GTMS/B1-33/DRAFT EIA/RST/2024

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT

AND

ENVIRONMENT MANAGEMENT PLAN

FOR OBTAINING

Environmental Clearance under EIA Notification – 2006

Schedule Sl. No. 1 (a) (i): Mining Project

"B1" CATEGORY – MINOR MINERAL – CLUSTER – NON-FOREST LAND

CLUSTER EXTENT = 8.79.6 hectares

ROUGHSTONE AND GRAVEL QUARRY

at

K.Pudukottai Village, Dindigul West Taluk, Dindigul District, Tamil Nadu State

ToR File No.10798

ToR Identification No. TO24B0108TN5203883N, dated.31/05/2024

NAME AND ADDRESS OF THE PROPOSED PROJECT PROPONENT

Name and Address	Extent & S.F.No.	Production in m ³
M/s. Shree Thevar Blue Metals		
S.F. No's: 295/1, 295/1A, 295/2 & 295/3,	2.43.0ha & 244/1A, 244/2A1, 244/2A2	Rough stone – 419186 Gravel – 38404
Kothapulli Village,		
Reddiarchatram,		
Dindigul District – 624622.		

ENVIRONMENTAL CONSULTANT

GEO TECHNICAL MINING SOLUTIONS

No: 1/213-B, Ground Floor, Natesan Complex Oddapatti, Collectorate Post office, Dharmapuri-636705. Tamil Nadu. E-mail: <u>info.gtmsdpi@gmail.com</u>, Website: www.gtmsind.com

NABET ACC. NO: NABET/EIA/23-26/RA 0319 Valid till: 31.12.2026

<u>ENVIRONMENTAL LAB</u> EKDANT ENVIRO SERVICES (P) LTD

No R7/1, AVK Tower, North Main Road, Anna Nagar West Extn., Chennai-101, Tamil Nadu NABL Certificate Number: TC-11742, Valid Until : 31.05.2025

> Baseline Study Period November 2021 through January 2022

TERMS OF REFERENCE (ToR) COMPLIANCE

ToR File No.10798

ToR Identification No. TO24B0108TN5203883N, dated.31/05/2024 Shree Thevar Blue Metals, Rough Stone and Gravel Quarry

Specific Terms of Reference for (Mining of Minerals)

1. SEIAA Specific Conditions:

S.No		Terms of	Reference
1.1	1	The detailed studies on the Loss of	A study on the loss of vegetation and
		Vegetation, Loss of Biodiversity	biodiversity in the project area and
		shall be carried out and the action	surrounding areas is discussed in the
		plan to prevent the same shall be	Section 3.5 under Chapter III in the EIA
		included in the EIA report.	report page 63-81.
	2	The detailed studies on the Impact on	A detailed study of water bodies is
		water bodies and human health shall	discussed in the Section 3.2 under
		be carried out and the action plan to	Chapter III in the EIA report page 40-49
		prevent the same shall be included in	and human health has been carried out, is
		the EIA report.	discussed in the Section 3.6 under
			Chapter III in the EIA report page 81-85.
	3	The PP shall carry out the scientific	Detailed hydrogeological study was
		studies to assess the hydrogeological	carried out. The results have been
		condition of the quarry by involving	discussed Section 3.2 under Chapter III
		any one of the reputed Research and	in the EIA report page 40-49.
		Academic Institution. A copy of such	
		scientific study report shall be	
		included in the EIA report.	
	4	The PP shall carry out the scientific	This is a fresh lease quarry, so there is no
		studies with prior permission from	require the vibration study.
		the DMS/Chennai Region, to design	
		the controlled blast parameters for	
		reducing the blast-induced	
		ground/air - vibrations and	

	eliminating the fly rock from the blasting operations carried out in the quarry, by involving anyone of these reputed Research and Academic Institution, A copy of such scientific	
	study report shall be included in the EIA report.	
5	The PP shall carry out the scientific studies to assess the slope stability of the working benches and existing quarry wall by involving any one of the reputed Research and Academic Institutions. A copy of such scientific study report shall be included in the EIA report.	This is a fresh lease quarry, so there is no require the Slope stability study.

2. SEAC Conditions - Site Specific

C N	<u> </u>	T 41	
S.No		Terms of I	Keterence
			Γ
2.1	1	The proponent shall furnish	Photographs of adequate fencing, green
		photographs of adequate fencing,	belt along the periphery of the project
		green belt along the periphery	area and the photographs showing
		including replantation of existing	nearby water bodies will be included in
		trees & safety distance between the	final EIA report.
		adjacent quarries & water bodies	
		nearby provided as per the approved	
		mining plan.	
	2	The PP shall carry out Drone video	The drone video will be submitted
		survey covering the cluster, green	during final EIA presentation.
		belt, fencing etc.,	
	3	The PP shall propose the mitigation	All types of mine mitigation measures
		measures for the protection of	like, blast-induced ground & air
		structures exists within 500 m	vibrations, air & water pollution, haul

dista	ance radially from the mine lease	road maintenance, ground wat	er
agai	nst the blast-induced ground &	managements is discussed under th	he
air v	vibrations, air & water pollution,	Chapter IV in the EIA report page 9	1-
haul	road maintenance, ground water	· 109.	
man	lagement.		

3. SEAC Standard Conditions

S.No		Terms of Reference		
3.1	1	In the case of existing/operating mines, a letter obtained from the concerned		nes, a letter obtained from the concerned
		AD (N	lines) shall be submitted and i	t shall include the following:
		(i)	Original pit dimension	
		(ii)	Quantity achieved Vs EC	
			Approved Quantity	
		(iii)	Balance Quantity as per	
			Mineable Reserve	
			calculated.	
		(iv)	Mined our Depth as on date	
			Vs EC permitted depth	
		(v)	Details of illegal/illicit	
			mining	
		(vi)	Violation in the quarry	It is a fresh quarry lease area and so the
			during the past working.	condition is not applicable.
		(vii)	Quantity of material mined	
			out outside the mine lease	
			area	
		(viii)	Condition of Safety	
			zone/benches	
		(ix)	Revised/Modified Mining	
			plan showing the benches of	
			not exceeding 6 m height	
			and ultimate depth of not	
			exceeding 50m.	

	2	Details of habitations around the	The VAO certificate is attached in
		proposed mining area and latest	Annexure IV.
		VAO certificate regarding the	
		location of habitations within 300m	
		radius from the periphery of the	
		site.	
ľ	3	The proponent is requested to carry	There are no structures such as dwelling
		out a survey and enumerate on the	houses, places of worship, industries,
		structures located within the radius	factories, sheds, etc. within the radius of
		of (i) 50 m, (ii) 100 m, (iii) 200 m,	500m from the proposed project area.
		(iv) 300 m, (v) 500 m with details	The map showing the area of 50m, 100m,
		such as dwelling houses with	200m, 300m, 500m will be submitted in
		number of occupants, whether it	the final EIA report.
		belongs to the owner or not, places	
		of worship, industries, factories,	
		sheds, etc with indicating the	
		owner of the building nature of	
		construction, age of the building,	
		number of residents, their	
		profession and income, etc.	
	4	The PP shall submit a detailed	Detailed hydrogeological study was
		hydrological report indicating the	carried out. The results have been
		impact of proposed quarrying	discussed Section 3.2 under Chapter III
		operations on the water bodies like	in the EIA report page 40-49.
		lake, water tanks, etc are located	
		within 1 km of the proposed quarry.	
	5	The proponent shall carry out Bio	The details of Bio diversity from the
		diversity study through reputed	reputed institution will be submitted in
		institution and the same shall be	the final EIA report.
		included in EIA Report.	
	6	The DFO letter stating that the	The DFO letter will be attached in the
		proximity distance of Reserve	final EIA report.
		Forests, Protected Areas,	

	Sanctuaries, Tiger reserve etc, up to	
	a radius of 25 km from the	
	proposed site.	
7	In the case of proposed lease in an	It is a fresh quarry lease area and so the
	existing (or old) quarry where the	condition is not applicable.
	benches are not formed (or)	
	partially formed as per the	
	approved mining Plan, the Project	
	Proponent (PP) shall the PP shall	
	carry out the scientific studies to	
	assess the slope stability of the	
	working benches to be constructed	
	and existing quarry wall, by	
	involving any one of the reputed	
	Research and Academic	
	Institutions – CSIR-Central	
	Institute of Mining & Fuel	
	Research / Dhanbad,	
	NIRM/Bangalore, Division of	
	Geotechnical Engineering-IIT-	
	Madras, NIT-Dept of Mining	
	Engg. Surathkal, and Anna	
	University Chennai-CEG Campus.	
	The PP shall submit a copy of the	
	aforesaid report indicating the	
	stability status of the quarry wall	
	and possible mitigation measures	
	during the time of appraisal for	
	obtaining the EC.	
8	However, in case of the	It is a fresh quarry lease area and so the
	fresh/virgin quarries, the Proponent	condition is not applicable.
	shall submit a conceptual 'Slope	
	Stability Plan' for the proposed	

	quarry during the appraisal while	
	obtaining the EC, when the depth	
	of the working is extended beyond	
	30 m below ground level.	
9	The PP Shall furnish the affidavit	The affidavit for blasting has been
	stating that the blasting operation	enclosed in the approved mining plan
	in the proposed quarry is carried	report in Annexure III.
	out by the statutory competent	
	person as per the MMR 1961 such as	
	blaster. mining mate, mine	
	foreman. II/I Class mines manager	
	appointed by the proponent.	
10	The PP shall present a conceptual	A conceptual design of blasting has been
	design for carrying out only	given in Section 2.6 under Chapter II, in
	controlled blasting operation	the EIA report page 20-27.
	involving line drilling and muffle	
	blasting in the proposed quarry	
	such that the blast-induced ground	
	vibrations are controlled as well as	
	no fly rock travel beyond 30 m	
	from the blast site.	
11	The EIA coordinators shall obtain	There is no quarry lease granted in my
	and furnish the details of	name independently or combined so far
	quarry/quarries operated by the	in Tamil Nādu.
	proponent in the past, either in the	
	same location or elsewhere in the	
	State with video and photographic	
	evidences.	

	12	If the proponent has already carried	l out the mining activity in the proposed
		mining lease area after 15.01.201	6. then the proponent shall furnish the
		following details from AD/DD, mine	es,
-	13	What was the period of the	
		operation and stoppage of the	
		earlier mines with last work permit	
		issued by the AD/DD mines?	
	14	Quantity of minerals mined out.	
-		• Highest production	
		achieved in any one year	
		• Detail of approved depth of	
		mining.	
		• Actual depth of the mining	It is a frash quarry lease area and so the
		achieved earlier.	condition is not applicable.
		• Name of the person already	
		mined in that lease area.	
		• If EC and CTO already	
		obtained, the copy of the	
		same shall be submitted.	
		• Whether the mining was	
		carried out as per the	
		approved mine plan (or EC	
		if issued) with stipulated	
		benches.	
	15	All corner coordinates of the mine	All corner coordinates of the mine lease
		lease area. superimposed on a	area have been superimposed on a high-
		High-Resolution	resolution Google Earth Image, as shown
		Imagery/Toposheet, topographic	in Figure 2.3, under Chapter II, in the
		sheet, geomorphology, lithology	EIA report page 12.
		and geology of the mining lease	
		area should be provided. Such an	
		Imagery of the proposed area	
		should clearly show the land use	

		and other ecological features of the	
		study area (core and buffer zone).	
•	16	The PP shall carry out Drone video	The drone video will be submitted during
		survey covering the cluster, green	final EIA presentation.
		belt, fencing etc.,	
-	17	The proponent shall furnish	Photographs of adequate fencing, green
		photographs of adequate fencing,	belt of the project will be included in
		green belt along the periphery	final EIA report.
		including replantation of existing	
		trees & safety distance between the	
		adjacent quarries & water bodies	
		nearby provided as per the	
		approved mining plan.	
	18	The Project Proponent shall	The Resources and Reserves of Rough
		provide the details of mineral	Stone were calculated based on cross-
		reserves and mineable reserves,	section method by plotting sections to
		planned production capacity,	cover the maximum lease area for the
		proposed working methodology	proposed project. The plate used for
		with justifications, The anticipated	reserve estimation has been presented in
		impacts of the mining operations	Figure 2.5 results of geological resources
		on the surrounding environment,	and reserves have been shown in Table
		and the remedial measures for	2.3. under Chapter II. In the EIA report
		The same.	page 13-16.
	19	The Project Proponent shall	Details of manpower required for this
		provide the Organization chart	project have been given in Table 2.14
		indicating the appointment of	under Chapter II in the EIA report page
		various statutory officials and other	27.
		competent persons to be appointed	
		as per the provisions of Mines Act,	
		1952 and the MMR, 1961 for	
		carrying out the quarrying	
		operations scientifically and	
		systematically in order to ensure	

	safety and to protect the	
	environment.	
20	The Project Proponent shall	Detailed hydrogeological study was
	conduct the hydro-geological study	carried out. The results have been
	considering the contour map of the	discussed Section 3.2 under Chapter III
	water table detailing the number of	in the EIA report page 40-49.
	ground water pumping & open	
	wells, and surface water bodies	
	such as rivers, tanks, canals, ponds	
	etc. within 1 km (radius) along with	
	the collected water level data for	
	both monsoon and non-monsoon	
	seasons from the PWD/ TWAD so	
	as to assess the impacts on the wells	
	due to mining activity. Based on	
	actual monitored data, it may	
	clearly – be shown whether	
	working will intersect	
	groundwater, Necessary data and	
	documentation in this regard may	
	be provided.	
21	The proponent shall furnish the	The baseline data were collected for the
	baseline data for the environmental	environmental components including
	and ecological parameters with	land, soil, water, air, noise, biology,
	regard to surface water/ground	socio-economy, and traffic and the
	water quality, air quality, soil	results have been discussed under
	quality & flora/fauna including	Chapter III in the EIA report page 28-90.
	traffic/vehicular movement study.	
22	The Proponent shall carry out the	Results of cumulative impact study due
	Cumulative impact study due to	to mining operations are given in Section
	mining operations carried out in the	7.4 under Chapter VII, pp.120-123.
	quarry specifically with reference	
	to the specific environment in	

	terms of soil health, biodiversity,	
	air pollution, water pollution,	
	climate change and flood control &	
	health impacts. Accordingly, the	
	Environment Management plan	
	should be prepared keeping the	
	concerned quarry and the	
	surrounding habitations in the	
	mind.	
23	Rain water harvesting management	As part of rainwater harvesting measures,
	with recharging details along with	the rain water from garland drainage
	water balance (both monsoon &	system will be diverted to nearby check
	non-monsoon) be submitted.	dams after treating the water in settling
		tanks. The detailed rain water harvesting
		report will be submitted in the final EIA
		report.
24	Land use of the study area	Land use of the study area delineating
	delineating forest area, agricultural	forest area, agricultural land, grazing
	land, gazing land, wildlife	land, wildlife sanctuary, national park,
	sanctuary, national park, migratory	migratory routes of fauna, water bodies,
	routes of fauna, water bodies,	human settlements and other ecological
	human settlements and other	features has been discussed in Section
	ecological features should be	3.1 under Chapter III in the EIA report
	indicated. Land use plan of the	page 29-39. The details of surrounding
	mine lease area should be prepared	sensitive ecological features have been
	to encompass preoperational,	provided in Table 3.44 under Chapter III
	operational and post operational	in the EIA report page 88. Land use plan
	phases and submitted. Impact, if	of the project area showing pre-
	any, of change of land use should	operational, operational and post-
	be given.	operational phases are discussed in Table
		2.8 under Unapter II in the EIA report
		page 23.

25	Details of the land for storage of	This condition is not applicable to this
	Overburden/Waste Dumps (or)	project because no dumps have been
	Rejects outside the mine lease.	proposed outside the lease area.
	such as extent of land area, distance	
	from mine lease' its land use, R&R	
	issues. If any, should be provided.	
26	Proximity to Areas declared as	Not Applicable.
	'Critically Polluted, (or) the project	Project area / Study area is not declared
	areas which attracts the court	in 'Critically Polluted' Area and does not
	restrictions for mining operations.	come under 'Aravalli Range.
	Should also be indicated and where	
	so required. Clearance	
	certifications from the prescribed	
	Authorities, such as the TNPCB	
	(or) Dept. of Geology and Mining	
	should be secured and furnished to	
	the effect that the proposed mining	
	activities could be considered.	
27	Description of water conservation	As part of rainwater harvesting measures,
	measures proposed to be adopted in	the rain water from garland drainage
	the Project should be given. Details	system will be diverted to nearby check
	of rainwater harvesting proposed in	dams after treating the water in settling
	the Project, if any, should be	tanks. The detailed rain water harvesting
	provided.	report will be submitted in the final EIA
		report.
28	Impact on local transport	Details regarding the impact of the
	infrastructure due to the project	project on traffic are given in Section 3.7
	should be indicated.	under Chapter III in the EIA report page
		86-87.
29	A tree survey study shall be carried	A detailed tree survey was caried out
	out (nos., name of the species, age,	within 300 m radius and the results have
	diameter etc,) both within the	been discussed in Section 3.5 under
	mining lease applied area & 300m	Chapter III in the EIA report page 63-81.

	buffer zone and its management	
	during mining activity.	
30	A detailed mine closure plan for the	A progressive mine closure plan has been
	proposed project shall be included	attached with the approved mining plan
	in EIA/EMP report which should	report in Annexure III. The budget
	be site-specific.	details for the progressive mine closure
		plan are shown in Table 2.9 under
		Chapter II in the EIA report page 23.
31	As a part of the study of flora and	The EIA coordinator and the FAE for
	fauna around the vicinity of the	ecology and biodiversity visited the
	proposed site, the EIA coordinator	study area and educated the local
	shall strive to educate the local	students about the importance of
	students on the importance of	protecting the biological environment.
	preserving local flora and fauna by	
	involving them in the study,	
	wherever possible.	
32	The purpose of green belt around	A detailed greenbelt development plan
	the project is to capture the fugitive	has been provided in Section 4.6 under
	emissions, carbon sequestration	Chapter IV in the EIA report page 102-
	and to attenuate the noise	106.
	generated, in addition to improving	
	the aesthetics A wide range of	
	indigenous plant species should be	
	planted as given in the appendix-I	
	in consultation with the DFO, State	
	Agriculture University and local	
	school/college authorities. The	
	plant species with dense/moderate	
	canopy of native origin should be	
	chosen. Species of	
	small/medium/tall trees alternating	
	with shrubs should be planted in a	
	mixed manner.	

33	Taller/one year old Saplings raised	The FAE of ecology and biodiversity has
	in appropriate size of bags,	advised the project proponent that
	preferably eco-friendly bags	saplings of one year old raised in the eco-
	should be planted as per the advice	friendly bags should be purchased and
	of local forest authorities,	planted with the spacing of 3 m between
	botanist/Horticulture with regard to	each plant around the proposed project
	site specific choices. The	area as per the advice of local forest
	proponent shall earmark the	authorities/botanist.
	greenbelt area with GPS	
	coordinates all along the boundary	
	of the project site with at least 3	
	meters wide and in between blocks	
	in an organized manner.	
34	A Disaster management plan shall	A disaster management plan for the
	be prepared and included in the	project has been provided in Section 7.3
	EIA/EMP Report for the complete	under Chapter VII in the EIA report page
	life of the proposed quarry (or) till	119-120.
	the end of the lease period.	
35	A Risk Assessment and	A risk assessment plan for the project has
	management plan shall be prepared	been provided in Section 7.2 under
	and included in the EIA/EMP	Chapter VII in the EIA report page 116-
	Report for the complete life of the	118.
	proposed quarry (or) till the end of	
	the lease period.	
36	Occupational Health impacts of the	Occupational health impacts of the
	Project should be anticipated and	project and preventive measures have
	the proposed preventive measures	been discussed in detail in Section 4.8
	spelt out in detail. Details of pre-	under Chapter IV in the EIA report page
	placement medical examination	106-107.
	and periodical medical	
	examination schedules should be	
	incorporated in the EMP. The	
	project specific occupational health	

	mitigation measures with required	
	facilities proposed in the mining	
	area may be detailed.	
37	Public health implications of the	No public health implications are
	Project and related activities for the	anticipated due to this project. Details of
	population in the impact zone	CSR and CER activities have been
	should be systematically evaluated	discussed in Sections 8.6 and 8.7 under
	and the proposed remedial	Chapter VIII in the EIA report page 125
	measures should be detailed along	- 126.
	with budgetary allocations.	
38	The Socio-economic studies	No negative impact on socio-economic
	should be carried out within a 5 km	environment of the study area is
	buffer zone from the mining	anticipated and this project shall benefit
	activity. Measures of socio-	the socio-economic environment by
	economic significance and	offering employment for 20 people
	influence to the local community	directly as discussed in Section 8.1 under
	proposed to be provided by the	Chapter VIII in the EIA report page 124.
	Project Proponent should be	
	indicated. As far as possible,	
	quantitative dimensions may be	
	given with time frames for	
	implementation.	
39	Details of litigation pending	No litigation is pending in any court
	against the project, if any, with	against this project.
	direction /order passed by any	
	Court of Law against the Project	
	should be given.	
40	Benefits of the Project if the Project	Benefits of the project details have been
	is implemented should be spelt out.	given under Chapter VIII in the EIA
	The benefits of the Project shall	report page 124-126.
	clearly indicate environmental,	
	social, economic, employment	
	potential, etc.	

	41	If any quarrying operation were	It is a fresh lease quarry and so the
		carried out in the proposed	condition is not available.
		quarrying sile for which now the	
		EC is sought, the Project Proponent	
		shall furnish the detailed	
		compliance to EC conditions given	
		in the previous EC with the site	
		photographs which shall duly be	
		certified by MoEF & CC, Regional	
		Office, Chennai (or) the concerned	
		DEE/TNPCB.	
-	42	The PP Shall prepare the EMP for	A detailed environment management
		the entire life/lease period of mine	plan has been prepared following the
		and also Furnish the sworn	suggestion made by SEAC, as shown in
		affidavit starting to Abide the EMP	Chapter X in the EIA report page 128-
		for the entire life of mine.	134. The sworn affidavit stating to abide
			the EMP for the entire life of mine will
			be submitted during final EIA
			presentation.
-	43	Concealing any factual information	The EIA report has been prepared
		or submission of false/fabricated	keeping in mind the fact that concealing
		data and failure to comply with any	any factual information or submission of
		of the conditions mentioned above	false/fabricated data and failure to
		may result in withdrawal of this	comply with any of the conditions
		Terms of Conditions besides	mentioned above may lead to withdrawal
		attracting penal provisions in the	of this terms of reference besides
		Environment (Protection) Act'	attracting penal provisions in the
		1986.	Environment (Protection) Act, 1986.

4. SEIAA Standard Conditions:

4.1	1	Impacts on Energy requirement.	The energy is not used in this project, so
			the condition is not applicable.
	2	Impacts on living System (air,	The impact measurements of living
		water, soil & microorganism).	streams (air, water, soil &
	3	Impacts on terrestrial & aquatic	microorganism) are presented in EIA
		within and surrounding areas.	report under Chapter IV page 91-109.
	4	As per the MoEF& CC office	The applicant Indents to involve in
		memorandum F.No.22-65/2017-	corporate environment responsibilities
		IA.III dated: 30.09.2020 and	(CER) activities such as renovation of
		20.10.2020 the proponent shall	existing toilet, plantation within the
		furnish the detailed EMP	school premises, donating environment
		mentioning all the CER activities as	related books to the nearby school
		committed with the action plan.	library, etc. The details are shown in
			Table 8.1 under Chapter VIII in the EIA
			report 126.
	5	All the construction of Buildings	There are no any sensitive structures,
		shall be energy efficient and	building around the mine lease area. The
		confirm to the green building	VAO letter is attached in the Annexure
		norms.	IV.
	6	The proponent shall provide	The details are given in the Section 2.6
		adequate parking facility for	under Chapter II in the EIA report page
		vehicles of all the workers &	20-27.
		visitors.	
	7	The proponent shall ensure that no	There is no treated or untreated trade
		treated or untreated trade	effluent/sewage discharged outside the
		effluent/sewage discharged outside	premises under any circumstances
		the premises under any	
		circumstances.	

8	The disaster management and	The disaster management is discussed in
	disaster mitigation standards to be	the Section 7.3 under Chapter VII in the
	seriously adhered to avoid of	EIA report page 119-120.
	calamities.	
9	The proponent shall provide the	The action taken for the reduction of
	action taken for reduction of	greenhouse gases is discussed in the
	greenhouse gas emissions to	Section 4.6 under Chapter IV in the EIA
	support the climatic action to make	report page 102-106.
	it sustainable buildings.	
10	The project proponent shall furnish	There is no parking in the mine lease
	the action taken to provide adequate	area.
	parking space for visitors of all	
	inmates including clean traffic plan.	
11	The project proponent shall furnish	The PP will be constructed rain water
	the action taken to improve water	harvesting structure downstream area
	usage efficiency in the building.	around 500m radius from the mine lease
		area.
12	The project proponent shall conduct	The detailed study of biodiversity flora &
	detailed study of biodiversity flora	fauna including invasives /endemic
	& fauna including invasives	vulnerable species is discussed in the
	/endemic vulnerable species.	Section 3.5 under Chapter III in the EIA
		report page 63-81.
13	The project proponent shall furnish	The NOC will be submitted in the final
	NOC obtained from competent	EIA report.
	authority that there is no	
	encroachment of water bodies	
	(including canals).	
14	The project proponent shall furnish	The PP is adviced to use V6 engine
	impact of Green House Gases	vehicles and advance technology to
	emissions and climate change likely	control the greenhouse gases.
	due to activities.	

15	The project proponent shall conduct	The detailed biological studies were
	detailed soil investigation including	conducted for soil investigation and
	microflora /fauna.	microflora/fauna is discussed under
		Chapter III in the EIA report page 63-81.
16	The project proponent shall study	The socio-economic studies were
	impact on livelihoods of locals.	conducted within 5 km radius from the
		lease area, the detail study id discussed in
		the Section 3.7 under Chapter III in the
		EIA report page 86-87.
17	The project proponent shall furnish	The list of trees available in the project is
	List of trees available in the area.	discussed in the Section 3.5 under
		Chapter III in the EIA report page 63-81.
18	The project proponent shall study	The impact on water bodies is studied in
	impact of activities on water	the Section 4.3 under Chapter IV in the
	bodies/wetlands.	EIA report page 92-93.
19	The project proponent shall conduct	The study on bio diversity and alien
	studies on invasive and alien	species is discussed in the Section 3.5
	species	under Chapter III in the EIA report page
		63-81.

1. Standard Terms of Reference for (Mining of minerals)

S.No	Terms	of Reference
1.1	An EIA-EMP Report shall be prepared	Yes, it is based on the generic structure
	for peak capacity (MTPA) operation	specified in Appendix III of the EIA
	in an ML/project area of ha based on	Notification, 2006. i.e., the peak capacity of
	the generic structure specified in	the proposed quarry is 181280 MTPA and
	Appendix III of the EIA Notification,	operation in an ML/project area of
	2006.	2.43.0ha.
1.2	An EIA-EMP Report would be	The baseline environment quality
	prepared for peak capacity operation to	represents the background environmental
	cover the impacts and environment	scenario of various environmental

	management plan for the project	components such as land, water, air, noise,
	specific activities on the environment	biological and socio-economic status of the
	of the region, and the environmental	study area. Field monitoring studies to
	quality encompassing air, water, land,	evaluate the base line status of the project
	biotic community, etc. through	site were carried out covering November
	collection of data and information,	2021 - January 2022 with CPCB guidelines.
	generation of data on impacts	The detailed baseline environmental
	including prediction modelling for	monitoring studies were carried out and the
	MTPA of mineral production based on	results are discussed in the Chapter III and
	approved project/Mining Plan for	the approved mining plan is attached in the
	MTPA. Baseline data collection can be	Annexure III.
	for any season (three months) except	
	monsoon.	
1.3	Proper KML file with pin drop and	The KML file with proper pin drop and
	coordinate of mine at 500-1000 m	coordinate of the mine will be uploaded
	interval be provided	during the online submission.
1.4	A Study area map of the core zone	The details of environmentally sensitive
	(project area) and 10 km area of the	ecological features in the study area are
	buffer zone (1:50,000 scale) clearly	given in the Table 3.44 under Chapter III in
	delineating the major topographical	the EIA report page 88.
	features such as the land use, surface	
	drainage pattern including	
	rivers/streams/nullahs/canals,	
	locations of human habitations, major	
	constructions including railways,	
	roads, pipelines, major industries,	
	mines and other polluting sources. In	
	case of ecologically sensitive areas	
	such as Biosphere Reserves/National	
	Parks/WL Sanctuaries/ Elephant	
	Reserves, forests	
	(Reserved/Protected), migratory	
	corridors of fauna, and areas where	

	endangered fauna and plants of	
	medicinal and economic importance	
	found in the 15 km study area should	
	be given. The above details to be	
	furnished in tabular form also	
1.5	Map showing the core zone delineating	The map showing the lease area with cluster
	the agricultural land (irrigated and un-	details is shown in the Figure 1.1 under
	irrigated, uncultivable land as defined	Chapter I in the EIA report page 4. The
	in the revenue records, forest areas (as	details are given in the Table 3.44 under
	per records), along with other physical	Chapter III in the EIA report page 88.
	features such as water bodies, etc	
	should be furnished.	
1.6	A contour map showing the area	The contour map showing showing the area
	drainage of the core zone and 25 km of	drainage of the core zone will be submitted
	the study area (where the water courses	in the final EIA report.
	of the core zone ultimately join the	
	major rivers/streams outside the	
	lease/project area) should also be	
	clearly indicated in the separate map.	
1.7	Catchment area with its drainage map	The Catchment area with its drainage map
	of 25 km area within and outside the	of 25 km area within and outside the mine
	mine shall be provided with names,	will be submitted in the final EIA report.
	details of rivers/ river let system and its	
	respective order. The map should	
	clearly indicate drainage pattern of the	
	catchment area with basin of major	
	rivers. Diversion of drains/ river need	
	elaboration in form of length, quantity	
	and quality of water to be diverted.	
1.8	(Details of mineral reserves, geological	The reserve details are discussed in the
	status of the study area and the seams	Section 2.5 under Chapter II in the EIA
	to be worked, ultimate working depth	report page 13-19.
	and progressive stage-wise working	

	scheme until the end of mine life	
	should be provided on the basis of the	
	approved rated capacity and calendar	
	plans of production from the approved	
	Mining Plan. Geological maps and	
	sections should be included. The	
	Progressive mine development and	
	Conceptual Final Mine Closure Plan	
	should also be shown in figures.	
	Details of mine plan and mine closure	
	plan approval of Competent Authority	
	should be furnished for green field and	
	expansion projects.	
1.9	Details of mining methods,	The details of mining method, technology,
	technology, equipment to be used, etc.,	equipment, etc is discussed in the Section
	rationale for selection of specified	2.6 under Chapter II in the EIA report page
	technology and equipment proposed to	20-27.
	be used vis-à-vis the potential impacts	
	should be provided.	
1.10	Impact of mining on hydrology,	There is no any drainage within or around
	modification of natural drainage,	the lease area. The drainage map showing
	diversion and channelling of the	the details will be submitted in the final EIA
	existing rivers/water courses flowing	report.
	though the ML and adjoining the	
	lease/project and the impact on the	
	existing users and impacts of mining	
	operations thereon.	
1.11	A detailed Site plan of the mine	Land use plan of the project area showing
	showing the proposed break-up of the	pre-operational, operational and post-
	land for mining operations such as the	operational phases are discussed in Table
	quarry area, OB dumps, green belt,	2.8 under Chapter II in the EIA report page
	safety zone, buildings, infrastructure,	23.
	Stockyard, township/colony (within	

	and a	djacent to the ML), und	isturbed	There is no any drainage within or around				
	area -	if any, and landscape	features the le		lease area. The drainage map is shown			
	such a	as existing roads, drains	s/natural in F		Figure 3.1 under Chapter III in the EIA			
	water	bodies to be left und	listurbed repor		eport page 30.			
	along	with any natural of	drainage The		traffic survey	conducted	based on the	
	adjoin	ing the lease /project are	eas, and	trans	portation rout	e of materia	al, the Rough	
	modif	ication of thereof in to	erms of	Ston	Stone and gravel is proposed to be			
	constr	uction of embankment	s/bunds,	trans	transported mainly through NH-83 road			
	propos	sed diversion/re-channe	lling of	conn	ecting Palani	Village Roa	ad and MDR-	
	the wa	iter courses, etc., approac	h roads,	966 1	road connecting	ng K.Puduk	tottai and the	
	major	haul roads, etc sho	ould be	detai	ls are showr	in Sectio	n 3.7 under	
	indica	ted.		Chap	oter III in the I	EIA report p	oage 86-87.	
1.12	Origin	nal land use (agricultura	al land/fo	orestla	nd/grazing la	nd / waste	land / water	
	bodies	s) of the area should be	provided	l as po	er the tables g	given below	v. Impacts of	
	project, if any on the land use, in particu		rticula	ticular, agricultural land/forestland/grazing				
	land/water bodies falling within the lease		e/project and acquired for mining operations					
	should	l be analyzed. Extent of	f area un	der su	der surface rights and under mining rights			
	should	l be specified. Area unde	er Surface	Right	ts.			
	S.No	ML/Project Land use	Area under		Area	Area		
			Surfa	ice	Under	under		
			Are	a	Mining	Both		
			Rights	(ha)	Rights(ha)	(ha)		
	1	Agricultural land						
	2	Forest Land						
	3	Grazing Land						
	4	Settlements						
	5	Others (specify)	2.43	.0	2.43.0	2.43.0		
	S.No	Details			Area (ha)			
	1	Buildings						
	2	Infrastructure						
	3	Roads						
	4	Others (area under quar	rry)		2.43.0			
	Total				2.43.0			

1.13	Study on the existing flora and fauna in	The details on flora and fauna have been		
	the study area (10km) should be carried	provided in Section 3.5 under Chapter III in		
	out by an institution of relevant	the EIA report page 63-81.		
	discipline. The list of flora and fauna			
	duly authenticated separately for the			
	core and study area and a statement			
	clearly specifying whether the study			
	area forms a part of the migratory			
	corridor of any endangered fauna			
	should be given. If the study area has			
	endangered flora and fauna, or if the			
	area is occasionally visited or used as a			
	habitat by Schedule-I species, or if the			
	project falls within 15 km of an			
	ecologically sensitive area, or used as a			
	migratory corridor then a			
	Comprehensive Conservation Plan			
	along with the appropriate budgetary			
	provision should be prepared and			
	submitted with EIA-EMP Report; and			
	comments/observation from the			
	CWLW of the State Govt. should also			
	be obtained and furnished.			
1.14	One-season (other than monsoon)	The baseline environment quality		
	primary baseline data on	represents the background environmental		
	environmental quality - air (PM10,	scenario of various environmental		
	PM2.5, SOx, NOx and heavy metals	components such as land, water, air, noise,		
	such as Hg, Pb, Cr, As, etc), noise,	biological and socio-economic status of the		
	water (surface and groundwater), soil -	study area. Field monitoring studies to		
	along with one-season met data	evaluate the base line status of the project		
	coinciding with the same season for	site were carried out covering November		
	AAQ collection period should be	2021 - January 2022 with CPCB		
	provided. The detail of NABL/	guidelines. Environmental baseline data		

	MoEF&CC certification of the	were collected by an NABL accredited and
	respective laboratory and NABET	MoEF notified <i>Ekdant Enviro Services (P)</i>
	accreditation of the consultant to be	<i>Ltd</i> for the environmental attributes
	provided.	including soil, water, air, and noise and by
		FAEs for ecology and biodiversity, traffic,
		and socio-economy.
1.15	Map (1:50,000 scale) of the study area	The detailed study is discussed in the
	(core and buffer zone) showing the	Chapter III in the EIA report page 28-90.
	location of various sampling stations	
	superimposed with location of habitats,	
	other industries/mines, polluting	
	sources, should be provided. The	
	number and location of the sampling	
	stations in both core and buffer zones	
	should be selected on the basis of size	
	of lease/project area, the proposed	
	impacts in the downwind	
	(air)/downstream (surface	
	water)/groundwater regime (based on	
	flow). One station should be in the	
	upwind/upstream/non-impact/non-	
	polluting area as a control station. The	
	monitoring should be as per CPCB	
	guidelines and parameters for water	
	testing for both ground water and	
	surface water as per ISI standards and	
	CPCB classification wherever	
	applicable. Observed values should be	
	provided along with the specified	
	standards.	
1.16	For proper baseline air quality	10km baseline study can be conducted only
	assessment, Wind rose pattern in the	when total cluster area extent of the projects
	area should be reviewed and	is above 25ha. Here, the proposed cluster

	accordingly location of AAMSQ shall	area of the projects is less than 25ha,
	be planned by the collection of air	(i.e,8.79.6ha) and so baseline monitoring
	quality data by adequate monitoring	study is done for 5 km only.
	stations in the downwind areas.	The baseline study of the air quality is
	Monitoring location for collecting	discussed in the Section 3.3, in Chapter III
	baseline data should cover overall the	in the EIA report page 49-59.
	10 km buffer zone i.e. dispersed in 10	
	km buffer area. In case of expansion,	
	the displayed data of CAAQMS and its	
	comparison with the monitoring data to	
	be provided.	
1.17	A detailed traffic study along with	There is no need of road widening, the
	presence of habitation in 100m	details of traffic study are discussed in the
	distance from both side of road, the	Section 3.7 under Chapter III in the EIA
	impact on the air quality with its proper	report page 86-87.
	measures and plan of action with	The carbon emission details are discussed
	timeline for widening of road. The	in the Section 4.6 under Chapter IV in the
	project will increase the no. of vehicle	EIA report page 102-106.
	along the road which will indirectly	
	contribute to carbon emission so what	
	will be the compensatory action plan	
	should be clearly spell out in EIA/	
	EMP report.	
1.18	The socio-economic study to	The socio-economic study is discussed in
	conducted with actual survey report	the Section 3.6 under Chapter III in the EIA
	and a comparative assessment to be	report page 81-85.
	provided from the census data should	
	be provided in EIA/EMP report also	
	occupational status & economic status	
	of the study area and what	
	economically project will contribute	
	should be clearly mention. The study	
	also include the status of infrastructural	

	facilities and amenities present in the	
	study area and a comparative	
	assessment with census data to be	
	provided and to link it with the	
	initialization and quantification of	
	need based survey for CSR activities to	
	be followed.	
1.19	The Ecology and biodiversity study	There is no forest within 10km. The
	should also indicate the likely impact	Ecology and biodiversity study is discussed
	of change in forest area for surface	in the Section 3.5 under Chapter III in the
	infrastructural development or mining	EIA report page 63-81.
	activity in relation to the climate	To mitigate carbon emission due to mining
	change of that area and what will be the	activities, we recommend planting trees
	compensatory measure to be adopted	around the quarry to offset the carbon
	by PP to minimize the impact of forest	emission during quarrying. A tree can
	diversion.	sequester 29131 kg of carbon per year.
		Therefore, we recommend planting large
		number of trees around the quarry and near
		school campuses, government wasteland,
		roadsides etc.
1.20	Baseline data on the health of the	The occupational health and safety of the
	population in the impact zone and	personnel and manpower for the mine is
	measures for occupational health and	submitted in the Section 4.8 under Chapter
	safety of the personnel and manpower	IV in the EIA report page 106-107.
	for the mine should be submitted.	
1.21	Impact of proposed project/activity on	Hydrological studies as per GEC 2015
	hydrological regime of the area shall be	guidelines will be prepared and submitted
	assessed and report be submitted.	in the final EIA report.
	Hydrological studies as per GEC 2015	
	guidelines to be prepared and	
	submitted.	

1.22	Impact of mining and water abstraction	Artificial recharge structures will			
	from the mine on the hydrogeology	established in suitable locations as part			
	and groundwater regime within the	the rainwater harvesting management			
	core zone and 10 km buffer zone	program. The detailed rain water harvesting			
	including long-term monitoring	will be submitted in the final EIA report.			
	measures should be provided. Details				
	of rainwater harvesting and measures				
	for recharge of groundwater should be				
	reflected in case there is a declining				
	trend of groundwater availability				
	and/or if the area falls within dark/grey				
	zone.				
1.23	Study on land subsidence including	It is a fresh lea	ase quarry and	so the	
	modelling for prediction,	condition is no	ot applicable.		
	mitigation/prevention of subsidence,				
	continuous monitoring measures, and				
	safety issues should be carried out.				
1.24	Detailed meters halves a develop he				
1.24	Detailed water balance should be	Purpose	Quantity	Source	
	provided. The breakup of water	Dust	1.3 KLD	The water	
	requirement as per different activities	Suppression		requirement	
	in the mining operations, including use	Green Belt	1.5 KLD	is purchased	
	of water for sand stowing should be	development		from the	
	given separately. Source of water for	Drinking &	1.2 KLD	authorized	
	use in mine, sanction of the Competent	Domestic		water	
	Authority in the State Govi. and	Total	4.0 KLD	vendor.	
	should be provided				
1.25	DD shall set with the instantian fail A in	0			
1.23	Pr snall submit design details of all Air	Quarry project proponent controls ai			
	rollution control equipment (APCEs)	pollution by water sprinkling method c		ig method on	
	to be implemented as part of	roads and quarry sites and green be			
		dovalanment	mathed is adom	tod	

	vis reduction in concentration of	
	emission for each APCEs	
1.26	PP shall propose to use LNG/CNG	The PP is adviced to use LNG/CNG trucks
	based mining machineries and trucks	in mining operation because these trucks
	for mining operation and	can control air pollution and noise
	transportation of mineral. The	pollution.
	measures adopted to conserve energy	
	or use of renewable sources shall be	
	explored	
1.27	PP to evaluate the greenhouse emission	There is no greenhouse emission in the
	gases from the mine operation/	project lease area.
	washery plant and corresponding	
	carbon absorption plan.	
1.28	Site specific Impact assessment with	The details are discussed in the Section 7.2
	its mitigation measures, Risk	& 7.3 under Chapter VII in the EIA report
	Assessment and Disaster Preparedness	page 116-120.
	and Management Plan should be	
	provided.	
1.29	Impact of choice of mining method,	The impact on the air quality is discussed in
	technology, selected use of machinery	the Section 4.4 under Chapter IV in the EIA
	and impact on air quality, mineral	report page 93-97.
	transportation, handling &	
	storage/stockyard, etc, Impact of	
	blasting, noise and vibrations should	
	be provided.	
1.30	Impacts of mineral transportation	The details regarding is discussed in the
	within the mining area and outside the	Section 4.5.2 under Chapter IV in the EIA
	lease/project along with flow-chart	report page 99-100.
	indicating the specific areas generating	
	Impacts of transportation handling	
	transfer of mineral and waste on air	
	quality, generation of effluents from	
	workshop etc, management plan for	

	maintenance of HEMM and other	
	machinery/equipment should be given.	
	Details of various facilities such as rest	
	areas and canteen for workers and	
	effluents/pollution load emanating	
	from these activities should also be	
	provided.	
1.31	Details of various facilities to be	The details are given in the Section 2.6
	provided to the workers in terms of	under Chapter II in the EIA report page 20-
	parking, rest areas and canteen, and	27.
	effluents/pollution load resulting from	
	these activities should also be given.	
1.32	The number and efficiency of	Quarry project proponent controls air
	mobile/static water jet, Fog cannon	pollution by water sprinkling method on
	sprinkling system along the main	roads and quarry sites and green belt
	mineral transportation road inside the	development method is adopted.
	mine, approach roads to the	
	mine/stockyard/siding, and also the	
	frequency of their use in impacting air	
	quality should be provided.	
1.33	Conceptual Final Mine Closure Plan	The ultimate mining is proposed to an
	and post mining land use and	average depth 45m bgl. the mined-out area
	restoration of land/habitat to the pre-	will be fenced on top of working bench with
	mining status should be provided. A	SI fencing to arrest the entry of cattle's and
	Plan for the ecological restoration of	public in to the quarry site.
	the mined-out area and post mining	The details of mine closure budget is
	land use should be prepared with	discussed in the Section 2.6.4 under
	detailed cost provisions. Impact and	Chapter II in the EIA report page 23
	management of wastes and issues of	Pier is an and En richard hafe 20.
	re-handling (wherever applicable) and	
	backfilling and progressive mine	
	closure and reclamation should be	
	furnished.	
L		

1.34	Adequate greenbelt nearby areas,	The details are given in the Section 4.6
	mineral stock yard and transportation	under Chapter IV in the EIA report page
	area of mineral shall be provided with	102-106.
	details of species selected and survival	
	rate Greenbelt development should be	
1.35	Cost of EMP (capital and recurring)	The detailed EMP is given in the Chapter X
	should be included in the project cost	in the EIA report page 128-134.
	and for progressive and final mine	
	closure plan.	
1.36	Details of R&R. Detailed project	Not Applicable.
	specific R&R plan with data on the	The proposed lease area belongs to the
	existing socio-economic status of the	lessee and there is no any habitation in the
	population (including tribals, SC/ST,	lease area.
	BPL families) found in the study area	
	and broad plan for resettlement of the	
	displaced population, site for the	
	resettlement colony, alternate	
	livelihood concerns/employment for	
	the displaced people, civic and housing	
	amenities being offered, etc and costs	
	along with schedule of the	
	implementation of the R&R plan	
	should be given.	
1.37	CSR Plan along with details of villages	The CSR plan is discussed in the Section
	and specific budgetary provisions	8.6 under Chapter VIII in the EIA report
	(capital and recurring) for specific	page 125.
	activities over the life of the project	
	should be given.	
1.38	Corporate Environment Responsibility:	
1.39	a) The Company must have a well	The CER plan is discussed in the Section
	laid down Environment Policy	8.7 under Chapter VIII in the EIA report
	approved by the Board of	page 126.
	Directors.	

1.40	b)	The Environment Policy must
		prescribe for standard operating
		process/procedures to bring into
		focus any
		infringements/deviation/violation
		of the environmental or forest
		norms/conditions.
1.41	c)	The hierarchical system or
		Administrative Order of the
		company to deal with
		environmental issues and for
		ensuring compliance with the
		environmental clearance
		conditions must be furnished.
1.42	d)	To have proper checks and
		balances, the company should
		have a well laid down system of
		reporting of non-
		compliances/violations of
		environmental norms to the
		Board of Directors of the
		company and/or shareholders or
		stakeholders at large.
1.43	e)	Environment Management Cell
		and its responsibilities to be
		clearly spleel out in EIA/ EMP
		report
1.44	f)	In built mechanism of self-
		monitoring of compliance of
		environmental regulations should
		be indicated.

1.45	Status of any litigations/ court cases		No litigation is pending in any court against				
	filed/pending on the project should be		this project.				
	provided.	ovided.					
1.46	PP shall submit clarification from DFO		Tł	ne DFO letter	will be sub	mitted in the	
	that mine does not fall under corridors		fir	nal EIA report			
	of any 1	National Park and	Wildlife				
	Sanctuary	with certified map	showing				
	distance of	of nearest sanctuary.					
1.47	Copy of	clearances/approvals	such as	Tł	ne clearance	copy of appr	oved mining
	Forestry	clearances, Minin	g Plan	pla	an letter is atta	ached in the A	nnexure III.
	Approval	, mine closer plan ag	pproval.				
	NOC from	n Flood and Irrigatio	on Dept.				
	(if req.), e	etc. wherever applicat	ole.				
1.48	Details or	the Forest Clearance	e should b	be g	iven as per th	e format giver	1:
	Total ML	Total Forest land (ha) If more than	Date o FC	f	Extent of Forest	Balance area for	Status of apply for
	Project	one provides			Land	which FC	diversion of
	Area	details of each FC				is yet to be obtained	forest
	NA	NA	NA		NA	NA	land NA
1.49	In case o	f expansion of the p	roposal,	Aj	pproved Mini	ng plan of th	ne expansion
	the status	s of the work done	as per	proposal is attached in the Annexure III and			
	mining	plan and approved	d mine	the mine closure plan is discussed in the			
	closure p	lan shall be detailed	in EIA/	Section 2.6.4 under Chapter II in the EIA			
	EMP repo	ort		report page 23.			
1.50	Details or	Public Hearing shou	ld cover	The public hearing comments will be			
	the infor	mation relating to	notices	submitted during final EIA report.			port.
	issued	in the new	vspaper,				
	proceedin	gs/minutes of	Public				
	Hearing,	the points raised	by the				
	general public and commitments made						
	by the pr	oponent and the time	e bound				
	action p	roposed with budg	gets in				
	suitable	time frame. These	details				
	should be	presented in a tabul	ar form.				

	If the Public Hearing is in the regional	
	language, an authenticated English	
	Translation of the same should be	
	provided.	
1.51	PP shall carry out survey through	The drone video survey will be submitted in
	drone highlighting the ground reality	the final EIA report.
	for atleast 10 minutes	
1.52	Detailed Chronology of the project	The required documents for the proposed
	starting from the first lease deed	quarry are provided in the chronology order
	allotted/Block allotment/Land	in Annexure III.
	acquired to its No. of renewals,	
	CTO/CTE with details of no. renewals,	
	previous EC(s) granted details and its	
	compliance details, NOC details from	
	various Govt bodies like Forest	
	NOC(s), CGWA permissions, Power	
	permissions, etc as per the requisites	
	respectively to be furnished in tabular	
	form.	
1.53	The first page of the EIA/ EMP report	The first page of the EIA report mentions
	must mention the peak capacity	the peak capacity production, area, project
	production, area, detail of PP,	proponent details, Consultant and NABET
	Consultant (NABET accreditation) and	details and authorized Laboratory (NABL /
	Laboratory (NABL/MoEF & CC	MoEF & CC certification) details.
	certification)	
1.54	The compliances of ToR must be	ToR Compliance is cited with respective
	properly cited with respective chapter	chapter section and page no in tabular form.
	section and page no in tabular form and	
	also mention sequence of the	
	respective ToR complied within the	
	EIA-EMP report in all the chapter's	
	section.	

S No.	TITLE	PAGE No.
Ι	Introduction	1-8
1.0	Preamble	1
1.1	Purpose of the report	2
1.2	Environmental clearance	3
1.3	Terms of reference (ToR)	5
1.4	Post environment clearance monitoring	5
1.5	Transferability of environmental clearance	5
1.6	Identification of the project proponent	5
1.7	Brief Description of The Project	5
1.8	Scope of the study	7
1.9	Legislation Applicable to Mining of Mineral Sector	7
II	PROJECT DESCRIPTION	9-27
2.0	General introduction	8
2.1	Description of the project	8
2.2	Location and accessibility	9
2.3	Leasehold area	12
2.3.1	Corner Co-ordinates	12
2.4	Geology	13
2.5	Quantity of reserves	13
2.6	Mining method	20
2.6.1	Magnitude of operation	22
2.6.2	Extent of mechanization	22
2.6.3	Progressive quarry closure plan	22
2.6.4	Progressive quarry closure budget	23
2.6.5	Conceptual mining plan	23
2.6.6	Infrastructures	23
2.6.6.1	Other Infrastructure Requirement	26
2.6.7	Water requirement	26
2.6.8	Energy requirement	26
2.6.9	Capital requirement	27
2.7	Manpower requirement	27
2.8	Project Implementation Schedule	27
III	DESCRIPTION OF THE ENVIRONMENT	28-90
3.0	General	28

TABLE OF CONTENTS

3.1	Land environment	29
3.1.1	Geology and Geomorphology	29
3.1.2	Land Use/Land Cover	32
3.1.3	Topography	32
3.1.4	Drainage pattern	32
3.1.5	Seismic sensitivity	32
3.1.6	Soil	35
3.2	Water Environment	40
3.2.1	Surface Water Resources and Quality	40
3.2.2	Ground water Resources and Quality	40
3.2.3	Hydrogeological Studies	43
3.2.3.1	Groundwater level and flow direction	44
3.2.3.2	Electrical resistivity investigation	48
3.3	Air Environment	49
3.3.1	Meteorology	49
3.3.1.1	Climatic Variables	49
3.3.1.2	Wind Pattern	50
3.3.2	Ambient Air Quality Study	54
3.4	Noise Environment	60
3.5	Biological Environment	63
3.5.1	Flora	65
3.5.2	Fauna	75
3.5.3	Agriculture & Horticulture in Dindigul District	80
3.6	Socio-Economic environment	81
3.6.1	Objectives of the Study	82
3.6.2	Scope of work	82
3.6.3	Socio-Economic status of Study area	82
3.6.4	Sex Ratio	83
3.6.5	Literacy Rate of K. Pudukottai village	83
3.6.6	Recommendation and Suggestion	85
3.6.7	Summary and Conclusion	85
3.7	Traffic density	86
3.8	Site Specific Features	88
IV	ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES	91-109
4.0	General	91
4.1	Land Environment	91
---------	--	-----
4.1.1	Anticipated Impact	91
4.1.2	Mitigation Measures from Proposed Project	92
4.2	Soil Environment	92
4.2.1	Anticipated Impact on Soil Environment	92
4.2.2	Mitigation Measures from Proposed Project	92
4.3	Water Environment	92
4.3.1	Anticipated Impact	92
4.3.2	Mitigation Measures from Proposed Project	92
4.4	Air Environment	93
4.4.1	Anticipated impact from Proposed Project	93
4.4.2	Emission Estimation	93
4.4.2.1	Frame work of Computation and Model Details	94
4.4.2.2	Modelling of Incremental Concentration	94
4.4.2.3	Model Results	94
4.5	Noise Environment	98
4.5.1	Anticipated Impact	98
4.5.2	Common Mitigation Measures	99
4.5.3	Ground Vibrations	100
4.5.3.1	Common Mitigation Measures	101
4.6	Ecology And Biodiversity	102
4.6.1	Impact on Ecology and Biodiversity	102
4.6.2	Mitigation Measures on Flora	102
4.6.3	Anticipated Impact on Fauna	105
4.6.4	Mitigation Measures on Fauna	105
4.6.5	Impact on agriculture and horticulture crops in 1km Radius	105
4.6.6	Mitigation Measures on agriculture and horticulture crops.	105
4.7	Socio Economic Environment	106
4.7.1	Anticipated Impact from Proposed and Existing Projects	106
4.7.2	Common Mitigation Measures for Proposed Project	106
4.8	Occupational Health and Safety	106
4.8.1	Respiratory Hazards	107
4.8.2	Noise	107
4.8.3	Physical Hazards	107

4.8.4	Occupational Health Survey	107
4.9	Mine Waste Management	108
4.10	Mine Closure	108
4.10.1	Mine Closure Criteria	108
4.10.1	Physical Stability	108
4.10.1.2	Chemical Stability	109
4.10.1.3	Biological Stability	109
V	ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE)	110
5.0	Introduction	110
5.1	Factors behind the Selection of Project Site	110
5.2	Analysis of Alternative Site	110
5.3	Factors behind Selection of Proposed Technology	110
54	Analysis of Alternative Technology	110
VI	ENVIRONMENTAL MONITORING PROGRAM	111-115
6.0	General	111
6.1	Methodology of Monitoring Mechanism	111
6.2	Implementation Schedule of Mitigation Measures	113
6.3	Monitoring Schedule and Frequency	113
6.4	Budgetary provision for Environment Monitoring Program	114
6.5	Reporting schedules of monitored data	115
VII	ADDITIONAL STUDIES	116-123
7.0	General	116
7.1	Public Consultation for Proposed Project	116
7.2	Risk Assessment for Proposed Project	116
7.3	Disaster Management Plan for Proposed Project	119
7.3.1	Emergency Control Procedure	120
7.4	Cumulative Impact Study	120
7.4.1	Air Environment	120
7.4.1	Cumulative Impact of Air Pollutants	121
7.4.2	Noise Environment	121
7.4.3	Socio Economic Environment	122
7.4.4	Ecological Environment	122
7.5	Plastic Waste management Plan for Proposed Project	123
7.5.1	Objective	123

VIII	PROJECTS BENEFITS	124- 126
8.0	General	124
8.1	Employment Potential	124
8.2	Socio-Economic Welfare Measures Proposed	124
8.3	Improvement in Physical Infrastructure	124
8.4	Improvement in Social Infrastructure	125
8.5	Other Tangible Benefits	125
8.6	Corporate Social Responsibility	125
8.7	Corporate Environment Responsibility	126
IX	ENVIRONMENTAL COST BENEFIT ANALYSIS	127
X	ENVIRONMENTAL MANAGEMENT PLAN	128-134
10.0	General	128
10.1	Environmental Policy	128
10.1.1	Description of the Administration and Technical setup	128
10.2	Budgetary Provision for Environmental Management	129
10.10	Conclusion	134
XI	SUMMARY AND CONCLUSION	135-
11.0	Introduction	135
11.1	Project Description	135
11.3	Description of the Environment	135
11.3.1	Land Environment	135
11.3.2	Soil Characteristics	136
11.3.3	Water Environment	136
11.3.4	Air Environment	137
11.3.5	Noise Environment	137
11.3.6	Biological Environment	138
11.3.7	Socio-Economic Environment	139
11.4	Anticipated Environmental Impacts and Mitigation Measures for Proposed Project	139
11.4.1	Land Environment	139
11.4.2	Water Environment	140
11.4.3	Air Environment	141
11.4.4	Noise Environment	142
11.4.5	Biological Environment	143
11.4.6	Socio Economic Environment	143
11.4.7	Occupational Health	
11.5	Environment Management program	144

11.6	Additional Studies	145
11.6.1	Risk Assessment	145
11.6.2	Disaster Management Plan	145
11.6.3	Cumulative Impact Study	145
11.7	Project Benefits	146
11.8	Environment Management Plan	146
XII	DISCLOSURE OF CONSULTANT	147-151

LIST OF TABLES

TABLE	CONTENTS	PACE No
No.	CONTENTS	IAGE NO.
1.1	Details of Quarries within the cluster area of 500 m radius	2
1.2	Details of project proponent	5
1.3	Salient Features of the Proposed Project	6
2.1	Site connectivity to the project area	12
2.2	Corner coordinates of proposed project	12
2.3	Estimated resources and reserves of the project	13
2.4	Year-wise production details	13
2.5	Conceptual Blasting Design	21
2.6	Operational details for proposed project	22
2.7	Machinery details	22
2.8	Land use data at present, during scheme of mining, and at the end of mine life	23
2.9	Mine closure budget	23
2.10	Ultimate pit dimension	23
2.11	Water requirement for the project	26
2.12	Fuel requirement details	26
2.13	Capital requirement details	27
2.14	Employment potential for the proposed project	27
2.15	Expected time schedule	27
3.1	Monitoring attributes and frequency of monitoring	28
3.2	LULC statistics of the study area	32

3.3	Soil sampling locations	35
3.4	Assigning Scores to Soil Quality Indicators	36
3.5	Soil quality of the study area	39
3.6	Water Sampling Locations	40
3.7	Ground Water Quality Result	42
3.8	Surface Water Quality Result	43
3.9	Water Level of Open Wells within 2 km Radius	45
3.10	Water Level of Bore Wells within 2 km Radius	45
3.11	Vertical electrical sounding data	48
3.12	Onsite Meteorological Data	50
3.13	Methodology and Instrument used for AAQ analysis	54
3.14	National ambient air quality standards	54
3.15	Ambient air quality (AAQ) monitoring locations	55
3.16	Summary of AAQ result	57
3.17	Noise Monitoring Locations	60
3.18	Ambient Noise Quality Result	60
3.19	Calculation of density, frequency (%), dominance, relative density, relative frequency, relative dominance & important value index	64
3.20	Calculation of Species Diversity by Shannon – Wiener Index, Evenness and Richness	64
3.21	Flora in Core Zone	66
3.22	Calculation of Species Diversity in Core Zone	68
3.23	Species Richness in Core Zone	68
3.24	Flora in 300 m Radius	69
3.25	Calculation of Species Diversity in 300 m Radius	71
3.26	Species Richness (Index) in 300 m radius	72
3.27	3.27 Flora in Buffer Zone	72
3.28	Aquatic Vegetation	74
3.29	Methodology applied during survey of fauna	75
3.30	Fauna in Core Zone	76
H		

3.32	Major Crops in 1km radius	80
3.33	Major Field Crops & Horticulture cultivation in 1km radius.	81
3.34	Pudukottai Village Population Facts	82
3.35	Population of K. Pudukottai village	83
3.36	Literacy Rate of K. Pudukottai	83
3.37	Population and Literacy Data of Study Area	84
3.38	Workers Profile of Study Area	84
3.39	Educational Facilities in the Study Area	85
3.40	Traffic Survey Locations	86
3.41	Existing Traffic Volume	86
3.42	Rough Stone Transportation Requirement	86
3.43	Summary of Traffic Volume	86
2.14	Details of Environmentally Sensitive Ecological Features in	00
5.44	the Study Area	00
4.1	Empirical formula for emission rate from overall mine	93
4.2	Estimated emission rate	94
4.3	Incremental & Resultant GLC of PM2.5	94
4.4	Incremental & Resultant GLC of PM10	94
4.5	Activity and Noise Level Produced by Machinery	98
4.6	Predicted Noise Incremental Values	99
4.7	Predicted PPV Values due to Blasting	100
4.8	Predicted PPV Values due to Blasting at 100-500 radius	101
10	Carbon Released During Five Years of Rough Stone and	102
ч.у	Gravel Production	102
4.10	CO ₂ Sequestration	103
4.11	Recommended Species for Greenbelt Development Plan	103
4.12	Greenbelt development plan	104
4.13	Budget for greenbelt development plan	104
6.1	Implementation schedule for proposed project	113
6.2	Proposed monitoring schedule post EC for the proposed quarry	114
6.3	Environment monitoring budget	115

7.1	Risk assessment& control measures for proposed project	117-118
7.2	Cumulative Production Load of Rough Stone	121
7.3	Cumulative Production Load of Gravel	121
7.4	Cumulative Impact of Results from the proposed project	121
7.5	Cumulative Impact of Noise from the Proposed project	121
7.6	Cumulative Effect of Ground Vibrations Resulting from one proposed project	122
7.8	Socio Economic Benefits from Proposed Quarry	122
7.14	Employment Benefits from Proposed Quarry	122
7.15	Greenbelt Development Benefits from one Quarry	122
7.16	Action Plan to Manage Plastic Waste	123
8.1	CER – action plan	156
8.2	Project Benefits to the state Government	156
10.1	EMP budget for proposed project	129-134
10.2	Estimation of overall EMP budget after adjusting 5% annual inflation	134
11.1	LULC Statistics of the Study Area	135
11.2	Environment Monitoring Program	144-145

LIST OF FIGURES

FIGURE	TITLE	PAGE NO.
NO.	IIIE	
1.1	Location of the proposed and existing rough stone	4
	quarries in the cluster of 500m radius	
2.1	Overall view of proposed project site	9
2.2	Key map showing location of the project site	10
2.3	Site Connectivity to the Lease Area	11
2.4	Google earth image showing lease area with pillars	14
2.5	Mine Lease Plan	15
2.6	Surface and Geological Plan	16
2.7	Year wise Development and Production Plan	18
2.7a	Year wise Production Section	19
2.8	Mine layout plan and land use pattern	24

2.9	Conceptual Plan	25
3.1	Geology Map of 5Km Radius from proposed project site	30
3.2	Geomorphology Map of 5Km Radius from proposed project site	31
3.3	LULC map of 5km radius from the proposed project site	33
3.4	Drainage map of 5 km radius from the proposed project site	34
3.5	Map showing soil sampling location within 5 km radius around the proposed project site	37
3.6	Soil Erosion map within 5 km Radius around the Proposed Project Site	38
3.7	Map showing water sampling locations within 5 km radius around the proposed project site	41
3.8	Long-Term Monthly Average Rainfall Vs Monthly Rainfall	44
3.9	Open well static groundwater elevation map showing the direction of groundwater flow during pre-monsoon season	46
3.10	Bore well Static Groundwater Elevation Map Showing Direction of Groundwater Flow	47
3.11	Graph Showing Occurrence of Water Bearing Fracture Zones at the Depth of 70 m Below Ground Level in Proposed Project	49
3.12	Windrose Diagram for 2017-2018 and 2018-2019 (November to January)	51
3.13	Windrose Diagram for 2019-2020 and 2020-2021 (November to January)	52
3.14	Onsite Wind Rose Diagram	53
3.15	Map Showing Ambient Air Quality Monitoring Station Locations Around 5 km Radius from Proposed Project Site	56
3.16	Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM2.5 Measured from 7 Air Quality Monitoring Stations within 5 km Radius	57
3.17	Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM10 Measured from 7 Air Quality Monitoring Stations within 5 km Radius	58

3.18	Bar Chart Showing Maximum, Minimum, and Average Concentrations of SO2 Measured from 7 Air Quality Monitoring Stations within 5 km Radius	58
3.19	Bar Chart Showing Maximum, Minimum, and Average Concentrations of NOx Measured from 7Air Quality Monitoring Stations within 5km Radius	59
3.20	Bar Chart Showing Maximum, Minimum, And Average Concentrations of Pollutants in Atmosphere within 5 km Radius	59
3.21	Bar Chart Showing Day Time Noise Levels Measured in Core and Buffer Zones	61
3.22	Bar Chart Showing Night Time Noise Levels Measured in Core and Buffer Zones	61
3.23	Map Showing Noise Level Monitoring Station Locations around 5 km Radius from Proposed Project Site	62
3.24	Quadrates Sampling Methods of Flora	63
3.25	Traffic Density Map	87
3.26	Field Study Photographs	89
4.1	Predicted incremental concentration of PM _{2.5}	96
4.2	Predicted incremental concentration of PM ₁₀	97
6.1	Proposed environmental monitoring chart	112
7.1	Disaster management team layout for proposed project	119
10.1	Personal protective equipment to the mine workers	

LIST OF ANNEXURES

Annexure No.	Contents	Page No.
Ι	Copy of ToR letter	153-164
II	Copy of 500 m radius letter	165-167
III	Approved mining plan along with mining plan AD/DD	168-248
	letter/original mining plan plates	
IV	VAO 300m radius letter	249-250
IV	NABET certificate of EIA consultant	251

CHAPTER I INTRODUCTION

1.0 PREAMBLE

Environmental Impact Assessment (EIA) study is a process used to identify the environmental, social and economic impacts of a project prior to decision-making. EIA systematically examines both beneficial and adverse consequences of the proposed project and ensure that these impacts are considered during the project designing. According to the Ministry of Environment and Forests, Govt. of India, EIA notification S.O. 1533(E) of 14th September 2006 and its subsequent amendments as per Gazette Notification S.O. 3977 (E) of 14th August 2018, all the mining projects are broadly classified into two categories, i.e., category A and category B, based on the spatial extent of the projects. The category B projects are further divided in to B1 and B2 on the basis of the guidelines issued of the Ministry of Environment and Forests. All mining projects included in category B1 require an EIA report for obtaining environmental clearance from the State Environment Impact Assessment Authority (SEIAA). As the proposed project falls within the cluster of quarries of overall extent of greater than 5 ha and less than 50 ha in the case of non-coal mine lease, the proposed project falls under the category B1 and the project requires preparation and submission of an EIA report after public consultation to SEIAA for obtaining environmental clearance as per the order dated 04.09.2018 & 13.09.2018 passed by Hon'ble National Green Tribunal, New Delhi in O.A. No. 173 of 2018 & O.A. No, 186 of 2016 and MoEF & CC Office Memorandum F. No. L-11011/175/2018-IA-II (M) Dated: 12.12.2018.

In compliance with ToR obtained vide ToR File No.10798 and ToR Identification No. TO24B0108TN5203883N, dated.31/05/2024, this EIA report has been prepared for the project proponent, M/s.Shree Thevar Blue Metals applied for rough stone and gravel quarry lease in the Patta land falling in S.F.No.244/1A, 244/2A1 and 244/2A2 over an extent of 2.43.0ha in K.Pudukottai Village, Dindigul West Taluk, Dindigul District, Tamil Nadu. This EIA report takes into account the rough stone and gravel quarries within the cluster of 500 m radius from the periphery of the proposed project site. The cluster contains one proposed project known as P1 and four existing projects known as E1, E2, E3 and E4. All the projects mentioned above have been taken for cluster extent calculation as per MoEF & CC Notification S.O. 2269 (E) Dated 1st July 2016. The total extent of all the quarries is 11.67.1ha, also known as the cluster extent. The quarries involved in the calculation of cluster extent are shown in Figure 1.1.

	Proposed Quarries						
Code	Name of the Owner	S.F. No	Village	Extent (ha)	Status		
P1	M/s.Shree Thevar Blue Metals	244/1A, 244/2A1, 244/2A2	K.Pudukottai	2.43.0	Proposed Area		
		E	Existing Quarry				
E1	Premium Granite	249/1, 8B, 9, 10Aetc	K. Pudukottai	1.70.50	28.04.2023 to 27.04.2028		
E2	Umarani	252/2, 4, 252/5	K.Pudukottai	1.01.00	07.10.2023 to 06.10.2028		
E3	R S Palanisamy	304/1, 304/2,etc	Kothapulli	2.53.05	19.05.2023 To 18.05.2028		
E4	M.Balu	302/2	Kothapulli	1.12.05	02.09.2017 to 01.09.2022 Vide RC.No.3522/ mm6/23/.dt 18-05-2023 Extended 03.06.2023 to 02.12.2024		
	Total Cluster Extent						

Table 1.1 Details of Quarries within the cluster area of 500 m radius

Source:

AD Letter - Rc.No.115/2023(Mines) Dated:11.03.2024.

Note: Cluster area is calculated as per MoEF & CC Notification – S.O. 2269 (E) Dated:

01.07.2016.

1.1 PURPOSE OF THE REPORT

The purpose of the report is to study baseline environmental conditions in and around the proposed project area for the period of **November 2021 - January 2022** according to the provisions of MoEF & CC Office Memorandum dated 29.08.2017 and MoEF & CC Notification, S.O. 996 (E) dated 10.04.2015, to analyse impacts and provide mitigation measures.

1.2 ENVIRONMENTAL CLEARANCE

The Environmental Clearance process for the project will comprise of four stages. These stages are screening, scoping, public consultation & appraisal.

Screening

Screening is the first stage of the EIA process. In this stage, the State level Expert Appraisal Committee (SEAC) examined the application of EC made by the proponent in Form 1 through online (Proposal No. SIA/TN/ MIN/ 467014/2024, dated, 26/03/2024) and decided that the project requires detailed environmental studies for the preparation of EIA report. Therefore, the proponent submitted application for Terms of Reference (ToR) on 04.04.2024 *Scoping*

The proposal was placed in the 464th meeting of SEAC on 03.05.2024. Based on the presentation and documents furnished by the project proponent, SEAC decided to recommend the proposal for the grant of Terms of Reference (ToR) and the recommendation for ToR is subjected to the outcome of the Honourable NGT, Principal Bench, New Delhi (O.A No.186 of 2016 (M.A.No.350/2016) and O.A. No.200/2016 and O.A.No.580/2016 (M.A.No.1182/2016) and O.A.No.102/2017 and O.A.No.404/2016 (M.A.No. 758/2016, M.A.No.920/2016, M.A.No.1122/2016, M.A.No.12/2017 & M.A. No. 843/2017) and O.A.No.405/2016 and O.A.No.520 of 2016 (M.A.No. 981/2016, M.A.No.982/2016 & M.A.No.384/2017).

Public Consultation

In this stage, an application along with the draft of EIA and EMP report will be made to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing ensuring public participation at the project site or in its close proximity in the district. During public hearing, an opportunity will be given to the people living nearby the project site to express their opinions about the impact of the proposed project on the environment. The outcome of the public hearing meeting will be updated in the final EIA report for appraisal.

Appraisal

In this stage, an application along with final EIA report including the outcome of the public consultations will be made to the SEIAA. The application thus made will be scrutinized by the SEAC. Then, the SEAC will make recommendations to grant EC or reject the application to the SEIAA.

Figure 1.1 Location of the proposed and existing rough stone quarries in the cluster of 500m radius

1.3 TERMS OF REFERENCE (ToR)

The SEAC framed a comprehensive Terms of Reference (TOR) based on the information provided in the Form 1 and information collected from the proposed project site visit and issued TOR to the proponent vide ToR File No. 10978 and ToR Identification No. TO24B0108TN5203883N, dated.13/03/2024.

1.4 POST ENVIRONMENT CLEARANCE MONITORING

For category B projects, irrespective of its clearance by MoEF/SEIAA, the project proponent shall prominently advertise in the newspapers indicating that the project has been accorded environmental clearance and the details of MoEF website where it is displayed.

After obtaining EC, the project proponent will submit a half-yearly compliance report of stipulated environmental clearance terms and conditions to MoEF & CC Regional Office & SEIAA on 1st June and 1st December of every year.

1.5 TRANSFERABILITY OF ENVIRONMENTAL CLEARANCE

A prior environmental clearance granted for a specific project or activity to an applicant may be transferred during its validity to another legal person entitled to undertake the project or activity on application by the transferor or the transferee with a written "no objection" by the transferor, to, and by the regulatory authority concerned, on the same terms and conditions under which the prior environmental clearance was initially granted, and for the same validity period (EIA Guidance Manual for Mining of Minerals, 20).

1.6 IDENTIFICATION OF THE PROJECT PROPONENT

The profile of the project proponent who has involved in this quarrying project has been given in Table 1.2.

Table 1.2 Details of 110 jeet 110 ponent				
Name of the Project Proponent	M/s. Shree Thevar Blue Metals,			
	S.F.No's: 295/1, 295/1A, 295/2 & 295/3,			
Address	Kothapulli Village, Reddiarchatram,			
	Dindigul District – 624622.			
Status	Proprietor			

 Table 1.2 Details of Project Proponent

1.7 BRIEF DESCRIPTION OF THE PROJECT

The proposed project deals with excavation of rough stone and gravel quarry which is primarily used in construction projects. The method adopted for rough stone and gravel quarry excavation is Open Cast Semi Mechanized mining method involving formation of benches with 5 m height and 5 m width. The proposed project site is located in K. Pudukottai Village, Dindigul West Taluk, Dindigul District, Tamilnadu State. Some of the important features of the proposed project have been provided in Table 1.3.

Name of the Querry	M/s. Shree Thevar Blue Metals				
Name of the Quarry	Rough Stone and gravel quarry				
Type of Land	Patta Land				
Extent	2.	43.0 Ha			
S.F. No	244/1A, 244	4/2A1 &	244/2A	2	
Toposheet No	5	8-F/15			
Leasting of Duringt Site	10° 27'5.37"N	to 10°	27'10.78	"N	
Location of Project Site	77°51'30.12'	'E to 77	°5'37.37'	Έ	
Highest Elevation	280	m AMS	SL		
Illtimate Pit Dimensions	Length (m)	Widtl	h (m)	Depth (m)	
Onimate 1 it Dimensions	96	1	16	45	
Ultimate depth of Mining	45 m E	BGL			
Geological Resources	Rough Stone in m ³		Gravel in m ³		
Geological Resources	1045072		48608		
Mineable Reserves	Rough Stone in m ³		Gravel in m ³		
	419186		38404		
Proposed reserves for ten years	Rough Stone in m ³		Gravel in m ³		
	419186		3	8404	
Method of Mining	Open-Cast Sem	i Mecha	anized m	ining	
Topography	Flat Topography				
	Jack Hammer			3	
Machinery proposed	Compressor			1	
Wideminery proposed	Tipper			8	
	Excavator			1	
	The quarrying operation is proposed to carried out by				
Blasting Method	open cost, using jack hammer drilling followed by				
Diasting Wethod	manual breaking will be adopted to release the rough				
	stone and nonel blasting is proposed in this lease area.				
Proposed Manpower Development	20 Nos				
Project Cost	Rs.81,10,500 /-				
CER Cost	Rs. 5,00,000/-				
Proposed Water Requirement	4.0 KLD				

Table 1.3 Salient Features of the Proposed Project

г

1.8 SCOPE OF THE STUDY

The main scope of the EIA study is to quantify the cumulative impact of the quarries in the cluster on the study area and formulate the effective mitigation measures for each individual lease. A detailed account of the emission sources, emissions control equipment, background air quality levels, meteorological measurements, dispersion model and all other aspects of pollution like effluent discharge, and dust generation has been provided in this report. The baseline monitoring study has been carried out during the period of **November 2021-January 2022** for various environmental components such as land, soil, air, water, noise, ecology, etc. to assess the anticipated impacts of the cluster quarry projects on the environment and suggest suitable mitigation measures for likely adverse impacts due to the proposed project. The sampling methodologies for the various environmental parameters required for the study, frequency of sampling, method of sample analysis, etc., are given in Table 3.1 in Chapter III.

1.9 Legislation Applicable to Mining of Mineral Sector

A few important legislations are given below:

- ✤ The Mines Act, 1952.
- ✤ The Mines and Mineral (Development and Regulation) Act, 1957.
- ✤ Mines Rules, 1955.
- Mineral Concession Rules, 1960
- ✤ Mineral Conservation and Development Rules, 1988.
- State Minor Mineral Concession Rules, 1960.
- ✤ Granite Conservation and Development Rule, 1999.
- ✤ The Water (Prevention and Control of pollution) Act, 1974.
- ✤ The Air (Prevention and Control of pollution) Act,1981.
- ✤ The Environment (Protection) Act, 1986.
- The Forest (Conservation) Act, 1988.
- ✤ The Wildlife (Protection) Act, 1972.

Note: As per the OM vide F.No.J-11013/41/2006-IA-II(I)(Part), the baseline monitoring data were collected during the period of **November 2021 - January 2022** and utilized for preparation of this EIA report.

CHAPTER II

PROJECT DESCRIPTION

2.0 GENERAL INTRODUCTION

The open cast mining method, also known as open-pit mining has been proposed to extract the mineral deposit. It is the most commonly used surface mining method all over the world and is generally suitable for mining low-grade mineral deposits that are found close to the surface of the earth and distributed uniformly over a large area. Open pits are also termed quarries when the pits are used for the extraction of building materials and dimension stones.

Opencast mining starts with the development of benches, the widths of which will be determined in such a way to accommodate the use of heavy machinery. The walls of open pits will be dug at an angle that will be decided based on well-established industry standards to provide safety. In some cases where the walls are composed of weak material such as soil and highly weathered rocks, dewatering holes will be drilled horizontally to relieve the water pressure to avoid wall collapse inside the mine site.

The required mine-related infrastructures will be established close to the open pit. The mining infrastructures may include an administration building, a maintenance garage, and a warehouse. The materials mined from open pits will be brought to the surface using trucks. The waste rocks will be piled up in a suitable location, usually close to the open pit. The structure produced by the waste rock pile is known as a waste dump. The dimension of the waste dump will be determined based on industrial safety standards to prevent the rocks from falling into the surrounding area.

2.1 DECSCRIPTION OF THE PROJECT

The proponent, **M/s.Shree Thevar Blue Metals** is involved in the undertaking of establishment, construction, development, and closure of opencast mines. He, through the exploration phase, identified the proposed project site as the one that has a great potential of producing an economically viable quantity of rough stone. Therefore, the proponent had applied for quarry lease on 22.12.2023 to extract rough stone. The precise area communication letter was issued by Department of Geology and Mining, Dindigul vide Rc.No.115/2023(Mines) Dated:27.02.2024. Based on the precise area communication letter, mining plan was prepared. The mining plan thus prepared was approved by Assistant Director Department of Geology and Mining, Dindigul Rc.No.115/2023 (Mines) dated:11.03.2024. The overall view of the project site is shown in Figure 2.1.

Figure 2.1 Overall View of Proposed Project Site 2.2 LOCATION AND ACCESSIBILITY

The proposed quarry project is located in K.Pudukottai Village, Dindigul West Taluk, Dindigul District, as shown in Figure 2.2 & 2.3. The area lies between Latitudes from 10°27'5.37"N to 10°27'10.78"N and Longitudes from 77°51'30.12"E to 77°51'37.37"E. The maximum altitude of the project area is 280 m AMSL. Accessibility details to the proposed project site have been given in Table 2.1.

Figure 2.2 Key Map Showing Location of the Project Site

Figure 2.3 Site Connectivity to the Project Area

S.No	Description	Place	Distance	Direction
a.	Nearest post office	Reddiarchatram	2.4Km	South
b.	Nearest police station	Reddiarchatram	2.0km	South
c.	Nearest fire station	Oddanchatram	12.8km	West
d.	Nearest medical facility	Puduchatram	7.5Km	West
e.	Nearest school	S.Vadipatti	3.7Km	Southeast
f.	Nearest railway station	Akkaraipatti	8.9km	Southeast
g.	Nearest port facility	Tuticorin	189.0km	South
h.	Nearest airport	Tiruchirappalli	99.0km	Northeast
i.	Nearest villages	K.Pudukottai	0.9km	Northeast
		Tadankottai	1.2km	Southwest
		Bommanankottai	0.7km	Southwest
		Peddinayakkanpatti	0.8km	Northwest

Table 2.1 Site Connectivity to the Project Area

2.3 LEASEHOLD AREA

- The extent of the proposed project site is 2.43.0 ha.
- ✤ The proposed project is site specific.
- ✤ There is no mineral beneficiation or processing proposed inside the project area.
- There is no forest land involved in the proposed area and is devoid of major vegetation and trees.

2.3.1 Corner Coordinates

The boundary corner geographic coordinates are given in Table 2.2 and the proposed project site with boundary coordinates has been shown in Figure 2.4 & 2.5.

Pillar ID	Latitude	Longitude	Pillar ID	Latitude	Longitude
1	10°27'9.84"N	77°51'37.37"E	13	10°27'6.21"N	77°51'31.70"E
2	10°27'8.42"N	77°51'37.03"E	14	10°27'6.44''N	77°51'31.73"E
3	10°27'8.14"N	77°51'36.75"E	15	10°27'6.71"N	77°51'30.97"E
4	10°27'6.91"N	77°51'36.62"'E	16	10°27'7.24"N	77°51'30.76"E
5	10°27'6.69"N	77°51'35.85"E	17	10°27'7.64''N	77°51'30.12"E
6	10°27'6.54"N	77°51'35.24"E	18	10°27'9.31"N	77°51'30.76"E
7	10°27'6.46"N	77°51'35.02"E	19	10°27'10.65"N	77°51'31.47"E
8	10°27'5.91"N	77°51'33.85"E	20	10°27'10.19"N	77°51'33.66"E
9	10°27'5.93"N	77°51'33.44"E	21	10°27'10.78"N	77°51'33.89"E
10	10°27'5.37"N	77°51'33.40"E	22	10°27'10.45"N	77°51'35.30"E
11	10°27'5.67"N	77°51'31.91"E	23	10°27'10.35"N	77°51'35.64"E
12	10°27'6.05"N	77°51'31.95"E	24	10°27'10.11"N	77°51'36.47"E

 Table 2.2 Corner Coordinates of Proposed Project

2.4 GEOLOGY

The lease area geologically occurs Hornblende–Biotite Gneiss. The Charnockite, commercially called as Roughstone occurs within the migmatite rock. Also, the lease area geomorphologically occurs pediment pediplain complex.

2.5 QUANTITY OF RESERVES

The Resources and Reserves of rough Stone and gravel were calculated based on crosssection method by plotting sections to cover the maximum lease area for the proposed project. Based on the availability of geological resources, the mineable reserves are calculated by considering excavation system of bench formation and leaving essential safety distance of 7.5m and 10m safety distance as per precise area communication letter and deducting the locked-up reserves during bench formation (also called as Bench Loss). The mineable reserves are calculated up to the depth of 45m considering there is no waste / overburden / side burden (100% Recovery anticipated) for the proposed project. The plate used for reserve estimation has been shown in Figure 2.6 and 2.7 results of geological resources and reserves have been shown in Table 2.3.

Resource Type	Rough Stone in m ³	Gravel in m ³
Geological Resource in m ³	1045072	48608
Mineable Reserves in m ³	419186	38404
Proposed production for 10 years m ³	419186	38404

 Table 2.3 Estimated Resources and Reserves of the Project

Based on the year wise development and production plan and sections, the year wise production results have been given in Table 2.4 & Figure 2.8 and Figure 2.9.

Year	Rough Stone in (m ³)	Gravel in (m ³) / 3 year
Ι	62170	13080
II	64743	11172
III	64118	14152
IV	63425	
V	60940	
VI	21055	
VII	21030	
VIII	20895	
IX	20970	
Х	19840	
Total	419186	38404

Source: Approved Mining Plan & ToR

Figure 2.4 Google Earth Image Showing Lease Area with Pillars

Figure 2.6 Surface & Geological Plan

17 | Page

Figure 2.8 Year wise Production Plan

Figure 2.9 Year wise Production Sections

2.6 MINING METHOD

The Quarrying operation is proposed to be carried out by open cast semi-mechanized mining method with the bench height and width of 5 m each. The open cast semi-mechanized method involving drilling and blasting is proposed to extract rough stone. The extracted rough stone will be loaded manually to the trucks for dispatch to the customers. In this project, NONEL blasting will be adopted to extract rough stone.

Conceptual Blasting Design

In this project, NONEL blasting will be employed to win rough stone. This method will involve closed spaced perimeter holes to reduce the overbreak/backbreak on a blast. The objective of the blasting design is to prevent fly rocks from damaging the nearby structures.

Rules of Thumb for Blast Design

Based on practical experience and technical information, a set of rules for blasting have been provided as below (<u>Chapter8 (nps.gov</u>)). These rules will be applied to blast rocks in the proposed project.

Rule 1: The detonation velocity (VOD) of the explosive should be close to the same value of the sonic velocity (VSO) of the rock to be blasted.

The sonic velocity of a rock is considered to be a reliable indicator of its structural integrity and resistance to fragmentation. As the VOD of the explosive approaches close to the VSO of the rock, the blasting would result in relatively smaller size of fragmentation with uniformity. There is no value in using an explosive that has a VOD greatly in excess of the VSO of the rock, since there is little or no improvement in fragmentation above the VSO. When selecting an explosive to match up the VSO of a rock mass, variance of <10% in the velocities is acceptable.

Rule 2: Generally, select the densest explosive possible.

When the density of explosives is higher, the potential energy of the explosives can be greater and the more of it can be placed within a borehole of a given size.

Rule 3: Select explosives according to the characteristics of the rock formation to be blasted.

When planes of separation in the rock are smaller than the degree of fragmentation required, the rock can often be blasted by using lower density and lower detonation velocity explosives.

Rule 4: When using slurry or water gel explosives, always determine the critical temperature below which the explosive will fail to reliably detonate.

Almost all slurry explosives have a critical temperature below which they may not detonate, or may not sustain detonation in elongated columns. The explosives should not be used when the temperature of the explosive at time of loading is below that critical temperature. **Rule 5: The distance between holes (spacing) should not be greater than one-half the depth of the borehole.**

When the distance between holes in a row is greater than one-half the depth of the hole, the angles of breakage intersect above the bottom of the holes. This causes both a great deal of vertical throw and a very uneven bottom.

Rule 6: Stemming should be equal to the burden.

Stemming is useful to confine and maximize efficient use of the explosive's energy. It also reduces noise as much as possible. If the stemming is greater than the burden, the rock at the top of the borehole will have less cracking from reflection and refraction of compressive and tensile waves. Therefore, stemming should be equal to burden. Drill fines can be used for loading the borehole.

Rule 7: Subdrill (if necessary) should be between 0.3 and 0.5 of spacing/burden.

Subdrill should be equal to 0.3 of burden. It will work when there is row-for-row delay. In blasts where the delay system is both row-for-row and hole-for-hole, the subdrill should be determined by the largest dimension, which can be the spacing or the burden. An average subdrill of 0.4 of spacing is best to use for planning purposes. Based on the above-mentioned rules, blasting design has been conceptualized and has been provided in Table 2.5.

Blasthole Diameter (D) in mm	32
Burden (B) in m	1.5
Spacing (S) in m	1.30
Subdrill in m	0.45
Charge length (C) in m	0.64
Stemming	1.5
Hole Length (L) in m	2.6
Bench Height (BH) in m	2.1
Mass of explosive/hole in g	400
Stemming material size in mm	3.2
Burden stiffness ratio	1.43
Blast volume/hole in m ³	4.16

Table 2.5 Conceptual Blasting Design

Production of rough stone/day in m ³	155
Number of blastholes/day	37
Blasthole pattern	Staggered / Rectangular
Mass of explosive /day in kg	14.94
Powder factor in kg/m ³	0.10
Loading density	0.63
Type of explosives	Slurry
Diameter of packaging in mm	25
Initiation system	NONEL
Fly rock distance in m	19

2.6.1 Magnitude of Operation

Based on the results of estimated production for the 10 years, details about the size of operation have been provided in Table 2.6.

	Rough Stone in m ³	Gravel in m ³
	10 years	3 year
Proposed production for 10 years	419186	38404
Number of Working Days /Annum	270	270
Production of /Day (m ³)	155	47
No. of Lorry Loads	26	8

Table 2.6 Operational Details for Proposed Project

2.6.2 Extent of Mechanization

List of machineries proposed for the quarrying operation is given in Table 2.7.

 Table 2.7 Machinery Details

S. No.	Туре	No of Unit	Size /Capacity	Make	Motive Power
1	Jack Hammers	3	Hand held		Diesel Drive
2	Compressor	1	Air		Diesel Drive
3	Hydraulic Excavator	1	$2.9-4.3 \text{ m}^3$		Diesel Drive
4	Tipper	8			Diesel Drive

2.6.3 Progressive Quarry Closure Plan

The progressive quarry closure plan of the proposed project shows past, present, and future land use statistics. According to the land use results, as shown in Table 2.8 At Present about 2.43.0 ha of land is unutilized, Whereas, at the end of the mine life, about 0.01.35 ha of land is unutilized; about 0.44.69 ha of land is used for green belt and 0.03.00 will be used for roads and 0.01.0 is used for infrastructure.

Description	Present Area (ha)	Area at the end of life of quarry (ha)
Area under quarry	Nil	1.90.96
Infrastructure	Nil	0.01.0
Roads	Nil	0.03.0
Green Belt	Nil	0.44.69
Drainage & Settling Tank	Nil	0.02.0
Unutilized area	2.43.0	0.01.35
Total	2.43.0	2.43.0

Table 2.8 Land use data at present, during scheme of mining, and at the end of mine life

2.6.4 Progressive Quarry Closure Budget

As the proposed project has the enormous potential for continuous operations even after the expiry of lease period, mine closure plan is not proposed for now. Based on the progressive mine closure plan for the scheme period, the mine closure cost is given in Table 2.9.

Table 2.5 White Closure Dauger				
Activity	Capital Cost			
486 plants inside the lease area	97200			
729 plants outside the lease area	218700			
Wire Fencing	486000			
Renovation of Garland Drain	24300			
Total	826200			

Table 2.9 Mine Closure Budget

Source: Environment Management Plan

2.6.5 Conceptual Mining Plan

The ultimate pit size is designed based on certain practical parameters such as economical depth of mining, safety zones, permissible area, etc. Details of ultimate pit dimensions have been derived from given in Table 2.10, Figure 2.11.

Table 2.10 Ultimate Pit Dimension

Pit	Length (m)	Width (m) (Max)	Depth (m)
Ι	96	116	45

Source: Approved Mining Plan & ToR

2.6.6 Infrastructures

Infrastructures like mines office, temporary rest shelters for workers, latrine and urinal facilities have been proposed as per the mine rule and will be established after the grant of quarry lease. There is no proposal for the mineral processing or ore beneficiation plants in this project.

Figure 2.10 Mine Layout Plan and Land Use Pattern

Figure 2.11 Conceptual Plan & Sections

2.6.6.1 Other Infrastructure Requirement

No workshops are proposed inside the project area. Hence, there will not be any process effluent generation from the proposed lease area. Domestic effluent from the mine office will be discharged to septic tank and soak pit. As there is no toxic effluent expected to generate in the form of solid, liquid or gaseous form, there is no requirement of waste treatment plant.

2.6.7 Water Requirement

Detail of water requirement in KLD is given in Table 2.11.

Table 2.11 Water Requirement for the Project					
Purpose	Quantity	Source			
Dust Suppression	1.3 KLD	Existing bore wells nearby the lease area			
Green Belt development	1.5 KLD	Existing bore wells nearby the lease area			
Drinking & Utilized	1.2 KLD	Existing bore wells and approved water vendors			
Total	4.0 KLD				

Source: Prefeasibility Report

2.6.8 Energy Requirement

High speed Diesel (HSD) will be used for quarrying machineries. As per the data shown in Table 2.12, Around **1915310** litres of HSD will be used for rough stone extraction during this 10 years plan period. The diesel will be brought to the site from nearby diesel pumps.

Fuel Requirement for Excavator					
Details	Rough Stone (419186 m ³)	Gravel (38404 m ³)	Total Diesel (litre)		
Average Rate of Fuel Consumption (l/hr)	16	10			
Working Capacity (m ³ /hr)	20	60			
Time Required (hours)	20959	640			
Total Diesel Consumption for 10 years (litre)	335349	6401	341750		
Fuel Requirement	for Compressor				
Average Rate of Fuel Consumption/hole (litre)	0.4				
Number of Drillholes/day	37	37			
Total Diesel Consumption for 10 years (litre)	39960	39960			
Fuel Requirement for Tipper					
Average Rate of Fuel Consumption/Trip (litre)	20	20			
Carrying Capacity in m ³	6	6			
Number of Trips / days	26	8			
Number of Trips /10 years	70200 6480				
Total Diesel Consumption for 10 years (litre)	1404000	129600	1533600		
Total Diesel Consumption by Excavator,	1915310				

 Table 2.12 Fuel Requirement Details

2.6.9 Capital Requirement

The project proponent will invest **Rs. 81,10,500**/- to the project. The breakup summary of the investment has been given in Table 2.13.

S. No.	Description	Cost (Rs.)
1	Fixed Asset Cost	13,61,000/-
2	Machinery cost	30,00,000/-
3	EMP Cost	31,40,000/-
Total Project Cost 81,10,500/-		

Table 2.13 Capital Requirement Details

Source: Approved Mining Plan

2.7 MANPOWER REQUIREMENT

The skilled, competent qualified statutory persons will be engaged for quarrying operation, preference will be given to the local community. Number of employees required for this project have been provided in Table 2.14.

S. No.	Category	Role	Nos.	
1.		Mine manager	1	
	Highly Skilled	Mine Engineer	1	
		Mine Geologist	1	
		Blaster	1	
2.	Unskilled	Musdoor/ Labours	16	
	Total 20			

 Table 2.14 Employment Potential for the proposed project

Source: Prefeasibility Report

2.8 PROJECT IMPLEMENTATION SCHEDULE

The commercial operation will commence after the grant of Environmental Clearance. CTO and CTE will be obtained from the Tamil Nadu State Pollution Control Board. The conditions imposed during the environmental clearance will be compiled before the start of mining operation. Expected time schedule for the quarrying operation is given Table 2.15.

 Table 2.15 Expected Time Schedule

S. No.	Particulars	Time Schedule (in Months)			ule (i s)	Remarks if any	
		1 st	2 nd	3 rd	4 th	5 th	
1	Environmental						
	Clearance						
2	Consent to Establish						Project Establishment
							Period
3	Consent to operate						Production starting period.
Time line may vary; subjected to rules and regulations /& other unforeseen circumstances							

Source: Anticipated based on Timelines framed in EIA Notification & CPCB Guidelines
CHAPTER III

DESCRIPTION OF THE ENVIRONMENT

3.0 GENERAL

This chapter presents a regional background to the baseline data at the very onset, which will help in better appreciation of micro-level field data, generated on several environmental and ecological attributes of the study area. The baseline status of the project environment is described section wise for better understanding of the broad-spectrum conditions. The baseline environment quality represents the background environmental scenario of various environmental components such as land, water, air, noise, biological and socio-economic status of the study area. Field monitoring studies to evaluate the base line status of the project site were carried out covering **November 2021 - January 2022** with CPCB guidelines. Environmental baseline data were collected by an NABL accredited and MoEF notified *Ekdant Enviro Services (P) Ltd* for the environmental attributes including soil, water, air, and noise and by FAEs for ecology and biodiversity, traffic, and socio-economy.

Study Area

The study area has been divided into two zones: core zone and buffer zone. Core zone is considered as lease area and buffer zone as 5 km radius from the periphery of the cluster, except for ecological study, which considers 10 km as buffer zone. Both core and buffer zones are taken as the study area. The data was collected from the study area to understand the existing environment conditions of the above-mentioned environmental components. Sampling methodologies for the various environmental parameters, including frequency of sampling, method of sample analysis, etc., are briefly given in Table 3.1.

Attribute	Parameters	Frequency of Monitoring	No. of Locations	Protocol
	Land-use Pattern			
Land Use/	within 5 km	Once during the	Study	Satellite Imagery &
Land Cover	radius of the	study period	Area	Primary Survey
	study area			
				IS 2720
			8	Agriculture
	Physico-	On as during the	(1 in near	Handbook - Indian
*Soil	Chemical	Once during the	core & 7	Council of
	characteristics	study period	in buffer	Agriculture
			zone)	Research, New
				Delhi

 Table 3.1 Monitoring Attributes and Frequency of Monitoring

*Water Quality	Physical, Chemical and Bacteriological Parameters	Once during the study period	8 (1 surface water & 7 ground water)	IS 10500& CPCB Standards
Meteorology	Wind speed Wind direction Temperature Cloud cover Dry bulb temperature Rainfall	1 hourly continuous mechanical/automatic weather station	1	Site specific primary data & secondary data from IMD Station
*Ambient Air Quality	PM ₁₀ PM _{2.5} SO ₂ NO _X	6	7 (1 core & 9 buffer)	IS 5182 Part 1-23 National Ambient Air Quality Standards, CPCB
*Noise Levels	Ambient noise	Hourly observation for 24 hours per location	7 (1 core & 6 buffer zone)	IS 9989 As per CPCB Guidelines
Ecology	Existing flora and fauna	Through field visit during the study period	Study area	Primary Survey by Quadrate & Transect Study Secondary Data – Forest Working Plan
Socio Economic Aspects	Socio-economic characteristics, Population statistics and existing infrastructure in the study area	Site visit & Census Handbook, 2011	Study area	Primary Survey, census handbook & need based assessments.

*All monitoring and testing have been carried out as per the Guidelines of CPCB and MoEF & CC.

3.1 LAND ENVIRONMENT

3.1.1 Geology and Geomorphology

Study area is mainly composed of hornblende-biotite genesis as shown in Figure 3.1. The lease area occurs in migmatite terrain.

Among the geomorphology map as shown in Figure 3.2. The lease area occurs in pediment pediplain complex.

Figure 3.1 Geology Map of 5 km Radius from Proposed Project Site

Figure 3.2 Geomorphology Map of 5 km Radius from Proposed Project Site

3.1.2 Land Use/ Land Cover

Land Use and Land Cover (LULC) map, as shown in Figure 3.3 was prepared using Sentinel II image for the study area of 5 km radius to provide a baseline status of the study area covering 5 km radius around the proposed mine site. Totally,6 LULCs were mapped. The areal extent of each LULC is provided in Table 3.2. Of the total area, mining area covers only 21.08 ha accounting for 0.27%, of which lease area of 2.43.0 ha contributes only about 0.03 %. This small percentage of mining activities shall not have any significant impact on the land environment.

S. No.	Classification	Area (ha)	Area (%)
1	Crop land	4711.74	61.17
2	Fallow land	1567.97	20.35
3	Land with or without scrub	1374.36	17.84
4	Mining / Industrial wastelands	21.08	0.27
5	Plantations	19.46	0.25
6	Settlement	8.59	0.11
	Total	7822.86	100.0

Table 3.2 LULC Statistics of the Study Area

3.1.3 Topography

The proposed lease area is located in a flat terrain with an altitude range of 280 m AMSL.

3.1.4 Drainage Pattern

Drainage pattern is the pattern formed by the streams, rivers, and lakes in a particular drainage basin over time that reveals characteristics of the kind of rocks and geological structures in a landscape. The proposed area shows dendritic drainage pattern indicating uniform lithology beneath the surface, as shown in Figure 3.4.

3.1.5 Seismic Sensitivity

The proposed lease area is situated in a Seismic Zone II, as defined by National Centre for Seismology (<u>Official Website of National Centre of Seismology</u>). The Zone II is defined as the region where only minor damage is expected from seismic events. In this respect, the proposed lease area is located in a low earthquake hazard area.

Source: Sentinel II Satellite Imagery

Figure 3.3 LULC Map of 5 km Radius from Proposed Project Site

Figure 3.4 Drainage Map of 5 km Radius from Proposed Project Site

3.1.6 Soil

Composite soil samples were collected from 8 locations of the study area to determine the baseline soil characteristics of the soil. The locations were selected for soil sampling based on soil types, vegetative cover, and industrial & residential activities including infrastructure facilities. Soil samples were collected up to 90 cm depth, filled in polythene bags, coded and sent to laboratory for analysis. The locations of the sampling sites are shown in Table 3.3 and Figure 3.5. The samples thus collected were analysed for physical and chemical characteristics. The physical and chemical characteristic results of soil samples are provided in Table 3.5.

S.	Location	Sampling	Direction	Distance	Latitude and Longitude
No	Code	Location			
1	S1	Near Core Zone	NE	0.65 Km	10°27'14.29"N, 77°51'58.49"E
2	S2	Kothapulli	SW	0.99 Km	10°26'39.41"N, 77°51'14.69"E
3	S3	Silvarpatty	NE	2.77 Km	10°28'9.32"N, 77°52'46.04"E
4	S4	Semmadaippatty	SW	2.95 Km	10°25'39.00"N, 77°50'50.02"E
5	S5	Sennampatty	NE	3.66 Km	10°27'44.11"N, 77°53'32.79"E
6	S6	Kethampatty	SE	2.72 Km	10°25'37.44"N, 77°51'45.67"E
7	S7	Puduppatty	SW	4.32 Km	10°25'42.59"N, 77°49'36.28"E
8	S 8	Near Thevar RF	NW	2.10 Km	10°28'3.55"N, 77°50'47.53"E

Source: On-site monitoring/sampling **Ekdant Enviro Services (P) Ltd,** in association with GTMS.

Physical Characteristics

The physical properties of the soil samples were examined for texture, bulk density, and water holding capacity. The soil texture found in the study area is clay loam. The bulk density of soils in the study area varies between 1.15 and 2.85 g/cc. The water holding capacity varies from 40.36 to 46.50.

Chemical Characteristics

The nature of soil is slightly alkaline to strongly alkaline with pH ranging from 7.21 to 7.91, Chloride ranges between 14.0 and 38.0 mg/kg, Sodium ranges between 9.0 and 24.0 mg/kg,

Potassium ranges between 0.98 and 2.0 mg/kg, Calcium ranges between 10.0 and 19.0 mg/kg, Magnesium ranges between 5.0 and 11.0 mg/kg.

Soil Quality Assessment

Soil quality is the foundation of sustainable crop production. Soil quality assessment helps to understand soil conditions and adopt suitable production practices. It can be done using physical, chemical, and biological properties of soil. For this assessment, four soil quality parameters including pH, EC, OM, and BD were taken into account. The soil quality score for each sample has been provided in Table 3.4.

	Son Quanty Score										
S. No.	OM	BD	PH	EC	Total Score	Recommendation					
S01	33	2	13	11	60						
S02	44	2	13	11	71						
S03	33	2	13	11	60						
S04	33	13	13	11	71	The Soil Requires Major and					
S05	33	2	13	11	60	Immediate Treatment					
S06	33	13	20	11	78						
S07	33	2	20	11	67						
S08	33	2	13	11	60						

Table 3.4 Assigning Scores to Soil Quality Indicators
Soil Quality Score

OM (Organic Matter) BD (Bulk Density) PH (Potential of Hydrogen) EC (Electrical Conductivity)

Figure 3.5 Map Showing Soil Sampling Locations within 5 km Radius around Proposed Project Site

Figure 3.6 Soil Erosion map within 5 km Radius around the Proposed Project Site

	Parameters	Unit	S1	S2	S 3	S4	S5	S6	S7	S8
					Physical Para	meters				
1	pH (10% Solution)	-	7.65	7.91	7.90	7.60	7.55	7.29	7.21	7.30
2	Electrical Conductivity at (10% solution)	μs/cm	138	131	142	150	153	160	182	195
3	Texture	%	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam
4	Sand	%	41.88	44.18	42.20	38.87	41.82	39.20	43.90	41.73
5	Slit	%	25.38	24.46	22.70	24.20	22.40	26.10	22.90	24.10
6	Clay	%	32.74	31.36	35.10	36.93	35.78	34.70	33.20	34.17
7	Water content	%	0.98	0.98	1.05	1.18	1.10	1.22	1.02	1.15
8	Water Holding Capacity	%	41.39	44.20	46.50	40.36	43.50	42.60	43.66	44.10
9	Bulk Density	g/cc	2.73	2.85	2.76	1.15	1.83	1.50	2.50	1.95
10	Organic Matter	%	1.93	2.52	2.36	1.66	1.83	1.42	1.95	2.04
					Chemical P	arameters				
11	Alkalinity	mg/kg	18	15	22	18	24	20	36	40
12	Calcium (Ca)	mg/kg	13	10	13	16	15	19	14	15
13	Magnesium (Mg)	mg/kg	8	5	6	9	9	11	8	7
14	Sodium (Na)	mg/kg	12	9	12	14	13	16	20	24
15	Potassium(K)	mg/kg	1.21	0.98	1	1.45	1.56	1.63	2	1.85
16	Chlorides	mg/kg	19	14	18	22	22	25	32	38
17	Copper (Cu)	mg/kg	BLQ(LOQ =0.05)	$\begin{array}{c} BLQ(LOQ = \\ 0.05) \end{array}$	$\begin{array}{c} BLQ(LOQ = \\ 0.05) \end{array}$	BLQ(LOQ= 0.05))	$\begin{array}{c} BLQ(LOQ = \\ 0.05) \end{array}$	BLQ(LOQ =0.05)	$\begin{array}{c} BLQ(LOQ=\\ 0.05) \end{array}$	$\begin{array}{c} BLQ(LOQ=\\ 0.05) \end{array}$
18	Iron	mg/kg	0.98	1.21	1.10	2.12	1.95	1.46	1.55	1.62
			BLQ=B	elow Limit of	Quantification;	LOQ= Limit c	of Quantification	n		

Table 3.5 Soil Quality of the Study Area

Source: Sampling Results by Ekdant Enviro Services (P) Ltd in association with GTMS.

3.2 WATER ENVIRONMENT

The water resources, both surface and groundwater play a significant role in the development of the area. The purpose of this study is to assess the baseline quality of surface and ground water.

S.No	Location	Distance & Direction	Coordinates					
SW01	K.Pudukottai	0.60 Km NE	10°27'16.24"N, 77°51'56.01"E					
BW01	Bommankottai	0.72 Km SW	10°26'43.78"N, 77°51'23.71"E					
BW02	Kothapulli	0.44 Km SE	10°26'60.00"N, 77°51'49.34"E					
BW03	Silvarpatty	5.48 Km SE	10°24'57.41"N, 77°53'40.61"E					
BW04	Kamatchipuram	3.23 Km SW	10°26'29.22"N, 77°49'51.32"E					
BW05	Gurunathanaickanur	4.79 Km NE	10°29'14.24"N,77°53'11.97"E					
OW01	Sakkalanaicken Patty	0.50 Km W	10°27'14.64"N,77°51'15.56"E					
OW02	Gurunathanaickanur	2.55 Km NW	10°28'30.47"N, 77°51'8.54"E					

 Table 3.6 Water Sampling Locations

Source: On-site monitoring/sampling by Ekdant Enviro Services (P) Ltd in association with GTMS.

3.2.1 Surface Water Resources and Quality

K.Pudukottai Lakes are the one prominent surface water resources present in the study area. These are ephemeral in nature, which convey water only after rainfall events. Three surface water samples, known as SW1 were collected from the three surface water bodies to assess the baseline water quality. Table 3.6 summarizes surface water quality data of the three samples. Results for surface water samples in the Table 3.7 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

3.2.2 Ground Water Resources and Quality

Groundwater in the study area occurs in the crystalline rocks of Archaean age and recent alluvium. The movement of the groundwater is controlled by the intensity of weathering and fracturing of crystalline rocks. Dug wells and bore wells are the most common ground water abstraction structures in the area. However, in dry season, people in the study area heavily rely on bore wells for their domestic and agriculture purpose. seven groundwater samples, known as OW01, OW02, BW01, BW02, BW03, BW04 and BW05, were collected from bore wells and open wells were analysed for physico-chemical conditions, heavy metals and bacteriological contents in order to assess baseline quality of ground water. Ground water sampling locations and their distance and direction from the lease area are provided in Table 3.5 and the spatial occurrence of water sampling locations is shown in Figure 3.7. Table 3.7 summarizes ground water quality data of the seven samples. Results for ground water samples in the Table 3.8 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

Figure 3.7 Map Showing Water Sampling Locations within 5 km Radius around Proposed Project Site

S.	Danamatans	Unita	Results							Standards as Per IS 10500: 2012	
No.	rarameters	Units	BW1	BW2	BW3	BW4	BW5	OW1	OW2	Acceptable Limit	Permissible Limit
1	рН@ 25°С	-	7.36	7.51	7.27	7.31	7.91	7.63	7.80	6.5-8.5	6.5-8.5
2	Electrical Conductivity @ 25°C	µs/cm	1451	1746	1361	1135	943	831	1041	Not specified	Not specified
3	Turbidity	NTU	0.20	0.10	0.10	0.10	0.10	0.10	0.10	1	5
4	Total Suspended Solids	mg/l	BLQ (LOQ=1.0)	Not specified	Not specified						
5	Total Dissolved Solids	mg /l	870	1014	792	684	538	472	590	500	2000
6	Total Hardness as CaCo ₃	mg/l	581	792	426	418	381	293	457	200	600
7	Chloride as Cl-	mg/l	93	98	90	103	99	118	83	250	1000
8	Sulphate as SO4-	mg/l	29	46	35	63	40	42	36	200	400
9	Silica (Reactive) as SiO ₂	mg/l	43	41	50	27	29	31	39	-	-
10	Total Iron as Fe	mg/l	0.08	0.11	0.09	0.04	0.03	0.03	0.04	0.3	0.3
11	Total Coliforms	MPN/100ml	80	60	40	50	70	60	50	Shall not be any l	detectable in 00ml
12	E. coli	MPN/100ml	Absent	Shall not be any 1	detectable in 00ml						

Table 3.7 Ground Water Quality Result

Source: Sampling Results by Ekdant Enviro Services (P) Ltd, in association with GTMS

			Result	Standards as Per IS 10500: 2012					
S. No.	Parameter	Unit							
		Cint	SW1	Acceptable	Permissible Limit				
				Limit					
1	pH@ 25°C	-	7.48	6.5-8.5	6.5 - 8.5				
2	Electrical Conductivity		010						
2	@ 25°C	µs/cm	810	-	-				
3	Turbidity	NTU	4.60	1	5				
4	Total Suspended Solids	mg/l	16	-	-				
5	Total Dissolved Solids	mg /l	490	500	2000				
6	Total Hardness as	ma/1	190	200	600				
0	CaCO ₃	mg/1		200	000				
7	Chloride as Cl ⁻	mg/l	85	250	1000				
8	Sulphate as SO ₄ -	mg/l	38	200	400				
9	Total Iron as Fe	mg/l	0.13	0.3	0.3				
10	Silica Reactive as SiO ₂	mg/l	29	-	-				
	Μ	icrobiological	Examinat	ion					
11	Total Coliforms		70	Shall not be	detectable in any				
11		MPN/100ml	/0	100ml					
10	E. coli	MDNI/100-1	Abaat	Shall not be	detectable in any				
12		IVIPIN/100ml	Absent	100ml					
	MPN- Most Probable Number								

Table 3.8 Surface Water Quality Result

Source: Sampling Results by Ekdant Enviro Services (P) Ltd, in association with GTMS

3.2.3 Hydrogeological Studies

The area within 2 km radius consists of numerous open wells and deep wells. Groundwater level data were collected both from open wells and bore wells for two monsoon seasons as discussed in the following section.

Rainfall

Rainfall data for the study area were collected for the period of 1981-2022 (<u>POWER Data Access</u> <u>Viewer (nasa.gov)</u>). Long term monthly average rainfall was estimated from the data of 1981-2022 and compared with the monthly rainfall for the year 2022, shown in Figure 3.8. The Figure 3.7 shows that rainfall is generally high in the months of September through November in every year. Particularly, rainfall in June, July, August, November and December of 2022 is higher than the previous years.

Figure 3.8 Long-Term Monthly Average Rainfall Vs Monthly Rainfall 3.2.3.1 Groundwater Levels and Flow Direction

Data regarding depth to groundwater levels are essential to infer the direction of groundwater movement within the study area. Knowledge of groundwater flow direction is must in choosing location for background groundwater quality monitoring well and in locating recharge and discharge areas. Therefore, data regarding groundwater elevations were collected from 9 open wells and 9 bore wells at various locations within 2 km radius around the proposed project area.

The open well water level data thus collected onsite are provided in Tables 3.9 According to the data, average depths to the static water table in open wells range from 20.6 to 23.6 m in monsoon. The bore well data thus collected onsite are provided in Tables 3.10. The average depths to static potentiometric surface in bore wells for during the study period vary from 62.3 to 66.2 m. Data on the depths to static water table and potentiometric surface were used to draw contour lines connecting groundwater elevation (also known as equipotential hydraulic head) to determine the groundwater flow direction perpendicular to the contour lines.

From the maps of open well groundwater flow direction shown in Figures 3.9, it is understood that most of the open well and groundwater for the study period flows towards the open well number 4 located in east direction of the proposed project site. The groundwater flow maps in Figures 3.10 show that most of the bore well groundwater for the study period flow towards the bore well number 8 and 6. It is located in east direction of the proposed project site. On the basis of the groundwater flow information, both open wells and bore wells mentioned above can be chosen for water quality monitoring purpose as the wells may get easily affected by the contaminants resulting from the mining activities of the sites in future.

Station	Depth	to Static Wa	Latitude	Longitude		
ID	Nov 2021	Dec 2021	Jan 2022	Average	Latitude	Longitude
OW01	21.5	22.7	23.0	22.4	10°27'10.37"N	77°51'31.02"E
OW02	22.0	23.5	24.6	23.4	10°27'19.93"N	77°51'33.95"E
OW03	21.0	22.5	23.5	22.3	10°26'38.71"N	77°51'17.53"E
OW04	20.5	21.0	22.5	21.3	10°26'53.01"N	77°51'36.40"E
OW05	22.5	23.7	24.5	23.6	10°27'23.95"N	77°51'7.70"E
OW06	20.5	21.7	22.5	21.6	10°27'5.83"N	77°52'3.14"E
OW07	22.0	23.5	24.7	23.4	10°27'33.33"N	77°52'28.98"E
OW08	19.5	20.5	21.8	20.6	10°27'38.64"N	77°52'3.27"E
OW09	21.5	22.7	23.5	22.6	10°27'42.05"N	77°51'46.70"E

Table 3.9 Water Level of Open Wells within 2 km Radius

Source: Onsite monitoring data

Table 3.10 Water Level of Bore Wells within 2 km Radius

Station	Depth	to Static Pot	entiometric Su			
Station		BG	Latitude	Longitude		
ID.	Nov 2021	Dec 2021	Jan 2022	Average		
BW01	64.5	63.5	62.0	63.3	10°26'43.81"N	77°51'23.68"E
BW02	63.5	62.5	61.0	62.3	10°26'29.77"N	77°52'3.72"E
BW03	65.5	64.0	63.0	64.2	10°27'22.02"N	77°52'13.51"E
BW04	68.0	66.0	64.5	66.2	10°27'1.55"N	77°51'22.43"E
BW05	66.5	64.5	64.0	65.0	10°26'23.15"N	77°51'13.53"E
BW06	66.0	64.5	63.0	64.5	10°26'57.22"N	77°52'22.88"E
BW07	63.5	62.5	61.0	62.3	10°27'33.21"N	77°51'19.57"E
BW08	66.0	63.5	62.0	63.8	10°27'1.06''N	77°51'49.57"E
BW09	65.5	64.0	62.5	64.0	10°27'7.08"N	77°51'3.82"E

Source: Onsite monitoring data

Figure 3.9 Open Well Static Groundwater Elevation Map Showing Direction of Groundwater Flow

Figure 3.10 Borewell Static Groundwater Elevation Map Showing Direction of Groundwater Flow

3.2.3.2 Electrical Resistivity Investigation

Electrical resistivity investigation is especially useful in the areas where there are no adequate exploratory well data about the aquifer conditions. The present study makes use of vertical electric sounding (VES) to delineate earth's subsurface layers. The electrical resistivity investigation uses four electrodes set up where current is sent through outer electrodes into the ground and the inner electrodes measure the potential difference.

Result

The Geophysical VES data obtained from the project site have been shown in Table 3.11. The field data obtained from a detailed geophysical investigation were plotted using excel spreadsheet for interpretation. The plot for the purpose of interpretation has been shown in Figure 3.11.

	Location Coordinates - 10°27'8.09"N 77°51'31.55"E									
S. No.	AB/2	MN/2	Geometrical	Resistance in	Apparent					
	(m)	(m)	Factor (G)	Ω	Resistivity in Ω m					
1	2	2	11.78	13.248	156.061					
2	4	2	49.46	6.127	303.041					
3	6	5	112.26	3.937	441.968					
4	8	5	200.18	2.798	560.104					
5	10	5	75.36	8.997	678.014					
6	15	10	173.49	5.188	900.066					
7	20	10	310.86	3.558	1106.04					
8	25	10	487.49	2.603	1268.94					
9	30	10	274.75	5.001	1374.02					
10	35	10	376.8	3.883	1463.11					
11	40	10	494.55	3.160	1562.78					
12	45	10	628	2.683	1684.92					
13	50	10	777.15	1.943	1710.13					
14	60	20	453.6	2.213	1922.1					
15	70	20	989.1	2.651	1003.82					
16	80	20	1256	2.196	2758.18					
17	90	20	1554.3	1.846	2869.24					
18	100	20	1653.6	2.213	3659.42					

 Table 3.11 Vertical Electrical Sounding Data

Figure 3.11 Graph Showing Occurrence of Water Bearing Fracture Zones at the Depth of 70 m Below Ground Level in Proposed Project

The rock formation of low resistivity values indicates occurrence of water at the depth of about 70 m below ground level. The maximum depth proposed for the proposed project is 45m below ground level. Therefore, the mining operation will not affect the aquifer throughout the entire mine life period.

3.3 AIR ENVIRONMENT

The baseline studies on air environment include identification of specific air pollutants and their existing levels in ambient air. The sources of air pollution in the region are mostly due to vehicular traffic, dust arising from unpaved village road and domestic & agricultural activities.

3.3.1 Meteorology

3.3.1.1 Climatic Variables

A temporary meteorological station was installed at the project sites by covering cluster quarries. The station was installed at a height of 3 m above the ground level as there are no obstructions facilitating flow of wind, wind speed, wind direction, humidity and temperature. Meteorological data obtained from the onsite monitoring station are provided in Table 3.12.

According to the onsite data, the temperature in November,2021 varied from 20.33 to 30.68° C with the average of 24.58°C; in December, 2021 from 14.32 to 30.30° C with the average of 23.16°C; and in January ,2022 from 16.54 to 32.19° C with the average of 23.94°C. In November,2021, relative humidity ranged from 62.25 to 99.44 % with the average of 89.49%; in December, 2021, from 58.00 to 100 % with the average of 86.54%; and in

January,2022, from 46.19 to 100% with the average of 82.64%. The wind speed in November,2021 varied from 0.17 to 6.72 m/s with the average of 2.55 m/s; in December, 2021 from 0.48 to 6.58 m/s with the average of 2.78m/s; and in January,2022 from 0.12 to 6.80 m/s with the average of 2.79 m/s. In November,2021, wind direction varied from 0.15 to 359.82⁰ with the average of 183.55⁰; in December, 2021, from 0.64 to 359.75⁰ with the average of 87.78⁰; and in January,2022, 1.16 to 359.01⁰ with the average of 88.33⁰. In November,2021, surface pressure varied 97.37 to 98.64 kPa with the average of 98.18 kPa; in December, 2021, from 98.10 to 99.04 kPa with the average of 98.58 kPa; and in January,2022, from 97.94 to 99.00 kPa with the average of 98.51 kPa

S. No.	Parameter	S	November,2021	December,2021	January,2022
1	Τ	Min	20.33	14.32	16.54
	1 emperature	Max	30.68	30.30	32.19
	(0)	Avg	24.58	23.16	23.94
		Min	62.25	58.00	46.19
2	Humidity (%)	Max	99.44	100.00	100.00
	Tunnenty (70)	tty (%) Avg	89.49	86.54	82.64
3		Min	0.17	0.48	0.12
	(m/s)	Max	6.72	6.58	6.80
		Avg	2.55	2.78	2.79
	Wind Dimestion	Min	0.15	0.64	1.16
4	(degree)	Max	359.82	359.75	359.01
	(degree)	Avg	183.55	87.78	88.33
5	Granfana	Min	97.37	98.10	97.94
	Surface Pressure(kPa)	Max	98.64	99.04	99.00
	r ressure(Kr a)	Avg	98.18	98.58	98.51

Table 3.12 Onsite Meteorological Data

Source: On-site monitoring/sampling by **Ekdant Enviro Services (P) Ltd** in association with GTMS **3.3.1.2 Wind Pattern**

Wind pattern will largely influence the dispersion pattern of air pollutants and noise from the proposed project site. Analysis of wind pattern requires hourly site-specific data of wind speed and direction. Two types of wind rose were generated: historical seasonal wind rose for the period of November through January of the years from 2017 to 2021 and the seasonal wind rose for the study period of November 2021 through January 2022. The wind rose diagrams thus produced are shown in Figures 3.12-3.13. Figure 3.14 reveals that:

 \bullet The measured average wind velocity during the study period is 2.71 m/s.

✤ Predominant wind was dominant in the directions ranging from Northeast to Southwest.

Figure 3.12 Windrose Diagram for 2017-2018 and 2018-2019 (November to January)

Figure 3.14 Onsite Wind Rose Diagram

3.3.2 Ambient Air Quality Study

The baseline ambient air quality is studied through a scientifically designed ambient air quality monitoring network considering the followings

- Meteorological condition on synoptic scale
- Topography of the study area
- Representatives of regional background air quality for obtaining baseline status
- ✤ Location of residential areas representing different activities
- ✤ Accessibility and power availability

Parameter	Method	Instrument
PM _{2.5}	Gravimetric method	Fine Particulate Sampler
-	Beta attenuation method	1
PM10	Gravimetric method	Respirable Dust Sampler
1 10110	Beta attenuation method	
SO2	IS-5182 Part II	Respirable Dust Sampler with gaseous
502	(Improved West & Gaeke method)	attachment
	IS-5182 Part II	Respirable Dust Sampler with gaseous
NOx	(Jacob & Hoch heiser modified	attachment
	method)	
Free Silica	NIOSH – 7601	Visible Spectrophotometry

Table 3.13 Methodology and Instrument Used for AAQ Analysis

Source: Sampling Methodology based Ekdant Enviro Services (P) Ltd & CPCB Notification Table 3.14 National Ambient Air Quality Standards

			Concentration in ambient air			
a N	D U ()	Time	Industrial,	Ecologically		
S. No.	Pollutant	Weighted	Residential,	Sensitive area		
		Average	Rural & other	(Notified by		
			areas	Central Govt.)		
1	$SO_2 (\mu g/m^3)$	Annual Avg.*	50.0	20.0		
1		24 hours**	80.0	80.0		
2	NO $(\mu \alpha/m^3)$	Annual Avg.	40.0	30.0		
2	$NO_{\rm X}$ (µg/m)	24 hours	80.0	80.0		
3	$PM_{10} (\mu g/m^3)$	Annual Avg.	60.0	60.0		
5	$PM_{10} (\mu g/m^2)$	24 hours	100.0	100.0		
1	$PM_{2} = (ug/m^{2})$	Annual Avg.	40.0	40.0		
	1 1v12.5 (µg/1115)	24 hours	60.0	60.0		

Source: NAAQS CPCB Notification No. B-29016/20/90/PCI-I Dated: 18th Nov 2009

Methodology

Ambient air quality monitoring was carried out with a frequency of two samples per week at seven (7) locations, adopting a continuous 24 hourly (3 shift of 8-hour) schedule for the period **November 2021 to January**, 2022 as per the CPCB, MoEF guidelines and notifications.

It was ensured that the equipment was placed preferably at a height of at least 3 ± 0.5 m above the ground level at each monitoring station for negating the effects of wind-blown ground dust. The equipment was placed at space free from trees and vegetation which otherwise act as a sink of pollutants resulting in lower levels in monitoring results. The baseline data of ambient air were generated for PM_{2.5}, PM₁₀, sulphur dioxide (SO₂) and nitrogen dioxide (NO_x). The sampling locations are shown in Figure 3.15 and average concentrations of air pollutants are summarized in Tables 3.15 and are shown in Figures 3.16-3.20.

S.	Location	Monitoring	Distance	D: ()	
No.	Code	Locations	(km)	Direction	Coordinates
1	AAQ-1	Nearby Core zone	0.36	SSE	10°26'56.12"N,77°51'40.58"E
2	AAQ-2	Bommankottai	0.73	SSW	10°26'43.45"N,77°51'23.90"E
3	AAQ-3	Tadankottai	1.27	SE	10°26'34.69"N, 77°52'1.39"E
4	AAQ-4	K.Pudukkottai	1.13	NE	10°27'22.30"N,77°52'12.39"E
5	AAQ-5	Kannadampatty	2.73	NNE	10°28'33.29"N, 77°52'7.01"E
6	AAQ-6	Silvarpatty	3.97	SE	10°26'21.65"N,77°53'38.70"E
7	AAQ-7	Kamatchipuram	4.45	SW	10°25'42.04"N,77°49'32.46"E

Table 3.15 Ambient Air Quality (AAQ) Monitoring Locations

Source: On-site monitoring/sampling by **Ekdant Enviro Services (P) Ltd** in association with GTMS **Results**

As per the monitoring data, $PM_{2.5}$ ranges from 19.20 µg/m³ to 22.30 µg/m³; PM_{10} from 37.30 µg/m³ to 41.30 µg/m³; SO_2 from 5.5 µg/m³ to 7.9µg/m³; NO_x from 17.30µg/m³ to 21.20g/m³. The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

Air quality Index

The AQI shows that the air quality of the study area falls within good category 40 causing minimal impact to human health.

Figure 3.15 Map Showing Ambient Air Quality Monitoring Station Locations Around 5 km Radius from Proposed Project Site

	PM2.5]	PM10	
Station	Max	Min	Moon	98 th	Max	Min	Moon	98 th
ID	IVIAX	191111	WICan	Percentile	wax	191111	Mean	Percentile
AAQ1	21.6	17.2	19.69	21.46	36.8	32.1	35.24	36.8
AAQ2	24.9	21.5	23.42	24.85	41.6	37.1	39.55	41.46
AAQ3	23.4	18.2	20.80	21.74	43.8	38.6	40.94	43.29
AAQ4	22.7	19.9	21.06	22.51	38.7	35.7	37.11	38.65
AAQ5	19.7	17.1	18.04	19.60	38.9	35.6	37.52	38.80
AAQ6	23.6	22.1	21.57	23.37	43.9	40.1	42.20	43.71
AAQ7	20.2	18.3	19.37	20.06	45.6	42.2	43.80	45.55
		SO ₂					NOx	
AAQ1	6.9	4.1	5.35	6.9	18.4	14.1	16.13	18.17
AAQ2	8.2	5.1	6.54	8.06	26.2	20.3	23.51	26.20
AAQ3	9.6	7.1	8.49	9.44	17.9	15.8	16.73	17.72
AAQ4	6.2	4.2	5.00	6.06	26.7	22.2	25.10	26.52
AAQ5	7.9	5.2	6.50	7.76	18.9	14.2	16.23	18.76
AAQ6	8.8	7.1	7.74	8.70	21.2	18.1	19.20	21.02
AAQ7	7.6	6	6.62	7.55	19.1	16.3	18.05	18.72

Table 3.16 Summary of AAQ Result

Figure 3.16 Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM_{2.5} Measured from 7 Air Quality Monitoring Stations within 5 km Radius

Figure 3.17 Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM₁₀ Measured from 7 Air Quality Monitoring Stations within 5 km Radius

Figure 3.18 Bar Chart Showing Maximum, Minimum, and Average Concentrations of SO₂ Measured from 7 Air Quality Monitoring Stations within 5 km Radius

Figure 3.19 Bar Chart Showing Maximum, Minimum, and Average Concentrations of NOx Measured from 7Air Quality Monitoring Stations within 5km Radius

Figure 3.20 Bar Chart Showing Maximum, Minimum, And Average Concentrations of Pollutants in Atmosphere within 5 km Radius

3.4 NOISE ENVIRONMENT

The vehicular movement on road and mining activities is the major sources of noise in the study area. The main objective of noise monitoring in the study area is to establish the baseline noise level, which will in turn be used to assess the impact of the total noise expected to be generated during the project operations around the project site. In order to assess the ambient noise levels within the study area, noise monitoring was carried out at Seven (7) locations covering commercial, residential, rural areas within the radius of 5 km. Details of noise monitoring locations are provided in Table 3.17 and spatial occurrence of the locations are shown in Figure 3.23.

S.	Location	Monitoring	Distance	Direction	Coordinates
No	Code	Locations	in km		
1	N1	Nearby Core zone	0.16	Ε	10°27'5.43"N,77°51'41.62"E
2	N2	Bommankottai	0.67	S	10°26'44.25"N,77°51'27.92"E
3	N3	Tandankottai	1.21	SE	10°26'38.31"N,77°52'2.27"E
4	N4	K. Pudukottai	0.97	NE	10°27'17.78"N,77°52'8.03"E
5	N5	Sakkalanaicken Patty	0.55	W	10°27'7.26"N,77°51'12.00"E
6	N6	Semmadaipatty	4.72	NW	10°27'41.14"N,77°48'58.69"E
7	N7	Silvarpatty	5.41	E	10°26'29.00"N,77°54'30.53"E

Table 3.17 Noise Monitoring Locations

Source: On-site monitoring/sampling by **Ekdant Enviro Services (P) Ltd** in association with GTMS

Table 3.18	Ambient	Noise	Quality	Result
-------------------	---------	-------	---------	--------

Station ID	Location	Environmental setting	Average day noise level (dB(A))	Average night noise level (dB(A))	Day time (6.00 AM – 10.00 PM)	Night time (10.00 PM – 6.00 AM)
		Standard (Lee	n in dB (A))			
N1	Nearby Core zone	Industrial Area	46.0	39.1	75	70
N2	Bommankottai		40.04	31.27		
N3	Tandankottai		39.02	30.94		
N4	K. Pudukottai	Residential	38.20	31.10		
N5	Sakkalanaicken Patty	Area	39.21	31.51	55	45
N6	Semmadaipatty		47.2	39.3		
N7	Silvarpatty		40.1	38.6		

Source: On-site monitoring/sampling by Ekdant Enviro Services (P) Ltd in association with GTMS

The Table 3.18 shows that noise level in core zone was 45.8 dB (A) Leq during day time and 34.2 dB(A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 36.9 to 45.6dB (A) Leq and during night time from 28.0 to 39.0dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB. The results are also depicted below in Figures 3.21 and 3.22.

Figure 3.21 Bar Chart Showing Day Time Noise Levels Measured in Core and Buffer Zones

Figure 3.23 Map Showing Noise Level Monitoring Station Locations around 5 km Radius from Proposed Project Site

3.5 BIOLOGICAL ENVIRONMENT

An ecological survey was conducted to collect the baseline data regarding flora and fauna in the study area of 10 km radius. Data were collected from different sources, i.e., government departments such as District Forest Office and Government of Tamil Nadu. On the basis of onsite observations as well as forest department records the checklist of flora and fauna was prepared.

Methodology

Sampling locations were selected with reference to topography, land use, vegetation pattern, etc. In this study, quadrats of 25 m \times 25 m were laid down to assess trees and quadrats of 10 m \times 10 m were laid down for shrubs, as shown in Figure 3.24.

Figure 3.24 Quadrates Sampling Methods of Flora *Phyto-Sociological Studies*

Phyto sociological parameters, such as **Density, Frequency, Abundance and Importance Value Index** of individual species were determined in randomly placed quadrat of different sizes in the study area, as shown in Table 3.19. Relative frequency, and relative density were calculated and the sum of these three represented Importance Value Index (IVI) for various species. For shrubs, herbs and grasses, *Density, Frequency, Relative Density & Relative Frequency were found*. Sample plots were selected in such a way to get maximum representation of different types of vegetation and plots were laid out in different part of the study area of 10 km radius. Analysis of the vegetation will help in determining the relative importance of each species in the study area and to reveal if any economically valuable species is threatened in the process.
Table 3.19 Calculation of Density, Frequency (%), Dominance, Relative Density,Relative Frequency, Relative Dominance & Important Value Index

Parameters	Formula							
Density	Total No. of individuals of species/ Total No. of Quadrats used in							
	sampling							
Frequency (%)	(Total No. of Quadrats in which species occur/ Total No. of Quadrats							
	studied)100							
Abundance	Total No. of individuals of species/ No. of Quadrats in which they occur							
Relative Density	(Total No. of individuals of species/Sum of all individuals of all							
	species) * 100							
Relative	(Total No. of Quadrats in which species occur/ Total No. of Quadrats							
Frequency	occupied by all species) * 100							
Important Value	Relative Density + Relative Frequency							
Index								

Shannon – Wiener Index, Evenness and Richness

Biodiversity index is a quantitative measure that reflects how many different types of species, there are in a dataset, and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed among those types of species. The value of biodiversity index increases both when the number of types increases and when evenness increases. For a given number of type of species, the value of a biodiversity index is maximized when all type of species is equally abundant. The corresponding formulas are given in Table 3.20

Description	Formula
Species diversity –	$\mathbf{H} = \sum [(\mathbf{p}_i)^* \mathbf{In}(\mathbf{p}_i)]$
Shannon – Wien	Where pi: Proportion of total sample represented by species
Index	i: number of individuals of species i/ total number samples
Evenness	H/H max, $H_{max} = ln(s) = maximum diversity possible$
	S=No. of species
Species Richness	RI = S-1/ln N
by Margalef	Where $S = Total$ Number of species in the community
	N = Total Number of individuals of all species in the Community

 Table 3.20 18 Calculation of Species Diversity by Shannon – Wiener Index, Evenness and Richness

3.5.1 Flora

Flora study was conducted using the above said methodology to inventory the existing terrestrial plants in both core and buffer zones. Details of plants have been described in the succeeding sections. Photographs showing various species are provided in Figure 3.25.

Flora in mine lease area (core zone)

Taxonomically a total of 28 species belonging to 21 families have been recorded from the core mining lease area. The lease applied area is flat terrain. Based on habitat classification of the enumerated plants the majority of species were Herbs & Climbers& Grass (14) followed by trees (5) Shrub (9) The result of core zone of flora studies shows that Fabaceae and Lamiaceae are the main dominating species in the study area it mentioned in Table 3.21. Species Richness (margalef Index) in the study area it mentioned in Table 3.21 to 3.23

The Flora in lease area and 300 m radius (buffer zone)

There is no agricultural land nearby lease area. It contains a total of 34 species belonging to 21 families have been recorded from the buffer zone. 6 Trees (17%), 5 Shrubs (17%) and Herbs and Climbers, Creeper, Grass & Cactus 20 (64%) were identified. Details of flora with the scientific name details and of diversity species Richness index were mentioned in Table 3.24-26. There is no threatened species in 300 m radius.

Flora in 10 km radius buffer zone

Similar type of environment also in buffer area but with more flora diversity compare than core zone area because nearby agriculture land but presently there are no cultivation. It contains a total of 74 species belonging to 35 families have been recorded from the buffer zone. The floral (74) varieties among them Trees (28), shrubs (14) and thirty herbs, Climbers Creepers and Grasses, (32) were identified. The result of buffer zone of flora studies shows that Fabaceae and Poaceae, Cucurbitaceae are the main dominating species in the study area it mentioned in Table 3.19

	Table 3.21 Flora in Core Zone												
S.No	Local Name	Scientific name	Family name	Total No. of species	Total of Quadrants with	Total No. of Quadrants	Density	Frequency (%)	Abundance	Relative Density	Relative Frequency	IVI	IUCN Conservation Status
				TR	EE								
1	Karuvelam maram	Vachellia nilotica	Fabaceae	3	1	5	0.6	20	3.0	25.00	14.29	39.29	Not Listed
2	Vembu	Azadirachta indica	Meliaceae	2	2	5	0.4	40	1.0	16.67	28.57	45.24	Not Listed
3	Mullumaram	Acacia tortilis	Fabaceae	2	1	5	0.4	20	2.0	16.67	14.29	30.95	Not Listed
4	Velikathan	Prosopis juliflora	Fabaceae	4	2	5	0.8	40	2.0	33.33	28.57	61.90	Not Listed
5	Arappu maram	Albizia Amara	Fabaceae	1	1	5	0.2	20	1.0	8.33	14.29	22.62	Not Listed
	I	I		SHR	UBS				1				
1	Erukku	Calotropis gigantea	Apocynaceae	7	6	10	0.7	60	1.2	11.86	12.00	23.86	Not Listed
2	Unichedi	Lantana camara	Verbenaceae	6	5	10	0.6	50	1.2	10.17	10.00	20.17	Not Listed
3	Aavarai	Senna auriculata	Babesiae	6	5	10	0.6	50	1.2	10.17	10.00	20.17	Not Listed
4	Mullukkarai	Catunaregam spinosa	Rubiaceae	7	6	10	0.7	60	1.2	11.86	12.00	23.86	Not Listed
5	Sitraamutti.	Hibiscus micranthus	Malvaceae	5	4	10	0.5	40	1.3	8.47	8.00	16.47	Not Listed
6	thuthi	Abutilon indicum	Malvaceae	8	6	10	0.8	60	1.3	13.56	12.00	25.56	Not Listed
7	Milk multiplier	Euphorbia cooperi	Euphorbiaceae	7	7	10	0.7	70	1.0	11.86	14.00	25.86	Not Listed

66 | Page

8	Kattamanaku	Jatropha gossypiifolia	Euphorbiaceae	6	5	10	0.6	50	1.2	10.17	10.00	20.17	Not Listed
9	Canthium	Canthium coromandelicum	Rubiaceae	7	6	10	0.7	60	1.2	11.86	12.00	23.86	Not Listed
	HERBS & Climbers												
1	Thumbai	Leucas aspera	Lamiaceae	8	7	15	0.5	46.7	1.1	8.33	8.24	16.57	Not Listed
2	Nerunji	Tribulus terrestris	Zygophyllales	6	5	15	0.4	33.3	1.2	6.25	5.88	12.13	Not Listed
3	Korai	Cyperus rotundus	Cyperaceae	4	3	15	0.3	20.0	1.3	4.17	3.53	7.70	Not Listed
4	Poolai poondu	Aerva lanata	Amaranthaceae	7	6	15	0.5	40.0	1.2	7.29	7.06	14.35	Not Listed
5	Arugampul	Cynodon dactylon	Poaceae	9	8	15	0.6	53.3	1.1	9.38	9.41	18.79	Not Listed
6	tulasi	Ocimum tenuiflorum	Lamiaceae	10	9	15	0.7	60.0	1.1	10.42	10.59	21.00	Not Listed
7	Kolunje	Tephrosia Purporea	Fabaceae	7	6	15	0.5	40.0	1.2	7.29	7.06	14.35	
8	Thumbai	Leucas Aspera	Lamiaceae	9	8	15	0.6	53.3	1.1	9.38	9.41	18.79	Not Listed
9	Vishnukrandi	Evolvulus alsinoides	Convolvulaceae	6	5	15	0.4	33.3	1.2	6.25	5.88	12.13	Not Listed
10	Parthineyam	Parthenium hysterophorus	Asteraceae	8	7	15	0.5	46.7	1.1	8.33	8.24	16.57	Not Listed
11	Perandai	Cissus quadrangularis L.	Vitaceae	7	6	15	0.5	40.0	1.2	7.29	7.06	14.35	Not Listed
12	Spiky Mother	Sansevieria pearsonii	Cactaceae	7	7	15	0.5	46.7	1.0	7.29	8.24	15.53	Not Listed
13	Kovakkai	Coccinia grandis	Cucurbitaceae	6	6	15	0.4	40.0	1.0	6.25	7.06	13.31	Not Listed
14	Vaelipparuthi	Pergularia daemia	Asclepiadaceae	2	2	15	0.1	13.3	1.0	2.08	2.35	4.44	Least concern

S.No	Common	Scientific name	No. of	Pi	In (Pi)	Pi x In (Pi)					
	name		Species								
		Tree	1			1					
1	Karuvelam maram	Vachellia nilotica	3	0.25	-1.39	-0.35					
2	Vembu	Azadirachta indica	2	0.17	-1.79	-0.30					
3	Mullumaram	Acacia tortilis	2	0.17	-1.79	-0.30					
4	Velikathan	Prosopis juliflora	4	0.33	-1.10	-0.37					
5	Arappu maram	Albizia Amara	1	0.08	-2.48	-0.21					
H (Sh	annon Diversity In	ndex) = 1.52				•					
	Shrubs										
1	Erukku	Calotropis gigantea	7	0.15	-1.88	-0.29					
2	Unichedi	Lantana camara	6	0.13	-2.04	-0.27					
3	Aavarai	Senna auriculata	6	0.13	-2.04	-0.27					
4	Mullukkarai	Catunaregam spinosa	7	0.15	-1.88	-0.29					
5	Sitraamutti.	Hibiscus micranthus	5	0.11	-2.22	-0.24					
6	thuthi	Abutilon indicum	8	0.17	-1.75	-0.30					
7	Milk multiplier	Euphorbia cooperi	7	0.15	-1.88	-0.29					
H (Sh	annon Diversity In	ndex) =1.94				•					
	•	herbs									
1	Thumbai	Leucas aspera	8	0.08	-2.48	-0.21					
2	Nerunji	Tribulus terrestris	6	0.06	-2.77	-0.17					
3	Korai	Cyperus rotundus	4	0.04	-3.18	-0.13					
4	Poolai poondu	Aerva lanata	7	0.07	-2.62	-0.19					
5	Arugampul	Cynodon dactylon	9	0.09	-2.37	-0.22					
6	tulasi	Ocimum tenuiflorum	10	0.10	-2.26	-0.24					
7	Kolunje	Tephrosia Purporea	7	0.07	-2.62	-0.19					
8	Thumbai	Leucas Aspera	9	0.09	-2.37	-0.22					
9	Vishnukrandi	Evolvulus alsinoides	6	0.06	-2.77	-0.17					
10	Parthineyam	Parthenium	0	0.08	-2.48	-0.21					
	-	hysterophorus	0								
11	Perandai	Cissus quadrangularis L.	7	0.07	-2.62	-0.19					
12	Spiky Mother	Sansevieria pearsonii	7	0.07	-2.62	-0.19					
13	Kovakkai	Coccinia grandis	6	0.06	-2.77	-0.17					
14	Vaelipparuthi	Pergularia daemia	2	0.02	-3.87	-0.08					
H (Sh	annon Diversity I	ndex) = 3.00									

Table 3.22 Calculation of Species Diversity in Core Zone

Table 3.23 S	pecies Richness i	in Core Zone
---------------------	-------------------	--------------

Details	Н	H max	Evenness	Species Richness (margalef Index)								
Tree	1.52	1.61	0.94	1.61								
Shrubs	1.94	1.95	1.00	1.57								
Herbs	2.59	2.64	0.98	2.85								

Table 3.24 Flo	ra in 300) m Radius
----------------	-----------	------------

S.No.	Local Name	Scientific name	Family name	Total No. of species	Total of Quadrants with snecies	Total No. of Ouadrants	Density	Frequency (%)	Abundance	Relative Density	Relative Frequency	IVI	IUCN Conservation Status
				Tr	·ees								
1	Karuvealan	Prosopis juliflora	Fabaceae	4	3	5	0.8	60.0	1.3	16.7	16.7	33.3	Not Listed
2	Palm tree	Borassus flabellifer	Fabaceae	3	2	5	0.6	40.0	1.5	12.5	11.1	23.6	Not Listed
3	Vembu	Azadirachta indica	Meliaceae	5	4	5	1.0	80.0	1.3	20.8	22.2	43.1	Not Listed
4	Vealli vealan	Vachellia leucophloea	Babesiae	4	3	5	0.8	60.0	1.3	16.7	16.7	33.3	least concern
5	Unjai maram	Albizia amara	Fabaceae	3	2	5	0.6	40.0	1.5	12.5	11.1	23.6	Not Listed
6	Vetpalai	Wrightia tinctoria	Apocynaceae	5	4	5	1.0	80.0	1.3	20.8	22.2	43.1	Not Listed
				Shi	rubs						1		
1	Erukku	Calotropis gigantea	Apocynaceae	8	7	10	0.8	70.0	1.1	21.6	21.9	43.5	Not Listed
2	Uumaththai	Datura metel	Solanaceae	6	5	10	0.6	50.0	1.2	16.2	15.6	31.8	Not Listed
3	Thuthi	Abutilon indicum	Meliaceae	7	6	10	0.7	60.0	1.2	18.9	18.8	37.7	Not Listed
4	Avarai	Senna auriculata	Fabaceae	9	8	10	0.9	80.0	1.1	24.3	25.0	49.3	Not Listed
5	Unichadi	Lantana camara	Verbenaceae	7	6	10	0.7	60.0	1.2	18.9	18.8	37.7	Not Listed
	Herbs												
1	Nayuruv	Achyranthes aspera	Amaranthaceae	6	5	15	0.4	33.3	1.2	3.9	3.8	7.7	Not Listed
L													

2	Nearunji mull	Tribulus zeyheri Sond	Zygophyllaceae	7	6	15	0.5	40.0	1.2	4.6	4.5	9.2	Not Listed
3	Pill	Cenchrus ciliaris	Poaceae	9	8	15	0.6	53.3	1.1	5.9	6.1	12.0	Not Listed
4	Pulapoo	Aerva lanata	Amaranthaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed
5	Kapok bush	Aerva javani	Amaranthaceae	6	5	15	0.4	33.3	1.2	3.9	3.8	7.7	Not Listed
6	Rail poondu	Croton bonplandianus	Euphorbiaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed
7	Yanai neariji	pedalium murex	Pedaliaceae	7	6	15	0.5	40.0	1.2	4.6	4.5	9.2	Not Listed
8	Perandai	Cissus quadrangularis	Vitaceae	10	9	15	0.7	60.0	1.1	6.6	6.8	13.4	Not Listed
9	Thumbai chadi	Leucas aspera	Lamiaceae	6	5	15	0.4	33.3	1.2	3.9	3.8	7.7	Not Listed
10	Umathai	Datura metel	Solanaceae	7	6	15	0.5	40.0	1.2	4.6	4.5	9.2	Not Listed
11	Sethamutti	Sida cordata	Malvaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed
12	Kolunji	Tephrosia purpurea	Fabaceae	9	8	15	0.6	53.3	1.1	5.9	6.1	12.0	Not Listed
13	Ishappukol Vitai	Plantago coronopus	Plantaginaceae	6	5	15	0.4	33.3	1.2	3.9	3.8	7.7	Not Listed
14	Vealiparuthi	Pergularia daemia	Apocynaceae	7	6	15	0.5	40.0	1.2	4.6	4.5	9.2	Not Listed
15	Seppu nerinji	Indigofera linnaei Ali	Fabaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed
16	Sapathikalli	Opuntia ficus-indica	Cactaceae	9	8	15	0.6	53.3	1.1	5.9	6.1	12.0	Not Listed
17	Pal kodi	Cynanchum viminale	Apocynaceae	6	5	15	0.4	33.3	1.2	3.9	3.8	7.7	Not Listed
18	Ilia perandai	Cissus rotundifolia	Vitaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed
19	Katralai	Aloe vera	Asphodelaceae	9	8	15	0.6	53.3	1.1	5.9	6.1	12.0	Not Listed
20	Seammulli	Barleria prionitis	Acanthaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed

S.No.	Common name	Scientific name	No. of	Pi	In (Pi)	Pi x in (Pi)						
			Species									
		Trees	•		•							
1	Karuvealan	Prosopis juliflora	4	0.17	-1.79	-0.30						
2	Palm tree	Borassus flabellifer	3	0.13	-2.08	-0.26						
3	Vembu	Azadirachta indica	5	0.21	-1.57	-0.33						
4	Vealli vealan	Vachellia leucophloea	4	0.17	-1.79	-0.30						
5	Unjai maram	Albizia amara	3	0.13	-2.08	-0.26						
6	Vetpalai	Wrightia tinctoria	5	0.21	-1.57	-0.33						
		H (Shannon Diversity	Index) $=1.7$	77		L						
	Shrubs											
1	Erukku	Calotropis gigantea	8	0.22	-1.53	-0.33						
2	Uumaththai	Datura metel	6	0.16	-1.82	-0.29						
3	Thuthi	Abutilon indicum	7	0.19	-1.67	-0.32						
4	Avarai	Senna auriculata	9	0.24	-1.41	-0.34						
5	Unichadi	Lantana camara	7	0.19	-1.67	-0.32						
		H (Shannon Diversity	Index) =1.6	50	1	I						
		Herbs										
1	Nayuruv	Achyranthes aspera	6	0.04	-3.23	-0.13						
2	Nearunji mull	Tribulus zeyheri Sond	7	0.05	-3.08	-0.14						
3	Pill	Cenchrus ciliaris	9	0.06	-2.83	-0.17						
4	pulapoo	Aerva lanata	8	0.05	-2.94	-0.15						
5	kapok bush	Aerva javani	6	0.04	-3.23	-0.13						
6	Rail poondu	Croton bonplandianus	8	0.05	-2.94	-0.15						
7	Mookuthi poondu	pedalium murex	7	0.05	-3.08	-0.14						
8	Perandai	Cissus quadrangularis	10	0.07	-2.72	-0.18						
9	Thumbai chadi	Leucas aspera	6	0.04	-3.23	-0.13						
10	Umathai	Datura metel	7	0.05	-3.08	-0.14						
11	Sethamutti	Sida cordata	8	0.05	-2.94	-0.15						
12	Kolunji	Tephrosia purpurea	9	0.06	-2.83	-0.17						
13	Ishappukol Vitai	Plantago coronopus	6	0.04	-3.23	-0.13						
14	Vealiparuthi	Pergularia daemia	7	0.05	-3.08	-0.14						
15	Seppu nerinji	Indigofera linnaei Ali	8	0.05	-2.94	-0.15						
16	Sapathikalli	Opuntia ficus-indica	9	0.06	-2.83	-0.17						
17	Pal kodi	Cynanchum viminale	6	0.04	-3.23	-0.13						

Table 3.25 Calculation of Species Diversity in 300 m Radius

18	Ilia perandai	Cissus rotundifolia	8	0.05	-2.94	-0.15			
19	Katralai	Aloe vera	9	0.06	-2.83	-0.17			
20SeammulliBarleria prionitis80.05-2.94-0.15									
H (Shannon Diversity Index) =2.98									

	Table 3.26 Species Richness (Index) in 300 m radius						
Details	Н	H max	Evenness	Species Richness			
Trees	1.77	1.79	0.99	1.57			
Shrubs	1.60	1.61	0.99	1.11			
Herbs	2.98	3.00	1.00	3.78			

Table 3.27 Flora in Buffer Zone

S.No	Local Name	Scientific name	Family name
		TREE	
1	Vembu	Azadirachta indica	Meliaceae
2	Karuvelam maram	Vachellia nilotica	Fabaceae
3	Arai nelli	Phyllanthus acidus	Phyllanthaceae
4	Nuna maram	Morinda citrifolia	Rubiaceae
5	Puliyamaram	Tamarindus indica	Fabaceae
6	Nochi	Vitex negundo	Lamiaceae
7	Moonghil	Bambusa bambo	Poaceae
8	Thailam maram	Eucalyptus tereticornis	Myrtaceae
9	Manga	Mangifera indica	Anacardiaceae
10	Athi	Ficus recemosa	Moraceae
11	Thekku	Tectona grandis	Lamiaceae
12	Kadukkai	Terminalia chebula	Combretaceae
13	Navalmaram	Sygygium cumini	Myrtaceae
14	Pappali maram	Carica papaya L	Caricaceae
15	pongam	Millettia pinnata	Fabaceae
16	Alamaram	Ficus benghalensis	Moraceae
17	Коууа	Psidium guajava	Myrtaceae
18	Ezhumuchaipalam	Citrus lemon	Rutaceae
19	Murunga maram	Moringa oleifera	Moringaceae
20	Marudaani	Lawsonia inermis	Lythraceae
21	Kattu Nelli	Phyllanthus emblica	Phyllanthaceae
22	Nettilinkam	Polylathia longifolia	Annonaceae

23	Vaagai	Albizia lebbeck	Fabaceae
24	Panai maram	Borassus flabellifer	Arecaceae
25	seethapazham	Annona reticulata	Annonaceae
26	Arasanmaram	Ficus religiosa	Moraceae
27	Ka <u>r</u> ivēppilai maram	Murraya koenigii	Rutaceae
28	Vazhaimaram	Musa acuminata	Musaceae
		SHRUBS	
1	Avarai	Senna auriculata	Fabaceae
2	Erukku	Calotropis gigantea	Apocynaceae
3	Kattamanakku	Jatropha curcas	Euphorbiaceae
4	Thuthi	Abutilon indicum	Meliaceae
5	Sundaika	Solanum torvum	Solanaceae
6	Chaturakalli	Euphorbia antiquorum	Euphorbiaceae
7	Neermulli	Hydrophila auriculata	Acanthaceae
8	Thottalchinungi	Mimosa pudica	Fabaceae
9	Kundumani	Abrus precatorius	Fabaceae
10	Nithyakalyani	Cathranthus roseus	Apocynaceae
11	Chemparuthi	Hibiscu rosa-sinensis	Malvaceae
12	Arali	Nerium indicum	Apocynaceae
13	Virali	Dodonaea viscosa	Sapindaceae
14	Nocchi	Vitex negundo	Lamiaceae
	HERI	BS&CLIMBER &CREEPER &GR	ASSES
1	Parttiniyam	Parthenium hysterophorus	Asteraceae
2	Kuppaimeni	Acalypha indica	Euphorbiaceae
3	Arugampul	Cynodon dactylon	Poaceae
4	Thulasi	Ocimum tenuiflorum	Lamiaceae
5	Korai	Cyperus rotundus	Cyperaceae
6	Thumbai	Leucas aspera	Lamiaceae
7	Kunnakora	Cyperus compressus	Cyperaceae
8	Keelaneeli	Phyllanthus niruri	Phyllanthaceae
9	Kanamvazha	Commelina benghalensis	Commelinaceae
10	Mukurattai	Boerhavia diffusa	Nyctaginaceae

11	Veetukaayapoondu	Tridax procumbens	Asteraceae
12	Nai kadugu	Celome viscosa	Cleomaceae
13	Manathakkali	Solanumnigrum	Solanaceae
14	Kovai	Coccinia grandis	Cucurbitaceae
15	Kovakkai	Trichosanthes dioica	Cucurbitaceae
16	Karkakartum	Clitoria ternatea	Fabaceae
17	Perandai	Cissus quadrangularis	Vitaceae
18	Nannari	Hemidesmus indicus	Apocynaceae
19	Pavarkai	Momordica charantia	Cucurbitaceae
20	Sirupunaikkali	Passiflora foetida	Passifloraceae
21	Korai	Cyperus rotandus	Cyperaceae
22	Vallikeerai	Ipomoea aquatica	Convolvulaceae
23	Siru puladi	Desmodium triflorum	Fabaceae
24	Elikkathilai	Merremia gangetica	Convolvulaceae
25	Pullu	Eragrostis ferruginea	Poaceae
26	Arugampul	Cynodon dactylon	Poaceae
27	Chevvarakupul	Chloris barbata	Poaceae
28	milkvetch	Astragalus balearicus	Fabaceae
29	basora prieta	Waltheria indica	Malvaceae
30	Sulli Flower	Barleria prionitis L	Acanthaceae
31	Cappattukkalli	Opuntia dillenii	Cactaceae
32	Carrion Flower	Stapelia gettliffei	Apocynaceae.

Aquatic Vegetation

The Field Survey for Assessing the Aquatic Vegetation Was Also Undertaken During the Study Period. The List of Aquatic Plants Observed in The Study Area Is Given in Table 3.28

S. No.	Scientific Name	Common Name	Vernacular Name (Tamil)	IUCN Red List of Threatened Species
1	Eichornia Crassipe	Water Hyacinth	Agayatamarai	NA
2	Aponogetonnatans	Floating Lace Plant	Kottikizhangu	NA
3	Nymphaea Nouchali	Blue Water Lily	Nellambal	LC
4	Carex Cruciata	Cross Grass	Koraipullu	NA
5	Cynodon Dactylon	Scutch Grass	Arugampullu	LC
6	Cyperus Exaltatus	Tall Flat Sedge	Koraikizhangu	LC

*Lc- Least Concern, Na-Not Yet Assessed

Food chain

The food chain in aquatic ecosystems often begins with the algae or phytoplankton producers, and then the zooplankton that feed on them. This type of food chain is found in Noyal River by phytoplankton, zooplankton, fish and Human.

Ex: Phytoplankton→Zooplankton→Small fish→Large fish

Forest Vegetation

The Thovar R.F located in 1.98km south west and palani R.F 9.17km south west frome the lease area. The biosphere reserves or wildlife sanctuaries or National parks or Important Bird Areas (IBAs v), and migratory routes of fauna. There are no 10km radius. The area under study (Mine lease area and the 10 km buffer zone) is not ecologically sensitive.

Endangered and endemic species as per the IUCN Red List

There are no rare, endangered and endemic species found in the study area. There are no biosphere reserves or wildlife sanctuaries or National parks or Important Bird Areas (IBAs), ecologically sensitive zone.

3.5.2 Fauna

The faunal survey was carried out for Mammals, Birds, Reptiles, Amphibians and Butterflies. There are no rare, endangered, threatened (RET) and endemic species present in core area.

S. No.	Taxa	Method of Sampling	References
1	Insects	Random walk Opportunistic observations	Pollard (1977);
	mseets	Kandom wark, Opportunistic observations	Kunte (2000)
2	Reptiles	Visual encounter survey (Direct Search)	Daniel J.C (2002)
3	Amphibians	Visual encounter survey (Direct Search)	
4	Mammals	Tracks and Signs	Menon V (2014)
5	Avian	Random walk, Opportunistic observations.	Grimmett R (2011);
			Ali S (1941)

 Table 3.29 Methodology applied during survey of fauna

Fauna in Core Zone

A total of 34 varieties of species observed in the Core zone of K. Pudukottai Village, Rough stone quarry (Table 3.29) among them numbers of Insects 14(31%), Reptiles 7 (15%), Mammals 3 (6%) Avian 10 (31%). A total of 27 families have been recorded from the core mining lease area. None of these species are threatened or endemic in the study area and surroundings. There is no Schedule I species and four species are under schedule IV according to Indian wild life Act 1972. A total nine species of bird were sighted in the mining lease area. There are no critically endangered,

endangered, vulnerable and endemic species were observed. Details of fauna in core zone with the scientific name were mentioned in Table. 3.30.

Fauna in Buffer Zone

Taxonomically a total of 48 species belonging to 34 families have been recorded from the buffer mining lease area. Based on habitat classification the majority of species were Birds 13(35%) followed by Insects 7 (20%), Reptiles 9 (19%), Mammals 3 (6%) and, Amphibians 3 (6%). Aves16(33%) There are four Schedule II species and twenty-six are under schedule IV according to Indian wild life Act 1972. A total 16 species of bird were sighted in the mining lease area. There are no critically endangered, endangered, vulnerable and endemic species were observed. Details of fauna in core zone with the scientific name were mentioned in Table. 3.30.

	Common		Schedule		IUCN	
S No	Common nome/English	Saiantifia Nama	Family Nama	list wildlife	Red	
5. NO	name/English	Scientific Name	ranny Name	Protection	List	
	Iname			act 1972	data	
	INSECTS					
1	Indian honey	Apis cerana	Apidae	Schedule IV	LC	
	bee					
2	Grasshopper	Hieroglyphus sp	Acrididae	NL	LC	
3	Blue tiger	Tirumala limniace	Nymphalidae	Schedule IV	LC	
4	Striped tiger	Danaus plexippus	Nymphalidae	Schedule IV	LC	
5	Jewel beetle	Eurythyrea	Buprestidae	Schedule IV	NA	
		austriaca				
6	Dragonfly	Ceratogomphus	Gomphidae	Schedule IV	LC	
		pictus				
7	Red-veined	Sympetrum	Libellulidae	NL	LC	
	darter	fonscolombii				
8	Ant	Camponotus	Formicidae	NL	NL	
		Vicinus				
9	Tawny coster	Danaus chrysippus	Nymphalidae	Schedule IV	LC	
10	Common Indian	Euploea core	Nymphalidae	Schedule IV	LC	
	crow					
11	Milkweed	Danainae	Nymphalidae	NL	LC	
	butterfly					
12	Praying mantis	Mantis religiosa	Mantidae	NL	NL	
13	Common Tiger	Danaus genutia	Nymphalidae	Schedule IV	LC	
14	Lesser grass	Zizina Otis indica	Lycaenidae	Schedule IV	LC	
	blue					
		REPT	ILES			

 Table 3.30 Fauna in Core Zone

1	Common house	Hemidactylus	Gekkonidae	NL	LC	
	gecko	frenatus				
2	Fan-Throated Lizard	Sitanaponticeriana	Agamidae	NL	LC	
3	Brahminy skink	Eutropis carinata	Scincidae	NL	LC	
4	Olive keel back	Atretium	Natricidae	Sch II (Part	LC	
	water snake	schistosum		II)		
5	Garden lizard	Calotes versicolor	Agamidae	NL	LC	
6	Rat snake	Ptyas mucosa	Colubridae	Sch II (Part	LC	
				II)		
7	Common skink	Mabuya carinatus	Scincidae	NL	LC	
		MAMN	MALS			
1	Indian palm squirrel	Funambulus palmarum	Sciuridae	Schedule IV	LC	
2	Asian Small	Herpestes javanicus	Herpestidae	Schedule II	LC	
	Mongoose					
3	Indian Field	Mus booduga	Muridae	Schedule IV	LC	
	Mouse					
		AV	ES			
1	Cattle egret	Accipiter badius	Ardeidae	NL	LC	
2	Shikra	Dicrurus	Accipitridae	NL	LC	
		macroceRCus				
3	Black drongo	Francolinus	Dicruridae	Schedule IV	LC	
		pondicerianus				
4	Grey Francolin	Eudynamys	Phasianidae	Schedule IV	LC	
5	Koel	Meropsorientalis	Cucalidae	Schedule IV	LC	
6	Asian green bee-eater	Acridotheres tristis	Meropidae	NL	LC	
7	Common myna	Coturnix coturnix	Sturnidae	NL	LC	
8	Common Quail	Psittacula krameri	Phasianidae	Schedule IV	LC	
9	Rose-ringed parkeet	Corvussplendens	Psittaculidae	NL	LC	
10	House crow	Amaurornis	Corvidae	NL	LC	
		phoenicurus				
AMPHIBIANS						
1	Indian	Sphaerotheca	Dicroglossidae	Schedule IV	LC	
	Burrowing frog	breviceps	Diciógiossidae			
2	Green Pond Frog	Rana hexadactyla	Ranidae	Schedule IV	LC	
3	Tiger Frog	Hoplobatrachus		Schedule IV	LC	
		tigerinus (Rana	Chordata			
		tigerina)				
L	I		1	1		

*NE- Not Evaluated; LC- Least Concern, NT -Near Threatened, T-Threatened

S.	Common	Family Name	Scientific Name	Schedule List	IUCN
No.	Name/English			Wildlife	Red
	Name			Protection Act	List
				1972	Data
		l	NSECTS		
1	Tawny coster	Nymphalidae	Danaus chrysippus	ScheduleIV	LC
2	Milkweed	Nymphalidae	Danainae	NL	LC
	butterfly				
3	Blue tiger	Nymphalidae	Tirumala limniace	ScheduleIV	LC
4	Common	Nymphalidae	Euploea core	ScheduleIV	LC
	Indian crow				
5	Green marsh	Libellulidae	Orthetrum sabina	NL	LC
	hawk				
6	Mottled	Peridae	Catopsilia pyranthe	NL	LC
	emigrant				
7	Striped tiger	Nymphalidae	Danaus plexippus	ScheduleIV	LC
8	Ant	Formicidae	Camponotus Vicinus	NL	NL
9	Red-veined	Libellulidae	Sympetrum	NL	LC
	darter		fonscolombii		
10	Lesser grass	Lycaenidae	Zizina Otis indica	ScheduleIV	LC
	blue				
11	Praying	Mantidae	mantis religiosa	NL	NL
	mantis				
12	Grasshopper	Acrididae	Hieroglyphus sp	NL	LC
13	Common	Nymphalidae	Danaus genutia	Schedule IV	LC
	Tiger				
		R	EPTILES		
1	Chameleon	Chamaeleonidae	Chameleon zeylanicus	Sch II (PartII)	LC
2	Garden lizard	Agamidae	Calotes versicolor	NL	LC
3	Green Vine	Colubridae	Ahaetulla nasuta	ScheduleIV	LC
	snake				
4	Common	Gekkonidae	Hemidactylus frenatus	NL	LC
	house gecko				
5	Rat snake	Colubridae	Ptyas mucosa	Sch II (Part II)	LC
6	Fan-Throated	Agamidae	Sitanaponticeriana	NL	LC
	Lizard				

Table 3.31 Fauna in Buffer Zone

7	Indian cobra	Elapidae	Naja naja	ScheduleIV	LC			
		Ν	IAMMALS					
1	Indian palm	Sciuridae	Funambuluspalmarum	ScheduleIV	LC			
	squirrel							
2	Indian Field	Muridae	Mus booduga	ScheduleIV	LC			
	Mouse							
3	Home mouse	Muridae	Mus musculus tytleri	NL	LC			
			AVES					
1	House crow	Corvidae	Corvussplendens	NL	LC			
2	Cattle egret	Ardeidae	Bubulcus ibis	NL	LC			
3	Black drongo	Dicruridae	Dicrurus macrocercus	ScheduleIV	LC			
4	Red-vented	Pycnonotidae	Pycnonotuscafer	ScheduleIV	LC			
	Bulbul							
5	Indian pond	Ardeidae	Ardeola grayii	ScheduleIV	LC			
	heron							
6	Asian green	Meropidae	Meropsorientalis	NL	LC			
	bee-eater							
7	Small Sunbird	Nectariniidae	Nectarinia asiatica	ScheduleIV	LC			
8	Common	Sturnidae	Acridotheres tristis	NL	LC			
	myna							
9	Blue Rock	Columbidae	Columba livia	ScheduleIV	LC			
	Pigeon							
10	Common Coot	Rallidae	Fulica atra	ScheduleIV	LC			
11	Common quail	Phasianidae	Coturnix coturnix	ScheduleIV	LC			
12	Small blue	Alcedinidae	Alcedo atthis	ScheduleIV	LC			
	Kingfisher							
13	Rose-ringed	Psittaculidae	Psittacula krameri	NL	LC			
	parkeet							
14	Grey	Phasianidae	Francolinus	Schedule IV	LC			
	Francolin		pondicerianus					
15	Two-tailed	Dicruridae	Dicrurus macrocercus	ScheduleIV	LC			
	Sparrow							
16	White	Rallidae	Amaurornis	NL	LC			
	breasted		phoenicurus					
	waterhen							
	AMPHIBIANS							

1	Indian	Dicroglossidae	Sphaerotheca	ScheduleIV	LC
	Burrowing		breviceps		
	frog				
2	Green Pond	Ranidae	Rana hexadactyla	ScheduleIV	LC
	Frog				
3	Tiger Frog	Chordata	Hoplobatrachus	ScheduleIV	LC
			tigerinus (Rana		
			tigerina)		

*NL-Not listed, LC-Least concern, NT-Near threatened. 3.5.3 Agriculture & Horticulture in dindigul district

In Dindigul district three different climatic conditions prevail. Tropical climate prevails in plains, sub-tropical in lower Palani Hills and Sirumali and temperate climate prevails in Palani Hills. Due to these favourable climates, all kinds of horticultural crops are cultivated in this district. In both plains and hill the minimum temperature prevailing is 9°C and maximum temperature is 36°C. Loamy soil, clayey soil and Alluvial soil, Sandy loam and Sandy clay soil are the soil types found in the district. Major horticulture crops cultivated are, fruits crops like banana, sapota, guava and acid lime, vegetables like tomato, brinjal, bhendi, chillies, beans and cabbage, flowers like jasmine, pitchi, crossandra, nerium, chrysanthemum, tagetus, gomphrena and medicinal plants like Gloriosa.

Major Agricultural Crops 1km radius

Major horticulture crops cultivated in 1km radius are vegetables crops like tomato, brinjal, chillies, onion and turmeric. Details of major field crops and horticulture in 1km radius is given in Table. 3.32

S. No	Major crops	Scientific name	Families		
1	Sorghum	Sorghum bicolor	Poaceae		
2	Gingelly	Sesamum indicum	Pedaliaceae		
3	Groundnut	Arachis hypogaea	Legumes		
4	Sugarcane	Saccharum officinarum	Poaceae		
5	Millets	Panicum miliaceum L	Poaceae		
6	Sesame	Sesamum indicum	Pedaliaceae		
7	Cotton	Gossypium herbaceum	Malvaceae		

 Table 3.32 Major Crops in 1km radius

Major Horticulture Crops 1km radius

Horticulture includes cultivation of fruits, vegetables, nuts, seeds, herbs, sprouts, mushrooms, algae, flowers, seaweeds and non-food crops such as grass and ornamental trees and plants. It also includes plant conservation, landscape restoration, landscape and garden design.

Horticulture 1km radius

Major horticulture crops cultivated in 1km radius are fruit crops like mango, banana, and vegetables like tomato, brinjal, Veandai, chillies, onion and tapioca, spices like turmeric. Details of major field crops and horticulture cultivation in 1km radius is given in Table 3.33.

S. No	Common Name	Family						
	Major Horticultural Crops							
1	Guava	Psidium guajava	Myrtaceae					
2	Sapota	Manilkara zapota	Sapotaceae					
3	Lemon	Citrus × limon	Rutaceae					
4	Papaya	Caricaceae						
	Vegetables							
5	Onion	Allium cepa	Amaryllidaceae					
6	Tapioca	Manihot esculenta	Spurges					
7	Brinjal	Solanum melongena	Nightshade					
8	Tomato	Solanum lycopersicum	Nightshade					
9	Bottle Gourd	Lagenaria siceraria	Cucurbits					
10	Veandai kai	Abelmoschus esculentus	Mallows					
11	Moringa	Moringa oleifera	Moringaceae					

Table 3.33 Major Field Crops & Horticulture cultivation in 1km radius.

Results

Biological assessment of the site was done to identify ecologically sensitive areas and whether there are any rare, endangered, endemic or threatened (REET) species of flora & fauna in the core area as well its buffer zone to be impacted. The study has also been designed to suggest suitable mitigation measures, if necessary, for protection of wildlife habitats and conservation of REET species if any. The study found that there is no endemic, endangered migratory fauna found in the area. This area is not also a migratory path of any faunal species. Hence, this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

3.6 SOCIO ECONOMICS ENVIRONMENT

3.6.0 Introduction

An essential part of environmental study is socio-economic environment incorporating various facts related to socio-economic conditions in the area, which deals with the total environment. Socio economic study includes demographic structure of the area, provision of basic amenities viz., housing, education, health and medical services, occupation, water supply, sanitation, communication, transportation, prevailing diseases pattern as well as feature of aesthetic significance such as temples, historical monuments etc. at the baseline level. This would help in visualizing and predicting the possible impact depending upon the nature and magnitude of the

project. Socio-economic study of an area provides a good opportunity to assess the socioeconomic condition and possibly makes a change in living and social standards of the particular area benefitted due to the project.

3.6.1Objectives of the Study

The main objectives of the study are as follows:

- To know the current socio-economic condition in the region to cover the sub sectors education, health, sanitation, and water & food security.
- ◆ To recommend practical strategic interventions in the sector.
- ✤ To help in providing better living standards.
- ✤ To understand skill sets and plan for employment opportunities which shall be created.

3.6.2 Scope of Work

- ✤ To study the socio-economic environment of the area from the secondary sources
- ✤ Data collection & Analysis
- Prediction of project impact
- Mitigation Measures

3.6.3 Socio-Economic Status of Study area

K. Pudukottai is a large village located in Dindigul Taluka of Dindigul district, Tamil Nadu with total 621 families residing. The K. Pudukottai village has population of 2275 of which 1136 are males while 1139 are females as per Population Census 2011.In K. Pudukottai village population of children with age 0-6 is 234 which makes up 10.29 % of total population of village. Average Sex Ratio of K. Pudukottai village is 1003 which is higher than Tamil Nadu state average of 996. Child Sex Ratio for the K. Pudukottai as per census is 887, K. Pudukottai village has lower literacy rate compared to Tamil Nadu. In 2011, literacy rate of K. Pudukottai village was 68.99 % compared to 80.09 % of Tamil Nadu. In K. Pudukottai Male literacy stands at 79.25 % while female literacy rate was 58.89 %. As per constitution of India and Panchyati Raaj Act, K.Pudukottai village is administrated by Sarpanch (Head of Village) who is elected representative of village. Our website, don't have information about schools and hospital in K. Pudukottai village.

S. No	Particulars	Male	Female	
1	Total geographical Area		12.62 Sq. Km	
2	Total No. of Houses	621	-	-
3	Population	2,275	1,136	1,139
4	Child (0-6)	234	124	110

Table 3.34 K. Pudukottai Village Population Facts

5	Schedule Caste	393	200	193
6	Schedule Tribe	0	0	0
7	Literacy	68.99 %	79.25 %	58.89
8	Total Workers	1,420	734	686
9	Main Worker	1,331	-	-
10	Marginal Worker	89	24	65

Source: Secondary Data, District Statistical Hand book - 2019-2020.

K. Pudukottai village has total administration over 621 houses to which it supplies basic amenities such as water and sewerage. It is also authorized to build roads within village Panchayat limits and impose taxes on properties coming under its jurisdiction.

Table 3.35 Population of K. Pudukottai village

Total Population	Male Population	Female Population
2,275	1,136	1,139

3.6.4 Sex Ratio

K. Pudukottai village population of children with age 0-6 is 234 which makes up 10.29 % of total population of village. Average Sex Ratio of K. Pudukottai village is 1003 which is higher than Tamil Nadu state average of 996. Child Sex Ratio for the K. Pudukottai as per census is 887, lower than Tamil Nadu average of 943.

3.6.5 Literacy Rate of K. Pudukottai village

K. Pudukottai village population of children with age 0-6 is 234 which makes up 10.29 % of total population of village. Average Sex Ratio of K. Pudukottai village is 1003 which is higher than Tamil Nadu state average of 996. Child Sex Ratio for the K. Pudukottai as per census is 887, lower than Tamil Nadu average of 943.

Table 3.36 Literacy Rate of K. Pudukottai

S. No	Particulars	Literacy Rate	Illiteracy Rate
1	Male	71	29
2	Female	54	46
	Total	61	39

Source: Village Census Record Book - 2011

S. No.	Village Name	No of House Holds	Total Population	Male	Female	Total Literate Population	Male Literate	Female Literate	Total Illiterate Population	Male Illiterate	Female Illiterate
1	K. Pudukottai	621	2275	1136	1139	1032	454	578	1243	563	680
2	Kothapulli	1267	4816	2344	2472	2352	1453	899	2464	1356	1108
3	Silvarpatti	1842	7280	3656	3624	3642	1914	1728	3638	1793	1845
4	Alagupatti	753	2848	1387	1461	874	470	404	1974	842	1132
5	Ammapatti	546	2034	1035	999	960	550	410	1074	473	601
6	Kamachipuram	1433	5010	2503	2507	2473	1954	519	2537	1163	1374
7	Tettupatti	2279	8205	4180	4025	3970	1745	2225	4235	2053	2182
8	Kuthathupatti	2380	9270	4651	4619	5113	3520	1593	4157	1954	2203
9	Sullerumbu	1394	5255	2600	2655	2576	1765	811	2679	1094	1585
10	Neelamalaikottai	746	2712	1367	1345	1243	679	564	1469	589	880

Table 3.37 Population and Literacy Data of Study Area

Table 3.38 Workers Profile of Study Area

		Total	Mala	Fomolo	Total	Main	Main	Main	Main	Main	Non-
S. No.	Village Name	Workers	Workorg	Workorg	Main	Workers	Workers	Cultivation	Agriculture	Other	Worker
		Population	workers	workers	Workers	Male	Female	Workers	Workers	Workers	Population
1	K. Pudukottai	1420	734	686	1331	710	621	276	640	395	855
2	Kothapulli	2890	1530	1360	2692	1455	1237	640	1444	549	1926
3	Silvarpatti	4203	2300	1903	2871	1599	1272	999	1117	701	3077
4	Alagupatti	1636	874	762	1110	643	467	199	543	320	1212
5	Ammapatti	1239	658	581	163	129	34	163	693	312	795
6	Kamachipuram	3052	1601	1451	2997	1576	1421	436	1928	614	1958
7	Tettupatti	4737	2596	2114	4603	2529	2074	652	2903	1010	3468
8	Kuthathupatti	5047	2845	2202	2959	1848	1111	483	1575	811	4223
9	Sullerumbu	3027	1687	1340	2521	1478	1043	852	1009	649	2228
10	Neelamalaikottai	1808	952	856	1590	846	744	470	732	357	904

S. No	Village Name	PPS	PS	MS	SS	SSS	DC	EC	MC	MI	РТ	VTS	SSD
1	K. Pudukottai	2	2	1	1	1	-	1	-	-	1	-	-
2	Kothapulli	1	2	1	1	-	-	-	-	-	-	-	-
3	Silvarpatti	2	2	1	1	-	-	-	-	-	-	-	-
4	Alagupatti	2	3	1	1	-	-	I	-	-	-	-	-
5	Ammapatti	2	2	1	1	1	-	-	-	-	-	-	-
6	Kamachipuram	2	4	1	1	1	-	1	-	-	1	-	-
7	Tettupatti	2	3	1	1	1	-	-	-	-	-	-	-
8	Kuthathupatti	4	4	2	2	1	-	-	-	-	-	-	-
9	Sullerumbu	2	2	2	1	1	-	-	-	-	-	-	-
10	Neelamalaikottai	2	2	2	1	1	-	-	-	-	1	-	-

Table 3.39 Educational Facilities in the Study Area

3.6.6 Recommendation and Suggestion

- Awareness program should be conducted to make the population aware of education and to get a better livelihood.
- Vocational training programme should be organized to make the people self employed, particularly for women and unemployed youth.
- On the basis of qualification and skills local community may be preferred. Long term and short-term employments should be generated.
- Health care centre and ambulance facility should be provided to the population to get easy access to medical facilities. Apart from that, as these areas are prone to various diseases a hospital with modern facilities should be opened on a priority basis in a central place to provide better health facilities to the villagers around the project.
- While developing an Action Plan, it is very important to identify the population who falls under the marginalized and vulnerable groups. So that special attention can be given to these groups with special provisions while making action plans.

3.6.7 Summary & Conclusion

The socio-economic study in the study area gives a clear picture of its population, average household size, literacy rate and sex ratio etc. It is also found that a part of population is suffering from a lack of permanent job to run their day-to-day life. Their expectation is to earn some income for their sustainability on a long-term basis. The proposed project will aim to provide preferential employment to the local people there by improving the employment opportunity in the area and in turn the social standards will improve.

3.7 TRAFFIC DENSITY

The traffic survey conducted based on the transportation route of material, the Rough Stone and gravel is proposed to be transported mainly through Village Road and Dindigul – Ottanchathiam (NH-209) as shown in Table 3.40 and in Figure 3.25. Traffic density measurements were made continuously for 24 hours by visual observation and counting of vehicles under three categories, viz., Heavy motor vehicles, light motor vehicles and two/three wheelers. As traffic densities on the roads are high, two skilled persons were deployed simultaneously at each station. During each shift one person on either direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken. Direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken.

Station Code	Road Name	Distance and Direction	Type of Road
TS1	Village Road		Village Road
TS2	Dindigul – Ottanchathiam (NH-209)		Dindigul – Ottanchathiam (NH-209)

Table 3.40 Traffic Survey Locations

Source: On-site monitoring by GTMS FAE & TM

Table 3.41 Existing Traffic Volume

Station and	HN	ЛV	LM	ÍV	2/3 W	'heelers	Total DCU
Station code	No	PCU	No	PCU	No	PCU	Total PCU
TS1	45	135	54	54	89	45	234
TS2	104	285	60	60	96	48	393

Source: On-site monitoring by GTMS FAE & TM

* PCU conversion factor: HMV (Trucks and Bus) = 3, LMV (Car, Jeep and Auto) = 1 and 2/3Wheelers = 0.5

Table 3.42 Rough Stone Transportation Requirement

Transportation of Rough and Gravel per day							
Capacity of trucks No. of Trips per day Volume in PCU							
15 tonnes 8 24							

Source: Approved Mining Plan

Table 3.43 Summary of Traffic Volume

Route	Existing traffic volume in PCU	Incremental traffic due to the project	Total traffic volume	Hourly Capacity in PCU as per IRC – 1960guidelines	
Village Road	234	24	258	1200	
Dindigul – Ottanchathiam (NH-209)	393	24	417	1200	

Source: On-site monitoring analysis summary by GTMS FAE & TM

Due to these projects the existing traffic volume will not exceed the traffic limit. As per the IRC 1960 this existing village road can handle 1,200 PCU in hour and Major district road can handle 1500 PCU in hour. Hence there will not be any conjunction due to this proposed transportation

Figure 3.25 Traffic Density Map

3.8 SITE SPECIFIC FEATURES

There are no Wildlife Sanctuaries and National Park within 10 km radius. Therefore, there will be no need of acquisition/diversion of forest land. The details related to the environmentally sensitive areas around the proposed mine lease area i.e., 10 km radius and the nearby water bodies are given in the Table 3.44.

S. No.	Sensitive Ecological Features	Name	Areal Distance in km	
	National Park /	None	Nil within 10 km radius	
1	Wild life Sanctuaries	None	Nil within 10 km radius	
		Devar Malai R.F	1.89km NW	
		Kannivadi Block III Bit R.F	7.90km NW	
		Kannivadi Block I R.F	10.78km SW	
		PH Northern Slope R.F	10.85km NW	
		IdayakottaI R.F	11.23km NE	
		Karumalai R.F	13.69km NE	
		Siruvattukkadu R.F	15.35km SW	
		Kokkuparai R.F	18.95km SW	
		Chatrapatti R.F	19.95km SW	
2		Vandamalai R.F	20.16km SW	
		Vennilai R.F	20.57km SW	
	Reserve Forest	Rengamalai R.F	21.36km NE	
		Chatrapatti R.F	21.39km SE	
		Vellodu R.F	21.90km SE	
		Umaiyar R.F	22.30km SW	
		Jambuthuraikottai R.F	22.67km SW	
		Sirumalai Northwest R.F	23.02km SE	
		Sirumalai R.F	23.34km SE	
		Senkattanpatti R.F	23.50km South	
		Pambukallar R.F	23.73km SW	
		Kaniyankadu R.F	24.14km SW	
		Attamalai R.F	24.62km NW	
		Kadavumalai R.F	25.00km SW	
	Lakes/Reservoirs/	Mangarai River R.F	5.42km SW	
3	Dams/Streams/Rivers	Periandavar Oodai R.F	2.32km SE	
	Dams/ Streams/ Krvers	Rive bank R. F	9.93km East	
4	Tiger Reserve/Elephant Reserve/ Biosphere	None	Nil within 10 km radius	
5	Densely Polluted Areas	None	Nil within 10 km radius	
6	Mangroves	None	Nil within 10 km radius	
7	Mountains/Hills	None	Nil within 10 km radius	
-	Centrally Protected			
8	Archaeological Sites	None	Nil within 10 km radius	
9	Industries/ Thermal Power Plants	None	Nil within 10 km radius	
10	Defence Installation	None	Nil within 10 km radius	
Source: Si	uvev of India Toposheet	1		

Table 3.44 Details of Environmentally Sensitive Ecological Features in the Study Area

Figure 3.26 Field Study Photographs

CHAPTER IV

ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 4.0 GENERAL

In order to maintain the environmental commensuration with the mining operation, it is essential to undertake studies on the existing environmental scenario and assess the impact on different environmental components. This would help in formulating suitable management plans sustainable resource extraction. This chapter discusses the anticipated impacts on soil, land, water, air, noise, biological, and socioeconomic environments.

4.1 LAND ENVIRONMENT

4.1.1 Anticipated Impact

- Permanent or temporary change on land use and land cover.
- Change in topography of the mine lease area will change at the end of the life of the mine.
- Problems to agricultural land and human habitations due to dust, and noise caused by movement of heavy vehicles
- Degradation of the aesthetic environment of the core zone due to quarrying
- Soil erosion and sediment deposition in the nearby water bodies due to earthworks during the rainy season
- Siltation of water course due to wash off from the exposed working area

4.1.2 Mitigation Measures from Proposed Project

- The mining activity will be gradual confined in blocks and excavation will be undertaken progressively along with other mitigate measures like phase wise development of greenbelt etc.
- Construction of garland drains all around the quarry pits and construction of check dam at strategic location in lower elevations to prevent erosion due to surface runoff during rainfall and also to collect the storm water for various uses within the proposed area.
- Green belt development along the boundary within safety zone. The small quantity of water stored in the mined-out pit will be used for greenbelt
- Thick plantation will be carried out on unutilized area, top benches of mined out pits, on safety barrier, etc.,
- At conceptual stage, the land use pattern of the quarry will be changed into Greenbelt area and temporary reservoir.
- In terms of aesthetics, natural vegetation surrounding the quarry will be retained (such as in a buffer area i.e., 7.5 m safety barrier and other safety provided) so as to help minimize dust emissions.

Proper fencing will be carried out at the conceptual stage, Security will be posted round the clock, to prevent inherent entry of the public and cattle.

4.2 SOIL ENVIRONMENT

4.2.1 Anticipated Impact on Soil Environment

Following impacts are anticipated due to mining operations:

- Removal of protective vegetation cover
- Exposure of subsurface materials which are unsuitable for vegetation establishment

4.2.2 Mitigation Measures from proposed project

- Run-off diversion Garland drains will be constructed around the project boundary to prevent surface flows from entering the quarry works areas and will be discharged into vegetated natural drainage lines, or as distributed flow across an area stabilised against erosion.
- Sedimentation ponds Run-off from working areas will be routed towards sedimentation ponds. These trap sediment and reduce suspended sediment loads before runoff is discharged from the quarry site. Sedimentation ponds should be designed based on runoff, retention times, and soil characteristics. There may be a need to provide a series of sedimentation ponds to achieve the desired outcome.
- Retain vegetation Retain existing or re-plant the vegetation at the site wherever possible.
- Monitoring and maintenance Weekly monitoring and daily maintenance of erosion control systems so that they perform as specified specially during rainy season.

4.3 WATER ENVIRONMENT

4.3.1 Anticipated Impact

- Surface and ground water resources may be contaminated due to pit water discharge, domestic sewage, discharge of oil and grease bearing waste water from washing of vehicles and machineries, and washouts from surface exposure or working areas
- ✤ As the proposed project acquires 4.0 KLD of water from water vendors, it will not extract water by developing abstraction structures in the lease area. Therefore, the project will not have impact on depletion of aquifer beneath the lease area.

4.3.2 Mitigation Measures for the Proposed Project

- Rain water from mine pit will be treated in settling tanks before being used for dust suppression and tree plantation purposes
- Domestic sewage from site office will be discharged in septic tank and then directed to soak pits

- Water from the tipper wash-down facility and machinery maintenance yard will be passed through interceptor traps/oil separators prior to its reuse
- The garland drainage will be connected to settling tank and sediments will be trapped in the settling tanks and only clear water will be discharged to the natural drainage
- Periodic (every 6 month once) analysis of ground water quality of quarry pit water and ground water of nearby villages will be conducted
- Artificial recharge structures will be established in suitable locations as part of the rainwater harvesting management program.

4.4 AIR ENVIRONMENT

4.4.1 Anticipated Impact from proposed project

- During mining at various stages of activities such as excavation, drilling and transportation of materials, particular matter (PM), gases such as sulphur dioxide, oxides of nitrogen from vehicular exhaust are the main air pollutants
- Emissions of noxious gases due to incomplete detonation of explosive may sometimes pollute the air
- The fugitive dust released from the mining operations may cause effect on the mine workers who are directly exposed to the fugitive dust
- Simultaneously, the air-borne dust may travel to longer distances and settle in the villages located near the mine lease area

4.4.2 Emission Estimation

Emission resulting from different mining activities is estimated using relevant empirical formulae developed by Chaulya et al.,2001. The equations used for SPM emission estimation have been given in Table 4.1.

	Pollutant	Source	Empirical Equation	Parameters
		Туре		
Overall	SPM	Area	$E = [u0.4a0.2\{9.7+$	u = Wind speed(m/s); p = Mineral
Mine			0.01p+b/(4+0.3b)}]	production (Mt/yr); b =
				Overburden handling (Mm ³ /yr); a
				= Lease area(km^2); E = Emission
				rate(g/s).

 Table 4.1 Empirical Formula for Emission Rate from Overall Mine

The emission rate thus calculated using the empirical formula is used as one of the inputs in the AERMOD modelling. It is important to note that PM_{10} emission rate is derived from the SPM estimation in the background that PM_{10} constitutes 52% of SPM emission. The $PM_{2.5}$ and PM_{10} emission results have been given in Table 4.2.

Activity	Pollutant	Calculated Value (g/s)	Lease Area in m ²	Calculated Value (g/s/m ²)		
Overall Mine	PM _{2.5}	1.191783511	24300	4.90446E-05		
Overall Mine	PM10	0.178767527	24300	7.35669E-06		

Table 4.2 Estimated Emission Rate

4.4.2.1 Modelling of Incremental Concentration

Anticipated incremental concentration and net increase in emissions due to quarrying activities within 500 m around the project area is predicted by open pit source modelling using AERMOD Software and the incremental values of the air pollutants were added to the base line data monitored at the proposed site to predict total GLC of the pollutants, as shown in Tables 4.3-4.4.

4.4.2.2 Model Results

The post project resultant concentrations of PM_{10} , $PM_{2.5}$ is given in Tables 4.3-4.4.

9	to	L	PM 2.5 CO	oncentration	ns(μg/m ³)	on y.	: of (%)	ice
Station II	Distance	Direction	Baseline	Predicted	Total	Compariss against air qualit standarc	Magnitude change (⁹	Significan
AAQ1	0.36	SSE	19.69	3	22.69		15.2	
AAQ2	0.73	SSW	23.42	1	24.42		4.3	<u>н</u>
AAQ3	1.27	SE	20.80	1	21.8	ndarc	4.8	ican
AAQ4	1.13	NE	21.06	0.3	21.36	/ star	1.4	ignif
AAQ5	2.73	NNE	18.04	0.3	18.34	elow	1.7	lot s
AAQ6	3.97	SE	21.57	0.5	22.07	B B	2.3	Z
AAQ7	4.45	SW	19.37	0	19.37		0.0	

Table 4.3 Incremental & Resultant GLC of PM_{2.5}

 Table 4.4 Incremental & Resultant GLC of PM10

		_	PM ₁₀ concentrations(µg/m ³)		u		>		<u>گ</u>	of	(0)	ce					
Station II	Distance t core	Direction	Baseline	Predicted	Total	Compariso	against	air quality	standard	(100 ug/m	Magnitude	change (%	Significan				
AAQ1	0.36	SSE	35.24	3.7	38.94		Λ	rd			10.5	5					
AAQ2	0.73	SSW	39.55	2.5	42.05		Below standaı		elow indai		elov indai				6.3		Not
AAQ3	1.27	SE	40.94	2.5	43.44	1					6.1						

AAQ4	1.13	NE	37.11	1.3	38.41
AAQ5	2.73	NNE	37.52	1.3	38.82
AAQ6	3.97	SE	42.20	1.3	43.5
AAQ7	4.45	SW	43.80	1.3	45.1

The values of cumulative concentration i.e., background + incremental concentration of pollutant in all the receptor locations are still within the prescribed NAAQ limits without effective mitigation measures. By adopting suitable mitigation measures, the pollutant levels in the atmosphere can be controlled further.

Mitigation Measures

- The blasting operations in the cluster quarries will use shallow holes and delay detonators to reduce the ground vibrations
- Proper quantity of explosives, suitable stemming materials and appropriate delay system will be used during blasting
- Adequate safe distance from blasting will be maintained as per DGMS guidelines
- Blasting shelter will be provided as per DGMS guidelines
- Blasting operations will be carried out only during day time
- During blasting, other activities in the immediate vicinity will be temporarily stopped
- Drilling parameters like depth, diameter and spacing will be properly designed to give proper blast
- A fully trained explosives blast man (Mining Mate, Mines Foreman, 2nd Class Mines Manager/ 1st Class Mines Manager) will be appointed
- A set of shot firing rules will be drawn up and blasting shall commence outlining the detailed operating procedures that will be followed to ensure that shot firing operations on site take place without endangering the workforce or public
- Sufficient angular stemming material will be used to confine the explosive force and minimise environmental disturbance caused by venting / misfire
- The detonators will be connected in a predetermined sequence to ensure that only one charge is detonated at any one time and a NONEL or similar type initiation system will be used
- The detonation delay sequence shall be designed so as to ensure that firing of the holes is in the direction of free faces so as to minimise vibration effects
- Vibration monitoring will be carried out every 6 months to check the efficacy of blasting practices.

Figure 4.1 Predicted Incremental Concentration of PM_{2.5}

Figure 4.2 Predicted Incremental Concentration of PM₁₀

4.5 NOISE ENVIRONMENT

Noise modelling has been carried out to assess the impact on surrounding ambient noise levels. Basic phenomenon of the model is the geometric attenuation of sound. Noise at a point generates spherical waves which are propagated outwards from the source through the air at a speed of 1, 100 ft/sec with the first wave making an ever-increasing sphere with time. As the wave spreads the intensity of noise diminishes as the fixed amount of energy is spread over an increasing surface area of the sphere. The assumption of the model is based on point source relationship i.e., for every doubling of the distance the noise levels are decreased by 6 dB (A).

For hemispherical sound wave propagation through homogeneous loss free medium, one can estimate noise levels at various locations at different sources using a mathematical model based on first principle.

$$Lp_2 = Lp_1 - 20 \log (r_2/r_1) - Ae_{1,2}$$

Where,

Lp1 & Lp2 are sound levels at points located at distances r1 and r2 from the source

Ae_{1,2} is the excess attenuation due to environmental conditions.

Combined effect of all sources can be determined at various locations by logarithmic addition.

Lp total = 10 log { $10^{(Lp1/10)} + 10^{(Lp2/10)} + 10^{(Lp3/10)} + \dots$ }

4.5.1 Anticipated Impact

The attenuation due to several factors including ground reflection, atmosphere, wind speed, temperature, trees, and buildings as 35.5 dB (A), the barrier effect. Attenuation due to Green Belt has been taken to be 4.9 dB (A). The inputs required for the model are: source data, receptor data, and attenuation factor. Source data has been computed taking into account of all the machinery and activities used in the mining process. Same has been listed in Table 4.5.

S No	Machinery /	Impact on	Noise produced in dB(A) at 50 ft
5. 110.	activity	environment?	from source*
1	Blasting	Yes	94
2	Jack hammer	Yes	88
3	Compressor	No	81
4	Excavator	No	85
5	Tipper	No	84
	Total		95.8

 Table 4.5 Activity and Noise Level Produced by Machinery

The total noise to be produced by mining activity is calculated to be 95.8 dB (A). Generally, most mining operations produce noise between 95.8 dB (A).

Noise Monitoring Location	Distance From Project Site(m)	Baseline Noise Level (dBA)m During Day Time	Predicted Noise Level (dBA)	Total (dBA)
Nearby Core zone	160	46.0	39.88	46.95
Bommankottai	670	40.04	27.44	40.27
Tandankottai	1210	39.02	22.30	39.11
K. Pudukottai	970	38.20	24.22	38.37
Sakkalanaicken Patty	550	39.21	29.15	39.62
Semmadaipatty	4720	47.2	10.48	47.20
Silvarpatty	5410	40.1	9.30	40.10
NAAQ Standards	Industrial Day Residential D	v Time - 75 dB (A) ay Time -55 dB (A)	& Night Time- & Night Time-	70 dB (A) 45 dB (A)

Table 4.6 Predicted Noise Incremental Values

From the above table, it can be seen that the ambient noise levels at all the locations near habitations are within permissible limits of Residential Area (buffer zone) as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000. Therefore, no impact is anticipated on the noise environment due to the project

4.5.2 Common Mitigation Measures

The following noise mitigation measures are proposed for control of noise:

- ◆ Usage of sharp drill bits while drilling which will help in reducing noise
- Secondary blasting will be totally avoided and hydraulic rock breaker will be used for breaking boulders
- Controlled blasting with proper spacing, burden, stemming and optimum charge/delay will be maintained
- The blasting will be carried out during favourable atmospheric condition and less human activity timings by using nonelectrical initiation system
- Proper maintenance, oiling and greasing of machines will be done every week to reduce generation of noise
- Provision of sound insulated chambers for the workers working on machines (HEMM) producing higher levels of noise
- Silencers / mufflers will be installed in all machineries
- Greenbelt/Plantation will be developed around the project area and along the haul roads.
 The plantation minimizes propagation of noise
- Personal Protective Equipment (PPE) like ear muffs/ear plugs will be provided to the operators of HEMM and persons working near HEMM and their use will be ensured though training and awareness
- Regular medical check-up and proper training to personnel to create awareness about adverse noise level effects

4.5.3 Ground Vibrations

Ground vibrations due to the proposed mining activities are anticipated due to operation of mining machines like excavators, drilling and blasting, transportation vehicles, etc., however, the major source of ground vibration from the quarry is blasting. The major impact of the ground vibrations is observed on the domestic houses located in the villages nearby the mine lease area. The kutcha houses are more prone to cracks and damage due to the vibrations induced by blasting whereas RCC framed structures can withstand more ground vibrations. Apart from this, the ground vibrations may develop a fear factor in the nearby settlements.

Another impact due to blasting activities is fly rocks. These may fall on the houses or agricultural fields nearby the mining lease area and may cause injury to persons or damage to the structures. Nearest habitation from the proposed project areas is listed in below table. The ground vibrations due to the blasting in the quarry are calculated using the empirical equation.

The empirical equation for assessment of peak particle velocity (PPV) is given below:

$V = K [R/Q^{0.5}]^{-B}$

Where,

V = peak particle velocity (mm/s)

K = site and rock factor constant (500)

Q = maximum instantaneous charge (kg)

B = constant related to the rock and site (usually 1.6)

R = distance from charge (m)

Table 4.7 Predicted PPV Values due to Blasting

	Maximum	Nearest		Flv rock	Air Blast	
Location	Charge in	Habitation	PPV in	distance	Pressure	Sound
ID	kgs	in m	mm/s	in m	(kPa)	Level (dB)
P1	14.95	550	0.18	19	0.04	127

Location	Maximum	Radial	PPV in mm/s	Fly rock	Air Blast	
ID	Charge in	Distance in		distance	Pressure	Sound
	kgs	m		in m	(kPa)	Level (dB)
		100	2.74		0.34	145
P1	14.95	200	0.90	19	0.15	137
		300	0.47		0.09	133
		400	0.30		0.06	130
		500	0.20		0.05	128

Table 4.8 Predicted PPV Values due to Blasting at 100-500 m radius

4.5.3.1 Common Mitigation Measures

- The blasting operations in the cluster quarries are carried out without deep hole drilling and blasting using delay detonators which reduce the ground vibrations
- Proper quantity of explosives, suitable stemming materials and appropriate delay system will be adopted to avoid overcharging and for safe blasting
- ✤ Adequate safe distance from blasting will be maintained as per DGMS guidelines
- Blasting shelter will be provided as per DGMS guidelines
- Blasting operations will be carried out only during day time
- The charge per delay will be minimized and preferably a greater number of delays will be used per blasts
- During blasting, other activities in the immediate vicinity will be temporarily stopped
- Drilling parameters like depth, diameter and spacing will be properly designed to give proper blast
- A fully trained explosives blast man (Mining Mate, Mines Foreman, 2nd Class Mines Manager/ 1st Class Mines Manager) will be appointed
- A set of shot firing rules will be drawn up and blasting shall commence outlining the detailed operating procedures that will be followed to ensure that shot firing operations on site take place without endangering the workforce or public
- Sufficient angular stemming material will be used to confine the explosive force and minimise environmental disturbance caused by venting / misfire
- The detonators will be connected in a predetermined sequence to ensure that only one charge is detonated at any one time and a NONEL or similar type initiation system will be used

- The detonation delay sequence shall be designed so as to ensure that firing of the holes is in the direction of free faces so as to minimise vibration effects
- Appropriate blasting techniques shall be adopted in such a way that the predicted peak particle velocity shall not exceed 0.251mm/s
- Vibration monitoring will be carried out every 6 months to check the efficacy of blasting practices.

4.6 ECOLOGY AND BIODIVERSITY

4.6.1 Impact on Ecology and Biodiversity

- There shall be negligible air emissions or effluents from the project site. During loading the truck, dust generation will be likely. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly
- None of the plants will be cut during operational phase of the mine
- Most of the land in the buffer area is undulating terrain with crop lands, grass patches and small shrubs. Hence, there will be no effect on flora of the region.
- Carbon released from quarrying machineries and tippers during quarrying would be 3746 kg per day, 1011448 kg per year and 5057239 kg over five years, as provided in Table 4.9.

Table 4.9 Carbon Released During Ten Years of Rough Stone and Gravel Production

	Per day	Per year	Per five years
Fuel consumption of excavator	253	68350	341749
Fuel consumption of compressor	14.8	3996	19980
Fuel consumption of tipper	1130	305060	1525300
Total fuel consumption in liters	1398	377406	1887029
Co ₂ emission in kg	3746	1011448	5057239

4.6.2 Mitigation Measures on Flora

- During conceptual stage, the top bench will be re-vegetated by planting local /native species and lower benches will be converted into rainwater harvesting structure following completion of mining activities, which will replace habitat resources for fauna species in this locality over a longer time.
- None of the plants in the lease area will be cut during operational phase of the mine. we recommend uprooting and planting of the 10 trees along the 7.5 m safety zone to prevent environmental pollution during quarrying. As the survival rate due to uprooting was

only 30%, 100 seedlings will be procured at the rate of 10 seedlings per tree and planted in 7.5 m safety zone

Existing roads will be used; new roads will not be constructed to reduce impact on flora.

Carbon Sequestration

- To mitigate carbon emission due to mining activities, we recommend planting trees around the quarry to offset the carbon emission during quarrying. A tree can sequester 53688 kg of carbon per year. Therefore, we recommend planting large number of trees around the quarry and near school campuses, government wasteland, roadsides etc.
- As per the greenbelt development plan as recommended by SEAC (Table 4.11), about 1215 trees will be planted within three months from the beginning of mining. These trees, when grown up would sequester carbon of about 4911585 kg of the total carbon, as provided in Table 4.10.

CO ₂ sequestration in kg	108	29131	145654	
Remaining CO ₂ not sequestered in kg	3638	982317	4911585	
Trees required for environmental compensation	al compensation 40930			
Area required for environmental compensation in hectares 82				

 Table 4.10 CO2 Sequestration

G	Detering! Name of	Eamily	Common		Dust Capturing
D .	Botanical Name of	Family	Common	Category	Efficiency
NO	the Plant	Name	Name		Features
1	Azadirachta indica	Meliaceae	Neem, Vembu	Tree	Well distinct thick
2	Techtona grandis	Lamiaceae	Teak	Tree	at both the layer
2	Polyalthia	A nn an a a a a a	Nattilling	Trac	Well distinct in
5	longifolia	Annonaceae	neuming	Tiee	Palisade & Spongy
4	Albizia lebbeck	Fabaceae	Vagai	Tree	parenchyma.
5	Delenir nagia	Fabaaaa	Cemmayir-	Trac	Spongy
5	Delonix regiu	Гарасеае	konrai	Tiee	parenchyma is
6	Bauhinia racemose	Fabaceae	Aathi	Tree	present at lower
7	Cassia fistula	Fabaceae	Sarakondrai	Tree	epidermis Many
8	Aegle marmelos	Rutaceae	Vilvam	Tree	vascular bundles
9	Pongamia pinnata	Fabaceae	Pungam	Tree	arranged almost
10	Thespesia populnea	Malvaceae	Puvarasu	Tree	parallel series

Table 4.11 Recommended Species for Greenbelt Development Plan

	No. of trees proposed	No. of trees expected to	Area to be		
	for plantation	survive @ 80%	covered(m ²)		
Plantation in the	Number of plants inside the mine lease area				
construction phase	486	389	4374		
	Number of plants outside the mine lease area				
	729	583	6561		
Total	1212	972	10935		

Table 4.12 Greenbelt Development Plan

Table 4.13 Budget for Greenbelt Development Plan

	Plantation in		Capital	Recuring
Activity	the construction	Cost	Cost	Cost-per
phase(3Months)			(Rs.)	annum
		Site clearance, preparation of		
Plantation		land, digging of pits /		
inside the		trenches, soil amendments,		14580
mine lease	196	transplantation of saplings @ 200	07200	
area (in	400	per plant (capital) for plantation	97200	
safety		inside the lease area and @ 30		
margins)	per plant maintenance			
		(recurring))"		
Diantation		Avenue Plantation @ 300 per		
	720	plant (capital) for plantation	219700	21970
outside the	129	outside the lease area and @ 30	ide the lease area and @ 30	
area		per plant maintenance (recurring)		
	Total			167677

Source: EMP budget

After complete extraction of mineral, the excavated pits will be allowed to collect rainwater and seepage water to serve as a reservoir to charge the nearby wells. Fish culture will also be attempted. A bund will be constructed around the pits. In order to minimize the impact of mining on the vegetation outside the mine lease area, it is recommended that adequate protection measures must be implemented. As mining involves movement of vehicles and increased anthropogenic activities, some of the areas can be fenced by involving local people and educating them about increased benefits of such activities.

4.6.3. Anticipated Impact on Fauna

- Direct impact is anticipated on fauna of core zone
- Insignificant impact is anticipated on fauna in the buffer area due to air emissions, noise, vibration, transportation, waste water discharges, and changes in land use

4.6.4 Mitigation Measures on Fauna

Fencing will be constructed around the proposed mine lease area to restrict the entry of stray animals

✤ The workers shall be trained not to harm any wildlife near the project site

4.6.5 Impact on agriculture and horticulture crops in 1km Radius

- Problems to agricultural and horticulture land due to dust caused by movement of heavy vehicles.
- Soil erosion and sediment deposition in the nearby water bodies due to earthworks during the rainy season.
- The fugitive dust released from the mining operations may cause effect on the agricultural and horticulture land who are directly exposed to the fugitive dust.
- Dust from the quarries is likely to affect reproductive systems in nearby agricultural and horticulture lands.
- Dust from quarries can affect plant growth and reduce vegetable yields.

4.6.6 Mitigation Measures on agriculture and horticulture crops.

- The main objective of the green belt is to provide a barrier between the source of pollution and the surrounding areas. In order to compensate the loss of vegetation cover, it is suggested to carry out afforestation program mainly inside and outside of the lease area in different phases.
- It is a granite quarry, no explosives are used, there is no possibility of vibration and dust, thus there is no possibility of damage to the adjacent agricultural land.
- Quarry approach roads are sprayed with water 3 times a day to control dust. Thus, the damage to the nearby farmlands is controlled.
- A green belt will be created in 7.5 safety zone around the quarry to contain the dust from the quarry and prevent the dust from spreading to the adjacent agricultural land.
- Transportation of material will be carried out during day time and material will be covered with tarpaulin
- The speed of tippers plying on the haul road will be limited to < 20 km/hr to avoid generation of dust.</p>

Aquatic Biodiversity

Mining activities will not disturb the existing aquatic ecology as there is no effluent discharge proposed from the rough stone and gravel quarry. There is no natural perennial surface water body within the mine lease area. Hence, aquatic biodiversity is not observed in the mine lease area.

4.7 SOCIO ECONOMIC ENVIRONMENT

4.7.1 Anticipated Impact from Proposed and Existing Projects

- Dust generation from mining activity can have negative impact on the health of the workers and people in the nearby area.
- ✤ Approach roads can be damaged by the movement of tippers
- Increase in Employment opportunities both direct and indirect thereby increasing economic status of people of the region.

4.7.2 Common Mitigation Measures for Proposed Project

- Good maintenance practices will be adopted for all machinery and equipment, which will help to avert potential noise problems.
- Green belt will be developed in and around the project site as per Central Pollution Control Board (CPCB) guidelines.
- Air pollution control measure will be taken to minimize the environmental impact within the core zone.
- For the safety of workers, personal protective appliances like hand gloves, helmets, safety shoes, goggles, aprons, nose masks and ear protecting devices will be provided as per mines act and rules.
- Benefit to the State and the Central governments through financial revenues by way of royalty, tax, duties, etc.., from this project directly and indirectly.
- From above details, the quarry operations will have highly beneficial positive impact in the area

4.8 OCCUPATIONAL HEALTH AND SAFETY

Occupational health and safety hazards occur during the operational phase of mining and primarily include the following:

- Respiratory hazards
- Noise
- Physical hazards
- Explosive storage and handling

4.8.1 Respiratory Hazards

Long-term exposure to silica dust may cause silicosis the following measures are proposed:

- Cabins of excavators and tippers will be enclosed with AC and sound proof
- ✤ Use of personal dust masks will be made compulsory

4.8.2 Noise

Workers are likely to get exposed to excessive noise levels during mining activities. The following measures are proposed for implementation

- No employee will be exposed to a noise level greater than 85 dB(A) for a duration of more than 8 hours per day without hearing protection
- The use of hearing protection will be enforced actively when the equivalent sound level over 8 hours reaches 85 dB(A), the peak sound levels reach 140 dB(C), or the average maximum sound level reaches 110 dB(A)
- Ear muffs provided will be capable of reducing sound levels at the ear to at least 85 dB(A)
- Periodic medical hearing checks will be performed on workers exposed to high noise levels.

4.8.3 Physical Hazards

The following measures are proposed for control of physical hazards

- Specific personnel training on work-site safety management will be taken up;
- Natural barriers, temporary railing, or specific danger signals will be provided along rock benches or other pit areas where work is performed at heights more than 2m from ground level;
- Maintenance of yards, roads and footpaths, providing sufficient water drainage and preventing slippery surfaces with an all-weather surface, such as coarse gravel will be taken up.

4.8.4 Occupational Health Survey

All the persons will undergo pre-employment and periodic medical examination. Employees will be monitored for occupational diseases by conducting the following tests

- ✤ General physical tests
- ✤ Audiometric tests
- Full chest, X-ray, Lung function tests, Spirometric tests
- Periodic medical examination yearly
- Lung function test yearly, those who are exposed to dust
- Eye test

Essential medicines will be provided at the site. The medicines and other test facilities will be provided at free of cost. The first aid box will be made available at the mine for immediate treatment. First aid training will be imparted to the selected employees regularly. The lists of first aid trained members shall be displayed at strategic places.

4.9 MINE WASTE MANAGEMENT

No waste is anticipated from any of the proposed quarries.

4.10 MINE CLOSURE

Mine closure plan is the most important environmental requirement in mining project. The mine closure plan should cover technical, environmental, social, legal and financial aspects dealing with progressive and post closure activities. The closure operation is a continuous series of activities starting from the decommissioning of the project. Therefore, progressive mine closure plan should be specifically dealt with in the mining plan and is to be reviewed along with mining plan. As progressive mine closure is a continuous series of activities, it is obvious that the proposals of scientific mining have included most of the activities to be included in the closure plan. While formulating the closure objectives for the site, it is important to consider the existing or the pre-mining land use of the site; and how the operation will affect this activity.

The primary aim is to ensure that the following broad objectives along with the abandonment of the mine can be successfully achieved:

- To create a productive and sustainable after-use for the site, acceptable to mine owners, regulatory agencies, and the public
- ✤ To protect public health and safety of the surrounding habitation
- ✤ To minimize environmental damage
- ✤ To conserve valuable attributes and aesthetics
- ✤ To overcome adverse socio-economic impacts.

4.10.1 Mine Closure Criteria

The criteria involved in mine closure are discussed below:

4.10.1.1 Physical Stability

All anthropogenic structures, which include mine workings, buildings, rest shelters etc., remaining after mine decommissioning should be physically stable. They should present no hazard to public health and safety as a result of failure or physical deterioration and they should continue to perform the functions for which they were designed. The design periods and factors of safety proposed should take full account of extreme events such as floods, hurricane, winds or earthquakes, etc. and other natural perpetual forces like erosion, etc.,

4.10.1.2 Chemical Stability

The solid wastes on the mine site should be chemically stable. This means that the consequences of chemical changes or conditions leading to leaching of metals, salts or organic compounds should not endanger public health and safety nor result in the deterioration of environmental attributes. If the pollutant discharges likely to cause adverse impacts is predicted in advance, appropriate mitigation measures like settling of suspended solids or passive treatment to improve water quality as well as quantity, etc., could be planned. Monitoring should demonstrate that there is no adverse effect of pollutant concentrations exceeding the statutory limits for the water, soil and air qualities in the area around the closed mine.

4.10.1.3 Biological Stability

The stability of the surrounding environment is primarily dependent upon the physical and chemical characteristics of the site, whereas the biological stability of the mine site itself is closely related to rehabilitation and final land use. Nevertheless, biological stability can significantly influence physical or chemical stability by stabilizing soil cover, prevention of erosion/wash off, leaching, etc., A vegetation cover over the disturbed site is usually one of the main objectives of the rehabilitation programme, as vegetation cover is the best long-term method of stabilizing the site. When the major earthwork components of the rehabilitation programme have been completed, the process of establishing a stable vegetation community begins. For re-vegetation, management of soil nutrient levels is an important consideration. Additions of nutrients are useful under three situations.

- Where the nutrient level of spread topsoil is lower than material in-situ e.g., for development of social forestry
- Where it is intended to grow plants with a higher nutrient requirement than those occurring naturally.
- Where it is desirable to get a quick growth response from the native flora during those times when moisture is not a limiting factor. For example, development of green barriers

The Mine closure plan should be as per the approved mining plan. The mine closure is a part of approved mine plan and activities of closure shall be carried out as per the process described in mine closure plan.

CHAPTER V

ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE)

5.0 INTRODUCTION

Consideration of alternatives to a proposed project is a requirement of EIA process. During the scoping process, alternatives to a proposed project can be considered or refined, either directly or by reference to the key issues identified. A comparison of alternatives helps to determine the best method of achieving the project objectives with minimum environmental impacts or indicates the most environmentally friendly and cost-effective options.

5.1 FACTORS BEHIND THE SELECTION OF PROJECT SITE

The proposed project is site specific and has the following advantages:

- ✤ The mineral deposit occurs in a non-forest area.
- ◆ There is no habitation within the project area; hence no R & R issues exist.
- * There is no river, stream, nallah and water bodies in the applied mine lease area.
- ♦ Availability of skilled, semi-skilled and unskilled workers in this region.
- All the basic amenities such as medical, firefighting, education, transportation, communication and infrastructural facilities are well connected and accessible.
- The mining operations will not intersect the ground water level. Hence, no impact on ground water environment.
- ✤ As the proposed project area falls in seismic zone II, there is no major history of landslides, earthquake, subsidence etc., recorded in the past history.

5.2 ANALYSIS OF ALTERNATIVE SITE

No alternatives are suggested as the mine site is mineral specific.

5.3 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY

Manual open cast mining method with secondary blasting will be applied to extract rough stone and gravel in the area. The proposed mining lease areas have following advantages:

- As the mineral deposition is homogeneous and batholith formation, opencast method of working is preferred over underground method.
- The material will be loaded with the help of excavators into tractors/tippers and transported to the need by customers.
- Semi-skilled labours fit for quarrying operations are easily available around the nearby villages.

5.4 ANALYSIS OF ALTERNATIVE TECHNOLOGY

Open cast mechanized method has been selected for this project. This technology is having least gestation period, economically viable, safest and less labour intensive. The method has inbuilt flexibility for increasing or decreasing the production as per market condition.

CHAPTER VI

ENVIRONMENTAL MONITORING PROGRAMME

6.0 GENERAL

The monitoring and evaluation of environmental parameters indicates potential changes occurring in the environment, which paves way for implementation of rectifying measures wherever required to maintain the status of the natural environment. Evaluation is also a very effective tool to judge the effectiveness or deficiency of the measures adopted and provides insight for future corrections. The main objective of environmental monitoring is to ensure that the obtained results in respect of environmental attributes and prevailing conditions during operation stage are in conformity with the prediction during the planning stage. In case of substantial deviation from the earlier prediction of results, this forms as base data to identify the cause and suggest remedial measures. Environmental monitoring is mandatory to meet compliance of statutory provisions under the Environment (Protection) Act, 1986, relevant conditions regarding monitoring covered under EC orders issued by the SEIAA-TN as well as the conditions set forth under the order issued by Tamil Nadu Pollution Control Board while granting CTE/CTO.

6.1 METHODOLOGY OF MONITORING MECHANISM

Implementation of EMP and periodic monitoring will be carried out by respective project proponents. A comprehensive monitoring mechanism has been devised for monitoring of impacts due to proposed project; Environmental protection measures like dust suppression, control of noise and blast vibrations, maintenance of machinery and vehicles, housekeeping in the mine premises, plantation, implementation of Environmental Management Plan and environmental clearance conditions will be monitored by the respective mine management. On the other hand, implementation of area level protection measures like green belt development, environmental quality monitoring etc., are taken up by a senior executive who reports to their Mine Management.

An Environment monitoring cell (EMC) will be constituted to monitor the implementation of EMP and other environmental protection measures in the proposed quarry. The responsibilities of this cell will be:

- Implementation of pollution control measures
- Monitoring programme implementation
- Post-plantation care
- ✤ To check the efficiency of pollution control measures taken
- ✤ Any other activity as may be related to environment

✤ Seeking expert's advice when needed.

The environmental monitoring cell will co-ordinate all monitoring programs at site and data thus generated will be regularly furnished to the State regulatory agencies as compliance status reports.

The sampling and analysis report of the monitored environmental attributes will be submitted to the Tamil Nadu Pollution Control Board (TNPCB) at a frequency of half-yearly and yearly by the proposed project proponent. The half-yearly reports are submitted to Ministry of Environment and Forest, Regional Office and SEIAA-TN as well.

The sampling and analysis of the environmental attributes will be as per the guidelines of Central Pollution Control Board (CPCB)/Ministry of Environment, Forest and Climate Change (MoEF & CC). The Environmental Monitoring Cell will be formed for the proposed project. The structure of the cell will be as shown in Figure 6.1.

Figure 6.1 Proposed environmental monitoring chart

6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES

The mitigation measures proposed in chapter IV will be implemented so as to reduce the impact on the environment due to the operations of the proposed project. Implementation schedule of mitigation measures is given in Table 6.1.

S. No.	Recommendations	Time Period	Schedule
1	Land Environment Control Measures	Before commissioning of the project	Immediately after the commencement of project
2	Soil Quality Control Measures	Before commissioning of the project	Immediately after the commencement of project
3	Water Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
4	Air Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
5	Noise Pollution Control measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
6	Ecological Environment	Phase wise implementation every year along with mine operations	Immediately and as project progress

Table 6.1 Implementation Schedule for Proposed Project

6.3 MONITORING SCHEDULE AND FREQUENCY

Monitoring shall confirm that commitments are being met. This may take the form of direct measurement and recording of quantitative information, such as amounts and concentrations of discharges, emissions and wastes, for measurement against statutory standards. Monitoring may include socio-economic interaction, through local liaison activities or even assessment of complaints.

The environmental monitoring will be conducted in the mine operations as follows:

- ✤ Air quality
- ✤ Water and wastewater quality
- Noise levels

- ✤ Soil quality and
- ✤ Greenbelt development

The details of proposed monitoring schedule have been provided in Table 6.2.

Environment		Logation	Moi	nitoring	Paramatars	
5. 110.	Attributes	Location	Duration	Frequency		
1	A in Opelity	2 Locations (1 Core	24 hours	Once in 6	Fugitive Dust, PM _{2.5} ,	
1	Air Quanty	& 1 Buffer)	24 nours	months	PM_{10} , SO_2 and NO_x .	
2	Meteorology	At mine site before start of Air Quality Monitoring & IMD Secondary Data	Hourly / Daily	Continuous online monitoring	Wind speed, Wind direction, Temperature, Relative humidity and Rainfall	
3	Water Quality Monitoring	2 Locations (1SW & 1 GW)	-	Once in 6 months	Parameters specified under IS:10500, 1993 & CPCB Norms	
4	Hydrology	Water level in open wells in buffer zone around 1 km at specific wells	-	Once in 6 months	Depth in m BGL	
5	Noise	2 Locations (1 Core	Hourly –	Once in 6	Leq, Lmax, Lmin, Leq	
5	NOISC	& 1 Buffer)	1 Day	months	Day & Leq Night	
6	Vibration	At the nearest habitation (in case of reporting)	_	During blasting operation	Peak particle velocity	
7	Soil	2 Locations (1 Core & 1 Buffer)	_	Once in six months	Physical and chemical characteristics	
8	Greenbelt	Within the project area	Daily	Monthly	Maintenance	

Table 6.2 Proposed Monitoring Schedule Post	EC for the Proposed Quarry
---	----------------------------

Source: Guidance of manual for mining of minerals, February 2010

6.4 BUDGETARY PROVISION FOR ENVIRONMENT MONITORING PROGRAM

The cost in respect of monitoring of environmental attributes, parameter to be monitored, sampling/monitoring locations with frequency and cost provision against each proposal is shown in Table 6.3. Monitoring work will be outsourced to external laboratory approved by NABL / MoEF. The proposed recurring cost for Environmental Monitoring Programme is Rs **2,95,000** /- per annum for the proposed project site.

S. No.	Parameter	Capital Cost	Recurring Cost per annum
1	Air Quality	-	Rs 60,000/-
2	Meteorology	-	Rs 15,000/-
3	Water Quality	-	Rs 20,000/-
4	Water Level Monitoring		Rs 10,000/-
5	Soil Quality	-	Rs 20,000/-
6	Noise Quality	-	Rs 10,000/-
7	Vibration Study	-	Rs 1,50,000/-
8	Greenbelt	-	Rs 10,000/-
	Total	-	Rs 2,95,000 /-

Table 6.3 Environment Monitoring Budget

Source: Field Data

6.5 REPORTING SCHEDULES OF MONITORED DATA

The monitored data on air quality, water quality, noise levels and other environmental attributes will be periodically examined by the Cluster Mine Management Coordinator and Respective Head of Organization for taking necessary corrective measures. The monitoring data will be submitted to Tamil Nadu State Pollution Control Board in the Compliance to CTO Conditions & environmental audit statements every year to MoEF & CC and Half-Yearly Compliance Monitoring Reports to MoEF & CC Regional Office and SEIAA.

Periodical reports to be submitted to:

- ✤ MoEF & CC Half yearly status report
- TNPCB Half yearly status report
- Department of Geology and Mining: quarterly, half yearly annual reports

Besides the Mines Manager/Agent of respective project will submit the periodical reports to:

- Director of mines safety
- ✤ Labour enforcement officer
- Controller of explosives as per the norms stipulated by the department.

CHAPTER VII ADDITIONAL STUDIES

7.0 GENERAL

Additional studies deal with:

- Public Consultation for Proposed Project
- Risk Assessment
- Disaster Management Plan
- ✤ Cumulative Impact Study
- Plastic Waste Management

7.1 PUBLIC CONSULTATION FOR PROPOSED PROJECT

Application to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district was made and the public opinions on the proposed project will be updated in the final EIA/EMP report.

7.2 RISK ASSESSMENT FOR PROPOSED PROJECT

Risk Assessment is all about prevention of accidents and to take necessary steps to prevent it from happening. The methodology for the risk assessment is based on the specific risk assessment guidance issued by the Directorate General of Mine Safety (DGMS), Dhanbad, vide circular No.13 of 2002, dated 31st December, 2002. The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention. Further, mechanisms responsible for these hazards are identified and their control measures, set to timetable are recorded along with pinpointed responsibilities. The whole quarry operation will be carried out under the direction of a Qualified Competent Mine Manager holding certificate of competency to manage a metalliferous mine granted by the DGMS, Dhanbad for proposed project.

Factors of risks involved due to human induced activities in connection with these proposed mining & allied activities with detailed analysis of causes and control measures for the mine is given in Table 7.1.

S.	Risk factors	Causes of risk		Control measures
No.				
1	Accidents due	Improper	~	All safety precautions and provisions of Mine Act,
	to explosives	handling and		1952, Metalliferous Mines Regulation, 1961 and
	and heavy	unsafe working		Mines Rules, 1955 will be strictly followed during all
	mining	practice		mining operations.
	machineries.		✓	Workers will be sent to the Training in the nearby
				Group Vocational Training Centre Entry of
				unauthorized persons will be prohibited.
			✓	Fire-fighting and first-aid provisions in the mine
				office complex and mining area.
			~	Provisions of all the safety appliances such as safety
				boot, helmets, goggles etc. will be made available to
				the employees and regular check for their use.
			✓	Working of quarry, as per approved plans and
				regularly updating the mine plans.
			~	Cleaning of mine faces on daily basis shall be daily
				done in order to avoid any overhang or undercut.
			~	Handling of explosives, charging and firing shall be
				carried out by competent persons only under the
				supervision of a Mine Manager.
			~	Maintenance and testing of all mining equipment as
				per manufacturer's guidelines.
2	Drilling	Improper and	~	Safe operating procedure established for drilling
		unsafe practices;		(SOP) will be strictly followed.
		Due to high	✓	Only trained operators will be deployed.
		pressure of	✓	No drilling shall be commenced in an area where shots
		compressed air,		have been fired until the blaster/blasting foreman has
		hoses may burst;		made a thorough Examination of all places,
		Drill Rod may	~	Drilling shall not be carried on simultaneously on the
		break;		benches at places directly one above the other.

Table 7.1 Risk Assessment & Control Measures for Proposed Project

			✓	Periodical preventive maintenance and replacement
				of worn-out accessories in the compressor and drill
				equipment as per operator manual.
			✓	All drills unit shall be provided with wet drilling
				shall be maintained in efficient working in condition.
			✓	Operator shall regularly use all the personal
				protective equipment.
3	Transportation	Potential hazards	~	Before commencing work, drivers personally check
		and unsafe		the truck/tipper for oil(s), fuel and water levels, tyre
		workings		inflation, general cleanliness and inspect the brakes,
		contributing to		steering system, warning devices including
		accident and		automatically operated audio-visual reversing alarm,
		injuries		rear view mirrors, side indicator lights etc., are in
				good condition.
		Overloading of	✓	Not allow any unauthorized person to ride on the
		material		vehicle nor allow any unauthorized person to operate
				the vehicle.
		While reversal &	✓	Concave mirrors should be kept at all corners
		overtaking of	✓	All vehicles should be fitted with reverse horn with
		vehicle		one spotter at every tipping point
			✓	Loading according to the vehicle capacity
		Operator of truck	✓	Periodical maintenance of vehicles as per operator
		leaving his cabin		manual
		when it is loaded.		
4	Natural	Unexpected	~	Escape Routes will be provided to prevent
	calamities	happenings		inundation of storm water
			~	Fire Extinguishers & Sand buckets
5	Failure of Mine	Slope geometry,	✓	Ultimate or over all pit slope shall be below 60° and
	Benches and	Geological		each bench height shall be 5m.
	Pit Slope	structure		

Source: Analysed and proposed by FAE & EC

7.3 DISASTER MANAGEMENT PLAN FOR PROPOSED PROJECT

Natural disasters like Earthquake, Landslides have not been recorded in the past history as the terrain is categorized under seismic zone II. The area is far away from the sea. Hence, the disaster due to heavy floods and tsunamis are not anticipated. The Disaster Management Plan is aimed to ensure safety of life, protection of environment, protection of installation, restoration of production and salvage operations in this same order of priorities. The objective of the Disaster Management Plan is to make use of the combined resources of the mine and the outside services to achieve the following:

- Rescue and medical treatment of casualties;
- Safeguard other people;
- Minimize damage to property and the environment;
- Initially contain and ultimately bring the incident under control;
- Secure the safe rehabilitation of affected area; and
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency.

In case a disaster takes place, despite preventive actions, disaster management will have to be done in line with the descriptions below. There is an organization proposed for dealing with the emergency situations. Structure of the team has been shown in Figure 7.1.

Figure 7.1 Disaster management team layout for proposed project

The emergency organization shall be headed by emergency coordinator who will be qualified competent mines manager. In his absence senior most people available at the mine shall be emergency coordinator till arrival of mines manager. There would be three teams for taking care of emergency situations – Fire-Fighting Team, Rescue Team and Support Team.

7.3.1 Emergency Control Procedure

The onset of emergency, will in all probability, commence with a major fire or explosion or collapse of wall along excavation and shall be detected by various safety devices and also by members of operational staff on duty. If located by a staff member on duty, he (as per site emergency procedure of which he is adequately briefed) will go to nearest alarm call point, break glass and trigger off the alarms. He will also try his best to inform about location and nature of accident to the emergency control room. In accordance with work emergency procedure the following key activities will immediately take place to interpret and take control of emergency.

- On site fire crew led by a fireman will arrive at the site of incident with fire foam tenders and necessary equipment.
- Emergency security controller will commence his role from main gate office
- Incident controller shall rush to the site of emergency and with the help of rescue team and will start handling the emergency.
- Site main controller will arrive at MECR with members of his advisory and communication team and will assume absolute control of the site.
- He will receive information continuously from incident controller and give decisions and directions to:
- Incident controller
- Mine control rooms
- Emergency security controller

7.4 CUMULATIVE IMPACT STUDY

The Cumulative Impact is mainly anticipated due to drilling & blasting and excavation and transportation activities in all the quarries within the cluster and major impact anticipated is on Air & Noise Environment and Ground Vibrations due to blasting. For this cumulative study, one proposed project, known as P1, are taken into consideration. The details of P1 have been given in Table 1.3.

7.4.1 Air Environment

As the production of rough stone and gravel plays a vital role in affecting the air environment. The data on the cumulative production resulting from one proposed project have been given in Tables 7.2 and 7.3.

Tuble 7.2 Cumulative Froudetion Boad of Rough Stone						
Proposed Production Details						
Quarry10 Years in m³Per Year in Per Year in m³Per Day in m³Number of Lorry Load Per Day						
P1	419186	41919	155 26		26	
Grand Total	419186	41919		155		26
	Table 7.7 (Cumulative Pro	ductio	on Load of	Gravel	
Quarry	Production fo 3 Years (m ³)	r Yearly Production((m ³)	Dail Productio	y on(m ³)	Number of Lorry Loads Per Day
P1	38404	12801		47		8
Grand Total	38404	12801		47		8

Table 7.2 Cumulative Production Load of Rough Stone

The cumulative study shows that the overall production of rough stone from the quarry is 155 m³ per day with a capacity of 26 trips of rough stone per day and that production of gravel from proposed quarry is 47 m³ per day accounting for 8 trips/day.

7.4.1.1 Cumulative Impact of Air Pollutants

The results on the cumulative impact of the proposed projects on air environment of the cluster have been provided in Table 7.8. The cumulative values resulting from the project for each pollutant do not exceed the permissible limits set by CPCB.

Pollutants	Baseline Data (µg/m³)	Incremental Values (µg/m ³) P1	Cumulative Value (µg/m ³)
PM _{2.5}	20.6	5.01	25.61
PM10	39.5	10.9	50.4

Table 7.8 Cumulative Imnact Results from the proposed project

7.4.2 Noise Environment

Noise pollution is mainly due to operation like drilling & blasting and plying of trucks & HEMM. Cumulative Noise modelling has been carried out considering blasting and compressor operation (drilling) and transportation activities. Predictions have been carried out to compute the noise level at various distances around the different quarries within the 500 m radius.

Table.7.9 Cumulative Impact of Noise from the Proposed project

Location ID	Distance (m)	Direction	Background Value (Day) dB(A)	Incremental Value dB(A)	Total Predicted dB(A)	Residential Area Standards dB(A)
Habitation Near P1	550	W	39.21	29.15	39.62	55
	Cun	nulative Noi	se (dB (A))		39.62	

Source: Lab Monitoring Data

The cumulative analysis of noise due to one proposed project shows that habitation will receive about 39.62dB (A) respectively. The cumulative results for all the villages in consideration do not exceed the limit set by CPCB for residential areas for day time.

Ground Vibrations

Cumulative results of ground vibrations due to mining activities in the one proposed project have been shown in Table 7.10.

Table 7.10 Cumulative Effect of Ground Vibrations Resulting from one proposed project

Location ID	Maximum Charge in kgs	Nearest Habitation in m	PPV in mm/s
P1	14.95	550	0.18
	0.18		

Results from the above tables 7.11 indicate that the cumulative PPV value of each habitation is well below the peak particle velocity of 8 mm/s as per Directorate General of Mines Safety for safe level criteria through Circular No. 7 dated 29/8/1997.

7.4.3 Socio Economic Environment

Socio Economic benefits of the one proposed project were calculated and the results have been shown in Table 7.11 the one quarry will contribute Rs. 5,00,000/-towards CER fund.

Table 7.11 Socio Economic Benefits from Proposed Quarry

Location ID	Project Cost	CER Cost
P1	Rs.81,10,500	Rs. 5,00,000
Grand Total	Rs.81,10,500	Rs. 5,00,000

Table 7.12 Employment Benefits from Proposed Quarry

Location ID	Employment
P1	20
Grand Total	20

A total of 20 people will get employment due to one proposed Quarry in cluster

7.4.4 Ecological Environment

Table 7.13 Greenbelt Development Benefits from One Quarry

Code	Number of Trees proposed	Area to be covered (m ²)	No. of Trees expected to be grown @ 80% survival rate	Species recommended
P1	1215	10935	972	Azadirachta
Total	1215	10935	972	indica, Albizia lebbeck, Delonix regia, Techtona grandis, etc.,

Cumulative studies show that the proposed Quarry will plant about 1215 native tree species like *Azadirachta indica*, *Albizia lebbeck*, *Delonix regia*, *Techtona grandis*, etc inside and outside the lease area. It is expected that 80 % of trees, i.e., 972 trees will survive in this green belt development program.

7.5 PLASTIC WASTE MANAGEMENT PLAN FOR PROPOSED PROJECT

All the Project Proponent shall comply with Tamil Nadu Government Order (Ms) No. 84 Environment and Forest (EC.2) Department Dated: 25.06.2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) Act, 1986.

7.5.1 Objective

- ✤ To investigate the actual supply chain network of plastic waste.
- To identify and propose a sustainable plastic waste management by installing bins for collection of recyclables with all the plastic waste
- Preparation of a system design layout, and necessary modalities for implementation and monitoring.

A detailed action plan to manage plastic waste has been provided in Table 7.14.

S. No.	Activity	Responsibility
1	Framing of Layout Design by incorporating provision of the	
	Rules, user fee to be charged from waste generators for plastic	Mines Manager
	waste management, penalties/fines for littering, burning plastic	whites what ager
	waste or committing any other acts of public nuisance.	
2	Enforcing waste generators to practice segregation of bio-	Mines Manager
	degradable, recyclable and domestic hazardous waste.	wines wanager
3	Collection of plastic waste.	Mines Foreman
4	Setting up of Material Recovery Facilities.	Mines Manager
5	Segregation of Recyclable and Non-Recyclable plastic waste at	Minos Foromon
	Material Recovery Facilities.	Willes Porchian
6	Channelization of Recyclable Plastic Waste to registered	Mines Foreman
	recyclers.	Willes Porchian
7	Channelization of Non-Recyclable Plastic Waste for use either	Minos Foromon
	in Cement kilns, in Road Construction.	Willes Porchian
8	Creating awareness among all the stakeholders about their	Mines Manager
	responsibility.	winnes wianagei
9	Surprise checking's of littering, open burning of plastic waste or	
	committing any other acts of public nuisance.	Mine Owner

 Table 7.14 Action Plan to Manage Plastic Waste

Source: Proposed by FAEs and EC.

CHAPTER VIII PROJECT BENEFITS

8.0 GENERAL

The proposed project at K.Pudukottai Village aims to produce **419186m**³ of rough stone and Gravel is **38404m**³ over a period of 10 years. This will enhance the socio-economic activities in the adjoining areas and will result in the following benefits:

- ✤ Increase in Employment Potential
- ✤ Improvement in Socio-Economic Welfare
- Improvement in Physical Infrastructure
- Improvement in Social infrastructure

8.1 EMPLOYMENT POTENTIAL

It is proposed to provide employment to about 20 persons for carrying out mining operations and give preference to the local people in providing employment in this cluster. In addition, there will be an opportunity for indirect employment to the form of contractual jobs, business opportunities, and service facilities etc. Because of this, the economic status of the local people will improve.

8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED

The impact of mining activity in the area will be more positive on the socio-economic environment in the immediate project impact area. The employment opportunities both direct and indirect will contribute to enhanced money incomes to job seekers with minimal skill sets especially among the local communities.

8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE

The proposed quarry project is located in K.Pudukottai Village, Dindigul West Taluk, Dindigul District, Tamil Nadu. The area has already well-established communications roads and other facilities. The following physical infrastructure facilities will further improve due to proposed project.

- Road transport facilities
- Communications
- Medical, Educational and social benefits will be made available to the nearby civilian population in addition to the workmen employed in the mine.

8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE

Employment is expected during civil construction period, in trade, garbage lifting, sanitation and other ancillary services, Employment in these sectors will be primarily temporary or contractual and involvement of unskilled labour will be more. A major part of the labour force will be mainly from local villagers who are expected to engage themselves both in agriculture and mining activities. This will enhance their income and lead to overall economic growth of the area.

8.5 OTHER TANGIBLE BENEFITS

The proposed mine is likely to have other tangible benefits as given below

- Indirect employment opportunities to local people in contractual works like construction of infrastructural facilities, transportation, sanitation for supply of goods and services to the mine and other community services
- ✤ Additional housing demand for rental accommodation will increase
- Cultural, recreation and aesthetic facilities will also improve
- Improvement in communication, transport, education, community development and medical facilities and overall change in employment and income opportunity
- The State Government will also benefit directly from the proposed mine, through increased revenue from royalties, cess, DMF, GST etc.,

8.6 CORPORATE SOCIAL RESPONSIBILITY

Individual project proponents will take responsibility to develop awareness among all levels of their staff about CSR activities and the integration of social processes with business processes. Those involved with the undertaking of CSR activities will be provided with adequate training and re-orientation.

Under this programme, the project proponents will take-up following programmes for social and economic development of villages within 5 km of the project site. For this purpose, separate budget will be provided every year. For finalization of these schemes, proponent will interact with LSG. The schemes will be selected from the following broad areas –

- Health Services
- Social Development
- ✤ Infrastructure Development
- Education & Sports
- Self-Employment
- CSR Cost Estimation

CSR activities mainly contributing to education, health, training of women self-help groups and infrastructure etc., will be taken up in the K.Pudukottai Village. CSR budget is allocated.

8.7 CORPORATE ENVIRONMENT RESPONSIBILITY

Allocation for Corporate Environment Responsibility (CER) shall be made as per Government of India, MoEF & CC Office Memorandum F.No.22-65/2017-IA.III dated 01.05.2018. As per para 6 (II) of the office memorandum, being a green field project & capital investment is ≤ 100 crores, the proposed project shall contribute 2% of capital investment towards CER as per directions of EAC/SEAC. However, the SEAC has suggested to allocate CER fund on the basis of the extent of the project. Therefore, Rs. 5,00,000 is allocated for CER. The proposed utilization of the budget of CER activities is given in Table 8.1.

S.	Activity	Budget (Rs.in
No.		Lakh)
1	The applicant Indents to involve in corporate environment responsibilities (CER) activities such as renovation of existing toilet, plantation within the school premises, donating environment related books to the nearby school library, etc.	Rs.5,00,000
	Total	Rs.5,00,000

Table 8.1 CER Action Plan

Source: Field survey conducted by FAE in consultation with project proponent

8.8 SUMMARY OF PROJECT BENEFITS

The project would pay about Rs. **4,83,52,836** to the state government through various ways, as provided in Table 8.2.

Table 8.2 Project Benefits t	o the State Government
------------------------------	------------------------

Particulars	Budget for Rough Stone	Budget for Gravel	
	(Rs.)	(Rs.)	
CER	5,00,000		
Seigniorage @ Rs.90 /m ³ of rough	3 77 26 740	21,50,624	
stone and Gravel @ Rs.56 /m ³	3,77,20,740		
District Mineral Foundation Tax @	37,72,674	2,15,062	
10% of Seigniorage			
Green Tax @ 10% of Seigniorage	37,72,674	2,15,062	
Total	4,57,72,088	25,80,748	

CHAPTER IX

ENVIRONMENTAL COST BENEFIT ANALYSIS

Not Applicable, Since Environmental Cost Benefit Analysis not recommended at the Scoping stage.

CHAPTER X

ENVIRONMENTAL MANAGEMENT PLAN

10.0 GENERAL

Environment Management Plan (EMP) aims at the preservation of ecological system by considering in-built pollution abatement facilities at the proposed site. Good practices of environmental management plan will ensure to keep all the environmental parameters of the project in respect of ambient air quality, water quality, socio economic improvement standards. Mitigation measures at the source level and an overall environment management plan at the study area are elicited so as to improve the supportive capacity of the receiving bodies. The EMP presented in this chapter discusses the administrative aspects ensuring that mitigative measures are implemented and their effectiveness monitored after approval of the EIA.

10.1 ENVIRONMENTAL POLICY

The project proponent is committed to conduct all its operations and activities in an environmentally responsible manner and to continually improve environmental performance. The Proponent **M/s.Shree Thevar Blue Metals** will:

- Meet the requirements of all laws, acts, regulations, and standards relevant to its operations and activities.
- Implement a program to train employees in general environmental issues and individual workplace environmental responsibilities.
- ✤ Allocate necessary resources to ensure the implementation of the environmental policy.
- Ensure that an effective closure strategy is in place at all stages of project development and that progressive reclamation is undertaken as early as possible to reduce potential long-term environmental and community impacts.
- Implement monitoring programs to provide early warning of any deficiency or unanticipated performance in environmental safeguards.
- Conduct periodic reviews to verify environmental performance and to continuously strive towards improvement.

10.1.1 Description of the Administration and Technical Setup

The environment monitoring cell discussed under chapter VI will ensure effective implementation of environment management plan and to ensure compliance of environmental statutory guidelines through mine management level of each proposed quarry. The said team will be responsible for:

- Monitoring of the water/ waste water quality, air quality and solid waste generated.
- ✤ Analysis of the water and air samples collected through external laboratory.

- Implementation and monitoring of the pollution control and protective measures/ devices which shall include financial estimation, ordering, installation of air pollution control equipment, waste water treatment plant, etc.
- Co-ordination of the environment related activities within the project as well as with outside agencies.
- Collection of health statistics of the workers and population of the surrounding villages.
- Green belt development.
- ✤ Monitoring the progress of implementation of the environmental monitoring program.
- Compliance to statutory provisions, norms of State Pollution Control Board, Ministry of Environment and Forests and the conditions of the environmental clearance as well as the consents to establish and consents to operate.

10.2 Budgetary Provision for Environmental Management

Adequate budgetary provision has been made by the company for execution of Environmental Management Plan. The Table 10.1 gives overall investment on the environmental safeguards and recurring expenditure for successful monitoring and implementation of control measures.

Attribute	Mitigation measures Implementation		Capital Cost	Recurring Cost/annu m
			(Rs.)	(Rs.)
Air Environment	Compaction, gradation and drainage on both sides	Rental Dozer & drainage construction on haul road @ Rs. 10,000/- per hectare and yearly maintenance @ Rs. 10,000/- per hectare	24300	24300
	Fixed Water Sprinkling Arrangements + Water sprinkling by own water tankers	Fixed sprinkler installation and new water tanker cost for capital; and water sprinkling (thrice a day) cost for recurring	800000	50000
	Air quality will be regularly monitored as per norms within ML area & ambient area	Yearly compliance as per CPCB norms	0	50000

Table 10.1 EMP Budget for Proposed Project

	Muffle blasting – To control fly rocks during blasting	Blasting face will be covered with sand bags / steel mesh / old tyres / used conveyor belts	0	5000
	Wet drilling procedure / latest eco-friendly drill machine with separate dust extractor unit	Dust extractor @ Rs. 25,000/- per unit deployed as capital & @ Rs. 2500 per unit recurring cost for maintenance	75000	7500
	No overloading of trucks/tippers/tractors	Manual Monitoring through Security guard	0	5000
	Stone carrying trucks will be covered by tarpaulin to avoid escape of fines to the atmosphere	Monitoring if trucks will be covered by tarpaulin	0	10000
	Enforcing speed limits of 20 km/hr within ML area	Installation of Speed Governors @ Rs. 5000/- per tipper/dumper deployed	40000	0
	Regular monitoring of exhaust fumes as per RTO norms	Monitoring of Exhaust Fumes	0	10000
	Regular sweeping and maintenance of roads for at least about 200 m from quarry entrance	Provision for 2 labours @ Rs.10,000/labour (Contractual) / hectare	0	48600
	Installing wheel wash system near exit gate of quarryInstallation + Maintenance + Supervision		50000	20000
	Total Air Environme	nt	989300	230400
Noise Environment	Source of noise will be transportation vehicles, and HEMM. For this, proper maintenance will be done at regular intervals.	Provision made in Operating Cost	0	0
Environment	Oiling & greasing of Transport vehicles and HEMM at regular interval will be done.	Provision made in Operating Cost	0	0

	Adequate silencers will be provided in all the diesel engines of vehicles.Provision made in Operating Cost		0	0
	It will be ensured that all transportation vehicles carry a fitness certificate.	Provision made in Operating Cost	0	0
	Safety tools and implementations that are required will be kept adequately near blasting site at the time of charging.	Provision made in OHS part	0	0
	Line Drilling all along the boundary to reduce the PPV from blasting activity and implementing controlled blasting.	Provision made in Operating Cost	0	0
	Proper warning system before blasting will be adopted and clearance of the area before blasting will be ensured.	Blowing Whistle by Mining Mate / Blaster / Competent Person	0	0
	Provision for Portable blaster shed	Installation of portable blasting shelter	50000	2000
	NONEL Blasting will be practiced to control Ground vibration and fly rocks	Rs. 30/- per 6 tons of blasted material	0	1173721
	Total Noise Environm	ent	50000	1175721
Water Environment	Water EnvironmentWater ManagementProvision for garland drain @ Rs. 10,000/- per hectare with maintenance of Rs. 5,000/- per annum		24300	12150
Total Water Environment			24300	12150
Waste Management	Waste management (Spent Oil, Grease etc.,)	Provision for domestic waste collection and disposal through authorized agency (capital cost, recurring	25000	20000

	cost for collection			
		/disposal).		
		Installation of dust bins	5000	2000
	Bio toilets will be made			
	available outside mine	Provision made in	0	0
	lease on the land of owner	Operating Cost	0	0
	itself			
	Total Waste Managem	ent	30000	22000
Implementati	Size 6' X 5' with blue			
on of EC,	background and white	Fixed display board at		
Mining Plan	letters as mentioned in	the quarry entrance as	10000	1000
& DGMS	MoM Appendix II by the	permanent structure		
Condition	SEAC TN			
То	tal Implementation of EC, N	Aining Plan	10000	1000
		Provision of PPE @ Rs.		
	Workers will be	4000/- per employee		14000
	provided with Personal	with recurring based on	56000	
	Protective Equipment	wear and tear (say, @		
	Toteetive Equipment	Rs. 1000/- per		
		employee)		
	Health checkup for	IME & PME Health		
	workers will be	checkup @ Rs. 1000/-	0	14000
	provisioned	per employee		
	First aid facility will be	Provision of 2 Kits per	0	9720
	provided	Hectare (a) Rs. 2000/-		
Occupational	Mine will have safety	Provision for signages	10000	2000
Health	precaution signages,	and boards made	10000	2000
and Safety	Joards.	Dor Hostoro fonging		
	Barbed Wire Fencing to	Cost @ Rs 2.00.000/		
	quarry area will be	with Maintenance of Rs	486000	24300
	provisioned.	10.000/- per annum		
	No parking will be	1		
	provided on the transport			
	routes. Separate provision	Parking area with		
	on the south side of the hill	sneiter and flags (a) Rs.	121500	24200
	will be made for vehicles	su,uuu/- per nectare	121300	24300
	/HEMMs. Flaggers will be	project and KS. 10,000/-		
	deployed for traffic	as maintenance cost		
	management			

	Installation of CCTV	Camera 4 Nos, DVR,	20000	5000
	mine entrance	facility	30000	5000
	Implementation as per Mining Plan and ensure safe quarry working	Mines Manager (1 st Class / 2 nd Class / Mine Foreman) under regulation 34 / 34 (6) of MMR, 1961 and Mining Mate under regulation 116 of MMR,1961 @ 40,000/- for Manager & @ 25,000/- for Foreman / Mate	0	780000
T	Fotal Occupational Health a	nd Safety	703500	873320
Development of Green Belt	Green belt development - 500 trees per hectare (200 Inside Lease Area & 300 Outside Lease Area)	Site clearance, preparation of land, digging of pits /trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area and @ 30 per plant maintenance (recurring))"	97200	14580
		Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	218700	21870
	Total Development of Gre	en Belt	315900	36450
Mine ClosureClosure includes 10% of the amount allotted for Greenbelt development, wire fencing, and garland drainage (Rule 27 in MCDR 2017 for Cat B mines will pay 2 lakhs per hectare or minimum amount of financial assurance of 5 lakhs)			0	82620

TOTAL		6110736	2351041 (Exclude. Mine Closure)
G.O.(Ms)No.23, Dated: 28.09.2021	Section IVA of TNMMCR 1959 (@10% of Seigniorage Fee) (Seigniorage Fee for rough stone = Rs.90)	3987736	0

Table 10.2 Estimation	of Overall EMP	Budget after	Adjusting 5%	% Annual Inflation
		Dudget unter	i ajasting c /	v i innaan innaanon

For First Five years								
I st Yea	r	II nd Year	III rd Ye	ar	IV th	Year		V th Year
235104	1	2468593	2592022		2721624			2857705
For Next Five Years								
VI th Year	VII th Year	VIII th Year	IX th Year	X th Year (including Mine I Closure Cost)		Total Recurri Cost	ng	Total EMP Cost
3000590	3150620	3308151	3473558	372	.9856	296537	59	35764495

In order to implement the environmental protection measures, an amount of **Rs.** 6110736 as capital cost and recurring cost as **Rs.** 2351041 as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the overall EMP cost for 5 years will be **Rs.** 35764495 as shown in Table 10.2.

10.3 CONCLUSION

Various aspects of mining activities were considered and related impacts were evaluated. Considering all the possible ways to mitigate the environmental concerns Environmental Management Plan was prepared and fund has been allocated for the same. The EMP is dynamic, flexible and subjected to periodic review. For project where the major environmental impacts are associated, EMP will be under regular review. Senior Management responsible for the project will conduct a review of EMP and its implementation to ensure that the EMP remains effective and appropriate. Thus, the proper steps will be taken to accomplish all the goals mentioned in the EMP and the project will bring the positive impact in the study area.

CHAPTER XI SUMMARY AND CONCLUSION

11.1 INTRODUCTION

As the proposed rough stone mining project (P1) falls within the quarry cluster of 500 m radius with the total extent of 11.67.1ha, it requires submission of EIA report for grant of Environmental Clearance (EC) after conducting public hearing. The proposed project falling in S.F.No.244/1A, 244/2A1 and 244/2A2 over the extent of 2.43.0ha is situated in the cluster falling in K.Pudukottai Village, Dindigul West Taluk, Dindigul District, Tamil Nadu. The cluster contains one proposed project known as P1 and four existing projects known as E1, E2, E3 and E4.

11.2 PROJECT DESCRIPTION

The proposed project area is located between Latitudes from 10° 27'5.37"N to 10° 27'10.78"N Longitudes from 77°51'30.12"E to 77°5'37.37"E in K.Pudukottai Village, Dindigul West Taluk, Dindigul District, Tamil Nadu. According to the approved mining plan, about 419186m³ of rough stone and 38404 m³ of Gravel will be mined up to the depth of 45 m BGL in the ten years. The quarrying operation is proposed to be carried out by open cast manual mining method involving drilling and formation of benches of the prescribed dimensions.

11.3 DESCRIPTION OF THE ENVIRONMENT

Baseline data were collected to evaluate the existing environmental condition in the core and buffer areas during **November 2021 - January 2022** as per CPCB guidelines. The data were collected by both the FAEs and NABL accredited and MoEF notified *Ekdant Enviro Services (P) Ltd* for the environmental attributes including soil, water, noise, air and by FAEs for ecology and biodiversity, traffic, and socio-economy.

11.3.1 Land Environment

Land use pattern of the area of 5 km radius was studied using Sentinel II imagery. LULC types and their extent are given in Table 11.1.

S. No.	Classification	Area (ha)	Area (%)			
1	Crop Land	4684.39	59.69			
2	Dense Forest	12.27	0.16			
3	Fallow Land	784.45	10.00			
4	Mining/Industrial lands	82.95	1.06			
5	Land with or without scrub	8.98	0.11			
6	Plantations	2006.32	25.56			
7	Settlements	48.98	0.62			
8	Water Bodies	219.74	2.80			
	Total 7848.07 100.0					

Table.11.1 LULC Statistics of the Study Area

Source: Sentinel II Satellite Imagery
11.3.2 Soil Environment

The physical properties of the soil samples were examined for texture, bulk density, and water holding capacity. The soil texture found in the study area is clay loam. The bulk density of soils in the study area varies between 1.15 and 2.85 g/cc. The water holding capacity varies from 40.36 to 46.50. The nature of soil is slightly alkaline to strongly alkaline with pH ranging from 7.21 to 7.91, Chloride ranges between 14.0 and 38.0 mg/kg, Sodium ranges between 9.0 and 24.0 mg/kg, Potassium ranges between 0.98 and 2.0 mg/kg, Calcium ranges between 10.0 and 19.0 mg/kg, Magnesium ranges between 5.0 and 11.0 mg/kg.

11.3.3 Water Environment

Surface Water

K.Pudukottai Lakes are the one prominent surface water resources present in the study area. These are ephemeral in nature, which convey water only after rainfall events. Three surface water samples, known as SW1 were collected from the three surface water bodies to assess the baseline water quality. Table 3.6 summarizes surface water quality data of the three samples. Results for surface water samples in the Table 3.7 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

Ground Water

Groundwater in the study area occurs in the crystalline rocks of Archaean age and recent alluvium. The movement of the groundwater is controlled by the intensity of weathering and fracturing of crystalline rocks. Dug wells and bore wells are the most common ground water abstraction structures in the area. However, in dry season, people in the study area heavily rely on bore wells for their domestic and agriculture purpose. seven groundwater samples, known as OW01, OW02, BW01, BW02, BW03, BW04 and BW05, were collected from bore wells and open wells were analysed for physico-chemical conditions, heavy metals and bacteriological contents in order to assess baseline quality of ground water. Ground water sampling locations and their distance and direction from the lease area are provided in Table 3.5 and the spatial occurrence of water sampling locations is shown in Figure 3.7. Table 3.7 summarizes ground water quality data of the seven samples. Results for ground water samples in the Table 3.8 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

Data regarding depth to groundwater levels are essential to infer the direction of groundwater movement within the study area. Knowledge of groundwater flow direction is must in choosing location for background groundwater quality monitoring well and in locating recharge and discharge areas. Therefore, data regarding groundwater elevations were collected from 9 open wells and 9 bore wells at various locations within 2 km radius around the proposed project sites for the period from March through May 2023 (Pre-Monsoon Season) and from October through December 2022, (Post Monsoon Season).

The open well water level data thus collected onsite are provided in Tables 3.7 and 3.8. According to the data, average depths to the static water table in open wells range from 20.6 to 23.6 m BGL in pre monsoon and 11.6 to 16.3 m BGL in post monsoon. The bore well data thus collected onsite are provided in Tables 3.9 and 3.10. The average depths to static potentiometric surface in bore wells for the period of October through December (Post-Monsoon Season) vary from 62.3 to 66.2 m and from 63.8 to 67.7 m for the period of March through May, (Pre-Monsoon Season). Data on the depths to static water table and potentiometric surface were used to draw contour lines connecting groundwater elevation (also known as equipotential hydraulic head) to determine the groundwater flow direction perpendicular to the contour lines.

11.3.4 Air Environment

As per the monitoring data, $PM_{2.5}$ ranges from 19.20 µg/m³ to 22.30 µg/m³; PM_{10} from 37.30 µg/m³ to 41.30 µg/m³; SO_2 from 5.5 µg/m³ to 7.9µg/m³; NO_x from 17.30µg/m³ to 21.20g/m³. The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

Air quality Index

The AQI shows that the air quality of the study area falls within good category 40 causing minimal impact to human health.

11.3.5 Noise Environment

Noise level in core zone was 45.8 dB (A) Leq during day time and 34.2 dB(A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 36.9 to 45.6dB (A) Leq and during night time from 28.0 to 39.0dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB.

11.3.6 Biological Environment

The study found that there is no endemic, endangered migratory fauna found in the area. This area is not also a migratory path of any faunal species. Hence, this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

Flora in core zone

Taxonomically a total of 26 species belonging to 21 families have been recorded from the core mining lease area. The lease applied area is flat terrain. Based on habitat classification of the enumerated plants the majority of species were Herbs, Climbers 19 followed by Trees 3 Shrub 4 The result of core zone of flora studies shows that Fabaceae and Lamiaceae are the main dominating species in the study area it mentioned in Table 3.21. Species Richness (margalef Index) in the study area it mentioned in Table 3.21 to 3.23

Flora in 300 m radius zone

There is no agricultural land nearby lease area. It contains a total of 34 species belonging to 21 families have been recorded from the buffer zone. 6 Trees (17%), 5 Shrubs (17%) and Herbs and Climbers, Creeper, Grass & Cactus 20 (64%) were identified. Details of flora with the scientific name details and of diversity species Richness index were mentioned in Table 3.24-26. There is no threatened species in 300 m radius.

Fauna in Core Zone

A total of 34 varieties of species observed in the Core zone of K. Pudukottai Village, Rough stone quarry (Table 3.29) among them numbers of Insects 14(31%), Reptiles 7 (15%), Mammals 3 (6%) Avian 10 (31%). A total of 27 families have been recorded from the core mining lease area. None of these species are threatened or endemic in the study area and surroundings. There is no Schedule I species and four species are under schedule IV according to Indian wild life Act 1972. A total nine species of bird were sighted in the mining lease area. There are no critically endangered, endangered, vulnerable and endemic species were observed. Details of fauna in core zone with the scientific name were mentioned in Table. 3.30.

Fauna in Buffer Zone

Taxonomically a total of 48 species belonging to 34 families have been recorded from the buffer mining lease area. Based on habitat classification the majority of species were Birds 13(35%) followed by Insects 7 (20%), Reptiles 9 (19%), Mammals 3 (6%) and, Amphibians 3 (6%). Aves16(33%) There are four Schedule II species and twenty-six are under schedule IV according to Indian wild life Act 1972. A total 16 species of bird were sighted in the mining lease area. There are no critically endangered, endangered, vulnerable and endemic species were observed. Details of fauna in core zone with the scientific name were mentioned in Table. 3.31.

11.3.7 Socio Economic Environment

The proposed project will provide direct and indirect employment and improve the infrastructural facilities in that area, thus leading to the improvement of people's standard of living.

11.4 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 11.4.1 Land Environment

Anticipated Impact

- Permanent or temporary change on land use and land cover.
- Change in topography of the mine lease area will change at the end of the life of the mine.
- Problems to agricultural land and human habitations due to dust, and noise caused by movement of heavy vehicles
- Degradation of the aesthetic environment of the core zone due to quarrying
- Soil erosion and sediment deposition in the nearby water bodies due to earthworks during the rainy season
- Siltation of water course due to wash off from the exposed working area

- The mining activity will be gradual confined in blocks and excavation will be undertaken progressively along with other mitigate measures like phase wise development of greenbelt etc.
- Construction of garland drains all around the quarry pits and construction of check dam at strategic location in lower elevations to prevent erosion due to surface runoff during rainfall and also to collect the storm water for various uses within the proposed area.
- Green belt development along the boundary within safety zone. The small quantity of water stored in the mined-out pit will be used for greenbelt.

- Thick plantation will be carried out on unutilized area, top benches of mined out pits, on safety barrier, etc.,
- At conceptual stage, the land use pattern of the quarry will be changed into Greenbelt area and temporary reservoir.
- In terms of aesthetics, natural vegetation surrounding the quarry will be retained (such as in a buffer area i.e., 7.5 m safety barrier and other safety provided) so as to help minimize dust emissions.
- Proper fencing will be carried out at the conceptual stage, Security will be posted round the clock, to prevent inherent entry of the public and cattle.

11.4.2 Water Environment

Anticipated Impact

- Surface and ground water resources may be contaminated due to pit water discharge, domestic sewage, discharge of oil and grease bearing waste water from washing of vehicles and machineries, and washouts from surface exposure or working areas
- As the proposed project acquires 4.0 KLD of water from water vendors, it will not extract water by developing abstraction structures in the lease area. Therefore, the project will not have impact on depletion of aquifer beneath the lease area.

- Rain water from mine pit will be treated in settling tanks before being used for dust suppression and tree plantation purposes
- Domestic sewage from site office will be discharged in septic tank and then directed to soak pits
- Water from the tipper wash-down facility and machinery maintenance yard will be passed through interceptor traps/oil separators prior to its reuse
- The garland drainage will be connected to settling tank and sediments will be trapped in the settling tanks and only clear water will be discharged to the natural drainage
- Periodic (every 6 month once) analysis of ground water quality of quarry pit water and ground water of nearby villages will be conducted
- Artificial recharge structures will be established in suitable locations as part of the rainwater harvesting management program

11.4.3 AIR ENVIRONMENT

Anticipated Impact

- During mining at various stages of activities such as excavation, drilling and transportation of materials, particular matter (PM), gases such as sulphur dioxide, oxides of nitrogen from vehicular exhaust are the main air pollutants
- Emissions of noxious gases due to incomplete detonation of explosive may sometimes pollute the air.
- The fugitive dust released from the mining operations may cause effect on the mine workers who are directly exposed to the fugitive dust
- Simultaneously, the air-borne dust may travel to longer distances and settle in the villages located near the mine lease area

- To control dust at source, wet drilling will be practiced. Where there is a scarcity of water, suitably designed dust extractor will be provided for dry drilling along with dust hood at the mouth of the drill-hole collar
- Controlled blasting will be carried out using suitable explosive charge and short delay detonators, adequate stemming of holes at collar zone
- Blasting will be restricted to a particular time of the day i.e., at the time of lunch hours
- Before loading of material water will be sprayed on blasted material
- Dust mask will be provided to the workers and their use will be strictly monitored
- Water will be sprinkled on haul roads twice a day to avoid dust generation during transportation
- Transportation of material will be carried out during day time and material will be covered with tarpaulin
- The speed of tippers plying on the haul road will be limited to < 20 km/hr to avoid generation of dust
- The un-metaled haul roads will be compacted weekly before being put into use
- It will be ensured that all transportation vehicles carry a valid PUC certificate
- Haul roads and service roads will be graded to clear accumulation of loose materials
- Planting of trees all along main mine haul roads and around the project site will be practiced to prevent the generation of dust
- Dust mask will be provided to the workers and their use will be strictly monitored

11.4.4 Noise Environment

Anticipated Impact

Total noise level in all the sampling areas is well below the CPCB standards for industrial and residential areas. The peak particle velocity produced by the charge of 42.55 kg is well below that of 0.3 mm/s as per Directorate General of Mines Safety for safe level criteria through Circular No. 7 dated 29/8/1997.

- The blasting operations in the cluster quarries will use shallow holes and delay detonators to reduce the ground vibrations
- Proper quantity of explosives, suitable stemming materials and appropriate delay system will be used during blasting
- Adequate safe distance from blasting will be maintained as per DGMS guidelines
- Blasting shelter will be provided as per DGMS guidelines
- Blasting operations will be carried out only during day time
- During blasting, other activities in the immediate vicinity will be temporarily stopped
- Drilling parameters like depth, diameter and spacing will be properly designed to give proper blast
- A fully trained explosives blast man (Mining Mate, Mines Foreman, 2nd Class Mines Manager/ 1st Class Mines Manager) will be appointed
- A set of shot firing rules will be drawn up and blasting shall commence outlining the detailed operating procedures that will be followed to ensure that shot firing operations on site take place without endangering the workforce or public
- Sufficient angular stemming material will be used to confine the explosive force and minimise environmental disturbance caused by venting / misfire
- The detonators will be connected in a predetermined sequence to ensure that only one charge is detonated at any one time and a NONEL or similar type initiation system will be used
- The detonation delay sequence shall be designed so as to ensure that firing of the holes is in the direction of free faces so as to minimise vibration effects
- Vibration monitoring will be carried out every 6 months to check the efficacy of blasting practices.

11.4.5 Biological Environment

Anticipated Impact

- During loading the truck, dust generation will be likely. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly
- The Number of plants in the mining lease area is given in Chapter 3 which vegetation in the lease area may be removed during mining.
- Carbon released from quarrying machineries and tippers during quarrying would be 3746 kg per day, 1011448 kg per year and 5057239 kg over five years, as provided in Table 4.9.

Mitigation Measures

- During conceptual stage, the top bench will be re-vegetated by planting local /native species and lower benches will be converted into rainwater harvesting structure following completion of mining activities, which will replace habitat resources for fauna species in this locality over a longer time.
- Existing roads will be used; new roads will not be constructed to reduce impact on flora.
- To mitigate carbon emission due to mining activities, we recommend planting trees around the quarry to offset the carbon emission during quarrying. A tree can sequester 53688 kg of carbon per year. Therefore, we recommend planting large number of trees around the quarry and near school campuses, government wasteland, roadsides etc.
- As per the greenbelt development plan as recommended by SEAC (Table 4.12), about 1215 trees will be planted within three months from the beginning of mining. These trees, when grown up would sequester carbon of about 4911585 kg of the total carbon, as provided in Table 4.10.

11.4.6 Socio Economic Environment

Anticipated Impact

- Dust generation from mining activity can have negative impact on the health of the workers and people in the nearby area
- Approach roads can be damaged by the movement of tippers
- Increase in Employment opportunities both direct and indirect thereby increasing economic status of people of the region

Mitigation Measures

• Good maintenance practices will be adopted for all machinery and equipment, which will help to avert potential noise problems

- Green belt will be developed in and around the project site as per Central Pollution Control Board (CPCB) guidelines
- Air pollution control measure will be taken to minimize the environmental impact within the core zone
- For the safety of workers, personal protective appliances like hand gloves, helmets, safety shoes, goggles, aprons, nose masks and ear protecting devices will be provided as per mines act and rules
- Benefit to the State and the Central governments through financial revenues by way of royalty, tax, duties, etc.., from this project directly and indirectly

11.4.7 Occupational Health

- All the persons will undergo pre-employment and periodic medical examination
- Employees will be monitored for occupational diseases by conducting medical tests: General physical tests, Audiometric tests, Full chest, X-ray, Lung function tests, Spiro metric tests, Periodic medical examination – yearly, Lung function test – yearly, those who are exposed to dust and Eye test
- Essential medicines will be provided at the site. The medicines and other test facilities will be provided at free of cost.
- The first aid box will be made available at the mine for immediate treatment. First aid training will be imparted to the selected employees regularly. The lists of first aid trained members shall be displayed at strategic places.

11.5 Environment Monitoring Program

S.	Environment	Location	Mon	itoring	Daramatars
No.	Attributes	Location	Duration	Frequency	1 al ameter s
1	Air Quality	2 Locations (1 Core & 1 Buffer)	24 hours	Once in 6 months	Fugitive Dust, PM _{2.5} , PM ₁₀ , SO ₂ and NO _x .
2	Meteorology	At mine site before start of Air Quality Monitoring & IMD Secondary Data	Hourly / Daily	Continuous online monitoring	Wind speed, Wind direction, Temperature, Relative humidity and Rainfall
3	Water Quality Monitoring	2 Locations (1SW & 1 GW)	-	Once in 6 months	Parameters specified under IS:10500, 1993 & CPCB Norms

 Table 11.2 Environment Monitoring Program

4	Hydrology	Water level in open wells in buffer zone around 1 km at specific wells	-	Once in 6 months	Depth in m BGL
5	Noise	2 Locations (1 Core & 1 Buffer)	Hourly – 1 Day	Once in 6 months	Leq, Lmax, Lmin, Leq Day & Leq Night
6	Vibration	At the nearest habitation (in case of reporting)	I	During blasting operation	Peak particle velocity
7	Soil	2 Locations (1 Core & 1 Buffer)	_	Once in six months	Physical and chemical characteristics
8	Greenbelt	Within the project area	Daily	Monthly	Maintenance

Source: Guidance of manual for mining of minerals, February 2010

11.6 ADDITIONAL STUDIES

11.6.1 Risk Assessment

The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention. The whole quarry operation will be carried out under the direction of a Qualified Competent Mine Manager holding certificate of competency to manage a metalliferous mine granted by the DGMS, Dhanbad for proposed project.

11.6.2 Disaster Management Plan

The objective of the disaster management plan is to make use of the combined resources of the mine and the outside services to:

- Rescue and treat casualties;
- Safeguard other people;
- Minimize damage to property and the environment;
- Initially contain and ultimately bring the incident under control;
- Secure the safe rehabilitation of affected area; and
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency.

11.6.3 Cumulative Impact Study

The results on the cumulative impact of the proposed project on air environment of the cluster do not exceed the permissible limits set by CPCB for air pollutants.

- The cumulative results of noise for the habitation in consideration do not exceed the limit set by CPCB for residential areas for day time
- PPV resulting from proposed project is well below the permissible limit of Peak Particle Velocity of 8 mm/s
- The proposed project will allocate Rs.5,00,000/- towards CER as recommended by SEAC
- The proposed project will directly provide jobs to 20 local people, in addition to indirect jobs
- The proposed project will plant 1215 about trees in and around the lease area
- The proposed project will add 102 PCU per day to the nearby roads.

11.7 Project Benefits

Various benefits are envisaged due to the three proposed mine and benefits anticipated from the proposed project to the locality, neighbourhood, region and nation as a whole are:

- Direct employment to 20 local people.
- Creation of community assets (infrastructure) like school buildings, village roads/ linked roads, dispensary & health Centre, community Centre, market place etc.,
- Strengthening of existing community facilities through the Community Development Program.
- Skill development & capacity building like vocational training.
- Rs. 5,00,000 will be allocated for CER

11.8 ENVIRONMENT MANAGEMENT PLAN

In order to implement the environmental protection measures, an amount of **Rs.** 6110736 as capital cost and recurring cost as **Rs.** 2351041 as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the overall EMP cost for 5 years will be **Rs.** 35764495 as shown in Table 10.2.

CHAPTER XII

DISCLOSURES OF CONSULTANT

The Project Proponent, M/s.Shree Thevar Blue Metals has engaged Geo Technical

Mining Solutions, a NABET accredited consultancy for carrying out the EIA study as per the ToR issued.

Address of the consultancy:

No: 1/213B Natesan Complex, Oddapatti, Dharmapuri – 636705, Tamil Nadu, India. Email:<u>info.gtmsdpi@gmail.com</u> Web: www.gtmsind.com

Phone: 04342 232777.

The accredited experts and associated members who were engaged in this EIA study are given below:

S No	Nome of the expert	In house/Emnanelled	Soctor	Functional Area	Categ			
5.110	Name of the expert	in nouse/ Empanencu	Sector	Functional Arca	ory			
	Approved Functional Area Experts & EC							
1	Dr. S. Karuppannan	EIA Coordinator (EC) In-house	1(a)(i)	Mining	В			
2	Dr. M. Vijayprabhu	In-house, FAE	1(a)(i)	HG, LU, GEO	В			
3	Dr. J. Rajarajeswari	In-house, FAE	1(a)(i)	EB, SC	В			
4	Dr. G. Prabakaran	In-house, FAE	1(a)(i)	SE	В			
5	Dr. R. Arunbalaji	In-house, FAE	1(a)(i)	AP, AQ, NV	В			
6	J.N. Manikandan	Empanelled FAE	1(a)(i)	RH, SHW, AP	В			
7	Dr. S. Malar	In-house, FAE	1(a)(i)	WP	В			
8	G. Umamaheswaran	In-house, FAE	1(a)(i)	HG, LU, GEO	В			
9	S. Gopalakrishnan	In-house, FAE	1(a)(i)	HG, GEO	В			
10	P. Venkatesh	In-house, FAE	1(a)(i)	AP	В			
11	Dr. D.Kalaimurugan	In-house, FAE	1(a)(i)	SC	В			
Approved Functional Area Associates								
12	G. Prithiviraj	FAA	1(a)(i)	LU, HG	В			
13	C. Kumaresan	FAA	1(a)(i)	NV	В			
14	P. Vellaiyan	FAA	1(a)(i)	HG, GEO	В			

147 | P a g e

15	P. Dhatchayini		FAA		1(a)(i)	AQ	В
16	V. Malavika		FAA		1(a)(i)	NV, SHW	В
Abbreviations							
EC	EIA Coordinator	•	NV		Noise	and Vibration	
FAE	Functional Area Ex	pert	SE		Soci	o Economics	
FAA	Functional Area Asso	ciates	HG	Ну	drology, g	round water and wat	er
11111	FAA Functional Area Associa		110	conservation			
TM	Team Member		SC		Soil conservation		
GEO	Geology		RH	Risk a	assessment	ent and hazard management	
WP	Water pollution monitoring,		SHW		Solid and	hazardous wastes	
	prevention and control		51111	Sond and hazardous wastes			
AP	Air pollution monitoring,		MSW		Munici	pal Solid Wastes	
	prevention and control						
LU	Land Use		ISW		Industrial Solid Wastes		
AO	Meteorology, air qu	ality	HW		Haza	rdous Wastes	
···×	modelling, and predi	modelling, and prediction					
EB	Ecology and bio-diversity		GIS	Ge	eographica	l Information System	n

DECLARATION BY EXPERTS CONTRIBUTING TO THE EIA & EMP

I, hereby, certify that I was a part of the EIA team in the following capacity that developed the EIA & EMP report.

Signature	:	(panz
Date	:	
Name	:	Dr. S. Karuppannan
Designation	:	EIA Coordinator
Name of the EIA Consultant Organization	:	Geo Technical Mining Solutions
Period of Involvement	:	Till date

We, the FAEs and FAAs hereby declare that information furnished in this EIA/EMP report for M/s.Shree Thevar Blue Metals rough stone and gravel quarry project with the extent of 2.43.0 ha situated in the cluster with the extent of 8.79.60 ha in K.Pudukottai Village, Dindigul West Taluk, Dindigul District of Tamil Nadu is true and correct to the best of our knowledge.

S.	Functional	Involvement	Name of the	Signature
No.	Area	involvement	Experts	Signature
1	AP	 Identification of different sources of air pollution due to the proposed mine activity Prediction of air pollution and 	J.N. Manikandan	loge
		propose mitigation measures / control measures	P.Venkatesh	P. Une
2	WP	 Suggesting water treatment systems, drainage facilities Evaluating probable impacts of effluent/waste water discharges into the receiving environment/water bodies and suggesting control measures. 	Dr.S. Malar	B. Matt.
3	HG	 Interpretation of ground water table and predict impact and propose mitigation measures. Analysis and description of aquifer Characteristics 	Dr.M. Vijay Prabhu	N. (987mgnu)
4	GEO	 Field Survey for assessing the regional and local geology of the area. Preparation of mineral and geological maps. Geology and Geo morphological analysis/description and Stratigraphy/Lithology. 	G.Gopala Krishnan	Eleop Acris 40
5	SE	 Revision in secondary data as per Census of India, 2011. Impact Assessment & Preventive Management Plan Corporate Environment Responsibility. 	Dr. G. Prabhakaran	Pralation
6	EB	 Collection of Baseline data of Flora and Fauna. Identification of species labelled as 	Dr.J. Rajarajeshwari	J. Cyst=

Functional Area Experts Engaged in this Project

		Rare, Endangered and threatened		
		as per IUCN list.		
		• Impact of the project on flora and		
		fauna.		
		• Suggesting species for greenbelt		
		development.		
		o Identification of hazards and		
		hazardous substances		
		• Risks and consequences analysis	INI Mandiana dan	
7	RH	• Vulnerability assessment	J.N. Manikandan	lidept
		• Preparation of Emergency		0 / 1
		Preparedness Plan		
		• Management plan for safety.		
		• Construction of Land use Map		
		• Impact of project on surrounding	C LI	0
8	LU	land use	G.Uma	a umanily
	c	• Suggesting post closure sustainable	Maheswaran	7
		land use and mitigative measures.		
		• Identify impacts due to noise and		
0	NV	vibrations		81110
9			• Suggesting appropriate mitigation	Dr.K. Arun Balaji
		measures for EMP.		
		o Identifying different source of		
	AQ	emissions and propose predictions		
10		of incremental GLC using		RILLS
10		AERMOD.	Dr.R. Arun Balajı	1. Frank
		• Recommending mitigations		
		measures for EMP		
		o Assessing the impact on soil		
		environment and proposed	Dr.	10.000
11	SC	mitigation measures for soil	D.Kalaimurugan	D. Omint
		conservation		v 1
		○ Identify source of generation of		
		non-hazardous solid waste and		
12	SHW	hazardous waste.		
		\circ Suggesting measures for	J.N. Manikandan	Oblept
		minimization of generation of		and
		waste and how it can be reused or		
		recycled.		
		100 y 0100.		

	Elist	or i unceronar	in cu rissociace Engagea in this riojee	-
S.No.	Name	Functional Area	Involvement	Signature
			◦ Site visit with FAE	
1	G. Prithiviraj	LU, HG	• Provide inputs & Assisting FAE for	G.F. T.T.
			LU and HG	
			• Assistance to FAE in both primary	
2	C Virmanaan	NIV	and secondary data collection	9
2	C. Kumaresan	IN V	• Assistance in noise prediction	Jonward - C
			modelling	
			\circ Field visits along with FAE	5
3	P. Vellaiyan	HG & GEO	• Assistance to FAE in both primary	AHAMMMMM T
			and secondary data collection	
			◦ Site visit with FAE	- 20 A 1 - 20
5	P. Dhatchayini	AQ	o Assistance to FAE in collection of	P. Dhetcheymi
			both primary and secondary data	
6	V Malavika	NW SHW	\circ Site visit along with FAE	J VLA
U	v. Ivialavika	ту, эп w	• Assistance in report preparation	1- march

List of Functional Area Associate Engaged in this Project

DECLARATION BY THE HEAD OF THE ACCREDITED CONSULTANT ORGANIZATION

I, Dr. S. KARUPPANNAN, Managing Partner, Geo Technical Mining Solutions, hereby, confirm that the above-mentioned functional area experts and team members prepared the EIA/EMP report for M/s.Shree Thevar Blue Metals rough stone and gravel quarry project with the extent of 2.43.0 ha situated in the cluster with the extent of 8.79.60 ha in K.Pudukottai Village, Dindigul West Taluk, Dindigul District of Tamil Nadu is true and correct to the best of my knowledge.

Signature

and

Date	:	
Name	:	Dr. S. Karuppannan
Designation	:	Managing Partner
Name of the EIA Consultant Organization	:	Geo Technical Mining Solutions
NABET Certificate No & Issue Date	:	NABET/EIA/23-26/RA 0319
Validity	:	Till 31.12.2026

Dated 31/05/2024

File No: 10798 Government of India Ministry of Environment, Forest and Climate Change (Issued by the State Environment Impact Assessment Authority(SEIAA), TAMIL NADU) ***

То,							
	M Ramesh						
	SHREE THEVAR BLUE METALS						
	M/s.SHREE THEVAR BLUE METALS, S.F.No's: 295/1,295/1A,295/2 295/3, Kothapulli Village,						
	Reddiarchatram, Dindigul District - 624622., K l	Pudukottai, DINDIGUL, TAMIL NADU, 624622					
	msshreethevarbluemetals@gmail.com						
Subject:	Grant of Terms of Reference under the provision	of the EIA Notification 2006-regarding.					
Sir/Madam,							
	This is in reference to your application for Gran	t of Terms of Reference under the provision of the EIA					
	Notification 2006-regarding in respect of the Pr	oposed Rough Stone and Gravel Quarry over an extent					
	of 2.43.0Ha at S.F.No's: 244/1A, 244/2A1 &	244/2A2 K. Pudukottai village, Dindigul West Taluk,					
	SIA/TN/MIN/467014/2024 dated 26/03/2024	Metals submitted to Ministry vide proposal number					
	Ref: 1. Online proposal No. SIA/TN/MIN/46	57014/2024. dt: 26/03/2024					
	2. Your application submitted for Terms	of Reference dated: 04.04.2024.					
	2. The particulars of the proposal are as below :						
	(i) TOR Identification No.	TO24B0108TN5203883N					
	(ii) File No.	10798					
	(iii) Clearance Type	TOR					
	(iv) Category	B1					
	(v) Project/Activity Included Schedule No.	1(a) Mining of minerals					
	(vii) Name of Project	K.Pudukottai Village Rough Stone Gravel mining Lease					
	(viii) Name of Company/Organization	SHREE THEVAR BLUE METALS					
	(ix) Location of Project (District, State)	DINDIGUL, TAMIL NADU					
	(x) Issuing Authority	SEIAA					
	(xii) Applicability of General Conditions	no					
	(xiii) Applicability of Specific Conditions	no					
		-					

- 3. In view of the particulars given in the Para 1 above, the project proposal interalia including Form-1(Part A and B) were submitted to the SEIAA for an appraisal by the State Environment Impact Assessment Authority(SEIAA) under the provision of EIA notification 2006 and its subsequent amendments.
- 4. The above-mentioned proposal has been considered by State Environment Impact Assessment Authority(SEIAA) in the meeting held on 24/05/2024. The minutes of the meeting and all the Application and documents submitted [(viz. Form-1 Part A, Part B,)] are available on PARIVESH portal which can be accessed by scanning the QR Code above.
- 5. The State Expert Appraisal Committee (SEAC), based on the information & clarifications provided by the project proponent and after detailed deliberations recommended the proposal for grant of Terms of Reference under the provision of EIA Notification, 2006 and as amended thereof subject to the stipulation of specific and general conditions as detailed in Annexure (2).
- 6. The SEIAA has examined the proposal in accordance with the Environment Impact Assessment (EIA) Notification, 2006 & further amendments thereto and after accepting the recommendations of the SEAC hereby decided to grant Terms of Reference for instant proposal of M/s. M Ramesh under the provisions of EIA Notification, 2006 and as amended thereof.
- 7. The Ministry/SEIAA-TN reserves the right to stipulate additional conditions, if found necessary.
- 8. The Terms of Reference to the aforementioned project is under provisions of EIA Notification, 2006. It does not tantamount to approvals/consent/permissions etc. required to be obtained under any other Act/Rule/regulation. The Project Proponent is under obligation to obtain approvals /clearances under any other Acts/ Regulations or Statutes, as applicable, to the project.
- 9. This issues with the approval of the Competent Authority.
- 10. The TORs with public hearing prescribed shall be **valid for a period of three years** from the date of issue, for submission of the EIA/EMP report as per OM No.J-11013/41/2006-IA-II(I)(part) dated 29th August, 2017.

<u>Copy To</u>

1. The Additional Chief Secretary to Government, Environment, Climate Change and Forests Department, Govt. of Tamil Nadu, Fort St. George, Chennai - 9.

2. The Chairman, Central Pollution Control Board, Parivesh Bhavan,

CBD Cum-Office Complex, East Arjun Nagar, New Delhi - 110 032.

3. The Chairman, Tamil Nadu Pollution Control Board,

76, Mount Salai, Guindy, Chennai - 600 032.

4. The APCCF (C), Regional Office, MoEF & CC (SZ), 34, HEPC Building, 1st & 2nd Floor, Cathedral Garden Road, Nungambakkam, Chennai - 34.

5. Monitoring Cell, IA Division, Ministry of Environment, Forests & CC,

Paryavaran Bhavan, CGO Complex, New Delhi - 110 003.

6. The District Collector, Dindigul District.

7.Stock File.

Annexure 1

Specific Terms of Reference for (Mining Of Minerals)

1. Seiaa Specific Conditions:

S. No	Terms of Reference
1.1	1. The detailed studies on the Loss of Vegetation, Loss of Biodiversity shall be carried out and the

S. No	Terms of Reference
	action plan to prevent the same shall be included in the EIA report.
	2. The detailed studies on the Impact on water bodies and human health shall be carried out and the
	action plan to prevent the same shall be included in the EIA report.
	3. The PP shall carry out the scientific studies to assess the hydrogeological condition of the quarry
	by involving any one of the reputed Research and Academic Institution. A copy of such scientific
	study report shall be included in the EIA report.
	4. The PP shall carry out the scientific studies with prior permission from the DMS/Chennai
	Region, to design the controlled blast parameters for reducing the blast-induced ground/air-
	vibrations and eliminating the fly rock from the blasting operations carried out in the quarry, by
	involving anyone of these reputed Research and Academic Institution. A copy of such scientific
	study report shall be included in the EIA report.
	5. The PP shall carry out the scientific studies to assess the slope stability of the working benches
	and existing quarry wall by involving any one of the reputed Research and Academic Institutions. A
	copy of such scientific study report shall be included in the EIA report.

2. Seac Conditions - Site Specific

S. No	Terms of Reference
2.1	 The proponent shall furnish photographs of adequate fencing, green belt along the periphery including replantation of existing trees & safety distance between the adjacent quarries & water bodies nearby provided as per the approved mining plan. The PP shall carry out Drone video survey covering the cluster, Green belt, fencing etc., The PP shall propose the mitigation measures for the protection of structures exists within 500 m distance radially from the mine lease against the blast-induced ground & air vibrations, air & water pollution, haul road maintenance, ground water management.

3. Seac Standard Conditions

S. No
3.1

S. No	Terms of Reference
	4. The PP shall submit a detailed hydrological report indicating the impact of proposed quarrying operations on the waterbodies like lake, water tanks, etc are located within 1 km of the proposed quarry.
	5. The Proponent shall carry out Bio diversity study through reputed Institution and the same shall be included in EIA Report.
	6. The DFO letter stating that the proximity distance of Reserve Forests, Protected Areas, Sanctuaries, Tiger reserve etc., up to a radius of 25 km from the proposed site.
	7. In the case of proposed lease in an existing (or old) quarry where the benches are not formed (or) partially formed as per the approved Mining Plan, the Project Proponent (PP) shall the PP shall carry out the scientific studies to assess the slope stability of the working benches to be constructed and existing quarry wall, by involving any one of the reputed Research and Academic Institutions - CSIR-Central Institute of Mining & Fuel Research / Dhanbad, NIRM/Bangalore, Division of Geotechnical Engineering-IIT-Madras, NIT-Dept of Mining Engg, Surathkal, and Anna University Chennai-CEG Campus. The PP shall submit a copy of the aforesaid report indicating the stability status of the quarry wall and possible mitigation measures during the time of appraisal for obtaining the EC.
	8. However, in case of the fresh/virgin quarries, the Proponent shall submit a conceptual 'Slope Stability Plan' for the proposed quarry during the appraisal while obtaining the EC, when the depth of the working is extended beyond 30 m below ground level.
	 9. The PP shall furnish the affidavit stating that the blasting operation in the proposed quarry is carried out by the statutory competent person as per the MMR 1961 such as blaster, mining mate, mine foreman, II/I Class mines manager appointed by the proponent. 10. The PP shall present a conceptual design for carrying out only controlled blasting operation involving line drilling and muffle blasting in the proposed quarry such that the blast-induced ground vibrations are controlled as well as no fly rock travel beyond 30 m from the blast site. 11. The EIA Coordinators shall obtain and furnish the details of quarry/quarries operated by the proponent in the past, either in the same location or elsewhere in the State with video and
	photographic evidences.12. If the proponent has already carried out the mining activity in the proposed mining lease area after 15.01.2016, then the proponent shall furnish the following details from AD/DD, mines,13. What was the period of the operation and stoppage of the earlier mines with last work permit
	issued by the AD/DD mines?
	 Highest production achieved in any one year
	• Detail of approved depth of mining.
	• Actual depth of the mining achieved earlier.
	• Name of the person already mined in that leases area.
	• If EC and CTO already obtained, the copy of the same shall be submitted.
	• Whether the mining was carried out as per the approved mine plan (or EC if issued) with stipulated benches.
	15. All corner coordinates of the mine lease area, superimposed on a High-Resolution Imagery/Topo sheet, topographic sheet, geomorphology, lithology and geology of the mining lease area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
	16. The PP shall carry out Drone video survey covering the cluster, green belt, fencing, etc.,17. The proponent shall furnish photographs of adequate fencing, green belt along the periphery including replantation of existing trees & safety distance between the adjacent quarries & water
	bodies nearby provided as per the approved mining plan. 18. The Project Proponent shall provide the details of mineral reserves and mineable reserves, planned production capacity, proposed working methodology with justifications, the anticipated impacts of the mining operations on the surrounding environment, and the remedial measures for

S. No	Terms of Reference
S. No	Terms of Reference the same. 19. The Project Proponent shall provide the Organization chart indicating the appointment of various statutory officials and other competent persons to be appointed as per the provisions of the Mines Act'1952 and the MMR, 1961 for carrying out the quarrying operations scientifically and systematically in order to ensure safety and to protect the environment. 20. The Project Proponent shall conduct the hydro-geological study considering the contour map of the water table detailing the number of groundwater pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds, etc. within 1 km (radius) along with the collected water level data for both monsoon and non-monsoon seasons from the PWD / TWAD so as to assess the impacts on the wells due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. 21. The proponent shall furnish the baseline data for the environmental and ecological parameters
	 21. The proponent shall furnish the baseline data for the chynomitental and ecological parameters with regard to surface water/ground water quality, air quality, soil quality & flora/fauna including traffic/vehicular movement study. 22. The Proponent shall carry out the Cumulative impact study due to mining operations carried out in the quarry specifically with reference to the specific environment in terms of soil health, biodiversity, air pollution, water pollution, climate change and flood control & health impacts. Accordingly, the Environment Management plan should be prepared keeping the concerned quarry and the surrounding habitations in the mind. 23. Rain water harvesting management with recharging details along with water balance (both monsoon & non-monsoon) be submitted. 24. Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of
	 change of land use should be given. 25. Details of the land for storage of Overburden/Waste Dumps (or) Rejects outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be provided. 26. Proximity to Areas declared as 'Critically Polluted' (or) the Project areas which attracts the court restrictions for mining operations, should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the TNPCB (or) Dept. of Geology and Mining should be secured and furnished to the effect that the proposed mining activities could be considered. 27. Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided. 28. Impact on local transport infrastructure due to the Project should be indicated.
	 29. A tree survey study shall be carried out (nos., name of the species, age, diameter etc.,) both within the mining lease applied area & 300m buffer zone and its management during mining activity. 30. A detailed mine closure plan for the proposed project shall be included in EIA/EMP report which should be site-specific. 31. As a part of the study of flora and fauna around the vicinity of the proposed site, the EIA coordinator shall strive to educate the local students on the importance of preserving local flora and fauna by involving them in the study, wherever possible. 32. The purpose of Green belt around the project is to capture the fugitive emissions, carbon sequestration and to attenuate the noise generated, in addition to improving the aesthetics. A wide range of indigenous plant species should be planted as given in the appendix-I in consultation with the DFO, State Agriculture University. The plant species with dense/moderate canopy of native origin should be chosen. Species of small/medium/tall trees alternating with shrubs should be planted in a mixed manner.

Terms of Reference
33. Taller/one year old Saplings raised in appropriate size of bags, preferably ecofriendly bags should be planted as per the advice of local forest authorities/botanist/Horticulturist with regard to site specific choices. The proponent shall earmark the greenbelt area with GPS coordinates all along the boundary of the project site with at least 3 meters wide and in between blocks in an organized manner
 34. A Disaster management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period. 35. A Pisk Assessment and management Plan shall be prepared and included in the EIA/EMP.
Report for the complete life of the proposed quarry (or) till the end of the lease period
36. Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed. 37. Public health implications of the Project and related activities for the population in the impact rome should be systematically evaluated and the proposed remedial measures should be detailed.
along with budgetary allocations.
38. The Socio-economic studies should be carried out within a 5 km buffer zone from the mining activity. Measures of socio-economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation
39. Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project should be given.
40. Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.
41. If any quarrying operations were carried out in the proposed quarrying site for which now the EC is sought, the Project Proponent shall furnish the detailed compliance to EC conditions given in
Office Chennai (or) the concerned DEE/TNPCB
42. The PP shall prepare the EMP for the entire life of mine and also furnish the sworn affidavit stating to abide the EMP for the entire life of mine
43. Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act, 1986.

4. Seiaa Standard Conditions:

S. No	Terms of Reference
4.1	 Impacts on Energy requirement. Impacts on living System (air ,water ,soil & micro organism). Impacts on terrestrial & aquatic within and surrounding areas. As per the MoEF& CC office memorandum F.No.22-65/2017-IA.III dated: 30.09.2020 and 20.10.2020 the proponent shall furnish the detailed EMP mentioning all the CER activities as committed with the action plan. All the construction of Buildings shall be energy efficient and confirm to the green building norms. The proponent shall provide adequate parking facility for vehicles of all the workers & visitors. The proponent shall ensure that no treated or untreated trade effluent/sewage discharged outside the premises under any circumstances. The disaster management and disaster mitigation standards to be seriously adhered to avoid of calamities.

S. No	Terms of Reference
	 9. The proponent shall provide the action taken for reduction of green house gas emissions to support the climatic action to make it sustainable buildings. 10. The project proponent shall furnish the action taken to provide adequate parking space for visitors of all inmates including clean traffic plan. 11. The project proponent shall furnish the action taken to improve water usage efficiency in the
	building. 12. The project proponent shall conduct detailed study of biodiversity flora & fauna including invasives /endemic vulnerable species.
	encroachment of water bodies (including canals).14. The project proponent shall furnish impact of Green House Gases emissions and climate change
	likely due to activities. 15. The project proponent shall conduct detailed soil investigation including microflora /fauna.
	17. The project proponent shall furnish List of trees available in the area.18. The project proponent shall study impact of activities on water bodies/wetlands.
	19. The project proponent shall conduct studies on invasive and alien species

Standard Terms of Reference for (Mining of minerals)

1.

S. No	Terms of Reference
1.1	An EIA-EMP Report shall be prepared for peak capacity (MTPA)operation in an ML/project area ofha based on the generic structure specified in Appendix III of the EIA Notification, 2006.
1.2	An EIA-EMP Report would be prepared for peak capacity operation to cover the impacts and environment management plan for the project specific activities on the environment of the region, and the environmental quality encompassing air, water, land, biotic community, etc. through collection of data and information, generation of data on impacts including prediction modeling for MTPA of mineral production based on approved project/Mining Plan forMTPA. Baseline data collection can be for any season (three months) except monsoon.
1.3	Propoer KML file with pin drop and coordinate of mine at 500-1000 m interval be provided
1.4	A Study area map of the core zone (project area) and 10 km area of the buffer zone (1: 50,000 scale) clearly delineating the major topographical features such as the land use, surface drainage pattern including rivers/streams/nullahs/canals, locations of human habitations, major constructions including railways, roads, pipelines, major industries, mines and other polluting sources. In case of ecologically sensitive areas such as Biosphere Reserves/National Parks/WL Sanctuaries/ Elephant Reserves, forests (Reserved/Protected), migratory corridors of fauna, and areas where endangered fauna and plants of medicinal and economic importance found in the 15 km study area should be given. The above details to be furnished in tabular form also
1.5	Map showing the core zone delineating the agricultural land (irrigated and un-irrigated, uncultivable land as defined in the revenue records, forest areas (as per records), along with other physical features such as water bodies, etc should be furnished.
1.6	A contour map showing the area drainage of the core zone and 25 km of the study area (where the

S. No	Terms of Reference
	water courses of the core zone ultimately join the major rivers/streams outside the lease/project area) should also be clearly indicated in the separate map.
1.7	Catchment area with its drainage map of 25 km area within and outside the mine shall be provided with names, details of rivers/ riverlet system and its respective order. The map should clearly indicate drainage pattern of the catchment area with basin of major rivers. Diversion of drains/ river need eloboration in form of lengthe, quantity and quality of water to be diverted
1.8	(Details of mineral reserves, geological status of the study area and the seams to be worked, ultimate working depth and progressive stage-wise working scheme until the end of mine life should be provided on the basis of the approved rated capacity and calendar plans of production from the approved Mining Plan. Geological maps and sections should be included. The Progressive mine development and Conceptual Final Mine Closure Plan should also be shown in figures. Details of mine plan and mine closure plan approval of Competent Authority should be furnished for green field and expansion projects.
1.9	Details of mining methods, technology, equipment to be used, etc., rationale for selection of specified technology and equipment proposed to be used vis-à-vis the potential impacts should be provided.
1.10	Impact of mining on hydrology, modification of natural drainage, diversion and channeling of the existing rivers/water courses flowing though the ML and adjoining the lease/project and the impact on the existing users and impacts of mining operations thereon.
1.11	A detailed Site plan of the mine showing the proposed break-up of the land for mining operations such as the quarry area, OB dumps, green belt, safety zone, buildings, infrastructure, Stockyard, township/colony (within and adjacent to the ML), undisturbed area -if any, and landscape features such as existing roads, drains/natural water bodies to be left undisturbed along with any natural drainage adjoining the lease /project areas, and modification of thereof in terms of construction of embankments/bunds, proposed diversion/re-channelling of the water courses, etc., approach roads, major haul roads, etc should be indicated.
1.12	Original land use (agricultural land/forestland/grazing land/wasteland/water bodies) of the area should be provided as per the tables given below. Impacts of project, if any on the land use, in particular, agricultural land/forestland/grazing land/water bodies falling within the lease/project and acquired for mining operations should be analyzed. Extent of area under surface rights and under mining rights should be specified. Area under Surface Rights S.N ML/Project Land use Area under Surface Area Under Mining Rights(ha) (ha) 1 Agricultural land 2 Forest Land 3 Grazing Land 4 Settlements 5 Others (specify) S.N. Details 1 Buildings

S. No	Terms of Reference
	 2 Infrastructure 3 Roads 4 Others (specify) Total
1.13	Study on the existing flora and fauna in the study area (10km) should be carried out by an institution of relevant discipline. The list of flora and fauna duly authenticated separately for the core and study area and a statement clearly specifying whether the study area forms a part of the migratory corridor of any endangered fauna should be given. If the study area has endangered flora and fauna, or if the area is occasionally visited or used as a habitat by Schedule-I species, or if the project falls within 15 km of an ecologically sensitive area, or used as a migratory corridor then a Comprehensive Conservation Plan along with the appropriate budgetary provision should be prepared and submitted with EIA-EMP Report; and comments/observation from the CWLW of the State Govt. should also be obtained and furnished.
1.14	One-season (other than monsoon) primary baseline data on environmental quality - air (PM10, PM2.5, SOx, NOx and heavy metals such as Hg, Pb, Cr, As, etc), noise, water (surface and groundwater), soil - along with one-season met data coinciding with the same season for AAQ collection period should be provided. The detail of NABL/ MoEF&CC certification of the respective laboratory and NABET accreditation of the consultant to be provided.
1.15	Map (1: 50, 000 scale) of the study area (core and buffer zone) showing the location of various sampling stations superimposed with location of habitats, other industries/mines, polluting sources, should be provided. The number and location of the sampling stations in both core and buffer zones should be selected on the basis of size of lease/project area, the proposed impacts in the downwind (air)/downstream (surface water)/groundwater regime (based on flow). One station should be in the upwind/upstream/non-impact/non-polluting area as a control station. The monitoring should be as per CPCB guidelines and parameters for water testing for both ground water and surface water as per ISI standards and CPCB classification wherever applicable. Observed values should be provided along with the specified standards.
1.16	For proper baseline air quality assessment, Wind rose pattern in the area should be reviewed and accordingly location of AAMSQ shall be planned by the collection of air quality data by adequate monitoring stations in the downwind areas. Monitoring location for collecting baseline data should cover overall the 10 km buffer zone i.e. dispersed in 10 km buffer area. In case of expansion, the displayed data of CAAQMS and its comparison with the monitoring data to be provided
1.17	A detailed traffic study along with presence of habitation in 100 mts distance from both side of road, the impact on the air quality with its proper measures and plan of action with timeline for widening of road. The project will increase the no. of vehicle along the road which will indirectly contribute to carbon emission so what will be the compensatory action plan should be clearly spell out in EIA/ EMP report.
1.18	The socio-economic study to conducted with actual survey report and a comparative assessment to be provided from the census data should be provided in EIA/ EMP report also occupational status & economic status of the study area and what economically project will contribute should be clearly mention. The study should also include the status of infrastructural facilities and amenities present in the study area and a comparative assessment with census data to be provided and to link it with

S. No	Terms of Reference
	the initialization and quantification of need based survey for CSR activities to be followed.
1.19	The Ecology and biodiversity study should also indicate the likely impact of change in forest area for surface infrastructural development or mining activity in relation to the climate change of that area and what will be the compensatory measure to be adopted by PP to minimize the impact of forest diversion.
1.20	Baseline data on the health of the population in the impact zone and measures for occupational health and safety of the personnel and manpower for the mine should be submitted.
1.21	Impact of proposed project/activity on hydrological regime of the area shall be assessed and report be submitted. Hydrological studies as per GEC 2015 guidelines to be prepared and submitted
1.22	Impact of mining and water abstraction from the mine on the hydrogeology and groundwater regime within the core zone and 10 km buffer zone including long-term monitoring measures should be provided. Details of rainwater harvesting and measures for recharge of groundwater should be reflected in case there is a declining trend of groundwater availability and/or if the area falls within dark/grey zone.
1.23	Study on land subsidence including modeling for prediction, mitigation/prevention of subsidence, continuous monitoring measures, and safety issues should be carried out.
1.24	Detailed water balance should be provided. The break up of water requirement as per different activities in the mining operations, including use of water for sand stowing should be given separately. Source of water for use in mine, sanction of the Competent Authority in the State Govt. and impacts vis-à-vis the competing users should be provided.
1.25	PP shall submit design details of all Air Pollution control equipment (APCEs) to be implemented as part of Environment Management Plan vis-à-vis reduction in concentration of emission for each APCEs
1.26	PP shall propose to use LNG/CNG based mining machineries and trucks for mining operation and transportation of mineral. The measures adopted to conserve energy or use of renewable sources shall be explored
1.27	PP to evaluate the green house emission gases from the mine operation and corresponding carbon absorption plan.
1.28	Site specific Impact assessment with its mitigation measures, Risk Assessment and Disaster Preparedness and Management Plan should be provided.
1.29	Impact of choice of mining method, technology, selected use of machinery and impact on air quality, mineral transportation, handling & storage/stockyard, etc, Impact of blasting, noise and vibrations should be provided.
1.30	Impacts of mineral transportation within the mining area and outside the lease/project along with flow-chart indicating the specific areas generating fugitive emissions should be provided. Impacts of transportation, handling, transfer of mineral and waste on air quality, generation of effluents from workshop etc, management plan for maintenance of HEMM and other machinery/equipment should be given. Details of various facilities such as rest areas and canteen for workers and

S. No	Terms of Reference
	effluents/pollution load emanating from these activities should also be provided.
1.31	Details of various facilities to be provided to the workers in terms of parking, rest areas and canteen, and effluents/pollution load resulting from these activities should also be given.
1.32	The number and efficiency of mobile/static water jet, Fog cannon sprinkling system along the main mineral transportation road inside the mine, approach roads to the mine/stockyard/siding, and also the frequency of their use in impacting air quality should be provided.
1.33	Conceptual Final Mine Closure Plan and post mining land use and restoration of land/habitat to the pre- mining status should be provided. A Plan for the ecological restoration of the mined out area and post mining land use should be prepared with detailed cost provisions. Impact and management of wastes and issues of re-handling (wherever applicable) and backfilling and progressive mine closure and reclamation should be furnished.
1.34	Adequate greenbelt nearby areas, mineral stock yard and transportation area of mineral shall be provided with details of species selected and survival rate Greenbelt development should be undertaken particularly around the transport route.
1.35	Cost of EMP (capital and recurring) should be included in the project cost and for progressive and final mine closure plan.
1.36	Details of R&R. Detailed project specific R&R Plan with data on the existing socio- economic status of the population (including tribals, SC/ST, BPL families) found in the study area and broad plan for resettlement of the displaced population, site for the resettlement colony, alternate livelihood concerns/employment for the displaced people, civic and housing amenities being offered, etc and costs along with the schedule of the implementation of the R&R Plan should be given.
1.37	CSR Plan along with details of villages and specific budgetary provisions (capital and recurring) for specific activities over the life of the project should be given.
1.38	Corporate Environment Responsibility:
1.39	a) The Company must have a well laid down Environment Policy approved by the Board of Directors.
1.40	b) The Environment Policy must prescribe for standard operating process/procedures to bring into focus any infringements/deviation/violation of the environmental or forest norms/conditions.
1.41	c) The hierarchical system or Administrative Order of the company to deal with environmental issues and for ensuring compliance with the environmental clearance conditions must be furnished.
1.42	d) To have proper checks and balances, the company should have a well laid down system of reporting of non-compliances/violations of environmental norms to the Board of Directors of the company and/or shareholders or stakeholders at large.
1.43	e) Environment Managament Cell and its responsibilities to be clearly spleel out in EIA/ EMP report

S. No	Terms of Reference			
1.44	f) In built mechanism of self-monitoring of compliance of environmental regulations should be indicated.			
1.45	Status of any litigations/ court cases filed/pending on the project should be provided.			
1.46	PP shall submit clarification from DFO that mine does not falls under corridors of any National Park and Wildlife Sanctuary with certified map showing distance of nearest sanctuary.			
1.47	Copy of clearances/approvals such as Forestry clearances, Mining Plan Approval, mine closer plan approval. NOC from Flood and Irrigation Dept. (if req.), etc. wherever applicable.			
1.48	Details on the Forest Clearance should be given as per the format given: Total ML Total Project Area Forest (ha) land (ha) If more than one provide details of each FC			
1.49	In case of expansion of the proposal, the status of the work done as per mining plan and approved mine closure plan shall be detailed in EIA/ EMP report			
1.50	Details on Public Hearing should cover the information relating to notices issued in the newspaper, proceedings/minutes of Public Hearing, the points raised by the general public and commitments made by the proponent and the time bound action proposed with budgets in suitable time frame. These details should be presented in a tabular form. If the Public Hearing is in the regional language, an authenticated English Translation of the same should be provided.			
1.51	PP shall carry out survey through drone highlighting the ground reality for atleast 10 minutes			
1.52	Detailed Chronology of the project starting from the first lease deed alloted/Block allotment/ Land acquired to its No. of renewals, CTO /CTE with details of no. renewals, previous EC(s) granted details and its compliance details, NOC details from various Govt bodies like Forest NOC(s), CGWA permissions, Power permissions, etc as per the requisites respectively to be furnished in tabular form.			
1.53	The first page of the EIA/ EMP report must mention the peak capacity production, area, detail of PP, Consultant (NABET acrreditation) and Laboratory (NABL / MoEF & CC certification)			
1.54	The compliances of ToR must be properly cited with respective chapter section and page no in tabular form and also mention sequence of the respective ToR complied within the EIA-EMP report in all the chapter,s section.			

From

Thiru.K.Vijayaragavan, M.Sc., Assistant Director, Geology and Mining, Dindigul M/s. Shree Thevar Blue Metals, SF.Nos: 295/1, 295/1A, 295/2, 295/3 Kothapulli Village, Reddiarchatram, Dindigul District

-293.

Rc.No.115/2023(Mines) dated: || .03.2024

To

Sir,

Sub: Mines and Quarries - Minor Minerals - Dindigul District - Dindigul West Taluk - K.Pudukottai Village in SF.Nos.244/1A, 244/2A1, 244/2A2 - over an extent of 2.43.0 Hects., of patta lands - Rough stone & Gravel quarry lease - 500mts radius details - requested -Regarding.

Ref: 1.Application of M/s. Shree Thevar Blue Metals, Kothapullu, Dindigul dt.22.12.2023
2.Precise area communication in Rc.No.115/2023(Mines) dated: 27.02.2023
3.Letter from M/s. Shree Thevar Blue Metals, Kothapullu, Dindigul letter dt.06.03.2024

With reference to your letter in the reference 3rd cited, the details of existing and lease expired quarries located within 500m radius from the proposed Rough stone & gravel quarry, over an extent of 2.43.0 Hects in patta S.F.Nos. 244/1A, 244/2A1, 244/2A2 of K.Pudukottai Village, Dindigul West Taluk, Dindigul District are as follows:

1. Proposed Area

S. No	Name of the applicant	Village &Taluk	S.F.No	Extent (in hec)
1	M/s. Shree Thevar Blue Metals, SF.Nos: 295/1, 295/1A, 295/2, 295/3 Kothapulli Village, Reddiarchatram, Dindigul District	Dindigul West Taluk, K.Pudukottai Village	244/1A, 244/2A1, 244/2A2	2.43.0

103 Ranen

4) Existing Other Quarries:

S.	Name of the Lessee /	Village &	S.F.No	Extent	Lease period
No	Permit Holder	Taluk		(in hec)	al and start
1.	Premium Granite Kothapulli Village Thathankottai Road Reddiyarchathiram, Dindigul West	Dindigul West Taluk, K.Pudukottai Village	249/1, 8B, 9, 10A,etc	1.70.50	28.04.2023 to 27.04.2028
2.	Umarani W/o Chelladurai No 11-4-29 Royal Theature Annanagar back side Keelakottai Sinnalapatti Dindigul 624301	Dindigul West Taluk, K.Pudukottai Village	252/2,4, 252/5	1.01.00	07.10.2023 to 06.10.2028
3.	R S Palanisamy, Rengappanaickanpatti, Reddiyarchatram, Kothapulli village Dindigul Dist.	Dindigul West Taluk, Kothapulli Village	304/1,30 4/2etc	2.53.05	19.05.2023 to 18.05.2028
4.	M.Balu, S/o. Muthu 1/141, West Street, Pillayarnatham Dindigul	Dindigul West Taluk, Kothapulli Village	302/2	1.12.05	02.09.2017 to 01.09.2022 Vide RC No.3522/mm6 /23/dt 18-05- 2023 Extended 03-06-2023 to 02-12-2024

M. Romen

3) Lease Expired

S. No	Name of the Lessee / Permit Holder	Village & Taluk	S.F.No	Extent (in	Lease period
1.	P.Bharathcibi, S/o.R.Pandiyarajan, B28, Vivekananda Nagar, Near Roatry Meeting Hall, Dindigul	Dindigul West Taluk, K.Pudukottai Village	248/1B, 248/2, 248/3A, 248/4, 248/5, 248/7	1.27.0	20.11.2017 to 19.11.2022
2.	P.Anbarasu, S/o R.S.Palanisamy, Rengappanaickenpatty, K.Pudukottai (Po), Reddiyarchatram (Via), Dindigul	Dindigul West Taluk, Kothapulli Village	315/8, 315/9, 315/10 315/11, 315/12 315/13	1.60.5	07.07.2015 to 06.07.2020

Assistant Director,

Geology and Mining, Dindigul

1.004

MRonen

167

-131-

From

Thiru.K.Vijayaragavan, M.Sc., Assistant Director, Geology and Mining, Dindigul To

M/s.Shree Thevar Blue Metals, SF.Nos: 295/1, 295/1A, 295/2, 295/3 Kothapulli Village, REddiarchatram, Dindigul District

Rc.No.115/2023(Mines) dated: || .03.2024

Sir,

Sub: Mines and Quarries - Minor Minerals - Dindigul District
 Dindigul West Taluk - K.Pudukottai Village in SF.Nos.244/1A, 244/2A1, 244/2A2 - over an extent of 2.43.0 Hects., of patta lands - Rough stone & Gravel quarry lease - draft mining plan submitted by M/s.Shree Thevar Blue Metals - Approval of mining plan - Regarding.

- Ref:
- 1.Application of M/s. Shree Thevar Blue Metals, Kothapulli, Dindigul dt.22.12.2023
- Precise area communication in Rc.No.115/2023(Mines) dated: 27.02.2023
- 3.Letter from M/s. Shree Thevar Blue Metals, Kothapullu, Dindigul letter dt.06.03.2024

In the reference 1st cited, M/s. Shree Thevar Blue Metals, Kothapullu, Dindigul has applied for the grant of lease to quarry rough stone & Gravel, over an extent of 2.43.0 hects in patta lands in SF.Nos.244/1A, 244/2A1, 244/2A2 of K.Pudukottai Village, Dindigul West Taluk, Dindigul District under Rule 19(1) of Tamil Nadu Minor Mineral Concession Rules, 1959.

2) The precise area has been communicated to the applicant under reference 2nd cited above, based on the recommendations of the Revenue Divisional Officer, Dindigul and the Assistant Director of Geology and Mining, Dindigul.

3) In exercise of powers delegated under Rule 42 of Tamil Nadu Minor Mineral Concession Rules, 1959, I hereby approve the mining plan submitted by M/s. Shree Thevar Blue Metals for grant of lease to quarry rough stone & gravel, over an extent of 2.43.0 hects in patta lands in

M. Ranen

SF.Nos.244/1A, 244/2A1, 244/2A2 of K.Pudukottai Village, Dindigul West Taluk, Dindigul District for a period of Ten years and the proposed mineable reserves of rough stone and gravel after leaving safety distance is arrived as **419186 M³** and **38404 M³** to the proposed depth of 45m. This approval is subject to the following conditions:-

- (i). That the mining plan is approved without prejudice to any other Law applicable to the quarry lease from time to time whether such Laws are made by the Central Government, State Government or any other authority.
- (ii). This approval of the mining plan does not in any way imply the approval of the Government in terms of any other provisions of the Mines and Minerals (Development and Regulation) Act, 1957, or any other connected laws including Forest (Conservation) Act, 1980, Forest Conservation Rules, 1981, Environment Protection Act, 1980, Indian Explosives Act, 1884(Central Act IV of 1884) and the rules made there under the Tamil Nadu Minor Mineral Concession Rules, 1959.
- (iii). That the mining plan is approved without prejudice to any other order or direction from any court of competent jurisdiction.
- (iv). The scheme of mining shall be submitted to the Assistant Director of Geology and Mining atleast 180 days before the expiry of the five years period forwhich it was approved on the last occation.

Assistant^JDirector, Geology and Mining, Dindigul

Encl: 2 copies of Approved Mining Plan.

Copy submitted to:

1. The Chairman,

State Level Environment Impact Assessment Authority, Chennai

 The Commissioner of Geology and Mining, Industrial Estate, Guindy, Chennai- 32

MRanea

FOR

K.PUDUKOTTAI VILLAGE ROUGH STONE AND GRAVEL MINING LEASE WITH

PROGRESSIVE QUARRY CLOSURE PLAN

Patta- Ryotwari land/Opencast Semi-Mechanized mining/ Non- Forest/Non - Captive Use -

"B2' Category

Lease period 10 Years from the date of lease execution

(Prepared under rule 41 of Tamil Nadu Minor Mineral Concession Rules, 1959)

LOCATION OF THE LEASE AREA

STATE	:	TAMILNADU
DISTRICT		DINDIGUL
TALUK		DINDIGUL WEST
VILLAGE	:	K.PUDUKOTTAI
S.F. No's		244/1A, 244/2A1 & 244/2A2
EXTENT	:	2.43.0 Hectares

ADDRESS OF THE APPLICANT

M/s.Shree Thevar Blue Metals,

S.F.No's: 295/1, 295/1A, 295/2 & 295/3,

Kothapulli Village,

Reddiarchatram,

Dindigul District – 624622

PREPARED BY

Dr.S.KARUPPANNAN.M.Sc., Ph.D., RQP/MAS/263/2014/A GEO TECHNICAL MINING SOLUTIONS No: 1/213 -B, Ground Floor, Natesan Complex,

Oddapatti, Collectorate Post office, Dharmapuri-636705. Tamil Nadu. Mob. : +91 9443937841, +917010076633, E-mail: <u>info.gtmsdpi@gmail.com</u>, Website: <u>www.gtmsind.com</u>

۲

۲

۲

۲

۲

۲

۲

۲

M.Ranen. 170

1 | Page

nuiale Q

	CONTENTS	Geolog
S. No	Description	Page No.
<u>11</u> 2	Certificates	Asistant are
4	Introductory notes	9
1.0	General	10
2.0	Location and Accessibility	12
	PART-A	
3.0	Geology and Mineral reserves	14
4.0	Mining	19
5.0	Blasting	25
6.0	Mine drainage	27
7.0	Stacking of mineral rejects and disposal of waste	28
8.0	Uses of mineral	28
9.0	Others	28
10.0	Mineral processing/Beneficiations	29
	PART-B	
11.0	Environmental management plan	31
12.0	Progressive quarry closure plan	36
13.0	Financial assurance	38
14.0	Certificates	38
15.0	Plan and section, etc	38
16.0	Any other details intend to furnish by the applicant	38
17.0	CSR expenditure	39

•

•

•

•

M. Ranea

ANNEXURES

		- 130	9-
	ANNEXURES	of Geological College	Candigui - 624
SI. No.	Description	Annexure No.	
- 1.	Copy of precise area communication letter	I Condition and and and and and and and and and an	7
2.	Copy of FMB (Field Measurement book)	П	
3.	Copy of combined sketch	ш	
4.	Copy of "A" registered	IV	
5.	Copy of Chitta & adangal	V	
6.	Copy of Consent Documents	VI	
7.	Copy of GST Certificate	VII	
8.	Photocopy of the proposed lease area	VIII	
9.	Copy of ID Proof of the authorized signature	IX	
10.	Copy of RQP certificate	x	

M. Romen
	LIST OF FLAT	<u>E/S</u>	100
SI. No.	Description	Plate No.	Scale
1	Key map	1	Not to scale
2	Location plan	I-A	Not to scale
3	Toposheet map	I-B	1:1,00,000
4.	Satellite imagery map	I-C	1: 5,000
5	Environmental plan	I-D	1: 5,000
6	Mine lease plan	11	1:1000
7	Surface and Geological plan	Ш	1:1000
8	Geological Sections	ША	Sections HOR 1:1000 VER 1:500
9	Year wise Development & Production plan	IV	1:1000
10	Year wise Development & Production sections	IVA	Sections HOR 1:1000 VER 1:500
11	Mine layout plan and Land use pattern	v	1:1000
12	Conceptual plan	VI	1:1000
13	Conceptual sections	VIA	Sections HOR 1:1000 VER 1:500

•

•

•

MRamen

-141-

-143-

ining Collectorate

12

0 Juensiss

10,70

M/s.Shree Thevar Blue Metals, S.F.No's: 295/1, 295/1A, 295/2 & 295/3, Kothapulli Village, Reddiarchatram, Dindigul District – 624622

۲

۲

۲

۲

۲

0

۲

۲

۲

۲

۲

۲

0

۲

۲

۲

۲

۲

0

۲

۲

۲

0

0

0

۲

0

۲

۲

0

0

CONSENT LETTER FROM THE APPLICANT

The Mining Plan for rough stone and gravel quarry lease in S.F.No's: 244/1A, 244/2A1 & 244/2A2, over an extent of 2.43.0hectares, K.Pudukottai Village, Dindigul West

Taluk, Dindigul District, TamilNadu State has been prepared by

Dr. S. KARUPPANNAN. M.Sc., Ph.D. (Regn. No. RQP/MAS/263/2014/A)

I request the Assistant Director, Department of Geology and Mining, Dindigul District to make further correspondence regarding modifications of the Mining Plan with the said Recognized Qualified Person on this following address.

> Dr. S. KARUPPANNAN. M.Sc., Ph.D. (Regn. No. RQP/MAS/263/2014/A) GEO TECHNICAL MINING SOLUTIONS (A NABET accredited & ISO certified Company) No: 1/213-B, Ground Floor, Natesan Complex, Oddapatti, Collectorate Post office, Dharmapuri-636705 Ph: +91 9443937841, +91 7010076633 E-mail: info.gtmsdpi@gmail.com, Website: www.gtmsind.com

I hereby assure that all modifications so made in the Mining Plan by the Recognized Qualified Person may be deemed to made with my knowledge and consent and shall be acceptable and binding on me in all respects.

Place: Dindigul, TN

Date:

M. Raneer

Signature of the applicant (M/s.Shree Thevar Blue Metals)

M. Romen

M/s.Shree Thevar Blue Metals, S.F.No's: 295/1, 295/1A, 295/2 & 295/3, Kothapulli Village, Reddiarchatram, Dindigul District – 624622

DECLARATION

The Mining Plan of rough stone and gravel quarry lease in S.F.No's: 244/1A, 244/2A1 & 244/2A2, over an extent of 2.43.0hectares, K.Pudukottai Village, Dindigul West Taluk, Dindigul District, Tamil Nadu State have been prepared with my consultation and I have understood the contents and agree to implement the same in accordance with the Mining Laws.

Place: Dindigul, TN

M. Romer_

-145-

ing Collectorate

ŝ.

a fuelsiss

Signature of the applicant (M/s.Shree Thevar Blue Metals)

Date:

M. Ramen.

Dr. S. KARUPPANNAN. M.Sc., Ph.D. (Regn. No. RQP/MAS/263/2014/A) *GEO TECHNICAL MINING SOLUTIONS* (A NABET accredited & ISO certified Company) No: 1/213-B, Ground Floor, Natesan Complex, Oddapatti, Collectorate Post office, Dharmapuri-636705 Ph: +91 9443937841, +91 7010076633 E-mail: info.gtmsdpi@gmail.com, Website: www.gtmsind.com

CERTIFICATE

This is to certify that the provisions given in rule 19 & 20 of Tamil Nadu Minor Minerals Concession Rules, 1959 have been observed in the rough stone and gravel quarry lease mining plan in S.F.No's: 244/1A, 244/2A1 & 244/2A2 over an extent of 2.43.0Hectares in K.Pudukottai Village, Dindigul West Taluk, Dindigul District, Tamil Nadu State applied in the name of **M/s.Shree Thevar Blue Metals**, Dindigul District, Tamil Nadu.

Wherever specific permission / exemptions / relaxations or approvals are required the applicant will approach the concerned authorities of State and Central governments for granting such permissions etc.

Place: Dharmapuri, TN 03/24 Date: 04/

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

1

۴

۲

۲

۴

۲

۲

۲

0

۲

۲

•

۲

۲

۲

۲

IN

Signature of the Recognized Qualified Person

Dr.S.KARUPPANNAN,M.Sc,Ph.D., ROP/MAS/263/2014/A GEO TECHNICAL MINING SOLUTIONS A NABET Accredited and ISO Certified Company 1/213-B, Ground Floor, Natesan Complex, Collectorate Post Office, Oddapatti, Dharmapuri-636705, TamilNadu, India

M. Ranen.

	-149.
Dr. S. KARUPPANNAN. M.Sc., Ph.D. (Regn. No. RQP/MAS/263/2014/A) <i>GEO TECHNICAL MINING SOLUTIONS</i> (A NABET accredited & ISO certified Company) No: 1/213-B, Ground Floor, Natesan Complex, Oddapatti, Collectorate Post office, Dharmapuri-636705 Ph: +91 9443937841, +91 7010076633 E-mail: <u>info.gtmsdpi@gmail.com</u> , Website: <u>www.gtmsind.com</u>	The second secon

CERTIFICATE

I certify that the preparation of Mining Plan for rough stone and gravel quarry lease in S.F.No's: 244/1A, 244/2A1 & 244/2A2 over an extent of 2.43.0hectares, K.Pudukottai Village, Dindigul West Taluk, Dindigul District, Tamil Nadu prepared to **M/s.Shree Thevar Blue Metals**, Dindigul District, Tamil Nadu covers all the provisions of Mines Act, Rules and Regulations etc. made therein and if any specific permission is required the applicant will approach **"The Director General of Mines Safety**", Chennai. The standards prescribed by DGMS regarding Mines Health will be strictly implemented.

Place: Dharmapuri, TN Date: 04 03 24

0

۲

۲

۲

۲

۲

۲

0

۲

۲

۲

۲

۲

• • •

0

۲

۲

۲

۲

۲

۲

0

۲

0

۲

۲

0

۲

۲

Signature of the Recognized Qualified Person

Dr.S.KARUPPANNAN,M.Sc,Ph.D., ROP/MAS/263/2014/A GEO TECHNICAL MINING SOLUTIONS A NABET Accredited and ISO Certified Company 1/213-B, Ground Floor, Natesan Complex, Collectorate Post Office, Oddapatti, Dharmapuri-636705, TamilNadu, India

MiRamen.

MINING PLA

K.PUDUKOTTAI VILLAGE ROUGH STONE AND GRAVEL MINING EEASE WITH PROGRESSIVE QUARRY CLOSURE PLAN Patta- Ryotwari land/Opencast Semi-Mechanized mining/ Non- Forest/Non - Captive Use

"B2' Category Lease period 10 Years from the date of lease execution

(Prepared under rule 41 of Tamil Nadu Minor Mineral Concession Rules, 1959)

INTRODUCTORY NOTES:

- Introduction: The applicant M/s.Shree Thevar Blue Metals, office at S.F.No's: 295/1, 295/1A, 295/2 & 295/3, Kothapulli Village, Reddiarchatram, Dindigul District, Tamil Nadu State, filed an application for new proposal had submitted to the Assistant Director, Department of Geology and Mining, Dindigul dated 22.12.2023 to grant the quarry lease for rough stone and gravel in S.F.No's: 244/1A, 244/2A1 & 244/2A2, over an extent of 2.43.0hectares of K.Pudukottai Village, Dindigul West Taluk, Dindigul District, TamilNadu State further the period of 10 years.
- 2) Precise area communication letter particulars: The Assistant Director, Department of Geology and Mining, Dindigul has directed to the applicant M/s.Shree Thevar Blue Metals, through his precise area communication letter Rc.No.115/2023(Mines) Dated: 27.02.2024, before execution of lease deed should submit the mining plan for approval and obtain environmental clearance from the competent authority of State Level Environment Impact Assessment Authority-TamilNadu (SEIAA) per EIA notification S.O.1533(E) dated 14th September 2006 and its subsequent amendments S.O.3977(E), dated 14th August 2018, MoEF & CC office memorandum letter F.No.22-1/2019 -IA.III [E116917] dated 15th December, 2021 for quarrying lease rough stone and gravel at Tamil Nadu State, Dindigul District, Dindigul West Taluk, K.Pudukottai Village in S.F.Nos: 244/1A, 244/2A1 & 244/2A2 over an extent of 2.43.0hectares has recommended as following conditions for a period of ten years under Rule 19 & 20 of Tamil Nadu Minor Mineral Concession Rules, 1959

 A safety distance of 7.5m should be left out for Patta lands nearby the applied area while quarrying activities.

M. Raneer.

9 Page

ning Collector

- ii. A safety distance of 10m should be left out for Government Poramboke lands meaning or and the applied area while quarrying activities.
- iii. Wire fencing should be setup around the quarry before the start of quarrying.
- 3) Preparation and Submission of Mining Plan: The Mining Plan with progressive quarry closure plan has been prepared under rule 41 and submitted under rule 42 of Tamil Nadu Minor Mineral Concession Rules, 1959, for mining lease as perms conditions mentioned in the precise area communication letter Rc.No.115/2023(Mines) Dated: 27.02.2024.
- 4) Geological resources and Mineable reserves: Geological resource was estimated as 1093680m³ without considering the safety benches in which, rough stone is estimated about 1045072m³ and gravel is about 48608m³(Refer Plate No. III). The total mineable reserve is estimated as 457590m³ by deducting the reserves in safety area and benches. The calculated rough stone is about 419186m³ and gravel is about 38404m³ up to a depth of 45m below ground level (R.L.279-234m) for 10 years. (Refer Plate No.VIA).
- 5) <u>Proposed production schedule:</u> Total proposed production is 457590m³ in which the rough stone is 419186m³ and gravel is 38404m³ up to a depth of 45m below the ground level (R.L.279m-234m) for ten years. Average production is 41918m³ of rough stone and gravel is 12801m³ per year for three years. (Refer Plate No. IVA)
- 6) Environmental Sensitivity of the proposed lease area: -
 - Interstate boundary: There is no interstate boundary around 10Km radius periphery of proposed lease area.
 - Wildlife Protection Act, 1972: There is no wild life sanctuary within radius of 10Km from the project site area under the Wildlife (Protection) Act, 1972.
 - iii. Indian Forest Act, 1980: There is no forest land involved in the proposed Project. It will not attract the act. The nearest Reserved Forest is Devarmalai R.F - 1.80km - Northwest Side.
 - iv. CRZ Notification, 1991: There is no sea coastal zone found within radius of 10km and this project site doesn't attract CRZ Notification, 1991.

1.0 GENERAL:

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

0

۲

۲

۲

۲

۲

۲

۲

0

a.	Name of the Applicant	3	M/s.Shree Thevar Blue Metals
	Applicant address	:	S.F.No's: 295/1, 295/1A, 295/2 & 295/3, Kothapulli Village, Reddiarchatram,

My Banen.

10 Page

District	:	Dindigul
State	:	TamilNadu 📓 -
Pin code	4	624622
Phone	:	131
Fax	4	Nil
Gram	10	Nil
Telex	-	Nil
E-mail	Š.	
Status of the Applicant		
Private individual	100	
Cooperative Association	1	
Private company	4	Private company
Mineral(s) Which are occurring in the area and which the applicant intends to mine	4	Rough stone and gravel quarry lease
Period for which the mining		The precise area has been communicated to
lease granted /renewed/ proposed	4	the applicant for quarrying period of ten (10)
to be applied		years.
Name of the NABET accredited company preparing the Mining Plan	94	Dr. S.KARUPPANNAN.M.Sc.,Ph.D.,
Address		Geo Technical Mining Solutions (A NABET Accredited & ISO certified Company) No: 1/213-B, Ground Floor, Natesan Complex, Oddapatti, Collectorate Post office, Dharmapuri-636705 Web site: <u>www.gtmsind.com</u>
Phone	N.	+91 9443937841, 7010076633
Fax	2	Nil
e-mail		info.gtmsdpi@gmail.com
Telex	4	Nil
Certificate Number	4	RQP/MAS/263/2014/A
Date of grant/renewal	1	16.12.2014
Valid upto	्य	15.12.2024
Name of the prospecting agency	61 (4	Geo Technical Mining Solutions
		GSR 286(E) No:272, Ministry of Mines Notification 7th April 2022.
Address		No: 1/213-B, Natesan Complex, Oddapatti, Collectorate Post office, Dharmapuri-636705 Web site: <u>www.gtmsind.com</u>
Phone	3	+91 9443937841, 7010076633

•

•

•

M. Ronen.

		-	1.187	
5.	Reference No. and date of consent letter from the state government	1001	The precise area communication etter issue by the Assistant Director, Department of Geology and Mining, Dindigu, was receive vide Rc.No.115/2023(Mines) Dates 27.02.2024	ed of id 1:

2.0 LOCATION AND ACCESSIBILITY:

a.	Details of the Area:	3	Refer plate no: IA & IB	
	District & State	:	Dindigul, Tamil Nadu	-
	Taluk	:	Dindigul West Taluk	-
	Village	3	K.Pudukottai	_
				-

Khasra No./ Plot No./ Block Range/ Felling Series etc.

Survey No.	Sub division	Total Extent in Hect	Patta No.	v	illage and Name of the Land Owner	Mine lease Applied S.F. No.	Mine lease Applied Area out of total area in hect.	
244	1A	1.91.0			1.Mr.Ramesh	244/1A	1.91.0	
244	2A1	0.28.0	1222	3	S/o.Murugesanthevar	244/2A1	0.28.0	
244	2A2	0.24.0	1552	5	2.Mr.Balaji S/o. Murugesanthevar	244/2A2	0.24.0	
Total Extent 2.43.0					Applied lea	se area extent	2.43.0	
ease ar	ea (hectai	res)		:	2.43.0 Hectare			
Vhether e in whether	the area forest (p	is recor please s	ded to pecify	â	No, forest is invol Land.	ved. This is	recorded pat	
tc)	protect	ed, res	erved,					

Existence of Public Road / Railway line if any nearby and approximate distance:

- Excavated materials will be transported through the approach road on the south side of the lease applied area.
- ✓ There is an NH-83 road are situated about 1.7km away from the south side which is connecting Palani Road.
- ✓ There is a MDR-966 road are situated about 0.8km away from the east side which is connecting K.Pudukottai road.
- ✓ There is no SH road situated around 5km radius from the proposed lease area.
- ✓ There is a railway line situated about 1.6km radius away on south side of the lease area.

Milliones .

57-

ing Collectorate

end mersiss

Top	osheet	No. with latitu	de and	: SO	I Toposhe	eet No.	58 F/15	2	
long	gitude			Lat	itude : F	From 10	0°27'5 37	"N TOES	
				10°27'10 78"N \$					
				Lor	oitude · F	From 7	7951'30 1	2"10	- 17
				LOI	ignuuc . i	7	7051127 3	TE	
						1	1 51 51.5	I E Cito	
Geo	o-Coor	linates of the le	ase bour	ndary:				I'ven!	Zun
S	SI.No	LATITUDE	LONC	TTIDE	SLNo	LATT	TUDE	LONGITIDE	_
-	1	10°27'9.84"N	77°51	37.37"E	13	10°27	6.21"N	77°51'31.70"E	
	2	10°27'8.42"N	779512	67.03"E	14	10°27	6.44"N	77°51'31.73"E	2
-	3	10°27'6 91"N	770511	6 62"E	15	10.27	0.71 N	77°51'30.97 E	
	5	10°27'6 69"N	77°51'	5 85"E	17	10°27	7.64"N	77°51'30 12"E	
	6	10°27'6.54"N	77°51'	35.24"E	18	10°27	9.31"N	77°51'30.76"E	
	7	10°27'6.46"N	77°51'3	5.02"E	19	10°27'1	0.65"N	77°51'31.47"E	
	8	10°27'5.91"N	77°51'	33.85"E	20	10°27'1	0.19"N	77°51'33.66"E	
	9	10°27'5.93"N	77°51'	33.44"E	21	10°27'1	0.78"N	77°51'33.89"E	
	10	10°27'5.37"N	77°51'.	33.40"E	22	10°27'1	0.45"N	77°51'35.30"E	
	11	10°27'5.67"N	77°51'	31.91"E	23	10°27'1	0.35"N	77°51'35.64"E	_
T an	12	10-2/6.05 N	77-51	51.95 E	24	10-2/1	0.11"N	//*3136.4/ E	
Lan	iu us	e pattern ()	orest,	. 11.15	an barren	and vn	gin land		
	3 B.	1 0 1 1	CO.						
Agr	ricultur	al, Grazing, 1	Barren						
Agr etc. Atta and of I	ricultur) ach a g ! propo India to	al, Grazing, 1 eneral location sed access rout pographical ma	Barren and vic es. It is up or a	inity ma preferre cadastra	ip showin d that the il map or	g area e area t forest	boundar o be mar map as t	ies and existir ked on a surve he case may b	ig ey e.
Agr etc. Atta and of I How sket	ricultur) ach a g l propo India to wever i tch maj	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 :	Barren and vic es. It is ap or a are ava 5000: Refe	inity ma preferre cadastra ilable, ti r plate	up showin d that the ul map or he area si no-IA &	g area e area t forest hould b IB	boundar o be mar map as t ve shown	ies and existir ked on a surve he case may b on an accura	ıg ey e. te
Agi etc. Atta and of I How sket	ricultur) ach a g l propo India to wever i tch maj	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C	Barren and vic es. It is are ava 5000: Refe	inity ma preferre cadastra ilable, ti r plate JNICAT	ip showin d that the il map or he area si no-IA & FION:	g area area t forest hould b I B	boundar o be mar map as t ve shown	ies and existir ked on a surve he case may b on an accura	ıg ey e. te
Agi etc. Atta and of I How sket RAS	ricultur) ach a g I propo India to wever i tch maj	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description	Barren and vic es. It is ap or a are ava 5000: Refe COMMU	inity ma preferre cadastra ilable, ti r plate JNICAT	p showin d that the il map or he area si no-IA & TION: Place	g area area t forest hould b IB	boundar o be mar map as t oe shown Distance	ies and existir ked on a surve he case may b on an accura	ıg ey e. te
Agr etc. Atta of I How sket RAS S.No a.	ricultur) ach a g l propo india to wever i tch map	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est post office	Barren and vic es. It is up or a are ava 5000: Refe COMMU	inity ma preferre cadastra ilable, ta r plate JNICAT	up showin d that the il map or he area si no-IA & TION: Place iarchatran	g area area t forest hould b IB	boundar o be mar map as t be shown Distance 2.4Km	ies and existin ked on a surve he case may b on an accura Direction South	ıg ey e. te
Agi etc. Atta and of I How sket RAS S.No a. b.	ricultur) ach a g l propo india to wever i tch map TRUC Neard Neard	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est post office est police station	Barren and vic es. It is ap or a are ava 5000: Refe COMMU	inity ma preferre cadastra ilable, th r plate JNICAT Reddi Reddi	up showin d that the al map or he area si no-IA & TION: Place iarchatran iarchatran	g area orea t forest hould b IB	boundar o be mar map as t be shown Distance 2.4Km 2.0km	ies and existin ked on a surve he case may b on an accura Direction South South	1g ey e. te
Agr etc. Aitic and of I How sket RAS S.No a. b. c.	ricultur) ach a g propo India to wever (tch may TRUC Neard Neard Neard	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est post office est police station	Barren and vic es. It is ap or a are ava 5000: Refe OMMU	inity ma preferre cadastra ilable, ti r plate JNICAT Reddi Reddi Odda	up showin d that the il map or he area si no-IA & TION: Place iarchatran iarchatran nchatram	g area e area t forest hould b IB n n	boundar o be mar map as t oe shown Distance 2.4Km 2.0km 12.8km	ies and existin ked on a surve he case may b on an accura Direction South South West	ıg ey e. te
Agr etc. Atta of I How sket RAS S.No a. b. c. d.	ricultur) ach a g propo ndia to wever i tch map TRUC Neard Neard Neard	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est post office est police station est fire station est medical facil	Barren and vic es. It is ap or a are ava 5000: Refe OMMU	inity ma preferre cadastra ilable, ti r plate JNICAT Reddi Reddi Odda Pudue	up showin d that the il map or he area si no-IA & TION: Place iarchatran iarchatran nchatram	g area area t forest hould b IB	boundar o be mar map as t be shown Distance 2.4Km 2.0km 12.8km 7.5Km	ies and existin ked on a surve he case may b on an accura Direction South South West West	ıg ey e. te
Agr etc. Atta and of I How sket RAS S.No a. b. c. d. e.	ricultur) ach a g l propo india to wever i wever i tch maj tch maj TRUC Neard Neard Neard Neard Neard	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est police station est fire station est fire station est medical facil	Barren and vic es. It is ap or a are ava 5000: Refe COMMU	inity ma preferre cadastra ilable, th r plate JNICAT Reddi Reddi Odda Puduo S.Vao	up showin d that the al map or he area si no-IA & FION: Place iarchatran iarchatran nchatram chatram lipatti	g area area t forest hould b IB	boundar o be mar map as t be shown Distance 2.4Km 2.0km 12.8km 7.5Km 3.7Km	ies and existin ked on a surve he case may b on an accura Direction South South West West Southeast	18 ey e. te
Agi etc. Atta of I How sket RAS S.No a. b. c. d. e. f.	ricultur) ach a g propo india to vever i tch may TRUC Neard Neard Neard Neard Neard	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est post office est police station est fire station est medical facil est school est railway statio	Barren and vic es. It is ap or a are ava 5000: Refe OMMU	inity ma preferre cadastra ilable, ti r plate JNICAT Reddi Reddi Odda Pudua S.Vaa Akka	up showin d that the al map or he area si no-IA & TION: Place iarchatran iarchatran iarchatran chatram tipatti raipatti	g area o area t forest hould b IB	boundar o be mar map as t oe shown Distance 2.4Km 2.0km 12.8km 7.5Km 3.7Km 8.9km	ies and existin ked on a surve he case may b on an accura Direction South South West West Southeast Southeast	1g ey e. te
Agi etc. Atto and of I How sket RAS S.No a. b. c. d. e. f. g.	ricultur) ach a g propo ndia to wever i tch may TRUC Neard Neard Neard Neard Neard Neard Neard	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est post office est police station est fire station est medical facil est school est railway station	Barren and vic es. It is ap or a are ava 5000: Refe OMMU	inity ma preferre cadastra ilable, ti r plate JNICAT Reddi Reddi Odda Pudua S.Vaa Akka Tutica	up showin d that the al map or he area si no-IA & TION: Place iarchatran iarchatran nchatram chatram lipatti raipatti orin	g area area t forest hould b IB	boundar o be mar map as t be shown Distance 2.4Km 2.0km 12.8km 7.5Km 3.7Km 8.9km 189.0km	ies and existin ked on a surve he case may b on an accura Direction South South West West Southeast Southeast Southeast	ng ey e. te
Agi etc. Atta and of I How sket RAS S.No a. b. c. d. e. f. g. h.	ricultur) ach a g propo india to wever i tch may TRUC Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est post office est police station est fire station est fire station est medical facil est school est railway static est port facility est airport	Barren and vic es. It is ap or a are ava 5000: Refe COMMU	inity ma preferre cadastra ilable, th r plate JNICAT Reddi Reddi Odda Puduo S.Vac Akka Tutico	up showin d that the al map or he area si no-IA & FION: Place iarchatran iarchatran iarchatram chatram lipatti raipatti orin hirappalli	g area o area t forest hould b IB	boundar o be mar map as t be shown Distance 2.4Km 2.0km 12.8km 7.5Km 3.7Km 8.9km 189.0km	ies and existin ked on a surve he case may b on an accura South South West West Southeast Southeast Southeast South	rg ey e. te
Agr etc. Atta and of I How sket RAS S.No a. b. c. d. e. f. g. h. i.	ricultur) ach a g / propo india to vever i tch may TRUC Neard Neard Neard Neard Neard Neard Neard Neard	al, Grazing, 1 eneral location sed access route pographical me f none of these o on scale of 1 : TURE AND C Description est post office est police station est medical facil est school est railway static est port facility est airport est DSP office	Barren and vic es. It is ap or a are ava 5000: Refe OMMU	inity ma preferre cadastra ilable, ti r plate JNICAT Reddi Reddi Odda Pudue S.Vac Akka Tutice Tiruc	up showin d that the al map or he area si no-IA & TION: Place iarchatran iarchatran iarchatran hirappalli sandur	g area o area t forest hould b IB	boundar o be mar map as t be shown Distance 2.4Km 2.0km 12.8km 7.5Km 3.7Km 8.9km 189.0km 13.4km	ies and existin ked on a surve he case may b on an accura Direction South South West West Southeast Southeast Southeast Northeast	ig ey e. te
Agr etc. Atta and of I How sket RAS C. RAS C. C. d. e. f. g. h. i. j.	ricultur) ach a g propo ndia to wever i tch may TRUC Neard	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est post office est police station est fire station est medical facil est school est railway static est port facility est airport est DSP office est villages	Barren and vic es. It is ap or a are ava 5000: Refe OMMU	inity ma preferre cadastra ilable, ti r plate JNICAT Reddi Reddi Odda Pudua S.Vaa Akka Tutica Tiruc Veda K.Pua	up showin d that the al map or he area sh no-IA & TION: Place iarchatran iarchatran iarchatran hirappalli sandur dukottai	g area area t forest hould b IB	boundar o be mar map as t be shown Distance 2.4Km 2.0km 12.8km 7.5Km 3.7Km 8.9km 189.0km 13.4km 0.9km	ies and existin ked on a surve he case may b on an accura Direction South South West West Southeast Southeast Southeast Northeast Northeast	ig ey e. te
Agi etc. Atta and of I How sket RAS C. C. d. c. d. e. f. g. h. i. j.	ricultur) ach a g propo india to wever i tch map TRUC Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est post office est police station est fire station est medical facil est school est railway static est port facility est airport est DSP office est villages	Barren and vic es. It is ap or a are ava 5000: Refe COMMU	inity ma preferre cadastra ilable, ta r plate JNICAT Reddi Reddi Odda Pudua S.Vaa Akka Tutica Tiruc Veda K.Pua Tada	up showin d that the al map or he area si no-IA & FION: Place iarchatran iarchatran iarchatran chatram dipatti raipatti orin hirappalli sandur dukottai	g area forest hould b IB	boundar o be mar map as t be shown Distance 2.4Km 2.0km 12.8km 7.5Km 3.7Km 8.9km 189.0km 13.4km 0.9km 13.4km 0.9km	ies and existin ked on a surve he case may b on an accura South South West West West Southeast Southeast Northeast Northeast Northeast Southeast	18 ey e. te
Agi etc. Atta of I How sket RAS .No a. b. c. d. e. f. g. h. i. j.	ricultur) ach a g propo india to vever i ach may TRUC Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard Neard	al, Grazing, 1 eneral location sed access rout pographical ma f none of these o on scale of 1 : TURE AND C Description est post office est police station est medical facil est school est railway station est airport est airport est DSP office est villages	Barren and vic es. It is ap or a are ava 5000: Refe OMMU	inity ma preferre cadastra ilable, ti r plate JNICAT Reddi Reddi Odda Pudua S.Vaa Akka Tutica X.Pua K.Pua Tadar Bomr	up showin d that the al map or he area si no-IA & TION: Place iarchatran iarchatran iarchatran iarchatran dipatti raipatti raipatti orin hirappalli sandur dukottai nkottai nanankott	g area e area t forest hould b IB n n n	boundar o be mar map as t be shown Distance 2.4Km 2.0km 12.8km 7.5Km 3.7Km 8.9km 189.0km 13.4km 0.9km 1.2km 0.7km	ies and existin ked on a surve he case may b on an accura South South West West Southeast Southeast Northeast Northeast Northeast Southeast Southeast	rg ey e. te

•

Misz Randen.

13 | Page

<u>PART – A</u>

3.0 GEOLOGY AND MINERAL RESERVES:

•

(a) Briefly describe the topography and general geology and local/nine geology of the mineral deposit including drainage pattern:

(i)	Topography	3	The proposed lease area exhibits flat topography.
			The maximum elevation (280m) was observed in
			Southwest side of the site. The slope is towards
			northern side and falls in Toposheet no. 58-F/15.

(ii) a) Geology of the District:

The district is essentially a high grade gneissic terrain characterized by highly deformed rocks, which can be classified under three groups as 1)Khondalite Group, 2) Charnockite Group and 3) Migmatite Group. The terrain also exposes basic/ultrabasic and younger acid intrusives.

Khondalite Group comprises quartzite, calc granulite / crystalline limestone, garnetsillimanite gneiss, garnet-cordierite gneiss and garnet quartz-feldspar gneiss. Quartzite is an important member of the group. It is white or smoky grey and consists of interlocking grains of quartz with minerals like garnet, biotite, diopside, sillimanite and magnetite as accessories. Magnetite quartzite bands are of restricted thickness. Calcgneiss is grey or green and banded, which shows typical ribbed weathering. It consists of diopside, calcite, scapolite, wollastonite and sphene in various proportions with a small amount of quartz and garnet. With decrease in silicate minerals and increase in carbonates, it grades into crystalline limestone. Crystalline limestone is white, medium to coarse, with interlocking calcite, with a small amount of diopside, biotite and magnetite. Garnet-sillimanite gneiss is medium to coarse grained, it is mainly made of bands of quartz-k-feldspar rich layers alternating with layers rich in biotite, sillimanite and garnet. This rock also has thin interbands of garnet- ordierite gneiss and garnetquartz-feldspar gneiss.

The Charnockite Group comprises pyroxene granulite and charnockite. The pyroxene granulite is dark grey, medium grained granulitic rock with typical salt and pepper texture, seen on the weathered surface. It consists of diopside, hypersthene, plagioclase, hornblende, biotite and quartz. Charnockite is the

M. hogsen

-161.

Collectors

predominant rock. It is grey, medium to coarse grained, greasy looking with foliation seen prominently on the weathered surface. It is essentially made of smoky or grey quartz, pale grey microcline and hypersthene as major minerals with plagioclase, hornblende and biotite as accessories.

•

•

Intrusive igneous rocks are seen in the area are meta-gabbro and anorthosites as for example around Oddanchatram and east of Vedasandur. Meta gabbro is coarse grained, dark grey, mainly comprising pyroxene, amphibole and plagioclase. Anorthosite is pale pink to light brown, medium to coarse grained rock essentially made up of plagioclase with a small amount of pyroxene and amphibole. Quartz and pegmatite veins are of restricted areal extent. Minor bodies of younger granite are exposed in the area east of Vedasandur.

Foliation/ gneissosity, the prominent planar structure seen in the metamorphic rocks is ENE-WSW in the west and near N-S in the central part of the district. The eastern part of the district shows complicated folded structures due to interference of two phases of folding, forming a series of domes and basins. Faults and shear zones trend N-S in the central part, and NW-SE in the southern part.

Migmatite is a group of banded felsic rocks of varying mineralogical composition that are formed due to the influx of quartzo-feldspathic material into high grade metamorphic rocks. Two types of migmatite are seen in the Dindigul district, one is grey and the other is pink. Next to charnockite, migmatite gneiss is the second most extensive rock. The migmatite gneiss consists of quartz, kfeldspar, plagioclase, hornblende and biotite in varying proportions.

Order of superposition of the proposed lease area,

Age	Group	Rock Formation
Quaternary	Recent to Blaistosene	Kankar
Quaternary	Recent to Fleistocene	Laterite
Proterozoic	Acid Intrusive	Quartz Vein Pegmatite Granite
	Migmatite Group	Pink Migmatite Granitic gneiss Hornblende-biotite gneiss
Archaean - Proterozoic	Basic/Ultrabasic Intrusive	Anorthosite Amphibolite / Norite / Gabbro Ultramafic
	Charnockite Group	Magnetite quartzite Pyroxene granulite

M. Ranen_.

15 | Page

-1/3-

			-105						
_			Collectorate						
		Khondalite Group	Charnockite Garnet quartz - feedspar gneiss. Garnet-Sillinnanite gneiss ± cordierite. Calc- gneiss / Limestone Ouartzite						
i)	Local / Mine Geology of th a) Topography of the pr The proposed lease area e	e mineral deposit area: roposed lease area: xhibits flat topography.	The proposed site shows the						
	maximum elevation (280)	appeared with gravel and	beneath the charmockite rocks						
	found based on evicting .	sit pearby the lease are	Surface plan preparing for						
	Tound based on existing p	in nearby the lease area	ad the applied lasse gras						
	b) Mode of origin:	res and Geological mapp	ed the applied lease area.						
	b) Mode of origin: The Charnockite series originally was assumed to have developed by the								
	fractional crystallization of silicate magma. Subsequent studies have shown,								
	however, that many, if	not all, of the rocks a	are metamorphic, formed by						
	recrystallization at high pressures and moderately high temperatures.								
	e) Physiography of the rocks:								
	General characteris	eristics of the rocks of this series has recorded that the							
	rocks are in general bluis	are in general bluish gray or darkish in colour and extremely fresh in							
	appearance with an even g	rained granular structure.							
	d) Chemical composition	of rocks:							
	The compositional c	haracteristics of coexisti	ng orthopyroxene, garnet and						
	biotite have established several petrographic varieties within the Charnockites -								
	Enderbites such as the granulite's and gneisses. Plagioclase feldspars, alkali								
	feldspars and quartz are the salic minerals present in this series of rocks.								
	Order of superposition of rocks in the proposed site:								
	Age	Group	Rock Formation						
	Recent to Sub recent		Gravel						
	Archaean Charnockite Group Charnockite.								
/)	Drainage Pattern	There is no major rive	er located within 500m radius.						
		The drainage in the ar	ea is sub-dendritic in nature.						
) 7	The topographic plan of the with contour interval of 3 should be taken as the base exploration already carried	e lease area prepared on to 10m depending upon plan for preparation of out including evidence.	a scale of 1 :1000 or 1: 2000 n the topography of the area geological plan. The details of s of mineral existence should						

•

•

M. Rogeneen.

	a. Present st	atus	The RQP survey. It loamy soil out.	examined the sur is a fresh quarry le in this lease area. N	face features during ase covered with red to exploration carried	
	b. Surface Pla	an	Surface p exposure, s scale of 1:	olan showing eleva and accessibility roa 1000, as shown in P	ation contour and units d was prepared at the late No.III.	554 015
(c)	Geological should be suitable inte scale of 1: 10	sections prepared at ervals on a 00 / 1: 2000	Longitudir sections w 1000 and a Plate No.II	nal and transverse ere prepared at the at the vertical scale of IIA	e geological cross horizontal scale of 1: of 1:500, as shown in	
(d)	Broadly indi consideration table below:	cate the Yea 1 the future p	r wise future roduction prog	programme of exp gramme planned in	loration, taking into next five years as in	
	Year	No.of boreholes	Total meterage	No.of Pits and Dimensions	No.of Trenches and Dimensions	
		N.A			N.A	
	No. cheste (ar p	N.A	6 <u>4114</u> -		N.A	
	I-X th Year	N.A	1 <u>252</u>)		N.A	
		N.A	1222	200	N.A	
	N. C.	N.A			N.A	
	Hence explor	ation proposa	l is not required	to this mining proje	ct.	
(-)	standard me (giving split) off grade. A leasehold. The geologic	thod of estin up of various Availability of al resources v	nation and can categories i.e., f resources sh vere computed area. In this m	lculations along wi proved, probable, pe hould also be indic by cross section m ethod, the lease area	ith required sections ossible). Indicate cut- cated for the entire ethod with respect to was divided into one	
	the boundaries sections (long depth of 45m were assigned method, total zone, and gravel is 486	gitudinal and n below groun ed (XY-AB) reserve is esti avel, etc. Of 08m³ .	transverse) to c nd level. The l & (XY-CD) as mated to be 10 which, rough s	calculate the volume ongitudinal and tran s respectively. Usin 93680m ³ including t stone resources of a	of material up to the sverse cross sections g the cross-sectional he resources of safety bout 1045072m³ and	

•

•

•

•

		GEO	OLOGIC	AL RES	OURCES		(Senting
Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume In m ³	Rough Stone in m ³	Gravel in m ³
	I	81	126	2	20412		20412
[1	81	126	3	30618	30618	5
[п	81	126	5	51030	51030	18
XY-AB	Ш	81	126	5	51030	51030	Plastin y
	IV	81	126	5	51030	51030	10 10
	V	81	126	5	51030	51030	
	VI	81	126	5	51030	51030	
	VII	81	126	5	51030	51030	
	VIII	81	126	5	51030	51030	
	IX	81	126	5	51030	51030	
		TOTAL			459270	438858	20412
	I	106	133	2	28196		28196
[I	106	133	3	42294	42294	
	П	106	133	5	70490	70490	
[III	106	133	5	70490	70490	
VV CD	IV	106	133	5	70490	70490	
AI-CD	v	106	133	5	70490	70490	
	VI	106	133	5	70490	70490	
	VII	106	133	5	70490	70490	
	VIII	106	133	5	70490	70490	
	IX	106	133	5	70490	70490	
		TOTAL			634410	606214	28196
	GRA	ND TOTA	L		1093680	1045072	48608

the proposed mining parameters.

•

•

•

•

•

•

•

The total mineable reserve is estimated to be **457590m³** by deducting the reserve safety zone, block in benches from the total Geological resources up to a depth of 45m (R.L.279 to 234m) below ground level. Of which, rough stone is about **419186m³** and gravel is **38404m³**. The commercially viable rough stone has been prepared on 1: 1000 scale and sections are prepared in a scale of 1:1000 in horizontal axis and 1:500 as vertical axis (Refer plate no. VIA).

1072	- 3 YE	N	IINEABI	E RESE	RVES		
Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume In m ³	Rough Stone in m ³	Gravel in m ³
	1	74	109	2	16132	101000);	16132
	Î	74	109	3	24198	24198	
[П	69	99	5	34155	34155	11111
[Ш	64	89	5	28480	28480	man
VV AD	IV	59	79	5	23305	23305	
AI-AD	V	54	69	5	18630	18630	
Ī	VI	49	59	5	14455	14455	
	VII	44	49	5	10780	10780	
[VIII	39	39	5	7605	7605	
	IX	34	29	5	4930	4930	
		TOTAL			182670	166538	16132

Moranen.

18 | Page

- 169 -

	GRA	ND TOTAL	I.		274920	252648	38404
	IX	56	36	5	10080	10080	
Ļ	VIII	61	46	5	14030	14030	. Joann
Ļ	VII	66	56	5	18480	18480	1.60
	VI	71	66	5	23430	23430	151.
AI-CD	V	76	76	5	28880	28880	13
vv cn	IV	81	86	5	34830	34830	·[4]
	Ш	86	96	5	41280	41280	1.
	II	91	106	5	48230	48230	12%
	I	96	116	3	33408	33408	(ising
	1	96	116	2	22272	*****	22272 Coll

4.0 MINING:

a.

۲

۲

۲

۲

۲

۲

¢

۲

۲

0

٩

0

0

0

0

•

۲

۲

۲

۲

۲

0

۲

8

۲

۲

۲

۲

۲

۲

۲

Briefly describe the existing / ŝ method proposed for developing / working the deposit with all design parameters. (Note: In case of pocket deposits, sequence of development/working may be

indicated on the same plan)

It is a fresh quarry lease. The mining operation is opencast, semi-mechanized method adopted on single shift only. Under the regulation 106 of the Metalliferous Mines Regulations, 1961 all the open cast workings in hard rock, the benches and sides should be properly benched and sloped. The bench height should not exceed 5m and the bench width should not less than the bench height. The slope of the benches should not exceed 45° from horizontal

b. Indicate quantum of development and tonnage and grade of production expected pit wise as in table below.

Total proposed production of **457590m³** of which, rough stone is about **419186m³** and gravel is **38404m³** up to a depth of 45m below the ground level (R.L.279 to 234m) from the below ground level for Ten years plan period. Average production is **41918m³** of rough stone per year and the gravel is **12801m³** for three year. (Refer Plate No's. IV & IVA).

	Year	Pit No.(s)	Topsoil/Over burden (m ³)	ROM (m ³)	Saleable rough stone (m ³) @ 100%	Rough stone rejects(m ³)	Sub grade/ Weathered rock in (m ³)	Saleable Gravel (m ³)	Rough stone to topsoil ratio
Ĩ	I	I		75250	62170			13080	
	п	I	101	75915	64743	***		11172	
Ī	III	I		78270	64118			14152	
Ī	IV	1		63425	63425				

188 Ranen.

19 | Page

-171-

					-			Siller -
V	I		60940	60940				S/
VI	I		21055	21055				3
VII	I		21030	21030	33			<u>}</u>
VIII	T		20895	20895			- fe	5
VIII IV	× ·		20070	20075			9 NG	
IA	1		20970	20970				No dias
X	I		19840	19840				
Total	-		457590	419186			3840)4
Com wise class	posite p sections s mines):	dans an (In case	d Year ? of 'A'	: Not a quarr	applicab y lease.	le. It is a	a "B" class	, individua
omposite	e plans ar	id year w	ise section	is (In cas	e of 'B'	class min	es):	
12 2-7		YE	ARWISE	PRODUC	TION R	ESERVE		
Year	Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume In M ³	Stone in m ³	Gravel in m ³
		I	60	109	2	13080		13080
-YEAR	XY-AB	1	60	109	3	19620	19620	164744
T La LIX	AT AD	11	50	99	5	24750	24750	
			40	89	5	17800	17800	12000
	r	101	AL	100	2	75250	62170	13080
		1	14	109	2	3052	4570	3052
	XY-AB	1	1 14 11 10	00	5	4376	9405	
II-		<u> </u>	24	89	5	10680	10680	
YEAR		I	35	116	2	8120		8120
	101.00	1	35	116	3	12180	12180	
	XY-CD	П	30	106	5	15900	15900	
		Ш	25	96	5	12000	12000	
		TOT	AL			75915	64743	11172
		1	61	116	2	14152	153445	14152
III-	XY-CD	1	61	116	3	21228	21228	
YEAR	0.000-0000	<u> </u>	61	106	5	32330	32330	
		П	22	96	5	10560	10560	14100
	VV AD	TOL	AL	70		/8270	04118	14152
IV-	AI-AB	IV	20	06	5	18720	9873	
YEAR	XY-CD	IV	81	86	S	34830	34830	
		TOT	AL	1 00		63425	63425	0
		IV	34	79	5	13430	13430	
VEAD	XY-AB	V	54	69	5	18630	18630	10.000
IEAK	XY-CD	V	76	76	5	28880	28880	
		TOT	AL			60940	60940	0
VI-	XY-AB	VI	49	59	5	14455	14455	127.0
YEAR	XY-CD	VI	20	66	5	6600	6600	•••••
		TOT	AL	1 22		21055	21055	0
	XY-CD	VI	51	66	5	16830	16830	
VII-		VII	15	50	5	4200	4200	
VII- YEAR		TOT	AI					
VII- YEAR	XV-AR	TOT.	AL 27	49	5	6615	6615	
VII- YEAR VIII- YEAR	XY-AB	VII VII	AL 27	49	5	6615	6615 14280	

189 Raneer.

20 | Page

......

•

•

•

•

•

IV	VV AD	VII	17	49	5	4165	4165	181	1
VEA VEA	D AT-AD	VIII	39	39	5	7605	7605	131	
TEA	XY-CD	VIII	40	46	5	9200	9200	32	
		TOTA	L			20970	20970	0	
Y.	XY-AB	IX	34	29	5	4930	4930	151	
VEA	R XY-CD	VIII	21	46	5	4830	4830	131	
	at Al-CD	IX	56	36	5	10080	10080	Log	1 mart
		TOTA	<u>.</u>			19840	19840	00/17108	9033
	aan ah aanaa a	GRAND TO	TAL			457590	419186	38404	
	tuach suppo	rung con	iposite		nposne	pian not pr	epared m		
p	lan and sect	ion showi	ng pit	lease	e area. It	is "B ₂ " cat	egory of n	nine.	
la	youts, dump	s, stacks o	f sub-						
g	rade mineral,	if any, etc.	8						
I	ndicate prop	used rate of	of produ	rtion w	hen the	mine is f	ully develo	oned and the	
P	xnected life o	f the mine	and the	ear fro	m whic	h effected:	any acrea	open and me	
	At this r	ate of prod	uction, t	ne expe	ected life	e of quarry	is calcula	ted as given	
. y	alaw:	and here	Contraction of	P		and during t		07. TO THE CONTRACTOR OF CONTRACT	
5	Develop								
	Rough sto	one:				010/ 1			
	Mineable	reserves of	rough ste	one	= 4)	9186m ³			
	Yearly pro	duction			= 4	1918m ³			
	Monthly p	roduction of	of rough :	stone	=	3493m ³			
	Gravel								
	Mineable	reserves of	gravel		=	38404m ³			
	Monthly p	roduction of	of gravel		Ξ	1066m ³			
	The regula	ar working	of the qu	arry an	id its pro	duction de	pends upo	n the demand	
f	rom the marl	ket. The m	arket is a	always	fluctuat	ing and fle	xible one.	Accordingly,	
Ť	here is a no	ossibility t	o increa	se or	decrease	the prod	uction Th	e vear wise	
0	maduation or	tisinstad li	fo of our			, and prou	. C	ie year mise	
ł	nounction, an	incipated if	te or qua	ny eic.	, are on	y a tentativ	e figure.		
1	Attach a note	furnishing	a conce	ptual n	nining p	lan for the	entire lea	se period (for	
1	B" category n	nines) and	up to the	e life oj	f the min	ne (for "A'	category	mines) based	
6	on the geolog	ical, minin	g and en	vironm	ents con	sideration	1 2		
1	Time frame of	completio	n of	: Con	sidering	the indefin	ite depth	persistence of	
Ĩ	nineral explo	ration prog	ram in	the	rough st	one and a	ravel deno	sit is proved	
,	acceled are-	Cine has	d	h	and the	workshi - P	mite -b-	us to a d-d	
1	easenoid area	: Give broa	D	beyo	ond the v	vorkable III	nits about	up to a depth	
¢	lescription ide	entified pot	ential	of 4	5m belo	w ground	level (R.L	.279m-234m)	
a	reas to be cov	vered in the	2	from	n the per	trogenetic a	haracter o	of the rock as	
8	given time fra	me:		well	as fron	the actual	mining p	ractice in the	
				area	and wit	h the curre	nt trend o	f rough stone	
				prod	luction t	ne quarry n	av sustain	for 10 years	
				Proc			-y suomin		

	UL	ТІМАТЕ Р	IT LIMIT-(XY-AB)		100	
Bench	Bench R.L	Period	Overburden/	L	W	D
			Mineral	(m)	(m)	Co (m)
1	R.L.279-277m	-	Gravel	74	109	-2
I	R.L.277-274m		Rough stone	74	109	3
II	R.L.274-269m		Rough stone	69	99	5
III	R.L.269-264m	10 years	Rough stone	64	89	5
IV	R.L.264-259m	plan perio	d Rough stone	59	79	5
V	R.L.259-254m		Rough stone	54	69	5
VI	R.L.254-249m		Rough stone	49	59	5
VII	R.L.249-244m		Rough stone	44	49	5
VIII	R.L.244-239m		Rough stone	39	39	5
IX	R.L.239-234m		Rough stone	34	29	5
					Total	45m
	UL	FIMATE P	IT LIMIT-(XY-CD)			
Bench	Bench R.L	Period	Overburden/	L	W	D
		5.3030	Mineral	(m)	(m)	(m)
1	R.L.279-277m		Gravel	96	116	2
I	R.L.277-274m	1	Rough stone	96	116	3
П	R.L.274-269m		Rough stone	91	106	5
Ш	R.L.269-264m		Rough stone	86	96	5
IV	R.L.264-259m	10 years	Rough stone	81	86	5
v	R.L.259-254m	plan period	Rough stone	76	76	5
VI	R.L.254-249m	1	Rough stone	71	66	5
VII	R.L.249-244m		Rough stone	66	56	5
VIII	R.L.244-239m		Rough stone	61	46	5
IX	R.L.239-234m	1	Rough stone	56	36	5
			and the second second	0	Total	45m
Whether 1	the site for disposa	l of : Th	e recovery of rough s	tone an	d grave	el in this
vaste roo	ck or an un-sale	able qu	arry is 100%. If roug	h stone	may b	e unsold
asterial	hava/ has k		l ha kaon within the L			
	nave/ nas e	wi	i be keep within the h	ease bo	undary.	
xamined	for adequacy of l	and				
nd suitał	oility of long-term	use				
1 the eve	ent of continuation	n of				
. B. R.	tivity -					

•

•

•

•

•

•

•

•

			-	-179-
iv)	Whether back filling of pits after recovery of mineral up to techno-economically feasible depth envisaged. If so, describe the broad features of the proposal: -		As the depth of persistence of the depositionary likely to continue for further depth, it is proposed not to backfilled the quarry pit	Ctorate Changellin . R24 004
v)	Whether post mining land use envisaged: -	*	At the end of mining activities over the quarry pit may be utilized fish culture or storage of rain water reservoir used for irrigation purposes.	
g.	Open cast Mines:			
	i). Describe briefly giving salient features of the mode of working (Mechanized, Semi- mechanized, manual)		It is a fresh quarry lease. The mining operation is open-cast, semi-mechanized methods are adopted and on single shift basis only. Under the regulation 106 of the Metalliferous Mines Regulations, 1961 in all open cast workings in hard rock, the benches and sides should be properly benched and sloped. The bench height should not exceed 5m and the bench width should not less than the bench height. The slope of the benches should not exceed 45° from horizontal. Machineries like Tractor mounted compressor attached with Jack hammers is proposed to drilling and blasting. Excavators and tipper combination are adapted.	
	 ii) Describe briefly the layout of mine workings, the layout of faces and sites for disposal of overburden /waste. A reference to the plans enclosed under 4(b) and 4(d) will suffice 		The rough stone is proposed to quarry at 5m bench height & width conventional opencast semi mechanized quarrying operation using drilling with the help of tractor mounted compressor attached with jack hammers, nonel blasting and waste and are removal using Hydraulic excavator and loaded directly to the tippers.	

•

•

•

Mozanen.

			Bench he	ight = 5mts	. /	Minin	
			Bench wi	dth = 5mts.		/	
a. Details overburden	of top	osoil/ : 1	No separate of to	opsoil will	be remove	ed	19.18
b. Rough stone burden waste	waste and :-	side : '	The recovery of 100%. Any othe are doesn't prop	f rough sto r waste or osed.	ne in this side burg	quarr,	y is mps
Underground M	lines:	3	Not applicable		1997) (Par		
machinery and e	quipment j	proposed t	o be used in diff	erent minir	ig operation	ons.	
(1) Drilling Ma Drilling o and jack hamme Details of drillin Type	chines: f shot hole r. Details o ng equipm Nos h	es will be of drilling nent's are Dia of hole (mm)	carried out usir equipment's are given below. Size / Capacity	g tractor n given belo Make	nounted c w. Motive power	ompres H.	ssor
(1) Drilling Ma Drilling o and jack hamme Details of drillin Type Jack Hammer	chines: f shot hole r. Details on g equipm Nos h 3	es will be of drilling nent's are Dia of hole (mm) 32 mm	carried out usir equipment's are given below. Size / Capacity Hand held	g tractor n given belo Make	nounted c w. Motive power Diesel	ompres H.	ssor P
(1) Drilling Ma Drilling o and jack hamme Details of drillin Type Jack Hammer Compressor	chines: f shot hole r. Details on g equipm Nos h 3 1	es will be of drilling nent's are Dia of hole (mm) 32 mm	carried out usir equipment's are given below. Size / Capacity Hand held Air	g tractor n given belo Make 	nounted c w. Motive power Diesel Diesel	ompres H.	ssor P
 (1) Drilling Ma Drilling o and jack hamme Details of drillin Type Jack Hammer Compressor (2) Loading Equal 	chines: f shot hole r. Details on g equipm Nos h 3 1 ipment:	es will be of drilling nent's are Dia of hole (mm) 32 mm	carried out usir equipment's are given below. Size / Capacity Hand held Air	g tractor n given belo Make 	nounted c w. Motive power Diesel Diesel	ompres H.	SSOT P
(1) Drilling Ma Drilling o and jack hamme Details of drillin Type Jack Hammer Compressor (2) Loading Equ	chines: f shot hold r. Details on g equipm Nos h 3 1 ipment: Nos Si	es will be of drilling nent's are Dia of hole (mm) 32 mm 	carried out usir equipment's are given below. Size / Capacity Hand held Air	g tractor n given belo Make 	nounted c w. Motive power Diesel Diesel	ompres H.	ssor P
(1) Drilling Ma Drilling o and jack hamme Details of drillin Type Jack Hammer Compressor (2) Loading Equ Hydraulic Excavator	chines: f shot hold r. Details (ng equipm Nos h 3 1 <i>ipment:</i> Nos Si 1	es will be of drilling nent's are Dia of hole (mm) 32 mm ize / Capa 2.9 - 4.3n	carried out usir equipment's are given below. Size / Capacity Hand held Air ecity Make n ³	g tractor n given belo Make Motive Die	nounted c w. Motive power Diesel Diesel power sel	ompres H. H.P.	ssor P
(1) Drilling Ma Drilling o and jack hamme Details of drillin Jack Hammer Compressor (2) Loading Equ Hydraulic Excavator (3) Haulage and (a) Haulage v	chines: f shot hold r. Details ng equipm Nos 3 1 ipment: Nos 1 izerona 1 izerona 1 izerona Nos Si 1 izerona Nos Si 1 izerona Vithin the r	es will be of drilling nent's are Dia of hole (mm) 32 mm ize / Capa 2.9 - 4.3n t Equipme mining leas	carried out usir equipment's are given below. Size / Capacity Hand held Air acity Make n ³ wit sehold:	g tractor n given belo Make Motive Die	nounted c w. Motive power Diesel Diesel sel	ompres H. H.P.	ssor P
(1) Drilling Ma Drilling o and jack hamme Details of drillin Type Jack Hammer Compressor (2) Loading Equ Type Hydraulic Excavator (3) Haulage and (a) Haulage v	chines: f shot hold r. Details ng equipm Nos 3 1 ipment: Nos Si 1 ipment: Nos Si 1 Si 1 Nos Si Nos Nos Si Nos Si Nos Si Nos Si Nos Si Nos Si Nos Nos Si Nos Nos Nos Nos	es will be of drilling nent's are Dia of hole (mm) 32 mm ize / Capa 2.9 - 4.3n t Equipme mining leas ize / Capa	carried out usir equipment's are given below. Size / Capacity Hand held Air acity Make n ³ wit sehold: acity Make	g tractor n given belo Make Die Motive	nounted c w. Motive power Diesel Diesel sel	ompres H.P.	ssor P

•

The dumpers are not used in this quarry; hence it's a small B2 category quarry.

 a) Transport from mine head to the destination 	÷	Tipper will be used for transport rough stone from the mine head to needy customer.
c. Describe briefly the transport system (please specify)	•	Hydraulic excavator and tippers utilized for internal transport sizeable rough stone lumps and deliver to the customer's area.

24 | Page

MpRance.

 d. Ore transported by : own trucks / hired trucks e. Main destination to which ore is transported (giving to and from distance) 	•	Hired trucks for initially production of a purposes. Excavated rough stone minerals directly will be used by the applicant in his own crusher for required size (i.e. 147, 1/2", 1/3" and 1") 1/3" and 1") The recovery of rough stone in this quarry is 100%.
f. Details of hauling / transport equip	me	nt:
Type Nos Size / Capaci	ity	Make Motive power H.P.
(4). Miscellaneous:		
Describe briefly any allied operation	s a	nd machineries related to the mining of
the deposit not covered earlier.		
(A) Operations		The mining operation is open-cost, semi-
		mechanized methods are adopted and on
		single shift basis only.
(B) Machineries deployed		Machineries like Tractor mounted
() =	1	compressor attached with lack hammara
		in proposed to deilling and blasting
		It is proposed to unning and blasting.
		Hydraulic Excavators and upper
		combination are adapted. (Refer Part-A-
		4(i))
BLASTING: a) Broad blasting parameters like chi delay, maximum number of holes bla firing, etc. <u>Blasting pattern:</u>	arg 1ste	e per hole, blasting pattern, charge per d in a round, manner and sequence of
The quarrying operation is prop	oose	ed to carried out by open cost, using jack
	rea	king will be adopted to release the rough
hammer drilling followed by manual b	1016	lease area
hammer drilling followed by manual b stone and nonel blasting is proposed in	this	
hammer drilling followed by manual b stone and nonel blasting is proposed in <u>Drilling and Blasting paramet</u>	this	are as follows.
hammer drilling followed by manual b stone and nonel blasting is proposed in <u>Drilling and Blasting paramet</u> Rough stone Production for 10 Years =	this ters 419	are as follows,
hammer drilling followed by manual b stone and nonel blasting is proposed in <u>Drilling and Blasting paramet</u> Rough stone Production for 10 Years =	this ers 41	are as follows, 9186m ³
hammer drilling followed by manual b stone and nonel blasting is proposed in <u>Drilling and Blasting paramet</u> Rough stone Production for 10 Years = <u>BLAS</u> Blasthole Diameter (D)	this ers 419 ST I in r	are as follows, 9186m ³ DESIGN nm 32

Spacing (S) in m	1.38	
Subdrill in m	0.5 8	
Charge length (C) in m	0.80	
Stemming	1.2 5	
Hole Length (L) in m	2.0 02	
Bench Height (BH) in m	2.5 100	10.
Mass of explosive/hole in g	500 :	1453
Stemming material size in mm	5.2	
Burden stiffness ratio	2.08	
Blast Volume/hole in m ²	4,14	
Number of blast balas/day	150	
Number of blast noies/day	30	
Blasthole pattern	Staggered	
Mass of explosive /day in kg	18.08	
Powder factor in kg/m ³	0.12	
Loading density	0.63	
Type of explosives	Slurry	
Diameter of packaging in mm	25	
Initiation system	NONEL	-
6 N. N. S. J. J. P.	21 7 0	
6 Staggered blasting method	6	
5 Staggered blasting method	•6	
⁶ Staggered blasting method <i>Type of explosives used / to be used:</i>	•6	
⁶ Staggered blasting method <i>Type of explosives used / to be used:</i> pllowing explosives are recommended for efficient bla	•6 sting with safe practice.	
5 Staggered blasting method) <i>Type of explosives used / to be used:</i> following explosives are recommended for efficient bla Small dia. 25mm slurry explosives are proposed to any offect for proposed to any offect for proposed to	•6 sting with safe practice. to be used for shattering	; and
5 Staggered blasting method 5) <i>Type of explosives used / to be used:</i> Following explosives are recommended for efficient bla Small dia. 25mm slurry explosives are proposed to neaving effect for removal and winning of rough stor	•6 sting with safe practice. to be used for shattering ne. No deep hole drillir	; and ig or
5 Staggered blasting method b) Type of explosives used / to be used: Following explosives are recommended for efficient bla Small dia. 25mm slurry explosives are proposed to neaving effect for removal and winning of rough stor primary blasting is proposed.	•6 isting with safe practice. to be used for shattering ne. No deep hole drillin	; and ng or
 ⁶ Staggered blasting method b) Type of explosives used / to be used: Following explosives are recommended for efficient bla Small dia. 25mm slurry explosives are proposed to heaving effect for removal and winning of rough stor primary blasting is proposed. c) Measures proposed to minimize ground vibration 	•6 isting with safe practice. to be used for shattering ne. No deep hole drillin n due to blasting:	; and ig or
 5. Staggered blasting method 5. Type of explosives used / to be used: 5. Following explosives are recommended for efficient bla Small dia. 25mm slurry explosives are proposed to neaving effect for removal and winning of rough stor b) Measures proposed to minimize ground vibration The control blasting measures is being adopted to the proposed of the pr	•6 isting with safe practice. to be used for shattering ne. No deep hole drillin n due to blasting: ted for minimizing gr	; and ig or ound
 ⁶ Staggered blasting method b) Type of explosives used / to be used: Following explosives are recommended for efficient bla Small dia. 25mm slurry explosives are proposed to heaving effect for removal and winning of rough stor primary blasting is proposed. c) Measures proposed to minimize ground vibration The control blasting measures is being adopt vibration and fly rock. Shallow depths jackhammer drill 	•6 isting with safe practice. to be used for shattering ne. No deep hole drillin n due to blasting: ted for minimizing gr ling and blasting is prop	; and ng or ound osed
 5 Staggered blasting method 5) Type of explosives used / to be used: Following explosives are recommended for efficient bla Small dia. 25mm slurry explosives are proposed to neaving effect for removal and winning of rough stor orimary blasting is proposed. Measures proposed to minimize ground vibration The control blasting measures is being adopt ibration and fly rock. Shallow depths jackhammer drill be carried out with minimum use of explosive main 	•6 sting with safe practice. to be used for shattering ne. No deep hole drillin due to blasting: ted for minimizing gr ling and blasting is prop nly to give hearing effe	; and ng or ound osed ct in
 5 Staggered blasting method <i>Type of explosives used / to be used:</i> Following explosives are recommended for efficient bla Small dia. 25mm slurry explosives are proposed to reaving effect for removal and winning of rough stor rimary blasting is proposed. Measures proposed to minimize ground vibration The control blasting measures is being adopt ibration and fly rock. Shallow depths jackhammer drill be carried out with minimum use of explosive main pugh stone for easy excavation and to control fly rock. 	•6 sting with safe practice. to be used for shattering ne. No deep hole drillin a due to blasting: ted for minimizing gr ling and blasting is prop nly to give hearing effe	; and ng or ound osed ct in
 Staggered blasting method Type of explosives used / to be used: Following explosives are recommended for efficient bla Small dia. 25mm slurry explosives are proposed to neaving effect for removal and winning of rough stor orimary blasting is proposed. Measures proposed to minimize ground vibration The control blasting measures is being adopt ibration and fly rock. Shallow depths jackhammer drill to be carried out with minimum use of explosive main ough stone for easy excavation and to control fly rock. Delay detonators: 	•6 asting with safe practice. to be used for shattering ne. No deep hole drillin a due to blasting: ted for minimizing gr ling and blasting is prop nly to give hearing effe	g and og of ound osec osec ct ir
 5 Staggered blasting method 5 Type of explosives used / to be used: 6 Sollowing explosives are recommended for efficient blasting explosives are proposed to eaving effect for removal and winning of rough store or many blasting is proposed. 7 Measures proposed to minimize ground vibration The control blasting measures is being adopt ibration and fly rock. Shallow depths jackhammer drill to be carried out with minimum use of explosive main ough stone for easy excavation and to control fly rock. 7 Delay blasting permits to divide the shot to a store of the shot to a store	•6 sting with safe practice. to be used for shattering ne. No deep hole drillin a due to blasting: ted for minimizing gr ling and blasting is prop nly to give hearing effe smaller charges, which	g and ng ol ound osec osec ot in

The major advantages of delay blasting are:

- Reduction of ground vibration
- * Reduction in air blast

-

ø

.

.........

•

Mezanen.

		- 187 -
 Reduction in over break Improved fragmentation Better control of fly rock Blasting program for the provided in the provided of the provide		action per day <u>36holes</u> <u>150m³</u> <u>18.08kg-Slurry explosives</u> <u>0.5kg</u> <u>12.0p.m-1.0p.m</u> Powder factor is proposed as 0.5kg per holes of explosives Irrespective of the method of primary blasting employed, it may be necessary to re-blast a proportion of the rock on the quarry floor so as to reduce it to a size suitable for handling by the excavators and rock breakers. 1. The applicant is advised to engage an authorized explosive agency to carry out blasting. 2. First Aid Box will be keeping ready at all the time.
MINE DRAINAGE		3. Necessary precautionary announcement will be carried out before the blasting operation.
on observations from nearby wells and water bodies		The ground water table is reported as of 65m in rainy season and 70m in summer from the below ground level in the adjacent bore wells of the area.
 b) Workings expected to be m. above / reach below water table by the year 		Proposed depth of mining is 45m bgl. The present Mining lease will be proposed above the water table.
c) Quantity and quality of water likely to be encountered, the pumping arrangements and places where the mine water is finally proposed to be	•	The ground water may not rise immediately in this type of mining. However, the rain water percolation and collection of water from the seepage will

•

•

•

•

•

•

•

•

•

•

Moraneen

-			
)	mine to meet specifications stipulated by buyers.		is add to the needy customer.
(c)	Give details in case blending of different grades of ores is being practiced or is to be practiced at the	1	Not blending process is involved, after blasting the rough stone will be directly loaded to the needy customer
(b)	Indicate physical and chemical specifications stipulated by buyers		Basically, the materials produced at this quarry are rough stone and the same are used for building stone, sized stone materials only, so there are no chemical specifications are specified. Only physical specifications are involved.
(a)	Describe briefly the end-use of the mineral (sale to intermediary parties, captive consumption, export, industrial use)	•	The excavated stone materials will be supplied to the consumers like stone pillar, sized stone, etc. For instance, aggregates are mostly used for building, roads and footpaths., etc
8.	USE OF MINERAL:		
(c)	Attach a note indicating the manner of disposal and configuration, sequence of buildup of dumps along with the proposals for the stacking of sub-grade ore, to be indicated year wise.	:	There is no waste or any other mineral dumps are proposed. If rough stone may be unsold will be keep within the lease boundary.
(b)	Land chosen for disposal of waste with proposed justification	ž	There is no waste are proposed.
0.5	rejects likely to be generated during the No separate of topsoil will be dumps are doesn't proposed.	e n rem	ext five years: noved and any other waste or side burden
/. (a)	Indicate briefly the nature and quantit	37	f top spil, overhunden / waste and mineral
~	discharged		be less than 300 Lpm and it will be pumped out periodically by a stand by diesel powered Centrifugal pump motivated with 7.5 H.P. Motor. The quality of water is potable and doesn't contaminate with any hazardous thingsters

M. Romen .

	Site ser	vices		like office, stores, station, shelter latri have been prov Metalliferous Mine as a welfare amer laborers.	canteen, first and ne and booth rooms ided as per the s Regulations, 1961 nity for diff guarry	100 m
b)	Employ As 1961 ar than 10 workers The ten year achieve 1961 no	ment potential : per Mines safety und nd under the Mines , it is preferred to ha directly under his co following man powers period the same m the proposed productors.	der the prov Act, 1952, ave a qualif entrol and su er is propos anpower w tion and to	visions of Metalliferous whenever the workers ied mining mate to kee opervision. sed for quarrying stone ill be utilize for this n comply the provisions	Mines Regulations, are employed more of all the production material during the mining plan period to of as per the MMR,	
	1. 2.	Highly Skilled Unskilled	Mines M Mine En Mine Ge Blaster Musdoor	lanager gineer cologist r / Labours	1No. 1No. 1No 1No 16 No's	
10 (a)	MINER If proce ore or 1 be cond the extr the na /benefic size and concent product	AL PROCESSING, essing / beneficiation minerals mined is pla lucted on site or adj action area, briefly ature of the pr iation. This should I grade of feed mate rate (finished mate , recovery rate.	/BENEFIC as of the : anned to jacent to describe ocessing indicate erial and arketable	IATIONS: Excavated rough sto will be used by the crusher for required inches Jelly which road and building co The recovery of quarry is 100%.	ne minerals directly applicant in his own size ½, ¾ and 1½ are mainly used in nstruction purpose. rough stone in this	
(b)	Explain tailings plant (q	the disposal method or waste from the pro- uantity and quality of d to be discharged	hod for : ocessing f tailings	No water will be us any other processi water to be drawn to Some stormation of	sed for quarrying or ng except drinking rom public sources.	

•

•

M. 108anen.

				-193
	of such tailings, if any, with process adopted to neutralize any such effect before their disposal and dealing of excess water from the tailing dam).		haul roads. Therefore, need for tailing dam doesn't arise. But tailing control of rain water flow during rainy season has to be done by decanting the SPM in a pit before passing the water in to naturally system.	ssy old
(c)	A flow sheet or schematic diagram of the processing procedure should be attached.	•	Not applicable.	
(d)	Specify quantity and type of chemicals to be used in the processing plant.	÷	Not applicable	
(e)	Specify quantity and type of chemicals to be stored on site / plant.	:	Not applicable	
(f)	Indicate quantity (cu.m. per day) of water required for mining and processing and sources of supply of water. Disposal of water and extent of recycling.		Drinking is 0.2KLD, utilized water is 1.0KLD, Dust suppression is 1.3KLD and Green Belt is 1.5KLD. Minimum quantity of water 4.0KLD per day. It is proposed to make an own bore well for providing uninterrupted supply of RO drinking water, dust suppression and green belt development. The sewage water to a tune of 0.8KLD generated from the mine office toilet and mine labour toilet will be diverted to the septic tank followed by soak pit.	
		/		
	M·R	99	30 Page	

•

•

ENVI ttach a	RONMENTAL N note on the state	<u>P.</u> MANAGEM its of Baselin	<u>ART – B</u> ENT PLAN : ne information w	vith regard to the following ;	12
11.1	Existing land quarrying /pitti etc in a tabular	use pattern ing, dumping form. The pr	indicating the a , roads, processi resent land use pa	rea already degraded due to ng plant, workshop 2000 mship ttern is given as below 21405	954
	SI No	I a	and Lise	Present area (Hect)	
	l Area under		mining	Nil	
	2	Infrastruct	ire	Nil	
	3	Road		Nil	
	4	Green belt		Nil	
	5	Drainage &	& Settling Tank	Nil	
	6	Un-utilized	l area	2.43.0	
			Grand total	2.43.0	
11.3	Flora and Faun Quality of ai	a r, ambient	 depth of 70m season from presently the proposed dep not affect th this area. It providing u drinking wat belt developm There is no area and exe valuable trees Further, neith nor fauna of in this area. 	a in summer and 65m in rainy the general ground level and quarrying of rough stone is oth of 45m bgl. Hence, it will e ground water depletion of is made own borewell for ninterrupted supply of RO er, dust suppression and green nent. major flora observed in this cept acacia bushes, no other s are noticed in the lease area. her flora of botanical interest zoological interest is noticed	-
	noise level and	water	drilling proce excavation e periodical v spraying. Qua carried out using low p noise will b periodical no carried out e	ess, hauling roads, places of tc, will be suppressed by vetting of land by water arrying of rough stone will be by drilling and blasting by ower explosives, and hence, e very minimum. However, ise level monitoring will be every six months around the	

•

•

Maanen_.

11.5	Climatic	conditions:			131					
	Climate				(es)	9.				
	The	district receives the rai	n under the in	fluence of	hoth Southwest	t i i				
	and Northeast monsoons. The Northeast monsoon chiefly contributes to									
	the rainfall in the district. Most of the precipitation occurs in the form of									
	austonio	atomic coursed due to	the democratic	ation occurs	f Dancal The					
	cyclonic	storms caused due to	the depression	ns in Bay (of Bengal. The					
	Southwe	st monsoon rainfall is	s highly errat	ic and sun	imer rains are	2				
	negligibl	e. The average annual r	ainfall over the	e district va	ries from about	t				
	620 mm	to 745 mm.								
	Rainfall	1		~						
	Th	e annual rainfall norma	d (1970-2000)	of Dindigu	l district is 742	2				
	mm.4 Pr	ojections of rainfall o	ver Dindigul	for the peri	ods 2010-2040)				
	(2020s),	2040- 2070 (2050s) and	1 2070-2100 (2	080s) with	reference to the	5				
	baseline	(1970-2000) indicate a g	general decreas	e of 4.0%, 3	.0% and 11.0%	D				
	respectiv	ely.								
1.6	Human S The near 2011 cen	Settlement: est villages are found i sus.	n the buffer z	one with po	pulation as per	E.				
11.6	Human S The near 2011 cen	Settlement: est villages are found i sus. Village	n the buffer z	one with po Distance	pulation as per Population	5				
11.6	Human S The near 2011 cen	Settlement: est villages are found i sus. Village	n the buffer z	Distance	Population as per					
11.6	Human S The near 2011 cen S.No 1 2	Settlement: est villages are found i sus. Village K.Pudukottai Tadankottai	n the buffer z	one with po Distance in Kms 0.9km 1.2km	Population as per Population 2275					
11.6	Human S The near 2011 cen S.No 1 2 3	Settlement: est villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai	n the buffer ze Direction Northeast Southeast Southwest	Distance in Kms 0.9km 1.2km 0.7km	Population as per 2275 1103 625					
11.6	Human S The near 2011 cen S.No 1 2 3 4	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti	n the buffer ze Direction Northeast Southeast Southwest Northwest	Distance in Kms 0.9km 1.2km 0.7km 0.8km	Population as per 2275 1103 625 569					
11.6	Human S The near 2011 cen S.No 1 2 3 4 Public bu	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti iildings, places of : N	n the buffer ze Direction Northeast Southeast Southwest Northwest To infrastructur	Distance in Kms 0.9km 1.2km 0.7km 0.8km re like resid	Population as per 2275 1103 625 569 lential building					
11.6	Human S The near 2011 cen S.No 1 2 3 4 Public bu worship a	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti iildings, places of : N ind monuments	n the buffer ze Direction Northeast Southeast Southwest Northwest To infrastructure	Distance in Kms 0.9km 1.2km 0.7km 0.8km re like resid radius of 30	Population as per Population 2275 1103 625 569 fential building 00m and places					
11.6	Human S The near 2011 cen S.No 1 2 3 4 Public bu worship a	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti iildings, places of : N ind monuments si o	n the buffer zero Direction Northeast Southeast Southwest Northwest to infrastructure ituated within f special in	Distance in Kms 0.9km 1.2km 0.7km 0.8km re like resid radius of 30 terest like	Population as per Population 2275 1103 625 569 dential building 00m and places archeological					
11.6	Human S The near 2011 cen S.No 1 2 3 4 Public bu worship a	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti iildings, places of : N and monuments si o m	n the buffer zero Direction Northeast Southeast Southwest Northwest Northwest Northwest to infrastructure ituated within f special in nonuments, Sa	Distance in Kms 0.9km 1.2km 0.7km 0.8km re like resid radius of 30 terest like	Population as per Population 2275 1103 625 569 dential building 00m and places archeological etc., are found					
11.6	Human S The near 2011 cen S.No 1 2 3 4 Public bu worship a	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti iildings, places of : N and monuments si o n a	n the buffer zero Direction Northeast Southeast Southwest Northwest Northwest Northwest ituated within f special in nonuments, Sa round 10km rate	Distance in Kms 0.9km 1.2km 0.7km 0.8km re like resid radius of 30 terest like inctuaries, of dius.	Population as per Population 2275 1103 625 569 dential building 00m and places archeological etc., are found					
11.6	Human S The near 2011 cen S.No 1 2 3 4 Public bu worship a	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti iildings, places of : N and monuments si o n alans showing the : T	n the buffer zero Direction Northeast Southeast Southwest Northwest Northwest Northwest ituated within f special in nonuments, Sa round 10km rate	Distance in Kms 0.9km 1.2km 0.7km 0.8km re like resid radius of 30 terest like inctuaries, o dius.	Population as per Population 2275 1103 625 569 lential building 00m and places archeological etc., are found quality, water					
11.6	Human S The near 2011 cen S.No 1 2 3 4 Public bu worship a Attach p locations	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti ildings, places of : N and monuments si o and monuments si o n a lans showing the : T of sampling q	n the buffer ze Direction Northeast Southeast Southwest Northwest Northwest Northwest Northwest ituated within f special in nonuments, Sa round 10km ra- he proposed a uality ambient	Distance in Kms 0.9km 1.2km 0.7km 0.8km re like resid radius of 30 terest like inctuaries, of dius. ambient air noise leve	Population as per Population 2275 1103 625 569 dential building 00m and places archeological etc., are found quality, water l and vibration					
11.6	Human S The near 2011 cen S.No 1 2 3 4 Public bu worship a Attach p locations stations	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti iildings, places of : N and monuments si o and monuments si o f sampling q	n the buffer ze Direction Northeast Southeast Southwest Northwest Northwest Northwest Northwest Northwest ituated within f special in nonuments, Sa round 10km rac he proposed a uality ambient re periodically	Distance in Kms 0.9km 1.2km 0.7km 0.7km 0.8km re like resid radius of 30 terest like inctuaries, of dius. ambient air noise leve tested for e	Population as per Population 2275 1103 625 569 lential building 0m and places archeological etc., are found quality, water l and vibration every season (6					
11.6	Human S The near 2011 cen S.No 1 2 3 4 Public bu worship a Attach p locations stations	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti ildings, places of : N and monuments so o n alans showing the : T of sampling q au n	n the buffer ze Direction Northeast Southeast Southwest Northwest Northwest Northwest Northwest Northwest Northwest ituated within f special in nonuments, Sa round 10km rac he proposed a uality ambient re periodically nonths once) ar	Distance in Kms 0.9km 1.2km 0.7km 0.7km 0.8km re like resid radius of 30 terest like inctuaries, of dius. ambient air noise leve tested for e round 5km r	Population as per Population 2275 1103 625 569 lential building 0m and places archeological etc., are found quality, water l and vibration every season (6 adjus as per the					
11.6	Human S The near 2011 cen S.No 1 2 3 4 Public bu worship a Attach p locations stations	Settlement: rest villages are found i sus. Village K.Pudukottai Tadankottai Bommanankottai Peddinayakkanpatti ildings, places of : N and monuments si o and monuments si o f sampling q ai of sampling q	n the buffer ze Direction Northeast Southeast Southwest Northwest Northwest Northwest Northwest Northwest Northwest ituated within f special in nonuments, Sa round 10km rac he proposed a uality ambient re periodically nonths once) ar uidance of M	Distance in Kms 0.9km 1.2km 0.7km 0.7km 0.8km re like resid radius of 30 terest like inctuaries, of dius. ambient air noise leve tested for e ound 5km re	Population as per Population 2275 1103 625 569 lential building 00m and places archeological etc., are found quality, water l and vibration every season (6 adius as per the IA. notification					

•

•

•

•

•

.....

•

•

•

M20fromen.

			-199-00
11.9	Does area (partly or fully) fall under notified area under Water (Prevention & Control of Pollution), Act, 1974	3	The proposed area not fall under potified area under water (Prevention & Control of Pollution), Act, 1974

b) Attach an Environmental Impact Assessment Statement describing the impact of mining and beneficiation on environment on the following over the next five years (and upto conceptual plan period for 'A' category mines)

•

.

i) Land area indicating the area likely to be degraded due to quarrying / pitting, dumping, roads, workshop, processing plant, township etc:

Due to quarrying and exploitation of the rough stone, there will impact in the form i.e. change in the ground profile, pits, and dumps. The details of the land use pattern, during the ensuing plan period and till lease period is shown in the tabular form:

	SI. No.	Land Use	Area in use during the quarrying period (Hect)
	1.	Area under mining	1.90.96
	2	Infrastructure	0.01.0
	3	Road	0.03.0
	4	Green belt	0.44.69
	5	Drainage & Settling Tank	0.02.0
	6	Un-utilized area	0.01.35
		Grand total	2.43.0
iii).	Water quality	drilling proce excavation et periodical wett A water sampl tested to NA hardness, Salin	ss, hauling roads, places of c, will be suppressed by ing of land by water spraying. e from the open/bore wells was .BL approved lab to assess ity, colour, Specific gravity, etc.
iv).	Noise levels	Quarrying of ro drilling and t explosives, an minimum. Ho monitoring will around the quar	bugh stone will be carried out by plasting by using low power d hence, noise will be very wever, periodical noise level be carried out every six months ty site.
v).	Vibration levels (due to blasting)	No deep hole	blasting envisaged. Small dia

MRanen.

Mining Collectora

		shot holes are used for breaking boulders. The maximum peak particles velocity will be recoded using mini seismograph devises as per the guidance of MoEF and EIA Notification 2006 and also covering DGMS norms.
vi).	Water regime	No major water bodies like rivers, pond, lake etc., located within a radius of 500m.
vii).	Socio-economics	 To provide Employment opportunities of the nearby villagers. For the cultural development of the nearby villagers.
viii).	Historical monuments etc.	There are no historical monuments, etc found around 10km radius.

•

•

•

•

•

c) Attach an Environmental Management Plan (supported by appropriate plans and sections) defining the time bound action proposed to be taken with sequence & timing in the following areas (or diagrams should be used):

i).	Temporary storage and utilization of topsoil		No separate of topsoil will be removed.
ii).	Year wise proposal for reclamation of land affected by abandoned quarries and other mining activities during ten years (and upto conceptual plan period for 'A' category mines) clarifying the extent of back filling and re-contouring and / or alternative use of unfilled / partially filled excavations / road sides / slopes and mine. In case abandoned quarries/ pits are proposed to be used as reservoir, their size, water holding capacity and proposal for utilization of such water be given.	0	The present mining is proposed to an average depth of 45m bgl has been envisaged as workable depth for safe & economic mining during the lease period. The mined-out area will be fenced on top of working bench with S1 fencing. No immediate proposals for closure of pit as the rough stone persist still at deeper level.

Mozamen.

ii)	Programm	ne of afforesta	tion, Yea	rwise for	the initial	five years	s (and/upto					
	conceptua	l plan period	for 'A' c	ategory n	nines) indic	ating the	number of					
	plants wi	th name of s	pecies to	be affor	rested unde	er differei	nt areas in	38				
	hectares.	hectares.										
	Green Belt Development:											
	Safety barrier, school and nearest panchayat roads has been identified to											
	be utilized for Greenbelt appropriate native species of Neem. Pungan and other											
	regional tr	regional trees will be planted in a phased manner as described below										
	Year	Year Place Area i			Rate of	Rate	Amount in	i l				
	D *		Sq.m	Plants	survival		Rs					
	First	Boundary	4469	500	80%		50000/-					
	Second	Approach		300	80%	@100	30000/-					
		Nearby				sapling						
	Third	Village Road Schools		300	80%		30000/-					
		General	- eng	500	0070	Total	1,10,000/-	- 1				
- 1	dumps alo	on and vegeta ong with waste ent Year wise	tion of e dump for the	: No wa	aste or rejec	ts remove	d in this lea	se				
	dumps alo manageme ten years plan peri mines).	on and vegeta ong with wast ent Year wise (and up to cor od for 'A' c	ition of e dump for the nceptual category	: No wa area.	aste or rejec	ts remove	d in this lea	se				
).	dumps alo manageme ten years plan peri mines). Measures sedimental	on and vegeta ong with waste ent Year wise (and up to con od for 'A' c to control er tion of water co	tion of e dump for the nceptual category osion / purses.	: No wa area. : Not a dumps	aste or rejec applicable. s are stabiliz	There a ared in this	d in this lea re no maj quarry area.	se				
'). 'i).	dumps alo manageme ten years plan peri mines). Measures sedimental Treatment	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c	tion of e dump for the nceptual category osion / ourses.	 No wa area. Not a dumps It will 	applicable. applicable are stabiliz	There a red in this	d in this lea re no maj quarry area. d it does n	se or ot				
·). ·i).	dumps alo manageme ten years plan peri mines). Measures sedimental Treatment from mine	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c	tion of e dump for the nceptual category osion / ourses.	 No wa area. Not a dumps It will require 	applicable. applicable. are stabiliz l not be ha e any treatm	There a red in this armful and nent befor	d in this lea re no maj quarry area. d it does n e dischargin	se or ot 1g				
·). ·i).	dumps alo manageme ten years plan peri mines). Measures sedimental Treatment from mine	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c	tion of e dump for the nceptual category osion / ourses.	 No wa area. Not a dumps It will require into th 	applicable. s are stabiliz l not be ha e any treatm e natural co	There a red in this armful and nent befor urses.	d in this lea re no maj quarry area. d it does n e dischargin	se or ot 1g				
·). i). ii).	dumps ald manageme ten years plan peri mines). Measures sedimentat from mine	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c , for min	ition of e dump for the nceptual category osion / ourses. of water imizing	 No wa area. Not a dumps It will require into th There 	applicable. s are stabiliz l not be ha e any treatm e natural co is no water	There a red in this armful and nent befor urses. to be pur	d in this lea re no maj quarry area. d it does n re dischargin mped out w	se or ot 1g ill				
·). i). ii).	dumps ald manageme ten years plan peri mines). Measures sedimental Treatment from mine Measures adverse eff	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c , for min fects on water r	ition of e dump for the nceptual category osion / ourses. of water imizing egime.	 No wa area. Not a dumps It will require into th There be ver 	aste or rejec applicable. s are stabiliz l not be ha e any treatm e natural co is no water y pure and p	There a red in this armful and nent befor urses. to be pur portable ar	d in this lea re no maj quarry area. d it does n re dischargin mped out w ad therefore,	se or ot 1g ill it				
·). ·i). ·ii).	dumps ald manageme ten years plan peri mines). Measures sedimental Treatment from mine Measures adverse eff	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c , for min fects on water r	ition of e dump for the nceptual category osion / ourses. of water imizing egime.	 No wa area. Not a dumps It will require into th There be very will 	applicable. applicable. s are stabiliz l not be ha e any treatm e natural co is no water y pure and p not affect	There a red in this armful an- ment befor urses. to be pur portable ar any w	d in this lea re no maj quarry area. d it does n re dischargin mped out w ad therefore, vater regin	se or ot ng ill it ne				
). i). ii).	dumps ald manageme ten years plan peri mines). Measures sedimental Treatment from mine Measures adverse eff	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c , for min fects on water r	ition of e dump for the nceptual category osion / ourses. of water imizing egime.	 No wa area. Not a dumps It will require into th There be very will surrou sit will 	applicable. applicable. s are stabiliz l not be ha e any treatm e natural co is no water y pure and p not affect nding the c	There a red in this armful and nent befor urses. to be pur portable ar any w juarry. Th	d in this lea re no maj quarry area. d it does n e dischargin nped out w d therefore, vater regin e worked-o	se or ot ill it ne ut				
). i).	dumps ald manageme ten years plan peri mines). Measures sedimental Treatment from mine Measures adverse eff	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c , for min fects on water r	ition of e dump for the nceptual category osion / ourses. of water imizing egime.	 No wa area. Not a dumps It will require into th There be very will surrou pit will the area 	applicable. applicable. s are stabiliz l not be ha e any treatm e natural co is no water y pure and p not affect nding the co l be protecto	There a red in this armful and nent befor urses. to be pur portable ar any w juarry. Th ed with ba	d in this lea re no maj quarry area. d it does n e dischargin nped out w d therefore, vater regin e worked-o rbed wire ar	se or ot 1g ill it 1e ut 1d				
). i). ii).	dumps ald manageme ten years plan peri mines). Measures sedimental Treatment from mine Measures adverse eff	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c , for min fects on water r	ition of e dump for the nceptual category osion / ourses. of water imizing egime.	 No wa area. Not a dumps It will require into th There be very will surrou pit will the mi rain wa 	applicable. applicable. s are stabiliz l not be ha e any treatm e natural co is no water y pure and p not affect nding the c l be protecto ned-out pit ater pit	There a red in this armful and nent befor urses. to be pur oortable ar any w juarry. Th ed with ba will be us	d in this lea re no maj quarry area. d it does n e dischargin nped out w d therefore, vater regin e worked-o rbed wire ar sed as storag	se or ot ng ill it ne ut nd ge				
). i).	dumps ald manageme ten years plan peri mines). Measures sedimental Treatment from mine Measures adverse eff	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c for min fects on water r	ition of e dump for the nceptual category osion / ourses. of water imizing egime.	 No wa area. Not a dumps It will require into th There be very will surrou pit will the mi rain wa The or 	applicable. applicable. s are stabiliz l not be ha e any treatm e natural co is no water y pure and p not affect nding the c l be protecto ned-out pit ater pit. pen pit will	There at red in this armful and nent befor urses. to be pur oortable ar any w puarry. Th ed with ba will be used	d in this lea re no maj quarry area. d it does n e dischargin nped out w ad therefore, vater regin e worked-o rbed wire ar sed as storag as rain wat	se or ot ig ill it ne ut id ge er				
'). 'i).	dumps ald manageme ten years plan peri mines). Measures sedimental Treatment from mine Measures adverse eff	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c , for min fects on water r	ition of e dump for the nceptual category osion / ourses. of water imizing egime.	 No wa area. area. Not a dumps It will require into th There be very will surrou pit will the mi rain wa The op storage 	applicable. applicable. s are stabiliz l not be ha e any treatm e natural co is no water y pure and p not affect nding the c l be protecto ned-out pit ater pit. pen pit will e structure t	There at red in this armful and nent befor urses. to be pur oortable ar any w quarry. Th ed with ba will be used o augmen	d in this lea re no maj quarry area. d it does n e dischargin nped out w d therefore, vater regin e worked-o rbed wire ar sed as storag as rain wat t groundwat	se or ot ig ill it ne ut id ge er er				
·). i).	dumps alo manageme ten years plan peri mines). Measures sedimental Treatment from mine Measures adverse eff	on and vegeta ong with waste ent Year wise (and up to cor od for 'A' c to control er tion of water co and disposal c for min fects on water r	ition of e dump for the nceptual category osion / ourses. of water imizing egime.	 No wa area. Not a dumps It will require into th It will require into th There be very will surrou pit will surrou pit will the mi rain wa The op storage levels 	applicable. applicable. s are stabiliz l not be ha e any treatm e natural co is no water y pure and p not affect nding the c l be protecto ned-out pit ater pit. pen pit will e structure t which	There a red in this armful and nent befor urses. to be pur oortable ar any w juarry. Th ed with ba will be used o augmen improve	d in this lea re no maj quarry area. d it does n re dischargin mped out w ad therefore, vater regin e worked-o rbed wire ar sed as storag as rain wat t groundwat the min	se or ot ug ill it ne ut vd ge er er ne				

•

•

Markamer.

		1	A Mining Collectorale Q	1
viii).	Protective measures for ground vibrations / air blast caused by blasting,		It is a small B2 category openedst, semi mechanized/ manual method of mining is adopted and no heavy machinery will be used. The only smooth brasting is proposed, therefore no change for ground sisting vibration or noise from the quarry.	
ix).	Measures for protecting historical monuments and for rehabilitation of human settlements likely to be disturbed due to mining activity.		No historical monuments and for rehabilitation of human settlements doesn't to be disturbed during mining activity.	
x).	Socioeconomic benefits arising out of mining.	ŧ	The nearest villages are will get employment benefits.	

d). Monitoring schedules for different environmental components after the commencement of mining and other related activities. (for 'A' category mines only)

Not applicable. It is B2 category quarry

Ø

•

12.0 PROGRESSIVE QUARRY CLOSURE PLAN:

12.1	Steps proposed for phased restoration, reclamation of already mined out area.		The proposed mining is up to a depth of 45m bgl. The mined-out area will be fenced on top of working bench with S1 fencing to arrest the entry of cattle's and public in to the quarry site.
12.2	Measures to be under taken on mine closure as per Act & Rules		Measures will be taken as per the Acts and Rules. Green belt development at the rate of 500 trees will be proposed in quarry lease area. No immediate proposals for closure of pit as the rough stone persist still at deeper level.
12.3	Mitigation measures to be undertaken for safety and restoration/ reclamation of the already mined out area	•	The quarry lease is a fresh mining lease. No mitigation measures adopted.
12.4	Mine closure activity	*	The present mining plan is proposed to depth of 45m bgl has been envisaged as workable depth for safe & economic mining during the lease period. The mined-out area will be fenced on top of open cast working with S1

Mikanel.

					wining Collec				
			fencing. N	No	immediate proposals for closure				
			of pit as the	he	rough stone persist at deeper				
			level.		A OIC				
2.5	Safety and security : Safety			ea	sures implement to the prevent				
			access to s	su	rface opening excavations will be				
			taken as N	Лe	talliferous mine regulations, 1961,				
			it is a sma	ıll	open cast mining method adopted.				
			Safety pro	ovi	isions like helmet, goggles, safety				
			shoes, Du	ıst	mask, Ear muffs etc have to be				
			provided a	as	per the circulars and amendments				
			made for l	M	ine labours under the guidance of				
			DGMS be	ein	g a mechanized operation.				
2.6	Disaster management and Risk	:	If the bend	ch	es are made with proposed height				
	Assessment		and width	and width no risk will be there. First aid					
			facilities v	wi	Il avail and the standby vehicle in				
			the lease a	are	ea to reach nearest hospital, if any				
			disaster ha	ap	pens the lessee is capable to meet				
			such event	tu	alities.				
2.7	Care and maintenance during	đ	A board o	of	discontinuance will be changed on				
	temporary discontinuance		the main entrance of the working place. One						
	C		watch man	n	will be kept on the quarry area for				
			security p	our	poses also look after the survival				
			of the plan	nts	5.				
2.8	Economic repercussions of	ц.	During th	he	ten years mining period the				
	closure of quarry and man		employme	en	t potential will be generated,				
	power entrenchments		general fi	ina	ancial status and socio-economic				
			conditions	s	of approx. 20 labors will be				
			improved.	į.					
2.9	Reclamation and	1	No remov	al	of structures proposed.				
	Rehabilitation								
9 Pro	oposed Financial Estimate / Bud	get	for (EMP)	E	nvironment Management:				
A	Fixed Asset Cost:			Т					
	1. Land Cost (Consent Land)		1	1	Rs. 5,00,000/-				
	2. Labour Shed			1	Rs. 1,50,000/-				
	3. Sanitary Facility		4	1	Rs. 1,50,000/-				
	4. Fencing		1	1	Rs. 2,61,000/-				

•

•

2. Labour Shed 3. Sanitary Facility	:	Rs. 1,50,000/- Rs. 1,50,000/-
4. Fencing 5. Other expenses (Security guard, dust	1	Rs. 2,61,000/- Rs. 3,00,000/-
bin, etc) Total		Rs. 13.61.000/-

MRanch.

-207-

3	B. Machinery cost	1	Rs. 30,00,000/- (Hire Basis)	
С	Total Expenditure of EMP cost (for ten ye	ars)	Sec. 4
	1. Drinking Water Facility	:	Rs. 1,00,000/-	1
	2. Sanitary facility & Maintenance	4	Rs. 75,000/-	Winner
	3. Permanent water sprinkler	;	Rs. 1,00,000/-	. A instalaad
2	4. Afforestation and its maintenance		Rs. 1,10,000/-	
	5. Safety Kits	:	Rs. 75,000/-	
	6. Provision of tyre washing facility	4	Rs. 1,00,000/-	
	 Surface runoff management structures like garland drain, settling pond & Bund (0.02.0Hect or 200Sq.m X 400) 	i.	Rs. 80,000/-	
	8. Blasting materials with blast mat cost	1	Rs. 20,00,000/-	
	9. Environment monitoring	:	Rs. 5,00,000/-	
	Total	3	Rs. 31,40,000/-	
D	Total Project Cost (A+B+C)	;	Rs. 81,10,500/-	

13.0 FINANCIAL ASSURANCE:

Not applicable, it is a small B2 rough stone and gravel quarry.

14.0 CERTIFICATES:

.

All required certificates are enclosed.

15.0 PLAN AND SECTIONS, ETC:

Plan and Sections are submitted along with mining plan.

16.0 ANY OTHER DETAILS INTEND TO FURNISH BY THE APPLICANT:

- Care and precautionary measures will be taken for the safety of workers as per Rules and Acts.
- (ii) The applicant will endeavor every attempt to quarry the rough stone economically without any wastage and to improve the environment and ecology.
- (iii)The mining plan is prepared by incorporating the conditions stipulated in the precise area communication issued by the Assistant Director of Geology and Mining, Dindigul vide letter Rc.No.115/2023(Mines) Dated: 27.02.2024.
- (iv)Total proposed production of 457590m³. Of which, rough stone is about 419186m³ and gravel is about 38404m³ up to a depth of 45m below the ground level (R.L.279m-234m) for ten years plan period. Average production is 41918m³ of rough stone and gravel is 12801m³ per year.

MRamen.

17.0 CSR Expenditure:

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

CSR (Corporate Social responsibility) shall provide by the applicant 2.0% of average net profit of the company for the last three financial years to the nearby these on the Ministry has notified the amendments in section 135 of the Act as well in the CSM 1995 Rules on 22nd January 2021 as circular no. CSR-05/01/2021-CSR-MCA dated 25th August 2021.

Place: Dharmapuri, TN Date: 04/03/24

Collectorale Qindi

100

Signature of the Recognized Qualified Person

Dr.S.KARUPPANNAN, M.Sc, Ph.D., RQP/MAS/253/2014/A GEO TECHNICAL MINING SOLUTIONS A NABET Accredited and ISO Certified Company 1/213-B, Ground Floor, Natesan Complex, Collectorate Post Office, Oddapatti, Dharmapuri-636705, TamilNadu, India

RoC. No. 115 / 2023 Date: This Mining Plan is approved based on Instruction guidelines given by the Commissioner of Geology and Mining, Chennai wide Lette No: 3868/LC/2012, Dated 19-11-2012 m condition laid by The District Collector, Undigul in Precise, Area Communication letter Roc. No . Roc. 0. 115. 23...(Mines), dated

ASSISTANT) DIREC GEOLOGY AND MINING DINDIGUL.

Maraner.

39 Page
அனுப்புநர்

۲

۲

۲

۲

۲

0

۲

۲

۲

۲

0

۲

0

0

0

۲

۲

۲

0

۲

۲

۲

۲

۲

۲

۲

.

۲

0

0

۲

۲

۲

۲

பெறுநர்

திரு.கி.விஜயராகவன், எம்.எஸ்ஸி, உதவி இயக்குநர், புவியியல் மற்றும் சுரங்கத்துறை, திண்டுக்கல் தி/ள்.ஸ்ரீ தேவர் புளு மெட்டல்ளத் புல எண்.295/1, 295/1ஏ, 295/2, 295 கொத்தபுள்ளி கிராமம், ரெட்டியார்சத்திரம், திண்டுக்கல்

Depr

10L

000

ந.க.எண்.1,15/2023 (கனிமம்) நாள்: 27.02.2024

அய்யா,

பொருள் : கனிமங்கள் மற்றும் சுரங்கங்கள் - திண்டுக்கல் மாவட்டம் -திண்டுக்கல் மேற்கு வட்டம், கே.புதுக்கோட்டை கிராமம், பட்டா புல எண்கள். 244/1ஏ (1.91.0 ஹெக்டேர்), 244/2ஏ1 (0.28.0 ஹெக்டேர்) மற்றும் 244/2ஏ2 (0.24.0 ஹெக்டேர் ஆகியவற்றின் மொத்தப்பரப்பு 2.43.0 ஹெக்டேரில் கல் மற்றும் மேல்மண் குவாரி குத்தகை உரிமம் கோரி தி/ள்.ஸ்ரீ தேவர் புளு மெட்டல்ஸ் நிறுவனத்தினர் விண்ணப்பம் செய்தது - வரைவு சுரங்கத்திட்டம் சமர்ப்பிக்க அறிவறுத்துதல் - தொடர்பாக.

பார்வை :

- தி/ள்.ஸ்ரீ தேவர் புளு மெட்டல்ஸ், கொத்தபுள்ளி, திண்டுக்கல் என்பவரின் விண்ணப்பம் நாள்: 22.12.2023
- வருவாய் கோட்டாட்சியர், ஜென்ன் அவர்களின் கடிதம் ந.க.4935/2023/அ1, நாள்: 23.01.2024.
- உதவி இயக்குநர், புவியியல் மற்றும் சுரங்கத்துறை, திண்டுக்கல் அவர்களின் அறிக்கை நாள்: 20.02.2024
- மற்றும் தொடர்புடைய ஆவணங்கள்.

திண்டுக்கல் மாவட்டம், திண்டுக்கல் மேற்கு வட்டம், கே.புதுக்கோட்டை கிராமம், பட்டா புல எண்கள். 244/1ஏ (1.91.0 ஹெக்டேர்), 244/2ஏ1 (0.28.0 ஹெக்டேர்) மற்றும் 244/2ஏ2 (0.24.0 ஹெக்டேர் ஆகியவற்றின் மொத்தப்பரப்பு 2.43.0 ஹெக்டேரில் கல் மற்றும் மேல்மண் குவாரி குத்தகை உரிமம் கோரி தி/ள்.ஸ்ரீ தேவர் புளு மெட்டல்ஸ் நிறுவனத்தினர் அனுமதி கோரி விண்ணப்பம் செய்துள்ளார்.

பார்வை 2 மற்றும் 3ல் கண்டுள்ளவாறு வருவாய் கோட்டாட்சியர், ஆண்ண் மற்றும் உதவி இயக்குநர், புவியியல் மற்றும் சுரங்கத்துறை, திண்டுக்கல் ஆகியோர் புலத்தணிக்கை மேற்கொண் திண்டுக்கல் மேற்கு வட்டம், கே.புதுக்கோட்டை கிராமம், பட்டா புல எண்கள். 244/1ஏ (1.91.0 ஹெக்டேர்), 244/2ஏ1 (0.28.0 ஹெக்டேர்) மற்றும் 244/2ஏ2 (0.24.0 ஹெக்டேர் ஆகியவற்றின் மொத்தப்பரப்பு 2.43.0 ஹெக்டேரில் கல் மற்றும் மேல்மண் குத்தகை உரிமம் வழங்க அனுமதி வழங்கலாம் என பரிந்துரை செய்துள்ளனர்.

M Ranch

 எனவே, தி/ள்.ஸ்ரீ தேவர் புளு மெட்டல்ஸ் நிறுவனத்தினருக்கு திண்டுக்கல் மேற்கு
 ாட்டம், கே.புதுக்கோட்டை கிராமம், பட்டா புல எண்கள். 244/1ஏ (1.91.0 ஹெக்டேற்)
 244/2ஏ1 (0.28.0 ஹெக்டேர்) மற்றும் 244/2ஏ2 (0.24.0 ஹெக்டேர் ஆகியவற்றின் மொத்தப்பரப்பு 2.43.0 ஹெக்டேர் பரப்பினை 1959-ம் வருடாந்திய தமிழ்நாடு சிறுகனிம சலுகை விதிகள், விதி எண்.19 & 20-ன் கீழ் <u>10 வருட காலங்களுக்கு</u> கல் மற்றும் மேல்மண் குவாரி குத்தகை உரிமம் அனுமதி வழங்க உகந்த புலமாக கருதி அறிவிப்பு செய்யப்படுகிறது.

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

 மேலும், தி/ள்.ஸ்ரீ தேவர் புளு மெட்டல்ஸ் நிறுவனத்தினர் மூன்று மாத காலத்திற்குள் வரைவு சுரங்கத்திட்ட அறிக்கை (Draft Mining Plan) கீழ்கண்ட பெற்தனைகளுக்குட்பட்டு தயார் செய்து திண்டுக்கல் மாவட்ட புவியியல் மற்றும் ருரங்கத்துறை, உதவி இயக்குநரிடம் ஒப்புதல் பெற்றும், தமிழ்நாடு சிறுகனிம சலுகை ூிதிகள் 41 & 42-ன் படி ஏற்பளிக்கப்பட்ட சுரங்கத்திட்ட அறிக்கை மற்றும் மாநில ரூற்றுச்சூழல் தாக்க மதிப்பீட்டு ஆணைய இசைவாணைச் சான்று பெற்றும் சமர்ப்பிக்குமாறு அறிவறுத்தப்படுகிறது.

> விண்ணப்ப புலங்களின் அருகில் உள்ள பட்டா 7.5 மீட்டர் பாதுகாப்பு இடைவெளி விடவேண்டும்.

> விண்ணப்ப புலங்களை சுற்றியுள்ள அரசுப் புறம்போக்கு நிலங்களுக்கு
> 10 பீட்டர் பாதுகாப்பு இடைவெளி விட வேண்டும்.

 குவாரிப்பணி தொடங்குவதற்கு முன்பாக குவாரியினை சுற்றி முள்கம்பிவேலி (Wire Fencing) அமைத்து குவாரிப்பிண தொடங்கவேண்டும்.

உதவி இயக்குநர்,

and Wining Collect

151554 010

பலியியல் மற்றும் சுரங்கத்துறை, திண்டுக்கல்

MRamel 210 210

		ച്ച-വള്യവേപ്ര ബഖന്ചകണ	ANNEADRE
மாவட்டம் : திண்டுக்	கல்		Sat Hinting Conectorate
வட்டம் : திண்டுக்கல்	ல் (மேற்கு)		100
கிராமம் : கெ.புதுக்(கோட்டை		A.L.
1. പ്പல எண்	244	9. மண் வயனமும் ரகமும்	2-5 Castan Instale A of
2. உட்பிரிவு எண்	1A	10. மண் தரம்	4
3. பழைய புல உட்பிரிவு எண்	244-1A	11. தீர்வை (ரூ - ஹெ)	2.77
4. பகுதி	=:	12. பரப்பு (ஹெக்டேர் - ஏர்)	1 - 91.00
5. அரசு / ரயத்துவாரி	ரயத்துவாரி	13. மொத்த தீர்வை (ரூ - பை)	5.25
6. நிலத்தின் வகை	புஞ்சை	14. பட்டா எண்	1332
7. பாசன ஆதாரம்		15. குறிப்பு	*
8. இரு போகமா	0	16. பெயர்	1.ரமேஷ் 2.பாலாஜி
and in 1.			

குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

M Romeer

இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 150249 என்ற

213

É

۲

0

۲

۲

•

0

۲

۲

۲

۲

۲

1/1

குறிப்பு 1:

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 150249 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

MRanch

-225-2/16/23, 8:31 PM வட்டாட்சியர் அலுவலக இணைய சேவை - அ-பதிவேடு விவரங்களை பார்வையிட அ-பதிவேடு விவரங்கள் ming Collector மாவட்டம் : திண்டுக்கல் வட்டம் : இண்டுக்கல் (மேற்கு) கிராமம் : கெ.புதுக்கோட்டை 9. மண் வயனமும் UPISISSY O 1. புல எண் 244 7 - 2 ரகமும் 2. உட்பிரிவு எண் 2A2 10. மண் தரம் 4 3. பழைய புல 244-2A2 11. தீர்வை (ரூ - ஹெ) 2.77 உட்பிரிவு எண் 12. பரப்பு (ஹெக்டேர் -4. பகுதி 0 - 24.00 ஏர்) 13. மொத்த தீர்வை (ரூ 5. அரசு / ரயத்துவாரி ரயத்துவாரி 0.66 - ബെ) 6. நிலத்தின் வகை புஞ்சை 14. பட்டா எண் 1332 7. பாசன ஆதாரம் -15. குறிப்பு 8. இரு போகமா 0 16. பெயர் 1.ரமேஷ் 2.பாலாஜி குறிப்பு 1:

குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

MRanch

மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் http://eservices.tn.gov.in என்ற இணைய தளத்தில் 150249 என்ற

	Address Approved	-223	
	ANNI	EXURE	\sim
	AMinin	Collectora	ten
	and		
	(Geol	4	- 524
	199		
1) பிரிவு	1930	2 1111111100004	10 */
வட்டம் : இல	ண்டுக்கல்	(Gradies)	/

தமிழ்நாடு அரசு

வருவாய்த் துறை

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

மாவட்டம் : திண்டுக்கல்

•

பட்டா எண் : 1332

வருவாய் கிராமம் : கெ.புதுக்கோட்டை

1. (2. (ழருகேசத்0 மருகேசத்0	தேவர் தேவர்			மகன் மகன்	ل ا	மேஷ் ரவாலி	-	
புல எண்	உட்பிரிவு பன்செய்			நன்	செய்	ιοήσ	തല	குறிப்பரைகள்	
(641)		սդմպ	தீர்வை	ມຫຍ່ານ	கீர்வை	1000	Girmou	Silverteenjeen	
		ஹெக் - ஏர்	ரு - பை	ஹைக் - ஏர்	ന്ദ്ര - വെ	ஹெக் - ஏர்	ரூ - பை		
107	3	0 - 7.00	0.19	(49)				2022/0103/13/2057	
107	4	0 - 22.50	0.62				9 44 0	2022/0103/13/2057	
226	1	0 - 19.00	0.53					2021/0103/13/1736	
228	10	0 - 32.50	0.90		-			2021/0103/13/1736 31-12-20	
228	2	0 - 15.50	0.43					2021/0103/13/1736 31-12-20	
228	4	0 - 18.00	0.49		12		115	2021/0103/13/1736. 31-12-20	
228	8	0 - 18.00	0.50	~	-			2021/0103/13/1736	
241	15A	0 - 2.50	0.07		••	**		2021/0103/13/17362	
241	16	0 - 4.50	0.13			~	**	2022/0103/13/18493	
241	178	0 - 4.50	0.12	.			÷*i	2022/0103/13/18493	
241	18	0 - 9.00	0.35	998) 		++		2021/0103/13/17362 31-12-202	
241	1A	0 - 3.00	0.08		÷*)	**		2021/0103/13/17362	
241	18	0 - 11.50	0.32		-			2021/0103/13/17362 31-12-202	
241	1C	0 - 12.00	0.34		•			2021/0103/13/17362 31-12-202	
241	4A	0 - 12.50	0.34			*		2021/0103/13/17362	
241	4B	0 - 10.00	0.28	**	**			2021/0103/13/17362 31-12-202	
241	5A	0 - 15.50	0.44	.22		**	**	2021/0103/13/17362 31-12-202	
241	8	0 - 7.50	0.21	**	**			2021/0103/13/17362	

241 9A 0 - 4.50 0.12 2021/01 241 9B 0 - 5.00 0.14 2021/01	00/102/1736
241 98 0-5.00 0.14	03/13/18/0
	- 06-02 20
243 2A1 0 - 45.50 1.25	03/13/1736
243 2A2 0-2.50 0.07	03/13/1849
243 2A3 0 - 37.00 1.03	Billin and and and and and and and and and an
243 3 0-69.00 1.90 2021/01	03/13/1736
244 1A 1-91.00 5.25 2021/01	03/13/1736
244 2A1 0 - 28.00 0.78 2021/010	03/13/1736
244 2A2 0 - 24.00 0.66 2022/010	05.02.20
245 1 0 - 48.00 1.32 2021/010	3/13/1736
245 2B 0-11.00 0.30 2021/010)3/13/1736
245 2C 0-9.00 0.25 2021/010)3/13/1736
245 3F 0 - 34.50 0.95 2022/010	3/13/1849
245 3G 0-39.00 1.08 2021/010	3/13/17362
245 3H 0-40.00 1.12 2022/010	3/13/1849:
245 31 0 - 16.50 0.45 2021/010	3/13/17362
245 3) 0-11.50 0.31 2022/010	3/13/18493
245 3K 0 - 26.50 0.72 2022/010	3/13/18493
245 3L 0 - 16.50 0.45 2021/010	3/13/17362
245 3N 0-1.50 0.06 2022/010	3/13/18493
245 30 0-5.00 0.14 2021/010	3/13/17362
245 3P 0-6.00 0.17 2022/010	3/13/18493
245 4A 0-6.50 0.18 2021/0103	3/13/17362
45 4B 0-7.50 0.20 2021/0103	/13/17362
45 5A 0-15.00 0.42 2022/0103	/13/205728
45 5B 0-8.50 0.23 2022/0103	/13/205728
45 5C 0-8.50 0.23 2022/0103	/13/205728
45 5D 0-6.50 0.18 2022/0103	/13/205728
15 6 0 - 19.00 0.53 - 217 - <u>2022/0103/</u>	13/205728

MRance.

250	1	0 - 7:	3.50	2.04	••				2021/0302/13/173625-
251	1A	0 - 19	9.50	0.54			-		202120103/13/173625-
		10 - 6	1.00	29.41					13
;றிப்பு :									Verisies V
						A CONTRACTOR OF THE OWNER			Street House
			மேற் . பெற தளத் உறு§	கண்ட தக ப்பட்டவை தில் 13/3: தி செய்துவெ	வல் / சான் . இவற்றை 2/022/013 காள்ளவும்.	றிதழ் நகல் தாங்கள் ht 32/140249	விவரங்கள் ၊ tps://eser என்ற குறிப	மின் பதிே vices.tn. ப்பு எண்னை	வட்டிலிருந்து gov.in என்ற இணைய ண உள்ளீடு செய்து
			மேற் பெற தளத் உறு§ 2.	கண்ட தக ப்பட்டவை தில் 13/3: தி செய்து தொல்கள்	வல் / சான் . இவற்றை 2/022/013 காள்ளவும். 104-03-202	றிதழ் நகல் தாங்கள் ht 32/140249 - 4 அன்று 11	விவரங்கள் (tps://eser) என்ற குறிப :01:00 AM 2	மின் பதிரே vices.tn. ப்பு எண்ன சாத்தில் ச	வட்டிலிருந்து gov.in என்ற இணைய ண உள்ளீடு செய்து லச்சடிக்கப்பட்டது.

ñ

1

in a

-	து காத திருத்து காத குத மானவிடும் ஆலுவன் குறிபுரைகள்	agan E			\square			Î			eolog				
ங்கல் கணல்கு கிற்கள் வகையுள்	குராணாடமாமையா கார பிரில் வோம்பை விரியப்படு குரானா என் அல்லை நி கரானா என் அல்லை நு முத்திர், படன்ற பில் பிரி (த) மார், (த) படன்ற பிரி பிரி (த) மார், (த) படன்ற பிரி மேயத் தீஸ், (இ) விலாயர் நி மும் தீஸ், (இ) விலாயர் நி மிரி தீஸ், (இ) பிரிட்தத்தை நி (நி திஸ், (இ) பிரிட்தத்தை நி (க) திருத்தை பிரி	(1) Gor of a flat and the contract of the cont				er x					o former		AU an	E13(55)	10
கைப்பற்று சாகுபடி அட	் துலுமாளின் குறிப்பனா மில்காளின் பக்கிலையில் விரிப்பட்ட இனங்களில் என்புற்றில் இல்காத பிலங்- கால்களு பதிலையின் தாதைய பாத்தில் பாப்பட்டதா தில்கு பிற்கதுய பாப்பட்டதா தில்கு பிற்கதுய பாற்றி தில்த பிற்கதுய பாற்றில் இவர்- கால்களின் பிலாட்டதா இவர்- கால்களின் பிலாட்டதா இவர்- கால்களின் பிலாட்டது இவர்- கால்களின் கால்கள் கால் கால்கள் கால்கள் கால்கள் கால் கால்கள் கால்கள் கால் கால் கால்கள் கால்கள் கால் கால் கால்கள் கால்கள் கால்கள் கால்கள் கால்கள் கால் கால்கள் கால்கள் கால்கள் கால்கள் கால் கால்கள் கால் கால் கால்கள் கால்கள் கால் கால்கள் கால்கள் கால் கால்கள் கால் கால் கால் கால் கால் கால்கள் கால் கால் கால் கால்கள் கால் கால் கால் கால் கால் கால் கால் கால	9 10 20 20 20 20 20 20 20 20 20 20 20 20 20													
faucurul)	ளக்கல் அளவு நல்காடு	nka E Jka								$\left \cdot \right $			+		
Green L	ទី សមារាមសារ ខ្លាំមួយ ហេដូ ខ្លាំ	N E													
0 AUGL	ரின் போர். ரான / அறுவடையான ப	gan 2 gan 2		-					_						
R (9						1 1				100				1 1	
Byrng	இன் காத்தில் பயிர் முய்பப்பட்டது இத்த அறுவடை ப்பட்டது.	20 20 20 20													
பிராமத் பிராமத்	வினவர்கள் அனவு விழுக்காடு கற்றத்தை பறிர் கற்றத் கற்றவை கற்றை கற்றவை கற்றை பற்று பற்றப்பட்டது.	(12) (12) (12) (12)				7									-
4011112	உண்கமான பல்க்கம் ஆதாரம் மாகத்தில் பயிர் மியப்பட்டது எந்த தற்ற குறுவன பயப்பட்டது.	(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2				Dimining 2.3									
เ นี้เมตินั้น	பன்னை (அறுல்னட மல்சகல் ஆனுல்னட மற்றக்கல் ஆனவு விழுக்காடு விழுக்காடு விழுக்காடு விழுக்காடு பிற்றப்பட்டது	(10) (11) (12) E ² G ² G ² G ² (10) (13)	· · · · · · · · · · · · · · · · · · ·		James Constant	anna asgiantant 2.3 Latantaat Alpmbio	on tanging settion.								
ழக்ஸ் போகம். பாகம்	பயில் பெயி. யல்லை பெயி. உன்மையை மல்லை ஆதாரம் வின்க்கி ஆனம் வில்மட்து எந்த விலுக்காடு. விழுக்காடு. பய்ப்பட்து.	(a) (10) (11) ((2) (2) (2) (2) (2) (2) (2) (2) (2) (of contraction of the contractio	Tr. & Stornes	no filianta esciación 2.3 2, s. usióstanten dymbo									
ழுதல் போகம். அராமத்	எந்த மாதத்தில் பயிர் செய்பபட்டது காலம்பட்டது கண்கமாமா பல்ச்சம் ஆறுமாவ உன்மைமான விழுக்காடு விழுக்காடு விழுக்காடு விழுக்காடு விழுக்காடு விழுக்காடு	(8) (9) (70) (71) ((2) (3) (3) (3) (1) ((2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)		2 percention torrand	Str. & Same	Aumo filicante assignment 2.3 stort 22, s. usidetantist. Annbo									
ளவுடி யானவே முதல் போகம். வெயர்	நிலத்தின் எந்த பகுதி யாவது சாருபடிகள்தா என்றப்பட்டுக்ளதா சோய்ப்பட்டுக்கா சோய்ப்பட்டுள் சோய்ப்பட்டது மன்றின் தறுவன் விய்பட்டது வின்கம் துறுவன் வியுக்காதி வியுக்காதி வியுக்காதி வியுக்காதி வியுக்காதி	(7) (8) (9) (10) (11) (12) E ² G ² G ² (10) (10) (13)		2 mot con line of	Str. & Same	ekurno faiteane zestiensti acou 22, s. tgistaniten. Annbo	Consequence of the second seco								
ளரும் மானவ் முதல் போவம். போனம். கேவர்	க்கப்பற்ற தவர்கள் கைப்பற்ற தவர்கள் பயல்ல் உள்ளது. இங்கு இது கோல காக பியல் கள்கு இது பயல்க்க கழக்காக காகப்பட்டுக்கை குற்றில், கறுவக் மர்ம்க்க ஆறுவக் கள்கம் ஆறுவக் மர்க்கல் ஆதுவில் கற்றுக்கும் கற்றுக்கு கற்றுக்கு கற்றுக்காதி கற்றுக்காதி கற்றுக்காதி கற்றுக்காதி கற்றுக்காதி			2 prod con lance	Ort. & Slame	eten filona filona expension 2.3 eten 22, s. 1818scarter. Aprilo									pscelpMou7,-2017.
ຮູ້ໃຫ້ແມ່ນ ອາເອນ ອາເ ສື່ອນແມ່. ມີລາມາ, ມີລາມາ, ມີລາມາ, ມີລາມາ, ມີລາມາ, ອາເອນ ອ ອາເອນ ອາເອນ ອາເອ	த்து தரு போகம் அன்றது இரு பிற்கப் பின்றத் இரு இதுத்து இது தால் இது இரு இது இரு இது இரு இது இரு இது இரு இது இரு இரு இரு இரு இரு இரு இரு இரு இரு இரு இரு இரு இரு இரு இரு இரு இரு இரு இரு	$2 \sqrt{3} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} 5$		2 percention interest	Str. & Dames	ekumo filienta asojaton 2.3 atoia.22, a. tgiātaniea. dymbo	- Children Contract of Children Contract of Children Chil							M 000 6	.uv.uuv.cps-ceap.+Mpu7,~2017.
த் திட்டத்தின்படி யானன் பிராமத் களின் தியாம். கேயாம்.	த் ப்படி த் தரு போகம் அன்னு இரு தின்னை தரு போகம் அன்னத் கான்னு இரு பாலத் சி கான் பந்த பகுதி காற்றில் பயிர் காலத் குற்றை பாலத் குற்றை பாலத் குற்றை பாலத் குற்றை காத்த பரும் குற்றை அனை பிர்க்கை குற்றவட் குற்றவடை குற்றவடை குற்றவடை குற்றவடை குற்றவடை குற்றவடை குற்றவடை குற்றவடை குற்றவை குற்றவடை குற்றவட் குற்றவை குற்றவடை குற்றவடை குற்றவை குற்றவடை குற்றவடை குற்றவடை குற்றவடை குற்றவடை குற்றவடை குற்றவை குற்றவடை குற்றவடை குற்றவை குற்றவு குற்றவு குற்றவை குற்றவு குற்றவ குற்றவ குற்றவ குற்றவ குற்று குற்றவ குற்றவ குற்றவ குற்றவ குற்று குற்றவ குற்றவ குற்று குற்று குற்று குற்றவ குற்றவ குற்று குற்று குற்று குற்று குற்றவ குற்று குற்றவ குற்று குற்றவ குற்று குறு கு	$\frac{1}{2} \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9 meter (m.e.)	Str. & Same	etoin filon filon a seven and a seven and a seven and a seven and a seven a se	-011111 Schlinn Carbon Gluosed								The second cost-end-+Mou7,-2017.
9ல வரித் திட்டத்தின்படி பானவே விராமத் புலக்களின் விராமத் வெயர். வெயர்.	 உட்பிரிவு என். உட்பிரிவு என். உட்பிரிவு என். உட்பிரிவு என். உட்பிரில் என். உட்டிரில் என்.<!--</td--><td>A vi 6 v/ v3 r Gloan (1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2</td><td>H2-4-24 0. 140 1394</td><td>2 perfect intend</td><td>Jar. & Dames</td><td>etoin 22, 6. this on an and 23.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>F. III-A-10-60 M 000 C - C</td><td></td>	A vi 6 v/ v3 r Gloan (1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	H2-4-24 0. 140 1394	2 perfect intend	Jar. & Dames	etoin 22, 6. this on an and 23.								F. III-A-10-60 M 000 C - C	

I

<u>குத்தகைப்பத்திரம் ஆவணம்</u> அதாவது சுபகிருது தமிழ் வருடம் சித்திரை மாதம் 12ஆம் தேதி

கொத்துப்புள்ளி

2023ம் வருடம் ஏப்ரல் மாதம் 25ம் தேதி

திண்டுக்கல் மாவட்டம், திண்டுக்கல் வட்டம், SF.No.295/1 கொத்தப்புள்ளி என்ற முகவறியில் அமைந்து அதே முகவரியில் இயங்கி வரும் ஸ்ரீ தேவர் புளு மெட்டல்ஸ் நிறுவனத்திற்காக, அதன் நிறுவன பிரதிநிதியான, திண்டுக்கல் _தமாவட்டம், திண்டுக்கல் டவுன், நேருஜி நகர், LIC.காலனி விஸ்தரிப்பு, ரூஜன் அவென்யூ, பிளாட் நம்பர்.1ல் வசித்து வரும் திரு.முருகேசத் தேவர் அவர்தள் குமாரர் **திரு.ரமேஷ்** (ஆதார் அடையாள அட்டை எண். 6708 1014 7729) ஆகிய தங்களுக்கு,

தாள்களைக்கொண்டது.

कार्या

எழுதிக்கொடுப்பவர்கள்

95.50

0

۲

0000

۲

1. M. Ramega. 2. M. R. Hig. புத்தகப் இல் வருடத்திய 26/ம் ஆவனம்

எழுதிவாங்குபவர்

TEISL BLDITT

வித்தாய் வீற்பனையாளர் உரிமம் எண் : 35/2010/B1 கலைக்டீரேட் அஞ்சல், தீண்டுக்கல் - 624 004.

aner

220

பதீல அதுவலர்

MRanen

moule

திண்டுக்கல் மாவட்டம், திண்டுக்கல் டவுன், நேருஜி நகர், LIC.காலனி விஸ்தரிப்பு, ராஜன் அவென்யூ, பிளாட் நம்பர்.1ல் வசித்து வரும் மேற்படி ஸ்ரீ தேவர் புளு ஸ்டீட்டல்ஸ் நிறுவனத்தின் பங்குதாரரும் திரு.முருகேசத்தேவர் குமாரரும் அவர்கள் ഞ്ഞ 1ഖத நபரின் உடன்பிறந்த சகோதரரும் திரு.м.பாலாஜி (ஆதார் அடையாள அட்டை எண்.3235 2079 0350) (செல் நம்பர்.77088 19977)...2, ஆகிய நாங்கள் இரண்டு பேர்களும் சேர்ந்து எழுதிக் கொடுத்த பூழி வகையறாச் சொத்தின் குத்தகைப் பத்திர ஆவணம் என்னவென்றால்,

-3-

எழுதிக்கொடுப்பவர்கள் 1. M. Rander

1

đ

2. M. Jaky

0

۲

۲

۲

yத்தக 2022 ம் வருடத்திய 261 ம் ஆவனம் 20 தாள்களைக்கொண்டது. គ្នាពា பதீவ் அனிலல்

எழுதிவாங்குபவர் FOR SHREE THEVAR BLUE METALS

Partners

MRanch

உரிமம் எண் : 35/2010/B1 கலைக்டரேட் அஞ்சல், தீண்டுக்கல் - 624 004.

941-भरितीय गैर न्यायिक INDIA NON JUDICIAL भारतिका 090 200 ONE THOUSAND RUPEES एक हज़ीर रुपये **Rs.1000 ক.1000** सत्यमेव जयते SINDIALS? 25-04-2023 தமிழ்நாடு तमिलनाडु TAMILNADU BC 763149 US BEDDIN HARDLOVELANN EISL GIONT 0Breening ச்தான் இற்பகையைலா _ரிமம் எண் : 35/2010/81 கலைக்டரேட அஞ்சல். • fsin @ au co - 624 004. 0 -4-இதன்கீழ் சொத்து விவரத்தில் காண்பிக்கப்பட்டுள்ள சொத்தானது திண்டுக்கல் ۲ ஜாயிண்ட் 2ம் நம்பர் சார்பதிவகத்தில் 1ம் புத்தகம் 7477/2021ம் எண்ணாக ۲ கடந்த 26.10.2021ம் தேதியில் பதிவான கிரையப்பத்திரப்படி பாத்தியப்பட்டு ۲ எனது அனுபோக சுவாதீனத்தில் இருந்து வருகிறது ۲ எழுதிக்கொடுப்பவர்கள் ۲ எழுதிவாங்குபவர் For SHREE THEVAR BLUE METALS ۲ 1. M. Rander. M. Ramen ۲ Partners 2. H. Bahaji 0 ۲ 0 0 ۲ 5552023 i agus Subli gaani ۲ தாள்களைக்கொண்டது. ۲ 55 57 ۲ uភ្វិណ ខាស្សាលលព់ ۲ ۲ Raneer ۲ 223

- 943-भारतीय गैर न्यायिक INDIA NON JUDICIAL a the states 🕯 *े* शास्त्रलिक 4010 ONE THOUSAND RUPEES एक हजार रुपये **Rs.1000** ক.1000 सत्यमेव जयते SUNDIA COX 25.04.2023 தமிழ்நாடு तमिलनाडु TAMILNADU BC 763150 5 40 19 10CT X Ban Hay Diare Law 11:10 MALERL SIDITIT การกระบานการก ரைத்தாள் விற்பனையாளர் உரிமம் எண் : 35/2010/B1 கலைக்ட்ரேட் அஞ்சல், 034 A. 12. தீண்டுக்கல் - 624 004. Tin ۲ 0 -5-۲ இவ்வாறான நிலையில் மேற்படி ஸ்ரீ தேவர் புளு மெட்டல்ஸ் என்ற கூட்டு ۲ நிறுவனம் திண்டுக்கல் மாவட்ட Fail நிறுவன பதிவேட்டில் பதிவு ۲ எண்.33/2018 தேதி.27.03,2018ல் பதிவு செய்யப்பட்டு நடப்பில் இருந்து வரும் ۲ நிலையில் மேற்படி அந்த நிறுவனத்தின் பேரில் மேற்சொல்லப்பட்டு இதன்கீழ் ۲ விவரிக்கப்பட்டுள்ள சொத்தின் நிலப்பரப்பினுள் திண்டுக்கல் மாவட்ட ஆட்சியர் ۲ அவர்களிடம் சாதூரண கற்கள் மற்றும் கிராவல் மண் எடுக்கும் காரியத்திற்காக ۲ எழுதிக்கொடுப்பவர்கள் எழுதிவாங்குபவர் ۲ 1. M. Romen THEVAR BLUE METALS For SHREE ۲ 2. Mg very !! Partners 0 0 புத்தகல் வகுடத்தில் ம ஆவனம் ģ 0 <u>20</u> தாள்களைக்கொண்டது. 8 ۲ - 5rat 100 បន្ធឹស្ម ខាស្សឈល់ព g Í MRana 0 224 6

245-भरितीय गैर न्यायिक INDIA NON JUDICIAL ले)सारलाजिक ONE THOUSAND RUPEES एक हज़ीर रुपये Rs.1000 **হ**.1000 सत्यमेव जयते SUNDIA (?) 25.04.2023 தமிழ்நாடு तमिलनैाडु TAMILNADU 763151 OR Esper you operano OL UNDIST தான் விற்பன்சாமாளர் 177augu ரிமம் எண் : 35 / 2010 / B1 கலைக்டரேட் அஞ்சல், திண்டுக்கன் - 624 004. - 6 -நிறுவனத்தின் பேரில் விண்ணப்பிக்கப்பட்டுள்ளதில் அரசாங்கத்திட மேற்படி ۲ மிருந்து வரப்பெறும் குவாரி குத்தகை உரிமம் நிறைவேற்றும் தேதியிலிருந்து ۲ 10(பத்து) வருடங்கள் கால கெடுவிற்கு வருடம் ஒன்றுக்கு ரூபாய் 50,000/-۲ (ரூபாய்,ஜம்பதாயிரம் மட்டும்) விதம் குத்தகைக்கு கொடுக்க ஒப்புக்கொண்டு ۲ அதற்கு முன் தொகையாக ரூபாய்.1,00,000/- (ரூபாய்.ஒரு இலட்சம் மட்டும்) ۲ இன்றைய தேதிறில் நாங்கள் பெற்றுக்கொண்டு கீழ்க்கண்ட நிபந்தனைகளுக்கு ۲ உட்பட்டு எழுதிக்ழகாடுத்த குத்தகை பத்திரம் இதுவே ஆகும்.

எழுதிக்கொடுப்பிவர்கள்

8

220

8

100

எழுதிவாங்குபவர் For SHREE THEVAR BLUE METALS

Partners

2. Melapiji

1. M. Ranger

۲

۲

۲

0

۲

0

0

۲

۲

۲

ட டித்தத்தில் இல்லைக்கொண்டது ______ தாள்களைக்கொண்டது ______ தாள் ______ பதிவு அலுவலர்

à.

Rance

நிபந்தனைகள் பின்வருமாறு

۲

۲

0

0

۲

۲

۲

۲

۲

۲

۲

۲

۲

•

۲

۲

۲

۲

ந்தனைகள் படையாருமாறு 1. குவாரி குத்தகை உரிமம் நிறைவேற்றும் தேதியிலிருந்து குத்தகை காலம் கு

- 7 -

- 2. கீழ்காணும் பூமியை உங்களுக்கு இந்த ஆவணம் மூலம் வழங்கியுள்ளதைத் தவிர வேறு எவருக்கும் உள்குத்தகைக்கு கொடுக்க வில்லை மேலும் வேறு எவருக்கும் உள்குத்தகைக்கு கொடுக்க மாட்டேன் என்ற உறுதியளிக்கிறேன்.
- மேற்படி கெடு காலம் வரையில் நான் கீழ்காணும் பூமியைப்பொறுத்து எந்த இடையூறுகளையும் செய்ய மாட்டேன் என்ற உறுதியளிக்கிறேன்.
- 4. கீழ்காணும் பூமியில் மராமத்து செய்யும் அனைத்து செலவினங்களும் உங்களையே சார்ந்தது என்றும் அந்த செலவு என்னை எவ்விதத்திலும் கட்டுப்படுத்தாது.
- கீழ்காணும் பூமிக்கு உண்டான நில வரியை நீங்களே உரியவகையில் செலுத்திக்கொள்ள வேண்டியது.
- குத்தகை காலம் முடியும் வரை நீங்கள் அடியில் கண்ட சொத்தை எவ்வித வில்லங்க பாராதீனங்களுக்கும் உட்படுத்தக்கூடாது
- குத்தகை இடத்தில் நீவிர் நிறுவனம் சாதாரன கற்கள் மற்றும் கிராவல் மண் எடுக்கும் காரியத்திற்காக மட்டும் நான் சம்மதிக்கிறேன்.

இந்தப்படிக்கு நாங்கள் எழுதிக்கொடுத்த குத்தகைப்பத்திரம் ஆவணம் சரியே.

சொத்து விபரம்

 திண்டுக்கல் புதிவு மாவட்டம், திண்டுக்கல் ஜாயிண்டு 2ம் நம்பர் சார்பதிவகம், திண்டுக்கல் மேற்கு தாலுகா, **K.புதுக்கோட்டை கிராமபுலத்தில்**

எழுதிக்கொடுப்பவர்கள்

M. Ramen.

எழுதிவாங்குபவர் For SHREE THEYAR BLUE METALS

Partners

புத்தக 202ம் வருடத்தி இடுப் ஆவனம் >_____தாள்களைக்கொண்டது đđái បន្តីណ៍ ខាល្អាណលក់

MRanch.

Aining Collectora

end jueisissy

÷.,	- 21	10
	-8-	P1
0	Munderale	公
0	பழைய சர்வே 244/2A நம்பர் புஞ்சை ஏக்கர் 1 செண்டு 29ல் மேற்குப்பக்கம்	13
0	சப்டிவிஷன் செய்துள்ளபடி பட்டா எண்.1332ல் கண்ட புது சர்வே.244/2A	1
•	நம்பர் புஞ்சை ஹெக்டேர்.0.28.5க்கு செண்டு 70 உள்ள நிலத்திற்கு நான்குமால் 🥳	1
•	ajlugia	3
•	கிழமேல் ரோட்டிற்கும்வடக்கு	
-	முன்பு திரு.காளியப்பன் வகையறாவிற்கு பாத்தியப்பட்டும்	
-	தற்போது தங்கள் கைவசம் உள்ள நிலத்திற்கும்தெற்கு	
	முன்பு திரு.ா.கனகராஜ் அவர்கள் நிலம் தற்போது தங்கள்	
	கைவசம் உள்ள நிலத்திற்கும்கிழக்கு	
	முன்பு லெட்சுமணன் அவர்களுக்கு பாத்தியப்பட்டும்	
	தற்போது தங்கள் கைவசம் உள்ள சொத்திற்கும்மோது தம்பாது தங்கள் கைவசம் உள்ள சொத்திற்கும்	
•	இதற்குள் கட்டுப்பட்ட ஷை புஞ்சை செண்டு 70 உள்ள ஷை நிலமும்.	
	2. திண்டுக்கல் பதிவு மாவட்டம், திண்டுக்கல் ஜாயிண்டு 2ம் நம்பர் சார்பகிவகம்	
	திண்டுக்கல் மேற்கு தாலுகா, K.புதுக்கோட்டை கிராமபலத்தில்	
	பழைய சர்வே 244/2A நம்பர் புஞ்சை ஏக்கர் 1 செண்டு 29ல் கீம்புமை	
•	கட்டுப்பட்ட புஞ்சை ஹெக்டேர்.0.26.0க்கு செண்டு 64½ உள்ள கிலக்கிற்க	
	நான்குமால் விபரம்	
0	கிழமேல் ரோட்டிற்கும்	
	முன்பு திரு.காளியப்பன் வகையறாவிற்கு பாக்கியப்பட்டும்	14
	தற்போது தங்கள் கைவசம் உள்ள நிலத்திற்கும்	
	முன்பு திரு.ா.கனகராஜ் அவர்கள் நிலம்	
•	தற்போது தங்கள் கைவசம் உள்ள நிலத்திற்கும்	
•	முன்பு லெட்சுமணன் அவர்களுக்கு பாத்தியப்பட்டும் தற்போது	
	தங்கள் கைவசம் உள்ள சொத்திற்கும் பேற்கு	
	இதற்குள் கட்டுப்பட்ட ஷை புஞ்சை செண்டு 64½ உள்ள ஷை நிலபுவற்	
	எழுதிக்கொடுப்பவர்கள் எழுதிக்கொடுப்பவர்கள்	
	1. M. Rander For SHREE THEVAR BLUE METALS	
	a NA Ruis	
	a d	

•

MRanen_

-249-

-251-

Collectorate Q

Ciperio Juersiest

மேற்படி சொத்து தற்கால சப்டிவிஷன் செய்துள்ளபடி பட்டா எண்.1332ல் கண்ட சர்வே 244/2A2 நம்பருக்கு கட்டுப்பட்டது. 3. திண்டுக்கல் பதிவு மாவட்டம், திண்டுக்கல் ஜாயிண்டு 2ம் நம்பர் சார்பதிவகம் திண்டுக்கல் மேற்கு தாலுகா, **K.புதுக்கோட்டை கிராமபுலத்தில்**

- 9 -

பட்டா எண்.1332ல் கண்ட

۲

۲

0

۲

۲

۲

۲

۲

۲

அயன் சர்வே244/1A நம்பர் புஞ்சை ஹெக்டேர்.1.91.0க்கு ஏக்கர் 4 செண்டு

71 உள்ள நிலத்திற்கு நான்குமால் விபரம்

பாதைக்கும், பாறைக்கும், கல்குவாரிக்கும்_____வடக்கு

முன்பு நாகப்பகவுடர், காவேரியம்மாள் புஞ்சைக்கும்,

சுப்பாயம்மாள் புஞ்சை தற்போது தங்கள் கைவசம்

உள்ள நிலத்திற்கும்......தேற்கு

முன்பு நாகப்பகவுடர், காவேரியம்மாள் இவர்கள் புஞ்சை

தற்போது தங்கள் கைவசம் உள்ள நிலத்திற்கும்______கிழக்கு

முன்பு முத்தையகவுடர் புஞ்சை தற்போது தங்கள் கைவசம்

உள்ள நிலத்திற்கும்._____பேற்கு

இதற்குள் கட்டுப்பட்ட ஷை புஞ்சை ஏக்கர் 4 செண்டு 71 உள்ள ஷை நிலமும்,

ஆக 1,2,3லக்க சொத்துக்கள் ஹெக்.2.45.5க்கு ஏக்கர் 6 செண்டு 5.1/2 உள்ள நிலங்களும்

மேற்படி சொத்துக்குத் தடப்பாத்தியம்

இந்த குத்தகைச் சொத்திற்கு மேற்படி மூல ஆவணத்தில் சொல்லப்பட்டப்படியும் அதன் முன் மூல ஆவணங்களில் கண்டுள்ளபடியும் ஆட்கள் கால் நடைகள், வண்டி வாகனங்கள், நவீன கனரக புவி ஊர்திகள் முதலான அனைத்தும் ஒட்டிக்கொண்டு போக வர தடப் பாத்தியம் உண்டு மற்றும் சகல ஈஸ்ட்மெண்ட் பாத்தியங்களும் பாத்தியம் உண்டு.

எழுதிக்கொடுப்பவர்கள்

1. M. Ramen

2. M&apy

எழுதிவாங்குபவர் For SHREE, THEVAR BLUE METALS

Partners

MRaneen.

மேலும் மேற்படி புஞ்சை நிலத்தில் தற்போது திறந்தவெளிக்கிணறுகளோ / ஆழ்துளை கிணறுகளோ & அரசு மற்றும் தனியார் நீர்நிலைகளோ எதுவும் 🕃 இல்லை.

எழுதிக்கொடுப்பவர்கள் 1. M. Romen

எழுதிவாங்குபவர்

For SHREE THEVAR, BLUB HETHIN I

Par .:

சாட்சிகள்

۲

۲

0

۲

۲

۲

1. A.ung

2. N. Jally

விக்னேஷ் த/பெ.அழகர்சாமி, 22/10,

பிள்ளையார்பாளையம், திண்டுக்கல்-624001

(ஆதார் அடையாள அட்டை எண். 7803 4419 3176)

முத்துமாரி த/பெ.முருகன், 3, வேதாத்திரி நகர், 2. M. MUS அறிவுத்திருக்கோவில் எதிரில், செட்டிநாயக்கன்பட்டி, திண்டுக்கல் - 624004 (ஆதார் அடையாள அட்டை எண்.8540 0962 9671)

żzan 2028 i angrzże 26/ii zami <u>) 0 தாள்களைக்கொ</u>ண்டது. O - தாள் பதீவு அலுவலர்

La gami gangssui: Pihangappandiyan (பா.தங்கப்பாண்டியன்),த/பெ.O.M.பாண்டியன், 26A, R.K.G.பூங்கா, கருப்பணசாயி கோவில் தெரு, தாடிக்கொம்பு ரோடு, திண்டுக்கல். a.nhuin_c A460/DGL/1993, பகுப்பித்தல் தேதி: 31.12.2023. Cell Nos. 99421 52555, 93679 15221. ompt555@gmail.com

STECOT.

MRanch.

Government of India Form GST REG-06 [See Rule 10(1)]

Registration Certificate

Registration Number : 33ADPFS9502H1ZT

. 🔵

1.	Legal Name		SHREE THEVAR BLUE METALS						
2.	Trade Name, if any	SHREE THEVAR BLUE METALS							
3.	Constitution of Business	Partnership							
4.	Address of Principal Place Business	0, 295/1, KOTHAPULLI VILLAGE, DINDIGUL, Dindigul, Tamil Nadu, 624622							
5.	Date of Liability								
6.	Period of Validity		From	19/04/2018	То	NA			
7.	Type of Registration		Regular						
8.	Particulars of Approving	Authority							
Signa	iture	Signatur Digitatly AND SEI Date: 20	e Not Verified signed by DS t RVICES-TAX N 18.04 23-23-44	SOODS JETWORK 1 :13 IST					
Name	;								
Desig	Designation								
Jurisc	lictional Office								
9. Date of issue of Certificate 23/04/20			018						
Note:	The registration certificate is	required to	be prominen	ly displayed at all	alsone of hu	ringes in the Plate			

This is a system generated digitally signed Registration Certificate issued based on the deemed approval of application on 19/04/2018 .

MRaneer.

-257-

GSTIN Legal Name Trade Name, if any

33ADPFS9502H1ZT SHREE THEVAR BLUE METALS SHREE THEVAR BLUE METALS

Details of Additional Places of Business

Total Number of Additional Places of Business in the State

Collectorate Geology ologui Dinstela

M Romen

-259-

Sining Collectorate

elsello Juersies

Geology

6

Annexure B

GSTIN

1

2

Legal Name

۲

۲

•

0

. 🔘

۲

۲

۲

0

۲

۲

0

0

۲

•

0

۲

۲

0

0

۲

0

. 🔿

0

0

0

0

۲

۲

0

0

0

0

0

0

0

-8

33ADPFS9502H1ZT SHREE THEVAR BLUE METALS Trade Name, if any SHREE THEVAR BLUE METALS

Details of Managing / Authorized Partners

Name	÷.	25
Designation/Stat	us	
Resident of State	8	
Name		
Designation/Stat	tus	
Resident of State	Þ	

RAMESH partnership Tamil Nadu BALAJI partnership Tamil Nadu

MRamer.

.

•

.

.

अर्हता प्राप्त व्यक्ति के रूप मेंमान्यता प्रमाण पत्र (खनिज रियायत नियमावली, 1960 के नियम 22सी के तहत) CERTIFICATE OF RECOGNITION AS QUALIFIED PERSON (Under Rule 22C of Mineral Concession Rules, 1960)

श्री एस. करुपण्नण, मॉग्गनीकाडू, मुत्तमंपटटी पोस्ट, बोम्मीडी वयॉ, ओमलूर तालुक, सेलम डीस्टीक्ट, तमिलनाडू – 635 301, जिनका फोटो और हस्ताक्षर ऊपर दिया हुआ है, तथा जिनहोंने अपनी अर्हता और अनुभव का संतोष जनक साक्ष्य दिया है, को खनन योजना तैयार करने हेतु खनिज रियायत नियमावली 1960 के नियम 22सी के तहत अर्हता प्राप्त व्यक्ति के रूप में मान्यता प्रदान की जाती है।

Shri S. Karuppannan, Manganikadu, Muthampatty (Post), Bommidi (Via), Omalur Taluk, Salem District, Tamilnadu – 635 301, whose **Photograph and signature** is affixed herein above, having given satisfactory evidence of his qualifications & experience hereby **RECOGNISED** under Rule 22C of the Mineral Concession Rule. 1960 as a Qualified Person to prepare Mining Plans.

उनकीपंजीयन संख्या है His registration number is

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

0

۲

۲

0

۲

۲

۲

۲

۲

۲

۲

۲

۲

0

۲

RQP /MAS/263/2014/A

यह मान्यता 10 वर्षों की अवधि के लिए मान्यता है जो दिनांक 15.12.2024 को समाप्त होगी। This recognition is valid for a period of 10 years ending on 15.12.2024.

उनके द्वारा प्रस्तुत खनन योजना में गलत जानकारी / दस्तावेज पाए जाने की स्थिती में यह प्रमाण पत्र वापस लिया जाएगा / निरस्त किया जाएगा।

This certificate will liable to be withdrawn / cancelled in the event of furnishing the wrong information / documents in the Mining Plan submitted by him.

स्थान/ Place : Chennai दिनांक/ Date : 16.12.2014.

trucarly

क्षेत्रीय खाननियंत्रक / Regional Controller of Mines भारतीय खानब्यूरो/ Indian Bureau of Mines चेन्नई क्षेत्र / Chennai Region

Zamoan.

Collectorate Dinoral And
PLATE NO-IA
APPLICANT: M/s.SHREE THEVAR BLUE METALS, S.F.No's: 295/1, 295/1A, 295/2 & 295/3, KOTHAPULLI VILLAGE, REDDIARCHATRAM, DINDIGUL DISTRICT-624622
LEASE AREA: S.F.No's : 244/1A, 244/2A1 & 244/2A2 EXTENT : 2.43.0Hect VILLAGE : K.PUDUKOTTAI TALUK : DINDIGUL WEST DISTRICT : DINDIGUL
INDEX
MINE LEASE AREA :
TOPO SHEET NO : 58-F/15
LATITUDE : 10°27'5.37"N to 10°27'10.78"N
LONGITUDE : 77°51'30.12"E to 77°51'37.37"E
LOCATION PLAN NOT TO SCALE
Prepared By: I do hereby certify that the plate has been checked by me and is correct to the best of my knowledge
mont
Dr.S.KARUPPANNAN, M.Sc., Ph.D. RECOGNIZED QUALIFIED PERSON RQP/MAS/263/2014/A

MRanoer.

_		
	PLATE NO-IC APPLICANT: M/s.SHREE THEVAR BLUE METALS, S.F.No's: 295/1, 295/1A, 295/2 & 295/3, KOTHAPULLI VILLAGE, REDDIARCHATRAM, DINDIGUL DISTRICT-624622 LEASE AREA:	-973- Ite Cindual - Ed Aug. * UP59561
	S.F.No's : 244/1A, 244/2A1 & 244/2A2 EXTENT : 2.43.0Hect VILLAGE : K.PUDUKOTTAI TALUK : DINDIGUL WEST DISTRICT : DINDIGUL	2
Tom	INDEX	
wide	MINE LEASE AREA	
	APPROACH ROAD	=====
	CART ROAD	20213
	100M RADIUS	0
	200M RADIUS	\Box
	300M RADIUS	
	400M RADIUS	
	500M RADIUS	\bigcirc
	EXISTING PIT	\bigcirc
	TOPO SHEET NO :58-F/15	
	LATITUDE : 10°27'5.37"N to 10°27'10.	78"N
	LONGITUDE : 77°51'30.12"E to 77°51'37.	37"E
	SATELITE IMAGERY MA SCALE- 1:5000	<u>.P</u>
	Prepared By: I DO HEREBY CERTIFY THAT THE PLA BEEN CHECKED BY ME AND IS COP TO THE BEST OF MY KNOWLEDO	TE HAS RECT SE
	Copont	_
	Dr.S.KARUPPANNAN,M.Sc.,Ph.D. RECOGNIZED QUALIFIED PERSON RQP/MAS/263/2014/A	4

			_		
		N			-277-
		Ą	-	loctorate o	~
			Mart CO	Recionate D	ndigui
			X) and a
			1	20 <u>2</u> 1	
		Y	0		139
			N.C.	ant Director	(ALE)
SLNo 1	LATITUDE 10°27'9.84"N	LONGITIDE 77°51'37.37"E	SI.No 13	LATITUDE 10°276.21"N	LONGITIDE 77*51'31.70"E
2	10°27'8.42"N	77°51'37.03"E	14	10°27'6.44"N	77°51'31.73"E
4	10°27'8.14"N	77°51'36 /3"E	15	10°27'6.71"N	77°51'30.97"E
5	10°27'6.69"N	77°51'35 85"E	17	10°27'7 64"N	77°51'30 12"E
6	10°27'6.54"N	77°51'35.24"E	18	10°27'9.31"N	77°51'30.76"E
7	10°27'6 46"N	77°51'35.02"E	19	10°2710.657	1 77°51'31.47"E
8	10°27'5.91"N	77°51'33.85"E	20	10°27'10.19"?	77°51'33.66"E
9	10°27'5.93"N	77°51'33.44"E	21	10°27'10.78"N	1 77°51'33.89"E
10	10°27'5 37"N	77"51'33,40"E	22	10°2710.45"	77°51'35 30"E
11	10°275.67 N	77951131.91 E	23	1092710.351	77°31'35.04"E
14	10 27 0.05 N	77-3131.35 E	- 24	10 27 10 11 1	(77-51-50.47 E
PLA	ATE NO-	<u>u</u>			
APP	LICANT:				
Ms.	SHREE TH	IEVAR BLU	UE MI	ETALS,	
S.F.	No'S: 295/1	, 295/LA, 29	5/2 &	295/3.	
KOF	THAPIIII	I VILLAGE	L.	1999-1999-1999 1999-1999	
RED	DIARCHA	TRAM	7		
DIN	DIGULDIS	TRICT-624	622.		
LEA S.F.I	SE APPLIE	D AREA:	. 244/	2A1 & 244	(7A2)
EXT	ENT	: 2.43.01	lect		
VIL	LAGE	K.PUD	UKO	TAL	
TAI	UK	DINDI	GUL	WEST	
DIS	TRICT	: DINDI	GUL		
		IN	DEX		
MIN	E LEASE	BOUNDAR	RΥ	[
SAF	ETY DIST	ANCE		[
FM	B BOUND	ARY		[
APF	PROACH R	OAD		[
BO	UNDARY I	PILLAR		[D1 D2
	M	INE LEA	ASE	PLAN	
Dra	ograd Du		1.10		
Pre	DO HEREE	CERTIFY	THAT	THE PLATE	HAS
	TO TH	E BEST OF	MY K	NOWLEDGE	~
		Cm	2	S	
	Dr.S RECO	KARUPPANN GNIZED QUA RQP/MAS/20	ALIFIED	Sc.,Ph.D. PERSON 14/A	
24					

	-27 9-			
PLATE NO- III	ate Dincipili Bla 004. # 00			
APPLICANT:				
Ms.SHREE THEVAR BLUE METALS, S.F,No'S: 295/1, 295/1A, 295/2 & 295/3, KOPTHAPULLI VILLAGE, REDDIARCHATRAM, DINDIGULDISTRICT-624622.				
LEASE APPLIED AREA:S.F.NO: 244/1A, 244/2A1 &EXTENT: 2.43.0HectVILLAGE: K.PUDUKOTTAI,TALUK: DINDIGUL WEST,DISTRICT: DINDIGUL	244/2A2			
INDEX				
MINE LEASE BOUNDARY				
SAFETY DISTANCE				
FMB BOUNDARY				
BOUNDARY PILLAR	D1 D2			
APPROACH ROAD	111111			
OUTCROP & ROUGH STONE	$\binom{2k-2k-2k}{k-2k+2}$			
GRAVEL	$\vee \vee \vee$			
SHRUBS	34. 34. 34.			
CONTOUR LINES	_280m			
TEMPORARY BENCH MARK	1.B.M 7 200,Da			
SCALE 1: 1000				
Prepared By:				
DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE				
(mpont				
Dr.S.KARUPPANNAN,M.Sc.,Ph.D. RECOGNIZED QUALIFIED PERSON RQP/MAS/263/2014/A				

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v v + + + + 2 ~ + +	 ✓ ✓	MLB 279.0m 274.0m 274.0m 269.0m	RL C 279 Dm C 274 0m ~ 269 0m ~	× + ~ ~ + ~ ~ + ~ ~ +	<u>SEC</u>	<u> </u>	<u>G C-D</u> <u>v v</u> <u>+</u> + <u>~</u> ~ <u>+</u> + <u>~</u> ~ <u>+</u> + <u>~</u> ~ <u>+</u> +	MLB D 279 + + + + + + + + + + + + + + + + + + +	Collectorate Dindigui
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	+ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	264 0m 2 259 0m 2 + 259 0m 2 + 254 0m 2 + 244 0m 2 + 244 0m 2 + 239 0m 2 + 234 0m 2	259 Dm 259 Dm 254 Dm 249.0m 249.0m 244.0m 239.0m 239.0m + 234.0m + 239.0m + -~ -~ -~ -~ -~ -~ -~ -~ -~ -~	\$ + \$ + \$ + \$	+ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	\sim 133m + 133m + 133m + 133m + 133m \sim 133m + 133m + 133m + 133m	+ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0m 10102410 14119559100 0m 10102410 14119559100 10m 10m 10m
GEOLOGICAL RESOURCES										
SECTION ALONG A-B	Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume In m ³	Rough Stone in m ³	Gravel in m ³	PLATE NO- IIIA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I II III IV	81 81 81 81 81	126 126 126 126 126	2 3 5 5 5	20412 30618 51030 51030 51030	 30618 51030 51030 51030	20412 	APPLICANT: Ms.SHREE THEVAR B S.F,No'S: 295/1, 295/1A, KOPTHAPULLI VILLAO REDDIARCHATRAM, DINDIGULDISTRICT-62	LUE METALS, 295/2 & 295/3, 3E, 24622.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	XY-AB	V VI VII VIII	81 81 81 81	126 126 126 126	5 5 5 5	51030 51030 51030 51030 51030	51030 51030 51030 51030	 	LEASE APPLIED AREA: S.F.NO : 244/ EXTENT : 2.43 VILLAGE : K.PU TALUK : DIN DISTRICT : DIN	1A, 244/2A1 & 244/2A2 .0Hect JDUKOTTAI, DIGUL WEST, DIGUL
254.0m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		TOT	AL	126	5 45	459270	438858	20412	INDEX	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	XY-AB	I II III IV V	106 106 106 106 106	133 133 133 133 133 133	2 3 5 5 5 5	28196 42294 70490 70490 70490 70490	 42294 70490 70490 70490 70490	28196 	MINE LEASE BOUNDA SAFETY DISTANCE ROUGH STONE GRAVEL	IRY
		VI VII VIII IX TOT	106 106 106 106 106	133 133 133 133 133	5 5 5 5 45	70490 70490 70490 70490 70490 634410	70490 70490 70490 70490 70490 606214		GEOLOGICA SECTION HOR 1 : Prepared By: 1 DO HEREBY CERTIFY BEEN CHECKED BY TO THE BEST OF	L SECTIONS 1000 & VER 1: 500 THAT THE PLATE HAS ME AND IS CORRECT MY KNOWLEDGE
	GRAND TOTAL				1093680	1045072	48608	mon		
MRanden.			243					-	Dr.S.KARUPPAN RECOGNIZED QU RQP/MAS/2	NAN,M.Sc.,Ph.D. ALIFIED PERSON 163/2014/A

I - Year Proposed an	ea to be Quarried		
II - Year Proposed a	rea to be Quarried		
III - Year Proposed	inclusion Commund of Second		
IV - Year Proposed	area to be Quarried		
V - Year Proposed a	rea to be Quarried		
VI - Year Proposed	area to be Quarried		
VII - Year Proposed	area to be Quarried		
VIII - Year Proposed	Taren to be Quarried		
IX - Year Proposed	area to be Quartied		
X - Year Proposed a	rea to be Quarried		
PLATE NO- IV			
APPLICANT:	LUE METALO		
S.F,No'S: 295/1, 295/1A, 1	295/2 & 295/3,		
KOPTHAPULLI VILLAGE,			
DINDIGULDISTRICT-62	24622.		
LEASE APPLIED AREA:			
S.F.NO : 244/ EXTENT : 2.43	1A, 244/2A1 & 244/2A2 0Hect		
VILLAGE : K.PU	IDUKOTTAI,		
TALUK : DINI	DIGUL WEST,		
DISTRICT : DIN	NDEX		
1	I TEALINE .		
MINE LEASE BOUNDA	RY		
SAFETY DISTANCE			
FMB BOUNDARY			
BOUNDARY PILLAR			
APPROACH & HAUL	ROAD		
GRAVEL	VVV		
SHRUBS	de de ste		
CONTOUR LINES	280m		
TEMPORARY BENCH	MARK Tanha		
FENCING			
PROPOSED BENCH			
PRODUCTION PLAN			
SCALE 1:1000			
Prepared By: I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE			
and			
Dr.S.KARUPPANNAN,M.Sc.,Ph.D. RECOGNIZED QUALIFIED PERSON RQP/MAS/263/2014/A			

		YEA	RWISE PR	ODUCT	TION R	ESERVE			
Year	Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume In M ³	Rough Stone in m ³	Gravel in m ⁹	
		1	60	109	2	13080	2005	13080	
1000		I	60	109	3	19620	19620		
I-YEAR	XY+AB	11	50	99	5	24750	24750		
		111	40	89	5	17800	17800		
		TOT	AL			75250	62170	13080	
		1	14	109	2	3052		3052	
	harren t	1	14	109	3	4578	4578		
	XY-AB	11	19	99	5	9405	9405		
	-	III	24	89	5	10680	10680		
II-YEAR		1	35	116	2	8120		8120	
- 1		t	35	116	3	12180	12180	(kin)	
	XY-CD	11	30	106	5	15900	15900		
		111	25	96	5	12000	12000		
		TOT	AL			75915	64743	11172	
		1	61	116	2	14152	3044	14152	
an weren	XY-CD	1	61	116	3	21228	21228	1000	
III-YEAR		Ш	61	106	5	32330	32330	720002	
	i i	III	22	96	5	10560	10560	Stand.	
		TOT	AL			78270	64118	14152	
	XY-AB	IV	25	79	5	9875	9875		
IV-YEAR		III	39	96	5	18720	18720		
2010/02/2012	XY-CD	IV	81	86	5	34830	34830		
		TOT	AL			63425	63425	0	
		IV	34	79	5	13430	13430		
V-YEAR	XY-AB	V	54	69	5	18630	18630		
5012002000	XY-CD	v	76	76	5	28880	28880		
		TOT	AL			60940	60940	0	
	XY-AB	VI	49	59	5	14455	14455		
VI-YEAR	XY-CD	VI	20	66	5	6600	6600	Garage	
		TOT	AL	1994	1.1045	21055	21055	0	
1100000000	10041632	VI	51	66	5	16830	16830		
VII-YEAR	XY-CD	VII	15	56	5	4200	4200		
		TOT	AL			21030	21030	0	
	XY-AB	VII	27	49	5	6615	6615	Saar	
VIII-YEAR	XY-CD	VII	51	56	5	14280	14280		
		TOT	AL			20895	20895	0	
		VII	17	49	5	4165	4165		
IX-YEAR	XY-AB	VIII	39	39	5	7605	7605		
and the state of	XY-CD	VIII	40	46	5	9200	9200	11111	
	- 200 - 200 - L	TOT	AL	10		20970	20970	0	
1	XY-AB	1X	34	29	5	4930	4930		
X-YEAR		VIII	21	46	5	4830	4830	41171	
	XY-CP-	IX	56	36	5	10080	10080	0.99	
	-243	TOT	AL			19840	19840	0	

MINE LA	YOUT LAN	USE PATT	ERN -284-						
DESCRIPTION	PRESENT AREA (Heal)	AREA IN USE DURING THE	(Hect) COLOR						
AREA UNDER QUARRYING	NIC	1.90.96							
INFRASTRUCTURE	/SML	0.01.00	ANCER						
ROADS	15/NIL	+ 0.03.00	40						
GREEN BELT	S NIL	- F 0.44.69	齐摩俞						
DRAINAGE & SETTLING TANK	13 MIL	0.02.00	*/ ===						
UN-UTILIZED AREA	2.43.00	0.01.35	NIL NIL						
GRAND TOTAL	2.43.00/01	2 43:00	NIL						
PLATE NO- V									
APPLICANT: Ms.SHREE THEVAR BLUE METALS, S.F,No'S: 295/1, 295/1A, 295/2 & 295/3, KOPTHAPULLI VILLAGE, REDDIARCHATRAM, DINDIGULDISTRICT-624622.									
S.F.NO	: 244/1A. 2	44/2A1 & 244	4/2A2						
EXTENT	: 2.43.0Hee	at .							
VILLAGE	: K.PUDU	KOTTAL,							
DISTRICT	: DINDIGU	JL WEST,							
INDEX									
MINE LEASE I	MINE LEASE BOUNDARY								
SAFETY DIST									
FMB BOUNDA									
BOUNDARY P	ILLAR		D1 D2						
APPROACH &	HAUL RC	AD							
GRAVEL									
SHRUBS			A14, 212, 218						
CONTOUR LIN	IES		_280m						
TEMPORARY	BENCH M	ARK	1.8.M						
FENCING									
PROPOSED BE	NCH		الالبدين						
MIN	VE LAYOU	T PLAN &	<u>c</u>						
LA	SCALE 1	PATTERN : 1000							
Prepared By:									
I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE									
Dr. S. KARLIPPANNAN M. So. Ph. D.									
RCOGNIZED QUALIFIED PERSON RQP/MAS/263/2014/A									

N A	-289-
PLATE NO- VI	rate Dinight - 624 004. *
APPLICANT:	10.01
MS.SHREE THEVAR BLUE METALS, S.F,No'S: 295/1, 295/1A, 295/2 & 295/3, KOPTHAPULLI VILLAGE, REDDIARCHATRAM, DINDIGULDISTRICT-624622.	
S.F.NO: 244/1A, 244/2A1 & 2EXTENT: 2.43.0HectVILLAGE: K.PUDUKOTTAI,TALUK: DINDIGUL WEST,DISTRICT: DINDIGUL	244/2A2
INDEX	
MINE LEASE BOUNDARY	
SAFETY DISTANCE	
FMB BOUNDARY	
BOUNDARY PILLAR	<u>□1 □2</u>
APPROACH & HAUL ROAD	
GRAVEL	$\vee \vee \vee$
SHRUBS	કોદ કોદ કોદ
CONTOUR LINES	_280m
TEMPOKARY BENCH MARK	**********
LII TIMATE RENCH	ETTTA
CONCEPTUAL PLAN	
SCALE 1 : 1000	
I DO HEREBY CERTIFY THAT THE PL BEEN CHECKED BY ME AND IS CO TO THE BEST OF MY KNOWLED	ATE HAS DRRECT DGE
(mp com	7
Dr.S.KARUPPANNAN,M.Sc.,Ph.I RECOGNIZED QUALIFIED PERSO RQP/MAS/263/2014/A	D. DN

5	ЛIВ	SECTION ALONG X-Y							MIR	MIB		SE	CTION ALO	NG C-	
RL	X			MID	POINT				Y RI	RL C					
1	V			-74m		96m		-	V 279.00	2/3 Ulin	-		116m	1	
274.0m	+	-		-74m							-		116m	1	
-	+			—69m — -						~ +	-	1			
Xoa nu	~	~		-64m -		-86m		~	-289 GM	269.0m	96m				
264 Om	~	- T	1.	FOm		94m		~ ~	~ 264.0m	264 Dm ~	00				
259.0m	+	+		2911		-01111	1	+ +	+ 259.0m	259 Qm +	+	-86m			
254 Dm	+	+	+	54m -	7	76m	-	+ +	+ 254.0m	lm 254.0m + + +				76m	
	~ +	~ +	*	49m	71	~	2 + 4	+	+	*	+				
249.Um	~ +	5 +	+ 2	•		n	~	~ ~	~ 249.0m	249 0m	~ +	~ ~	56m		
244 Om	~	~	~ ~		- 61m		2 ~	~ ~	~ 244 Dm	244.0m	~	~ ~	16m		
239.0m	+	+	+ +	3	0111	1	+ +	+ +	+ 239.0m	239.0m +	+	+ +	4011		
) 234 Om	+	+	+ +	₄ 34m		*	+ +	+ ÷	+ 234 Om		4	+ + +	36m		
Ď			S	ECTION ALONG A-	·B				M	INEABI	ERES	ERVES	Pough	Grow	
	ЙLВ		0.	donton infonto n	<u></u>	MLB RL	Section	Bench	Length in	Width in (m)	Depth in (m)	volume In	Rough Stone in m ³	Grav	
279.0m	A			-109m		279 Om		I	74	109	2	16132	Stone in m	161	
Chan and	+	-		109m		+		I	74	109	3	24198	24198	101	
274.0#	~			00m	N /	~ 274.0m		II	69	99	5	34155	34155		
269 Om	+			9911	+	+ 269.0m		III	64	89	5	28480	28480		
O.	~	~			~ ~	12 M	101 4 10	IV	59	79	5	23305	23305		
264.0m	~	~		5266	~ ~	~ 264.0m	XY-AB	V	54	69	5	18630	18630		
	+	÷	-	79m	+ +	+		VI	49	59	5	14455	14455		
	\sim	~	~	69m	~ ~	~ 259.00		VII	44	49	5	10780	10780		
254 Om	+	+	+	0011	+ +	+ 	6	VIII	39	39	5	7605	7605		
	~	+	* +			*		IX	34	29	5	4930	4930	- 112	
249.0m	N	N	~ ~	10	~ ~ ~	~ Z49.0m		TC	DTAL		45	182670	166538	161	
24.4 Om	4	-4<	+ +	- 49m	* * * *	+ 244.0m		I	96	116	2	22272		222	
C.	~	~	~ ~		~ ~ ~	~		I	96	116	3	33408	33408		
239.0m	+	+	+ +		* * * *	+ 		II	91	106	5	48230	48230		
	1+	~ +	* *	~29m	* * * *	Ĩ.		III	86	96	5	41280	41280		
234.Qm	L					- 234 Om	XY-CD	IV	81 -	86	5	34830	34830		
							1.0000.00000	V	76	76	5	28880	28880		
								VI	71	66	5	23430	23430		
								VII	66	56	5	18480	18480		
								VIII	61	46	5	14030	14030		
								IX	56	36	5	10080	10080		
								тс	DTAL		45	274920	252648	222	
								GI	RAND TOTAL	L .		457590	419186	384	
		M	·han	een					248						

	_													
5.4	10		SEC	CTION ALON	VG C-	<u>-D</u>					8		-29	1-
RL C	LB									IVI	B RL			
79.0m	v	-		116m	_				+	v	279.00	Collect	orate Di	din.
74 Om	+			116m				_	-	+	131	/		1997
0.0.400	N								~	~	18			18
69.0m	+	*							+	1 mg ha		2	12	
54 Dm -	+	+		96m				-	+	+	13			1
YT SIM	~ +	~ +	÷		_	_		-~ +	2 +	~ +		101201	to hipish	510
59 Om	~	~	~					~	~	~	-259.0m	The second second	U Part	
54.0m	+	+	+	7011		_	1	+	+	+	254.0m			
19 (Jm	÷	+	+	-66m				+	+	+	240.0m			
3.010	~ +	~ +	~ ~ + +				5	~	~ 4	~	243,014			
44.0m	N	~	NN			~	~	~		~	244.0m			
39.0m	≥ <u>₩</u>	+	+ +	46m-		-	+	+	+	Ŧ	239 Dm			
	~ +	~ +	~ ~ ~			~ +	~	~	~ +	~	1 200 04			
34.0m				he was a set of the se			4				234 Om			
							v—							
NEA	BL	ERES	ERVES				P	LATE	NO-	VIA				
Widt	h	Depth Volume In		Rough Gra		el in	A	PPLIC.	ANT:					
in (n	1)	in (m)	m ³	m ³ Stone in m ³		3 Ms.SHREE T			EE T	HEV.	AR BLU	E ME	FALS,	
109	1	2	16132		161	32	K	OPTH/	APUL	LI VI	LLAGE,	12 00 2	95/5,	
109		3	24198	24198			REDDIARCHATRAM,							
99		5	34155	34155				INDIG	ULDI	SIRI	CI-62462			
89		5	28480	28480				EASE A	APPLI	ED A	REA:	244/2	A1 P- 24	1010
79		5	23305	23305			EXTENT : 2.43.0Hect				4/2A2			
69		5	18630	18630				ILLAG	Е		K.PUDU	котт	ſAI,	
59		5	14455	14455				ALUK	T		DINDIG	UL W	EST,	
49		5	10780	10780	÷.,		ΙĽ	DIRE			DEV	UL		
39		5	7605	7605			1			IN	DEX			
29	81	5	4930	4930	- 11		M	INE L	EASE	BOU	NDARY			
		45	182670	166538	161	32	1	AFETY	DIST	ANC	T		-	-
116		2	22272		22272			an DI I	1/10	Anc				
116		3	33408	33408			R	OUGH	STO	NE			2 +	₩ +
106		5	48230	48230			G	RAVE					V V	
96		5	5 41280 41280											
86		5	34830	34830				LTIMA	TEBE	NCH				
76		5	28880	28880					CO	NCEP	TUAL SI	ECTIO	NS	
66		5	23430	23430				SE	CTION	N HOI	R 1 : 1000) & VE	R 1: 50	D
56		5	18480	18480		.,	P	repar	ed B	y:				
46		5	14030	14030				I DO	HERE	BY CE	RTIFY THA	T THE	PLATE H	AS
36		5	10080	10080			1	DE	TO TI	HE BE	ST OF MY	KNOW	LEDGE	
		45	274920	252648	222	72			(Ir	mi	~	7	
			457590	419186	384	04				2	Pe			
							2		Dr.S RECO	RQP/M	AS/263/2	M.Sc.,P ED PEF 2014/A	h.D. RSON	

Domisis Bungerunismi Anissis Lonfiz Dunindsvuorge,

Doboha) Bbije new, osenum ozipi 2inie, Bz. 432 bonione Lisnie 114000 244/12 UDIN 1.91.0 Muorin 244/201 UDIN 0.28.0 Mis, 440000 244/202 0.24.0 OMs, ovojivnin 2.43.0 omi um ogiv, 1959-c voright zuine Ayrorie Syon 200- 200 orin 19(1) -or Ly Lore Hoor 200- 200 orin 19(1) -or Ly Lyni Olas ogod lane go. Jacy slowin boxedigh Bund buigh 42200 Dimion onig slowing Morrow orinization on

Bunjung Hanimani nungguyon angi. 2.43.00 Ucun of 1332-on in Longpin Goreziging mi bros Jebig leggi OGGazjegni bossi unvit often nound bidiums spishoniai printing buijon Somi orish oragof come your 244/1A, 244/2A1, 244/2A2 320000000 \$nony gre minimul soing, light your ozistnike (1 Lononuni (3 anisis Ami 2mg), Quiunoi nung 6, Duning 31, Bambosi nung 2 25 months 2 months burgson Unidani LT line, It's norman leagant yourself 300 bin Agymmi Briginsid, Voorwing Donnawini, 491gon Domonium, 2mi 21033 Um si unidi If i monivernie. Agrisi disa digof laise Guijanni 2016 gov, vnikki setel govan Guija ynimming 249 Vita Avian simi

buying the statistic stand uning andy vegting of social, being drong their Unifite 2005 diggente and Ameniavijy Vuonnichi 2mmg. sichnini Cuju ynjer Donis orong repusing fords. Braning July, Jospiel How in Dularmon og fing fri mon 2 gi umi YNOTAS 244/1A, 244/2A1, 244/2A2 stannippe Brandon Mugo: ひっち しょうか マリ しうか リンのか シャ5 しゅうち りゃっか 245 しうう りゃのか 246 ogings 4200 246 cigi 4200 247 Dice ywar 243 biggi ywar 247 Monte Cujun \$6. 26 mil mil Go 452 Chione Agros word 244/1A Usig 1.91.0 0mi, 4~000 244/2A1 '0307 0.28.0 mi, 9-01 244/2A2-0.24.0 012 01004300000 2.43.0 yz razz fi know (Fgrandi) oraight Juins 200 872000 20fam liggi Ruigon oracis acris Haref Misson's standing i vahining 62. millos inory ogongazon i Lbyon Donorry : Episonile rada கிராம் நிர்வாக அலுவலர் என்.22, க. புதுக்கோட்டை கிராமட திண்டுக்கல் மேற்கு வட்டம்.

ANNEXURE-XVI

भारतीय गुणवत्ता परिषद् QUALITY COUNCIL® OF INDIA Creating an Ecosystem for Quality

National Accreditation Board for Education and Training

Certificate of Accreditation

Geo Technical Mining Solutions, Dharmapuri

5/1485-3, Salem Main Road, Elakkiyampatty, Dharmapuri, Tamil Nadu

The organization is accredited as Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant Organization, Version 3: for preparing EIA/EMP reports in the following Sectors.

s.	Sector Description	Sector	Cat		
No	Sector Description	NABET	NABET MoEFCC		
1.	Mining of minerals - including opencast and underground mining	1	1 (a) (i)	А	

Note: Names of approved EIA Coordinators and Functional Area Experts are mentioned in RAAC minutes dated January 24, 2024, posted on QCI-NABET website.

The Accreditation shall remain in force subject to continued compliance to the terms and conditions mentioned in QCI-NABET's letter of accreditation bearing no QCI/NABET/ENV/ACO/24/3142 dated Feb 19, 2024. The accreditation needs to be renewed before the expiry date by Geo Technical Mining Solutions, Dharmapuri following due process of assessment.

Issue Date Feb 19, 2024 Valid up to Dec 31, 2026

Mr. Ajay Kumar Jha Sr. Director, NABET

Certificate No. NABET/EIA/23-26/RA 0319

Prof (Dr) Varinder S Kanwar (CEO NABET)

sinder

For the updated List of Accredited EIA Consultant Organizations with approved Sectors please refer to QCI-NABET website.

251