடியைகளாகி ஆளமக்கப்பட்ட aligna stadding ganila gana galaannob

் பிட்குவரி துலைத்தான் பகுலைத்து பூளியன் எல்லைக்குள் ஏற்கனவே பொது ஏலம் அல்லது. டேன்டர் வாகிலாக குத்தகை விடப்பட்டிருத்தாம் பெறப்பட குத்தன்க தொகையின் சராகம் அடிப்படை பியோ தன்றது. துல்வறு பழிசாபத்து புனியார் minnetigit gaini agu a mug n' gannig ani yani yani gagmang di ita, didendamilo arattal pagagui ர்ஸ் கிடம்படுள்ள குவளிகளின் நூதுகை தேவைரின் தடிப்பையில் மாலட்ட ஆட்சியர் குத்தகை காலக் முதல்யாக்குமான 900 Garda magning Germaniu fitamus General, augermanis 50 % artigue Genusia of Germa தற்றோது. குடிரிச்சான-குத்தனைத் தொலையாக ஹிண்டுக்கப்படும். இக்குத்தனைத்தொல்கலை முதல், ஆன்டில் நான்கு Annemanna Gogudaina. Jeuni Giangel Gerra generang Garmanik a flu anemni @ anuk and dadisen 15 தாட்களுக்கு முள்ளரே தொழத்தப்பட வேண்டும். அம்வாற தொகையை செழ்ந்தத் தவதினால் அச் சங்கத்திற்கு/குழுலிற்கு வழங்கப்பட ருவாரிக் முத்தகை மாலட்ட அப்போல் ரத்த செய்யப்படுவதுடன் குழு/ எங்கத்தினர் எடிப்பாலத்தில் முன்னுரின்ப முறையில் குவாரி குத்தகை பெறும் தகுதியை இழந்தவராயர். அச்சூழ்தியையில் அவர்கள் மேற்கொண்டு குத்தகை கோரி மனுச் செய்றிருத்தால் அப்பது உடனடியாக தன்றதும் செய்யப்படும்...

இங்கின் மீது 27.02.2012 அன்று வழக்கியுள்ள ஆனவையின்புயம், இந்தில் அரசு சுந்து குழங் பற்றும் வளத்தனு குறிப்பனை enen, mit.11011/47/2011 · IA II(M) gmen 18.05/2012ohungkah, 1959-gab auga-gengau galiger() Synerchos ergenne திருத்தம் செய்யப்பட்டு சேர்க்கப்பட்ட வீதிகள் 41 மற்றும் 42-ல் கண்டுள்ளவாது அங்கீகரிக்கப்பட்ட கரங்கத்திட்டம் மற்றும் றதுதாடு' வந்தில் / தொடுக்களவில் மாலட்ட சந்துகழல் மாதிப்பு மதிப்பிடு ஆன்னமத்தில் தடை வில்லம் எல்று பெற்ற சமிப்பிற்ற and a Olio ganti gasan aprin preuze

~205 man
(1) 13. million @dect Barthmurg: grant) aggaras a now furg anythings. (1) and Altraggerian agginess of the subgroup of the

631

÷

ൡ

æ

٩

ø

ø

0

۵.

60

0

କ

Ģ

8

倍

G

0

3

67

Addition of the

147.

an Blue Bui

14 மேற்கள்ட அறிசிலை பெற்றக்கொடை குழு/எம்ததினர் சம்தத்திட்டிக்க அம்சிலாம் வெற தன் நபர் (RQP) பும்ப அரசு தேரியித்துள்ள விதிகள்மத்தம் வதிரைப்புதளின் படி தமிரித்து அறிசிக்கை பெறப்பட ராளிவிருந்து மூன்ற பாக காலத்திற்குள் கிருஷ்ணகிரி புலியியப் மற்றும் சால்தத்தாற துணை இப்படியிடிய பிரிக்குக் பெற சுலப்பிக்க தேண்டும்

15 மேற்களம், குழ/சவ்தற்கா கிருஷ்னர்கிடியம் பற்றம் தரைகத்துறை தனை இட சூதார் தான்மாம் வழக்கப்பட்சாயத்தவ்பத்தை தரிழர் மற்ற கிருஷன்கியாம்... கதுத்தும் பற்றப்புக்கு ஆக்கப்பத்தல் ஆக்குப்பு மற்றப்பட்சாயத்து ஆக்குப்பில் மற்றப்பில் கான்பில் கான் ஆக்குப்பில் முன்ற முன்ற மாத்து மற்றப்பில் இரையில் மற்றப்பில் குண்டின் கான்பில் கான் ஆக்குப்பில் மாதில் மற்றப்பிட்டின் குண்டுப்பில் ஆக்குப்பில் கால் வரையில் விருதில் குண்டில் கான்பில் கான்பில் கான்றப்பில் கான்றப்பில் கால் கிறைய கான்பிட்டால் கான்பில் கான்பில் கான்பில் கான்பில் கான்பில் கான்பில் கான்றப்பில் கான்பிப்பால் கான்பில் கான்பில் க கான்பில் கான்பில் கான்பில் கான்பில் கான்பில் கான்பில் கான்பில் கான்பியன் கான்பியன் குண்டு கான்பியன் குண்டுப்பில கான்பில் கான்

16. 20 BENTE BARNE BUCKS ALLEND DESCRIPTION ONLY BUSHESS BUT WALL OF SHOWER SHOW WALL OF SHOWER

கும் குற்றிக்கமானாக தம்வியை ம்குற்றுக்கும் பட்டின்கை பட்டியைல், துது குற்றிகியைய்டி மற்ற நடு (அ நென்கு பட்டிக்கமையு, ம்குக்குக் சிரத் மிக்க குக்குகியாக மற்றுவைத் பஞ்சதுகியைத்தில் தென்கு பட்டுக்கும்பைத் பிருக்குக்கு சிரத் மிக்க குக்குகியாக மற்றுவைத் பருக்குகியாக உட்டி தெற்றுக்கியாக திக்கு

17. antioni es, sig contractifier exerce additionage day differentiation of personalitions, symmetry in another edge controllinges dayles and a glower perfecting sign (Sanding Controlling all beliefs) and of Widde) geo. defense every (1993) grade day of a day of a

18 நாய்கரிக்கப்ப, ஷங்கத்திட்டம் முதல் நந்த ஆண்டு காலத்திற்கு பட்டுமே செல்லத்தக்கதாமும்.

ப்பட 19 மேற்களைப் ஆவணைகளை சயாதேசியில் தருகினைக்க எஞ்ச சங்ததினருக்கு மையி குக்கை வயில் மாலட்ட ஆப்சியான ஆவணைப்படும்

20: அங்கிகிக்கம்ப் சாங்க்குப்ப் புத்தம் தமிழ்கள் மாதிய வந்துமும் பாதிப்பு மதிப்பு இன்றைக்கின் காட்டபென்றை சான்று ஆனியவற்றை குறிப்பிட் காவக்கொடுளிற்றுள் என்னேக நவறினால் பாவ்ப்பிலும் சியர் அயர்களால் சங்குதப்பட்ட எய்வ நிர்காமிகளுக்கு மாவப்ப அப்சியர் முன்பு விளைவனத்து ஆதால் வாய்ப்பித்து விசனைனா நடத்தப்படு எற்றனமே வழப்பட்ட இதைகாலை நடத்தப்படும்.

21. குவாகி குத்தான ஆன்ன வழங்கப்பட்ட பார்பு நிரண்பிக்கப்பட்ட குத்தாக தொகையில் 10 சதவீதம் அல்லை ரூ 5000/- (ரூபாய் நந்தாலீரம் வட்டும்) இவற்றில் எது அறிக்கோ அறு காய்த் தொக்கலாக செலுத்தப்பட வேண்டும் எத்துக் குவாரி குத்திக்க வழங்கப்பட்ட பரப்புத்தான மாப்புவரி செலுத்த வேண்டும் மற்றும் குதிப்பட்டுள்ள கால வெடுவித்துள் உரிய முத்தினா தானில் குத்தாக ஒப்பத்தியத்திரம் தபார் செல்த மாலப்படதுட்கில் அவர்களுப்பி குத்தாக ஒப்பத்தட்குள்ளதே விலை அடிப்பட சார் புதிலானர் அறுவைக்கில் குத்தாகதாலர் தனது செல்லில் தில் தொல்து குறிப்படுக்க வேண்டும். சார் புதிலானர் அறுவைக்கில் குத்தாகதாலர் தனது செல்லில் தில செல்து கொலுக்கும்.

22. மால்ட், ஆட்சியர் அயர்களுடன் ஒங்குதப்பத்திரம் திறைவேற்றிய பின்னரே கங்கத்தப்பட்ட குழும்மக்குனர் முகாரிப்பாரி செய்து குழுமத்திகம்படுதை,

ம்இலைக்கு மன்னு குடியில் குள்ளத்தில் தொடுத்துக்கு விடுப்ப துக்கில் குடியிக்கில் இதற்குக்கு பிட்டிக்கில் 25 மாரிக்கு பிட்டால் குட்டியில் காரியல் நாயில் சாபிப்பிருக்கு சாபிப்பில் குடியில் நாயிலையில் நாற்கு காரிய குட்டுப் கிடியில் நடல்குக்கு மகுக்கு மகுக்கு மாரிக்கு சாபிப்பில் குடியில் குடியில் திடியில் நாயில் நாயில் திடையில் திடைய

206meyus

0

0

8

G

偈

61

탕

ð

63

1

٩

8

0)

ß

e

ø

0

G

9

۲

ф,

P

曲

肠

æ

6

ው

e

0

8 B

6

e

0

-145-

00

வை இயல்கும்

25. குவாரிகளுக்கு அருகில் உள்ள அங்கிகரிக்கப்பட்ட குடியிருப்புக்குக்கு 300 மீட்டரும் தேரிய தேடுஞ்சானல்லர், ரபில்பாலத்தள், மின்கப்பங்கள் ஆகியவற்றித்து 50 மீட்டரும் பற்சாலத்து சன்னைஞக்கு 10 மீட்டரும் மாதுமாப்பு இடைவெளினிட்டு தேமூரான இடத்தித்துள் மட்டுமே தவாரிப் பணி செய்யவேண்டும். பொது மக்கள் உபயோகிக்கும் இடம், குடியிருப்புகள், பட்டா தில்லிகள் அல்லது பொதுச் சொத்துவளுக்கு 'ஏதேரும் சேதம் எற்பதன் அதற்கு குதனைதனாரே புலப்பில், வில

20 மேற்டி எல் துவரிகளில் எதுரின் கல், சல்னக்கல், கல்தேகல், துலிக்கத்தர் ஆலியலர்தை பட்டும் குலர் செய்ய வேன்டும் வெளிறாய்தற்கு ஏற்றுமதி செய்வதற்றும் பெருதேற்ற படங்கும் கலையீதும் உள்ள பெரிய துள்ளிகளை கற்றார்டங்களை அக்கார்ணத்தை முன்னிட்டும் உற்பத்தி செய்யக்கு பாது.

27. குத்தன்கத்து விடப்படும் கல் குவாரிகளுக்கு அரசு நிலங்களில் மாதை இல்லாத பட்சத்தில் குத்தனர் மடும்பயரோ தமது சொந்த பொறுப்பில் பாதை எற்படுத்தில் கொள்ள வேண்டும்.

28. ல்ரல்கப்பட்ட குத்தகை உரிமத்திற்கு பொது மக்கள் மற்றப் அரசு துறை மூலம் கடுவையான ஆட்லேம் இருப்பின் பொது நன்மையை கருதி மாவட்ட ஆட்சியர் குத்தன்களை ரத்துச் செய்ய நேரிட்டால் அதனால் ஏற்படும் இற்பிற்ற வடுகொர குத்தகைதாரருக்கு எப்பித உரிவையி இன்னை.

28 குவரிக் முத்தகையை வேற்பாருக்கும் மாற்றமோ உள்ளுத்தனக்கு வியிலை கூடாது. தம்படி எதாவது செய்திரும் து தெரியவத்தால் பேற்படி குத்தகை எத்துர் செய்யப்படுவதுடன் குத்தகைதாரர் செலுத்திய தொல்லைம் அரசுக்கு ஆதாயம் செய்யப்படும்

ூல், சிற சிரியீத்தில் உரிய மற்றப்பை சிட்டை மூத்தாக வழங்கப்பட குவரியில் ஆதுதான் வாகனங்களுக்கு கொடுக்கு அனுப்ப வேண்டும், அனுப்பாச் சிட்டை வேறு இயங்களில் நிறோ அங்குத் வேறு குவரிகளிலிருந்தோ கொடுத்து அனுப்பினால் சுத்தகை உரியம் ரத்துச் செப்பப்படு அனைத்து தொகைகளும் அரசுக்கு ஆகுமைப் செய்பப்படும்.

31. 9ப்புகள் தொடியாலு குற்பரால கிட்டுடன் வொன்ற செய்யல்கள் முறையில் காய்ப்புல் குறுப்பில் குறுப்புக கருதப்பிகள் முறையக்கதில் கிறுப்பக்கதில் கிறுவில் குறுவிகள் காக்கள்கள் காக்கத்பட்டி பிரிய இப்பத்தை

32. அறுப்புகை கிட்டில் உள்ள கலங்கள் பூர்த்தி செய்யப்படம்கோ அல்லது தலறாக எழும்பட்டு வாணல்களுக்கு கொடுக்கப்பட்டிருந்தானோ சிறுவனியம் கொண்டு செல்லும் வாகன உரியையானக்கு அபறைம் விறித்து வரும் செய்யப்படும். குவரித்ததிக்கையிலத்து செய்ய நடவங்கை வேற்கொள்ளப்படும்.

33. குத்தனக் நிழந்தனை மீறப்படால் முத்தனைய ரத்துச் செப்பபோ செப்பப்பட தவறுவருக்கு குத்தவைதனரருக்கு தன்பினை விதிக்கவோ கிர்பினம் வழக்கு தொடர்போ மர்க்ட்ட ஆப்பெருக்கு முழு அதிகாரம் - வர்டு. குத்தவை ரத்துச் செப்பப்பால் காப்பத் தோகை உன்பட அனைத்து தொகைகளும் அரசுக்கு ஆதனம் செப்பப்படும். மாவட்ட ஆப்பிலர் எக்காணத்திற்காவது குவாரி குத்தவைய ரத்துச் செப்பும் பட்சத்தில் அதனால் எற்படும் வல்லித நட்டங்களுக்கும் அரச பெறப்பில், குத்தவை எடுத்தவர் எந்த காரணத்தை முன்னிட்டும் தாக்கு இதனால் எற்றதே செப்பில் தொகை பெறப்பில், குத்தவை எடுத்தவர் எந்த காரணத்தை முன்னிட்டும் தாக்கு இருப்பு எப்பில் நல்டாடு கேட்டித்துடி ச

34. குமாகிகளின் எங்கைகள் பத்தி சேச்சனைகள் ஏற்பட்டால் மாலட்ட ஆட்சியரின் திப்பே இதுதியனாது.

ம்குக்கில்கு முற்லாம் நிரும் ஒரு முகாதா 'கப்பிருக்குத்து finited பட்டப்பல்களும் கேரிய கைத்து சொதைத்து 35 ம்மாத குக்கால குத்தொரு குத்திரை ஆடி பிடட்டன்னன் சோன்றாவுகள் சோன்றுக்கு கக்கிறுக்குத்து குதல்கள் முற்றைக்கு குடிக்குதார் நிரையார்கி அதர்ப்பில் இடியில்கத்திரி மூப்பாடல் சாத்த கிறித்துப்பில் மீருவி ஃடுள்ளவே ம்றின் படிப்பில் படிப்பிர்கள் கிரைப்பில், இடியில்கத்திரி மூப்பாடல் சாத்த கிறித்துப்பில், மீருவி ஃடுள்ளவே

207 men

136. offennegerit offenne exploritatic gant worlde gentified point, and a sent state of the sent of th

5

and Buildish

37. estember ganniket neurosent Vastara Oplana, sentemble an ande ger seditet erender. Sentidelas Camigas recomsjonen modera anna gange Sente Cente Gerando print, unrafián Camigas.

38. தாசு, ஆனையி புல்லேல் மற்றும் களுக்குமாம் மற்றும் மால்ட்ட ஆயியராம் இது தொடர்பாக புற்றுக்கும். இன் கட்டும்படு உட்டி இட்டப்பிடன் காடிக்காலக்கு மதுக்குகளைக்கும் மத்திகுகள் பிடுப்படி படிக் வெய்துடும்பிக் வேஸ் (நட

்கி இத்துகளி தத்துகை தொடர்பான நடவதற்கான நாதையில் நடித்துக் மானத்தும் நாதைத்து சிருக்குக்கு 29. உள்ள அனைத்து பித்துக் மற்றும் (பித்துக்கும் காம்மம்க் மற்றும் குறையில் இதுக்குக்குக்குக்குக்குக்குக்கு குறையில் கடல்கு மற்றும் மற்றும் மற்றுக்குக்குக்கு கிருதல் மீடில் மற்றும் மற்றும் குறையில் தாக்குக்கு மேற்ற மீடில் மற்று

40. 1981ம் ஆண்டில் வெட்சல்பெரல் வைர்ல் பெருமேடியில், 1936 ஆம் ஆண்டின் சம்பை வழயதால் சட்டம், 1864 ஆம் ஆண்கள் இத்திய வெடிப்பொரும்பா சட்டம், 1864 ஆம் ஆண்டு என்றத்தும் உண்டும்ச்சட்டம் ஆட்மலற்றில் உட்டம். இத்தாரை களியான வெட்ட வேண்டும்,

ை – அவேகுத்தால் கேற்றம் விளினம்பத்தினை பரிசிலித்து நூல் கொள்ளதோ, நிலைரிக்கமோ பாயட்ட ஆட்சியந்தது புரன அதிகளும் உள்ளது, முத்தனை உளிகம் வநங்குதல் தொடர்பாக மாகப்ப ஆட்சியதே முதலே இருதியானதாகும்.

4. குத்தகைதார் வருமாளவி நிரத்தா எனக்கு என் பெற்ற குவலிக்கு செறுத்தப்படும் குத்தகை தொகைக்கும். சிளியரோத் தொகைக்கும் 2.00 சதலிதல் வருமான வரி செறுத்த வேண்டும்.

45 Bits admittil and Oder ens gearfie une get admitting ple errait an Augus admitt seri(). 46. sásta gluis usdřední stra disertation urgefur snogi tilu duparatemer ferindar

Brith WO Carr & finns Solution.

Rev Contest

48. இவ்வித்தின் கிழ வழங்கப்படும் குத்தகை உரியல்கள் பகுப்பிக்கப் உயர்ப்பாது, பற்றம் எக்காணத்தைக் சொண்டும காலத்தேய் வழங்கப்படம்பட்டாது.

49. குத்தாக காலம் முடிந்தாடன் அம்பது உரிவர் ரத்து செய்யப்புன் குத்தகை இடத்தை குத்தமைதான் மறு தினமே சம்பத்தப்பட்ட வட்டாட்சியரிடம் கும்பாபத்து அத்தனை அத்தாட்சியை பெற்றும் கொள்ள கேள்டும். இதனை தேயார்ப்பர் பீது அதேதாடு சிறுகளிலர் சலுகை விதிகள் 1959ள் விழி 36 (முற்றின் படி உரிய தின்பனைக்குள்ளாலார்கள்.

50. குத்தலைதான் தம்வழிக்கையின் இணைப்பு (2)ல் கண்டுள்ள பலவத்தில் கண்டுள்ளபடி குவாரியில் பறிவேடுகளை பாராசிக்க ஹோடும்

51. தித்தையில் முற்று மாதல் குலைக்கு விகுத்தல் கால் தல்லாக தல்லாக நாலைக்கு மாதல் தல்லாக பிருத்து பிருத்து பிரு தன்றை இலையில் மற்றுக்கு மற்றுக்கு குக்குகள்கு கிரியான்றிக் முறைத்துகள் தல்லில் பிரியே பிரியை தலைக்கு விருதல் தா தல்லாக இலையில் தலில்லாக குடியில் பிரியால் பிரியால் மற்றுக்கு தல்லாக குக்கு கிருதல் தல்லாக கிருதல் பிரியில் பிரு தல்லாக தல்லாக தல்லாக தல்லாக விரியில் பிரியால் பிரியால் பிரியால் பிரியால் கிருதல் தல்லாக கிருதல் தல்லாக கிருதல் ப

52. ருத்தகை காலத்தியோ அதற்குப் பின்னரோ கிரமம் தயதி ருத்தகையை பயஸ்படுத்தலதில் ஏற்படும் சகா நஷ்பங்களுக்கும் ருத்தகைதாரர் பொறுப்பு ஏற்க பேண்டும். இதற்காக கிதிக்கப்படும் அபராதமுப் பொறுத்த வேண்டும்.

53. குமாரி குத்தகை வழங்கப்பட்ட பகுதியில் குழு/சங்க உதுப்போர்கள் பட்டுவே குவாரிப்பாரி வெய் வெள்டுப்.

54. குண்டுகில் வேளை செய்யும் தொடுவாளர்கள் அற்றப் இதா ஒருகளுக்கு கிடத்து மற்குன் ஆகுச்சுன் பெறுப்பையும் சத்தகைதன்றோ எந்த வேண்டுப்பி இருந்து வாய்வாகவிலும் தார்க் பொறுப்பானது:

1380/12 (A) PLOW 24-2

6

æ

ø

9

8

8

٢

0

Ð

ප

۲

ø

鎆

8

۲

6

伤

廢

10

G .

З,

œ

G

8

Θ

208 mapri

68. குத்தாக நிழந்தாள்கள் மீறப்பட்டால் குத்தகையை சத்த செய்யனே, செய்த லிரியின்ஸ் வழக்குகள் தொடர்வோ மாலப்பி ஆய்சியருக்கு அதிகாரம் உண்டு.

0

ø

8

8

କ୍ଷ

-

۵

6

1

۲

创)

也

6

0

6

0

0

0

ê

e

63

6

e

æ

G

6

倍

0

Ð

56. geomfaeild geolut, peilet, geneaff utgeb dorail urgebenie arma aug anite arma unig unmparter Quy uniggi gallag aungi D BATTER

6

57. gammanla Suggi paular, genan, genant uppe Genat urgenette urmer auge armiten Guer armu auge Lenti way was share Goofish reaso form ang

58. குடினி தோடர்பான அனைத்து பணிகளும் மாலல் 8,00 மணி மூதல் சுன்ஸ 6,00 பணி கரை நிறத்தப்பட சேலாட்டும்.

149-

and Rulinsona

Caning & MAY 2011 Cade

the sta

*

59. குவரி குத்தாக வழங்கப்படும் பத்தில்ப கத்தி குறைந்த பட்சம் 100 யரக்கள்றுகளாயது நடவுசெய்து பாறுகாற்கு umaildge unins nimmus semenais, familja).

80. ஆற்றனை கினறு அமைக்கும் வால்லம் கொண்டு ஆதிகள் அமைத்து வெடியைக் கட்டாது.

81. அங்கோக்கப்பட கான்க திட்டத்தின் ஒனார் பாரி செய்யப்பட வோர்டும். குத்தனை காலத்தில் அங்கீகரிக்கப்பட்ட ரையிக திட்டத்தில் குறிப்பிட்ட அனவை விட அதிவமான களிமத்தை குவாரி செய்ய வேண்டியிருப்பின் திருத்தப்பட்ட நரல்க giud autoligy mudanya Cupp andarar adas gipa gipa genudiatana anaigi autoligi dattu menan Gaiu Sami Bui

52. அவரி ஆரம்பேது தொடர்பார அடுகியாம் (Notice of Opening) இத்திய தாச பெங்களுரு மார்ட்டி காம்க unganių garp gudget padamās subilās liumijas

63. meunfield getellered Dugg muster Gullerget/ muster Gail/ Genrolice gullourineer umbuurgou diata gentio unifian Astunia antiga

84. குவளிப் பகுதியில் மைன்ஸ் மேட் கண்காணிப்பிலேயே வெடியைத்து வெடிக்கும் பணியை செய்ய வேண்டும். 🏢

65. குவாரிப் பதிதியில் வியத்து ஏதும் ஏற்பட்டால் அதனன் உடனடியாக இந்திய அரசு பெல்களுரு பாள்டல் வாய்க பாதனப்பு துறை இயக்குதர் ஆவாகளுக்கும் கிகுஷ்ணலிர் மாவட்ட ஆட்சியர் அவர்களுக்கும் தெரிலிக்க வேண்டும். குவார்ப் පලුද්ධේම පුරුදුවට ස්වැදිලයිල් ලංකාවේ ලුද්දනය අපැවැ ලැල වෙනසුරියගැයි."

68. albamin. minanamilin adülligeter neimenflamstaner sågena anni, gågena gindelingdra றிறைகேற்றப்பட்ட நாளிவிறத்து 6 ஆண்டுகள் ஆகும், ஆனால் சரியான காரணங்களின் அடிப்பாடலில் ருத்தலக்க காலத்தை குவழலாகவும் நிரண்டுக்க மாலப்பதுப்சியருக்கு அதிகாரமுண்டு.

BILLOWNER -1

சாதாரண எற்றுவாரி பட்டியல்,

(1) கிருஷ்ணலில் வருவாய் கோட்டக்.

dignimalifi minu

	nunat	difinat	e.com	ଭିଣ୍ଣଶ୍ର ଧାର୍ଘ୍ୟ	രുകൾ ത്രർക്ഷം കുൻക്രം		nweing
	w.	Ø	(U)	(4) (Парияа_4)	Uniti (8) (Gaard II.ir)		(0)
	- E	Buluggeningen	701(uggl-1)	83.90.5	2.00.0	120740	54
4	2	angeleggine (701(u=0-2)	83.60.5	2.00.0	1.8749	1.0
	3 .	a digo hap had	701(umd-3)	83.60.5	2000	13670.62	

209 may

10 10 10 10 10 100	0	-					
(U (2) <th(2)< th=""> <th(2)< th=""> <th(2)< th=""></th(2)<></th(2)<></th(2)<>	a:				7		· 图11·并图50
4 καιμάδομμοί 352/1 (υμμβ-2) 132.0 1000 Καιματομά ΛΑΤ 2016 5 αλματομάζεμο 352/1 (υμμβ-2) 2.48.0 1000 Φυταίμας 2016 αλιοτική 2016	0	(4)	(2)	11 (0) 10 10 10 10 10 10	(Rend a.t)	(5) (91050.1)	20 Mm
5 adapterizitäti 135(ungd) 2.48.0 1.00.0 αλλητική διάμητας μημη 6 aduenanta pictual 150(ungd) 4.51.5 2.70.0 aduenanta pictual 7 digasjamañi Lauer aungo-du durnis 49.87.0 2.50.0 aun unu ugubdurning 8 digasjamañi Lauer aungo-du durnis 49.87.0 2.50.0 aun unu ugubdurning 9 GenemeLaganantikarine 153(ungd) 1.00.0 1.50.0 aun unu ugubdurning 9 GenemeLaganantikarine 252/(ungd) 1.00.0 1.50.0 aun unu ugubdurning 10 GenemeLaganantikarine 252/(ungd) 1.551.5 3.00.0 geneme 11 GenemeLaganantikarine 252/(ungd) 1.551.5 2.00.0 umm 13 fildereizarine 252/(ungd) 10.055 2.00.0 umm 13 fildereizarine 252/(ungd) 10.75 4.40.0 aunon 14 ufnoh 53/(ungd) 10.75 3.00.0 umm 15 genane <t< td=""><td>3</td><td>4</td><td>angenegan</td><td>393/1 (0000-8</td><td>13.62.0</td><td>1.00.0</td><td>alimentimental MAY 2018</td></t<>	3	4	angenegan	393/1 (0000-8	13.62.0	1.00.0	alimentimental MAY 2018
6 afluenaçă gără 66(ugă) 4.51.5 2.70.0 addaci@e (gă):: arminot 7 digaţermălă Luget amtigi-da dimtei: 40.70.0 2.50.0 mur unou ugătăurăgă 8 digaţermălă Luget antigi-da dimtei: 40.70.0 2.50.0 mur unou ugătăurăgă 9 Genereă: Dăgradin Luget antigi-da dimtei: 40.70.0 1.50.0 antidui (gi gă) 9 Genereă: Dăgradin Luget antigi-da dimtei: 15.0.0 antion: (gi gă) 9 Genereă: Dăgradin Luget 202/1(ugă) 1.50.0 antion: (gi gă) 10 Genereă: Dăgradin Tă 202/1(ugă) 15.0.5 200.0 unon 11 Genereă: Dăgradin Tă 205/1(ugă) 15.0.5 200.0 unon 13 dinguântă 366(ugă) 10.75.5 4.40.0 anianti digă; 14 unor 63/1(ugă) 355.0 30.00 gran grubănă 14 unor 63/1(ugă) 355.0 30.00 unor 15 gogă 1.0.25 1.00.5	0	5	adquerented	255(43,6)	2.48.0	1.00.0	and the stand of the stand of the stand
7 Δίμαφαντάθί μαμά μήτζο-Δί Δίμπλά: 49.87.0 250.0 στος ματοι μαλάλατάς 8 Δίμαφαντάθί μαμά απόζο-Δί Δίμπλά: 49.87.0 2.50.0 στος ματοι μαλάλατάς 9 Διατολομάματιζωμοί διάζου 1.00.0 1.50.0 κοίσου (μαβ) 9 Διατολομάματιζωμοί διάζου 1.53.5 3.00.0 βεταφαιτικής 10 Διατολομάματιζωμοί διάζου 1.53.5 3.00.0 βεταφαιτικής 11 Θαστατιώματική 302/1 (μαμβ-ά) 1.05.5 2.00.0 ματοι 12 Θαστατιώματη 306(μαβ-1) 10.05.5 2.00.0 ματοι 13 Θαστατιώματη 306(μαββ-2) 10.05.5 2.00.0 ματοι 14 μήσματιζηματή δρίματηδρίωτη 271 (μαββ) 3.55.0 3.00.0 θωτήθματη 16 Διχιμάματηδρίωτη 271 (μαββ) 3.26.5 1.32.5 Δατήθ κατά 17<	2	6	allumana piulid	50(umg)	4.51.5	2.70.0	anoncipa gigin a munt
8 ສິຫຼດຫຼືສະຫະລິສີ ແລະ ແຫ່ງປະຕິການ 49.87.0 250.0 ແບບ ພະພະ ແມ່ງປະຕິກສູ 9 Gaussinical-garaiamitants Git(ugg827) 1.00.0 1.50.0 ສະເດີດແບ່ງ ແຫຼງ 10 Gaussinical-garaiamitants Git(ugg827) 1.00.0 1.50.0 ສະເດີດແບ່ງ ແຫຼງ 11 Gaussinical-garaiamitants 2027((ugg84-c) 1.561.5 3.00.0 gleap tamps 12 Adversizaginumitants 2027((ugg84-2) 10.05.5 2.00.0 umm 13 Assenizagin 36500ge6-1) 10.05.5 2.00.0 umm 14 umm Git(ugg82) 10.05.5 2.00.0 umm 14 umm Git(ugg8) 12.85.5 3.00.0 Gurg3ami 15 garaigamuta Gaussia 277/0 1.32.5 1.02.5 durp ass 16 d.agts/gluttale 227/2 1.32.5 1.02.5 durp ass 18 Baraiamicashafi 2880 (ugg8) uses 3.00.0 grep agais 19 aj#Gariutatin 888 (8	?	கிருஷ்ணலிர் பலுள்	லாரு-அள்ளா 5/1(பத்தி-1)	6-149.67.0	2.50.0	ສາມະ ພາຍທ ບຸກຼາວບັນເຮັບອ
9 9 Βακτακίωδομπωστώντη 65(μημβ) 1.000 1.50.0 καθυώζη μηβ 10 Βακτακίωδομπωστώντη 202/1(μημβ) 1551.5 3.000 ≴ενα υπαιρ 11 Θακτακίωδομπωστώντη 202/1(μημβ) 1551.5 3.000 ≴ενα υπαιρ 12 Ησιγκείωστη 205(μημβ) 10.05.5 2.00.0 ματου 13 Θαρικώντη 205(μημβ) 10.05.5 2.00.0 ματου 14 μπου 63(μημβ) 10.05.5 2.00.0 ματου 14 μπου 63(μημβ) 10.05.5 2.00.0 ματου 15 (γοπατου 54 (μηβ) 16.45.0 2.00.0 ματου 16 Δυμβιαδωμματή 277(μηβ) 3.55.0 3.00.0 μηβ ατου 16 Δυμβιαδωμματή 152(μηβ) 12.45.5 1.30.5 Φωηβ 18 Εππιματώνση 152(μηβ) 12.45.5 1.30.5 Φωηβ 19 μβθακώμματή 591 1.26.5 1.30.5 Φυηβ Φυηβ	8	8	விருஷ்ணதிரி டவுண்	ant@-di densi -5/1(23:9-2)	49.87.0	2.50,0	യാന് വരംബ സ്താപ്രവച്ചത്.
10 Generatiologenustricated 202/1(uggd+c) 15.61.5 3.00.0 β c.g. unapper structure 11 Generatio.Organumication 202/1(uggd+d) 15.61.5 3.00.0 g c.g. unapper structure 12 Harperianization 202/1(uggd+d) 15.61.5 3.00.0 g c.g. unapper structure 13 Harperianization 202/1(uggd+d) 10.05.5 2.00.0 unamp 14 unanut 630(uggd+d) 10.05.5 2.00.0 unamp 14 unanut 630(uggd+d) 10.78.5 4.40.0 satismits gridgs 15 (jjssmam) 54 (uggd) 12.60.5 3.00.0 unres 16 d.g.h.gluard.g.cut.etall 271/ugd) 3.55.0 3.00.0 garga (gud-b.strateg) 17 udandump 652/ugd+l 12.60.5 3.00.0 garga (gud-b.strateg) 18 Barrisericateris 527/3 132.5 1.20.5 g.str.etall 19 gid-Genciguartist 521 222.0 g.str.etall g.str.etall 19 <td< td=""><td>9) </td><td>9</td><td>Germicognomound</td><td>1 63(us#)</td><td>1.90.0</td><td>1.50.0</td><td>கல்லெட்டு குழ</td></td<>	9) 	9	Germicognomound	1 63(us#)	1.90.0	1.50.0	கல்லெட்டு குழ
11 Generativ Cognutation for 202/1(Lings(d)-d) 15.61.5 3.00.0 μπεμ 12 Alexander for active	ð	10	Ganninginginumbertal	(n-Galu)1/208 (15.51.6	3.00.0	នឹសត្ថ បានត្រ
Utber sufficient	8 .	- 11	Germicagnumicated	202/10/08/03-03)	1561.5	3.00.0	திருத பாறை
12 #aryuniumini Baryuniumini 13 366(ungdi-1) 10.05.5 2.00.0 ummu 13 #aryuniumini 14 ummu 63(ungdi-0) 10.05.5 2.00.0 ummu 14 ummu 63(ungdi-0) 10.78.5 4.40.0 animumu oglassi 15 gesmamma 54 (ungdi) 16.45.0 2.00.0 ummu 16 d.g.g.t.glaardigicuitedi 271(ungdi) 3.55.0 3.00.0 dum(Damin 17 uninoitumini 271(ungdi) 3.55.0 3.00.0 gene upukhiming 17 uninoitumini 271/2 1.32.5 1.32.5 0.079 anni 18 damumunulariti 881 1.25.5 1.20.5 dum(Damin 19 gid@acluputinini 881 1.25.5 1.20.5 dum(Damin 19 gid@acluputinini 888 (unigdi) 5.85.0 3.00.0 gin q.a. 19 gid@acluputinini 888 (unigdi) 5.85.0 3.00.0 gin q.a. 19 gid@acluputinini 888 (unigdi) 5.85.0 3.00.0 gin g.a. 20	8	1.0		tu	and maleus	- 18 m	1
13 θιαφαίωστα 360(ugg6/cl) 10.05.5 200.0 uman 14 uñash 63(ugg6/cl) 10.78.5 440.0 saisanté gg6gi 15 gyanzema 54 (ugg6) 16.45.0 200.0 urang 16 d'ughtgluard@custemi 271(ugg6) 355.0 3.00.0 0ur(juaré 17 urang 1552(ugg6) 12.80.5 3.00.0 0ur(juaré 18 flamiumicustemi 277/3 132.5 1.02.5 dur(j) aceá 19 gj6@cf.yuatemi 227/3 132.5 1.02.5 dur(j) aceá 19 gj6@cf.yuatemi 227/3 132.5 flanga, actorninggági 19 gj6@cf.yuatemi 221 222.0 222.0 222.0 665 0.81.0 0.81.0 0.81.0 6.57.6 0.33.55 gl.7.9, actorninggági 20 steCar.yunteti B88 (ugg6) 1.37.0 1.04.5 8.7.9, actorninggági 21 steCar.yunteti B89 1.37.0 1.04.5 8.7.9, actorn	a	12	-fitspecture $\mathbb{R}_{\geq 0} \geq 0$	366(uga-1)	10.05.5	2.00.0	Lames
14 ινίπι. 6ξίμφβ/δ) 10.78.5 440,0 καίστα αχάρο 15 (tyantamin 54 (tyanta) 16.45.0 2.00.0 useup 16 d.yghzgliuntdipluideri 271(tyanta) 3.65.0 3.00.0 duriglami 17 useup 17 useup 1282.5 3.00.0 agrae guideming 18 flamiumtlukeri 327/2 1.33.5 1.02.5 flamiumtlukeri 19 ajéQartipluintel 591 1.26.5 1.02.5 flamiumtlukeri 19 ajéQartipluintel 591 1.26.5 1.02.5 flamiumtlukeri 663 2.22.0 2.22.0 2.22.0 flamiumtlukeri 19 ajéQartipluintel 591 1.26.5 flamiumtlugggg 10 ajéQartipluintel 593 1.26.5 flamiumtlugggg 20 ajéQartipluitel 593 1.26.5 1.00.0 flamiumtlugggg 10 ajéQartipluitel 593 1.01.0 flamiumtlugggg flamiumtluggggg flamiumtluggggg	#0.55.5 	13	Sugaration	366(umd-2)	10.05.5	2.00.0	Listery,
0 15 (psmamn) 54 (ugsf) 16.45.0 200.0 umap 10 6ghtglum@duudmi 271(ugsl) 3.55.0 3.00.0 0ur(lamin) 17 uskndump U52(ugsl) 12.80.5 3.00.0 gaps uptilizering 18 Jamiumiusheft 327/7 133.5 1.20.5 dur(j) and 19 aj#Ger.igunful 591 1.26.5 1.20.5 dur(j) and 19 aj#Ger.igunful 591 1.27.5 1.20.5 dur(j) and 20 aj#Ger.igunful 593 1.57.5 0.33.55 dur, anienniugsjog <td>8</td> <td>14</td> <td>think</td> <td>63(u)md-6)</td> <td>10.78.5</td> <td>4.40.0</td> <td>கல்லால் குத்து</td>	8	14	think	63(u)md-6)	10.78.5	4.40.0	கல்லால் குத்து
10 ά	Ø.	15	Granteento	54 (uesi)	16.45.0	2,00.0	integ
17 μάκαλεπρ 1552(μg,d) 12.00.5 3.00.0 μησι μμλλατώμη 90% f μισμιπά Gamiuni dami 90% f μισμιπά Gamiuni dami 91 Βαπιαπίωλη fl 3277/3 133.5 1.02.5 0.000 dami 91 Βαπιαπίωλη fl 297/3 133.5 1.02.5 0.000 dami 91 Διάθλατ. μιπίπξι S91 1.26.5 1.26.5 Δ.00.0 91 Διάθλατ. μιπίπξι S91 1.26.5 1.26.5 Δ.00.0 91 Διάθλατ. μιπίπξι S91 1.26.5 1.26.5 Δ.00.0 91 Διάθλατ. μιπίπξι S91 1.26.5 Δ.00.0 β.0.7,6, αδιαπτώσμάσμ 91 Διάθλατ. μιπίπξι S93 (μσμβ) 8.65.0 Δ.00.0 β.0.7,6, αδιαπτώσμάσμ 92 Διβθ Δ.71.0 Τ.71.0 Τ.71.0 β.0.9, αδιαπτώσμάσμ 92 Διβθ Δ.71.0 Τ.71.0 Γ.71.0 β.0.9, αδιαπτώσμάσμ 93 Διβθ Δ.73.0 Τ.04.5 β.0.9, αδια σ.	3	10	G. git glan Ggandan	271(uest)	3.55.0	3.00.0	Gurgann
gogif auguntu Ranilut. B Banilumitudeffi 327/3 139.5 1.09.5 Bung and B 18 Banilumitudeffi 327/3 139.5 1.09.5 Bung and B 19 300mitutudeffi 327/3 139.5 1.09.5 Bung and B 19 300mitutudeffi 521 1.26.5 1.00.5 Bung and B 19 300mitututeffi 521 1.26.5 1.00.5 Bung and B 19 300mitututeffi 520 0.81.0 0.81.0 Augunu B 20 3000mitututeffi 536 (lugsh) 0.67.5 0.33.55 Sr.p. Sr.p. B 21 3000mituteffi 536 (lugsh) 0.67.5 0.33.55 Sr.p. Sr.p. B 22 utgentifute 603/1 (lugsh A) 21.20.5 2.50.0 Sr.p. B 22 utgentifute 603/1 (lugsh A) 21.20.5 2.50.0 Sr.p. B 22 utgentifute	Э	17	usindump 1	652(ugsd))	12.60.5	3.00.0	ويغسكني مرود
β(g) μιλιτά 18 Δαπιαπώωλαξη 327/3 133.5 1.32.5 0.ar(9) Astá 19 4/θ Gerú μιπήπη 591 1.26.5 1.36.5 β(π.σ., action ming sign) 19 4/θ Gerú μιπήπη 591 1.26.5 1.36.5 β(π.σ., action ming sign) 10 4/θ Gerú μιπήπη 591 1.26.5 1.36.5 β(π.σ., action ming sign) 10 4/θ Gerú μιπήπη 591 1.26.5 1.36.5 β(π.σ., action ming sign) 10 4/θ Gerú μιπήπη 591 1.26.5 1.30.0 β(π.σ., action ming sign) 10 20 4/θ Gerú μιπήπη 596 (μισ.6) 8.55 1.00.0 β(π.σ., action ming sign) 10 21 4/θ Gerú μιπήπη 598 (μισ.6) 0.67.5 0.33.55 β(π.σ., action ming sign) 10 21 4/θ Gerú μιπήπη 599 (μισ.6) 1.37.0 1.04.5 β(π.σ., action ming sign) 10 22 μισπήμημα 603/7 (μισ.6) 21.20.5 2.50.0 β(π.σ.) 23 μισπήμημα	6a (87		6 57 a	குவாய் கோட்	ind.	
B 18 Ωαπιατίωδεξι 327/7 133.5 1.33.5 1.33.5 0.440 Action B 19	682. 667 - 1	÷.,	A Local Local	- Carlos	and mileit	1902	We Strand Links in
9 19 μβθθεζųμπτη? 881 126.5 1.26.5 μθ.5. 9 19 μβθθεζųμπτη? 881 222.0 2.22.0 2.22.0 9 126.5 429.5 429.5 429.5 429.5 μπ.6. μπ.6. 9 20 μβθθεζιματη? 886 0.81.0 0.81.0 μπ.6. μπ.6. 9 20 μβθεζιματη? 886 μμμβ? 8.85.0 3.00.0 μπ.6. μπ.6. 21 μβθεζιματη? 898 (μημβ?) 0.67.5 0.33.55 μπ.6. μπ.6.	9 8 11	18	anniamiaschefi	327/3	133.5	1.22.5	Gurg Ann
O 429.5 429.5 20 μ/POrtiguetal 886 (ugd) 8.85.0 3.00.0 21 μ/POrtiguetal 886 (ugd) 0.67.5 0.3355 829 1.71.0 1.71.0 1.71.0 829 1.77.0 1.04.5 829 1.37.0 1.04.5 830 1.03.0 \$\$\vee \$\$\vee\$ 830 1.37.0 1.04.5 93(ugd) 2.12.5 1.00.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 538.0 4.09.0 533 1.20.5 2500 \$\$\vee\$\$\vee\$\$\vee\$\$\vee\$\$\vee\$\$\$\vee\$\$\$\vee\$\$\$\vee\$\$\$\$\$\$\$\vee\$\$\$\$\$\$\$\$	9 D	19	அச்செட்டியாளி	891 884 885	1265 2220 0810	1.26.5	திரு.த. கல்லாங்குத்து
20 μθωνίψωπταξί 886 (ugal) 8.85.0 3.00.0 μέστ.μ. 21 μθωνίψωπταξί 888 (ugal) 0.67.5 0.33355 μέστ.μ. 21 μθωνίψωπταξί 888 (ugal) 0.67.5 0.33355 μέστ.μ. 23 μθωνίψωπταξί 888 (ugal) 1.37.0 1.04.5 μέστ.μ. 23 ugamicelupuk 803/1 (ugal) 21.20.5 2.50.0 μέστ.μ. 23 ugamicelupuk 603/1 (ugal) 21.20.5 2.50.0 μέστ.μ. 33 υχατιβημά 603/1 (ugal) 21.20.5 2.50.0 μέστ.μ.	0				TIDOX.		
னை 20 துச்செட்டியான் 606 (பகுதி) க. 65.0 3.00.0 தீ.எ.க. 21 துச்செட்டியான் 898 (பகுதி) 0.67.5 0.33.55 தீ.எ.க. கல்லாய்தல்லு 899 1.71.0 1.71.0 890 (பகுதி) 1.37.0 1.04.5 991(பகுதி) 2.12.5 1.00.0 5.88.0 4.09.0 5.88.0 4.09.0 5.88.0 4.09.0 5.88.0 4.09.0 5.80.0 தீ.ஏ.க 22 பஞ்சாட்சியும் 603/1 (பகுதி-A) 21.20.5 2.50.0 தீ.ஏ.க 3.00.0 தீ.ஏ.க 3.00.0 தீ.ஏ.க	0		Security		e13r2	4-29,5	
21 χμηθεύμμπταξί 899 (μεχά) 0.67.5 0.33.55 β.π.α, απίσππώχομου 899 1.71.0 1.71.0 890 (μεχά) 1.37.0 1.04.5 891(μεχά) 2.12.5 1.00.0 588.0 4.09.0 588.0 4.09.0 588.0 4.09.0 5.88.0 4.09.0 5.88.0 β.π.α 3 μεταλήθεται 603/1 (μεχά) - Ε) 21.20.5 2.50.0 β.π.α 3 μεταλήθεται 603/1 (μεχά) - Ε) 21.20.5 2.50.0 β.π.α	1	20	319 Goly until	(Upper)) 888	8.85.0	2000	ይሻዋ ል
பெ 850 (பகுதி) 1.37.0 1.04.5 993(பகுதி) 2.12.5 1.00.0 588.0 4.09.0 588.0 4.09.0 22 பஞ்சாட்டுயும் 603/3 (பகுதி-A) 21.20.5 2.50.0 திரு.க 23 பஞ்சாட்டுயும் 603/3 (பகுதி - 5) 21.20.5 2.50.0 திரு.க 8	97	23	Servirchmutati	888 (HIGH)) 888 (HIGH))	0.67.5	0.33.55	திருது, கல்காய்லுத்து
ອີ. 22 ແຫຼ່ອກໂລີແມ່ນ 503/1 (ແຫຼງອີ.A) 21.205 2.50.0 ລັດເລ 23 ແຫຼ່ອກໂລີແມ່ນ 603/1(ແຫຼງອີ 5) 21.20.5 2.50.0 ລັດເລ 3	iD.		S	890 (uggl)	1.37.0	1.04.5	1
து <u>588.0 4.09.0</u> 7 22 பஞ்சாட்சிலும் 603/1 (பந்தி-A) 21.20.5 2.60.0 திரு.க 7 23 பற்சாட்சிலும் 603/1(பத்தி - 5) 21.20.5 2.60.0 திரு.க 8	8			to (htelp)	671642	HOUS	
ீ 22 பஞ்சாட்சியும் 603/1 (பகுதி-A) 21.20.5 2.50.0 தீரு.த இ 23 பற்சாட்சியும் 603/1(பகுதி - 5) 21.20.5 2.50.0 தீரு.த இ	8				5.88.0	4.09.0	
23 ແຫຼ່ງອກນັກໂມກະນີ 602/1(ແຫຼງຢ່ - 5) 21.20.5 2.50.0 ສີ.ກ.ສ ອີ		22	uganCAypb	603/3 (U(5\$A)	21.20.5	2.50.0	\$9.A
	8	23	យដ្ឋភាជភ្នំព្រាល់	601/1(ugd) - E)	21.20.5	2.50.0	6.9.6
	05						

~ 240 mol

	1.54	6	14					
		13	1 -				Runne	
8		Post.			8	11 -	And Brandbille	Charles .
0	50	(1)	- 09	(a)	(4)	(8) *	28 MAY (13
	12	112		2000-000 m	(Randald	I Manada da	20	18)音
9	1	24	Stage Chartely		217.5	211.2	Contraction State	
令		25	- Isministration -	40 (HED)	2.24.0		Support and	1.6.92
0	2.	20	awarmanan	0.022//1 (UED)	11000	2,02,0	P40	
9	9	21	-BOID	6(9(四臺灣-3)	11.25,0	1.48.0	D-II-D	-
0	1.	28	Alter and a second second	-288(n@%)	17.42.5	3.45.0	NaerBranuer	Glowinge
	3.		1. A.	Sar	3530	100	A	
õ.	20	20	- Lancin Control	Stored memory	1015	1914	and the second	
-		30	uter poget y	103/4	and a	1.01.3	2 marine and	
		21	Charles and	100/3	0.05.0	4.05.0	AND DECIM	
9	23	32	erosou regis	100.000-011	7525	- 19 m n	645. 469 645. 469	
10	ε.		Barton and Andrew	100 (000 0.25	7550	120.0	man an and	
0		25	A cost allocate alloca	North Instance	10 70.0	950.0	60.0 man	
G			almush Quan't	at Church	7.65.8	6.770	Bride minutes	
•		37	10	TRA \$200 (umd-1)	DR ALLE	1,80.0	6.0.00	
ø	۰.	38	Amath@emia	754-&760 (um8-2)	35.46.5	2,10,0	Sec.	÷
ø	÷.	109	eruet Centu	754 &700 (00:49-3)	36.46.5	3.66.0	S. M. S. LIMING	
0		40	anuai Gani.u	754 &760 (umdi-A)	38.48.5	3.50.0	\$e.g.umo	
ch.	5	41	anuser Clean the	754 5760 (08-8-5)	36.46.5	4.30.0	6.g.auron	
	ас. Пор	42	instant Ogeniu	1151,1165,	14.08.5	2,70.0	ส์สุด	
1				1212 10,1219, -		5	1. m	
3				1226/A (山西島山)			0	
0		43	காமன்தோட்டி	1157,1155,	14.68.5	2.87.0	ana.	
0		- 2000	, जन्दन्दर, मन्द्रे,	1222,1225		Ter.		
3		44	amout Ciert' u	1163.1165	14.685	2820	600	
6	1.1	WDA.		1212 (0,1218,	(10000-0-1		Sectore .	
				1226/A (UE# 3)				
		(45)	anontOgniy	1151,1155,	14.68.5	2.23.0	கீரக	
100		- 14 ⁻	1.00.00	1222,1225		9 F.		
- 47				1226/A (Hele-4)				
9								
1			F					
- 64				V 1	-00	N		
					and the second se			

~ Jameyn

0

۳.	- 黄						
0	ê.			1		and a	Widelight a
9				9	č	10	
1	(1)	(2)	(2)	(4) (Generated)	(E) (1) (Gandd) (1	(* (* 8	MAY ZOTA
S.	45	ണാണ് ട്രോസ്പു	1161,1155 1212 to,121	, 14.68.5 R	1.27.0	ana la an	ripeor et al
8		1	1222,1225 1226/A (und	2-5)		100	லம் கரங்கத்
10	47	GgarfKaunteft	\$44(inmdi)	3,41,5	2.30.0	65.5 1000	
0	48	Operficanteri	152/2(ue)d	4.23.0	2.00.0	ณ์ส.ส. มหาย	
-	49	giunamicana	R 697 (ugg-1) 2527.0	4.0000	SA. B. MTG	
	60	giuntmission	637 (ugd-2	25.27.0	4.50.0	கிலகளைய	
Ø	51	guyanmisute	0 637 (uggl-3	25.27.0	4.50.0	A. 17. 19. 187 (9)	
3	52	Gestational	242/4(ugali)	1.87.5	1.00.0	S.R. H. MAR	
ăù.	53	பல்தரப்பர்ளி	130 (പട്രക്)	18.90.0	4.65.0	Est. a. an Q	
कर । कर्ण	54	ន្លវ័ស្មតាតាប័ណ្ឌវត្ថា	314(um&-3)	35.64.0	4.94.32	60.6400	
80	55	Generation	234(455)-1)	18.35.5	3.00.0	fa.a.anto	
B .	56	Genteralmont	294(uggd-2)	18.36.5	3.75.0	6.0. <i>8.00</i> (9)	D.*
8	67	Gentinflurigab	100(00)-1)	9.70.0	2,00.0	ส์ส.อ.อสต์ม	
8	59	GasbadLeupti	195(umd-2)	8.70.0	2.25,0	68.6.610	
-	59-	General and	138(uggl-3)	0.80.98	4.10.0	69.0.000	1300
	60	Contracture	136(umd-12)	69,36.0	2.70.0	தீ.ஏ. த. தாடு	
B	-		Gantaci	AddanimL	diff. 15	Server and the server of the s	
0	61	Barling			0.92.0	தீரத கல்லாய்தற்ற	
9			- WERT	1.04.0	1475820		
6	853			3.18.0	1.10.0		
a	62	ugunnm.ind	265 (Umd)-1)	8.73.0	2.50.0	தீரத கல்வால்குத்து	
	63	மதலைக்கட்டன்கி	265 (Umd-2)	8-73.0	2.50.0	for a mountined at	= 28
0	64	isg/Glammh_Guntaf)	265 (ngd)-31	8.73.0	1.60.D	ift a startigity	
0	65	ugGaneti (Antal)	265 (U(B)B-4)	8-73.0	1.46.0	16.0.5 millionii(2.6.8)	
63	00	Allowerson Laurist	360 (යළඹ)	0.62.5	0.62.5	\$9.0	
(3)	97	Burraniering)	829 (ues)	188.50.0	4.00.0	தீரத கல்லால்தத்து	
10	00	uan:@t	144	2.00.5	2.00.5	தீ.எது எப்பாட்குத்து	
8	60	Supr wi	733 (山西南-2)	51.77.0	3.00.0	umo umblunių	
ġ.	10go)mrd/ 29-12-2017	A .				லி. கதிரவன்,	
僮	10000					യന്തല്. ക്ലല്കിന്റെ മിദ്രാളങ്ങളില് നേര്പ്പം.	
G.	#dig	ATO HOUSED	A			and the second second second	

e Junney

ത an guingisi (Sig) 10 2 8 MAY 2018 オロ語 NO BILD Deaniu - I 1100 Betsepenating an to mu an muse 1.5 111 Genemius - VI B 69 0 (தமிழ்நாடு சிறுவனக்க் களியச்சலுகை விதிகள் 1959-ன் விதி \$ (10-А) நக் காணப்பி ⇔ 0 ஆரசு புறக்போக்கு நிலங்களில் உள்ள சாதாரண கற்குவாரிகளை, விடுவிக்கப்பட்ட கொத்தடிவைத் தொழிவாளர்களாம் அமைக்கப்பட்ட எம்கம் / (SGSY) பொள்ளிழா கிராம எய உதயிக்குழுக்கள் 3 6 ஆகியவற்றுக்கு குத்தகை உரிமம் வழங்கக் கோரும் மனு. 6 (April white Brite Basistanii Bereni wert in Gardian Casir (bi) 畠 20 (srift) -2018 G agginget 6) 0 创 Right unnal action, Magazint diffurne auch ---0 Sigisment and 秥 Minn, 말만하는 0 றான் / நாங்கள் 1959 ஆம் வகுட நமிழ்நாடு கிறகளிலா சதுமை விதிரு-ன் என்பு விதி 10 ஏ –ன்படி எங்கள் கல உரவிக்கு முளித்து / விடுவிக்கப்பட்ட சொத்தடினும் தொழியான எங்கத்தித்து சாதார்கள் குத்கள் வெட்டி எடுக்க கல் ருவாரி குற்றகை உரிலம் வேண்டி 4 கிருஷ்ணக்கி மாவட்ட அரசிதழில் வெளியான_் நாளிட்ட அறிலிக்கை என்.____ன்படி விண்ணப்பித்*திகை* 0 matulia Sittema ۲ மறு தொடர்மான விவாங்கள் கீழே கொடுக்கப்பட்டுள்ளன. 송 1. (SGSY) Gurdreifige digits our Given a unital ghi ... dogg eligelikaitelt, Carppyon eles spin aftern ۲ فيشمعني فتودينها مسمريهم 9 2. (அன் குழு மற்றுத் சங்கங்கள் தபிழ்நாடு கூட்டுறாடி சட்டம் 1983 . : (விழ்நாடு சட்டம் 50/1985) ஆய்யது தமிழ்தாடு சங்கமின் 曲 புதில் வாஜ (மாதித்தாடு மட்டம் 27/1975) ø ஆகியலைகளின் தொடுவு செய்யல் உட விலாம் பற்றும் oninglash Finnendarias, Caningia 3 (து) ஆரு / எங்க உறும்றாள் பென் மற்றும் முலாளி மட்டியார் 8 (ສ.ຊຸບໍ່ມີສາກ່າວກຼ່ງຊີໂນ ເຫັດຖະໂບຢູ່ຫຼາວ ສ.ຊຸບໍ່ມີສາກ່ ການ້າ ເປັນຄຸນ້ 1 Seministics: Contingals. 19 (1) mg / adapt Country Statistics Other Ø uganuga aliant 67 Ð 3 21 map 6 8

LIDULHTER GIOLOGIC

(5)

namaini Arman sajerung unanin =(\$ (2) (3) (8) (5)

A state of the second se

ø

1

ø

æ

鼠

 G_{2}^{*}

ø

66

G

ø

8

63

0

8

6

0

÷.

0

6

Ð

۲

0

6

0

0

٥

0

9

0

٢

ிழ்க்கண்டுவற்றுக்கான உற்றி வெறி ஆணைப் இன்னாக்கல்லி இன்னதா,

பல் நடப்பதுண்டு வரை வருமான வி விரைப்படியல் அத்தணுக்கு கொடுக்கப்படு உள்ளதா (அல்லது

(மூழ் நகத்தின்றால் கணக்கிடங்கட்ட வருளைகள்) நெழுத்துக்கி துள்ளதா (தல்லது

ு (இர்ம்கி ஆம் வரும்த்திய வருணை மரி – செழுத்தப்பட்டுள்ளதா (அல்லத்)

10. (த) ஏறுதார் குழு / சங்கத்தில் உருப்பிலர் அனைவரும் சமிலைப் திலைப் இவ்வை பல்புதற்கான என்று பெற்றுர்ணைர், ஆம் எனில் நகல் இணைக்கவும்

்கு) இந்தமறு வொடுக்கல் டும்றாளம் உறுக்கள்களுக்கு குத்தாக இசையப்பில் குத்தனன் உறுதிலைநி நளித்தனியாக சொடுக்கம்படு இசுவார்கப்பட்டுள்ளதா,

138C/12 (R) M.G.N. 21-1.

SEVISIE U 2.1200 Port Building t Di C Bin Beat lagigant Ce m communar (Camb + 28 MAY 2018 Gen Cost all multilarral Being official ann sigener Gegispelgannen a manna erragiftuntadigna oppers Gigsugi Geninanala gentilbernemist again Gen Geng Gan durante 1959 and and gifter partition of months of the adjustments and " strategies County is a con-விதிகளையுடி தன்தற்போம் என்று உறுதியரிக்கின்றோம். சாதாரண தற்கள் மெட்ட வழங்கப்பட்ட கற்குவாற்றில் மெருவேற்றி ange and a set of a subsection of a subsection of the subsection o Manager, gelanar mehtanumperer, 即利用的服用或用的用的。 distant. X-100000-06-0 A Contraction of the second second · 学生之初後19年年11月 District Strates and the second limit with a second second second second 92% inff() / 26% States - Security General Contraction of the second CULTER TAXABLE At Meters STATUS COMPANY AND A EDROY NOT SUGARINE au stratighter of 6 1.50 STORES INCOME. Summing the second -清晰なないになった。ここのない - Children and Aller 第4、Weill的なが、1211に、このである55%。 B 6

圇

0

0

8

8

6

8

695

釰

0

ø

0

0

0

0

0

0

0

0

0

0

0

0

0

0

傳

Ø

63

84 at 1 1 2 215 mayor

A 160 10-10-34-0

-161-

-163 -Contraction of the second 2 8 MAY 2018 Seriencio=2 ÷ ħ marriale arriandation. Guisenau Destally usenal é S. allos apress Bill Keg marginial enginess company and the approver and any former man and an 6 D GHT IN gar minian rmé 3 Beir minit imain 0 (E) (7) 69 伺 (6) 0 ٢ (8) 63 (10) 6 6 6 Selection of A. Sel Men minuted றிப்கள் தோறம் குவார்சில் இருந்து எடுக்கப்பட வேண்டில் களியங்கள் குறித்து அறுப்பட்ட வேண்டிய மண்களுப் படியம் 0 ē BASMA STITLE GUILD USAN 0 20 Mound Sunninger actual C. Comute (CFR tin Tim, 8 **D**TÉLICTIN 0. united auf during a start main up gold print 城市 11 4. 1 mg.gara armit 5. - Samuella Canena Girlando (20. senten maneral ଭ an obs Seit 燢 Quimpir 6. ாகுத்தகைத் தொகை செலுத்திய விலை 8 7. giliegt pleastic or desires antregister synny G 0. Generitau gegelentes in gerfulgideir gereg 0 " if a familely arrive surfage diet gama < 216 Jump

ෙ

0

0

0

0

۲

Θ

0

0

0

0

0

0

0

- 165 -Brand the children 400 CE 0 Minimpu-4 2 8 MAY 2018 -0 × Some smither Quest spinis growth 0 dlay spect and Reveal the second second and a second s to home agrice 6 dirtinh MF1 7 0 E LUN PTIME. 0 • LITLANTIN 3 2151 Grands and Barfan Agenese with upgets have 勞 4. Angenination 9 in aguna Diman Quitela 0 100.014 0 0 0 6 0 츾 0 9 0 0 8.24 Quer Sale is 0 S.DHANASEKAR, M.St. (Get) 箙 RQP/MAS/225/2011/A 0 0 0 0 0 0 0 e 0 (C) 0 0 $^{>}$ 0 0 217 Hundry 2

S)

குமிழ்காடு வனத்துறை

ອັງສະຫະນະ ເປັນເປັນ, ຫຼື.ແບບ. ແລະ ເຊິ່ງແລະເປັນ, ເຊິ່ງແມ່ນ, ເມີນເປັນແລະຫະ ລາດຳລະດີ. ເຊິ່ງແມ່ນ, ລູ ຈູກ – 535 ເປີດ. ເຊິ່ງແມ່ນ, ດູ ຈູກ – 535 ເປີດ. Balannon (28 MAY 2018 unnit 1 201 Mil amazoni, MAY 2018 Abgrisannabili unitari diritssipaanalan abgrisannabili.

前面104曲点中

- 9 JAN 2018

B. 4. 31841, 6213/2017-4140 B.H.H. 3. 01.2018 (20) and with a series of a seri

Annut,

மொருள்

۲

0

٥

0

E

களியங்களும் குவார்களும் – சிறகவியம் – சாதாரண கற்கள் – கிருஷ்ணகிரி மாவப்,த்தில் உள்ள அரசு மும்போக்கு நிலங்களில் உள்ள சாதாரண கத்கள் வெட்டியெடுக்க டென்டகுடன் இணைந்த எலமுன்றலில் குவார் குத்தகை வழங்குதல் வனத்துறை எஸ்மாலமரித்துரைவேய் கோரியது– வனத்துறை நோக்கியான கருத்து தேரியித்தல்–தொடர்பாக.

மாவட்ட ஆட்சித் தலைவர், கிருஷ்ணகிரி மாவட்டம் ந.க.எண்.72/2017(களிமம்) தாள்.28.12.2017.

பார்வையில் கண்ட கிருஷ்ணகிரி மாலட்ட ஆட்சித் தலைவர் அவர்களது வடிதற்றில், கிருஷ்ணகிர் மாலட்டத்தில் உள்ள அரசு மும்போக்கு நிலங்களில் சாதாரன கற்கள் வெட்டி எடுக்க டெண்டர் / பொது எலம் மூல்ம் சூத்தனகக்கு வழங்க, வனத்துறை தேசக்கியான கருத்து மற்றும் வனத்துறையின் தடையின்மை என்று வழங்க வேன்டி தேரிவிக்கப்பட்டுள்ளது.

கிருஷ்ணகிரி மாலட்டத்தில் அரசு பறம்போக்கு தியங்களில் சாதாரண கற்கள் வெட்டி எடுக்க டென்டர் / பொது எலத்தில் குத்தனகக்கு விட்டு அதன்மூலம் அரசுக்கு வருவாய் ரட்டிட வனத்துறையின் இசைவினை வறங்கிட கிருஷ்ணகிரி மாலட்ட ஆட்சிற் தலைவர் கேட்டுக்கொண்டதற்கினாங்க, அறனடிப்படையில் ஒரூர் வனச்சரசு அறுவலர் மற்றும் பணியாளர்களுடன் குவாரிப் பகுதிகனை தணிக்கை வெப்பட்டட்டது. கீழ்கண்ட பட்டியலில் கண்ட உற்தேச கற்குவளிகளுக்கு கீழ்க்கண்ட நிபந்தனைகளுடன் வனத்துறை நேரக்கியான கஞ்சு தெரிவிக்கப்படுகிறது.

1

Derendly 218

சாதனான சற்றவாரி குத்தகை வழங்குவதற்கு ஒப்பத்தம் செய்யிற்றத் பட்டுக்கில் முன்பு ஒப்பொரு குவார்ப் பகுதிக்கும் வளத்துறையின் நிபந்தனையு ம் முன் Cutiministi gamfli und Geisu und gamm (Work order) appindus. Guissi (Ju. Contras anyonen adagaanti gagama Caragit cautiasit arCarli an dag awa nutrian otransmusiglificarar Eco Sensitive Zone andense führemusi Genitu (2000) Andersi (9) Ageneer எதிர்நோக்கிலுள்ள குலுலில், காலேமி வடக்கு என உலிரின சானாலை எல்லையிலிருக்கு 10 slub-digen aparagisfinitatet Cystu eur auffüre annhuggleir (peir appaagi (National Board for Wildlife Gumine Guarde (34),

-169-

1H)

2.40.5m

0

H)

0

0

0

0

i)

解剖浴

8

.

.

۲

குவளி செய்யும் புலிகள் செய்யாலத்திரம் காட்டிக்காட்டிற்கு அமைந்துள்ளதால் வருவாம் வாமே நிலை ஆணை தொகுப்பு 1, பிரிவு 3, உட்பிரிவு 38 (10) "Standing Orders of the Board of Revenue- Volume-I Section III. Sub- Section 38 (III)-sit படி இதர பயன்பாட்டிற்று உட்படுத்த நடஷக்கை நேற்கொள்ளப்படும் போது குறைந்த பட்சப் 60af (3 Chain) earlagteanlight reiseardidithighgi gear Goarfi eilt (an Caucio Gib, crafigud இம்பகுதிலின் அருகிக் பலைய நர்வர வகைகள் காணப்படுவறால் இக்காப்பு நிலத்தின் எல்லையிலிருந்து 100 மீ தொலையிற்கு இடைவெளியிட்டு நடுப்புச் சுவர் அமைக்கப்ப

iv)

v}

W)

wij

VILO

வருகாய்த்துறை ஆணைங்களில் "காடு" லா வகைபெடுந்தப்பட்ட முன்னில் கற்குகாரிப் பளி வெய்ய அதுகதிக்கக் கட்டாது.

உற்தேச கழ்குவாரி செய்யும் புலங்கள் தமிழ்நாடு வளக்கட்டம் 1882–ன் கிரிவு 4 மற்றும் 16–ன் கீழ் காட்டிறிலம் / காப்புக்காடு என அறிவிக்கை செய்யட்டிட்ட புலங்களாக இருக்கக்கூட்.எது.

உத்தேச கற்குவார் செய்யும் புலங்கள் தமிழ்நாடு வளச்சட்டம் 1882–ன் பிரிலு 28–ன் கீழ் spieliene Goindu's spinsme Bykadeis ras

அரசாணை இலை) எண்.79 தொழிய் (எனியம் 1) துறை நான்.06.04.2015-ல் வதங்கட்டி".(நன்ன திழந்தனைகளை மாவட்ட திர்வாலம் / களிச வாத்துறை கடையிலும்பதை கவனத்தில்

குவார் குத்தனை கோகும் பருதியிலிகத்து 300 மீட்டர் தாரம்' வரை சமதொரு குலிருப்பு under Digent aturg minang umati, Manus a.p.d Gein Gusiogal

219 Anner

-121 Part Stusioni ð 2 8 MAY 2018 கேடுகள் வொட்டி எடுக்க பரித்துரை செய்யப்பட்ட குவாரிப் பகுதிகளின் பீட்டுத்துக el anapamatal : Talak 15 மற்றும் கார்ந்த Classification GPS Coordinates Extent. Virgin or Old Latitude/ Total proposed Ę Longitude Extent in quary. for quatry 5.4. ha lease in ha Kundeppungannapatit (Junu) 12 40'00.0"% UAW. 78 07 42.23 1 Virgin 3:00.0 15.61.0 Paral T-COST ¥ 22 **Historyandh** 302/H/JurdB 12'39'56,43"N UAW. Virgin 71 07'40.49"E 3.06.0 Pani 15.61.0 2

0

8

Ø

0

griugait gyingiter,

ஒம்/-தீபக் எஸ். மீல்கி, மாவட்ட வள அதலைக் ஒரூர் வளக்கோட்டம்

Gilia. 60) Avid Addit materiantic amount. 3)) 18

Sin

12 5tul

220

3

Hunder

CHETTA A LOBOR Alg. sofofui uni; an in Aun,

Quittente LOTMALL BUCHAUR, digesmidili.

173 ANNEXIPRE MAY 2018 28 សិក្សាដែលលោកដំណ to indiana antio

£

5. mart. 11997/2017/

-2017 古井市

SHULLIT,

Q

ø

0

e

\$

0

6

69

େ

e

¢.

6

GLITHINT'S

மாகட்டம் - கிகுஷ்ணகில் வட்டம் - கொண்டப்புரமணமானி கிராவம் - அரசு புல எஸ் 202/1 (Part-A)ள் 3.00.0 ஹெக்டோ பாட்டளவில் டெண்டருடன் இணைந்த ஏல முறையில் சாதாரண சுற்கள் வெட்டியெடுக்க குவாரி குந்தகை angenies goot Gienglagent Campinal, go . suggingen Gam hura.

unimer

கிருஷ்ணகிரி மாவட்ட ஆட்சினின் கூகும் நகவன் 72/2017/களிலம் நாள் 04.03.2017.

பார்வையில் கண்ட கடிதற்திற்கு தங்களது கலனத்தை ஈர்க்க விழைகிறேன்.

கிருஷ்ணகிரி மாவட்டம் கிருஷ்ணகிரி வட்டம், கொண்டப்பதாமனமள்ளி கிரமம் - அரசு புல ாண் 202/1 (Part-A)ல் 3.00.0 நெறக்கோ் பரப்பானில் டெண்டருடன் இணைந்த எல முறைவில் சமதாரண கற்கள் வெட்டியெடுக்க ரூவாரி குத்தகை வழங்குவது தொடற்றக பார்மையில் களிட கடிதத்தில் கோரப்பட்ட துறிக்கையினை திகண்டவாற தெரிவித்துக் கொள்கிறேன்.

கிகுஷ்ணகிரி கட்டம், இதுகுக்குக் கிரமம், அரசு புல எஸ் 202/1ம் 15.51.5 ல் ஹெக்டேர் பரப்பளவு பாறை என கொண்டப்பதாபனமாள்ளி கிராம கணக்குகளில் நாக்கலாகியுள்ளது. பேற்கண்ட upomenineflat upgehilde (Part A) 3.00.0 Gundda ir upiasrelie eogeneen adast Gasta Guthas குவாரி அத்தகை வழங்க புல வரைடத்தில் வரையறுக்கப்பட்டுள்ள பகுதிலில் இருந்து 300 மீட்டச் கற்றனலில் குடியிருப்புகள்/ கிராம நத்தம்/அங்கிக்கம்பட்ட வீட்டு மனை பிரிவுகள் ஏதுமில்லை. 50 மீடர் சுற்று வட்டத்திற்குள் பராதன் சின்னங்கள், கோலில், மததி, தேவாலயம் போன்ற வழிபாட்டிடங்கள்,) தொல்பொருள் துறையினால் பாதனக்கப்பட்ட தொல்லியில் கின்னங்கள், பொது மமானம், மின்/தொலையேசி கம்பி மாதைகள் ஏதமில்லை. 50 மீட்டர் சுற்றாவில் ஏரி, குசம், குட்டை, ஒடை போள்ற நீராதர அமைப்புகள் எதுமில்லை. புலத்தனிக்கையின் போது பொது மக்களிடமிருந்து ஆட்சோணை எதும் வரப்பெறவில்லை. பேற்கண்ட புலத்திற்கு பாதை வசதி உல்வது. பேற்கள்ட புலத்தில் ஐங்லி/சக்கை/நட்கம் உடைக்க ஏற்ற சாதாரன வகை பாறைகள் காணப்படுகிறது. பேற்கண்ட புலத்தில் ஆக்கிரமிப்புகள் எதுகில்லை. பேற்கள்ட புலம் இதுவரை கற்கள் உடைக்கப்படாடும் உள்ளது.

மேற்காஸ், பலத்தின் நாள்கு ால்கைள் கீழ்காஸ், வாறு உள்ளது

LING GROUP	nurumet	nr.net	கழக்கு	网络西西	Grittige
202/1 (Part-A)	3.00.0	202/1 (Part)	202/1 ulgali 235	202/1 (Part- B	202/1 14880

மேற்கண்ட அரசு பறம்போக்கு நிலத்தில் சாதாரண கற்கள் வெட்டியெடுக்க குவாரி குத்தகை உரிலம் வழங்க ஆட்சேபளை ஏதுகில்லையொலும், டெண்டகுடன் இணைந்த சல முறையில் குவளி குத்தகை வழங்களாம் என கல்லுருதிக்கி கிராம நிர்வாக அழுல்லர் வாக்குமூலத்தில் தெரியித்துள்ளார் .

221 Annapri

	-			-1
10	8			愛い時期によ
	0			See and see all
Ŗ	0			* 2 8 MAY 2010
D	0		அனுமதியின்றி சாதாரண கற்கள் வெப் கட்டும் வாணியம் வெர்காம் பாடிக்கி	டியெடுப்பதை தனட செய்யவும், அரசுக்குட்சு முதல் வருவாப்
	0		சரதாரன கற்குவார் குத்தகை வழங்க ப	Hanny General Contraction and Contraction of the State
	•		கிராம நிலாக அறுவன் வாக்கு களாக்கையின் தகக்களை நிக்கடன் நில	தமூலம், புல வரைப்பம், கூட்டு புல வரைப்பம் மற்றும் மற்றும் வளக்கலைப்பியன்னேன்.
	6		வொண்டி வில்கண் கால	2-2
	44 43		The second	Some mu
	ະ ຄ			elig.commellet
			¥.	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	894 () 201			De
				Spenter -
	\$		10 I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.	
	9		0.1	
	0		- 1	
	٢		- (d.	
	Ð			-2.5%
	٢		· .	S.DHANASEKAR, M.S. (Dec)
	Ð			KUMMENTELE
	۲			
	Ð	÷		
	0			
	0			
	100			
	m			
	10			
	in the second			
	1927			
	0			
	9		1	
	œ			
	0		1	
	Ģ			
	0			
	۵			
	٢			222 Norman
			\prec	ZZZ MINING
				un i

-125

0,000

புலந்தணிக்கை அறிக்கை

கிருஷ்ணகிரி மாவட்டம், கிருஷ்ணகிரி வட்டம், கொண்டம்பராமனமர் ரி திரைஷ்கு பல எண202/1 (Part-A)ல் 1.00.0 ஹேக்டேர் பரப்பாவில் டென்டகுடன் இனைத்த நட முறைப்பட சாதாரண கற்கள் வெட்டியெடுக்க குமாரி ருக்தகை வழங்குவது தொடர்பாக புலத்தனிக்கை மற்றும் விசாரணை செப்து அறிக்கையை கிழக்கார் கொறு தெரிவித்துக்கொள்கிறேன்.

கிருஷ்ணகிரி வட்டம், கொண்டப்பறாபனபள்ளி கிராமம், அரசு என்202/1 ல் 15515 ஹெக்டேர் பரப்பாவு பாறை என கொண்டப்பறாபனபள்ளி கிராம கணக்குகளில் தாக்களையென்னது. மேற்கள் புலாண்ணின் பகுதி A மில் 3.00.0 ஹெக்டேர் பரப்பாவில் சாதாரண கற்கள் வெட்டியெடுக்க தவாரி ஆத்தகை வழங்க புல வரைபடத்தில் வரையறுக்கப்பட்டுள்ள பகுதியில் இருந்து 300 மீட்டர் சுற்றாவில் குடியிருப்புகள் / கிராம நத்தம்/தங்கிக்கில்லட்ட வீட்டு மனை பிரிவுகள் எதுவில்லை. 50 மீட்டர் சுற்ற வட்டத்திற்குள் புராதன கின்னங்கள், கோயில், மரு.தி, தேவாலயம் போன்ற வழிபாட்டிடங்கள், தொல்பொருள் துறையினால் பாதுகாக்கப்பட்ட தொல்கியில் கின்னங்கள், பொது மயானம், மின்/தொலைபேசி விலி பாதைகள் எதுவில்லை, 50 மீட்டர் சுற்றாவில் ஏற் கைவிட்டிருந்து ஆட்சேபணை எதும் வரப்புதனி முறுகின்னை, 50 மீட்டர் சுற்றாவில் ஏறி, குனம், குட்டை, ஒன. போன்ற தீன்றா அமைப்புகள் முறுகின்னை, புலத்தனிக்கையின் போது வாது மக்கவிட்டிருந்து ஆட்சேபணை எதும் வரப்புதலில்லை, மேற்கண்ட புலத்தனிக்கையின் வாது கொது. மேற்கண்ட முலத்தில் தல்லி/சங்க/ரப்புகல் உடைக்க ஏற்ற சாதாரண வகை பானைதன் காணப்படுகிறது. மேற்கனர், புலத்தில் ஆக்கிரமிப்புகள் என்பறையின் புன திருவரை கற்கள் உடைக்கப்படாமல் உள்ளதி.

மேற்கண்ட புலத்தின் நான்கு எவ்வைகள் கீழ்கண்டவாறு உள்ளது

뱐

0

0

e

ø

隐

ę,

0

0

1,00 6788	LITURINTAL	ALL BOD	dipoles	Geodes	Cupto
202/1 (Part-	3.00.0	202/1 (Part)	202/1 u@dl 235	202/1 (Part- B	202/1 以後成

யேற்கண்ட அரசு பறப்போக்கு நிலத்தில் சாதாரமா கற்கம் பெட்டியெடுக்க குவாரி குக்தகை உரியம் வழங்க ஆட்சேபணை எதுபிக்கையொலும், டெஸ்டருடன் இணைந்த எல முறையில் குவாரி குத்தகை வழங்கலை என கொண்டப்புராபனபற்றி கிராம நிச்வாக அறுவலர் வாக்குமூலத்தில் தேரிவித்துள்ளார் . அறுவதியின்றி சாதாரண கற்கல் வெட்டியெடுப்பதை தடை செய்யவும், அரசுக்கு கூடுதல் வருவாய் எட்டும் வகைவிலும் மேற்கணிட மூலத்தில் கனிம விதிகளில் வரையறுக்கப்பட்ட நியத்தனை வருங்கு சாதாரண கற்குவாரி குத்தகை வழங்க பரித்துவர் செய்விறேன்.

ani Lmi Hart கிருஷ்ணகிரி

122

属山南西西方

28

MAY 2018

223

Humph

கிருஷ்ணகிரி மாவட்டம் - கிருஷ்ணகிரி வட்டம், கொண்டப்பதாபளபள்ளி கிருஷ் திர்வாக அலுவார் கொடுத்த வாக்குழுலம். இப்பட்டிருக்கு

தான் கொண்டப்பதாயணமர்ளி கிராம நிர்வாக அறுவாராக பணிப்பித்து வருகிறேன். கிருஷ்ணகிரி மாவட்டம் கிருஷ்ணகிரி வட்டம், கல்துகுதிக்கி கிளமம், அரசு பல என் 202/16 15.61.5 ஹேக்டேர் பரப்பாவு பாறை என கொண்டப்பதாபடைன்னி கிறாம கணக்குகளில் தாக்களாகிடின்னது. மேற்களர்ட புளைனின் பகுதி A மில் 3.00.0- ஹெக்டேர் பரப்பாவில் argenten agam வெட்டியெடுக்க குவாரி குத்தகை வழங்க புல வளப்பத்தில் வரையருக்கப்பட்டுள்ள பகுதியில் இருந்து 300 மீட்டர் கற்றாவில் குடியிருப்புகள்/ கிறாம நத்தம்/துங்கீகரிக்கப்பட்ட லீட்டு மனை பிரிவுகள் எதுபில்லை. 50 மீட்டர் சுற்று வட்டத்திற்குள் பலதன சின்னங்கள், வோமில், மகுதி, தேவலயம் போல்ற யழிபாட்டிபல்கள், தொல்பொருள் துறையினாால் மாதுகாக்கப்பட்ட தொல்கியியல் சின்னங்கள், பொது யயாளம், மின்/தொலையேசி கவ்பி பாதைகள் எதுமில்கை. 50 மீட்டர் சுற்றயவில் ஏரி, குளம், குட்டை, ஒடை போன்ற நிராதர அளவிடிகள் எதுமில்லை. பொது மக்களிடமிருக்கு ஆட்சேபனை ஏதும் மேற்கள்ட புலக்கில் வேற்கண்ட புலத்திற்கு பாதை வசதி உள்ளது. ແຫນ່ຈີບກູໝີສັສສະບ, றல்லி/சக்கை/ரப்கம் உடைக்க ஏற்ற சாதாரண வகை பாறைகள் காணப்படுகிறது. மேற்கண்ட பலத்தில் ஆக்கிரமிப்புகள் ஏதுமில்லை. மேற்கான்.. புலம் இதுவரை கற்கள் உடைக்கப்படாமல் உள்ளது.

மேற்கண்ட புலத்தில் நான்கு எல்லைல் கீழ்கால், வாறு உள்ளது

Line mant	บสุนัมศาสน	an het	alite	Gabia	GLODE
202/1 (Part-	3.00.0	202/1 (Part)	202/1 00:00	202/1 (Part-	202/1 400份

அனுகதியின்றி சாதாரனா கற்கள் வெட்டியெடுப்பதை தடை செய்யயும், அரசுக்கு கூடுதம் வருவாம் எட்டும் வகையிலும் மேற்கண். புலத்தில் கனிம விதிகளில் வரையறக்கப்பட்ட நிபந்தனைகளுடன் சாதாரண கற்குவாரி குத்தகை யழங்களம் எனத்தெரிலித்துக்கொல்கிறேன். கிராம கணக்கு நகல்களை இத்துடன் இணைத்து சயர்ப்தேதுர்ளேன்

//up bay unit Gant afiguet //

//mit applumes//

ര

8

⊜

۵

8

8

٩

6

6

0

6

€

0

G.

0

E)

0

Ð

Ð

ŵ

¢

臣

冏

9

5

ø

儆

0

e

e

0

0

<u>ه</u>

ALON.

() Jon of the ALL TLAUT SAIN diggiandifi

S.DHANASEKAR.#3.000

ANNEXIPHEN

Z 8 MAY 2018

224 Minnager

5	ų –	0	1		9		8	7	0	1	1.	4	3	2	1	
	92 Qui Godrand Udr.	94.	0	9 1 1	n,n/ak ,43-5	24	9L 2. 5		-3	1	1	Ŋ		199+R		199
and the second s		28	10	N	78+5		「日本							200		-00
f	IT I ANDR		teres.	17	22-5	0					100	Чр	90	200	1	
CALL T	106 #. garrerd.	31	0		14.5	0	2 15		-1	1		4		201-1	1	201
ir,	89 (p. Semprus	23	D		10-5	0	2 15	11111	-3			4	5	-2114	28	
	33) Our, seteblud (1). Ourdiese (2).	26	0 2		12-0	0	2 19				F. Bay	1		15		2
14	19 of Gedeprode	18	9 4	- 9	22-5	0	2 15		1			1.5	10	-2.11	2C	
4	95 Ourd aduiting as	9	a 1	jue Pur	09 0)	0	2, 13		24				110		記述	
	132 Our: piteroud (1). opper.d	8	0	0	08+0	0	2 15	ALC: NO	9	100		4	時代は	Jur	JB	
		2	5 6	0	32.0	0	2. 15	100	-	1		4	Ċ.	- 3 (-		
	247 Gr. aliana,	1 3		0	11.5	0	1.15		.J	- 8		4				
	159 Gur. Qurduli		5 3	0	17-3	0	1 13		31	114		Г Ч . <u>-</u>		1343	- Sh	
Contraction of the second		3) 0.	73	40.5,	<u>i</u>		1000		Pilling.						臣
ut.					61-5	ış						6.014	-	atta atta atta		四
2.		1	+	AP.	36-0	0	(Hex)			120						
No. Contraction	262 வெ. வெங்கிட்டல் பள்	2	51	0	24-0	0	8 13	P	3 3	18	Salt 1	-11	The second			
i i			51	0	21.5/	16			1		the second	tea				
	96 minus and Ben wind and	Ba	63	0	28-5	0	15	3	, ,	*	Į.	4		2003-11-01		
	Bow, Cardyban	20	51	8	24-0	0	15	1	3 5	8	1.2	4		-2	2.	
	9 லெ. ஆளத்தள்.	9	34	0	16.0	0	15	1	3 5	8	5770	4	*	19		B
9	62 yr. Queymid wert,	10	66	0	30.5	0	15	3	3 5	8	1	:H.	"	3	10.0	3
	93 Gur- Qu- Gra Idr-	9	35	0	16-0	0	15	.2	3	*	-ti	4	-	-500	34	
2	5 Gu. லட்கலிலம் மான்-	24	19	0.1	09-0	0	15	2	5	-	2000		5	-501	58.	1

ANNE URE

CERTIFICATE OF RECOGNITION AS QUALIFIED PERSON TO FREPARE MINING PLANS (Under Ente 21.C. of Minard Conception Rules 1960)...

Shri S. DHORMASEMPR. resident of Old No.6, Now No.8/3, Rulleppen Street, Opp. Indian Bank Line, Omalur (20), Salem - 636 455, son of Shri A. SUMDARAM having given satisfactory evidence of his qualifications and experience is hereby granted recognition under Rule 22C of the Mineral Concession Rules, 1960 as a Qualified Person to prepare Mining Plane.

His registration number is

ROPMAS/25/2011/A

recognition is walld for a partial of ten years ending 12.01.2021.

Regional Controller of Mines Indian Durnaus of Mines Chennal Region

-0-S.DHANASEKAR, M Sc. 10em RQP/MAS/225/2011/A

Burndy 229

Place : Chennal Date : 13.01.2011

0

0

0

8

٩

0

0

٥

ø

ø

0

0

۲

இயக்குநர் ஆ 2 8 MAY 2018 d50000rdbd ைறைப்பு கருவில் Date of Survey: 29.03.2018 PLATE NO-I APPLICANT: M/LSRI VENKATESHWARA BLUE METALS. Prop.A.M.MURUGAN, S/O.MANNATHAN, No.4/4, 109 MUTHAMPATTI POST. METTUR TALUK, SALEM DISTRICT. LOCATION: S.F.NO : 202/1(Port-A), 3.00.0 Ha. EXTENT 1 VILLAGE: KONDAPANAYANAPALLI, TALUK : KRISHNAGIRL DISTRICTS KRISHNAGIRI. INDEX MINE LEASE AREA : TOPO SHEET NO. : 57 L/02 LATITUDE : 12" 39' 58.32"N to 12" 40' 05.09"N LONGITUDE : 78* 07' 42.23"E to 78* 07' 50.93"E LOCATION PLAN NOT TO SCALE Prepared By: I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE 2.2 S.DHANASEKAR.M.Sc., RECOGNIZED QUALIFIED PERSON RQP/MAS/225/2011/A NN

THERE REAL PLATE NO-IB MISSRI VENKAVESHWARA BLUE METAL APPLICANI Prop A.M.MURUGAN dissipant and S/O.MANNATHAN No.4/4. 109 MUTHAMPATHEBUTAUTH METTUR TALUK, SALEM DETRICT LOCATION: S.F.NO : 202/1(Part-A). EXTENT : 3.00.0 Ha. VILLAGE: KONDAPANAYANAPALLI TALUK KRISHNAGIRI.-DISTRICT : KRISHNAGRI, INDEX . MINE LEASE AREA : 5 KM RADIUS TOPO SHEET NO : 57 U/02 LATITUDE 12º 39' 50.32"N to 12º 40' 05:00"N LONGITUDE 78" 07" 42.23"E to 78" 07" 50.93"E CONVENTIONAL BYDROLE stations for the day had not at a the location of the location in the the survey and survey and survey and ter bes eine ter berg ben and the owner with the second and and a lot one of the lot of the lot of the 42 ---init laine Name of Address of the Address of the 100 ----1.24 grains intra has that stated prints. 6 1.8 the statement line has the second size from the late Name and and division in case of the Are president THE PARTY AND A DESCRIPTION OF -----100 the local data and the local dat state barrier Party Party likes one of Likes --and in case of the local division of TOPO SHEET KEY MAP SCALE-1:50,000 Prepared By: I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEEKIE E.E. S.DHANASEKAR.M.Sc.: RECOGNIZED QUALIFIED PERSON ROPMA5/225/2011/A

1	2 8 HAY 2818
PLATE NO-IC	Date of Survey:
ADDI ICANTE	auto Maranda M
M/5.SRI VENKATESHWA Prop.A.M.MURUGAN, S/o.MANNATHAN, No.4/4, 109 MUTHAMP METTUR TALUK, SALEM	RA BLUE METALS. ATTI POST. DISTRICT.
LOCATION: S.F.NO : 202/1 (Parl-A EXTENT : 3.00.0 Ha. VILLAGE : KONDAPAN TALUK : KRISHINAGE DISTRICT : KRISHINAGE	N). NAYANAPALLI. RL
<u>II</u>	NDEX
MINE LEASE AREA	
VILLAGE ROAD	[1.************************************
APPROACH ROAD	(********)
500m RADIUS	0
TOPO SHEET NO. : 57 L/02	
ATTTUDE : 12* 39' 58.32	'N to 12* 40' 05.09"N
ONGITUDE : 78º 07' 42.23	F'E to 78* 02' 50.93"E
SATELLITE I	MAGINARY MAP
SCA, I	9000
Prepored By: 1 DO HEREBY CH HAS BEEN CHECKEL TO THE BEST	THEY THAT THE PLATE OBY ME AND IS CORRECT OF MY KNOWLEDGE

ABEL	TATTUSE	MATORIA
1	12" A000.00"N	78" 07" 47 23"
2	12° 40'00.62'W	078709082426
3	12" 40'02 18 8	18-07144222
4	12" 40'05.11"N	78"07 45.34"E
5	12" 40'02.44"N	78*07*50.93*6
6	12* 40'01.62"N	78" 07" 50.61"8
7	12" 40'00.85"N	78" 07' 49.40"
8	12" 40'00.25"N	78' 07' S0.26'E
9	12" 39' 59.80" N	78' 07' 49.50' 8
10	12" 39'59.52"N	78'07'50.11'5
11	12" 39"58.34" N	78"07"50.02"8

APPLICANT:

M/s.SRI VENKATESHWARA BLUE METALS. PYOP.A.M.MURUGAN, S/o.MANNATHAN, No.4/4, 109 MUTHAMPATTI POST. METTUR TALUK, SALEM DISTRICT.

	LOCATIO	ON:	
	S.F.NO	202/1(Part-A),	14
R	EXTENT .	3.00.0 Ha	
	VILLAGE :	KONDAPANAYANAPALLI	
	TALLIK :	KRISHNAGRI,	
	DISTRICT :	KRISHNAGIRI.	

	 	-	 	
. 1	18	- N	- 20	۰.
_	 4 2			
	 	- 61		

MINE LEASE BOUNDARY

7.5 m & 10m SAFETY DISTANCE

TEMPORARY BENCH MARK

APPROACH ROAD

Prepared By: DO HERENY CENTER THAT THE PLATE HAS BEEN CHECKED BY ME AN ADDRESS TO THE BEST OP MY KNOWLEDD

S DHANASEK AR.M.S. RECOGNIZED QUALIFIED PERSON RECOGNIZED QUALIFIED PERSON MURPH

5.e.	A COLORIDA COLORIDA	
	Date of Survey 23.4.2018 PLATE NO-III	ř.
	APPLICANT:	
	M/ESRI VENKATESHWARA BLUE /	WETALS.
Эл	Prop. A.M. MURUGAN, S/o. MANNATHAN, No. 4/4, 109 MUTHAMPATTI POST METTUR TALVE, SALEM DISTRICT.	(A)
	LOCATION: * 5.F.NO : 202/1[Fort-A], EXTENT : 3.00.0 Ho, VILLAGE : KONDAPANAYANAF TALUK : KRISHNAGIRI, DISTRICT : KRISHNAGIRI,	9ALLL
a 1	INDEX	
10	MINE LEASE BOUNDARY	
10		
	7.5 m 810m SAFETY LISTANCE	
	TEMPORARY BENCH MARK	<u></u>
5	APPROACH ROAD	
	STRIKE & DIP	(H)
	OUTCROP	
	ROUGHSTONE	1.123
5	SHRUB	[A 4]
	TOP SOIL	VVV
÷.	TOPOGRAPHICAL CONTOUR	[~3#]
	SURFACE AND GEOLOG	Y FLAN
	SCALE 1:100	
	Prepared By: TDO HEREBY CERTIFY, THAT HAS BEEN CHECKED BY ME AND TO THE BEST OF MY KNO	THE PLATE SIN CORRECT WILLINGE
		Hallson -

SECTION ALONG X-Y

¥.

12.04

12

12

SECTION ALONG A-B

北东市	1		-	Allen		-	-	150							E T	
n M	1.16	-24		1	1			24401		- 27-				-	++	金融
1	-	1.00		125	1.500	-	A Server		324	1.00		1000	1.1	202	12.2	11.0
HANG -	1	- 341.7	-	-	- X		ALC	-1500-		-	-	-	1.4		1	-
55,05 -	12+	100			100	್ರಾಂಗ	121	1 Billion	100		127	100	140		1.5	ामला
alla -	12		ale.		iii.	-	-		5	-	48.e.				1	56X,936
	-		-	-			16	-158m-	1		16.	222	142			ALC: N
M881-2	1	1	222			222	1.78	-158m-	-		_		1.	-		-
01.6						-		(a6-4-1)	-	-11	100	100	1.27	127		- 49.95
77.60	1.12			- 6 - 1	i di la	1.6	1000	12011-	4	and have			5.0		++	-0.5
HP104	- 10-	-	1.44					-155m-					1	- 2	+	- 11/25
距離的	- 2 -	100	in Tarre	-	14	-	-	Tham	- 34	27	120	120	12	- 4	1.0	- 121, em
11.23	100	1.000	1.	-1-	- 24	- 6-			i an		n de a	10.00	out in		12-1	14,00
1.2	e	-	-	1	1	100	1.4				1.1	-	10.40		1.	-
NT IP-	1-2-	100	100	-27	-	120	1	-1580	de .		1 he	31	-	-	120	- sus
	in the second	1.00	1.4.4		100				100						1	
		-					_	-158m	10.21		-		1.4	-	1	- 2010
	1	0				_		-158m-		_	_					
	E		1.00	3.3		11-			100	-	1000					- 10.00
11		-	- 11		2011	0.00		130m-	Teri	(10 PT 10	- 25		18.4	Sec.		- 05,0m
1357	L	0		_				-1580		100	2.	-		1		
视神经	100				1.77.77	1020		- Chair	100	-	10		- 4 (w)		1 - 1	- 112.88
Inclusion of	1	1					-nho-	1994	and the second	and a		a idaa a	- 4		++	- dilin
and the state	- 10	-		17	14								+		1 -	100000
£58,8/m		1.1				-					0				220	* *in.om

TOTAL DEPTH = 120m

SURFACE GROUND LEVEL ABOVE - 8m SURFACE GROUND LEVEL BELOW - 112m

10000 THE REAL PROPERTY.

x

al.

9

QIC.	AL RESER	N PS	4	9	Ella,
h 9	Depth in(m)	Vilume in(Cum.)	Racoverized Racoverized in Culli (100565	Tuizes	NAY ZOTE
	1			3967	. / 5//
\equiv	-5	40089	-60009	Contra	Phone and and a second
	1	209034	205034	11 100	Contraction of the second
	1.1	209094	2000.14	100	DID GBH
	7	209934	209034		
		209034	201034		
-	1.2	200034	201034		1
	1	309054	309034		1
		200084	308034		1
	1.11	200034	200034		1
	7	209054	200034		1
	7	200054	300034		1
	7	209534	200034		1
	1.1	309084	200054		
	- 090	709684	309034		1
	*	109684	39034		1
		202024	306034	1.00	100000000000000000000000000000000000000
	-	200034	300034		1
		338.4633	1184633	24563 -	11111111111111111111111111111111111111

-202

Date of Survey:23.4.2018 PLATE NO-III-A APPLICANT: M/ILSRI VENKATESHWARA BLUE METALS. Prop.A.M.MURUGAN, S/O.MANNATHAN, No.4/4, 109 MUTHAMPATTI POST. METTUR TALUK, SALEM DISTRICT. LOCATION: 2.41 S.F.NO : 202/1(Part-A). EXTENT : 3.00.0 Ha. VILLAGE: KONDAPANAYANAPALLI,

TALUK : KRISHNAGIRI, DISTRICT : KRISHNAGIRL

INDEX

V V V

MINE LEASE BOUNDARY

7.5 m & 10m SAFETY DISTAINCE

ROUGH STONE

TOP SOIL

٠

2

1.1.1.1.

11+10117564753755

Prepared By:

VOO HEREIN CERTIEN THAT FAIL HAS BEEN CHECKED BY ME TALLISTYRHE TO THE REST OF MY & SHARE

2.2 S.DHANASEKAR.M.S. RECOGNIZED QUALIFIED PERSIN ROPDIAS/225/2811 NW

-205kg - 龍山島西西市 2 8 MAY 2018 குஷ்ணகுடி Date of Survey:253 2018 anti-PLATE NO-IV APPLICANT: M/S.SRI VENKATESHWARA BLUE METALS, PTOD.A.M.MURUGAN, 5/0.MANNATHAN, No.4/4, 109 MUTHAMPATTI POST. MEITUR TALUK, SALEM DISTRICT. LOCATION: 5.F.NO : 202/1 (Part-A), EXTENT : 3.00.0 Ho. VILLAGE : KONDAPANAYANAPALLI, TALUK : KRISHNAGIRL DISTRICT : KRISHNAGIRI. INDEX MINE LEASE BOUNDARY 7.5 m & IOm SAFETY DISTANCE TEMPORARY BENCH MARK APPROACH ROAD STRIKE & DIP OUTCROF ROUGH STONE SHRUB V V V TOP SOIL TOPOGRAPHICAL CONTOUR DUMP ACREASE OBOARD 1-3 I 107N Prepared By: I DO HEREBYZERUTEY TO A TO ATT HASBEEN CHECKED BY MUSSICE THEFT TO THE BEST OF MY ESOND AT SINHANASER AR.M.S. RECOONTRED QUALTERED PERSON REPARTING

th i)	Width in (m)	Depth in (m)	Visite in (Sain)	Recoverable 28-98	10 Marcal
	149	1	10	Christian and	111 256/26
	69	7	33259	10015259	ELES W
	148	7	173012	1:3013 01	1
	143	.7	157157	157157	
	138	7	142002	142002	
1	133	7	127547	127547	
	128	7	113792	113792	
	123	.7	100737	100737	
	118	7	18381	88382	
	113	े 🔭 े	76727	76727	
	105	1	65772	65772	
ţ I	103	7	55517	15517	1
	95	7	45962	45952	
	93	56.7	37107	37107	
244	ing and		1218973	1218973	25628

-	Date of Survey:23.4.2018							
	PLATE NO-IV-A							
	APPLICANT:							
1 2 2	M/s.SRI VENKATESHWARA BLUE Prop.A.M.MURUGAN, S/o.MANNATHAN, No.4/4, 109 MUTHAMPATTI POS METTUR TALLIK, SALEM DISTRICT	METALS.						
12	LOCATION: 5.F.NO 202/1(Fort-A), EXTENT 3.00.0 Hg, VILLAGE KONDAFANAYAN/ TALUK KRISHNAGIR, DISTRICT KRISHNAGIR,	PALL						
	INDEX							
	MINE LEASE BOUNDARY							
2	7.5 m & 10m SAFETY DISTANCE							
	ROUGH STONE	1222						
	TOP SOIL	000						
	PRODUCTION TO A	51 10 1						
	Prepored By: 100 HEREBY CRATICS THAT HAS BEEN CHECKED IN SECURITIES TO THE BEST OF MY KNOW	THE PLATE ON CORD (NEEDOD)						
Ň	S.DHANASEKAR.M.S REFORMIZED QUALIFIED	E. PERSON						

-2.09 a sumani 28 MAY 2018 1500000061 Date of Survey 93 A 7018 Ν PLATE NO-V APPLICANT: 0 M/s.SRI VENKATESHWARA BLUE METALS. Prop.A.M.MURUGAN. 5/0.MANNATHAN, No.4/4, 109 MUTHAMPATTI POST. METTUR TALUK, SALEM DISTRICT. LOCATION: S.F.NO : 202/1(Port-A). a Hadren EXTENT : 3,00.0 Ho, VILLAGE : KONDAFANAYANAPALLI. TALUK : KRISHNAGIRI, DISTRICT : KRISHNAGIRI. INDEX MINE LEASE BOUNDARY. 7.5 m & 10m SAFETY DISTANCE TEMPORARY BENCH MARK APPROACH ROAD STRIKE & DIP OUTCROP ROUGH STONE SHRUB 直進 V V V TOP SOIL TOPOGRAPHICAL CONTOUR QUARRY PIT DUMP 7 7 ABST-USAOGLIDUSS AGH LAND MEDAL I Prepared By: I DO REPERTY CORTIFY OF COMPACT OF STOP HAS BEEN CHECKED BY UP TO THE BEST OF ALL ENDED INC. 2.55 S.DHANASERAR, M.S. ALCONSULTED QUALIFICATION N XNR

2 8 MAY 2018 O Date of Survey 23.4 Soll condin ்ற்றும் காங்க PLATE NO-VI APPLICANT M/S.SRI VENKATESHWARA BLUE METALS, PROD.A.M.MURUGAN, 5/0.MANNATHAN. No.4/4, 109 MUTHAMPATTI POST. METTUR TALUK, SALEM DISTRICT. LOCATION: S.F.NO : 202/1(Port-A). EXTENT : 3.00.0 Ho, VILLAGE : KONDAPANAYANAPALLI, KRISHNAGIRI. TALUK DISTRICT : KRISHNAGIRI, Series Constructions INDEX MINE LEASE BOUNDARY 7.5 m & 10h SAFETY DISTANCE TEMPORARY BENCH MARK APPROACH BOAD STRIKE & DIF. OUTCROF ROUGH STONE 1223 SHRUB 4 4 TOP SOIL VVV TOPOGRAPHICAL CONTOUR QUARRY FIT 777.7 M -DUMP 11 14 153981 3 ST 1000 ALC: N Prepared By: I DO HEREBY CERTIPY THAT THE PLATE HAS BREN CHOCKED BY MICAND CORDUCT TO THE REST OF MY EXAMINED FR -B.EL 5.DHANASEKAR.M.Sc. RECOGNIZED DUALIFIED HEASEN mas

eth (a)	Widds In (w)	Dopela in (m)	Volume in (Carlo	Recoverable Recoverable (RCORES)	TENES
'n	349	1	1	100000	25625
3	69	3	35258	7.82MAV	2040
67	148	7	178610	173012	2018
ET .	343	7	15753	157157	
17	138	7	140002	- Chanaltern	dha /
37	133	7	127547	0,175F	2
27	128	5	113792	1133920 8	的中国
17	123	1	100737	100737	-
07	118	7	EE382	88382	
1	113	7	76727	- 76727	
17	308		45772	65772	
n .	105	7	55517	555917	
17.+-	14	7	45962	4992	
57	엄	7	37107	37107	
17	- 80	7	28957	23953	-
37	- 83	7	25497	21497	
11	71.	36	14742	34742	1915
7.	73	. 7	8587	3687	
als	10.00	all	1292851	1292851	35620

- 7772 -

From Thiru L. Suresh, M.Sc., Deputy Director, Geology and Mining, Collectorate, Krishnagiri. To

Aug. 10. 10. 10.

Thiru, A.M.Murugan S/o.Mannathan, No.4/4-109A, Muthampatti post, , Tholasampatti Via, Panapuram, Mettur Taluk, Salem District.

Roc.170/2018/Mines

dated 27,05.2018

Sir.

- Sub: Mines and Minerals Krishnagiri District Krishnagiri Taluk - Kondappanayanapalli - Government Land in S.F.No.202/1(part-A) - Over an extent of 3.00.0 Hectares - Precise area given for the proposed grant of Quarty lease for Rough Stone for a period of 10 years from the date of execution of lease deed to Thiru.A.M.Murugan S/o.Mannathan - Draft Mining Plan submitted - Mining Plan approved - reg.
- Ref. 1. The Krishnagiri District Gazette (Extraordinary) No.01 dated 19.01.2018.
 - The District Collector Krishnagiri Memorandum in Rc.No.170/2018/Mines dated 09.03.2018.
 - Thiru A.M.Murugan S/o.Mannathan , No.4/4-109A, Muthampatti post, Tholasampatti Via, Panapuram, Mettur Tatuk, Salem District letter dated 2-5-18
 - -000-

Thiru A.M.Murugan S/o.Mannathan . No.4/4-109A, Muthampatti post, . Tholasampatti Via, Panapuram, Mettur Taluk, Salem District had been given precise area over an extent of 3.00.0 hectares in Government Foramboke land in S.F.No.202/1(part-A) of Kondappanayamapalli village, Krishnagiri Taluk, Krishnagiri District for a period of **Ten years** from the date of execution of lease deed under Tender Cum Auction System under the provisions of Tamil Nadu Minor Mineral Concession Rules, 1959 and he had been directed to submit the approved mining plan and Environmental Clearance from the State Level Environmental Impact Assessment Authority Tamilnadu vide reference 2st cited.

2. In the reference 3rd cited Thiru.A.M.Murugan S/o.Mannathan has submitted draft Mining Plan for approval for the proposed rough atone quarry lease over an extent of 3.00.0 hectares in Government Poramboke land in S.F.No.202/1(part-A) of Kondappanayanapalli village, Krishnagiri Taluk, Krishnagiri District for a period **Ten years** from the date of execution of lease deed.

3. The Mining Plan submitted by Thiru A.M.Murugan S/o.Mannathan has been scrutinized as per the guide lines/ Instructions issued by the Commissioner of Geology and Mining, Chennai-32 in Rc.No.3868/LC/2012 dated 19.11.2012. The mining plan is prepared in accordance with the guide lines/ instructions issued and tallies with the field conditions.

4. Hence as per the guide lines/ instructions issued by the Commissioner of Geology and Mining, Chennai, the said mining plan is hereby approved subject to the following conditions.

~ Anna 243m

- 1) That the mining plan is approved without prejudice to any other law applicable to the quarry lease from time to time whether such laws are made by the Central Government, State Government or any other authority.
- ii) This approval of the mining plan does not in any way imply the approval of the Government in terms of any other provisions of Minns and Minerals (Development and Regulation) Act 1957, or any other connected laws including Forest (Conservation) Act 1957, or any other connected Laws industry Forest (Conservation) Act 1980, Forest Conservation Rules 1981 Environment protection Act 1980, Indian Explosive Act 1884 (Central Act IV of 1884) and the rules made There under, Minor Mineral Conservation and Development Rules, and The Tamil Nadu Minor Mineral Concession rules, 1959.

........

0

0

•

0

0

- That the mining plan is approved without prejudice to any other order or directions from any court of competent jurisdiction.
 The applicant has incompetent of the prejudice of the prej
 - () The applicant has incorporated all the conditions and details given in the District Collector, Krishnagiri Memorandum in Roc.No.170/2018/Mines dated 09.03.2018 and the conditions should be adhered without any omission during quarrying.
- The applicant should get prior clearance from the State level Environment Impact Assessment Authority, Chennai -15 and should submit it to the District Collector, Krishnagiri.

5. The details of other quarries situated within a radial distance of 500 mis. from the lease granted area is

			and the second sec	and the second sec		
Me	Pount of the lesser	Village	LF.No.	Extent in herets.	Callector's proceedings &	Lease precial
	How, K.M. Murragan, B/s Marmadium, 4/4, 109 Muthampathi Post, Mettur Taliik, Solem District.	Krintirasgiri Tahik, Kondappanayanap alli	202/1 (Purt-B)	3.00.0	Re.171/2018/34 Inter datest 09.03.2016	tentari) Prupinal
2	Third.A.M.Murugan B/o.Mannathan	Kenstappa neyunapulli Uristonagiri Taduk	E.F.Na.302/1 (part-A)	3.00.0		Freuise area given
			Tetal	fi.00.0	×	-

Deputy Burschar, J Geology and Minting, Krightnager, 79.

Copy submitted to: 1. The Chairman, State Level Environment Impact

~ 244 gw

Assessment Authority, 3rd Panagal maligni, No.1 Jeenes Road, Saidapet, Chennai -15,

2. The Commissioner of Goology and Mining, Guindy, Chennal -32.

- 2.41-B-

a rear m

0

۰

۰

0

0

۲

0

۲

۲

0

ð

۲

ø

ø

۵

9

0

e

6

۲

۰

۲

۰

۵

0

6

0

0

6

சேலம் மாவட்டம், மேட்டூர் வட்டம், பானாபுரம், முத்தாம்பட்டி கிராமத்தில் வசிக்கும் А.М.மருகன் என்பவருக்கு கிருஷ்ணகிரி மாவட்டம் மேற்படி வட்டம் கொண்டப்பநாயனப்பள்ளி கிராமம் புல என் 202 (பகுதி ۸) இவை கரடு புறம்போக்கு காடு நிலமாகும். மேற்கண்ட புல எண்ணில் 3.00.0 ஹெக்டேர் பரப்பில் கல்குவாரி தொழில் செய்ய உள்ளார். விண்ணப்பித்த புல என்னை சுற்றி சுமார் 300 மீட்டர் சுற்று அளவில் அங்கிகரிக்கபட்ட வீட்டுமனைகள், கிராமந்தம், நீர்நிலை புறம்போக்கு, புராதன சின்னங்கள், பள்ளி, கல்லூரிகள், மயானம், கோவில்கள், தேவாலயம், மசூதி, மின் வழித்தடம் ஏதும் இல்லை என்று சான்று அளிக்கப்படுகிறது.

Gentre Administrativa Officer 44, CHENNASANDIRAM Foreistanager-Th. & Dt.

pr245mgm

)
NABET	National Accreditation Board for Education and Training	
	Certificate of Accreditation	
	Geo Technical Mining Solutions	
1/2138, Nate	san Complex, Dharmapuri Salem Main Road, Oddapatti, Collectorate post office, Dharmapuri, Tamil Nadu-636705	
amanitation	s precedited as Coteoons. A under the OCLNABET Scheme for Accorditation of FIA	

The organization is accredited as Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant Organization, Version 3: for preparing EIA-EMP reports in the following Sectors –

5. No	Santon Description	Sector (as per)		6.4
	Sector Description	NABET	MOEFCC	LaL
.1	Mining of minerals including opencast/ underground mining	1	1 (a) (i)	B

Note: Nomes of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated September 13, 2022 posted on QCI-NABET website.

The Accreditation shall remain in force subject to continued compliance to the terms and conditions mentioned in QCI-NABET's letter of accreditation bearing no. QCI/NABET/ENV/ACO/23/2641 dated January 19, 2023. The accreditation needs to be renewed before the expiry date by Geo Technical Mining Solutions following due process of ossessment.

Sr. Director, NABET Dated: January 19, 2023 Certificate No. NABET/EIA/2124/SA 0184 Valid up to Dec 31, 2023

For the updated List of Accredited RIA Consultant Organizations with approved Sectors please refer to QCI-NABET website.

246 Angen

தமிழ்நாடு வனத்துரை

துக் எஸ். பில்கி, இ.வ.ப., கூட்ட வன அலுவலர், தூர் கால்நடை பண்ணை அஞ்சல், நூல்கிரி, ஒரூர் – 635 110. தொலைபேசி எண். 04344–262259. பெறுதல் மாவட்ட ஆட்சித் தலைவர், கிருஷ்ணகிரி மாலட்டம், கிருஷ்ணகிரி,

- 9 JAN 2018 and fin

நக<u>சுரண், 6213/2017–எல்</u> நாள், <u>5_01.2018</u> தூறைகியல் வரடம், மாங்டு _ தருவர்ருவர் ஆன்டு 2048)

அய்யா,

பொருள் :

கனியங்களும் குவாரிகளும் – சிறுகளிமம் – சாதாரன கற்கள் – கிருஷ்ணகிரி மாவட்டத்தில் உள்ள அரசு பறம்போக்கு நிலங்களில் உள்ள னதாரண கற்கள் வெட்டியெடுக்க டெண்டருடன் இணைந்த எலமுறையில் குவளி குத்தகை வழங்குதல் வனத்துறை சார்பாகபரித்துரைசெய்ய கோரியது– வனத்துறை நோக்கிலான கருத்து தெரிவித்தல்– தொடர்பாக.

மாவட்ட ஆட்சித் தலைவர், கிருஷ்ணகிரி மாவட்டம் ந.சு.என்.72/2017(கனிமம்) நாள்.28.12.2017.

பார்வையில் கண்ட கிருஷ்ணகிரி மாவட்ட ஆட்சித் தலைவர் அவர்களது கடிதத்தில், கிருஷ்ணகிரி மாவட்டத்தில் உள்ள அரசு புறம்போக்கு நிலங்களில் சாதாரண கற்கள் வெட்டி எடுக்க டெண்டர் / பொது ஏலம் மூலம் குத்தகைக்கு வழங்க, வனத்துறை நோக்கிலான கருத்து மற்றும் வனத்துறையின் தடையின்மை சான்று வழங்க வேண்டி தெரிவிக்கப்பட்டுள்ளது.

கிருஷ்ணகிரி யாவட்டத்தில் அரசு புறம்போக்கு நிலங்களில் சாதாரண கற்கள் வெட்டி எடுக்க டெண்டர் / பொது ஏலத்தில் குத்தகைக்கு விட்டு அதன்மூலம் அரசுக்கு வருலாம் ஈட்டிட வனத்துறைவின் இசைவினை வழங்கிட கிருஷ்ணகிரி மாவட்ட ஆட்சித் தலைவர் கேட்டுக்கொண்டதற்கிணங்க, அதனடிப்படையில் ஒசூர் வனச்சரசு அலுவலர் மற்றும் பணியாளர்களுடன் குவளிப் பகுதிகளை தணிக்கை செய்யப்பட்டது. கீழ்கண்ட பட்டியலில், கண்ட உத்தேச கற்குவளிகளுக்கு கீழ்க்கண்ட நிபந்தனைகளுடன் வனத்துறை நோக்கிலான கருத்து தேரிவிக்கப்படுகிறது. i) சாதரான சுற்குவாரி குத்தகை வழங்குவதற்கு ஒப்பத்தம் செம்வதற்கு (Lowe deed - முன்பு ஒவ்வொரு குவாரிப் பகுதிக்கும் வனத்துறையின் நிபந்தனையுடன் முன் அட பெற்றப்பின் குவாரிப் பணி செய்ய பணி ஆணை (Work order) வழங்கப்பட வேண்டும்.

ii) மேற்படி சாதாரண கற்குவாரி குத்தகை கோரும் புயங்கள் காவேரி வடக்கு வன உயிரின சரணாலயத்திற்கான Eco Sensitive Zone எல்லை திர்ணயம் செய்ய பிரேயிக்கப்பட்டு ஆணை எதிர்தோக்கியுள்ள சூழலில், காவேரி வடக்கு வன உயிரின சரணாலய எங்லையிலிருந்து 10 கி.மீ-க்குள் அமைந்திருப்பின் தேசிய வன உயிரின வாரியத்தின் முன் அனுமதி (National Board for Wildlife) பெறப்படவேண்டும், ·

- iii) உற்றேச குவளி செய்யும் புலங்கள் சென்னசந்திரம் காட்டிக்காட்டிற்கு அருகில் அமைந்துள்ளதால் வருவாய் வாரிய நிலை ஆணை தொகுப்பு 1, பிரிவு 3, உட்பிரிவு 38 (III) "Standing Orders of the Board of Revenue- Volume-I Section III. Sub- Section 38 (III)–ன் படி இதர பயன்பாட்டிற்கு உட்படுத்த நடவடிக்கை வேற்கொள்ளப்படும் போது குறைந்த பட்சம் 60மீ (3 Chain) காப்புக்காட்டின் எல்லையிலிருந்து இடைவெளி விடப்படவேண்டும். எனினும் இப்பகுதியின் அருகில் பலாய தாவர வனைகள் மாணப்படுவதால் இக்காப்பு நிலத்தின் எல்லையிலிருந்து 100 மீ தொலைவிற்கு இடைவெளிவிட்டு தடுப்புச் கவர் அமைக்கப்பட வேண்டும்.
- மருவாம்த்துறை ஆவணங்களில் "காடு" என வகைப்படுத்தப்பட்ட புலங்களில் கற்குவாரிப் பணி செய்ய அறுவதிக்கக் கூடாது.
- உத்தேச கற்குவாரி செய்யும் புலங்கள் தமிழ்தாடு வனச்சட்டம் 1882–ன் பிரிவு 4 மற்றும் 16–ன் கீழ் காப்பு நிலம் / காப்புக்காடு என அறிவிக்கை செய்யப்பட்ட புலங்களாக இருக்க நகடாது.
- பற்றோகு கற்குவளி செய்யும் புலங்கள் தமிழ்நாடு வனச்சட்டம் 1882–ன் பிரிவு 26–ன் கீழ் அறிலிக்கை செய்யப்பட்ட புலங்களாக இருக்கக்கூடாகு.
- vil) அரசாவை (நிலை) என்.79 தொழில் (களியம் 1) துறை நாள்.06.04.2015–ல் வழல்கப்பட்டுள்ள நிபந்தனைகளை மாவட்ட நிர்வாகல் / கனிய வாத்துறை கடைபிடிப்பதை கவனத்தில் கொண்டுவாப்பட வேண்டும்.
- viii) குவாரி குத்தகை கோரும் பகுதியிலிருந்து 300 மீட்டர் தூரம் வரை யாதொரு குடியிரும்பு பகுதிகள் இருக்கக் கூடாது என்பதை யாவட்ட நிர்வாகம் உறுதி செய்ய வேண்டும்.

