GTMS/QMS/EIA-DRAFT/2024

DRAFT OF ENVIRONMENTAL IMPACT ASSESSMENT

AND

ENVIRONMENT MANAGEMENT PLAN FOR OBTAINING

Environmental Clearance under EIA Notification – 2006

Schedule Sl. No. 1 (a) (i): Mining Project

"B1" CATEGORY – MINOR MINERAL – CLUSTER – NON-FOREST LAND

CLUSTER EXTENT = 11.35.0 hectares

ROUGHSTONE QUARRY

At

Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District,

Tamil Nadu State

ToR Letter No. SEIAA-TN/F.No.10021/ToR-1501/2023 Dated 19.07.2023.

NAME AND ADDRESS OF THE PROPOSED PROJECT PROPONENT

Name and Address	Extent & S.F.No.
Thiru. A. Sasimohan, S/o. K.P.Anbalagan, 1/136-A, Kerakodahalli Village, Karimangalam Taluk, Dharmapuri District – 635111.	2.02.5 ha & S.F.No. 389 (Part)

ENVIRONMENTAL CONSULTANT

GEO TECHNICAL MINING SOLUTIONS

No: 1/213-B, Ground Floor, Natesan Complex Oddapatti, Collectorate Post office, Dharmapuri-636705. Tamil Nadu. E-mail: <u>info.gtmsdpi@gmail.com</u>, Website: <u>www.gtmsind.com</u> NABET ACC. NO: NABET/EIA/2124/SA 0184 Valid till: April 02, 2024

ENVIRONMENTAL LAB

EXCELLENCE LABORATORY

No.23/93, 5th Street Ram Nagar, S.S.Colony,

Madurai, Tamil Nadu

NABL Certificate Number: TC-6932, Valid Until : 19.03.2024 Baseline Study Period – October 2023 through December 2023

TERMS OF REFERENCE (ToR) COMPLIANCE

ToR issued vide Lr. No. SEIAA-TN/F.No.10021/SEAC/ToR-1501/2023

Dated:19.07.2023 for Thiru.A. Sasimohan Rough stone Quarry

1	The PP shall submit photographs of	Photographs of Greenbelt, fencing will be
	fencing. Greenbelt and garland drain.	submitted in the final EIA report.
2	The PP shall submit the Modified	The modified mining plan with the bench
	Mining Plan duly approved by the	height of 5m / 6m is shown in the mining
	concerned AD (Mines), Dept. of	plan book in the Annexure III.
	Geology & Mining in regard to the	
	provision of the bench height of 5m / 6	
	m each instead of 7m shown as proposed	
	bench height in the AMP submitted.	
3	The PP shall submit the letter obtained	The letter obtained from the concerned AD
	from the concerned AD (Mines)	(Mines) showing the details will be
	showing details on the date of lease	submitted in the final EIA report.
	executed. date of last working day,	
	Mining Plan approved quantity, and	
	Achieved quantity (year wise).	
4	The study on impact of the dust & other	There are no any rose flowers being
	environmental impacts due to proposed	cultivated through greenhouse nearby
	quarrying operations on the Rose	project lease area. The details of agriculture
	flowers	have been discussed in Sections 3.5 under
	being cultivated through greenhouse	Chapter III, pp.70-93.
	nearby.	
5	The revised and corrected version of the	The details regarding revised and corrected
	Production & Development Plan shall be	version of production and development plan
	produced with showing the safety berm	are shown in the Annexure III.
	width of 2m is maintained for the bench	
	height of not exceeding 1.5 m distinctly	
	in the gravel formation and it shall be	
	duly signed by the concerned QP &	
	approved by the concerned AD	
	(Geology & Mining), Dept. of Geology	

	& Mining.	
6	Since the quarry is existing with a depth	The details regarding approved mining plan
	of excavation varies from 6 m to 19 m	with the necessity conditions is shown in the
	without benches of appropriate	Annexure III.
	dimension (or) partially formed as per	
	the approved Mining Plan, the Project	
	Proponent (PP) shall carry out a 'Slope	
	Stability Assessment Studies' for the	
	existing conditions of the quarry wall by	
	involving anyone of these reputed	
	Research and Academic institutions -	
	CSIR-Central Institute of Mining & Fuel	
	Research (CIMFR) / Dhanbad, NIRM -	
	Bengaluru. IIT-Madras" NIT Surathka -	
	Dept of Mining Engg, and Anna	
	University Chennai - Dept of Mining	
	Engg. The above studies shall spell out a	
	'Slope Stability Action Plan' for the	
	proposed quarry covering the existing	
	condition of the quarry wall including	
	the overall pit slope angle and it shall	
	cover the aspects of stability of quarry	
	walls including the access ramp keeping	
	the benches intact.	
7	The PP shall prepare the EMP for the	A detailed EMP is provided in Table 10.10
	entire life of mine and also furnish the	& 10.11 under Chapter X, pp.170-177 and
	sworn affidavit stating to abide the EMP	the sworn affidavit stating the EMP for the
	for the entire life of mine.	entire life will be submitted during final EIA
		report.
	ANNEX	URE - I
1	The PP shall furnish the letter obtained	The letter regarding existing pit dimensions
	from the AD (Mines) indicating the	from the AD will be submitted in the final
	existing pit dimensions and pit	EIA report.

	1	
	conditions showing the details on mine	
	having worked during the earlier lease	
	period.	
2	The PP shall furnish DFO letter stating	DFO letter will be submitted in the
	that the proximity distance of Reserve	Annexure IV.
	Forests. Protected Areas. Sanctuaries.	
	Tiger reserve etc., up to a radius of 25km	
	from the proposed site.	
3	The PP shall provide individual notice	Photograph showing distribution of
	regarding the Public Hearing to the	individual notice of public hearing to the
	nearby house owners located in the	nearby public will be provided in the final
	vicinity of the project site.	EIA report.
4	The Proponent shall justify the selection	The selected site for the project is the only
	of the site for carrying out the stone	site which has the required minerals carrying
	quarrying with the total volume arrived	out for stone quarrying. The minerals
	for the excavation & production	produced in the quarry is used for the
	adequate details such as lithology of the	manufacture of m-sand and aggregates.
	deposit, reserve estimation. Place for	No waste is produced in the quarry.
	waste dump/mined mineral storage. end-	
	use of mined materials. Identified	
	potential customers/end-users and travel	
	path.	
5	The PP shall also justify the selection of	Justification for the selection of mining
	mining methodology (Conventional or	methodology has been given in Section 2.6
	non-conventional) adopting blasting	under Chapter II, pp.20-28.
	technique/non-explosive techniques with	
	proper ground reality & laboratory	
	testing.	
6	The proponent shall submit the "Blast	Blast design parameters for controlling the
	Design Parameters for controlling the	vibration and fly rock is discussed in the
	vibration and fly rock from the quarry	Section 2.6 under Chapter II, pp.20-28.
	blasting- considering the existence of	
	sensitive structures including habitations	
L	1	I

	within 500m from the lease boundary.	
7	The PP in the shall justify the estimation	The estimation of HEMM population for
	of HEMM population for excavation and	excavation and transportation is discussed in
	Transportation proposed quarries with	the Section 2.6 under Chapter II, pp.20-28
	proper calculation methodology adopted.	
8	The PP shall enumerate the	The details regarding environmental settings
	environmental settings situated within a	situated within distance of 1km such as
	radial distance of 1km such rivers/water	rivers/water bodies/reserve forest/grazing
	Bodies/reserve forest/grazing	land is discussed in the Table 3.43 under
	land/existence of the hospitals and	Chapter III, pp.101.
	educational institutions/structures.	
9	The PP shall provide the details of the	The anticipated impacts of the mining
	anticipated impacts of the mining	operations on the surrounding environment
	operations on the surrounding	and the remedial measures is discussed in
	environment and the remedial measures	the Chapter IV, pp.104 – 132.
	for the same.	
10	The proponent is requested to carry out a	The details of survey on the structures
	survey and enumerate on the structures	within the given radius will be submitted in
	located within the radius of (i) 50m.	the final EIA report.
	(ii)100 m, (iii) 200 m and (iv) 300m	
	(v)500m with details such as dwelling	
	houses with number of occupants,	
	whether it belongs to the owner (or) not,	
	places of worship, industries, factories,	
	sheds, etc with indicating the owner of	
	the building, nature of construction, age	
	of the building, number of residents,	
	their profession and income, etc.	
11	The PP shall submit a 'Slope Stability	Slope Stability Action Plan will be
	Action Plan' for the proposed quarry	submitted in the final EIA report.
	where the proposed depth exceeds 30m	
	and it shall cover the aspects of stability	
	of quarry walls including the access	

	ramp keeping the benches intact.	
12	If the blasting operation is to be carried	The conceptual design of blasting operation
	out, the PP shall present a conceptual	is discussed in the Section 2.6 under Chapter
	design for carrying out the NONEL	П, pp.20-28.
	initiation based controlled blasting	
	operation including the line drilling &	
	muffle blasting techniques and a	
	Simulation Model indicating the	
	anticipated Blast-induced Ground	
	Vibration levels in the proposed quarry	
	as stipulated by the DCMS Circular	
	No.7 of 1997, during the EIA Proposal.	
13	The PP shall furnish the affidavit stating	The affidavit for blasting has been enclosed
	that the blasting operation in the	in the Annexure III.
	proposed quarry carried out by the	
	statutory competent person as per the	
	MMR 1961 such as blaster. Mining mate,	
	mine foreman. Il/I Class mines manager	
	appointed by the proponent.	
14	The PP shall give an affidavit stating	The affidavit for no contractual persons
	that no contractual persons provided by	provided by the explosive suppliers will be
	the explosive suppliers will be employed	employed for carrying out the blasting
	for carrying out the blasting operations	operations will be submitted in the final EIA
	in the proposed quarries.	report.
15	The PP shall also give an affidavit that	The affidavit stating that no highly sensitive
	no highly sensitive structure such as fire	structure such as fire cracker manufacturing
	cracker manufacturing units, Gas down	units, Gas down /explosive Magazine, LPG
	/explosive Magazine, LPG Bottling Units, etc are located within a radial	Bottling Units, etc are located within a radial
	distance of 300 m from the lease	distance of 300 m from the lease will be
	boundary of the proposed quarry.	submitted in the final EIA report.
16	The PP shall present a conceptual design	A conceptual design of blasting has been
	for carrying out only controlled blasting	given in Section 2.6 under Chapter II, pp.20-
	operation involving line drilling and	

17	sucl vibi fly blas The furr ope eith in th	ffle blasting in the proposed quarry the that the blast-induced ground cations are controlled as well as no rock travel beyond 20 m from the est site. EIA Coordinators shall obtain and hish the details of quarry/quarries rated by the proponent in the past, er in the same location or elsewhere the State with video and photographic dences.	28. The document containing video and photographic evidences will be submitted in the final EIA report.
18	miti	PP shall provide the environmental igation measures implemented for the sher(s) located within the mining se.	The metal sheet is provided around the crusher to prevent the dust in the air. Advanced machineries are used to reduce the noise level within the mining lease.
19.			e mining activity in the proposed mining lease ent shall furnish the following details from
	a.	What was the period of the operation and stoppage of the earlier mines with last work permit issued by the AD/DD mines?	The quarrying operation was started on 26.12.2017 and ended on 25.12.2027, as shown in the approved mining plan in Annexure III.
	b.	Quantity of minerals mined out.	During the last mining plan period, 153815 m^3 of rough stone were quarried out, as shown in the approved mining plan report in Annexure III.
	с.	Highest production achieved in any one year	Highest production was achieved in the 1 st year and the production was 33000 m ³ of rough stone as per the approved plan for the period of 2020-2021
	d.	Detail of approved depth of mining.	The approved depth of mining is 17 m BGL as per the approved plan for the period of 2017-2022.

e	e. Actual depth of the mining	The actual depth of mining achieved earlier
	achieved earlier.	was 37 m BGL as per the existing pit details
		provided in the approved mining plan report
		in Annexure III.
f	A Name of the person already mined	Thiru.A.Sasimohan was the registered lease
	in that leases area.	holder of the lease area during 2017-2022 as
		per the lease deed enclosed in the approved
		mining plan report in Annexure III.
g	g. If EC and CTO already obtained,	A copy of CTO is submitted in the
	the copy of the same shall be	Annexure III.
	submitted.	
h	h. Whether the mining was carried out	The mining has been carried out with
	as per the approved mine plan (or	stipulated benches as per the approved
	EC if issued) with stipulated	mining plan in Annexure III.
	benches.	
20 It	f any quarrying operations were carried	CCR will be submitted in the final EIA
0	out in the proposed quarrying site for	report.
W	which now the EC is sought, the Project	
Р	Proponent shall furnish the detailed	
c	compliance to EC conditions given in	
tl	he previous EC with the site	
p	bhotographs which shall duly be	
c	certified by MoEF&CC. Regional	
C	Office. Chenna (or) the concerned	
Γ	DEE/TNPCB.	
21 A	All corner coordinates of the mine lease	All corner coordinates of the mine lease area
a	area. superimposed on a High-	have been superimposed on a high-
R	Resolution Imagery/Toposheet,	resolution Google Earth Image, as shown in
to	opographic sheet, geomorphology,	Figure 2.4, under Chapter II, p-13.
li	ithology and geology of the mining	
14	ease area should be provided. Such an	
I.		
	magery of the proposed area should	

	ecological features of the study area	
	(core and buffer zone).	
22	The PP shall carry out Drone video	Drone video coverage will be submitted in
	survey covering the cluster, green belt,	the final EIA report.
	fencing etc.,	
23.	The proponent shall furnish photographs	Photographs of adequate fencing, green belt
	of adequate fencing, green belt along the	of the project will be submitted in the final
	periphery including replantation of	EIA report.
	existing trees & safety distance between	
	the adjacent quarries & water bodies	
	nearby provided as per the approved	
	mining plan.	
24	The Project Proponent shall provide the	Employment details of the proposed project
	Organization chart indicating the	are provided in Table 2.14 under Chapter II,
	appointment of various statutory	p.29.
	officials and other competent persons to	
	be appointed as per the provisions of	
	Mines Act, 1952 and the MMR, 1961 for	
	carrying out the quarrying operations	
	scientifically and systematically in order	
	to ensure safety and to protect the	
	environment.	
25	The Project Proponent shall conduct the	Detailed hydrogeological study was carried
	hydro-geological study considering the	out. The results have been discussed Section
	contour map of the water table detailing	3.2 under Chapter III, pp.41-54.
	the number of ground water pumping &	
	open wells. And surface water bodies	
	such as rivers, tanks, canals, ponds etc.	
	within 1 km (radius) along with the	
	collected water level data for both	
	monsoon and non-monsoon seasons	
	from the PWD/TWAD so as to assess	
	the impacts on the wells due to mining	

	activity. Based on actual monitored data.	
	it may clearly be shown whether	
	working will intersect groundwater.	
	Necessary data and documentation in	
	this regard may be provided.	
26	The proponent shall furnish the baseline	The baseline data were collected for the
	data for the environmental and	environmental components including land,
	ecological parameters with regard to	soil, water, air, noise, biology, socio-
	surface water/ground water quality, air	economy, and traffic and the results have
	quality, soil quality & flora/fauna	been discussed under Chapter III, pp. 30-
	including traffic/vehicular movement	103.
	study.	
27	The Proponent shall carry out the	Results of cumulative impact study due to
	Cumulative impact study due to mining	mining operations are given in Section 7.4
	operations carried out in the quarry	under Chapter VII, pp.146-152.
	specifically with reference to the specific	
	environment in terms of soil health,	
	biodiversity, air pollution, water	
	pollution, climate change and flood	
	control & health impacts. Accordingly,	
	the Environment Management plan	
	should be prepared keeping the	
	concerned quarry and the surrounding	
	habitations in the mind.	
28	Rain water harvesting management with	Details regarding rain water harvesting
	recharging details along with water	management will be submitted in the final
	balance (both monsoon & non-monsoon)	EIA report.
	be submitted.	
29	Land use of the study area delineating	Land use of the study area delineating forest
	forest area, agricultural land, gazing	area, agricultural land, grazing land, wildlife
	land, wildlife sanctuary, national park,	sanctuary, national park, migratory routes of
	migratory routes of fauna, water bodies,	fauna, water bodies, human settlements and
	human settlements and other ecological	other ecological features has been discussed

	features should be indicated. Land use	in Section 3.1 under Chapter III, pp.31-40.
	plan of the mine lease area should be	The details of surrounding sensitive
	prepared to encompass preoperational,	ecological features are provided in Table
	operational and post operational phases	3.43 under Chapter III, p.101.Land use plan
	and submitted. Impact, if any, of change	of the project area showing pre-operational,
	of land use should be given.	operational and post-operational phases are
		discussed in Table 2.8 under Chapter II,
		p.23.
30	Details of the land for storage of	Not Applicable.
	Overburden/Waste Dumps (or) Rejects	No dumps have been proposed outside the
	outside the mine lease. such as extent of	lease area.
	land area, distance from mine lease' its	
	land use, R&R issues. If any, should be	
	provided.	
31	Description of water conservation	Details regarding rain water harvesting
	measures proposed to be adopted in the	management will be submitted in the final
	Project should be given. Details of	EIA report.
	rainwater harvesting proposed in the	
	Project, if any, should be provided.	
32	If the Village Road/State	The details on the study on traffic is
	highway/National highway are located	discussed in the Section 3.7 under Chapter
	within a radial distance of 500 m from	III, pp.98 – 100.
	the lease boundary of the quarry	
	proposal. the PP shall carry out traffic	
	studies to indicate impact on local	
	transport infrastructure due to the Project	
	and mitigation measures.	
33	A tree survey study shall be carried out	A detailed tree survey was caried out within
	(nos., name of the species, age, diameter	300 m radius and the results have been
	etc,) both within the mining lease	discussed in Section 3.5 under Chapter III,
	applied area & 300m buffer zone and its	pp.70-93.
	management during mining activity.	
34	A detailed mine closure plan for the	A progressive mine closure plan has been
	•	

	proposed project shall be included in	attached with the approved mining plan
	EIA/EMP report which should be site-	report in Annexure III. The budget details
	specific.	for the progressive mine closure plan are
		shown in Table 2.9 under Chapter II, p.23.
35	Public Hearing points raised and	The comments made in public hearing
	commitments of the Project Proponent	meeting will be updated in the final EIA
	on the same along with time bound	report after public hearing meeting.
	Action Plan with budgetary provisions to	
	implement the same should be provided	
	and also incorporated in the final	
	EIA/EMP Report of the Project and to	
	be submitted to SEIAA/SEAC with	
	regard to the Office Memorandum of	
	MoEF & CC accordingly.	
36	The Public hearing advertisement shall	Details of advertisement will be updated in
	be published in one major National daily	the final EIA report.
	and one most circulated vernacular daily.	
37	The PP shall produce/display the EIA	The Tamil version of EIA report, executive
	report, Executive summary and other	summary and other related information will
	related information with respect to	be incorporated in this report.
	public hearing in Tamil Language also.	
38	As a part of the study of flora and fauna	The EIA coordinator and the FAE for
	around the vicinity of the proposed site,	ecology and biodiversity visited the study
	the EIA coordinator shall strive to	area and educated the local students about
	educate the local students on the	the importance of protecting the biological
	importance of preserving local flora and	environment.
	fauna by involving them in the study,	
	wherever possible.	
39	The purpose of green belt around the	A detailed Greenbelt Development Plan
	project is to capture the fugitive	dealing with carbon sequestration has been
	emissions, carbon sequestration and to	provided in Section 4.6 under Chapter IV,
	attenuate the noise generated, in addition	pp.122-128.
	to improving the aesthetics A wide range	

	of indigenous plant energies should be	
	of indigenous plant species should be	
	planted as given in the appendix-I in	
	consultation with the DFO, State	
	Agriculture University and local	
	school/college authorities. The plant	
	species with dense/moderate canopy of	
	native origin should be chosen. Species	
	of small/medium/tall trees alternating	
	with shrubs should be planted in a mixed	
	manner.	
40	Taller/one year old saplings raised in	The FAE of ecology and biodiversity has
	appropriate size of bags; preferably eco-	advised the project proponent that saplings
	friendly bags should be planted as per	of one year old raised in the eco-friendly
	the advice of local forest authorities/	bags should be purchased and planted with
	botanist/Horticulturist with regard to site	the spacing of 3 m between each plant
	specific choices. The proponent shall	around the proposed project area as per the
	earmark the greenbelt area with GPS	advice of local forest authorities/botanist.
	coordinates all along the boundary of the	Saplings used for greenbelt development
	project site with at least 3 meters wide	have been shown in Section 4.6 under
	and in between blocks in an organized	Chapter IV, pp.104-132.
	manner	
41	A Disaster management plan shall be	The details about disaster management Plan
	prepared and included in the EIA/EMP	have been provided in Section 7.3 under
	Report for the complete life of the	Chapter VII, pp.142-145.
	proposed quarry (or) till the end of the	
	lease period.	
42	A Risk Assessment and management	The details about risk assessment and
	plan shall be prepared and included in	management plan have been provided in
	the EIA/EMP Report for the complete	Section 7.2 under Chapter VII, pp.139-141.
	life of the proposed quarry (or) till the	
	end of the lease period.	
43	Occupational Health impacts of the	Occupational health impacts of the project
	Project should be anticipated and the	and preventive measures have been
	-	xii

	proposed preventive measures spelt out	discussed in detail in Section 4.8 under
	in detail. Details of pre-placement	Chapter IV, pp.129 & 130.
	medical examination and periodical	Chapter 17, pp.129 & 150.
	L	
	medical examination schedules should	
	be incorporated in the EMP. The project	
	specific occupational health mitigation	
	measures with required facilities	
	proposed in the mining area may be	
	detailed.	
44	Public health implications of the Project	No public health implications are anticipated
	and related activities for the population	due to this project. Details of CSR and CER
	in the impact zone should be	activities have been discussed in Sections
	systematically evaluated and the	8.6 and 8.7 under Chapter VIII, pp.156 &
	proposed remedial measures should be	157.
	detailed along with budgetary	
	allocations.	
45	The Socio-economic studies should be	No negative impact on socio-economic
	carried out within a 5 km buffer zone	environment of the study area is anticipated
	from the mining activity. Measures of	and this project shall benefit the Socio-
	socio-economic significance and	Economic environment by offering
	influence to the local community	employment for 19 people directly and 10
	proposed to be provided by the Project	people indirectly as discussed in Section 8.1
	Proponent should be indicated. As far as	and 8.2 under Chapter VIII, p.155.
	possible, quantitative dimensions may be	
	given with time frames for	
	implementation.	
46	Details of litigation pending against the	No litigation is pending in any court against
	project, if any, with direction /order	this project.
	passed by any Court of Law against the	
	Project should be given.	
47	Benefits of the Project if the Project is	Benefits of the project details have been
	implemented should be spelt out. The	given under Chapter VIII, pp.155-157.
	benefits of the Project shall clearly	

	indicate environmental, social,	
	economic, employment potential, etc.	
48	economic, employment potential, etc. If any quarrying operation were carried out in the proposed quarrying sile for which now the EC is sought, the Project Proponent shall furnish the detailed compliance to EC conditions given in the previous EC with the site photographs which shall duly be certified by MoEF & CC, Regional Office, Chennai (or) the concerned DEE/TNPCB.	CCR will be submitted during appraisal of final EIA.
49	The PP shall prepare the EMP for entire life of mine and also furnish the sworn affidavit stating to abide the EMP for the entire life of mine.	A detailed EMP is provided in Table 10.10 & 10.11 under Chapter X, pp.170-177.
50	provisions in the Environment (Protection) Act' 1986.	The EIA report has been prepared keeping in mind the fact that concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may lead to withdrawal of this terms of reference besides attracting penal provisions in the Environment (Protection) Act, 1986.
	Discussion by SEIAA and the Remarks:	
	The proposal was placed in the 640th Authority meeting held on 19.07.2023. The authority noted that this proposal was placed for appraisal in 390 th SEAC meeting held on 07.07.2023. After detailed discussions. the Authority accepts the recommendation of SEAC and decided to grant Terms of Reference (ToR) along with Public Hearing under cluster for undertaking the combined Environment Impact Assessment Study and preparation of separate Environment Management Plan subject to the conditions as recommended by SEAC & normal conditions in addition to the conditions in 'Annexure	

B' of this minute.

	Annexure 'B'			
Clus	ster Management Committee			
1	Cluster Management Committee shall be	A cluster management committee including		
	framed which must include all the	all the proponents of the rough stone		
	proponents in the cluster as members	quarrying projects within the cluster of 500		
	including the existing as well as	m radius will be constituted for the effective		
	proposed quarry.	implementation of green belt development		
		plan, water sprinkling, blasting, etc.		
2	The members must coordinate among	The members of the cluster management		
	themselves for the effective	committee will be instructed to carry out		
	implementation of EMP as committed	EMP in coordination.		
	including Green Belt Development			
	Water sprinkling, tree plantation,			
	blasting etc.,			
3	The List of members of the committee	The list of members of the committee		
	formed shall be submitted to AD/Mines	formed will be submitted to AD/Mines		
	before the execution of mining lease and	before the execution of mining lease.		
	the same shall be updated every year to			
	the AD/Mines.			
4	Detailed Operational Plan must be	All the information has been discussed in		
	submitted which must include the	Section 2.6 & 2.7 under Chapter II, pp.20-		
	blasting frequency with respect to the	28.		
	nearby quarry situated in the cluster, the			
	usage of haul roads by the individual			
	quarry in the form of route map and			
	network.			
5	The committee shall deliberate on risk	It will be informed to the committee.		
	management plan pertaining to the			
	cluster in a holistic manner especially			

	during natural calamities like intense	
	rain and the mitigation measures	
	considering the inundation of the cluster	
	and evacuation plan.	
6	The Cluster Management Committee	The cluster management will be advised to
	shall form Environmental Policy to	practice sustainable mining in a scientific
	practice sustainable mining in a	and systematic manner in accordance with
	scientific and systematic manner in	the law. The role played by the committee in
	accordance with the law. The role played	implementing the environmental policy
	by the committee in implementing the	devised will be given in detail.
	environmental policy devised shall be	
	given in detail.	
7	The committee shall furnish action plan	A proper action plan regarding the
	regarding the restoration strategy with	restoration will be followed by the
	respect to the individual quarry falling	committee.
	under the cluster in a holistic manner.	
8	The committee shall furnish the	The committee will submit the emergency
	Emergency Management plan within the	management plan to the respective authority
	cluster.	in the stipulated time period.
9	The committee shall deliberate on the	The information on the health of the workers
	health of the workers/staff involved in	and the local people will be updated
	the mining as well as the health of the	periodically.
	public.	
10	The committee shall furnish an action	A proper action plan with reference to water,
	plan to achieve sustainable development	sanitation & safety will be devised and
	goals with reference to water, sanitation	submitted by the committee to the respective
	& safety.	authority.
11	The committee shall furnish the fire	The committee will submit the fire safety
	safety and evacuation plan in the case of	and evacuation plan as discussed in Section
	fire accidents.	7.3 under Chapter VII, pp.142-145.
Imp	act Study of mining	·

12	Detail	ed study shall be carried out in reg	ard to impact of mining around the proposed
			ease period as per precise area communication
		issued from reputed research institut	
	a)	Soil health & soil biological,	Soil health and biodiversity have been
		physical land chemical features.	discussed in Sections 3.1 and 3.5
			respectively under Chapter III, pp.31-40 &
			pp.70-93.
	b)	Climate change leading to	Climatic condition of the proposed project
		Droughts, Floods etc.	area has been discussed in Section 3.3 under
			Chapter III, pp.54-66.
	c)	Pollution leading to release of	The information about CO2 emission has
		Greenhouse gases (GHG), rise in	been added to Section 4.6 under Chapter IV,
		Temperature, & Livelihood of the	pp.122-128.
		local People.	pp.122-126.
	d)	Possibilities of water	Possibilities of both surface and ground
		contamination and impact on	water contamination have been discussed in
		aquatic ecosystem health.	Section 4.3 under Chapter IV, pp.106 & 107
			The impact on aquatic species has been
			discussed in Section 4.6 under Chapter IV,
			pp.122-128.
	e)	Agriculture, Forestry, &	Sorgum, millet, groundnut, and coconut are
		Traditional practices.	the primary crops that are cultivated in the
			study area.
	f)	Hydrothermal/Geothermal effect	The average geothermal gradient of earth is
		due to destruction in the	25°C/km. As the proposed depth of mining
		Environment.	is 37 m below the local ground level, the
			temperature will increase by 2.3°C at the
			depth of mining.
	g)	Bio-geochemical processes and	Data is not included.
		its foot prints including	
	1 \	environmental stress.	
	h)	Sediment geochemistry in the	Stream sediments geo chemistry has been

	surface streams.	included in Table 3.4 under Chapter III,
		p.40.
Agr	iculture & Agro-Biodiversity	
13	Impact on surrounding agricultural fields	As the proposed lease area is dominantly
	around the proposed mining area.	surrounded by mining land, barren land, and
		fallow land, the impact on the surrounding
		agricultural fields if present will be low.
		With proper mitigation measures, the project
		will be carried out to reduce the impact
		further to the level of negligence.
14	Impact on soil flora & vegetation around	Impact of the project on the ecology and
	the project site.	biodiversity has been discussed in Section
		4.2 and Section 4.6 under Chapter IV,
		pp.105-106 and pp.122 - 128
15	Details of type of vegetations including	Details of vegetation in the lease area have
	no. of trees & shrubs within the	been provided in Section 3.5 under Chapter
	proposed mining area shall be given and	III, pp.70-93. Details about transplantation
	if so, transplantation of such vegetations	of plants have been provided in Section 4.6
	all along the boundary of the proposed	under Chapter IV, pp.104-132.
	mining area shall committed mentioned	
	in EMP.	
16	The Environmental Impact Assessment	The ecological details have been provided in
	should study the biodiversity, the natural	Section 3.5 under Chapter III, pp.70-93 and
	ecosystem, the soil micro flora, fauna	measures have been provided in Section 4.6
	and soil seed banks and suggest	under Chapter IV, pp. 104-132.
	measures to maintain the natural	
	Ecosystem.	
17	Action should specifically suggest for	The FAE of ecology and biodiversity has
	sustainable management of the area and	advised the project proponent that replantation work, particularly for the
	restoration of ecosystem for flow of	project area where plants of 4 years old exist
	goods and services.	should be carried out in the vacant areas available.
18	The project proponent shall study and	The impact of project on the land

	furnish the impact of project on	environment has been discussed in Section
	plantations in adjoining patta lands,	4.1 under Chapter IV, pp.104 & 105.
	Horticulture, Agriculture and livestock.	
For		
19	The project proponent shall study on	The impacts of the proposed project on the
17	impact of mining on Reserve forests free	surrounding environment have discussed in
	ranging wildlife.	Chapter IV, pp.104-132.
20		
20	The Environmental Impact Assessment	The impacts of the project on ecology and
	should study impact on forest,	biodiversity have been discussed in Section
	vegetation, endemic, vulnerable and	4.6 under Chapter IV, pp.122-128.
	endangered indigenous flora and fauna.	
21	The Environmental Impact Assessment	The impacts of the project on standing trees
	should study impact on standing trees	and the existing trees have been discussed in
	and the existing trees should be	Section 4.6 under Chapter IV, pp.122-128.
	numbered and action suggested for	
	protection.	
22	The Environmental Impact Assessment	There are no protected areas, National Parks,
	should study impact on protected areas,	Corridors and Wildlife pathways near
	Reserve Forests, National parks,	project site. The list of environmentally
	corridors and wildlife pathways, near	sensitive areas within 10 km radius has been
	project site.	provided in Table 3.43 under Chapter III,
		p.101.
Wat	er Environment	
23	Hydro-geological study considering the	A detailed hydrogeological study was
	contour map of the water table detailing	carried out. The results have been discussed
	the number of ground water pumping &	in Section 3.2 under Chapter III, pp.41-54.
	open wells, and surface water bodies	
	such as rivers, tanks, canals, ponds etc.	
	within 1 km (radius) so as to assess the	
	impacts on the nearby waterbodies due	
	to mining activity. Based on actual	
	monitored data, it may clearly be shown	

	whether working will intersect	
	groundwater. Necessary data and	
	documentation in this regard may be	
	provided, covering the entire mine lease	
	period.	
24	Erosion Control Measures.	Garland drainage structures will be
		constructed around the lease area to control
		the erosion, as discussed in Section 4.3
		under Chapter IV, pp.106 & 107.
25	Detailed study shall be carried out in	A detailed study was carried out regarding
	regard to impact of mining around the	the impact of mining on the environment.
	proposed mine lease area on the nearby	The results have been included in Chapter
	villages, waterbodies/rivers & any	IV, pp.104-132.
	ecological fragile areas.	
26	The project proponent shall study impact	As there are no permanent water bodies near
	on fish habitats and the food WEB/food	to the proposed project site during study
	chain in the water body and Reservoir.	period, the details about the is discussed in
		Section 3.5 under Chapter III, pp.70-93
27	The project proponent shall study and	The impacts of the proposed project on the
	furnish the details on potential	surrounding environment have discussed in
	fragmentation impact on natural	Chapter IV, pp. 104-132.
	environment, by the activities.	
28	The project proponent shall study and	The impact of the proposed project on
	furnish the impact on aquatic plants and	aquatic plants and animals in water bodies
	animals in water bodies and possible	has been discussed in Section 4.6 under
	scars on the landscape, damages to	Chapter IV, pp.122-128.
	nearby caves, heritage site, and	
	archaeological sits possible land form	
	changes visual and aesthetic impacts.	
29.	The Terms of Reference should	The impact of mining on soil environment
	specifically study impact on soil health,	has been discussed in Section 4.2 under
	soil erosion, the soil physical, chemical	Chapter IV, pp.105-106.
	components and microbial components.	

30	The Environmental Impact Assessment	The impacts on water bodies, streams, lakes
	should study on wetlands, water bodies,	have been discussed in Section 4.3 under
	rivers streams, lakes and farmer sites.	Chapter IV, pp.106 & 107.
Ene	rgv	
31	The measures taken to control Noise,	The measures taken to control Noise, Air,
	Air, water, Dust control and steps	water, and dust have been given under
	adopted to efficiently utilise the Energy	Chapter IV, pp.104-132.
	shall be furnished.	
Clin	nate Change	
32	The Environmental Impact Assessment	Greenbelt development plan as discussed in
	shall study in detail the carbon emission	Section 4.6 under Chapter IV has been
	and also suggest the measures to	designed to reduce the impact of carbon
	mitigate carbon emission including	emission on the environment, pp.122 – 128.
	development of carbon sinks and	
	temperature reduction including control	
	of other emission and climate mitigation	
	activities.	
33	The Environmental Impact Assessment	The information will be included in the final
	should study impact on climate change,	EIA report.
	temperature rise, pollution and above	
	soil & below soil carbon stock.	
Min	e Closure Plan	
34	Detailed Mine closure plan covering the	A progressive mine closure plan has been
	entire mine lease period as per precise	attached with the approved mining plan
	area communication order issued.	report in Annexure III. The budget details
		for the mine closure are shown in Table 2.9
		under Chapter II, p.23.
EM	<u>P</u>	<u> </u>
35	Detailed Environment Management plan	A detailed Environment Management plan
	along with adaptation, mitigation &	has been given under Chapter X, pp.159-
	remedial strategies covering the entire	177.
	mine lease period as per precise area	
	r r r r r r r r r r r r r r r r r r r	

	communication order issued.	
36	The Environmental Impact Assessment	A detailed Environment Management plan
	should hold detailed study on EMP with	has been given in Tables 10.10 & 10.11
	budget for green belt development and	under Chapter X, pp.170-177.
	mine closure plan including disaster	
	management plan.	
Risl	Assessment	
37	To furnish risk assessment and management plan including anticipated vulnerabilities during operational and post operational phases of Mining.	The risk assessment and management plan for this project has been provided in Section 7.2 under Chapter VII, pp.139-141.
Disa	aster Management Plan	
38	To furnish disaster management plan and disaster mitigation measures in regard to all aspects to avoid/reduce vulnerability to hazards & to cope with disaster/untoward accidents in & around the proposed mine lease area due to the proposed method of mining activity & its related activities covering the entire mine lease period as per precise area communication order issued.	A detailed Environment Management Plan has been given under Chapter X, pp.159- 177.
<u>Oth</u>	ers	
39.	The project proponent shall furnish VAO certificate with reference to 300 m radius regard to approved habitations, schools, Archaeological sites, structures, railway lines, roads, water bodies such as streams, odai, vaari, canal, river, lake pond, tank etc.	The VAO certificate of 300 m radius is provided in the Annexure.

40	As per the MoEF & CC office	The response to comments will be given
-10	memorandum F.No.22-65/2017-IA.III	final EIA report.
		iniai EIA report.
	dated: 30.09.2020 and 20.10.2020 the	
	proponent shall address the concerns	
	raised during the public consultation and	
	all the activities proposed shall be part of	
	the Environment Management pan.	
41	The project proponent shall study and	The matter on plastic waste management has
	furnish the possible pollution due to	been given in Section 7.5 under Chapter VII,
	plastic and microplastic on the	pp.152 – 153.
	environment. The ecological risks and	
	impacts of plastic & microplastics on	
	aquatic environment and fresh water	
	systems due to activities, contemplated	
	during mining may be investigated and	
	reported.	
	STANDARD TERMS	S OF REFERENCE
1.	Year-wise production details since 1994	Not applicable. This is not a violation
	should be given, clearly stating the	category project. This proposal falls under
	highest production achieved in any one	B1 category.
	year prior to 1994. It may also be	
	categorically informed whether there had	
	been any increase in production after the	
	EIA Notification 1994 came into force,	
	w.r.t. the highest production achieved	
	prior to 1994.	
2.	A copy of the document in support of the	The proposed site for quarrying is a patta
	fact that the proponent is the rightful	land. A copy of the ownership document has
	lessee of the mine should be given.	been enclosed along with the approved
1		mining plan in Annexure III
3.	All documents including approved mine	The following will approve mine plan, EIA
1		
	plan, EIA and Public Hearing should be	and public hearing will submitted in the final
	plan, EIA and Public Hearing should be compatible with one another in terms of	and public hearing will submitted in the final

	the mine lease area, production levels,	EIA report.
	waste generation and its management,	
	mining technology etc. and should be in	
	the name of the lessee.	
4.	All corner coordinates of the mine lease	All corner coordinates of the mine lease area
	area, superimposed on a High-	have been superimposed on a high-
	Resolution Imagery/ toposheet,	resolution Google Earth Image, as shown in
	topographic sheet, geomorphology and	Figure 2.4, under Chapter II, p-13.
	geology of the area should be provided.	
	Such an Imagery of the proposed area	
	should clearly show the land use and	
	other ecological features of the study	
	area (core and buffer zone).	
5.	Information should be provided in	The baseline data sampling locations for all
	Survey of India Toposheet in 1:50,000	the environmental components are shown in
	scale indicating geological map of the	Survey of India Toposheet under Chapter III
	area, geomorphology of land forms of	
	the area, existing minerals and mining	
	history of the area, important water	
	bodies, streams and rivers and soil	
	characteristics.	
6.	Details about the land proposed for	The lease applied area was inspected by the
	mining activities should be given with	official of Descent of Conternations
	8	officers of Department of Geology along
	information as to whether mining	with revenue officials and found that the
	information as to whether mining	with revenue officials and found that the
	information as to whether mining conforms to the land use policy of the	with revenue officials and found that the land is fit for quarrying under the policy of
	information as to whether mining conforms to the land use policy of the State; land diversion for mining should	with revenue officials and found that the land is fit for quarrying under the policy of
7.	information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board	with revenue officials and found that the land is fit for quarrying under the policy of
7.	information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.	with revenue officials and found that the land is fit for quarrying under the policy of State Government.
7.	information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority. It should be clearly stated whether the	with revenue officials and found that the land is fit for quarrying under the policy of State Government. The proponent has framed Environmental
7.	information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority. It should be clearly stated whether the proponent Company has a well laid	with revenue officials and found that the land is fit for quarrying under the policy of State Government. The proponent has framed Environmental Policy and the same has been discussed in

	description of the prescribed operating	
	process/ procedures to bring into focus	
	any infringement/ deviation/ violation of	
	the environmental or forest	
	norms/conditions? The hierarchical	
	system or administrative order of the	
	Company to deal with the environmental	
	issues and for ensuring compliance with	
	the EC conditions may also be given.	
	The system of reporting of non-	
	compliances / violations of	
	environmental norms to the Board of	
	Directors of the Company and/or	
	shareholders or stakeholders at large,	
	may also be detailed in the EIA Report.	
8.	Issues relating to Mine Safety, including	It is an opencast quarrying operation
	subsidence study in case of underground	proposed to operate in Manual method. The
	mining and slope study in case of open	rough stone formation is a hard, compact
	cast mining, blasting study etc. should be	and homogeneous body. The height and
	detailed. The proposed safeguard	width of the bench will be maintained as 5m
	measures in each case should also be	with 90^0 bench angles. Quarrying activities
	provided.	will be carried out under the supervision of
		Competent Persons like Mines Manager,
		Mines Foreman and Mining Mate.
		Necessary permissions will be obtained from
		DGMS after obtaining Environmental
		Clearance.
9.	The study area will comprise of 10 km	All the data contained in the EIA report such
	zone around the mine lease from lease	as waste generation etc., is for the life of the
	periphery and the data contained in the	mine / lease period.
	EIA such as waste generation etc.,	
	should be for the life of the mine / lease	
	period.	

10.	Land use of the study area delineating	Land use of the study area delineating forest
	forest area, agricultural land, grazing	area, agricultural land, grazing land, wildlife
	land, wildlife sanctuary, national park,	sanctuary, national park, migratory routes of
	migratory routes of fauna, water bodies,	fauna, water bodies, human settlements and
	human settlements and other ecological	other ecological features has been discussed
	features should be indicated. Land use	in Section 3.1 under Chapter III, pp.31-40.
	plan of the mine lease area should be	Land use plan of the project area showing
	prepared to encompass preoperational,	pre-operational, operational and post-
	operational and post operational phases	operational phases are discussed in Table 2.8
	and submitted. Impact, if any, of change	under Chapter II, p.23.
	of land use should be given.	
11.	Details of the land for any over burden	Not Applicable.
	dumps outside the mine lease, such as	There is no waste anticipated during this
	extent of land area, distance from mine	quarry operation. The entire quarried out
	lease, its land use, R&R issues, if any,	rough stone will be transported to the need
	should be given.	customers. Hence, no dumps are proposed
		outside the lease area.
12	Certificate from the Competent	
12.	Certificate from the Competent Authority in the State Forest Department	Not Applicable.
12.	Authority in the State Forest Department	Not Applicable. There is no forest land involved within the
12.	1	Not Applicable. There is no forest land involved within the proposed project area and the proposed
12.	Authority in the State Forest Department should be provided, confirming the	Not Applicable. There is no forest land involved within the
12.	Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the	Not Applicable. There is no forest land involved within the proposed project area and the proposed
12.	Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary	Not Applicable. There is no forest land involved within the proposed project area and the proposed
12.	Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding	Not Applicable. There is no forest land involved within the proposed project area and the proposed
12.	Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be	Not Applicable. There is no forest land involved within the proposed project area and the proposed
12.	Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department	Not Applicable. There is no forest land involved within the proposed project area and the proposed
12.	Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the	Not Applicable. There is no forest land involved within the proposed project area and the proposed
12.	Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of	Not Applicable. There is no forest land involved within the proposed project area and the proposed
12.	Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate	Not Applicable. There is no forest land involved within the proposed project area and the proposed
12.	Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for representative of the State	Not Applicable. There is no forest land involved within the proposed project area and the proposed
12.	Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be	Not Applicable. There is no forest land involved within the proposed project area and the proposed

	<u> </u>	
13.	Status of forestry clearance for the	Not Applicable.
	broken-up area and virgin forestland	There are neither forests nor forest
	involved in the Project including	dwellers/forest dependent communities in
	deposition of net present value (NPV)	the mine lease area. There is no forest
	and Compensatory Afforestation (CA)	impacted families (PF) or people (PP). Thus,
	should be indicated. A copy of the	the rights of Traditional Forest Dwellers will
	forestry clearance should also be	not be compromised on account of the
	furnished.	project.
14.	Implementation status of recognition of	Not Applicable.
	forest rights under the Scheduled Tribes	The project doesn't attract Recognition of
	and other Traditional Forest Dwellers	Forest Rights Act, 2006 as there are neither
	(Recognition of Forest Rights) Act, 2006	forests nor forest dwellers / forest dependent
	should be indicated.	communities in the mine lease area. There
		shall be no forest impacted families (PF) or
		people (PP). Thus, the rights of Traditional
		Forest Dwellers will not be compromised on
		account of the project.
		decount of the project.
15	The vegetation in the DE / DE group in	Datails about forest vagatation have been
	The vegetation in the RF / PF areas in	Details about forest vegetation have been
	the study area, with necessary details,	provided in Section 3.5 under chapter-III,
	the study area, with necessary details, should be given.	provided in Section 3.5 under chapter-III, pp.70-93.
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the study area, as shown in Section 3.5 under
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished.	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the study area, as shown in Section 3.5 under Chapter-III, pp.70-93. The impact on wild
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the study area, as shown in Section 3.5 under Chapter-III, pp.70-93. The impact on wild life has been discussed in Section 4.6 under
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the study area, as shown in Section 3.5 under Chapter-III, pp.70-93. The impact on wild
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the study area, as shown in Section 3.5 under Chapter-III, pp.70-93. The impact on wild life has been discussed in Section 4.6 under
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the study area, as shown in Section 3.5 under Chapter-III, pp.70-93. The impact on wild life has been discussed in Section 4.6 under
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the study area, as shown in Section 3.5 under Chapter-III, pp.70-93. The impact on wild life has been discussed in Section 4.6 under
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the study area, as shown in Section 3.5 under Chapter-III, pp.70-93. The impact on wild life has been discussed in Section 4.6 under
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the study area, as shown in Section 3.5 under Chapter-III, pp.70-93. The impact on wild life has been discussed in Section 4.6 under Chapter IV, pp.122-128.
16.	the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted. Location of National Parks, Sanctuaries,	provided in Section 3.5 under chapter-III, pp.70-93. A study was done on wildlife within the study area, as shown in Section 3.5 under Chapter-III, pp.70-93. The impact on wild life has been discussed in Section 4.6 under Chapter IV, pp.122-128. Information regarding the same has been

	if any, within 10 KM of the mine lease	
	should be clearly indicated, supported by	
	a location map duly authenticated by	
	Chief Wildlife Warden. Necessary	
	clearance, as may be applicable to such	
	projects due to proximity of the	
	ecologically sensitive areas as mentioned	
	above, should be obtained from the	
	Standing Committee of National Board	
	of Wildlife and copy furnished	
18.	A detailed biological study of the study	A detailed biological study was carried out
	area [core zone and buffer zone (10 KM	in both core and buffer zones and the results
	radius of the periphery of the mine	have been discussed in Section 3.5 under
	lease)] shall be carried out. Details of	Chapter-III, pp.70-93. There is no schedule I
	flora and fauna, endangered, endemic	species of animals observed within study
	and RET Species duly authenticated,	area as per Wildlife Protection Act, 1972
	separately for core and buffer zone	and no species falls in vulnerable,
	should be furnished based on such	endangered or threatened category as per
	primary field survey, clearly indicating	IUCN. There is no endangered red list
	the Schedule of the fauna present. In	species found in the study area.
	case of any scheduled-I fauna found in	
	the study area, the necessary plan along	
	with budgetary provisions for their	
	conservation should be prepared in	
	consultation with State Forest and	
	Wildlife Department and details	
	furnished. Necessary allocation of funds	
	for implementing the same should be	
	made as part of the project cost.	
19.	Proximity to Areas declared as	Not Applicable.
	'Critically Polluted' or the Project areas	Project area / Study area is not declared in
	likely to come under the 'Aravalli	'Critically Polluted' Area and does not come
	Range', (attracting court restrictions for	under 'Aravalli Range.

	mining operations), should also be	
	indicated and where so required,	
	clearance certifications from the	
	prescribed Authorities, such as the SPCB	
	or State Mining Department should be	
	secured and furnished to the effect that	
	the proposed mining activities could be	
	considered.	
20.	Similarly, for coastal Projects, A CRZ	Not Applicable
	map duly authenticated by one of the	The project doesn't attract the C.R.Z.
	authorized agencies demarcating LTL.	Notification, 2018.
	HTL, CRZ area, location of the mine	
	lease w.r.t CRZ, coastal features such as	
	mangroves, if any, should be furnished.	
	(Note: The Mining Projects falling under	
	CRZ would also need to obtain approval	
	of the concerned Coastal Zone	
	Management Authority).	
21.	R&R Plan/compensation details for the	Not Applicable.
	Project Affected People (PAP) should be	There are no approved habitations within a
	furnished. While preparing the R&R	radius of 300 meters. Therefore, R&R plan /
	Plan, the relevant State/National	compensation details for the Project
	Rehabilitation & Resettlement Policy	Affected People (PAP) is not anticipated.
	should be kept in view. In respect of SCs	
	/STs and other weaker sections of the	
	society in the study area, a need-based	
	sample survey, family-wise, should be	
	undertaken to assess their requirements,	
	and action programmes prepared and	
	submitted accordingly, integrating the	
	sectoral programmes of line departments	
	of the State Government. It may be	
	clearly brought out whether the	

village(s) located in the mine lease area will be shifted or not. The issues relating to shifting of villagc(s) including their R&R and socio-economic aspects should be discussed in the Report.Baseline data were collected for the period of October-December 2023, as per CPCB notification and MoEF & CC Guidelines. Primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified kceping in view the pre- dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.Air quality modelling for prediction of incremental GLCs of pollutants was carried out sing AERMOD view. The model isouid also take into account the impact of movement of vehicles forAir cuality modelling for prediction 4.4 under the Chapter IV, pp.108-117.			
to shifting of village(s) including their R&R and socio-economic aspects should be discussed in the Report.Baseline data were collected for the period22.One season (non-monsoon) [i.e., March- May (Summer Season); October- December (post monsoon season); December-February (winter season)] primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre- dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.Air quality modelling for prediction of incremental GLCs of pollutants was carried out using AERMOD view. The model results have been given in Section 4.4 under		village(s) located in the mine lease area	
R&R and socio-economic aspects should be discussed in the Report. Baseline data were collected for the period of October-December 2023, as per CPCB December (post monsoon season); October-December 2023, as per CPCB December-February (winter season)] December-February (winter season)] Primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the predominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modelling should be carried out using AERMOD view. The model results have been given in Section 4.4 under		will be shifted or not. The issues relating	
be discussed in the Report.22.One season (non-monsoon) [i.e., March-May (Summer Season); October-December 2023, as per CPCB December (post monsoon season); December-February (winter season)]Baseline data were collected for the period of October-December 2023, as per CPCB notification and MoEF & CC Guidelines. Primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre- dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.Air quality modelling for prediction of incremental GLCs of pollutants was carried out using AERMOD view. The model results have been given in Section 4.4 under		to shifting of village(s) including their	
 22. One season (non-monsoon) [i.e., March-May (Summer Season); October-December 2023, as per CPCB December (post monsoon season); December-February (winter season)] primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the predominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		R&R and socio-economic aspects should	
 May (Summer Season); October-December 2023, as per CPCB December (post monsoon season); December-February (winter season)] primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the predominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		be discussed in the Report.	
 December (post monsoon season); December-February (winter season)] primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre- dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 	22.	One season (non-monsoon) [i.e., March-	Baseline data were collected for the period
 December-February (winter season)] primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the predominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		May (Summer Season); October-	of October-December 2023, as per CPCB
 primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		December (post monsoon season);	notification and MoEF & CC Guidelines.
 quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre- dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		December-February (winter season)]	Primary baseline data and the results have
 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		primary baseline data on ambient air	been included in Sections 3.1-3.7 under
 flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		quality as per CPCB Notification of	Chapter III, pp. 31-100.
 AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the predominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		2009, water quality, noise level, soil and	
 presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre- dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried project on the air quality of the area. It should also take into account the impact 		flora and fauna shall be collected and the	
 Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre- dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modelling should be carried project on the air quality of the area. It should also take into account the impact 		AAQ and other data so compiled	
 should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the predominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		presented date-wise in the EIA and EMP	
 the monitoring stations should be such as to represent whole of the study area and justified keeping in view the predominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be agiven. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		Report. Site-specific meteorological data	
 to represent whole of the study area and justified keeping in view the predominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		should also be collected. The location of	
 justified keeping in view the pre- dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		the monitoring stations should be such as	
 dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		to represent whole of the study area and	
 location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		justified keeping in view the pre-	
 should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		dominant downwind direction and	
 within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		location of sensitive receptors. There	
 pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		should be at least one monitoring station	
 mineralogical composition of PM10, particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		within 500 m of the mine lease in the	
 particularly for free silica, should be given. 23. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact 		pre-dominant downwind direction. The	
given.given.23.Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impactAir quality modelling for prediction of incremental GLCs of pollutants was carried out using AERMOD view. The model results have been given in Section 4.4 under		mineralogical composition of PM10,	
23.Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impactAir quality modelling for prediction of incremental GLCs of pollutants was carried out using AERMOD view. The model results have been given in Section 4.4 under		particularly for free silica, should be	
out for prediction of impact of the project on the air quality of the area. It should also take into account the impactincremental GLCs of pollutants was carried out using AERMOD view. The model results have been given in Section 4.4 under		given.	
project on the air quality of the area. It should also take into account the impact results have been given in Section 4.4 under	23.	Air quality modelling should be carried	Air quality modelling for prediction of
should also take into account the impact results have been given in Section 4.4 under		out for prediction of impact of the	incremental GLCs of pollutants was carried
		project on the air quality of the area. It	out using AERMOD view. The model
of movement of vehicles for the Chapter IV, pp.108-117.		should also take into account the impact	results have been given in Section 4.4 under
		of movement of vehicles for	the Chapter IV, pp.108-117.

	transportation of mineral. The details of	
	the model used and input parameters	
	used for modelling should be provided.	
	The air quality contours may be shown	
	on a location map clearly indicating the	
	location of the site, location of sensitive	
	receptors, if any, and the habitation. The	
	wind roses showing pre-dominant wind	
	direction may also be indicated on the	
	map.	
24.	The water requirement for the project, its	The water requirement for the project, its
	availability and source should be	availability and source have been provided
	furnished. A detailed water balance	in Table 2.11 under Chapter II, p.27.
	should also be provided. Fresh water	
	requirement for the project should be	
	indicated.	
25.	Necessary clearance from the Competent	Not Applicable.
	Authority for drawl of requisite quantity	Water for dust suppression, greenbelt
	of water for the project should be	development and domestic use will be
	provided.	sourced from accumulated
		rainwater/seepage water in mine pits and
		purchased from local water vendors through
		water tankers on daily requirement basis.
		Drinking water will be sourced from the
		approved water vendors.
26.	Description of water conservation	Part of the working pit will be allowed to
	measures proposed to be adopted in the	collect rain water during the spell of rain.
1	Project should be given. Details of	The water thus collected will be used for
	rainwater harvesting proposed in the	greenbelt development and dust suppression.
	Project, if any, should be provided.	The mine closure plan will be prepared for
		converting the excavated pit into rain water
		harvesting structure and serve as water

		reservoir for the project village during
		draught season.
		uraught season.
27.	Impact of the Project on the water	Impact studies and mitigation measures of
	quality, both surface and groundwater,	water environment including surface water
	should be assessed and necessary	and ground water were conducted and the
	safeguard measures, if any required,	results have been discussed in Section 4.3,
	should be provided.	under the Chapter IV, pp. 106 & 107.
28.	Based on actual monitored data, it may	Not Applicable.
	clearly be shown whether working will	The ground water table is found at the depth
	intersect groundwater. Necessary data	of 60 m below ground level. The ultimate
	and documentation in this regard may be	depth of quarry is 37 m BGL. Therefore, the
	provided. In case the working will	
	intersect groundwater table, a detailed	mining activity will not intersect the ground
	Hydro Geological Study should be	water table. Data regarding the occurrence
	undertaken and Report furnished. The	of groundwater table have been provided in
	Report inter-alia, shall include details of	Section 3.2 under Chapter III, pp.41-544.
	the aquifers present and impact of	
	mining activities on these aquifers.	
	Necessary permission from Central	
	Ground Water Authority for working	
	below ground water and for pumping of	
	ground water should also be obtained	
	and copy furnished.	
29.	Details of any stream, seasonal or	Not Applicable.
	otherwise, passing through the lease area	There are no streams, seasonal or other
	and modification / diversion proposed, if	water bodies passing within the project area.
	any, and the impact of the same on the	Therefore, no modification or diversion of
	hydrology should be brought out.	water bodies is anticipated.
30.	Information on site elevation, working	The highest elevation of the project area is
	depth, groundwater table etc. Should be	484 m AMSL. Ultimate depth of the mine is
	provided both in AMSL and BGL. A	37 m BGL. Depth to the water level in the
	schematic diagram may also be provided	area is 60 m BGL.
	for the same.	
31.	A time bound Progressive Greenbelt	A detailed Greenbelt Development Plan has

	Development Dion about the survey 1.	heen movided in Tables 414 and 415
	Development Plan shall be prepared in a	been provided in Tables 4.14 and 4.15 in
	tabular form (indicating the linear and	Section 4.6 under Chapter IV, pp.124.
	quantitative coverage, plant species and	
	time frame) and submitted, keeping in	
	mind, the same will have to be executed	
	up front on commencement of the	
	Project. Phase-wise plan of plantation	
	and compensatory afforestation should	
	be charted clearly indicating the area to	
	be covered under plantation and the	
	species to be planted. The details of	
	plantation already done should be given.	
	The plant species selected for green belt	
	should have greater ecological value and	
	should be of good utility value to the	
	local population with emphasis on local	
	and native species and the species which	
	are tolerant to pollution.	
32.	Impact on local transport infrastructure	Traffic density survey was carried out to
	due to the Project should be indicated.	analyse the impact of transportation in the
	Projected increase in truck traffic as a	study area as per IRC guidelines 1961 and it
	result of the Project in the present road	is inferred that there is no significant impact
	network (including those outside the	due to the proposed transportation from the
	Project area) should be worked out,	project area. Details have been provided in
	indicating whether it is capable of	Section 3.7 under Chapter III, pp.98-100.
	handling the incremental load.	
	Arrangement for improving the	
	infrastructure, if contemplated (including	
	action to be taken by other agencies such	
	as State Government) should be covered.	
	Project Proponent shall conduct Impact	
	of Transportation study as per Indian	
	Road Congress Guidelines.	
33.	Details of the onsite shelter and facilities	Infrastructure & other facilities will be

	to be provided to the mine workers	provided to the mine workers after the grant
	should be included in the EIA Report.	of quarry lease and the same has been
		discussed in Section 2.6.6 under Chapter II,
		p.27.
34.	Conceptual post mining land use and	Progressive mine closure plan has been
	Reclamation and Restoration of mined	prepared for this project and is given in
	out areas (with plans and with adequate	Section 2.6 under Chapter II, pp.20-28.
	number of sections) should be given in	
	the EIA report.	
35.	Occupational Health impacts of the	Occupational health impacts of the project
	Project should be anticipated and the	and preventive measures have been
	proposed preventive measures spelt out	explained in detail in Section 4.8 under
	in detail. Details of pre-placement	Chapter IV, pp.129 & 130.
	medical examination and periodical	
	medical examination schedules should	
	be incorporated in the EMP. The project	
	specific occupational health mitigation	
	measures with required facilities	
	1	
	proposed in the mining area may be	
	detailed.	
36.	Public health implications of the Project	
	and related activities for the population	due to this project. Details of CSR and CER
	in the impact zone should be	activities have been discussed in Sections
	systematically evaluated and the	8.6 and 8.7 under Chapter VIII, pp.156 &
	proposed remedial measures should be	157.
	detailed along with budgetary	
	allocations.	
37.	Measures of socio-economic	No negative impact on socio-economic
	significance and influence to the local	environment of the study area is anticipated
	community proposed to be provided by	and this project shall benefit the Socio-
	the Project Proponent should be	Economic environment by offering
	indicated. As far as possible, quantitative	employment for 17 people directly and 10
	dimensions may be given with time	people indirectly, as discussed in Section 8.1

	frames for implementation.	under Chapter VIII, p.155.
38.	Detailed environmental management	Detailed environment management plan for
	plan (EMP) to mitigate the	the project to mitigate the anticipated
	environmental impacts which, should	impacts has been provided under Chapter X,
	inter-alia include the impacts of change	pp.159-177.
	of land use, loss of agricultural and	
	grazing land, if any, occupational health	
	impacts besides other impacts specific to	
	the proposed Project.	
39.	Public Hearing points raised and	The details will be updated in the final EIA
	commitment of the Project Proponent on	report after public hearing meeting.
	the same along with time bound Action	
	Plan with budgetary provisions to	
	implement the same should be provided	
	and also incorporated in the final	
	EIA/EMP Report of the Project.	
40.	Details of litigation pending against the	No litigation is pending in any court against
	project, if any, with direction /order	this project.
	passed by any Court of Law against the	
	Project should be given.	
41	The cost of the Project (capital cost and	Project Cost is Rs. 1,04,94,300/-
	recurring cost) as well as the cost	In order to implement the environmental
	towards implementation of EMP should	protection measures, an amount of
	be clearly spelt out.	Rs.3521745 as capital cost and recurring
		cost as Rs.1636404 as recurring cost/annum
		is proposed considering present market price
		considering present market scenario for the
		proposed project. After the adjustment of
		5% inflation per year, the overall EMP cost
		for 5 years will be Rs.12632700, as shown
		in Tables 10.10 &10.11 under Chapter X,
		pp.170-177.
42	A Disaster management Plan shall be	The details have been provided in Section
	prepared and included in the EIA/EMP	7.2 under Chapter VII, pp.139-141.

	Report.	
43.	Benefits of the Project if the Project is	Benefits of the project have been discussed
	implemented should be spelt out. The	under Chapter VIII, pp.155-157.
	benefits of the Project shall clearly	
	indicate environmental, social,	
	economic, employment potential, etc.	
44.	Besides the above, the below mentioned g	eneral points are also to be followed:
a)	Executive Summary of the EIA/EMP	Executive summary has been enclosed as a
	Report	separate booklet.
b)	All documents to be properly referenced	All the documents have been properly
	with index and continuous page	referenced with index and continuous page
	numbering.	numbering.
c)	Where data are presented in the Report	List of tables and source of the data
	especially in Tables, the period in which	collected have been mentioned.
	the data were collected and the sources	
	should be indicated.	
d)	Project Proponent shall enclose all the	Original Baseline monitoring reports will be
	analysis/testing reports of water, air, soil,	submitted in the final EIA report during
	noise etc. using the MoEF & CC/NABL	appraisal.
	accredited laboratories. All the original	
	analysis/testing reports should be	
	available during appraisal of the Project	
e)	Where the documents provided are in a	All the documents provided here are in
	language other than English, an English	English language.
	translation should be provided.	
f)	The Questionnaire for environmental	The questionnaire will be enclosed along
	appraisal of mining projects as devised	with final EIA/EMP report.
	earlier by the Ministry shall also be	
	filled and submitted.	
g)	While preparing the EIA report, the	Instructions issued by MoEF & CC O.M.
	instructions for the Proponents and	No. J-11013/41/2006-IA. II (I) dated 4th
	instructions for the Consultants issued	August, 2009 have been followed while
	by MoEF & CC vide O.M. No. J-	preparing the EIA report.
L		

	11013/41/2006-IA. II(I) dated 4th	
	August, 2009, which are available on the	
	website of this Ministry, should be	
	followed.	
h)	Changes, if any made in the basic scope	No changes are made in the basic scope and
11)		
	and project parameters (as submitted in	the project parameters.
	Form-I and the PFR for securing the	
	TOR) should be brought to the attention	
	of MoEF & CC with reasons for such	
	changes and permission should be	
	sought, as the TOR may also have to be	
	altered. Post Public Hearing changes in	
	structure and content of the draft	
	EIA/EMP (other than modifications	
	arising out of the P.H. process) will	
	entail conducting the PH again with the	
	revised documentation.	
i)	As per the circular no. J-	The certified compliance report will be
	11011/618/2010-IA. II(I) Dated:	provided in the final EIA report.
	30.5.2012, certified report of the status	
	of compliance of the conditions	
	stipulated in the environment clearance	
	for the existing operations of the project,	
	should be obtained from the Regional	
	Office of Ministry of Environment,	
	Forest and Climate Change, as may be	
	applicable.	
j)	The EIA report should also include (i)	All the plans related to mining have been
	surface plan of the area indicating	included along with the approved mining
	contours of main topographic features,	plan report in Annexure.
	drainage and mining area, (ii) geological	
	maps and sections and (iii) sections of	
	the mine pit and external dumps, if any,	
	clearly showing the land features of the	
	adjoining area.	

CHAPT					PAGE
ER NO.				TITLE	No.
Ι				Introduction	1-7
	1.0	Preamb	le		1
	1.1	Purpose	e of the re	eport	2
	1.2	Environ	Environmental clearance		
	1.3	Terms of	of referen	ce (ToR)	5
	1.4	Post env	vironmen	t clearance monitoring	5
	1.5	Transfe	rability of	f environmental clearance	5
	1.6	Generic	structure	e of EIA document	5
	1.7	Identific	cation of	the project proponent	6
	1.8	Brief de	escription	of the project	6
	1.9	Scope o	of the stud	ly	7
	1.10	Referen	nces		7
II			PR	OJECT DESCRIPTION	8-29
	2.0	General	introduc	tion	8
	2.1	Descrip	tion of th	ne project	8
	2.2	Location	n and acc	essibility	9
	2.3	Leaseho	old area		12
		2.3.1	Corner (Coordinates	12
	2.4	Geology	у		12
	2.5	Quantity	y of reser	ves	17
	2.6	Mining	method		20
		2.6.1	Magnitu	de of operation	22
		2.6.2	Extent o	f mechanization	22
		2.6.3	Progress	sive quarry closure plan	23
		2.6.4	Progress	sive quarry closure budget	23
		2.6.5	Concept	ual mining plan	27
		2.6.6	Infrastru	ictures	27
			2.6.6.1	Other Infrastructure Requirement	27
		2.6.7	Water re	equirement	27

TABLE OF CONTENTS

		2.6.8	Energy	requirement	27	
		2.6.9	Capital	requirement	28	
	2.7	Manpo	Manpower requirement Project Implementation Schedule			
	2.8	Project				
III			DESCRI	PTION OF THE ENVIRONMENT	30-101	
	3.0	Genera	ıl		30	
	3.1	Land e	nvironme	31		
		3.1.1	Geology	and Geomorphology	31	
		3.1.2	Land Us	se/Land Cover	34	
		3.1.3	Topogra	phy	34	
		3.1.4	Drainag	e pattern	34	
		3.1.5	Seismic	sensitivity	34	
		3.1.6	Soil		37	
	3.2	Water	Environm	ent	41	
		3.2.1	Surface	Water Resources and Quality	41	
		3.2.2	Ground	water Resources and Quality	41	
		3.2.3	Hydroge	eological Studies	42	
			3.2.3.1	Groundwater level and flow direction	42	
			3.2.3.2	Electrical resistivity investigation	53	
	3.3	Air En	vironment		54	
		3.3.1	Meteoro	ology	54	
			3.3.1.1	Climatic Variables	54	
			3.3.1.2	Wind Pattern	56	
		3.3.2	Ambien	t Air Quality Study	60	
	3.4	Noise l	Environme	ent	66	
	3.5	Biolog	ical Envir	onment	70	
		3.5.1	Flora		71	
		3.5.2	Fauna		89	
	3.6	Socio-l	Economic	environment	93	
		3.6.1	Objectiv	ves of the Study	94	
		3.6.2	Scope of	f work	94	
		3.6.3	Socio-E	conomic status of Study area	94	

		3.6.4	Recommendation and Suggestion	98
		3.6.5	Summary & Conclusion	98
	3.7	Traffic	density	98
	3.8	Site Sp	ecific Features	101
IV		ANTI	CIPATED ENVIRONMENTAL IMPACTS AND	104-131
			MITIGATION MEASURES	104 101
	4.0	Genera	1	104
	4.1	Land E	nvironment	104
		4.1.1	Anticipated Impact	104
		4.1.2	Common Mitigation Measures from Proposed Project	105
	4.2	Soil En	vironment	105
		4.2.1	Anticipated Impact on Soil Environment	105
		4.2.2	Common Mitigation Measures from Proposed Project	106
	4.3	Water I	Environment	106
		4.3.1	Anticipated Impact	106
		4.3.2	Common Mitigation Measures from Proposed Project	107
	4.4	Air Env	vironment	108
		4.4.1	Anticipated impact from Proposed Project	108
		4.4.2	Emission Estimation	108
			4.4.2.1 Frame work of Computation and Model Details	109
			4.4.2.2 Modelling of Incremental Concentration	109
			4.4.2.3 Model Results	110
		4.4.3	Common Mitigation Measures	116
	4.5	Noise E	Environment	117
		4.5.1	Anticipated Impact	118
		4.5.2	Common Mitigation Measures	119
		4.5.3	Ground Vibrations	120
			4.5.3.1 Common Mitigation Measures	121

	4.6	Ecolog	y And Biod	iversity	122
		4.6.1	Impact on	Ecology and Biodiversity	122
		4.6.2	Mitigation	n Measures on Flora	122
		4.6.3	Anticipate	ed Impact on Fauna	124
		4.6.4	Measures Wildlife S	for Protection and Conservation of pecies	125
	4.7	Socio E	Economic E	nvironment	128
		4.7.1	Anticipate Projects	ed Impact from Proposed and Existing	128
		4.7.2	Common	Mitigation Measures for Proposed Project	128
	4.8	Occupa	ational Healt	th and Safety	129
		4.8.1 Respiratory Hazards			
		4.8.2	Noise		129
		4.8.3 Physical Hazards			
		4.8.4	Occupatio	nal Health Survey	130
	4.9	Mine W	Mine Waste Management		130
	4.10	Mine C	130		
	-	4.10.1	Mine Clos	131	
			4.10.1.1	Physical Stability	131
			4.10.1.2	Chemical Stability	131
			4.10.1.3	Biological Stability	131
V		ANA	LYSIS OF	ALTERNATIVES (TECHNOLOGY	133
				AND SITE)	100
	5.0	Introdu	ction		133
	5.1	Factors	behind the	Selection of Project Site	133
	5.2	Analys	is of Alterna	ative Site	133
	5.3	Factors behind Selection of Proposed Technology			133
	5.4			ative Technology	133
VI		EN	VIRONME	NTAL MONITORING PROGRAM	134-138
	6.0	Genera	1		134
	6.1	Method	lology of M	onitoring Mechanism	134
	6.2	Implem	nentation Sc	hedule of Mitigation Measures	136

	6.3	Monito	ring Schedule and Frequency	136	
	6.4	Budget	ary provision for Environment Monitoring Program	138	
	6.5	Report	ing schedules of monitored data	138	
VII			ADDITIONAL STUDIES	139-153	
	7.0	Genera	1	139	
	7.1	Public	Consultation for Proposed Project	139	
	7.2	Risk A	ssessment for Proposed Project	139	
	7.3	Disaste	r Management Plan for Proposed Project	142	
		7.3.1	Roles and Responsibilities of Emergency Team	143	
		7.3.2	Emergency Control Procedure	144	
		7.3.3	Proposed Fire Extinguishers	145	
		7.3.4	Alarm System	145	
	7.4	Cumula	ative Impact Study	146	
		7.4.1	Air Environment	149	
			7.4.1.1 Cumulative Impact of Air Pollutants	150	
		7.4.2	Noise Environment	150	
		7.4.3	Socio Economic Environment	151	
		7.4.4	Ecological Environment	152	
	7.5	Plastic	Waste management Plan for Proposed Project	152	
		7.5.1	Objective	152	
	7.6	Post Co	ovid health management Plan for Proposed Project	153	
		7.6.1	Post-Covid follow-up Protocol	153	
VIII			PROJECTS BENEFITS	155-157	
	8.0	Genera	1	155	
	8.1	Employ	yment Potential	155	
	8.2	Socio-I	Socio-Economic Welfare Measures Proposed		
	8.3	Improv	ement in Physical Infrastructure	155	
	8.4	Improv	Improvement in Social Infrastructure		
	8.5	Other 7	Tangible Benefits	156	
	8.6	Corpor	ate Social Responsibility	156	
	8.7	Corpor	ate Environment Responsibility	157	
	8.8	Summa	ary of project benefits	157	

IX		ENV	IRONMENTAL COST BENEFIT ANALYSIS	158		
Χ		E	NVIRONMENTAL MANAGEMENT PLAN	159-177		
	10.0	General				
	10.1	Enviror	mental Policy	159		
		10.1.1	Description of the Administration and Technical setup	159		
	10.2	Land E	Land Environment Management			
	10.3	Soil Ma	Soil Management			
	10.4	Water N	Management	161		
	10.5	Air Qua	lity Management	162		
	10.6	Noise P	Collution Control	162		
	10.7	Ground	Vibration and Fly rock control	163		
	10.8	Biologi	cal Environment Management	164		
		10.8.1	Green Belt Development Plan	165		
	10.9	Occupa	tional Safety & Health Management	165		
		10.9.1	Medical Surveillance and Examinations	166		
		10.9.2	Proposed Occupational Health and Safety Measures	167		
		10.9.3	Health and Safety Training Program	168		
		10.9.4	BudgetaryProvisionforEnvironmentalManagement	169		
	10.10	Conclus	sion	177		
XI			178-189			
	11.0	Introdu	ction	178		
	11.1	Project	Description	178		
	11.2	Descrip	tion of the Environment	179		
		11.2.1	Land Environment	179		
		11.2.2	Soil Characteristics	179		
		11.2.3	Water Environment	179		
	11.3	Air Env	vironment	180		
	11.4	Noise E	Environment	181		
	11.5	Biologi	cal Environment	181		
	11.6	Socio-E	Economic Environment	181		

11.7	Anticipated Environmental Impacts and Mitigation	181
	Measures for Proposed Project	
11.8	Analysis of Alternatives	186
11.9	Environmental Monitoring Program	187
11.10	Additional Studies	187
11.11	Project Benefits for Proposed Project	188
11.12	Environment Management Plan	189
11.13	Conclusion	189

LIST OF TABLES

TABLENo.	CONTENTS	PAGE No.
1.1	Details of Quarries within the cluster area of 500 m radius	2
1.2	Details of project proponent	6
1.3	Salient Features of the Proposed Project	6
2.1	Site connectivity to the project area	12
2.2	Corner coordinates of proposed project	12
2.3	Estimated resources and reserves of the project	17
2.4	Year-wise production details	17
2.5	Conceptual Blasting Design	21
2.6	Operational details for proposed project	22
2.7	Machinery details	22
2.8	Land use data at present, during scheme of mining, and at the end of mine life	23
2.9	Mine closure budget	23
2.10	Ultimate pit dimension	27
2.11	Water requirement for the project	27
2.12	Fuel requirement details	28
2.13	Capital requirement details	28
2.14	Employment potential for the proposed project	29
2.15	Expected time schedule	29
3.1	Monitoring attributes and frequency of monitoring	30
3.2	LULC statistics of the study area	34

3.3	Soil sampling locations	37
3.4	Soil quality of the study area	40
3.5	Water sampling locations	41
3.6	Ground Water Quality Result	44
3.7	Surface Water Quality Result	45
3.8	Pre-monsoon water level of Open wells within 2 km radius	47
3.9	Post-monsoon water level of Open wells within 2 km radius	47
3.10	Pre-monsoon water level of bore wells within 2 km radius	48
3.11	Post-monsoon water level of bore wells within 2 km radius	48
3.12	Vertical electrical sounding data	53
3.13	Onsite Meteorological Data	55
3.14	Methodology and Instrument used for AAQ analysis	60
3.15	National ambient air quality standards	60
3.16	Ambient air quality (AAQ) monitoring locations	61
3.17	Summary of AAQ result	63
3.18	Noise Monitoring Locations	66
3.19	Ambient Noise Quality Result	67
3.20	Calculation of density, frequency (%), dominance, relative density, relative frequency, relative dominance & important value index	71
3.21	Calculation of Species Diversity by Shannon – Wiener Index, Evenness and Richness	71
3.22	Flora in mine lease area	72
3.23	Flora in 300 m Radius	73
3.24	Calculation of Species Diversity in 300-meter radius	75
3.25	Species Richness (Index) in 300-meter radius	76
3.26	Flora in Buffer Zone	77
3.27	Calculation of Species Diversity in buffer Zone	81
3.28	Species Richness (Index) in Buffer Zone	83
3.29	Aquatic Vegetation	86
3.30	Major Crops in Dharmapuri District	87
3.31	Major Field Crops & Horticulture in Dharmapuri District	88

3.32	Methodology applied during survey of fauna	89
3.33	Fauna in Core Zone	90
3.34	Fauna in buffer zone	91
3.35	Kalappanahalli Village Population Facts	94
3.36	Population and literacy data of study area	95
3.37	Educational Facilities & Water & Drainage Facilities Data of Study Area	96
3.38	Workers Profile in the Study Area	97
3.39	Traffic survey locations	99
3.40	Existing traffic volume	99
3.41	Rough stone transportation requirement	99
3.42	Summary of traffic volume	99
3.43	Details of environmentally sensitive ecological features in the study area	101
4.1	Empirical formula for emission rate from overall mine	108
4.2	Estimated emission rate	109
4.3	Incremental & Resultant GLC of PM2.5	110
4.4	Incremental & Resultant GLC of PM10	110
4.5	Incremental & resultant GLC of SO ₂	115
4.6	Incremental & resultant GLC of NO _X	115
4.7	Activity and noise level produced by machinery	118
4.8	Predicted noise incremental values	118
4.9	Predicted PPV Values due to Blasting	120
4.10	Predicted PPV Values due to Blasting at 100-500 radius	121
4.11	Carbon Released During Five Years of Rough Stone and Gravel Production	122
4.12	CO ₂ Sequestration	123
4.13	Recommended Species for Greenbelt Development Plan	123
4.14	Greenbelt development plan	124
4.15	Budget for greenbelt development plan	124
4.16	Ecological Impact Assessments	125
4.17	Anticipated Impact of Ecology and Biodiversity	127

6.1	Implementation schedule for proposed project	136
6.2	Proposed monitoring schedule post EC for the proposed quarry	137
6.3	Environment monitoring budget	138
7.1	Risk assessment& control measures for proposed project	140
7.2	Proposed teams for emergency situation	143
7.3	Proposed fire extinguishers at different locations in (P1)	145
7.4	Salient Features of Proposed Projects Site (P2)	146
7.5	Salient Features of Proposed Projects Site (P3)	147
7.6	Salient Features of Proposed Projects Site (P4)	148
7.7	Cumulative Production Load of Rough Stone	149
7.8	Cumulative Production Load of Gravel	149
7.9	Cumulative Impact Results from 4 proposed project	150
7.10	Cumulative Impact of Noise from 4 Proposed Quarries on Kuppangari Habitation	150
7.11	Cumulative Effect of Ground Vibrations Resulting from 4 Mines on Habitation of Kuppangari	151
7.12	Socio Economic Benefits from 4 Mines	151
7.13	Employment Benefits from 4 Mines	151
7.14	Greenbelt Development Benefits from Mine	152
7.15	Action Plan to Manage Plastic Waste	152
8.1	CER – action plan	157
8.2	Project Benefits to the state Government	157
10.1	Proposed controls for land environment	160
10.2	Proposed Controls for Soil Management	161
10.3	Proposed controls for water environment	161
10.4	Proposed controls for air environment	162
10.5	Proposed controls for noise environment	163
10.6	Proposed controls for ground vibrations & fly rock	164
10.7	Proposed greenbelt development plan	165
10.8	Medical examination schedule	166
10.9	List of periodical trainings proposed for employees	168

10.10	EMP budget for proposed project	170-176
10.11	Estimation of Overall EMP Budget after Adjusting 5% Annual Inflation	177
11.1	Anticipated impacts & mitigation measures	

LIST OF FIGURES

FIGURE	FIGURE		
NO.			
1.1	Location of the proposed and existing rough stone	4	
1.1	quarries in the cluster of 500m radius	Ţ	
2.1	Overall view of proposed project site	9	
2.2	Key map showing location of the project site	10	
2.3	Site connectivity to the Lease Area	11	
2.4	Google earth image showing lease area with pillars	13	
2.5	Mine Lease Plan	14	
2.6	Surface and Geological Plan	15	
2.7	Geological Sections	16	
2.8	Year wise Development and Production Plan	18	
2.8a	Year wise Development and Production Section	19	
2.9	Mine layout plan and land use pattern	24	
2.10	Conceptual Plan	25	
2.11	Conceptual Sections	26	
3.1	Geology Map of the Proposed Project Site	32	
3.2	Geomorphology Map of the Proposed Project Site	33	
3.3	LULC map of 5km radius from the proposed project	35	
5.5	site	55	
3.4	Drainage map of 5 km radius from the proposed project	36	
5.4	site showing a portion of dendritic pattern	50	
3.5	Map showing soil sampling location within 5 km radius	38	
5.5	around the proposed project site	38	
3.6	Soil Erosion map within 5 km Radius around the	39	
5.0	Proposed Project Site	57	
3.7	Map showing water sampling locations within 5 km	43	
5.1	radius around the proposed project site		
3.8	Open well static groundwater elevation map showing	49	

the direction of groundwater flow during per-monsoon	
season	
Open well static groundwater elevation map showing	
the direction of groundwater flow during post-monsoon	50
season	
	51
	51
Borewell static groundwater elevation map showing the	
direction of groundwater flow during post-monsoon	52
season	
Graph showing occurrence of water bearing fracture zones at	
the depth range of 60 m below ground level in proposed	54
project	
Long-term monthly average rainfall vs monthly rainfall	56
Windrose Diagram for 2019 and 2020 (March to May)	57
Windrose Diagram for 2021 and 2022 (March to May)	58
Onsite Wind Rose Diagram	59
Map showing ambient air quality monitoring station	
locations around 5 km radius from the proposed	62
project site	
Bar chart showing maximum, minimum, and the	
	64
	64
air quality monitoring stations within 5km radius	
Bar chart showing maximum, minimum, and the	<i></i>
	65
	65
•	
Bar chart showing maximum, minimum, and the	
average concentrations of pollutants in the atmosphere	66
within 5km radius	
Bar Chart Showing Day Time Noise Levels Measured	68
in Core and Buffer Zones	
	Open well static groundwater elevation map showing the direction of groundwater flow during post-monsoon season Borewell static groundwater elevation map showing the direction of groundwater flow during pre-monsoon season Borewell static groundwater elevation map showing the direction of groundwater flow during post-monsoon season Graph showing occurrence of water bearing fracture zones at the depth range of 60 m below ground level in proposed project Long-term monthly average rainfall vs monthly rainfall Windrose Diagram for 2019 and 2020 (March to May) Windrose Diagram for 2021 and 2022 (March to May) Onsite Wind Rose Diagram Map showing ambient air quality monitoring station locations around 5 km radius from the proposed project site Bar chart showing maximum, minimum, and the average concentrations of PM _{2.5} measured from the nine air quality monitoring stations within 5 km radius Bar chart showing maximum, minimum, and the average concentrations of PM ₁₀ measured from the nine air quality monitoring stations within 5 km radius Bar chart showing maximum, minimum, and the average concentrations of SO ₂ measured from the nine air quality monitoring stations within 5 km radius Bar chart showing maximum, minimum, and the average concentrations of NO ₂ measured from the nine air quality monitoring stations within 5 km radius Bar chart showing maximum, minimum, and the average concentrations of NO ₂ measured from the nine air quality monitoring stations within 5 km radius Bar chart showing maximum, minimum, and the average concentrations of NO ₂ measured from the nine air quality monitoring stations within 5 km radius Bar chart showing maximum, minimum, and the average concentrations of NO ₂ measured from the nine air quality monitoring stations within 5 km radius Bar chart showing maximum, minimum, and the average concentrations of NO ₂ measured from the nine air quality monitoring stations within 5 km radius Bar chart showing maximum, minimum, and the average concentrations of pollutants in the atmosphe

3.23	Bar Chart Showing Night Time Noise Levels Measured in Core and Buffer Zones	68
3.24	Map showing Noise Level Monitoring Station Location Around 5 Km Radius from the Proposed Project Site	69
3.25	Quadrates sampling methods of flora	70
3.26	Floral diversity species Richness (Index) in 300m radius	76
3.27	Floral diversity species Richness (Index) in 10m radius	83
3.28	Flora in Core and Buffer Area	86
3.29	Agricultural land in the study area	88
3.30	Traffic Density Map	100
3.31	Field study & Socio- Economic Study Photographs	103
4.1	Predicted incremental concentration of PM _{2.5}	111
4.2	Predicted incremental concentration of PM ₁₀	112
4.3	Predicted incremental concentration of SO ₂	113
4.4	Predicted incremental concentration of NO _X	114
6.1	Proposed environmental monitoring chart	135
10.1	Personal protective equipment to the mine workers	168

LIST OF ANNEXURES

Annexure No.	Contents	Page No.
Ι	Copy of ToR letter	195-218
II	Copy of 500 m radius letter	219-223
III	Approved mining plan along with mining plan AD/DD letter/original mining plan plates / modified plates	215-340
IV	DFO letter	341
V	NABET certificate of EIA consultant	342

CHAPTER I

INTRODUCTION

1.0 PREAMBLE

Environmental Impact Assessment (EIA) study is a process used to identify the environmental, social and economic impacts of a project prior to decision-making. EIA systematically examines both beneficial and adverse consequences of the proposed project and ensure that these impacts are considered during the project designing. According to the Ministry of Environment and Forests, Govt. of India, EIA notification S.O. 1533(E) of 14th September 2006 and its subsequent amendments as per Gazette Notification S.O. 3977 (E) of 14th August 2018, all the mining projects are broadly classified into two categories, i.e., category A and category B, based on the spatial extent of the projects. The category B projects are further divided in to B1 and B2 on the basis of the guidelines issued of the Ministry of Environment and Forests. All mining projects included in category B1 require an EIA report for obtaining environmental clearance from the State Environment Impact Assessment Authority (SEIAA). As the proposed project falls within the cluster of quarries of overall extent of greater than 5 ha and less than 50 ha in the case of non-coal mine lease, the proposed project falls under the category B1 and the project requires preparation and submission of an EIA report after public consultation to SEIAA for obtaining environmental clearance as per the order dated 04.09.2018 & 13.09.2018 passed by Hon'ble National Green Tribunal, New Delhi in O.A. No. 173 of 2018 & O.A. No, 186 of 2016 and MoEF & CC Office Memorandum F. No. L-11011/175/2018-IA-II (M) Dated: 12.12.2018.

In compliance with ToR obtained vide Lr No. SEIAA-TN/F.No.10021/SEAC/ToR-1501/2023 Dated:19.07.2023, this EIA report has been prepared for the project proponent, Thiru.A. Sasimohan applied for rough stone quarry lease in the Government land falling in S.F.No.389 (Part) over an extent of 2.02.5 ha in Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District and Tamil Nadu. This EIA report takes into account the rough stone quarries within the cluster of 500 m radius from the periphery of the proposed project site. The cluster contains four proposed projects known as P1, P2, P3, P4 and one Existing projects E1. All the projects mentioned above have been taken for cluster extent calculation as per MoEF & CC Notification S.O. 2269 (E) Dated 1st July 2016. The total extent of all the quarries is 11.35.0 ha, also known as the cluster extent. The quarries involved in the calculation of cluster extent are shown in Figure 1.1.

Proposed Quarries					
Code	Name of the Owner	S.F. No	Village	Extent (ha)	Status
P1	A. Sasimohan	389(Part)	Kalappanahalli	2.02.5	Proposed Area
P2	Tmt.M.Mallika	401 (Part)	Kalappanahalli	3.70.0	Applied Area
P3	M.G.Sekar	387/3, 387/4	Kalappanahalli	2.41.0	Applied Area
P4	M.G.Sekar	385	Kalappanahalli	0.66.0	Applied Area
		Existing Q	Juarry		
E1	M.G.Sekar	329/1A, 331/1A, 1B, 1C, 331/2, 332/1, 332/2, 3	Kalappanahalli	2.55.5	08.03.3019 to 07.03.2024
Expired Quarries					
C	Total Cluster Extent			11.	.35.0

 Table 1.1 Details of Quarries within the cluster area of 500 m radius

Source:

AD Letter - Rc.No.308/2022, Dated:03.03.2023.

Note: Cluster area is calculated as per MoEF & CC Notification – S.O. 2269 (E) Dated:

01.07.2016.

1.1 PURPOSE OF THE REPORT

The purpose of the report is to study baseline environmental conditions in and around the proposed project area for the period of **October – December 2023** according to the provisions of MoEF & CC Office Memorandum dated 29.08.2017 and MoEF & CC Notification, S.O. 996 (E) dated 10.04.2015, to analyse impacts and provide mitigation measures.

1.2 ENVIRONMENTAL CLEARANCE

The Environmental Clearance process for the project will comprise of four stages. These stages are screening, scoping, public consultation & appraisal.

Screening

Screening is the first stage of the EIA process. In this stage, the State level Expert Appraisal Committee (SEAC) examined the application of EC made by the proponent in Form 1 through online (Proposal No. SIA/TN/ MIN/428504/2023, dated 09.05.2023) and decided that the project requires detailed environmental studies for the preparation of EIA report. Therefore, the proponent submitted application for Terms of Reference (ToR) on 11.05.2023. *Scoping*

The proposal was placed in the 390th meeting of SEAC on 07.07.2023. Based on the presentation and documents furnished by the project proponent, SEAC decided to recommend the proposal for the grant of Terms of Reference (ToR) and the recommendation for ToR is subjected to the outcome of the Honourable NGT, Principal Bench, New Delhi (O.A No.186 of 2016 O.A. No.200/2016 (M.A.No.350/2016) and and O.A.No.580/2016 (M.A.No.1182/2016) and O.A.No.102/2017 and O.A.No.404/2016 (M.A.No. 758/2016, M.A.No.920/2016, M.A.No.1122/2016, M.A.No.12/2017 & M.A. No. 843/2017) and O.A.No.405/2016 and O.A.No.520 of 2016 (M.A.No. 981/2016, M.A.No.982/2016 & M.A.No.384/2017).

Public Consultation

In this stage, an application along with the draft of EIA and EMP report will be made to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing ensuring public participation at the project site or in its close proximity in the district. During public hearing, an opportunity will be given to the people living nearby the project site to express their opinions about the impact of the proposed project on the environment. The outcome of the public hearing meeting will be updated in the final EIA report for appraisal.

Appraisal

In this stage, an application along with final EIA report including the outcome of the public consultations will be made to the SEIAA. The application thus made will be scrutinized by the SEAC. Then, the SEAC will make recommendations to grant EC or reject the application to the SEIAA.

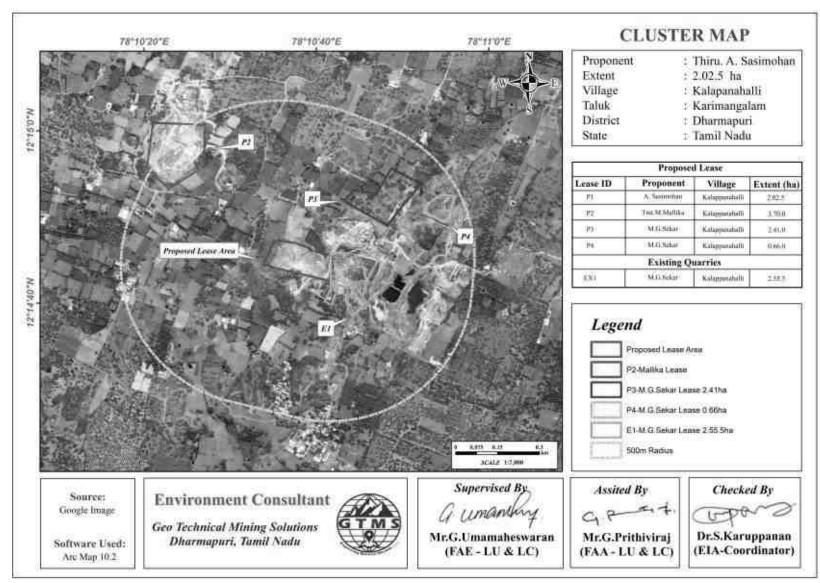


Figure 1.1 Location of the proposed and existing rough stone quarries in the cluster of 500 m radius

1.3 TERMS OF REFERENCE (ToR)

The SEAC framed a comprehensive Terms of Reference (TOR) based on the information provided in the Form 1 and information collected from the proposed project site visit and issued TOR to the proponent vide Letter No: SEIAA-TN/F.No.10021/SEAC/ToR-1501/2023 Dated:19.07.2023.

1.4 POST ENVIRONMENT CLEARANCE MONITORING

For category B projects, irrespective of its clearance by MoEF/SEIAA, the project proponent shall prominently advertise in the newspapers indicating that the project has been accorded environmental clearance and the details of MoEF website where it is displayed.

After obtaining EC, the project proponent will submit a half-yearly compliance report of stipulated environmental clearance terms and conditions to MoEF & CC Regional Office & SEIAA on 1st June and 1st December of every year.

1.5 TRANSFERABILITY OF ENVIRONMENTAL CLEARANCE

A prior environmental clearance granted for a specific project or activity to an applicant may be transferred during its validity to another legal person entitled to undertake the project or activity on application by the transferor or the transferee with a written "no objection" by the transferor, to, and by the regulatory authority concerned, on the same terms and conditions under which the prior environmental clearance was initially granted, and for the same validity period (EIA Guidance Manual for Mining of Minerals, 20).

1.6 GENERIC STRUCTURE OF EIA DOCUMENT

The overall contents of the EIA report follow the list of contents prescribed in the EIA Notification 2006 and the "Environmental Impact Assessment Guidance Manual for Mining of Minerals" published by MoEF & CC. The generic structure of the EIA document should be as under:

- Introduction
- Project Description
- Description of the Environment
- Anticipated Environmental Impact & Mitigation Measures
- Analysis of Alternatives (Technology & Site)
- Environmental Monitoring Program
- Additional Studies
- Project Benefits
- Environmental Cost Benefit Analysis
- Environmental Management Plan (EMP)

- Summary & Conclusion
- Disclosure of Consultants engaged.

1.7 IDENTIFICATION OF THE PROJECT PROPONENT

The profile of the project proponent who has involved in this quarrying project has been given in Table 1.2.

Name of the Project Proponent	Thiru.A.Sasimohan	
	S/o. K.P.Anbalagan,	
Address	No.1/136-A, Kerakodahalli Village,	
	Karimangalam Taluk,	
	Dharmapuri District.	
Status	Proprietor	

1.8 BRIEF DESCRIPTION OF THE PROJECT

The proposed project deals with excavation of rough stone which is primarily used in construction projects. The method adopted for rough stone excavation is Open Cast Semi Mechanized mining method involving formation of benches with 5 m height and 5 m width. The proposed project site is located in Kalappanahalli Village, Karimangalam Taluk, Dharmapuri District, and Tamilnadu State. Some of the important features of the proposed project have been provided in Table 1.3.

Name of the Quarry	Thiru.A.Sasimohan Rough Stone Quarry	
Toposheet No	57 L/04	
Latitude	12°14'42.56830" N to 12	2°14'47.16412" N
Longitude	78°10'33.87094" E to 78	8°10'41.82401" E
Highest Elevation	484 m AN	1SL
Ultimate depth of Mining as for Tor	37 m BC	JL
Gaalagiaal Basauraas	Rough Stone in m ³	Top Soil in m ³
Geological Resources	559631	1818
Mineable Reserves	Rough Stone in m ³	Top Soil in m ³
Winicable Reserves	174305	304
Proposed reserve for five years	Rough Stone in m ³	Top Soil in m ³
Proposed reserve for five years	174305	304
Ultimate Pit Dimension as for Tor	139m (L) x 65m (W) x 37m (D)	
Method of Mining	Opencast Mechanized Mining Method	
Topography	Plain area	
Machinery proposed	Jack Hammer	3 Nos

 Table 1.3 Salient Features of the Proposed Project

	Compressor	1 Nos
	Hydraulic Excavator	1 Nos
	Tippers	4 Nos
	The quarrying operation is proposed to carried by open	
Blasting Method	cost semi mechanized mining in conjunction with	
Blasting Method	conventional method of mini	ng using jack hammer
	drilling for shattering effect and	d loosen the rough stone.
Proposed Manpower Deployment	17 Nos	
Project Cost0	Rs.1,04,94,000/-	
CER Cost	Rs.5,00,000/-	
Proposed Water Requirement	3.0 KLD	

1.9 SCOPE OF THE STUDY

The main scope of the EIA study is to quantify the cumulative impact of the quarries in the cluster on the study area and formulate the effective mitigation measures for each individual lease. A detailed account of the emission sources, emissions control equipment, background air quality levels, meteorological measurements, dispersion model and all other aspects of pollution like effluent discharge, and dust generation has been provided in this report. The baseline monitoring study has been carried out during the period of **October – December 2023** for various environmental components such as land, soil, air, water, noise, ecology, etc. to assess the anticipated impacts of the cluster quarry projects on the environment and suggest suitable mitigation measures for likely adverse impacts due to the proposed project. The sampling methodologies for the various environmental parameters required for the study, frequency of sampling, method of sample analysis, etc., are given in Table 3.1 in chapter III.

1.10 REFERENCES

The report has been prepared using the following references:

- Guidance Manual of Environmental Impact Assessment for Mining of Minerals, Ministry of Environment and Forests, February, 2010
- ✤ EIA Notification, 14th September, 2006
- ✤ Terms of Reference (ToR) issued by SEIAA.
- ✤ Approved Mining Plan of this Project.
- The Water (Prevention and Control of Pollution) Act, 1974
- The Air (Prevention and Control of Pollution) Act, 1981
- The Environment (Protection) Act, 1986
- The Forest (Conservation) Act, 1988
- ✤ The Wildlife (Protection) Act, 1972.

CHAPTER II

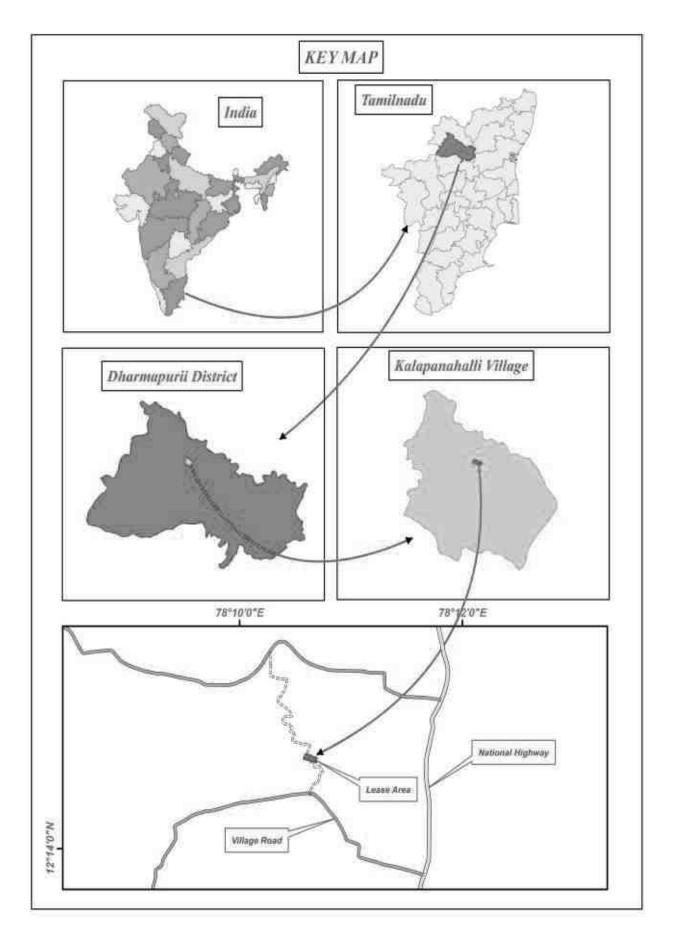
PROJECT DESCRIPTION

2.0 GENERAL INTRODUCTION

The open cast mining method, also known as open-pit mining has been proposed to extract the mineral deposit. It is the most commonly used surface mining method all over the world and is generally suitable for mining low-grade mineral deposits that are found close to the surface of the earth and distributed uniformly over a large area. Open pits are also termed quarries when the pits are used for the extraction of building materials and dimension stones.

Opencast mining starts with the development of benches, the widths of which will be determined in such a way to accommodate the use of heavy machinery. The walls of open pits will be dug at an angle that will be decided based on well-established industry standards to provide safety. In some cases where the walls are composed of weak material such as soil and highly weathered rocks, dewatering holes will be drilled horizontally to relieve the water pressure to avoid wall collapse inside the mine site.

The required mine-related infrastructures will be established close to the open pit. The mining infrastructures may include an administration building, a maintenance garage, and a warehouse. The materials mined from open pits will be brought to the surface using trucks. The waste rocks will be piled up in a suitable location, usually close to the open pit. The structure produced by the waste rock pile is known as a waste dump. The dimension of the waste dump will be determined based on industrial safety standards to prevent the rocks from falling into the surrounding area.


2.1 DECSCRIPTION OF THE PROJECT

The proponent, **Thiru.A.Sasimohan** is involved in the undertaking of establishment, construction, development, and closure of opencast mines. He, through the exploration phase, identified the proposed project site as the one that has a great potential of producing an economically viable quantity of rough stone Therefore, the proponent had applied for quarry lease on 26.07.2017 to extract rough stone. The precise area communication letter was issued by Department of Geology and Mining, Dharmapuri vide Rc.No.155/2017 (Mines) dated:07.08.2017. Based on the precise area communication letter, mining plan was prepared. The mining plan thus prepared was approved by Assistant Director Department of Geology and Mining, Dharmapuri Roc.No.308/2022 (Mines) dated:03.03.2023. The overall view of the project site is shown in Figure 2.1.

Figure 2.1 Overall View of Proposed Project Site 2.2 LOCATION AND ACCESSIBILITY

The proposed quarry project is located in Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District, as shown in Figure 2.2 & 2.3. The area lies between Latitudes from 12°14'42.56830"N to 12°14'47.16412"N and Longitudes from 78°10'33.87094"E to 78°10'41.82401"E. The maximum altitude of the project area is 478 m AMSL. Accessibility details to the proposed project site have been given in Table 2.1.

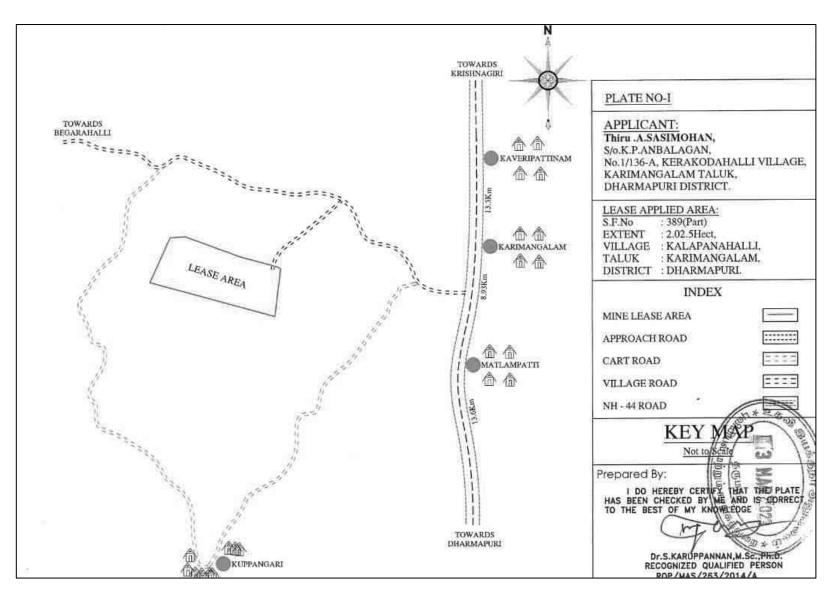


Figure 2.3 Site Connectivity to the Project Area

Nearest Roadways	SH- Road	5.0 km N
inearest Roadways	NH - 44 Road	1.79 km E
Nearest Town	Karimangalam	7.17 km N
Nearest Railway Station	Dharmapuri	13.4 km S
Nearest Airport	Salem	52.7 km S
Nearest Seaport	Chennai	247.5 km E
	Periyanahalli	2.04 km N
Nearest Villages	Kuppangari	0.51 km S
incarest villages	Periyampatti	2.20 km E
	Begarahalli	4.58 km W

 Table 2.1 Site Connectivity to the Project Area

2.3 LEASEHOLD AREA

- The extent of the proposed project site is 2.02.5 ha.
- ✤ The proposed project is site specific.
- ✤ There is no mineral beneficiation or processing proposed inside the project area.
- There is no forest land involved in the proposed area and is devoid of major vegetation and trees.

2.3.1 Corner Coordinates

The boundary corner geographic coordinates are given in Table 2.2 and the proposed project site with boundary coordinates has been shown in Figure 2.4.

T . 4 . 1	T	Pillar	T ALA I	Longitude	
Latitude	Longitude	ID	Latitude		
12°14'45.40942"N	78° 10'41.82401"E	9	12°14'45.92671"N	78°10'34.51414"E	
12°14'43.79031"N	78° 10'41.67232''E	10	12°14'47.16412"N	78°10'35.04715"E	
12°14'42.56830 "N	78°10'41.563152"E	11	12° 14'47.25071"N	78°10'35.94887"E	
12°14'42.93552"N	78°10'39.95161"E	12	12° 14'46.94361"N	78°10'37.68231"E	
12°14'43.33181"N	78°10'38.34295"E	13	12° 14'46.37151"N	78°10'39.22811"E	
12° 14'43.72634"N	78° 10'36.73964"E	14	12° 14'46.12613"N	78°10'39.254684"E	
12°14'44.12295"N	78°10'35.13171"E	15	12° 14'45.79954"N	78°10'40.87915E	
12°14'44.43344"N	78°10'33.87094"E	16	12° 14'45.53684"N	78°10'41.64037"E	
	12°14'45.40942"N 12°14'43.79031"N 2°14'42.56830 "N 12°14'42.93552"N 12°14'43.33181"N 2° 14'43.72634"N 12°14'44.12295"N	12°14'45.40942"N 78° 10'41.82401"E 12°14'43.79031"N 78° 10'41.67232"E 2°14'42.56830 "N 78°10'41.563152"E 12°14'42.93552"N 78°10'39.95161"E 12°14'43.33181"N 78°10'38.34295"E 2° 14'43.72634"N 78° 10'36.73964"E 12°14'44.12295"N 78°10'35.13171"E	ID 12°14'45.40942"N 78° 10'41.82401"E 9 12°14'43.79031"N 78° 10'41.67232"E 10 2°14'42.56830 "N 78°10'41.563152"E 11 12°14'42.93552"N 78°10'39.95161"E 12 12°14'43.33181"N 78°10'38.34295"E 13 2° 14'43.72634"N 78°10'36.73964"E 14 12°14'44.12295"N 78°10'35.13171"E 15	ID12°14'45.40942"N78° 10'41.82401"E912°14'45.92671"N12°14'43.79031"N78° 10'41.67232"E1012°14'47.16412"N2°14'42.56830 "N78°10'41.563152"E1112° 14'47.25071"N12°14'42.93552"N78°10'39.95161"E1212° 14'46.94361"N12°14'43.33181"N78°10'38.34295"E1312° 14'46.37151"N2° 14'43.72634"N78° 10'36.73964"E1412° 14'46.12613"N12°14'44.12295"N78°10'35.13171"E1512° 14'45.79954"N	

Table 2.2 Corner Coordinates of Proposed Project

2.4 GEOLOGY

The lease area geologically occurs on Acid to Intermediate Charnockite. The Charnockite, commercially called as fireclay occurs within the migmatite rock. Also, the lease area geomorphologically occurs pediment pediplain complex.

20110303	E	78:10/302 E	¢,∈ PIΓ		LAR LOCATION MAP		
	The second s	61 W 2 3	Propo	nent	Thin	A. Sasimohan	
12/6 29	and the second	and the second	Exten	£ 6	2.02	5 ha	
100-2		TA SEXCENT RE-	Villag	¢ :	Kala	nanahalli	
0.0	Self masculates	and the second second	Taluk	é a	Karin	nangalam	
14 m	and the second second		Distri	et :	Dhan	maguri	
124	0 16H	10000	State		Tanul Nadu		
	and the second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	PILLA	R ID LATIT	UDE	LONGITUDE	
1200 300			341 1	121445	AUN:	78*10/41.82*8	
IP.	LANGE / No	P24	2	12"1443.	29"N	78*10/41,67*E	
		and the set	1	1211442	57"N	78*1041.56*E	
			4	1211442	94°N	78°10'39.95*E	
	en + en en an		5	121400	33"N	78°10'38.34*E	
THE REAL PROPERTY AND	A CALL STOL OF LOOK	A RECEIPTION OF AN	221 0	82*14*43	73"N	78*10/36-74*E	
Participant (P	# 11 mar 1 m	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	12*14*44	12"N	78°10'35.13*E	
ALL OF	(e6)		- W	12114-44	43*N	78°10/33.%7*E	
Carles States	Ps	2012628118	9	1211445	9 [±] N	78°10'34.51°E	
mater and	E REPRESE	P.6	10	12*14'47	16"N	78*10/33.05°E	
Sector 1	Construction of the	and here	31	1271447	25°N	78°10/33.05°E	
Property in the	The second second second	AND STREET	5 2 12	12114/46	94°N	78"10/37.6%"E	
CHERKEN AND	142 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2.5 元章	13	82714746	37"N.	78-10/39.25*E	
And a state of the state of	aug -	the is suit for	14	1211446	13°N	78°10/39.25*E	
A CONTRACTOR	Sector And Assess	A AND AND	444 1 15	12/14/45	SUN	78110/40.88*E	
1 2000	- 10 R L	200 H H H H H H H H H H H H H H H H H H	40	12/14/45	54'N	78°10'41,64°E	
Source: Google Impery	Environment Consultant Geo Technical Mining Solutions	Solutions GTMS 4 (Lmanth		Awited By	i. (Checked By	
Software Useit: Are May 10.2	Dharmanuri, Tamii Nadu Mr.G.U		entaheswaran LU & LC)	Mr.G.Prithivir (EAA - LU & L)r.S.Karuppanna EIA - Coordinato	

Figure 2.4 Google Earth Image Showing Lease Area with Pillars

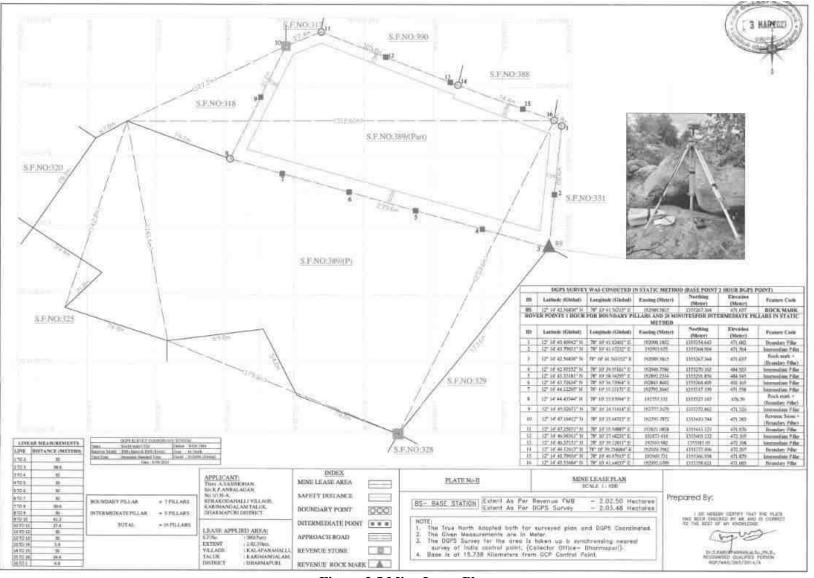


Figure 2.5 Mine Lease Plan

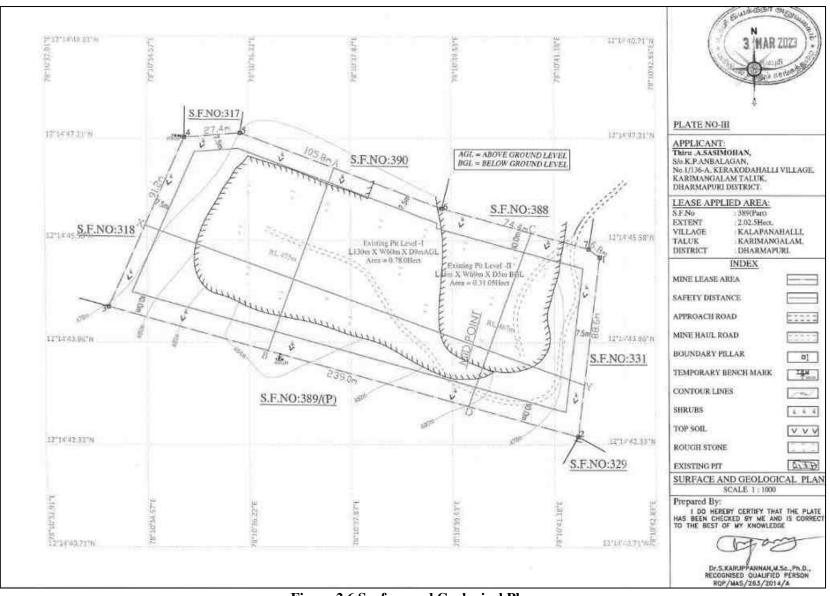


Figure 2.6 Surface and Geological Plan

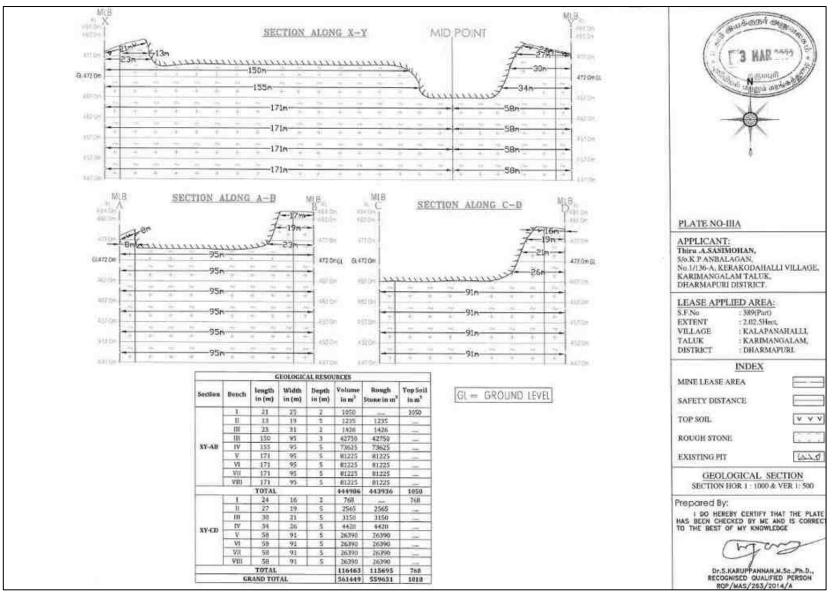


Figure 2.6a Geological Sections

2.5 QUANTITY OF RESERVES

The Resources and Reserves of Rough Stone were calculated based on cross-section method by plotting sections to cover the maximum lease area for the proposed project. Based on the availability of geological resources, the mineable reserves are calculated by considering excavation system of bench formation and leaving essential safety distance of 7.5m and 10m safety distance as per precise area communication letter and deducting the locked-up reserves during bench formation (also called as Bench Loss). The mineable reserves are calculated up to the depth of 37m considering there is no waste / overburden / side burden (100% Recovery anticipated) for the proposed project. The plate used for reserve estimation has been shown in Figure 2.6,2.6a results of geological resources and reserves have been shown in Table 2.3.

Resource Type	Rough Stone in m ³	Top Soil in m ³
Geological Resource in m ³	559631	1818
Mineable Reserves in m ³	174305	304
Proposed production for 5 years m ³	174305	304

Table 2.3 Estimated Resources and Reserves of the Project

Based on the year wise development and production plan and sections, the year wise production results have been given in Table 2.4 & Figure 2.7 and Figure 2.7a.

Table 2.4 Year-Wise Production Details

Year	Rough Stone in (m ³)	Top Soil in m ³ (1 year)
Ι	28885	304
II	39130	
III	42260	
IV	31135	
V	32895	
Total	174305	304

Source: Approved Mining Plan & Tor

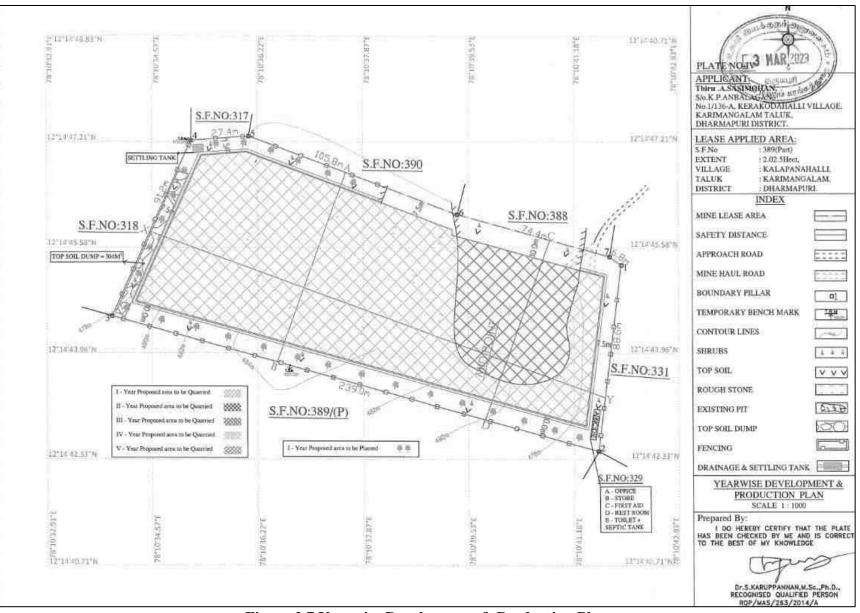


Figure 2.7 Yearwise Development & Production Plan

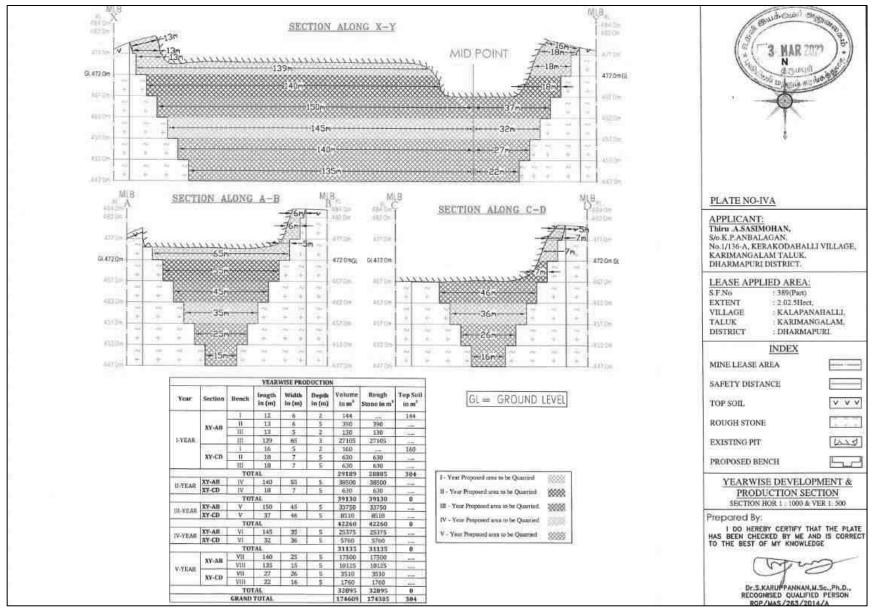


Figure 2.7a Year wise Production Sections

2.6 MINING METHOD

The Quarrying operation is proposed to be carried out by open cast semi-mechanized mining method with the bench height and width of 5 m each. The open cast semi-mechanized method involving drilling and blasting is proposed to extract rough stone and gravel. The extracted rough stone will be loaded manually to the trucks for dispatch to the customers. In this project, NONEL blasting will be adopted to extract rough stone.

The open cast mining method offers several benefits to the proponent when compared to the more complex underground mining methods. The most important benefits include relatively smaller capital and operating costs, lesser safety hazards, ease of use for mass production, small closure costs, no restrictions on the use of heavy machinery if required, and easy drainage of subsurface water. Moreover, it provides a reasonable return on investments to the proponent and contributes to the growth of the local economy

Conceptual Blasting Design

In this project, NONEL blasting will be employed to win rough stone. This method will involve closed spaced perimeter holes to reduce the overbreak/backbreak on a blast. The objective of the blasting design is to prevent fly rocks from damaging the nearby structures.

Rules of Thumb for Blast Design

Based on practical experience and technical information, a set of rules for blasting have been provided as below (<u>Chapter8 (nps.gov</u>)). These rules will be applied to blast rocks in the proposed project.

Rule 1: The detonation velocity (VOD) of the explosive should be close to the same value of the sonic velocity (VSO) of the rock to be blasted.

The sonic velocity of a rock is considered to be a reliable indicator of its structural integrity and resistance to fragmentation. As the VOD of the explosive approaches close to the VSO of the rock, the blasting would result in relatively smaller size of fragmentation with uniformity. There is no value in using an explosive that has a VOD greatly in excess of the VSO of the rock, since there is little or no improvement in fragmentation above the VSO. When selecting an explosive to match up the VSO of a rock mass, variance of <10% in the velocities is acceptable.

Rule 2: Generally, select the densest explosive possible.

When the density of explosives is higher, the potential energy of the explosives can be greater and the more of it can be placed within a borehole of a given size.

Rule 3: Select explosives according to the characteristics of the rock formation to be blasted.

When planes of separation in the rock are smaller than the degree of fragmentation required, the rock can often be blasted by using lower density and lower detonation velocity explosives.

Rule 4: When using slurry or water gel explosives, always determine the critical temperature below which the explosive will fail to reliably detonate.

Almost all slurry explosives have a critical temperature below which they may not detonate, or may not sustain detonation in elongated columns. The explosives should not be used when the temperature of the explosive at time of loading is below that critical temperature. **Rule 5: The distance between holes (spacing) should not be greater than one-half the depth of the borehole.**

When the distance between holes in a row is greater than one-half the depth of the hole, the angles of breakage intersect above the bottom of the holes. This causes both a great deal of vertical throw and a very uneven bottom.

Rule 6: Stemming should be equal to the burden.

Stemming is useful to confine and maximize efficient use of the explosive's energy. It also reduces noise as much as possible. If the stemming is greater than the burden, the rock at the top of the borehole will have less cracking from reflection and refraction of compressive and tensile waves. Therefore, stemming should be equal to burden. Drill fines can be used for loading the borehole.

Rule 7: Subdrill (if necessary) should be between 0.3 and 0.5 of spacing/burden.

Subdrill should be equal to 0.3 of burden. It will work when there is row-for-row delay. In blasts where the delay system is both row-for-row and hole-for-hole, the subdrill should be determined by the largest dimension, which can be the spacing or the burden. An average subdrill of 0.4 of spacing is best to use for planning purposes. Based on the above-mentioned rules, blasting design has been conceptualized and has been provided in Table 2.5.

Table 2.5 Conceptual Diasting Design			
Blasthole Diameter (D) in mm	32		
Burden (B) in m	1.5		
Spacing (S) in m	1.30		
Subdrill in m	0.45		
Charge length (C) in m	0.64		
Stemming	1.5		

Table 2.5 Conceptual Blasting Design

2.6
2.1
400
3.2
1.43
4.16
129
31
Staggered / Rectangular
12.4
0.10
0.63
Slurry
25
NONEL
19

2.6.1 Magnitude of Operation

Based on the results of estimated production for the 5 years, details about the size of operation have been provided in Table 2.6.

Table 2.6 Operational Details for Proposed Project	Table 2.6	Operational	Details for	Proposed	Project
---	-----------	-------------	--------------------	----------	---------

	Rough Stone in m ³	Top Soil in m ³
Proposed production for 5 years	174305	304
Number of Working Days /Annum	270	270
Production of /Day (m ³)	129	1
No. of Lorry Loads	22	1

2.6.2 Extent of Mechanization

List of machineries proposed for the quarrying operation is given in Table 2.7.

Table 2.7 Machinery Details

S. No.	Туре	No of Unit	Size /Capacity	Motive Power
1	Jack Hammers	3	32mm	Air
2	Compressor	1	750 CFM	Diesel Drive
3	Hydraulic Excavator	1	20m ³ /hr	Diesel Drive
4	Tipper	4	6 m ³ /trip	Diesel Drive

2.6.3 Progressive Quarry Closure Plan

The progressive quarry closure plan of the proposed project shows past, present, and future land use statistics. According to the land use results, as shown in Table 2.8 At Present about 1.09.05 ha of land is used for quarrying, 0.89.45 ha of land is unutilized, Whereas, at the end of the mine life, about 0.05.50 ha of land is unutilized; about 0.25.23 ha of land is used for green belt and 0.08.0 will be used for roads and 0.02.0 is used for infrastructure.

Description	Present Area (ha)	Area at the end of life of quarry (ha)
Area under quarry	1.09.05	1.56.27
Infrastructure	Nil	0.02.0
Roads	0.04.0	0.08.0
Plantation area (Green Belt)	Nil	0.25.23
Drainage & Settling Tank	Nil	0.05.50
Unutilized area	0.89.45	0.05.50
Total	2.02.5	2.02.5

Table 2.8 Land use data at present, during scheme of mining, and at the end of mine life

2.6.4 Progressive Quarry Closure Budget

As the proposed project has the enormous potential for continuous operations even after the expiry of lease period, mine closure plan is not proposed for now. Based on the progressive mine closure plan for the scheme period, the mine closure cost is given in Table 2.9.

Activity	Capital Cost (Rs)	Recurring Cost/Annum (Rs)
405 plants inside the lease area	81000	12150
608 plants outside the lease area	182250	18225
Wire Fencing (2.02.5 ha)	405000	20250
Renovation of Garland Drain (2.02.5 ha)	20250	10125
Total	Rs. 6,88,500/-	Rs. 60,750/-

 Table 2.9 Mine Closure Budget

Source: Environment Management Plan

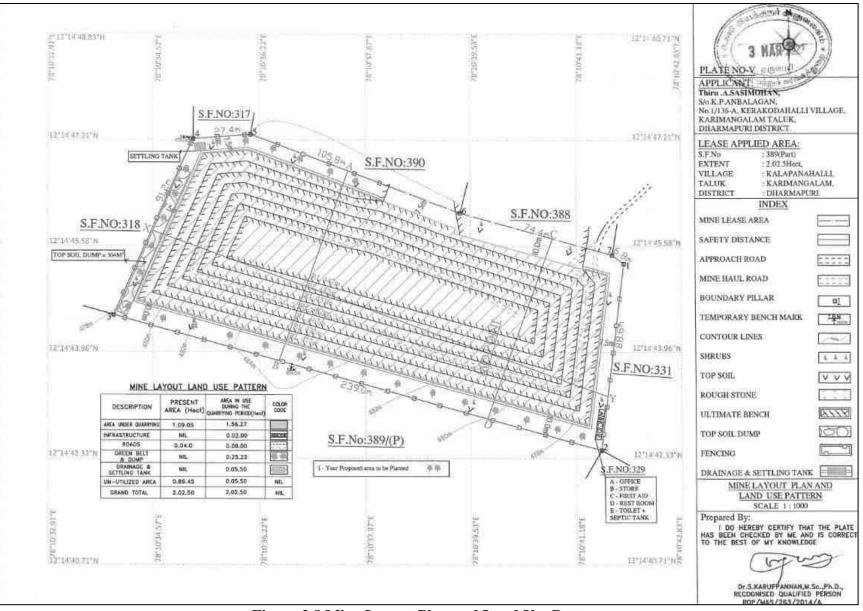
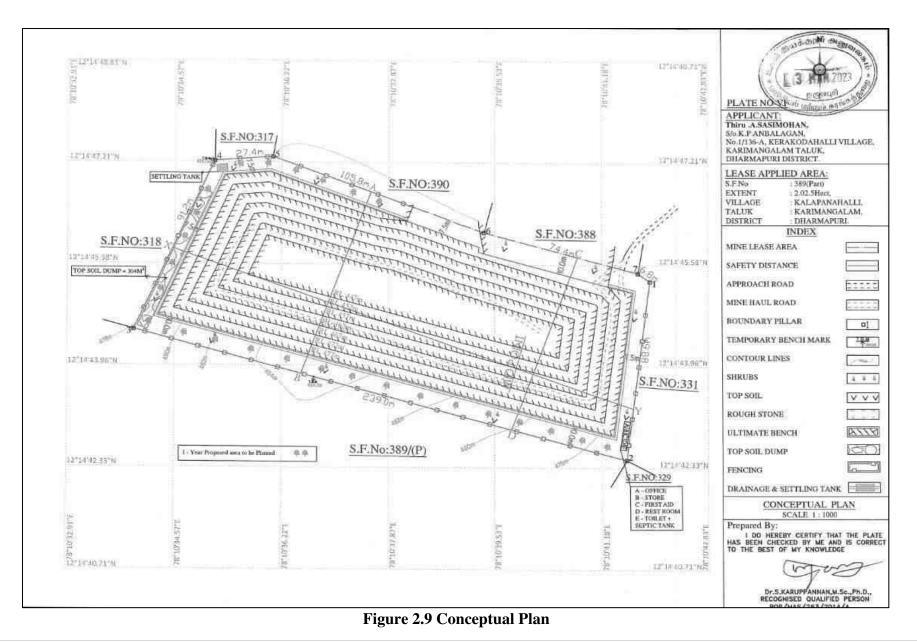
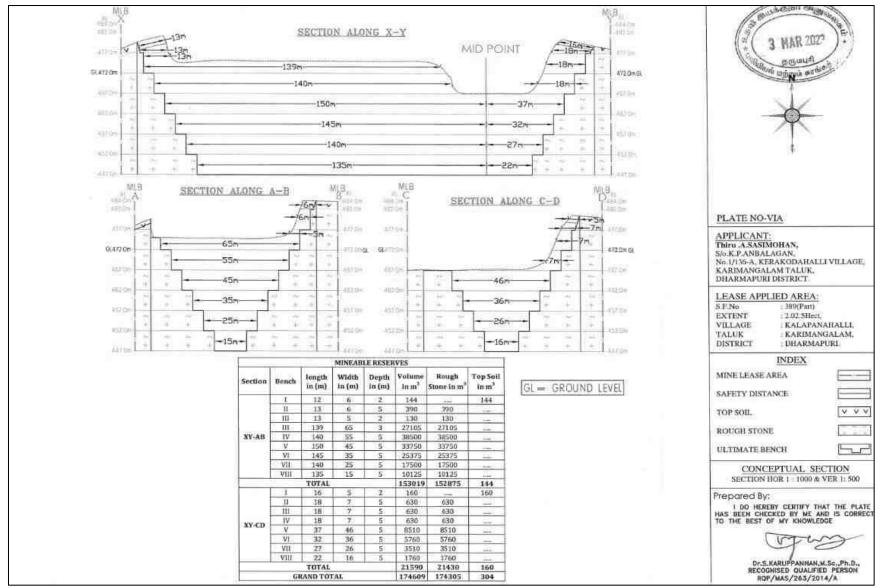




Figure 2.8 Mine Layout Plan and Land Use Pattern

25 | Page

Figure 2.9a Conceptual Sections

2.6.5 Conceptual Mining Plan

The ultimate pit size is designed based on certain practical parameters such as economical depth of mining, safety zones, permissible area, etc. Details of ultimate pit dimensions have been derived from given in Table 2.10.

Pit	Length (m)	Width (m) (Max)	Depth (m)
Ι	150	65	37

Table 2.10 Ultimate Pit Dimension

Source: Approved Mining Plan & ToR

2.6.6 Infrastructures

Infrastructures like mines office, temporary rest shelters for workers, latrine and urinal facilities have been proposed as per the mine rule and will be established after the grant of quarry lease. There is no proposal for the mineral processing or ore beneficiation plants in this project.

2.6.6.1 Other Infrastructure Requirement

No workshops are proposed inside the project area. Hence, there will not be any process effluent generation from the proposed lease area. Domestic effluent from the mine office will be discharged to septic tank and soak pit. As there is no toxic effluent expected to generate in the form of solid, liquid or gaseous form, there is no requirement of waste treatment plant.

2.6.7 Water Requirement

Detail of water requirement in 3 KLD is given in Table 2.11.

Purpose	Quantity	Source
Dust Suppression	1.0 KLD	Existing bore wells nearby the lease area
Green Belt development	1.0 KLD	Existing bore wells nearby the lease area
Drinking & Domestic	1.0 KLD	Existing bore wells and approved water vendors
Total	3.0 KLD	

 Table 2.11 Water Requirement for the Project

Source: Prefeasibility Report

2.6.8 Energy Requirement

High speed Diesel (HSD) will be used for quarrying machineries. As per the data shown in Table 2.12, Around 737251 litres of HSD will be used for rough stone extraction during this 5 years plan period. The diesel will be brought to the site from nearby diesel pumps.

Fuel Requirement for Excavator				
Details	Rough Stone (174305 m ³)	Topsoil (304 m ³)	Total Diesel (litre)	
Average Rate of Fuel Consumption (l/hr)	16	10		
Working Capacity (m ³ /hr)	20	60		
Time Required (hours)	8715	5		
Total Diesel Consumption for 5 years (litre)	139444	51	139495	
Fuel Requirement	t for Compresso	ſ	I	
Average Rate of Fuel Consumption/hole (litre)	0.4			
Number of Drillholes/day	31			
Total Diesel Consumption for 5 years (litre)	16740	16740 167 4		
Fuel Requirem	ent for Tipper			
Average Rate of Fuel Consumption/Trip (litre)	20	20		
Carrying Capacity in m ³	6	6		
Number of Trips / days	22	0*		
Number of Trips / 5 years	29051	0		
Total Diesel Consumption for 5 years (litre)	581017	0	581017	
Total Diesel Consumption by Excavator,	Compressor and	d Tipper	737251	

Table 2.12 Fuel Requirement Details

* Number of truck loads for gravel has been normalized for 5 years.

2.6.9 Capital Requirement

The project proponent will invest **Rs.1,04,94,000/-** to the project. The breakup summary of the investment has been given in Table 2.13.

S. No.	Description	Cost (Rs.)
1	Fixed Asset Cost	55,76,000/-
2	Machinery Cost	20,00,000/-
3	EMP Cost	29,18,000/-
	Total Project Cost	1,04,94,000/-

Table 2.13 Capital Requirement Details

Source: Approved Mining Plan

2.7 MANPOWER REQUIREMENT

The skilled, competent qualified statutory persons will be engaged for quarrying operation, preference will be given to the local community. Number of employees required for this project have been provided in Table 2.14.

S. No.	Category	Role	Nos.
		Mine manager	1
1.	Highly Skilled	Mine Foreman	
1.	Highly Skilled	Mine Geologist/Engineer	1
		Accountant cum & admin	1
		Earth moving operator	
2	2 Skilled	Driver	2
2	Skilled	Mechanic	
		Blaster/Mat	
3	Semi-Skilled	Helpers, Greasers	1
4	Unskilled	Musdoor/ Labours	10
		Attendants	1
	L	Total	17

Table 2.14 Employment Potential for the proposed project

Source: Prefeasibility Report

2.8 PROJECT IMPLEMENTATION SCHEDULE

The commercial operation will commence after the grant of Environmental Clearance. CTO and CTE will be obtained from the Tamil Nadu State Pollution Control Board. The conditions imposed during the environmental clearance will be compiled before the start of mining operation. Expected time schedule for the quarrying operation is given Table 2.15.

 Table 2.15 Expected Time Schedule

S. No.	Particulars	Time Schedule (in Months)		Remarks if any			
		1 st	2 nd	3 rd	4 th	5 th	
1	Environmental						
	Clearance						
2	Consent to Establish						Project Establishment
							Period
3	Consent to operate						Production starting period.
Time lin	e may vary; subjected to	rules	and re	gulatio	ons /&	t other	unforeseen circumstances

Source: Anticipated based on Timelines framed in EIA Notification & CPCB Guidelines

CHAPTER III

DESCRIPTION OF THE ENVIRONMENT

3.0 GENERAL

This chapter presents a regional background to the baseline data at the very onset, which will help in better appreciation of micro-level field data, generated on several environmental and ecological attributes of the study area. The baseline status of the project environment is described section wise for better understanding of the broad-spectrum conditions. The baseline environment quality represents the background environmental scenario of various environmental components such as land, water, air, noise, biological and socio-economic status of the study area. Field monitoring studies to evaluate the base line status of the project site were carried out covering **Oct to Dec, 2023** with CPCB guidelines. Environmental baseline data were collected by an NABL accredited and MoEF notified **Excellence Laboratory** for the environmental attributes including soil, water, air, and noise and by FAEs for ecology and biodiversity, traffic, and socio-economy.

Study Area

The study area has been divided into two zones: core zone and buffer zone. Core zone is considered as lease area and buffer zone as 5 km radius from the periphery of the cluster, except for ecological study, which considers 10 km as buffer zone. Both core and buffer zones are taken as the study area. The data was collected from the study area to understand the existing environment conditions of the above-mentioned environmental components. Sampling methodologies for the various environmental parameters, including frequency of sampling, method of sample analysis, etc., are briefly given in Table 3.1.

Attribute	Parameters	Frequency of Monitoring	No. of Locations	Protocol
Land Use/ Land Cover	Land-use Pattern within 5 km radius of the study area	Once during the study period	Study Area	Satellite Imagery & Primary Survey
*Soil	Physico- Chemical characteristics	Once during the study period	8 (1 in core & 7 in buffer zone)	IS 2720 Agriculture Handbook - Indian Council of Agriculture Research, New Delhi

 Table 3.1 Monitoring Attributes and Frequency of Monitoring

*Water Quality	Physical, Chemical and Bacteriological Parameters	Once during the study period	8 3 surface water & 5 ground water)	IS 10500 & CPCB Standards
Meteorology	Wind speed Wind direction Temperature Cloud cover Dry bulb temperature Rainfall	1 hourly continuous mechanical/automatic weather station	1	Site specific primary data & secondary data from IMD Station
*Ambient Air Quality	PM ₁₀ PM _{2.5} SO ₂ NO _X Fugitive dust	24 hours, twice a week	9 (1 core & 8 buffer)	IS 5182 Part 1-23 National Ambient Air Quality Standards, CPCB
*Noise Levels	Ambient noise	Hourly observation for 24 hours per location	9 (1 core & 8 buffer zone)	IS 9989 As per CPCB Guidelines
Ecology	Existing flora and fauna	Through field visit during the study period	Study area	Primary Survey by Quadrate & Transect Study Secondary Data – Forest Working Plan
Socio Economic Aspects	Socio- economic characteristics, Population statistics and existing infrastructure in the study area	Site visit & Census Handbook, 2011	Study area	Primary Survey, census handbook & need based assessments.

*All monitoring and testing have been carried out as per the Guidelines of CPCB and MoEF & CC.

3.1 LAND ENVIRONMENT

3.1.1 Geology and Geomorphology

Study area is mainly composed of acid to intermediate charnockite and Hornblende biotite genesis, as shown in Figure 3.1. The lease area occurs in charnockite terrain.

Among the geomorphic units, shallow weathered/buried pediplain and pediment dominate the study area, as shown in Figure 3.2. The lease area occurs in shallow weathered/buried pediplain terrain.

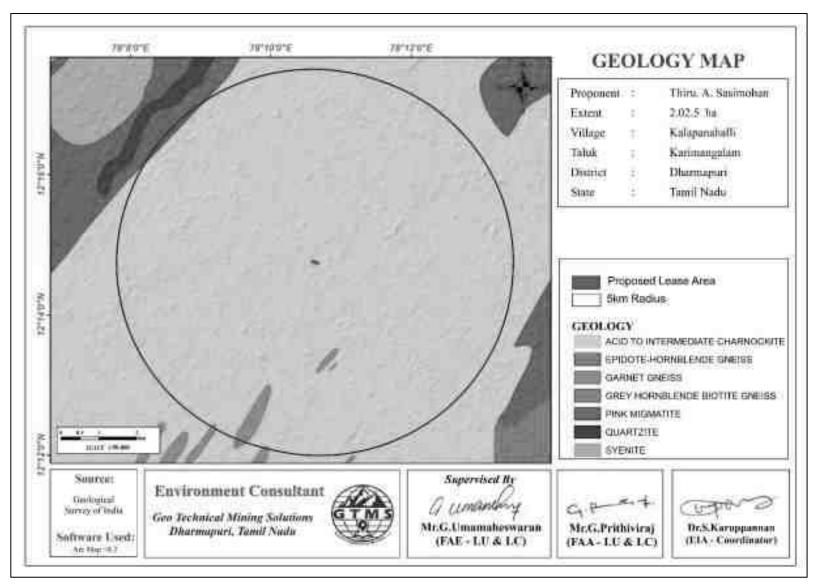


Figure 3.1 Geology Map of 5 km Radius from Proposed Project Site

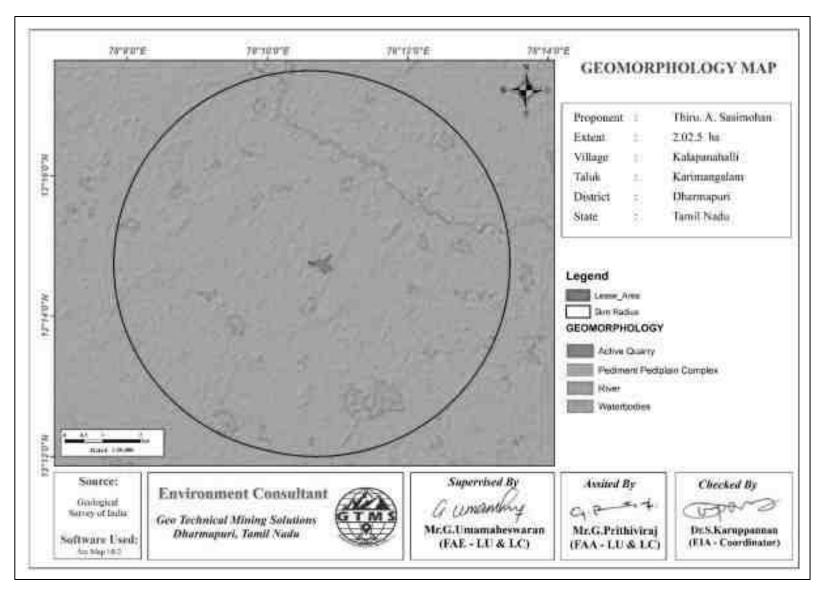


Figure 3.2 Geomorphology Map of 5 km Radius from Proposed Project Site

3.1.2 Land Use/ Land Cover

Land Use and Land Cover (LULC) map, as shown in Figure 3.3 was prepared using Sentinel II image for the study area of 5 km radius to provide a baseline status of the study area covering 5 km radius around the proposed mine site. Totally, 6 LULCs were mapped. The areal extent of each LULC is provided in Table 3.2. Of the total area, mining area covers only 35.93 ha accounting for 0.47 %, of which lease area of 2.02.5 ha contributes only about 0.026%. This small percentage of mining activities shall not have any significant impact on the land environment.

S. No.	Classification	Area (ha)	Area (%)	
1	Barren Rocky/ Stony waste	95.57	1.59	
2	Crop land	5590.00	72.55	
3	Dense Forest	117.36	1.54	
4	Fallow Land	1305.49	17.11	
5	Mining/Industrial lands	35.93	0.47	
6	Land with or Without Scrub	478.55 6.28		
I	Total	7622.90	100.0	

Table 3.2 LULC Statistics of the Study Area

Source: Sentinel II Satellite Imagery

3.1.3 Topography

The proposed lease area is located in a flat terrain with an altitude range of 478-484 m AMSL, showing relief of 6 m.

3.1.4 Drainage Pattern

Drainage pattern is the pattern formed by the streams, rivers, and lakes in a particular drainage basin over time that reveals characteristics of the kind of rocks and geological structures in a landscape. The proposed area shows dendritic drainage pattern indicating uniform lithology beneath the surface, as shown in Figure 3.4.

3.1.5 Seismic Sensitivity

The proposed lease area is situated in a Seismic Zone II, as defined by National Center for Seismology (<u>Official Website of National Centre of Seismology</u>). The Zone II is defined as the region where only minor damage is expected from seismic events. In this respect, the proposed lease area is located in a low earthquake hazard area.

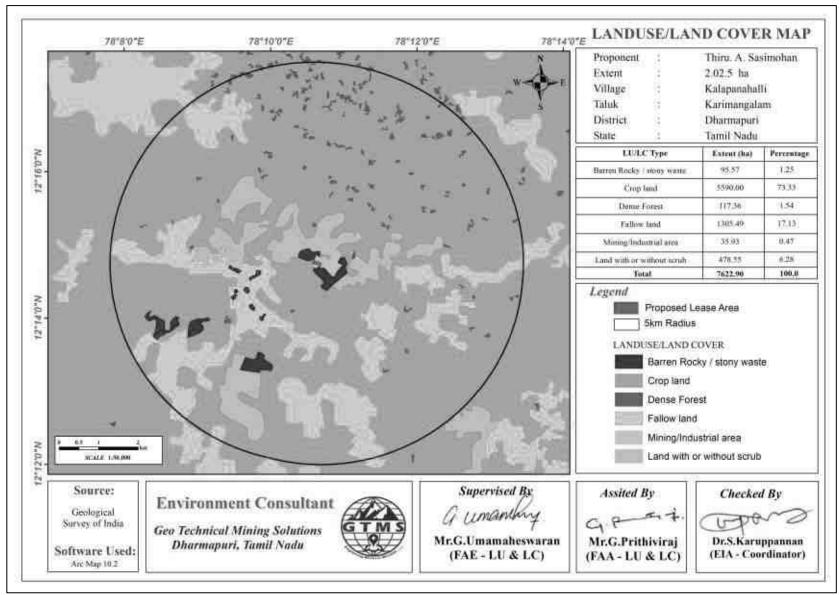


Figure 3.3 LULC Map of 5 km Radius from Proposed Project Site

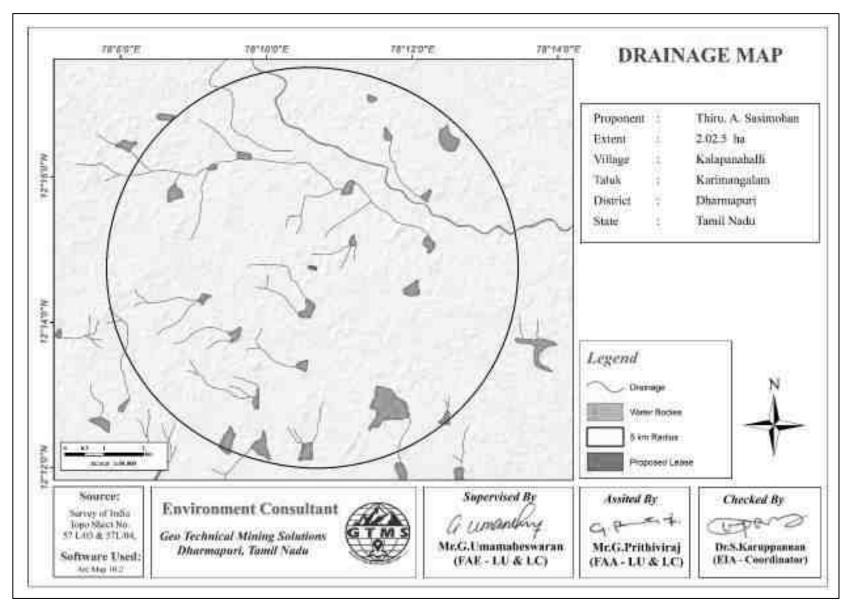


Figure 3.4 Drainage Map of 5 km Radius from Proposed Project Site

3.1.6 Soil

Composite soil samples were collected from 8 locations of the study area to determine the baseline soil characteristics of the soil. The locations were selected for soil sampling based on soil types, vegetative cover, and industrial & residential activities including infrastructure facilities. Soil samples were collected up to 90 cm depth, filled in polythene bags, coded and sent to laboratory for analysis. The locations of the sampling sites are shown in Table 3.3 and Figure 3.5. The samples thus collected were analysed for physical and chemical characteristics. The physical and chemical characteristics and chemical characteristics are shown in Table 3.4.

S.	Sampling	Location	Distance	Direction	Coordinates	
No.	ID	Location	(km)	Direction	Coordinates	
1	S1	Sasimohan lease			12°14'46.69"N 78°10'35.29"E	
2	S2	Malliga Lease	0.43	NW	12°14'53.49"N 78°10'22.92"E	
3	S3	Kuppangari	0.58	S	12°14'24.68"N78°10'36.42"E	
4	S4	Ramiyampatti	4.35	S	12°12'28.07"N 78° 9'55.80"E	
5	S5	Bathalahalli	4.36	W	12°14'59.92"N 78° 8'10.93"E	
6	S6	Kottumaranahalli	4.09	NW	12°16'48.98"N 78° 9'40.35"E	
7	S7	Poonathanahalli	3.15	NE	12°15'10.75"N 78°12'22.86"E	
8	S 8	Chinnamatlampatti	3.38	SE	12°13'38.54"N 78°12'12.32"E	

Table 3.3 Soil Sampling Locations

Source: On-site monitoring/sampling by Excellence Laboratory, in association with GTMS. Physical Characteristics

The soil samples in the study area show sandy loam textures varying between silty clay loam, silty loam and sandy loam. pH of the soil varies from 6.0 to 7.8 indicating slightly acidic to slightly alkaline nature. Electrical conductivity of the soil varies from 175 to 803 μ s/cm. Organic Matter ranges between 3.8 to 16 %

Chemical Characteristics

Nitrogen ranges between 0.8 and 1.9 %. Phosphate ranges between 0.05 and 0.13 %. Potassium ranges between 0.02 and 0.055 %. Calcium ranges between 34 and 74 mg/kg. Sodium ranges between 0.012 and 0.023 %.

Soil Erosion

There is no soil erosion in the mining lease area. The south east and north part of the lease area has less moderate soil erosion as shown in the soil erosion map in Figure 3.6.

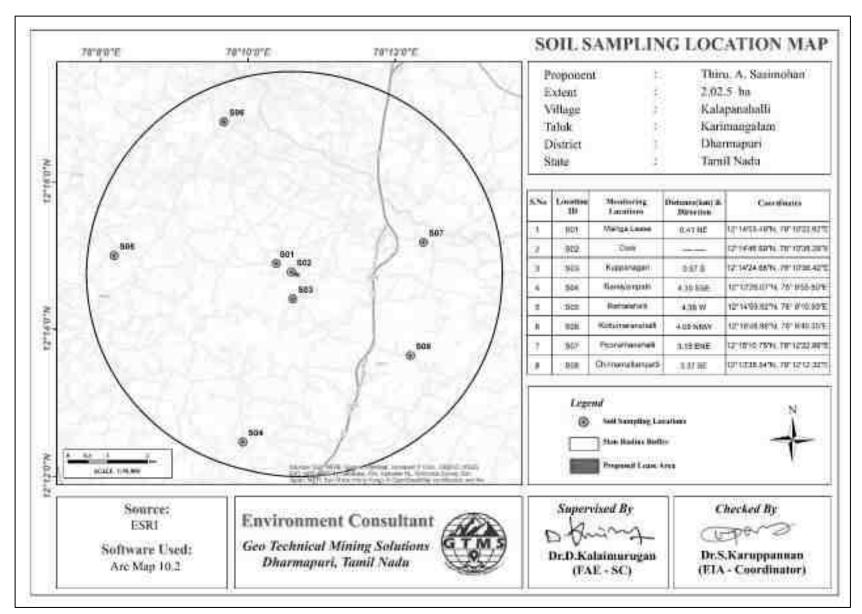


Figure 3.5 Map Showing Soil Sampling Locations within 5 km Radius around Proposed Project Site

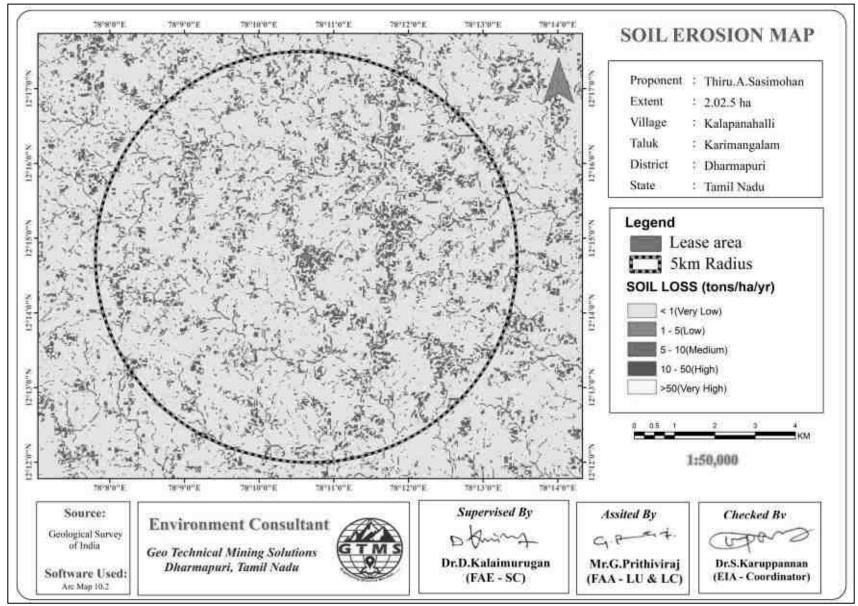


Figure 3.6 Soil Erosion Map within 5 km Radius around Proposed Project Site

			S1	, i i i i i i i i i i i i i i i i i i i		
S. No	Name of the Test	Units	Sasimohan Core	Minimum	Maximum	Average
1	Arsenic	mg/Kg	<0.1	<0.1	<0.1	<0.1
2	Cadmium (as Cd)	mg/Kg	<1.0	<1.0	<1.0	<1.0
	Cation Exchange	8	<1.0	0.1	0.76	0.35
3	Capacity	meq%		011	0110	0.000
4	Chromium (as Cr)	mg/Kg	38	34	74	52.85
5	Copper (as Cu)	mg/Kg	15	3.2	61	24.47
6	Lead (as Pb)	mg/Kg	<1.0	<1.0	<1.0	<1.0
7	Manganese. (as Mn)	mg/Kg	100	108	194	150.77
8	Nickel (asNi)	mg/Kg	<1.0	17	23	20
9	Nitrogen (as N)	%	1.0	0.8	1.9	1.33
10	Organic Matter @ 155°C	%	4.2	3.8	16	9.78
11	pH value @ 25°C		6.3	6	7.8	7.06
12	Phosphate (as P)	%	0.08	0.05	0.13	0.07
13	Potassium (as K)	%	0.029	0.02	0.055	0.03
14	Sodium (as Na)		0.013	0.012	0.023	0.01
15	Specific Electrical	μS/Cm	100	175	803	440.66
	Conductivity@25°C					
16	Water Content @110°C	%	3.2	3.1	11.4	7.24
17	Zinc (as Zn)	mg/Kg	53	40	139	78.55
10			Sandy			L
18	Texture*		Loam	Clay Loam		
19	Sand	%	59.70%	12.70%	65.20%	42.71%
20	Clay	%	17.50%	12.90%	42.00%	27.41%
21	Silt	%	22.80%	6.00%	53.60%	29.03%
			L	l	with CTMS	L

Table 3.4 Soil Quality of the Study Area

Source: Sampling Results by Excellence Laboratory, in association with GTMS

3.2 WATER ENVIRONMENT

The water resources, both surface and groundwater play a significant role in the development of the area. The purpose of this study is to assess the baseline quality of surface and ground water.

S.	Sampling	Location	Distance	Direction	Coordinates
No.	ID	Location	(km)	Direction	Coordinates
1	SW1	Kupangarai lake	0.88	S	12°14'14.14"N 78°10'37.95"E
2	SW2	Baisuhalli Lake	3.74	SE	12°12'51.27"N 78°11'31.46"E
3	SW3	Periyapoolapatti Thumbala Halli Lake	2.97	NNE	12°16'18.82"N 78°11'7.48"E
4	BW1	Kuppangari	0.31	S	12°14'34.15"N 78°10'33.27"E
5	BW2	Begarahalli	4.37	WNW	12°15'6.07"N 78° 8'11.55"E
6	BW3	Puthur	3.28	E	12°14'49.98"N 78°12'30.39"E
7	OW1	Jollampatty	0.80	NW	12°15'4.27"N 78°10'15.23"E
8	OW2	Kottumaranahalli	3.77	NW	12°16'29.05"N 78° 9'25.35"E

Table 3.5 Water Sampling Locations

Source: On-site monitoring/sampling by Excellence Laboratory, in association with GTMS.

3.2.1 Surface Water Resources and Quality

Kupangarai Lake, Baisuhalli Lake and Periyapoolapatti Thumbala Halli Lake are the three prominent surface water resources present in the study area. These are ephemeral in nature, which convey water only after rainfall events. The proposed project area is located 0.88 km S of Kupangarai Lake, 3.74 km SE of Baisuhalli Lake and 2.97 km NE of Periyapoolapatti Thumbala Halli Lake, as shown in Table 3.5 and Figure 3.5. Three surface water samples, known as SW1, SW2 and SW3 were collected from the three surface water bodies to assess the baseline water quality. Table 3.7 summarizes surfacewater quality data of the three samples.

Result for surface water sample in the Table 3.7 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

3.2.2 Ground Water Resources and Quality

Groundwater in the study area occurs in the crystalline rocks of Archaean age and recent alluvium. The movement of the groundwater is controlled by the intensity of weathering and fracturing of crystalline rocks. Dug wells and bore wells are the most common ground water abstraction structures in the area. However, in dry season, people in the study area heavily rely on bore wells for their domestic and agriculture purpose.

Five groundwater samples, known as BW1, BW2, BW3, OW1 and OW2 collected from bore wells and open wells were analysed for physico-chemical conditions, heavy metals and bacteriological contents in order to assess baseline quality of ground water. Ground water sampling locations and their distance and direction from the lease area are provided in Table 3.5 and the spatial occurrence of water sampling locations is shown in Figure 3.7. Table 3.6 summarizes ground water quality data of the five samples.

Results for ground water samples in the Table 3.6 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

3.2.3 Hydrogeological Studies

The area within 2 km radius consists of numerous open wells and deep wells. Groundwater level data were collected both from open wells and bore wells for two monsoon seasons as discussed in the following section.

3.2.3.1 Groundwater Levels and Flow Direction

Data regarding depth to groundwater levels are essential to infer the direction of groundwater movement within the study area. Knowledge of groundwater flow direction is must in choosing location for background groundwater quality monitoring well and in locating recharge and discharge areas. Therefore, data regarding groundwater elevations were collected from 9 open wells and 9 bore wells at various locations within 2 km radius around the proposed project sites for the period from March through May 2023 (Pre-Monsoon Season) and from October through December, 2022 (Post Monsoon Season).

The open well water level data thus collected onsite are provided in Tables 3.8 and 3.9. According to the data, average depths to the static water table in open wells range from 15 to 23 m BGL in pre monsoon and 10 to 17 m BGL in post monsoon. The bore well data thus collected onsite are provided in Tables 3.10 and 3.11. The average depths to static potentiometric surface in bore wells for the period of October through December 2022 (Post-Monsoon Season) vary from 47 to 56 m and from 56 to 61 m for the period of March through May, 2023 (Pre-Monsoon Season). Data on the depths to static water table and potentiometric surface were used to draw contour lines connecting groundwater elevation (also known as equipotential hydraulic head) to determine the groundwater flow direction perpendicular to the contour lines.

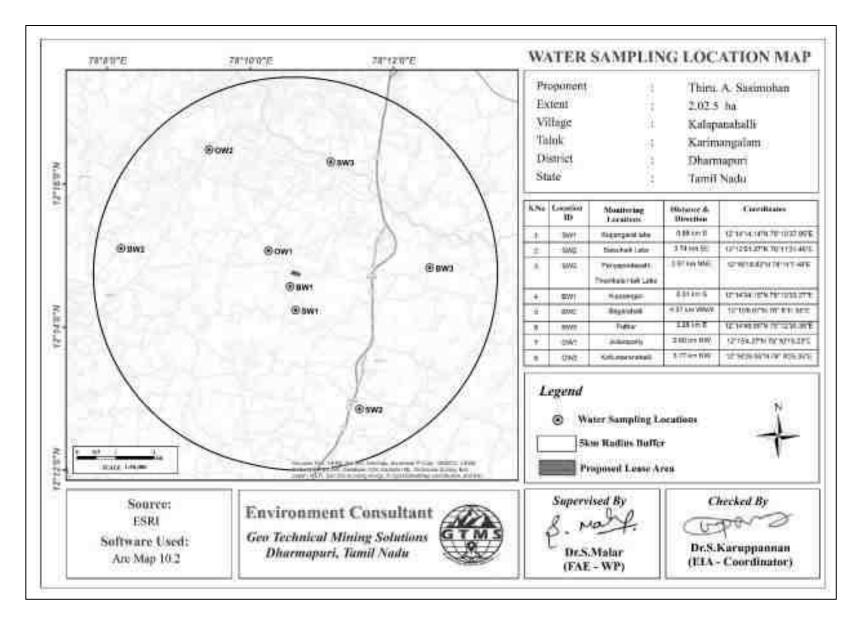


Figure 3.7 Map Showing Water Sampling Locations within 5 km Radius around Proposed Project Site

S.No.	Parameters	Units		Result		10500:2012	10500:2012
5.110.	T at anteters	Units	Minimum	Maximum	Average	(Acceptable)	(Permissible)
1	Barium (Ba)	mg /l	<0.1	<0.1	<0.1	0.5	0.7
2	Boron (B)	mg /l	<0.1	<0.1	<0.1	0.5	1.0
3	Calcium (Ca)	mg /l	128	192	161.5	75	200
4	Chloride (Cl)	mg /l	65	209	128.5	250	1000
5	Colour	CU	<1.0	<1.0	<1.0	5	15
6	Copper (Cu)	mg/l	<0.02	<0.02	<0.02	0.05	1.5
7	Fluoride (F)	mg/l	0.92	1.3	1.17	1.0	1.5
8	Free Residual Chlorine (RFC)	mg/l	<0.1	<0.1	<0.1	0.2	1.0
9	Iron (Fe)	mg/l	< 0.05	<0.05	<0.05	0.3	No relaxation
10	Lead (Pb)	mg/l	<0.01	<0.01	<0.01	0.01	No relaxation
11	Magnesium (Mg)	mg/l	3.2	38	18.05	30	100
12	Mercury (Hg)	mg/l	<0.001	<0.001	<0.001	0.001	No relaxation
13	Nitrate (NO ₃₎	mg/l	4	19	5.35	11.8	No relaxation
14	Odour		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
15	pH value @ 25°C		6.8	7.9	7.25	6.5-8.5	No relaxation
16	Phenolic Compounds	mg/l	<0.001	<0.001	<0.001	0.001	0.002

Table 3.6 Ground Water Quality Result

17	EC @ 25°C	mg/l	1124	2220	1608.71	-	-
18	Sulphates (SO ₄)	mg/l	23	102	55	200	400
19	Total Alkalinity	mg/l	161	466	331	200	600
20	Arsenic (As)	mg/l	<0.005	< 0.005	< 0.005	0.01	0.05
21	Chromium (Cr)	mg/l	< 0.05	<0.05	<0.05	0.05	No relaxation
22	TDS	mg/l	773	1650	1182.14	500	2000
23	TH (CaCO ₃)	mg/l	433	529	493	200	600
24	Total Silica (SiO ₂)	mg/l	10	25	18.28	-	1
25	Turbidity	NTU	<0.1	<0.1	<0.1	5	15
26	Zinc (Zn)	mg/l	<0.01	<0.01	<0.01	0.1	0.3
27	Coliforms Bacteria	MPN	Absent	Absent	Absent	Shall not be detectable in	Shall not be detectable in
21	Comornis Dacteria		Rosent	Absent	Absent	any 100 ml sample	any 100 ml sample
28	E. Coli	MPN	Absent	Absent	Absent	Shall not be detectable in	Shall not be detectable in
20	L. Con	1411 14	Absent	Ausent	Absent	any 100 ml sample	any 100 ml sample

Source: Sampling Results Excellence Laboratory, in association with GTMS Table 3.7 Surface Water Quality Result

S No	S.No. Parameters	Units		Result		10500:2012	IS:2296-1982 Standards
5.110.	T at anicters	Units	Minimum	Maximum	Average	(Acceptable)	For Class A
1	Barium (Ba)	mg /l	<0.1	<0.1	<0.1	0.5	1
2	Boron (B)	mg /l	<0.1	<0.1	<0.1	0.5	-
3	Calcium (Ca)	mg /l	55	110	81.4	75	80.10
4	Chloride (Cl)	mg /l	60	115	92	250	250
5	Colour	CU	1	5	3	5	10

6	Copper (Cu)	mg/l	< 0.02	< 0.02	< 0.02	0.05	1.5
7	Fluoride (F)	mg/l	<0.1	<0.1	<0.1	1.0	1.5
8	Free Residual Chlorine (RFC)	mg/l	<0.1	<0.1	<0.1	0.2	-
9	Iron (Fe)	mg/l	< 0.05	<0.05	< 0.05	0.3	0.3
10	Lead (Pb)	mg/l	<0.01	<0.01	<0.01	0.01	0.1
11	Magnesium (Mg)	mg/l	11	33	20.4	30	24.28
12	Mercury (Hg)	mg/l	< 0.001	<0.001	< 0.001	0.001	0.001
13	Nitrate (NO ₃₎	mg/l	3.8	5.1	4.46	45	20
14	Odour		Agreeable	Agreeable	Agreeable	Agreeable	Unobjectionable
15	pH value @ 25°C		6.5	7.6	7.04	6.5-8.5	6.5-8.5
16	Phenolic Compounds	mg/l	< 0.001	< 0.001	< 0.001	0.001	0.002
17	EC @ 25°C	mg/l	878	1871	1278.6	-	-
18	Sulphates (SO ₄)	mg/l	33	43	37.6	200	400
19	Total Alkalinity	mg/l	137	235	185.4	200	
20	Arsenic (As)	mg/l	< 0.005	< 0.005	< 0.005	0.01	0.05
21	Chromium (Cr)	mg/l	< 0.05	< 0.05	< 0.05	0.05	0.05
22	TDS	mg/l	571	1215	836.6	500	500
23	TH (CaCO ₃)	mg/l	182	251	326.4	200	300
24	Total Silica (SiO ₂)	mg/l	5.7	11	8.02	1	5
25	Turbidity	NTU	0.5	1	0.8	5	15
26	Zinc (Zn)	mg/l	0.5	0.07	0.065	0.1	0.5
27	Coliforms Bacteria	MPN	Present	Present	Present	Shall not be detectable in any 100 ml sample	50
28	E.Coli	MPN	Absent	Absent	Absent	Shall not be detectable in any 100 ml sample	-

Source: Sampling Results Excellence Laboratory, in association with GTMS

From the maps of open well groundwater flow direction shown in Figures 3.8-3.9, it is understood that most of the open well groundwater for the post- and pre-monsoon seasons flows towards the open well number 3 located in southwestern direction and the open well number 8 located in southeast direction of the proposed project site. The groundwater flow maps in Figures 3.10-3.11 show that most of the bore well groundwater for the post- and pre-monsoon seasons flow towards the bore well number 3 and 8. It is located in north and northeast direction of the proposed project site. On the basis of the groundwater flow information, both open wells and bore wells mentioned above can be chosen for water quality monitoring purpose as the wells may get easily affected by the contaminants resulting from the mining activities of the sites in future.

Station ID	Depth t	o Static Wa	ter Table BG	L (m)	Latitude	Longitude
Station ID	Mar-2023	Apr-2023	May- 2023	Average	Luniuut	Longitude
DW01	15	16	18	16.30	12° 15.072'N	78° 10.255'E
DW02	16	17	20	17.70	12° 15.104'N	78° 10.858'E
DW03	17	18	19	18.00	12° 14.546'N	78° 10.423'E
DW04	15	17	19	17.00	12° 14.877'N	78° 10.123'E
DW05	16	17	18	17.00	12° 15.194'N	78° 9.717'E
DW06	18	19	20	19.00	12° 15.845'N	78° 10.110'E
DW07	17	19	21	19.00	12° 15.744'N	78° 10.972'E
DW08	18	20	22	20.00	12° 14.500'N	78° 11.134'E
DW09	20	21	23	21.30	12° 14.113'N	78° 9.766'E

 Table 3.8 Pre-Monsoon Water Level of Open Wells within 2 km Radius

Source: Onsite monitoring data

Table 3.9 Post-Monsoon Water Level of Open Wells within 2 km Radius

Station ID	Depth	to Static Wa	GL(m)	Latitude	Longitude		
Station ID	Oct-2023	Nov- 2023	Dec-2023	Average	Latituue	Longitude	
DW01	13	15	16	14.70	12° 15.072'N	78° 10.255'E	
DW02	12	13	15	13.30	12° 15.104'N	78° 10.858'E	
DW03	14	16	17	15.70	12° 14.546'N	78° 10.423'E	
DW04	11	13	15	13.00	12° 14.877'N	78° 10.123'E	
DW05	10	12	14	12.00	12° 15.194'N	78° 9.717'E	
DW06	13	14	16	14.30	12° 15.845'N	78° 10.110'E	
DW07	12	14	15	13.70	12° 15.744'N	78° 10.972'E	
DW08	14	15	16	15.00	12° 14.500'N	78° 11.134'E	
DW09	11	13	15	13.00	12° 14.113'N	78° 9.766'E	

Source: Onsite monitoring data

Station ID	Depth to Sta	atic Potention	Latitude	Longitude		
2	Mar-2023	Apr-2023	May- 2023	Average		
BW01	57	58	60	58.30	12° 14.987'N	78° 9.706'E
BW02	58	60	61	59.60	12° 15.284'N	78° 9.696'E
BW03	59	60	61	60.00	12° 15.219'N	78° 10.700'E
BW04	58	59	60	59.00	12° 14.441'N	78° 10.633'E
BW05	56	59	61	58.60	12° 14.262'N	78° 9.964'E
BW06	56	57	59	57.30	12° 15.943'N	78° 9.934'E
BW07	57	59	61	59.00	12° 15.699'N	78° 10.419'E
BW08	59	60	61	60.00	12° 15.408'N	78° 11.358'E
BW09	56	57	58	57.00	12° 14.614'N	78° 11.269'E

Table 3.10 Pre-Monsoon Water Level of Bore Wells within 2 km Radius

Source: Onsite monitoring data

Station ID	Depth	to Static Pote BGI	Latitude	Longitude		
	Oct-2023	Nov-2023	Dec-2023	Average		8
BW01	47	49	50	48.7	12° 14.987'N	78° 9.706'E
BW02	48	50	51	49.7	12° 15.284'N	78° 9.696'E
BW03	50	51	53	51.3	12° 15.219'N	78° 10.700'E
BW04	52	53	54	53	12° 14.441'N	78° 10.633'E
BW05	51	52	53	52	12° 14.262'N	78° 9.964'E
BW06	49	51	52	50	12° 15.943'N	78° 9.934'E
BW07	48	49	51	49.3	12° 15.699'N	78° 10.419'E
BW08	53	54	55	54	12° 15.408'N	78° 11.358'E
BW09	55	56	56	55.7	12° 14.614'N	78° 11.269'E

Source: Onsite monitoring data

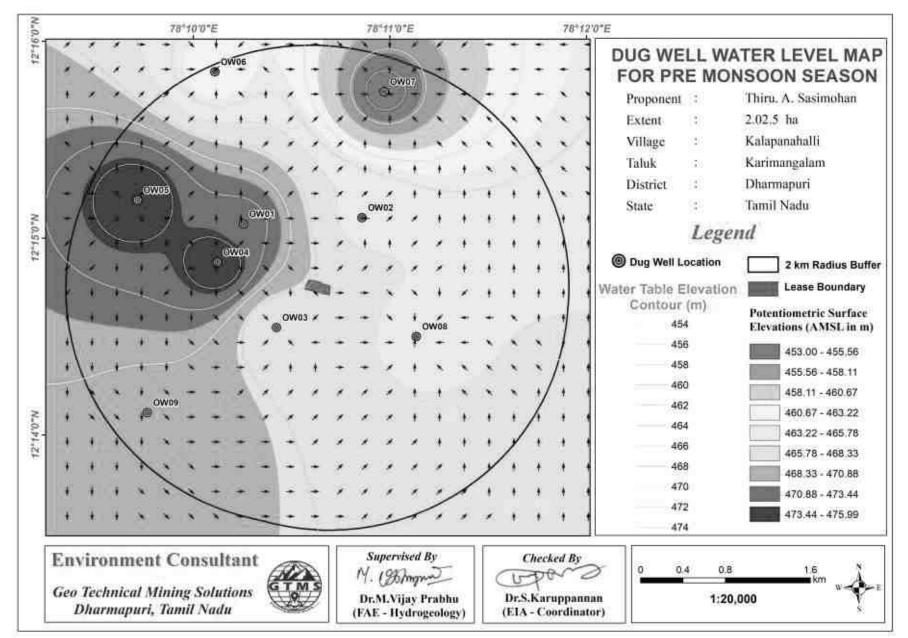


Figure 3.8 Open Well Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Pre-Monsoon Season

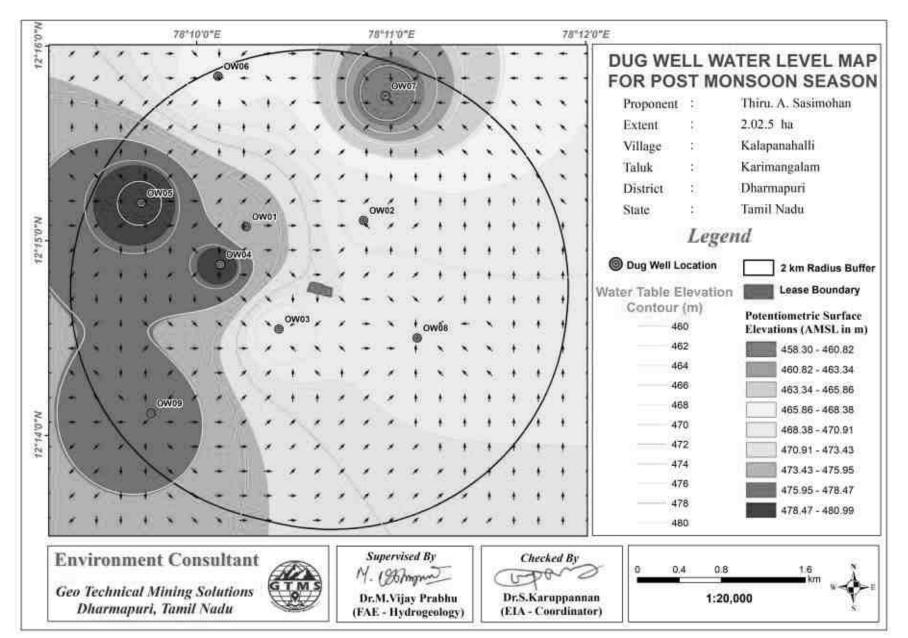


Figure 3.9 Open Well Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Post-Monsoon Season

Figure 3.10 Borewell Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Pre-Monsoon Season

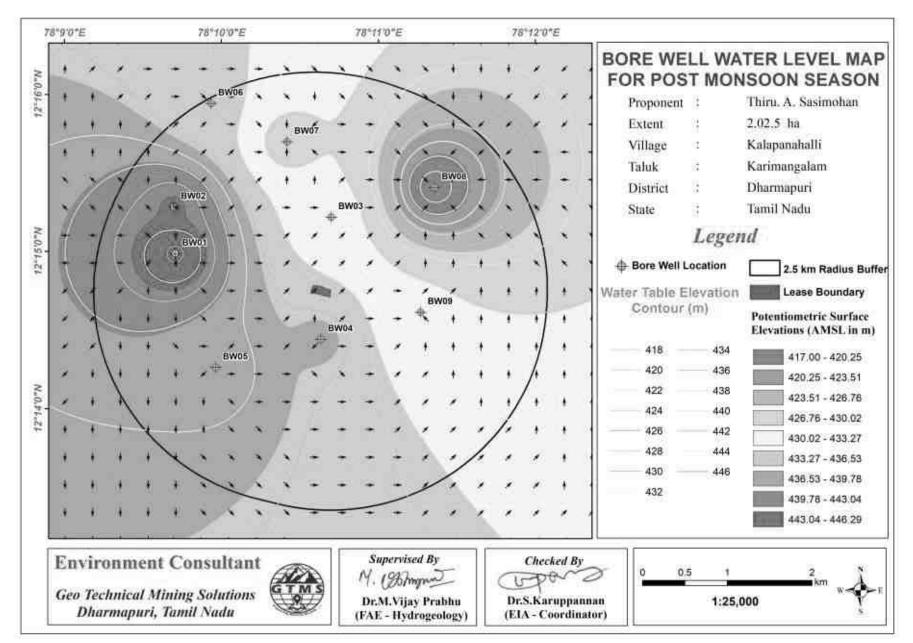


Figure 3.11 Borewell Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Post-Monsoon Season

3.2.3.2 Electrical Resistivity Investigation

Electrical resistivity investigation is especially useful in the areas where there are no adequate exploratory well data about the aquifer conditions. The present study makes use of vertical electric sounding (VES) to delineate earth's subsurface layers. The electrical resistivity investigation uses four electrodes set up where current is sent through outer electrodes into the ground and the inner electrodes measure the potential difference.

Result

The Geophysical VES data obtained from the project site have been shown in Table 3.12. The field data obtained from a detailed geophysical investigation were plotted using excel spreadsheet for interpretation. The plot for the purpose of interpretation has been shown in Figure 3.11.

Location Coordinates - 10° 4'53.27"N 78° 0'40.92"E							
S. No.	AB/2	MN/2	Geometrical	Resistance in	Apparent		
	(m)	(m)	Factor (G)	Ω	Resistivity in Ω m		
1	5	2	19.36	8.016	155.26		
2	10	2	284.84	2.578	734.32		
3	15	5	125.84	4.699	591.36		
4	20	5	346.97	3.345	1160.64		
5	25	5	703.96	2.683	1888.74		
6	25	10	151.00	6.061	915.26		
7	30	10	246.19	4.288	1055.68		
8	35	10	460.22	4.117	1894.75		
9	40	10	625.28	3.722	2327.3		
10	45	10	827.98	3.583	2966.67		
11	50	20	583.67	7.27	4243.34		
12	60	20	1523.94	3.167	4826.32		
13	70	20	1440.61	3.535	5092.56		
14	80	20	1208.49	2.739	3310.07		
15	90	20	2248.24	2.573	5784.74		
16	100	20	2754.22	2.38	6555.05		

 Table 3.12 Vertical Electrical Sounding Data

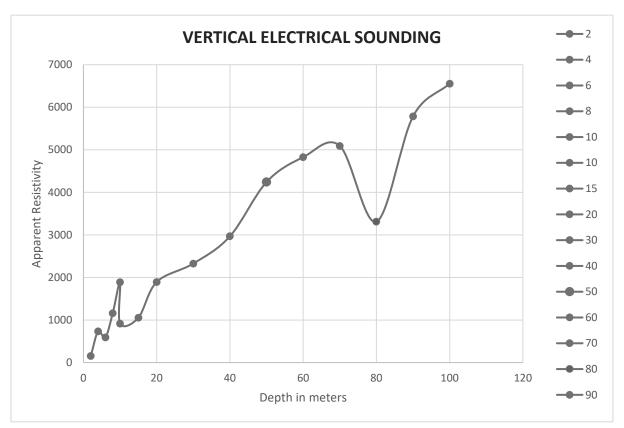


Figure 3.12 Graph Showing Occurrence of Water Bearing Fracture Zones at the Depth of 80 m Below Ground Level in Proposed Project

The rock formation of low resistivity values indicates occurrence of water at the depth of about 80 m below ground level. The maximum depth proposed for the proposed project is 37 m below ground level. Therefore, the mining operation will not affect the aquifer throughout the entire mine life period.

3.3 AIR ENVIRONMENT

The baseline studies on air environment include identification of specific air pollutants and their existing levels in ambient air. The sources of air pollution in the region are mostly due to vehicular traffic, dust arising from unpaved village road and domestic & agricultural activities.

3.3.1 Meteorology

3.3.1.1 Climatic Variables

A temporary meteorological station was installed at the project sites by covering cluster quarries. The station was installed at a height of 3 m above the ground level as there are no obstructions facilitating flow of wind, wind speed, wind direction, humidity and temperature. Meteorological data obtained from the onsite monitoring station are provided in Table 3.13.

According to the onsite data, the temperature in October 2023 varied from $15.36 \text{ to } 30.46^{\circ}$ C with the average of 24.04° C; in November, 2023 from $13.61 \text{ to } 29.0^{\circ}$ C with the average of 22.45° C; and in December, 2023 from $15.15 \text{ to } 29.12^{\circ}$ C with the average of 22.16° C. In October, 2023, relative humidity ranged from 47.06 to 100 % with the average of 84.21%; in November, 2023, from 49.19 to 100% with the average of 85.67%; and in December, 2023, from 39.88 to 100% with the average of 84.18%. The wind speed in October, 2023 varied from 0.13 to 6.09 m/s with the average of 2.30 m/s; in November, 2023 from 0.72 to 6.03 m/s with the average of 2.72 m/s; and in December, 2023 from $1.06 \text{ to } 357.75^{\circ}$ with the average of 172.33° ; in November, 2023, from $0.17 \text{ to } 359.27^{\circ}$ with the average of 80.56° ; and in December, 2023, from 94.92% with the average of 95.69 kPa; and in December, 2023, surface pressure varied from 94.97 to 95.99 kPa with the average of 95.51 kPa; in November, 2023, from 94.68 to 96.45 kPa with the average of 95.66 kPa.

S. No.	Parameters		Oct, 2023	Nov,2023	Dec,2023
1	Temperature (⁰ C)	Min	15.36	13.61	15.15
		Max	30.46	29.00	29.12
		Avg	24.06	22.45	22.16
2	Relative Humidity (%)	Min	47.06	49.19	39.88
		Max	100.00	100.00	100.00
		Avg	84.21	85.67	84.18
3	Wind Speed (m/s)	Min	0.13	0.72	0.56
		Max	6.09	6.03	7.13
		Avg	2.30	2.72	3.08
4		Min	1.06	0.17	0.00
	Wind Direction (degree)	Max	357.75	359.27	359.48
		Avg	172.33	80.56	88.23
5	Surface Pressure(kPa)	Min	94.97	95.28	94.68
		Max	95.99	96.09	96.45
		Avg	95.51	95.69	95.66

 Table 3.13 Onsite Meteorological Data

Source: On-site monitoring/sampling by Excellence Laboratory in association with GTMS

Rainfall

Rainfall data for the study area were collected for the period of 1981-2022(<u>POWER</u>] <u>Data Access Viewer (nasa.gov)</u>). Long term monthly average rainfall was estimated from the data of 1981-2022 and compared with the monthly rainfall for the year 2022, shown in Figure 3.13. The Figure 3.13 shows that rainfall is generally high in the months of August through November in every year. Particularly, rainfall in May and August through November of 2022 is higher than the previous years.

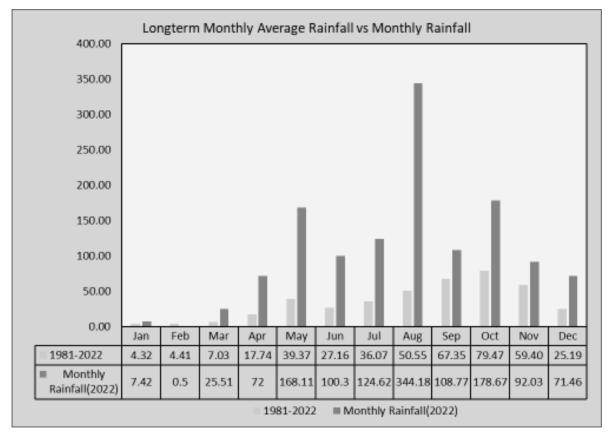
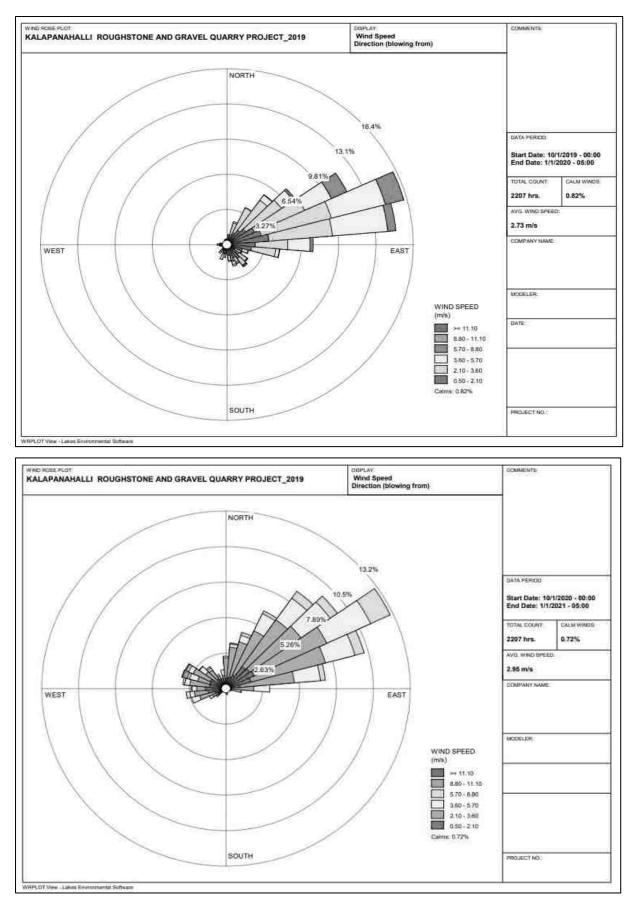



Figure 3.13 Long-Term Monthly Average Rainfall Vs Monthly Rainfall

3.3.1.2 Wind Pattern

Wind pattern will largely influence the dispersion pattern of air pollutants and noise from the proposed project site. Analysis of wind pattern requires hourly site-specific data of wind speed and direction. Two types of wind rose were generated: historical seasonal wind rose for the period of October through December of the years from 2019 to 2022 and the seasonal wind rose for the study period of October through December 2023. The wind rose diagrams thus produced are shown in Figures 3.14-3.14a. Figure 3.14 reveals that:

- The measured average wind velocity during the study period is 2.74 m/s.
- Predominant wind was dominant in the directions ranging from northeast to southwest.

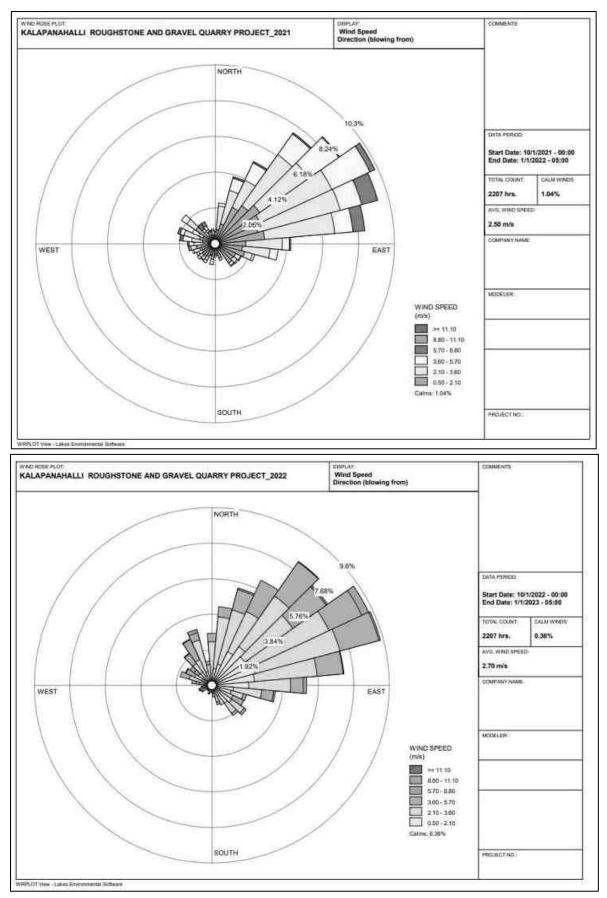


Figure 3.14a Windrose Diagram for 2021 and 2022 (October to December)

Figure 3.15 Onsite Wind Rose Diagram

3.3.2 Ambient Air Quality Study

The baseline ambient air quality is studied through a scientifically designed ambient air quality monitoring network considering the followings:

- Meteorological condition on synoptic scale
- Topography of the study area
- Representatives of regional background air quality for obtaining baseline status
- Location of residential areas representing different activities
- ✤ Accessibility and power availability

Table 3.14 Methodology and Instrument Used for AAQ Analysis

Parameter	Method	Instrument
DM	Gravimetric method	Fine Particulate Sampler
PM _{2.5}	Beta attenuation method	Fille Fatticulate Sampler
DM	Gravimetric method	Respirable Dust Sampler
PM_{10}	Beta attenuation method	
50.	IS-5182 Part II	Respirable Dust Sampler with gaseous
SO_2	(Improved west & Gaeke method)	attachment
NOx	IS-5182 Part II (Jacob & Hoch heiser modified method)	Respirable Dust Sampler with gaseous attachment
Free Silica	NIOSH – 7601	Visible Spectrophotometry

Source: Sampling Methodology based on Excellence Laboratory & CPCB Notification

Table 3.15 National Ambient Air Quality Standards

			Concentration in ambient air				
S. No.	Pollutant	Time Weighted Average	Industrial, Residential, Rural & other areas	Ecologically Sensitive area (Notified by Central Govt.)			
1	$SO_2 (\mu g/m^3)$	Annual Avg.* 24 hours**	50.0 80.0	20.0 80.0			
2	NO _x ($\mu g/m^3$)	Annual Avg. 24 hours	40.0 80.0	30.0 80.0			
3	PM ₁₀ (µg/m ³)	Annual Avg. 24 hours	60.0 100.0	60.0 100.0			
4	PM _{2.5} (µg/m3)	Annual Avg. 24 hours	40.0 60.0	40.0 60.0			

Source: NAAQS CPCB Notification No. B-29016/20/90/PCI-I Dated: 18th Nov 2009

Methodology

Ambient air quality monitoring was carried out with a frequency of two samples per week at Nine (9) locations, adopting a continuous 24 hourly (3 shift of 8-hour) schedule for the period March-May, 2023 as per the CPCB, MoEF guidelines and notifications.

It was ensured that the equipment was placed preferably at a height of at least 3 ± 0.5 m above the ground level at each monitoring station for negating the effects of wind-blown ground dust. The equipment was placed at space free from trees and vegetation which otherwise act as a sink of pollutants resulting in lower levels in monitoring results. The baseline data of ambient air were generated for PM_{2.5}, PM₁₀, sulphur dioxide (SO₂) and nitrogen dioxide (NO_x). The sampling locations are shown in Figure 3.16 and average concentrations of air pollutants are summarized in Tables 3.16 and are shown in Figures 3.17-3.21.

S.	Location	Monitoring	Distance	Direction	Coordi	nates
No.	Code	Locations	(km)		Lat	Long
1	AAQ1	Mallika Core	0.51	NNW	12°15'0.39"N	78°10'20.94"E
2	AAQ2	Sasimohan core			12°14'43.02"N	78°10'39.65"E
3	AAQ3	Kuppangari	0.40	S	12°14'29.65"N	78°10'36.06"E
4	AAQ4	Sunnampatti	3.37	WSW	12°14'24.27"N	78° 8'44.04"E
5	AAQ5	Kunthiamman Kovilur	4.68	SW	12°13'21.87"N	78° 8'24.31"E
6	AAQ6	Matlampatti	2.92	SSE	12°13'23.07"N	78°11'40.44"E
7	AAQ7	Periyampatti	2.22	NE	12°15'20.82"N	78°11'47.41"E
8	AAQ8	Kottumaranahalli	4.90	NNW	12°16'51.35"N	78° 9'42.11"E
9	AAQ9	Naganampatti	4.35	NNE	12°17'5.20"N	78°11'18.56"E

Table 3.16 Ambient Air Quality (AAQ) Monitoring Locations

Source: On-site monitoring/sampling by Excellence Laboratory in association with GTMS

Results

As per the monitoring data, $PM_{2.5}$ ranges from 15.6 µg/m³ to 20.5 µg/m³; PM_{10} from 33.7µg/m³ to 39.0µg/m³; SO_2 from 6.6 µg/m³ to 9.5 µg/m³; NO_X from 12.3 µg/m³ to 17.9g/m³. The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

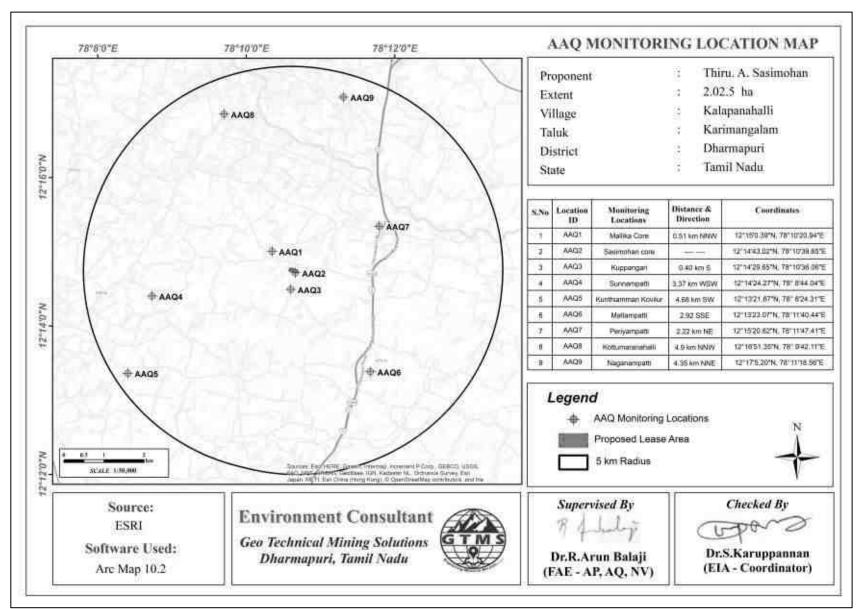


Figure 3.16 Map Showing Ambient Air Quality Monitoring Station Locations Around 5 km Radius from Proposed Project Site

PM _{2.5}						PM ₁₀					
Station ID	Max	Min	Mean	98 th Percentile	Max	Min	Mean	98 th Percentile			
AAQ1	23.0	19.0	21.1	23.0	41.6	37.8	39.7	41.6			
AAQ2	24.2	18.6	20.9	24.2	43.7	35.9	39.2	43.7			
AAQ3	21.0	17.0	19.1	21.0	39.5	35.7	37.6	39.5			
AAQ4	17.9	11.1	14.8	17.9	36.3	31.1	33.8	36.3			
AAQ5	19.7	12.1	14.9	19.7	37.6	30.2	33.3	37.6			
AAQ6	18.7	14.5	16.9	18.7	38.5	32.0	35.8	38.5			
AAQ7	22.2	17.4	20.3	22.2	40.9	34.8	37.6	40.9			
AAQ8	17.2	14.6	15.8	17.2	35.2	32.5	34.1	35.2			
AAQ9	20.9	15.7	17.4	20.9	37.5	33.7	35.6	37.5			
		SO	2		NOx						
AAQ1	11.4	8.6	10.1	11.4	21.9	15.4		21.5			
AAQ2	10.8	7.6	9.1	10.8	22.0	14.9	18.1	22.0			
AAQ3	9.7	6.9	8.4	9.3	18.9	12.4	15.5	18.5			
AAQ4	8.4	4.0	5.8	8.2	15.1	8.6	11.0	14.4			
AAQ5	9.0	3.9	6.2	8.8	14.5	8.4	10.7	13.6			
AAQ6	10.7	7.6	8.8	10.4	10.4 17.0 12.5		14.3	17.0			
AAQ7	9.8	8.3	9.1	9.8	19.3 15.2 16.5		17.2				
AAQ8	7.8	6.3	7.1	7.8	14.9 12.6 13.9		14.9				
AAQ9	8.1	6.1	7.3	8.1	17.9	10.8	14.0	17.9			

 Table 3.17 Summary of AAQ Result

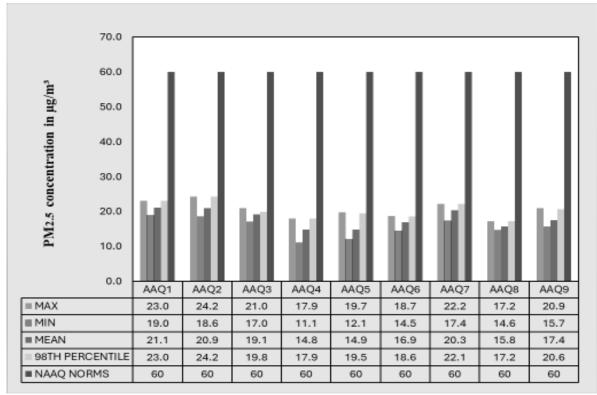


Figure 3.17 Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM_{2.5} Measured from 9 Air Quality Monitoring Stations within 5 km Radius

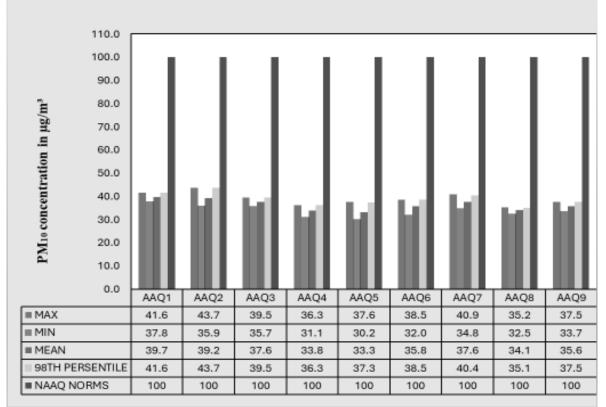


Figure 3.18 Bar Chart Showing Maximum, Minimum and Average Concentrations of PM₁₀ Measured from 9 Air Quality Monitoring Stations within 5 km Radius

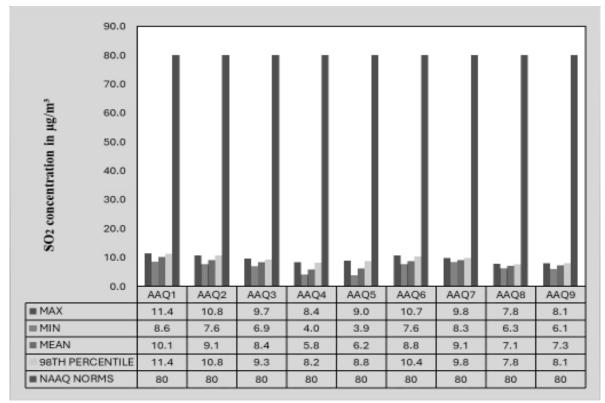


Figure 3.19 Bar Chart Showing Maximum, Minimum, and Average Concentrations of SO₂ Measured from 9 Air Quality Monitoring Stations within 5 km Radius

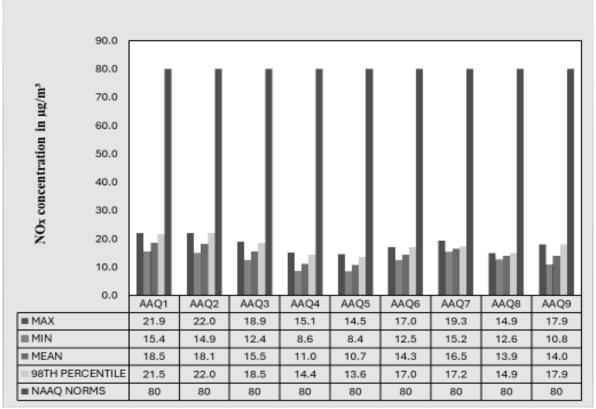


Figure 3.20 Bar Chart Showing Maximum, Minimum and Average Concentrations of NO_x Measured from 9 Air Quality Monitoring Stations within 5km Radius

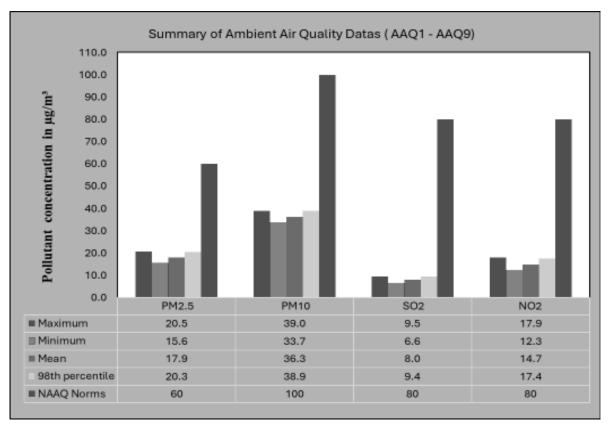


Figure 3.21 Bar Chart Showing Maximum, Minimum and Average Concentrations of Pollutants in Atmosphere within 5 km Radius

3.4 NOISE ENVIRONMENT

The vehicular movement on road and mining activities is the major sources of noise in the study area. The main objective of noise monitoring in the study area is to establish the baseline noise level, which will in turn be used to assess the impact of the total noise expected to be generated during the project operations around the project site. In order to assess the ambient noise levels within the study area, noise monitoring was carried out at nine (9) locations covering commercial, residential, rural areas within the radius of 5 km. Details of noise monitoring locations are provided in Table 3.18 and spatial occurrence of the locations are shown in Figure 3.24.

 Table 3.18 Noise Monitoring Locations

S.	ocatio	Monitoring	Distance	Direction	Coordinates				
No	Code	Locations	in km	Direction	Latitude	Longitude			
1	N1	Mallika Core	0.54	NNW	12°15'0.05"N	78°10'25.65"E			
2	N2	Sasimohan core			12°14'46.27"N	78°10'37.13"E			
3	N3	Kuppangari	0.45	S	12°14'31.93"N	78°10'36.35"E			
4	N4	Sunnampatti	3.55	SW	12°14'24.53"N	78° 8'44.83"E			

5	N5	Kunthiamman Kovilur	4.70	SW	12°13'18.71"N	78° 8'25.07"E
6	N6	Matlampatti	2.90	SSE	12°13'23.58"N	78°11'34.41"E
7	N7	Periyampatti	2.18	NE	12°15'15.45"N	78°11'47.48"E
8	N8	Kottumaranahalli	4.11	NNW	12°16'50.14"N	78° 9'41.89"E
9	N9	Naganampatti	4.38	NNE	12°17'3.36"N	78°11'18.20"E

Source: On-site monitoring/sampling by Excellence Laboratory in association with GTMS

Table 3.19 Ambient Noise Quality Result

Station ID	Location	Environmental setting	Average day noise level (dB(A))	Average night noise level (dB(A))	Day time (6.00 AM – 10.00 PM)	Night time (10.00 PM – 6.00 AM)
					Standard	(L _{eq} in dB
					(A))	
N1	Mallika Core	Industrial Area	45.8	37.3	75	70
N2	Sasimohan core	industrial Area	45.6	38.4	75	70
N3	Kuppangari		45.8	37.1	55	45
N4	Sunnampatti		40.2	39.3	55	45
N5	Kunthiamman Kovilur	Residential	40.3	38.4	55	45
N6	Matlampatti	Area	49.8	43.3	55	45
N7	Periyampatti		51.6	45.3	55	45
N8	Kottumaranahalli		39.8	36.2	55	45
N9	Naganampatti		40.6	38.5	55	45

Source: On-site monitoring/sampling by Excellence Laboratory in association with GTMS

The Table 3.18 shows that noise level in core zone was 45.6 dB (A) Leq during day time and 38.4 dB(A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 39.8 to 51.6dB (A) Leq and during night time from 36.2 to 45.3 dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB. The results are also depicted below in Figures 3.22 and 3.23.

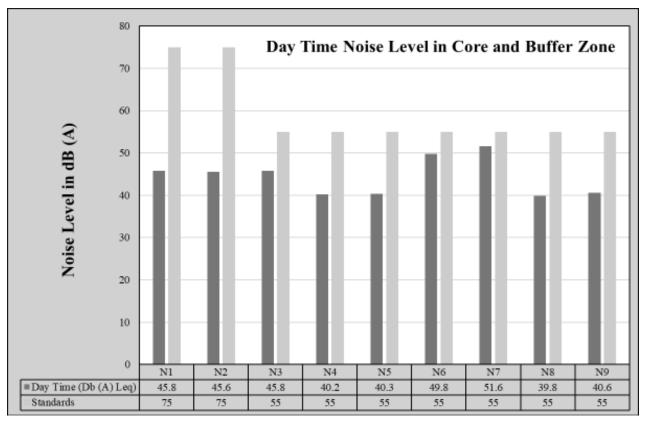


Figure 3.22 Bar Chart Showing Day Time Noise Levels Measured in Core and Buffer Zones

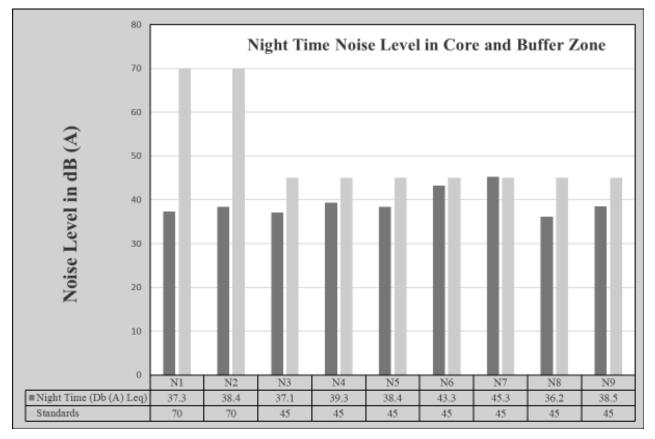


Figure 3.23 Bar Chart Showing Night Time Noise Levels Measured in Core and Buffer Zones

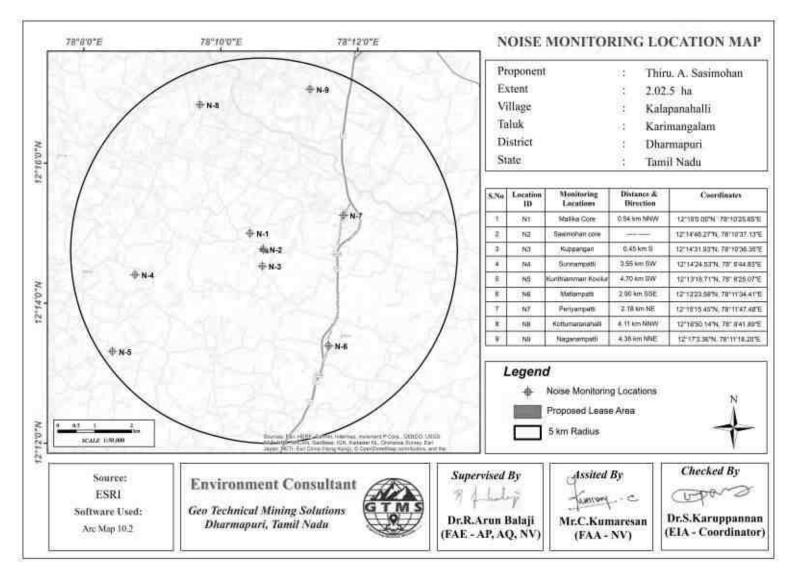


Figure 3.24 Map Showing Noise Level Monitoring Station Locations around 5 km Radius from Proposed Project Site

3.5 BIOLOGICAL ENVIRONMENT

An ecological survey was conducted to collect the baseline data regarding flora and fauna in the study area of 10 km radius. Data were also collected from different sources, i.e., government departments such as District Forest Office, Government of Tamil Nadu. On the basis of onsite observations as well as forest department records the checklist of flora and fauna was prepared.

Methodology

Sampling locations were selected with reference to topography, land use, vegetation pattern, etc. In this study, quadrats of 25 m \times 25 m were laid down to assess trees and quadrats of 10 m \times 10 m were laid down for shrubs, as shown in Figure 3.25.

Figure 3.25 Quadrates Sampling Methods of Flora

Phyto-Sociological Studies

Phyto sociological parameters, such as *Density, Frequency, Abundance and Importance Value Index* of individual species were determined in randomly placed quadrat of different sizes in the study area, as shown in Table 3.20. Relative frequency, and relative density were calculated and the sum of these three represented Importance Value Index (IVI) for various species. For shrubs, herbs and grasses, *Density, Frequency, Relative Density & Relative Frequency were found*. Sample plots were selected in such a way to get maximum representation of different types of vegetation and plots were laid out in different part of the study area of 10 km radius. Analysis of the vegetation will help in determining the relative importance of each species in the study area and to reveal if any economically valuable species is threatened in the process.

Table 3.20 Calculation of Density, Frequency (%), Dominance, Relative Density, RelativeFrequency, Relative Dominance & Important Value Index

Parameters	Formula					
Density	Total No. of individuals of species/ Total No. of Quadrats used in					
	sampling					
Frequency (%)	(Total No. of Quadrats in which species occur/ Total No. of Quadrats					
	studied)100					
Abundance	Total No. of individuals of species/ No. of Quadrats in which they occur					
Relative Density	(Total No. of individuals of species/Sum of all individuals of all species)					
	* 100					
Relative	(Total No. of Quadrats in which species occur/ Total No. of Quadrats					
Frequency	occupied by all species) * 100					
Important Value	Relative Density + Relative Frequency					
Index						

Shannon – Wiener Index, Evenness and Richness

Biodiversity index is a quantitative measure that reflects how many different types of species, there are in a dataset, and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed among those types of species. The value of biodiversity index increases both when the number of types increases and when evenness increases. For a given number of type of species, the value of a biodiversity index is maximized when all type of species is equally abundant. The corresponding formulas are given in Table 3.21.

Table 3.21 Calculation of Species Diversity by Shannon – Wiener Index, Evenness and
Richness

Description	Formula						
Species diversity –	$\mathbf{H} = \sum [(\mathbf{p}_i)^* \mathbf{I} \mathbf{n}(\mathbf{p}_i)]$						
Shannon – Wien	Where pi: Proportion of total sample represented by species						
Index	i: number of individuals of species i/ total number						
	samples						
Evenness	H/H max						
	$H_{max} = ln(s) = maximum diversity possible$						
	S=No. of species						
Species Richness by	$RI = S-1/\ln N$						
Margalef	Where $S = Total$ Number of species in the community						
	N = Total Number of individuals of all species in the						
	Community						

3.5.1 Flora

Flora study was conducted using the above said methodology to inventory the existing terrestrial plants in both core and buffer zones. Details of plants have been described in the succeeding sections. Photographs showing various species are provided in Figure 3.28.

Flora in mine lease area (core zone)

The mine lease area contains total of 12 species belonging to 9 families have been recorded from the mine lease area. 4 shrubs, 8 herbs were identified. It is a grassy land. There are no endangered species in mine lease area. Details of vegetation with scientific name indicated in Table 3.22.

S.no	Local name	Scientific name	Family name	No of plants						
	Shrubs									
1	Avaram chadi	Senna auriculata	Fabaceae	4						
2	Earuku	Calotropis gigantea	Apocynaceae	5						
3	communist pacha	Chromolaena odorata	Asteraceae	7						
4	Unnichadi	Lantana camara	Verbenaceae	6						
		Herbs /Climber								
1	Perandai	Cissus quadrangularis	Vitaceae	3						
2	Thathapondu	Tridax procumbens	Asteraceae	4						
3	Kolunji chadi	Tephrosia purpurea	Fabaceae	5						
4	Nayuruvi	Achyranthes aspera	Amaranthaceae	2						
5	Nearunji mull	Tribulus zeyheri Sond	Zygophyllaceae	6						
6	Pill	Cenchrus ciliaris	Poaceae	2						
7	Pulapoo	Aerva lanata	Amaranthaceae	3						
8	American mint	Hyptis suaveolens	Lamiaceae	5						

 Table 3.22 Flora in mine lease area

Flora within 300 m radius buffer zone

There is no agricultural land nearby lease area. It contains a total of 36 species belonging to 20 families have been recorded from the buffer zone. 11 Trees, 8 Shrubs and 17 Herbs and Climbers were identified. Details of flora with the scientific name details and of diversity species Richness index were mentioned in Table 3.23-3.25 and Figure 3.26. There is no threat to the Flora species in 300 m radius.

Flora within 10 km radius buffer zone

Similar type of environment also in buffer area but with more flora diversity compare than core zone area. It contains a total of species belonging to 43 families have been recorded from the buffer zone. The floral (82) varieties among them 35 Trees, 15 Shrubs, Herbs and Climbers, Creeper, Grass & Cactus, 32 were identified. Details of flora with the scientific name details of diversity species rich ness index were mentioned in Table 3.26-3.28 and Figure 3.27.

	Table 3.23 Flora in 300 m Radius												
S.No.	Local Name	Scientific name	Family name	Total No. of species	Total of Quadrants with species	Total No. of Quadrants	Density	Frequency (%)	Abundance	Relative Density	Relative Frequency	ΙΛΙ	IUCN Conservation Status
	•			Tre	es								
1	Karuvealan	Prosopis juliflora	Fabaceae	7	4	5	1.4	0.0	0.1	3.6	29.3	32.9	Not Listed
2	Palm tree	Borassus flabellifer	Fabaceae	2	2	5	0.4	40.0	1.0	4.9	7.1	12.0	Not Listed
3	Vembu	Azadirachta indica	Meliaceae	8	3	5	1.6	60.0	2.7	19.5	10.7	30.2	Not Listed
4	Vealli vealan	Vachellia leucophloea	Babesiae	2	2	5	0.4	40.0	1.0	4.9	7.1	12.0	LC
5	Unjai maram	Albizia amara	Fabaceae	4	3	5	0.8	60.0	1.3	9.8	10.7	20.5	Not Listed
6	Vetpalai	Wrightia tinctoria	Apocynaceae	4	3	5	0.8	60.0	1.3	9.8	10.7	20.5	Not Listed
7	Teke	Tectona grandis	Verbenaceae	2	2	5	0.4	40.0	1.0	4.9	7.1	12.0	Not Listed
8	Pungamaram	Pongamia pinnata	Fabaceae	4	3	5	0.8	60.0	1.3	9.8	10.7	20.5	Not Listed
9	Piliyamaram	Tamarindus indica	Fabaceae	3	2	5	0.6	40.0	1.5	7.3	7.1	14.5	Not Listed
10	Theannaimaram	Cocos nucifera	Arecaceae	4	3	5	0.8	60.0	1.3	9.8	10.7	20.5	Not Listed
11	Mungil maram	Bambusa	Poaceae	1	1	5	0.2	20.0	1.0	2.4	3.6	6.0	Not Listed
	Shrubs												
1	Erukku	Calotropis gigantea	Apocynaceae	9	6	10	0.9	0.1	0.2	2.8	54.4	57.2	Not Listed
2	Uumaththai	Datura metel	Solanaceae	7	5	10	0.7	50.0	1.4	14.3	13.9	28.2	Not Listed
3	Thuthi	Abutilon indicum	Meliaceae	6	4	10	0.6	40.0	1.5	12.2	11.1	23.4	Not Listed

Table 3.23 Flora in 300 m Radius

73 | Page

		~		-		10	0 -	10.0	1.0	110			
4	Avarai	Senna auriculata	Fabaceae	7	4	10	0.7	40.0	1.8	14.3	11.1	25.4	Not Listed
5	Unichadi	Lantana camara	Verbenaceae	10	8	10	1.0	80.0	1.3	20.4	22.2	42.6	Not Listed
6	Suraimullu	Zizyphus Oenoplia	Rhamnaceae	3	3	10	0.3	30.0	1.0	6.1	8.3	14.5	Not Listed
7	Nochi	Vitex negundo	Lamiaceae	5	4	10	0.5	40.0	1.3	10.2	11.1	21.3	Not Listed
8	Veralichadi	Dodonaea viscosa	Sapindaceae	2	2	10	0.2	20.0	1.0	4.1	5.6	9.6	LC
			He	erbs/C	limbers						•		
1	Nayuruvi	Achyranthes aspera	Amaranthaceae	12	8	15	0.8	0.1	0.1	0.7	231.3	23.0	Not Listed
2	Nearunji mull	Tribulus zeyheri Sond	Zygophyllaceae	16	12	15	1.1	80.0	1.3	8.6	8.6	17.3	Not Listed
3	Pill	Cenchrus ciliaris	Poaceae	15	13	15	1.0	86.7	1.2	8.1	9.4	17.5	Not Listed
4	Pulapoo	Aerva lanata	Amaranthaceae	9	8	15	0.6	53.3	1.1	4.9	5.8	10.6	Not Listed
5	Kapok bush	Aerva javani	Amaranthaceae	6	5	15	0.4	33.3	1.2	3.2	3.6	6.8	Not Listed
6	Rail poondu	Croton bonplandianus	Euphorbiaceae	22	11	15	1.5	73.3	2.0	11.9	7.9	19.8	Not Listed
7	Perandai	Cissus quadrangularis	Vitaceae	8	8	15	0.5	53.3	1.0	4.3	5.8	10.1	Not Listed
8	Thumbai chadi	Leucas aspera	Lamiaceae	14	7	15	0.9	46.7	2.0	7.6	5.0	12.6	Not Listed
9	Umathai	Datura metel	Solanaceae	11	9	15	0.7	60.0	1.2	5.9	6.5	12.4	Not Listed
10	Sethamutti	Sida cordata	Malvaceae	13	12	15	0.9	80.0	1.1	7.0	8.6	15.7	Not Listed
11	unankodi	Ipomoea Staphylina	Asteraceae	2	2	15	0.1	13.3	1.0	1.1	1.4	2.5	Not Listed
12	Kolunji	Tephrosia purpurea	Fabaceae	18	12	15	1.2	80.0	1.5	9.7	8.6	18.4	Not Listed
13	vealiparuthi	Pergularia daemia	Apocynaceae	2	2	15	0.1	13.3	1.0	1.1	1.4	2.5	Not Listed
14	Seppu nerinji	Indigofera linnaei Ali	Fabaceae	3	3	15	0.2	20.0	1.0	1.6	2.2	3.8	Not Listed
15	Sapathikalli	Opuntia ficus-indica	Cactaceae	16	10	15	1.1	66.7	1.6	8.6	7.2	15.8	Not Listed
16	Katralai	Aloe vera	Asphodelaceae	4	4	15	0.3	26.7	1.0	2.2	2.9	5.0	Not Listed
17	Seammulli	Barleria prionitis	Acanthaceae	11	10	15	0.7	66.7	1.1	5.9	7.2	13.1	Not Listed

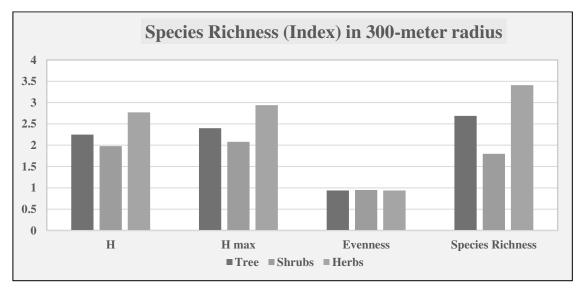

S.No.	Common name	Scientific name	No. of Species	Pi	In (Pi)	Pi x in (Pi)
		Trees				
1	Karuvealan	Prosopis juliflora	7	0.17	-1.77	-0.30
2	Palm tree	Borassus flabellifer	2	0.05	-3.02	-0.15
3	Vembu	Azadirachta indica	8	0.20	-1.63	-0.32
4	Vealli vealan	Vachellia leucophloea	2	0.05	-3.02	-0.15
5	Unjai maram	Albizia amara	4	0.10	-2.33	-0.23
6	Vetpalai	Wrightia tinctoria	4	0.10	-2.33	-0.23
7	Teke	Tectona grandis	2	0.05	-3.02	-0.15
8	Pungamaram	Pongamia pinnata	4	0.10	-2.33	-0.23
9	Piliyamaram	Tamarindus indica	3	0.07	-2.61	-0.19
10	Theannaimaram	Cocos nucifera	4	0.10	-2.33	-0.23
11	Mungil maram	Bambusa	1	0.02	-3.71	-0.09
		H (Shannon Diversity	Index) $=2$.	25		
		Shrubs				
1	Erukku	Calotropis gigantea	9	0.18	-1.69	-0.31
2	Uumaththai	Datura metel	7	0.14	-1.95	-0.28
3	Thuthi	Abutilon indicum	6	0.12	-2.10	-0.26
4	Avarai	Senna auriculata	7	0.14	-1.95	-0.28
5	Unichadi	Lantana camara	10	0.20	-1.59	-0.32
6	Suraimullu	Zizyphus Oenoplia	3	0.06	-2.79	-0.17
7	Nochi	Vitex negundo	5	0.10	-2.28	-0.23
8	Veralichadi	Dodonaea viscosa	2	0.04	-3.20	-0.13
		H (Shannon Diversity	Index) $=1$.	98	<u> </u>	
		Herbs				
1	Nayuruvi	Achyranthes aspera	12	0.06	-2.80	-0.17
2	Nearunji mull	Tribulus zeyheri Sond	16	0.08	-2.51	-0.20
3	Pill	Cenchrus ciliaris	15	0.08	-2.58	-0.20
4	Pulapoo	Aerva lanata	9	0.05	-3.09	-0.14


Table 3.24 Calculation of Species Diversity in 300 m Radius

5	Kapok Bush	Aerva javani	6	0.03	-3.49	-0.11				
6	Rail poondu	Croton	22							
0	Kan poolidu	bonplandianus		0.11	-2.19	-0.24				
7	Perandai	Cissus	8							
/	i ciandai	quadrangularis	0	0.04	-3.20	-0.13				
8	Thumbai chadi	Leucas aspera	14	0.07	-2.64	-0.19				
9	Umathai	Datura metel	11	0.06	-2.89	-0.16				
10	Sethamutti	Hyptis suaveolens	13	0.07	-2.72	-0.18				
11	unankodi	Ipomoea Staphylina	2	0.01	-4.59	-0.05				
12	Kolunji	Tephrosia purpurea	18	0.09	-2.39	-0.22				
13	Vealiparuthi	Pergularia daemia	2	0.01	-4.59	-0.05				
14	Seppu nerinji	Indigofera linnaei Ali	3	0.02	-4.18	-0.06				
15	Sapathikalli	Opuntia ficus-indica	16	0.08	-2.51	-0.20				
16	Katralai	Aloe vera	4	0.02	-3.90	-0.08				
17	Seammulli	Barleria prionitis	11	0.06	-2.89	-0.16				
I	H (Shannon Diversity Index) =2.77									

Table 3.25 Species Richness (Index) in 300-meter radius

Details	Н	H max	Evenness	Species Richness
Trees	2.25	2.40	0.94	2.69
Shrubs	1.98	2.08	0.95	1.80
Herbs	2.77	2.94	0.94	3.41

S.No.	Local Name	Scientific name	Family name	Total No. of species	Total of Quadrants with species	Total No. of Quadrants	Density	Frequency (%)	Abundance	Relative Density	Relative Frequency	IVI	IUCN Conservation Status
				Tre	1	1	1	1 1		1	1	T	
1	Vembu	Azadirachta indica	Meliaceae	10	6	8	1.3	75.0	1.7	2.9	2.5	5.4	Not Listed
2	Unjai maram	Albizia amara	Fabaceae	9	7	8	1.1	87.5	1.3	2.6	3.0	5.5	Not Listed
3	Vetpalai	Wrightia tinctoria	Apocynaceae	8	5	8	1.0	62.5	1.6	2.3	2.1	4.4	Not Listed
4	Thekku	Tectona grandis	Verbenaceae	9	6	8	1.1	75.0	1.5	2.6	2.5	5.1	Not Listed
5	Pongam oiltree	Pongamia pinnata	Fabaceae	10	8	8	1.3	100.0	1.3	2.9	3.4	6.3	Not Listed
6	Thennai maram	Cocos nucifera	Arecaceae	8	5	8	1.0	62.5	1.6	2.3	2.1	4.4	Not Listed
7	Manga	Mangifera indica	Anacardiaceae	11	8	8	1.4	100.0	1.4	3.2	3.4	6.5	Not Listed
8	Puliyamaram	Tamarindus indica	Legumes	7	5	8	0.9	62.5	1.4	2.0	2.1	4.1	Not Listed
9	Vadanarayani	Delonix elata	Fabaceae	8	6	8	1.0	75.0	1.3	2.3	2.5	4.8	Not Listed
10	Thenpazham	Muntingia calabura	Tiliaceae	9	8	8	1.1	100.0	1.1	2.6	3.4	6.0	Not Listed
11	Punnai	Calophyllu inophyllum	Calophyllaceae	10	7	8	1.3	87.5	1.4	2.9	3.0	5.8	Not Listed
12	Athi	Ficus recemosa	Moraceae	8	5	8	1.0	62.5	1.6	2.3	2.1	4.4	Not Listed
13	Ilanthai	Ziziphus jujubha	Rhamnaceae	10	8	8	1.3	100.0	1.3	2.9	3.4	6.3	Not Listed
14	Nattu Karuvelam	Acacia nilotica	Mimosaceae	11	6	8	1.4	75.0	1.8	3.2	2.5	5.7	Not Listed
15	Nettilinkam	Polylathia longifolia	Annonaceae	9	5	8	1.1	62.5	1.8	2.6	2.1	4.7	Not Listed
16	Perumungil	Bambusa bamboos	Poaceae	10	7	8	1.3	87.5	1.4	2.9	3.0	5.8	Not Listed
17	Arai nelli	Phyllanthus acidus	Euphorbiaceae	8	5	8	1.0	62.5	1.6	2.3	2.1	4.4	Not Listed

Table 3.26 Flora in 10 km Radius Buffer zone

18	Panai maram	Borassus flabellifer	Arecaceae	10	6	8	1.3	75.0	1.7	2.9	2.5	5.4	Not Listed
19	Sapota	Manilkara zapota	Sapotaceae	11	8	8	1.4	100.0	1.4	3.2	3.4	6.5	Not Listed
20	Navalmaram	Sygygium cumini	Myrtaceae	12	10	8	1.5	125.0	1.2	3.5	4.2	7.7	Not Listed
21	Ezhumuchamaram	Citrus lemon	Rutaceae	11	8	8	1.4	100.0	1.4	3.2	3.4	6.5	Not Listed
22	Alamaram	Ficus benghalensis	Moraceae	9	6	8	1.1	75.0	1.5	2.6	2.5	5.1	Not Listed
23	Vazhaimaram	Musa	Musaceae	8	5	8	1.0	62.5	1.6	2.3	2.1	4.4	Not Listed
24	Nelli	Emblica officinalis	Phyllanthaceae	10	7	8	1.3	87.5	1.4	2.9	3.0	5.8	Not Listed
25	Thailamaram	Eucalyptus globules	Myrtaceae	11	8	8	1.4	100.0	1.4	3.2	3.4	6.5	Not Listed
26	Maramalli	Millingtonia hortensis	Bignoniaceae	9	6	8	1.1	75.0	1.5	2.6	2.5	5.1	Not Listed
27	Palamaram	Artocarpus heterophyllus	Moraceae	13	9	8	1.6	112.5	1.4	3.7	3.8	7.5	Not Listed
28	Kuduka puli	Pithecellobium dulce	Mimosaceae	11	7	8	1.4	87.5	1.6	3.2	3.0	6.1	Not Listed
29	Karimurungai	Moringa olefera	Moraginaceae	12	9	8	1.5	112.5	1.3	3.5	3.8	7.3	Not Listed
30	Pappali maram	Carica papaya L	Caricaceae	13	8	8	1.6	100.0	1.6	3.7	3.4	7.1	Not Listed
31	Poovarasu	Thespesia populnea	Malvaceae	8	6	8	1.0	75.0	1.3	2.3	2.5	4.8	Not Listed
32	Arasanmaram	Ficus religiosa	Moraceae	9	5	8	1.1	62.5	1.8	2.6	2.1	4.7	Not Listed
33	Nuna maram	Morinda citrifolia	Rubiaceae	10	7	8	1.3	87.5	1.4	2.9	3.0	5.8	Not Listed
34	Коууа	Psidium guajava	Myrtaceae	13	8	8	1.6	100.0	1.6	3.7	3.4	7.1	Not Listed
35	Seethapazham	Annona reticulata	Annonaceae	12	7	8	1.5	87.5	1.7	3.5	3.0	6.4	Not Listed
				Shru	bs								
1	Avarai	Senna auriculata	Fabaceae	15	11	12	1.3	91.7	1.4	6.1	6.3	12.4	Not Listed
2	Marudaani	Lawsonia inermis	Lythraceae	13	9	12	1.1	75.0	1.4	5.3	5.1	10.5	Not Listed
3	Karuveappilai	Murraya koenigii	Asclepiadaceae	14	10	12	1.2	83.3	1.4	5.7	5.7	11.5	Not Listed
4	Sundaika	Solanum torvum	Solanaceae	15	11	12	1.3	91.7	1.4	6.1	6.3	12.4	Not Listed
5	Arali	Nerium indicum	Apocynaceae	11	9	12	0.9	75.0	1.2	4.5	5.1	9.7	Not Listed
6	Seemaiagaththi	Cassia alata	Caesalpinaceae	12	8	12	1.0	66.7	1.5	4.9	4.6	9.5	Not Listed
7	Chemparuthi	Hibiscu rosa-sinensis	Malvaceae	15	11	12	1.3	91.7	1.4	6.1	6.3	12.4	Not Listed

8	Kattamanakku	Jatropha curcas	Euphorbiaceae	11	7	12	0.9	58.3	1.6	4.5	4.0	8.5	Not Listed
9	Chaturakalli	Euphorbia antiquorum	Euphorbiaceae	16	12	12	1.3	100.0	1.3	6.6	6.9	13.4	Not Listed
10	Idlipoo	Ixoracoc cinea	Rubiaceae	15	10	12	1.3	83.3	1.5	6.1	5.7	11.9	Not Listed
11	Thuthi	Abutilon indicum	Meliaceae	10	6	12	0.8	50.0	1.7	4.1	3.4	7.5	Not Listed
12	Nithyakalyani	Cathranthus roseus	Apocynaceae	16	13	12	1.3	108.3	1.2	6.6	7.4	14.0	Not Listed
13	Uumaththai	Datura metel	Solanaceae	11	9	12	0.9	75.0	1.2	4.5	5.1	9.7	Not Listed
14	Erukku	Calotropis gigantea	Apocynaceae	16	14	12	1.3	116.7	1.1	6.6	8.0	14.6	Not Listed
15	Neermulli	Hydrophila auriculata	Acanthaceae	13	9	12	1.1	75.0	1.4	5.3	5.1	10.5	Not Listed
			Herbs	s/Climb	ers/Gras	s	•						
1	Nayuruvi	Achyranthes aspera	Amaranthaceae	15	9	18	0.8	50.0	1.7	25.9	2.3	28.2	Not Listed
2	Veetukaayapoondu	Tridax procumbens	Asteraceae	13	10	18	0.7	55.6	1.3	22.4	2.6	25.0	Not Listed
3	Mukkirattai	Boerhaavia diffusa	Nyctaginaceae	16	9	18	0.9	50.0	1.8	27.6	2.3	29.9	Not Listed
4	Kuppaimeni	Acalypha indica	Euphorbiaceae	15	11	18	0.8	61.1	1.4	25.9	2.8	28.7	Not Listed
5	Karisilanganni	Eclipta prostata	Asteraceae	11	9	18	0.6	50.0	1.2	19.0	2.3	21.3	Not Listed
6	Korai	Cyperus rotundus	Cyperaceae	10	8	18	0.6	44.4	1.3	17.2	2.0	19.3	Not Listed
7	Kanamvazha	Commelina benghalensis	Commelinaceae	11	7	18	0.6	38.9	1.6	19.0	1.8	20.8	Not Listed
8	Thumbai	Leucas aspera	Lamiaceae	15	12	18	0.8	66.7	1.3	25.9	3.1	28.9	Not Listed
9	Nai kadugu	Celome viscosa	Capparidaceae	12	8	18	0.7	44.4	1.5	20.7	2.0	22.7	Not Listed
10	Parttiniyam	Parthenium hysterophorus	Asteraceae	11	7	18	0.6	38.9	1.6	19.0	1.8	20.8	Not Listed
11	Thulasi	Ocimum tenuiflorum	Lamiaceae	16	13	18	0.9	72.2	1.2	27.6	3.3	30.9	Not Listed
12	Arugampul	Cynodon dactylon	Poaceae	17	14	18	0.9	77.8	1.2	29.3	3.6	32.9	Not Listed
13	Manathakkali	Solanumnigrum	Solanaceae	12	10	18	0.7	55.6	1.2	20.7	2.6	23.2	Not Listed
14	Kudai korai	Cyperus difformis	Cyperaceae	11	9	18	0.6	50.0	1.2	19.0	2.3	21.3	Not Listed
15	Thoiya keerai	Digeria muricata	Amarantheceae	12	11	18	0.7	61.1	1.1	20.7	2.8	23.5	Not Listed

16	Kovai	Coccinia grandis	Cucurbitaceae	16	14	18	0.9	77.8	1.1	27.6	3.6	31.2	Not Listed
17	Perandai	Cissus quadrangularis	Vitaceae	17	15	18	0.9	83.3	1.1	29.3	3.8	33.1	Not Listed
18	Mudakkotan	Cardiospermum helicacabum	Sapindaceae	15	11	18	0.8	61.1	1.4	25.9	2.8	28.7	Not Listed
19	Kovakkai	Trichosanthes dioica	Cucurbitaceae	11	9	18	0.6	50.0	1.2	19.0	2.3	21.3	Not Listed
20	Sangupoo	Clitoriaternatia	Fabaceae	15	12	18	0.8	66.7	1.3	25.9	3.1	28.9	Not Listed
21	Siru puladi	Desmodium triflorum	Fabaceae	16	11	18	0.9	61.1	1.5	27.6	2.8	30.4	Not Listed
22	Amman Pacharisi	Euphorbia hirta	Euphorbiaceae	11	9	18	0.6	50.0	1.2	19.0	2.3	21.3	Not Listed
23	Thumattikai	Cucumis callosus	Cucurbitaceae	13	10	18	0.7	55.6	1.3	22.4	2.6	25.0	Not Listed
24	Seppu nerunjil	Indigofera enneaphylla	Fabaceae	15	13	18	0.8	72.2	1.2	25.9	3.3	29.2	Not Listed
25	Vallikeerai	Ipomoea aquatica	Convolvulaceae	12	11	18	0.7	61.1	1.1	20.7	2.8	23.5	Not Listed
26	Muthiyar koonthal	Merremia tridentata	Convolvulaceae	15	9	18	0.8	50.0	1.7	25.9	2.3	28.2	Not Listed
27	Mookuthi poondu	Wedelia trilobata	Asteraceae	16	12	18	0.9	66.7	1.3	27.6	3.1	30.7	Not Listed
28	Kattu kanchippul	Apluda mutica	Poaceae	11	9	18	0.6	50.0	1.2	19.0	2.3	21.3	Not Listed
29	Chevvarakupul	Chloris barbata	Amaranthaceae	16	12	18	0.9	66.7	1.3	27.6	3.1	30.7	Not Listed
30	Kuthirai vaali	Echinochloa colona	Poaceae	12	8	18	0.7	44.4	1.5	20.7	2.0	22.7	Not Listed
31	Pullu	Eragrostis ferruginea	Poaceae	17	15	18	0.9	83.3	1.1	29.3	3.8	33.1	Not Listed
32	Nagathali	Opuntia dillenii	Cactaceae	11	9	18	0.6	50.0	1.2	19.0	2.3	21.3	Not Listed

S. No	Local Name	Scientific name	No. of Species	Pi	In (Pi)	Pi x in (Pi)
	I	Trees				
1	Vembu	Azadirachta indica	10	0.03	-3.55	-0.10
2	Unjai maram	Albizia amara	9	0.03	-3.65	-0.09
3	Vetpalai	Wrightia tinctoria	8	0.02	-3.77	-0.09
4	Thekku	Tectona grandis	9	0.03	-3.65	-0.09
5	Pongam oiltree	Pongamia pinnata	10	0.03	-3.55	-0.10
6	Thennai maram	Cocos nucifera	8	0.02	-3.77	-0.09
7	Manga	Mangifera indica	11	0.03	-3.45	-0.11
8	Puliyamaram	Tamarindus indica	7	0.02	-3.90	-0.08
9	Vadanarayani	Delonix elata	8	0.02	-3.77	-0.09
10	Thenpazham	Muntingia calabura	9	0.03	-3.65	-0.09
11	Punnai	Calophyllu inophyllum	10	0.03	-3.55	-0.10
12	Athi	Ficus recemosa	8	0.02	-3.77	-0.09
13	Ilanthai	Ziziphus jujubha	10	0.03	-3.55	-0.10
14	Nattu Karuvelam	Acacia nilotica	11	0.03	-3.45	-0.11
15	Nettilinkam	Polylathia longifolia	9	0.03	-3.65	-0.09
16	Perumungil	Bambusa bamboos	10	0.03	-3.55	-0.10
17	Arai nelli	Phyllanthus acidus	8	0.02	-3.77	-0.09
18	Panai maram	Borassus flabellifer	10	0.03	-3.55	-0.10
19	Sapota	Manilkara zapota	11	0.03	-3.45	-0.11
20	Navalmaram	Sygygium cumini	12	0.03	-3.36	-0.12
21	Ezhumuchaipalam	Citrus lemon	11	0.03	-3.45	-0.11
22	Alamaram	Ficus benghalensis	9	0.03	-3.65	-0.09
23	Vazhaimaram	Musa	8	0.02	-3.77	-0.09
24	Nelli	Emblica officinalis	10	0.03	-3.55	-0.10
25	Thailamaram	Eucalyptus globules	11	0.03	-3.45	-0.11
26	Maramalli	Millingtonia hortensis	9	0.03	-3.65	-0.09
27	Palamaram	Artocarpus heterophyllus	13	0.04	-3.28	-0.12
28	Kuduka puli	Pithecellobium dulce	11	0.03	-3.45	-0.11
29	Karimurungai	Moringa olefera	12	0.03	-3.36	-0.12
30	Pappali maram	Carica papaya L	13	0.04	-3.28	-0.12
31	Poovarasu	Thespesia populnea	8	0.02	-3.77	-0.09
32	Arasanmaram	Ficus religiosa	9	0.03	-3.65	-0.09
33	Nuna maram	Morinda citrifolia	10	0.03	-3.55	-0.10
34	Коууа	Psidium guajava	13	0.04	-3.28	-0.12
35	Seethapazham	Annona reticulata	12	0.03	-3.36	-0.12

Table 3.27 Calculation of Species Diversity in 10 km Radius

81 | Page

		Shrubs				
1	Avarai	Senna auriculata	15	0.06	-2.79	-0.17
2	Marudaani	Lawsonia inermis	13	0.05	-2.93	-0.16
3	Karuveappilai	Murraya koenigii	14	0.06	-2.86	-0.16
4	Sundaika	Solanum torvum	15	0.06	-2.79	-0.17
5	Arali	Nerium indicum	11	0.05	-3.10	-0.14
6	Seemaiagaththi	Cassia alata	12	0.05	-3.01	-0.15
7	Chemparuthi	Hibiscu rosa-sinensis	15	0.06	-2.79	-0.17
8			11	0.05	-3.10	-0.14
9	Chaturakalli	Euphorbia antiquorum	16	0.07	-2.72	-0.18
10	Idlipoo	Ixoracoc cinea	15	0.06	-2.79	-0.17
11	Thuthi	Abutilon indicum	10	0.04	-3.19	-0.13
12	Nithyakalyani	Cathranthus roseus	16	0.07	-2.72	-0.18
13	Uumaththai	Datura metel	11	0.05	-3.10	-0.14
14	Erukku	Calotropis gigantea	16	0.07	-2.72	-0.18
15	Neermulli	Hydrophila auriculata	13	0.05	-2.93	-0.16
		Herbs/Climb	ers	1		I
1	Nayuruv	Achyranthes aspera	15	0.03	-3.52	-0.10
2	Veetukaayapoondu	Tridax procumbens	13	0.03	-3.67	-0.09
3	Mukkirattai	Boerhaavia diffusa	16	0.03	-3.46	-0.11
4	Kuppaimeni	Acalypha indica	15	0.03	-3.52	-0.10
5	Karisilanganni	Eclipta prostata	11	0.02	-3.83	-0.08
6	Korai	Cyperus rotundus	10	0.02	-3.93	-0.08
7	Kanamvazha	Commelina benghalensis	11	0.02	-3.83	-0.08
8	Thumbai	Leucas aspera	15	0.03	-3.52	-0.10
9	Nai kadugu	Celome viscosa	12	0.02	-3.75	-0.09
10	Parttiniyam	Parthenium hysterophorus	11	0.02	-3.83	-0.08
11	Thulasi	Ocimum tenuiflorum	16	0.03	-3.46	-0.11
12	Arugampul	Cynodon dactylon	17	0.03	-3.40	-0.11
13	Manathakkali	Solanumnigrum	12	0.02	-3.75	-0.09
14	Kudai korai	Cyperus difformis	11	0.02	-3.83	-0.08
15	Thoiya keerai	Digeria muricata	12	0.02	-3.75	-0.09
16	Kovai	Coccinia grandis	16	0.03	-3.46	-0.11
17	Perandai	Cissus quadrangularis	17	0.03	-3.40	-0.11
18	Mudakkotan	Cardiospermum helicacabum	15	0.03	-3.52	-0.10
19	Kovakkai	Trichosanthes dioica	11	0.02	-3.83	-0.08
20	Sangupoo	Clitoriaternatia	15	0.03	-3.52	-0.10
21	Siru puladi	Desmodium triflorum	16	0.03	-3.46	-0.11
22	Sithrapaalavi	Euphorbia prostrata	11	0.02	-3.83	-0.08
23	Thumattikai	Cucumis callosus	13	0.03	-3.67	-0.09

24	Seppu nerunjil	Indigofera enneaphylla	15	0.03	-3.52	-0.10
25	Vallikeerai	Ipomoea aquatica	12	0.02	-3.75	-0.09
26	Muthiyar koontha	Merremia tridentata	15	0.03	-3.52	-0.10
27	Mookuthi poondu	Wedelia trilobata	16	0.03	-3.46	-0.11
28	Kattu kanchippul	Apluda mutica	11	0.02	-3.83	-0.08
29	Chevvarakupul	Chloris barbata	16	0.03	-3.46	-0.11
30	Kuthirai vaal	Echinochloa colona	12	0.02	-3.75	-0.09
31	Pullu	Eragrostis ferruginea	17	0.03	-3.40	-0.11
32	Nagathali	Opuntia dillenii	11	0.02	-3.83	-0.08

Table 3.28 Species Richness (Index) in 10 km radius

Details	Н	H max	Evenness	Species Richness
Trees	3.54	3.56	1.00	5.81
Shrubs	2.88	2.89	1.00	3.09
Herbs	3.60	3.61	1.00	5.78

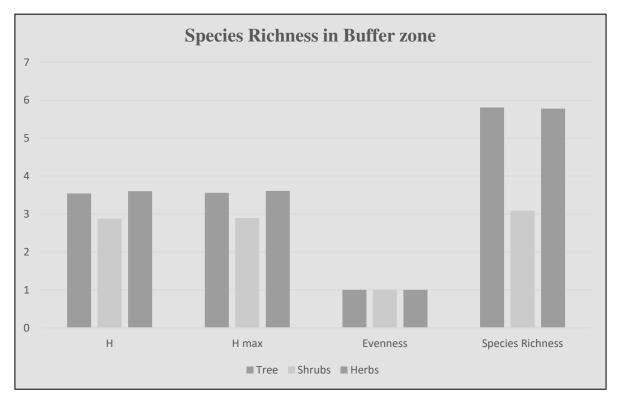
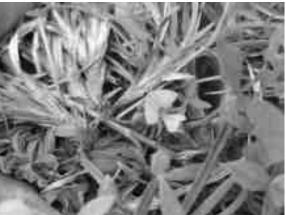
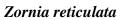




Figure. 3.27 Species Richness (Index) in 300 m Radius

Azadirachta indica



Sida acuta

Leucas aspera

Calyptocarpus vialis Less


Mangifera indica

Bambusa bambos

Tectona grandis

Tridax procumbens

Chromolaena odorata

Ipomoea staphylina

Hyptis suaveolens

Achyranthes aspera

Lantana camara

Chloris barbata Sw

Melinis repens (Willd.)

Figure 3.28 Flora in Core and Buffer Area

Aquatic Vegetation

The field survey for assessing the aquatic vegetation was also undertaken during the study period. The list of aquatic plants observed in the study area is given in Table 3.29.

S.No.	Scientific name	Common Name	IUCN Red List Status			
1	Eichornia crassipes	Water hyacinth	NA			
2	Aponogetonnatans	Floating lace plant	NA			
3	Carex cruciata	Cross Grass	NA			
4	Cynodon dactylon	Scutch grass	LC			
	Aquatic fauna					
5	Oreochromis mossambicus	Jalebi	VU			
6	Labeo catla	Catla catla	LC			
7	Channa striata	Korava meen	LC			

Table 3.29 Aquatic Vegetation

*LC- Least Concern, NA-Not yet assessed

The food chain in aquatic ecosystems often begins with the algae or phytoplankton producers, and then the zooplankton that feed on them. Table 3.29 lists the aquatic plants and animals commonly found in rivers, ponds and lakes within a radius of 5 km from the quarry. Phytoplankton, zooplankton, fish and Artiola form this food chain.

Eg: Phytoplankton-zooplankton-small fish-large fish

Forest Vegetation

There are no Reserve Forests or Biosphere Reserves or Wildlife Sanctuaries or National Parks or Bird Areas (IBAs) and faunal migration routes within 10 km radius. The area under study (mining lease area and 10 km buffer zone) is not ecologically sensitive.

Endangered and endemic species as per the IUCN Red List

There are no rare, endangered and endemic species found in the study area. There are no biosphere reserves or wildlife sanctuaries or National parks or Important Bird Areas (IBAs), ecologically sensitive zone in 10km radius.

Agriculture & Horticulture in 1km radius

Major Agricultural Crops

Major horticulture crops cultivated in this district are fruit crops like mango, banana, Sapota and guava, vegetables like tomato, brinjal, chillies, onion and turmeric. Details of major field crops and horticulture in 1km radius is given in Table. 3.30

S. No	Major crops	Scientific name	Families
1	Paddy	Oryza sativa	Grasses
2	Sorghum	Sorghum bicolor	Grasses
3	Gingelly	Sesamum indicum	Pedaliaceae
4	Groundnut	Arachis hypogaea	Legumes
5	Sugarcane	Saccharum officinarum	Grasses

Table 3.30 Major Crops in 1km radius District

Major Horticulture Crops

Horticulture includes cultivation of fruits, vegetables, nuts, seeds, herbs, sprouts, mushrooms, algae, flowers, seaweeds and non-food crops such as grass and ornamental trees and plants. It also includes plant conservation, landscape restoration, landscape and garden design.

Horticulture

Major horticulture crops cultivated in this district are fruit crops like mango, banana, Sapota and guava, vegetables like tomato, brinjal, Veandai, chillies, onion and tapioca, spices like turmeric. Details of major field crops and horticulture in 1km radius is given in Table 3.31.

SI.NO	Common Name	Scientific Name	Family		
Major Horticultural Crops					
1	Banana	Musa	Musaceae		
2	Mango	Mangifera indica	Anacardiaceae		
4	Guava	Psidium guajava	Myrtaceae		
5	Sapota	Manilkara zapota	Sapotaceae		
6	Amla	Phyllanthus emblica	Phyllanthaceae		
7	Lemon	Citrus × limon	Rutaceae		
8	Papaya	Carica papaya	Caricaceae		
		Vegetables			
9	Onion	Allium cepa	Amaryllidaceae		
10	Tapioca	Manihot esculenta	Spurges		
11	Brinjal	Solanum melongena	Nightshade		
12	Tomato	Solanum lycopersicum	Nightshade		
13	Bottle Gourd	Lagenaria siceraria	Cucurbits		
14	Veandai kai	Abelmoschus esculentus	Mallows		
15	Moringa	Moringa oleifera	Moringaceae		
16	Mullangi	Raphanus sativus	Brassicaceae		
		Flowers			
18	Jasmine	Jasminum	Jasminaceae		
20	Samanthi poo	Crysanthimum	Asteraceae		
21	Rose & Jathi	Rosa	Rosaceae		
23	Tuberose	Polianthes tuberosa	Asparagus		
Spices and Condiments					
24	Chillies	Capsicum frutescens	Solanaceae		
25	Turmeric	Curcuma longa	Zingiberaceae		
26	Tamarind	Tamarindus indica	Legumes		
27	Curry leaf	Murraya koenigii	Rutaceae		

 Table 3.31 Major Field Crops & Horticulture in 1km radius District.

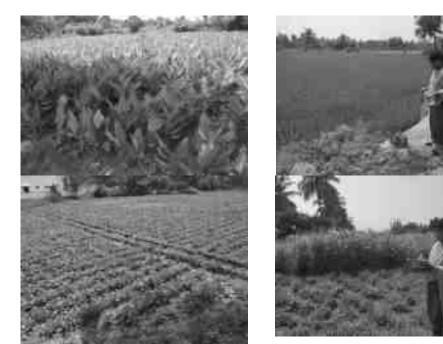


Figure 3.29 Agricultural land in the study area

3.5.2 Fauna

The faunal survey was carried out for Mammals, Birds, Reptiles, Amphibians and Butterflies. There are no rare, endangered, threatened (RET) and endemic species present in core area.

Fauna Methodology

S.No.	Taxa	Method of Sampling	References	
1	T /	Random walk, Opportunistic	Pollard (1977);	
1	Insects	observations	Kunte (2000)	
2	Reptiles	Visual encounter survey (Direct Search)	Daniel J.C (2002)	
3	Amphibians	Visual encounter survey (Direct Search)		
4	Mammals	Tracks and Signs	Menon V (2014)	
5	Avion	Random walk, Opportunistic	Grimmett R (2011);	
3	Avian	observations	Ali S (1941)	

 Table 3.32 Methodology Applied during Survey of Fauna

Fauna in Core Zone

A total of 30 varieties of species observed in the Core zone of Kalapanahalli Village, among them numbers of Insects 13, Reptiles 3, Mammals 4 and Avian 10. A total of 30 species belonging to 20 families have been recorded from the core Zone. There is no schedule I and II species. A total of 10 species of bird were sighted in the study area. Details of fauna in core zone with the scientific name were mentioned in Table. 3.33.

Fauna in Buffer Zone

Taxonomically a total of 87 species belonging to 56 families have been recorded from the buffer zone area. Based on habitat classification the majority of species were Birds 52, followed by insects 15, reptiles 12, mammals 5 and amphibians 3. A total of 52 species of bird were sighted in the buffer zone. There are no critically endangered, endangered, vulnerable and endemic species were observed. Details of fauna in buffer zone with the scientific name were mentioned in Table. 3.34. data collation in secondary data

Table 3.33 Fauna in Core Zone						
S.no	Common	Scientific Name	Family name	IUCN Red		
	Name/English Name	. .		List data		
		Insects				
1	Chocolate pansy	Junonia iphita	Nymphalidae	NA		
2	Lime swallowtail	Papilio demoleus	Papilionidae	NA		
3	Common Mormon	Papilio polytes	Papilionidae	NA		
4	Crimson dropwing	Trithemis aurora	Libellulidae	LC		
5	Lemon pansy	Junonia lemonias	Nymphalidae	NA		
6	Tawny coster	Acraea terpsicore	Nymphalidae	NA		
7	Slender skimmer	Orthetrum sabina	Libellulidae	LC		
8	Plaina tiger butterfly	Danaus chrysippus	Nymphalidae	LC		
9	Mottled emigrant	Catopsilia pyranthe	Pieridae	LC		
10	Spotted locust	Aularches miliaris	Pyrgomorphidae	LC		
11	Ditgh jewel	Brachythemis	Libellulidae	LC		
		contaminata				
12	Gray well jumping	Menemerus bivittatus	Salticidae	LC		
	spider					
13	Silky sugar ant	Camponotus sericeus	Formicidae	LC		
		Reptiles				
1	Oriental garden lizard	Calotes uersicolor	Agamidae	LC		
2	Fan-Throated Lizard	Sitanaponticeriana	Agamidae	LC		
3	Common skink	Mabuya carinatus	Scincidae	LC		
5	Common skink	Aves	Semerade	LC		
1	Baya weaver	Ploceus philippinus	Ploceidae	LC		
2	White – browed Wagtail	Motacilla	Motacillidae	LC		
2	winte – biowed wagtan		Wiotaciniuae	LC		
3	Creat commonant	maderaspatensis	Phalacrocoracidae	LC		
	Great cormorant	Phalacrocorax carbo				
4	Indian robin	Copsychus fulicatus	Muscicapidae	LC		
5	Indian Roller	Coracias	Coraciidae	LC		
(T 1' 1'	benghalensis		LC		
6	Indian paradise	Terpsiphone paradisi	Monarchidae	LC		
7	flycatcher	Acridotheres tristis	Sturnidae	LC		
8	Common myna European bee- eater	Merops apiaster	Meropidae	LC		
9	Black drongo	Dicrurus	Dicruridae	LC		
-		macrocercus				
10	Corvus	Corvus corax	Corvidae	LC		
		Mammals				
1	House mouse	Mus musculus	Muridae	LC		
2	Indian hare	Lepus nigricollis	Leporidae	LC		
3	Cow	Bos taurus	Bovidae	NA		
4	Goat Not Evaluated; LC- Least Co	Capra hircus	Bovidae	NA		

Table 3.33 Fauna in Core Zone

S. No	Common Name/English Name	Scientific Name	Family name	IUCN Red List data
		Insects		
1	Chocolate pansy	Junonia iphita	Nymphalidae	NA
2	Lime swallowtail	Papilio demoleus	Papilionidae	NA
3	Common Mormon	Papilio polytes	Papilionidae	NA
4	Crimson dropwing	Trithemis aurora	Libellulidae	LC
5	Lemon pansy	Junonia lemonias	Libellulidae	NA
6	Tawny coster	Acraea terpsicore	Nymphalidae	NA
7	Slender skimmer	Orthetrum sabina	Libellulidae	LC
8	Plaina tiger butterfly	Danaus chrysippus	Nymphalidae	LC
9	Danaid eggfly	Hypolimnas misippus	Nymphalidae	LC
10	Bark blue tiger butterfly	Tirumala septentrionis	Nymphalidae	NA
11	Mottled emigrant	Catopsilia pyranthe	Pieridae	NA
12	Spotted locust	Aularches miliaris	Pyrgomorphidae	NA
13	Ditgh jewel	Brachythemis contaminata	Libellulidae	LC
14	Gray well jumping spider	Menemerus bivittatus	Salticidae	NA
15	Silky sugar ant	Camponotus sericeus	Formicidae	NA
		Reptiles		
1	Oriental garden lizard	Calotes uersicolor	Agamidae	NA
2	Fan-Throated Lizard	Sitanaponticeriana	Agamidae	NA
3	Common skink	Mabuya carinatus	Scincidae	NA
4	Buff striped keelback	Amphiesma stolatum	Colubridae	LC
5	Common bronzeback tree snake	Dendrelaphis tristis	Colubridae	LC
6	Common krait	Bungarus caeruleus	Elapidae	LC
7	Russells wolf snake	Lycodon fasiolatus	Colubridae	LC
8	Brahminy blindsnake	Indotyphlope braminus	Typhlopidae	LC
9	Rock dragon	Psammophilus dorsalis	Agamidae	LC
10	Indian vine snake	Ahaetulla oxyrhynca	Colubridae	NA
11	Blotched house gecko	Hemidactylus triedrus	Gekkonidae	LC
12	Leschenaults snake -eye	Ophisops leschenaultia	Lacertidae	NA
	•	Aves		
1	Baya weaver	Ploceus philippinus	Ploceidae	LC
2	White – browed Wagtail	Motacilla maderaspatensis	Motacillidae	LC
3	Great cormorant	Phalacrocorax carbo	Phalacrocoracidae	LC
4	Indian robin	Copsychus fulicatus	Muscicapidae	LC

Table 3.34 Fauna in Buffer Zone

5	Indian Roller	Coracias benghalensis	Coraciidae	LC
6	Indian paradise flycatcher	Terpsiphone paradisi	Monarchidae	LC
7	Red junglefowl	Gallus gallus	Phasianidae	LC
8	Common myna	Acridotheres tristis	Sturnidae	LC
9	European bee- eater	Merops apiaster	Meropidae	LC
10	Black drongo	Dicrurus	Dicruridae	LC
		macrocercus		
11	Black – winged stilt	Himantopus	Recurvirostridae	LC
		Himantopus		
12	Crested serpent eagle	Spilornis cheela	Accipitridae	LC
13	Brahminy kite	Haliastur indus	Accipitridae	LC
14	Spotted owlet	Athene brama	Strigidae	LC
15	Black rumped flameback	Dinopium	Picidae	LC
	1	benghalense		
16	White -browed bulbul	Pycnonotus luteolus	Pycnonotidae	LC
17	House sparrow	Passer domesticus	Passeridae	LC
18	Grey heron	Ardea cinerea	Ardeidae	LC
19	Indian peafowl	Pavo cristatus	Phasianidae	LC
20	Rose -ringed parakeet	Psittacula krameri	Psittaculidae	LC
21	Scaly – breasted munia	Lonchura punctulata	Estrildidae	LC
22	White -throated kingfisher	Halcyon smyrnensis	Alcedinidae	LC
23	House crow	Corvus splendens	Corvidae	LC
24	Asian koel	Eudynamys scolopaceus	Cuculidae	LC
25	Asian green bee- Eater	Merops orientails	Meropidae	LC
26	Little cormorant	Microcarbo niger	Microcarbo	LC
20	Painted stork	Mycteria	Ciconiidae	NT
21		leucocephala	Cicollidae	111
28	Shikra	Accipiter badius	Accipitridae	LC
29	Indian robin	Copsychus fulicatus	Muscicapidae	LC
30	Indian roller	Coracias	Coraciidae	LC
		benghalensis		
31	Indian paradise flycatcher	Terpsiphone paradisi	Monarchidae	LC
32	Yellow – billed babbler	Argya affinis	Leiothrichidae	LC
33	Ashy – crowned sparrow lark	Eremopterix griseus	Alaudidae	LC
34	Small pratincole	Glareola lactea	Glareolidae	LC
35	Great egret	Ardea alba	Ardeidae	LC
36	Rock pigeon	Columba livia	Columbidae	LC
37	Eurasian collared – dove	Streptopelia	Columbidae	LC
		decaocto		•
38	Eurasian coot	Fulica atra	Rallidae	LC
39	Northern shoveler	Spatula clypeata	Anatidae	LC
40	Black kite	Milvus migrans	Accipitridae	LC
41	Red junglefowl	Gallus gallus	Phasianidae	LC

42	Common kingfisher	Alcedo atthis	Alcedo atthis	LC			
43	Commen sandpiper	Actitis hypoleucos	Scolopacidae	LC			
44	Striated heron	Butorides striata	Ardeidae	LC			
45	Laughine dove	Spilopelia	Columbidae	LC			
		senegalensis					
46	Red vented bulbul	Pycnonotus cafer	Pycnonotidae	LC			
47	Black winked kite	Elanus caeruleus	Accipitridae	LC			
48	Common tailorbire	Orthotomus sutorius	Cisticolidae	LC			
49	Indian pond -heron	Ardeola grayii	Ardeidae	LC			
50	Greater racket tailed	Dicrurus paradiseus	Dicruridae	LC			
	drongo						
51	Paddyfield pipit	Anthus rufulus	Motacillidae	LC			
52	Common iora	Aegithina tiphia	Aegithinidae	LC			
		Mammals					
1	House mouse	Mus musculus	Muridae	LC			
2	Indian hare	Lepus nigricollis	Leporidae	LC			
3	Jungle cat	Felis chaus	Felidae	LC			
4	Cow	Bos taurus	Bovidae	NA			
5	Goat	Capra hircus	Bovidae	NA			
	Amphibians						
1	Asian common toad	Duttaphrynus	Bufonidae	LC			
		melanostictus					
2	Chunam tree frog	Polypedates	Rhacophoridae	LC			
		maculatus					
3	Common skittering frog	Euphlycits	Dicroglossidae	LC			
		cyanophlyctis					

^{*}NL-Not listed, LC-Least concern, NT-Near threatened.

Results

Biological assessment of the site was done to identify ecologically sensitive areas and whether there are any rare, endangered, endemic or threatened (REET) species of flora & fauna in the core area as well its buffer zone to be impacted. The study has also been designed to suggest suitable mitigation measures, if necessary, for protection of wildlife habitats and conservation of REET species if any. The study found that there is no endemic, endangered migratory fauna found in the area. This area is not also a migratory path of any faunal species. Hence, this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

3.6 SOCIO ECONOMICS ENVIRONMENT

An essential part of environmental study is socio-economic environment incorporating various facts related to socio-economic conditions in the area, which deals with the total environment. Socio economic study includes demographic structure of the area, provision of basic amenities viz., housing, education, health and medical services, occupation, water supply, sanitation, communication, transportation, prevailing diseases pattern as well as feature of aesthetic significance such as temples, historical monuments etc. at the baseline level. This would help in visualizing and predicting the possible impact depending upon the

nature and magnitude of the project. Socio-economic study of an area provides a good opportunity to assess the socio-economic condition and possibly makes a change in living and social standards of the particular area benefitted due to the project.

3.6.1 Objectives of the Study

The main objectives of the study are as follows:

- To know the current socio-economic condition in the region to cover the sub sectors education, health, sanitation, and water & food security.
- ✤ To recommend practical strategic interventions in the sector.
- ✤ To help in providing better living standards.
- To understand skill sets and plan for employment opportunities which shall be created.

3.6.2 Scope of Work

- ✤ To study the socio-economic environment of the area from the secondary sources
- Data collection & Analysis
- Prediction of project impact
- Mitigation Measures

3.6.3 Socio-Economic Status of Study area

The study area covers 24 Villages including Adilam, Baisuhalli, Bathalahalli, Begarahalli, Chennarayanahalli, Donnenahalli, Guthalahalli, Indamangalam, Jagirburgur, Kerakodahalli, Konanginaickanahalli, Kottumaranahalli, Mallikuttai, Molappanahalli, Naganampatty, Nallanahalli, Nariyanahalli, Neralamarudahalli, Periyanahalli, Poonathanahalli, Pothalahalli, Pulikkarai, Pumandahalli, Sitiganahalli. As Kalappanahalli is the village in which the proposed project site is located, the summary of population facts for the village is exclusively provided in Table 3.35 and for other 8 villages in Tables 3.36 - 3.38.

Kalappanahalli						
Number of Households	858					
Population	3701					
Male Population	1938					
Female Population	1763					
Children Population	463					
Sex-ratio	910					
Literacy	63.53%					
Male Literacy	72.92%					
Female Literacy	53.40%					
Scheduled Tribes (ST) %	82					
Scheduled Caste (SC) %	477					
Total Workers	1834					
Main Worker	1747					
Marginal Worker	807					

Table 3.35 Kalappanahalli Village Population Facts

Source: https://www.census2011.co.in/data/village/635497-kuppam-tamil-nadu.html

Village	No of Households	Total Population Person	Total Population Male	Total Population Female	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
Adilam	1412	5652	2949	2703	2949	1818	1131	2703	1131	1572
Baisuhalli	1890	8181	4293	3888	4946	2947	1999	3235	1346	1889
Bathalahalli	187	768	407	361	421	268	153	347	139	208
Begarahalli	1483	6088	3184	2904	3390	2102	1288	2698	1082	1616
Chennarayanahalli	163	643	343	300	360	230	130	283	113	170
Donnenahalli	116	463	233	230	242	132	110	221	101	120
Guthalahalli	265	1089	581	508	621	382	239	468	199	269
Indamangalam	1386	5675	3035	2640	3027	1871	1156	2648	1164	1484
Jagirburgur	593	2685	1366	1319	1776	1001	775	909	365	544
Kerakodahalli	960	3914	2011	1903	2348	1400	948	1566	611	955
Konanginaickanahalli	1024	4378	2331	2047	2724	1643	1081	1654	688	966
Kottumaranahalli	813	3366	1744	1622	2090	1226	864	1276	518	758
Mallikuttai	1295	5289	2746	2543	3035	1846	1189	2254	900	1354
Molappanahalli	307	1188	641	547	617	391	226	571	250	321
Naganampatty	946	3654	1904	1750	2064	1198	866	1590	706	884
Nallanahalli	1414	5962	3087	2875	3711	2190	1521	2251	897	1354
Nariyanahalli	947	3840	2003	1837	2337	1362	975	1503	641	862
Neralamarudahalli	72	324	165	159	136	79	57	188	86	102
Periyanahalli	1749	7388	3909	3479	4777	2832	1945	2611	1077	1534
Poonathanahalli	326	1352	719	633	748	455	293	604	264	340
Pothalahalli	869	3483	1817	1666	2072	1243	829	1411	574	837
Pulikkarai	1376	5590	2883	2707	3091	1836	1255	2499	1047	1452
Pumandahalli	1086	4442	2314	2128	2476	1470	1006	1966	844	1122
Sitiganahalli	89	338	175	163	170	103	67	168	72	96

Table 3.36 Population and Literacy Data of Study Area

Villages	Private Primary School (Number)	Govt. Vocational Training School/ITI (Numbers)	Primary Health Centre (Number)	Tap Water Untreated	River/Canal	Area Covered under Total Sanitation Campaign (TSC)?	Telephone (landlines)	Public Bus Service	Gravel (kutcha) Roads	Commercial Bank	Agricultural Credit Societies	Self - Help Group (SHG)	Nutritional Centres- Anganwadi Centre	Community Centre with/without TV	Power Supply for Domestic Use
Adilam	2	2	0	2	2	1	2	1	1	2	2	1	1	1	1
Baisuhalli	2	2	0	1	2	2	1	1	1	2	2	1	1	1	1
Bathalahalli	2	2	0	1	2	2	2	2	1	2	2	1	1	2	1
Begarahalli	1	2	0	1	2	2	1	1	1	2	1	1	1	2	1
Chennarayanahalli	2	2	0	1	2	1	1	1	1	2	2	1	1	1	1
Donnenahalli	2	2	0	1	2	1	1	1	1	2	2	1	2	2	1
Guthalahalli	2	2	0	1	2	1	1	1	1	2	2	1	1	2	1
Indamangalam	2	2	0	2	2	1	1	1	1	2	2	1	1	2	1
Jagirburgur	2	2	0	1	2	1	1	2	1	2	2	1	1	2	1
Kerakodahalli	2	2	0	2	1	1	2	2	1	2	1	1	1	1	1
Konanginaickanahalli	2	2	0	1	2	1	1	2	1	2	1	1	1	2	1
Kottumaranahalli	2	2	0	2	1	2	2	1	1	2	1	2	1	2	1
Mallikuttai	2	2	0	2	2	2	1	1	1	2	2	1	1	1	1
Molappanahalli	2	2	0	1	2	1	1	1	1	2	2	1	1	1	1
Naganampatty	2	2	0	1	2	2	1	2	1	2	2	1	1	1	1
Nallanahalli	1	2	0	1	2	2	1	1	1	2	2	1	1	1	1
Nariyanahalli	2	2	0	2	1	1	1	1	1	2	1	1	1	2	1
Neralamarudahalli	2	2	0	1	2	2	1	2	1	2	2	1	2	2	1
Periyanahalli	1	2	0	2	2	2	1	1	1	1	1	1	1	1	1
Poonathanahalli	2	2	0	1	2	1	1	1	1	2	2	1	1	2	1
Pothalahalli	2	2	0	2	2	1	1	2	1	2	2	1	1	2	1
Pulikkarai	2	2	1	1	2	2	1	1	1	2	1	1	1	1	1
Pumandahalli	2	2	0	1	2	1	1	1	1	2	1	1	1	2	1
Sitiganahalli	2	2	0	1	2	2	1	2	1	2	2	1	2	2	1

Table 3.37 Details on Educational Facilities, Water, and Drainage & Health Facilities

Table 3.38 Workers' Profile of Study Area

Village	Total Worker Population Person	Total Worker Population Male	Total Worker Population Female	Main Working Population	Main Working Population	Main Working Population	Main Cultivator Population	Main Agricultural Labourers	Main Other Workers Population	Non-Working Population Person
Adilam	3053	1695	1358	2880	1621	1259	1281	944	631	2599
Baisuhalli	3795	2400	1395	3676	2355	1321	991	1180	1483	4386
Bathalahalli	452	237	215	352	226	126	146	104	101	316
Begarahalli	3388	1855	1533	2994	1692	1302	1338	969	665	2700
Chennarayanahalli	340	182	158	335	180	155	2	304	29	303
Donnenahalli	282	143	139	245	138	107	113	77	53	181
Guthalahalli	605	321	284	560	300	260	117	386	57	484
Indamangalam	3142	1803	1339	3083	1777	1306	1571	789	704	2533
Jagirburgur	1300	679	621	574	448	126	255	78	235	1385
Kerakodahalli	2132	1205	927	2084	1183	901	650	861	456	1782
Konanginaickanahalli	1763	1209	554	1089	718	371	223	501	351	2615
Kottumaranahalli	1953	1057	896	1635	988	647	786	328	492	1413
Mallikuttai	2739	1534	1205	2101	1271	830	640	544	852	2550
Molappanahalli	598	376	222	568	360	208	178	266	124	590
Naganampatty	2026	1097	929	1965	1078	887	273	1378	282	1628
Nallanahalli	2815	1669	1146	2335	1497	838	401	660	1191	3147
Nariyanahalli	1811	1160	651	1164	829	335	334	198	626	2029
Neralamarudahalli	193	97	96	192	96	96	119	72	1	131
Periyanahalli	3408	2151	1257	2494	1701	793	527	507	1396	3980
Poonathanahalli	746	406	340	744	405	339	191	332	157	606
Pothalahalli	1901	1054	847	1847	1026	821	553	823	462	1582
Pulikkarai	3270	1742	1528	2800	1517	1283	1211	1057	510	2320
Pumandahalli	2256	1261	995	1772	1035	737	543	725	488	2186
Sitiganahalli	200	99	101	197	97	100	103	89	3	138

3.6.4 Recommendation and Suggestion

- Awareness program should be conducted to make the population aware of education and to get a better livelihood.
- Vocational training programme should be organized to make the people self employed, particularly for women and unemployed youth.
- On the basis of qualification and skills local community may be preferred. Long term and short-term employments should be generated.
- Health care centre and ambulance facility should be provided to the population to get easy access to medical facilities. Apart from that, as these areas are prone to various diseases a hospital with modern facilities should be opened on a priority basis in a central place to provide better health facilities to the villagers around the project.
- While developing an Action Plan, it is very important to identify the population who falls under the marginalized and vulnerable groups. So that special attention can be given to these groups with special provisions while making action plans.

3.6.5 Summary & Conclusion

The socio-economic study in the study area gives a clear picture of its population, average household size, literacy rate and sex ratio etc. It is also found that a part of population is suffering from a lack of permanent job to run their day-to-day life. Their expectation is to earn some income for their sustainability on a long-term basis.

The proposed project will aim to provide preferential employment to the local people there by improving the employment opportunity in the area and in turn, the social standards will improve.

3.7 TRAFFIC DENSITY

The traffic survey conducted based on the transportation route of material, the Rough Stone is proposed to be transported mainly through Village Road and Krishnagiri to Salem (NH-7) as shown in Table 3.39 and in Figure 3.30. Traffic density measurements were made continuously for 24 hours by visual observation and counting of vehicles under three categories, viz., Heavy motor vehicles, light motor vehicles and two/three wheelers. As traffic densities on the roads are high, two skilled persons were deployed simultaneously at each station. During each shift one person on either direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken. Direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken.

Station Code	Road Name	Distance and Direction	Type of Road
TS1	Village Road	0.51 Km-N	Village Road
TS2	Krishnagiri to Salem (NH-7)	1.81 Km- E	Krishnagiri to Salem (NH-7)

Table 3.39 Traffic Survey Locations

Source: On-site monitoring by GTMS FAE & TM

Table 3.40 Existing Traffic Volume

Station code	HN	ЛV	LMV		2/3 W	heelers	Total PCU	
Station code	No	PCU	No	PCU	No	PCU	10111100	
TS1	76	228	42	42	82	41	311	
TS2	140	420	75	75	106	53	548	

Source: On-site monitoring by GTMS FAE & TM

* PCU conversion factor: HMV (Trucks and Bus) = 3, LMV (Car, Jeep and Auto) = 1 and 2/3

Wheelers = 0.5

Table 3.41 Rough Stone Transportation Requirement

Transportation of Rough and Gravel per day							
Capacity of trucks	Capacity of trucks No. of Trips per day Volume in PCU						
15 tonnes 22 66							

Source: Approved Mining Plan

 Table 3.42 Summary of Traffic Volume

Route	Existing traffic volume in PCU	Incremental traffic due to the project	Total traffic volume	Hourly Capacity in PCU as per IRC – 1960guidelines
Village Road	311	66	377	1200
Krishnagiri to Salem (NH-7)	548	66	614	1200

Source: On-site monitoring analysis summary by GTMS FAE & TM

Due to these projects the existing traffic volume will not exceed the traffic limit. As per the IRC 1960 this existing village road can handle 1,200 PCU in hour and Major district road can handle 1500 PCU in hour. Hence there will not be any conjunction due to this proposed transportation.

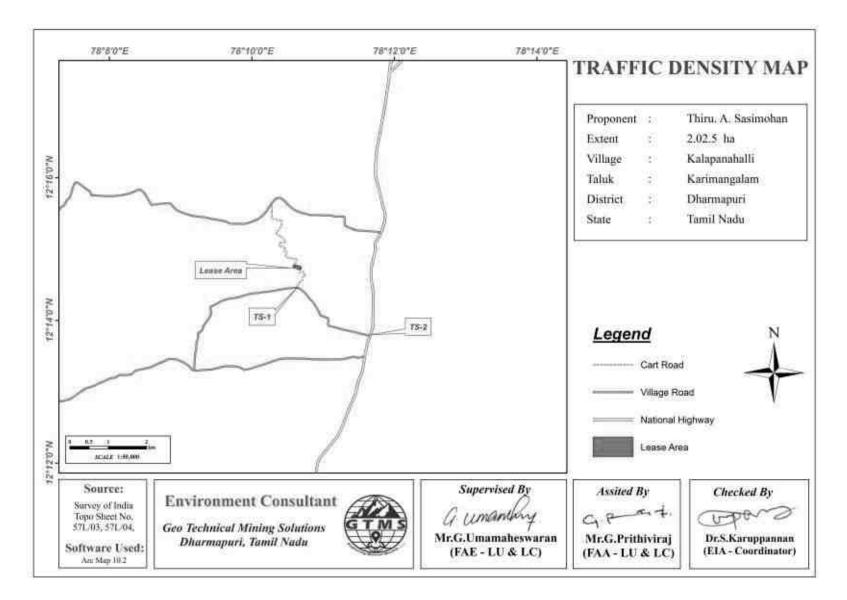


Figure 3.30 Traffic Density Map

3.8 SITE SPECIFIC FEATURES

There are no Wildlife Sanctuaries, Reserve Forest and National Park within 10 km radius. Therefore, there will be no need of acquisition/diversion of forest land. The details related to the environmentally sensitive areas around the proposed mine lease area i.e., 10 km radius and the nearby water bodies are given in the Table 3.43.

S. No.	Sensitive Ecological Features		Areal Distance in km		
1	National Park /	None	Nil within 25 km radius		
1	Wild life Sanctuaries	Cauvery North WLS	25.28 km NW		
		Elumichanahalli R.F	10.30 km N		
		Annamalaihalli I R.F	11.84 km NW		
		Erranahalli R.F	12.14 km NW		
		Sokkampatty II R.F	12.28 km NW		
		Panaikulam I R.F	13.05 km W		
		Mallehalli R. F	13.7 km W		
		Erraguttahalli R. F	13.45 km W		
		Papparapatti R. F	13.82 km W		
		Dhandukaranahalli R.F	14.13 km NW		
		Dhandukaranahalli R.F	14.43 km NW		
2	December Ferrest	Erranguttahalli R.F	14.59 km W		
Z	Reserve Forest	Kanavenahalli R.F	15.24 km NW		
		Noolahalli & Reddihalli R.F	15.45 km S		
		Mookanur A R.F	15.48 km S		
		Kadathur R.F	15.62 km S		
		Panneswaramadam R.F	15.66km NE		
		Thalihalli R.F	19.11 km NE		
		Thattakal R.F	19.63km NE		
		Nathathahalli R.F	19.93km S		
		Maniambadi R.F	20.00km SE		
		Baleguli II R.F	22.42km NE		
		Athimuttulu R. F	23.39km NW		
		Kuppangarai Lake	0.85 km S		
		Mekkanampatti Lake	2.19 km SW		
	Lakes/Reservoirs/	Baisuhalli Lake	3.63 km SE		
3	Dams/Streams/Rivers	Kadagathur Lake	7.40 km SW		
		Dharmapuri lake	10.35 km S		
		Pidamaneri lake	13.32 km S		
		Ilakkiyampatti lake	15.44 km S		

Table 3.43 Details of Environmentally Sensitive Ecological Features in the Study Area

	Tiger Reserve/Elephant		
4	Reserve/ Biosphere	None	Nil within 10 km radius
	Reserve		INII WIUIIII IO KIII IAUIUS
5	Critically Polluted	None	Nil within 10 km radius
5	Areas	None	INII WIUIIII IO KIII IAUIUS
6	Mangroves	None	Nil within 10 km radius
7	Mountains/Hills	None	Nil within 10 km radius
8	Centrally Protected	None	Nil within 10 km radius
0	Archaeological Sites	None	INII WIUIIII IO KIII IAUIUS
9	Industries/	None	Nil within 10 km radius
9	Thermal Power Plants	INOILE	INII WIUIIII IU KIII IAUIUS
10	Defence Installation	None	Nil within 10 km radius

Source: Survey of India Toposheet

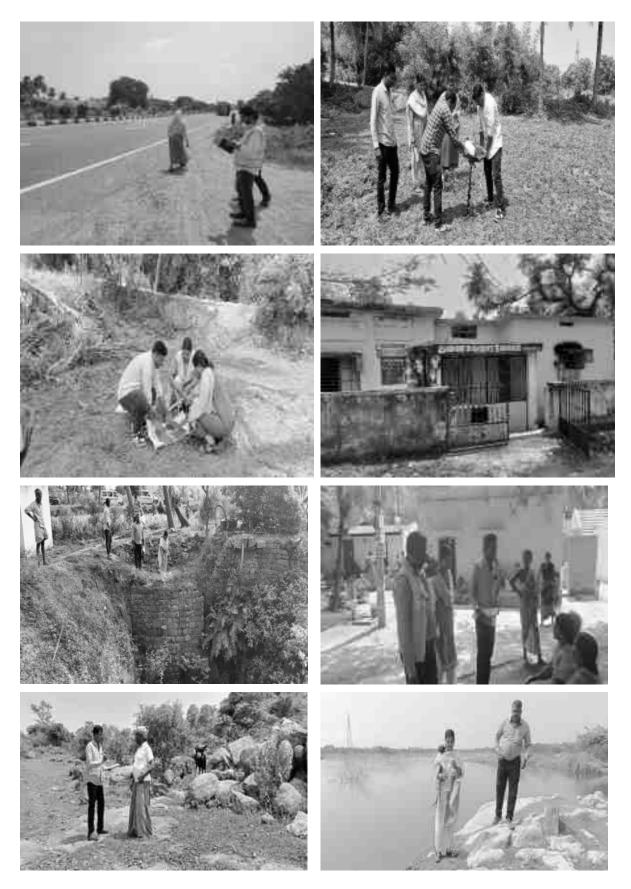


Figure 3.31 Field Study Photographs

CHAPTER IV

ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 4.0 GENERAL

Environmental impacts both direct and indirect on various environmental attributes due to proposed mining activity will be created in the surrounding environment, during the operational and post–operational phases. The occurrence of mineral deposits, being site specific, their exploitation, often, does not allow for any choice except adoption of eco-friendly operation. The methods are required to be selected in such a manner, so as to maintain environmental equilibrium ensuring sustainable development.

In order to maintain the environmental commensuration with the mining operation, it is essential to undertake studies on the existing environmental scenario and assess the impact on different environmental components. This would help in formulating suitable management plans sustainable resource extraction.

Several scientific techniques and methodologies are available to predict impacts of physical environment. Mathematical models are the best tools to quantitatively describe the cause-and-effect relationships between sources of pollution and different components of environment. In cases where it is not possible to identify and validate a model for a particular situation, predictions have been arrived at based on logical reasoning / consultation / extrapolation.

The following parameters are of significance in the Environmental Impact Assessment and are being discussed in detail:

- Land environment
- Soil environment
- Water Environment
- ✤ Air Environment
- Noise Environment
- Socio economic environment
- Biological Environment

Based on the baseline environmental status at the project site, the environmental factors that are likely to be affected are identified, quantified and assessed.

4.1 LAND ENVIRONMENT

4.1.1 Anticipated Impact

• Permanent or temporary change on land use and land cover.

- Change in topography of the mine lease area will change at the end of the life of the mine.
- Problems to agricultural land and human habitations due to dust, and noise caused by movement of heavy vehicles
- Degradation of the aesthetic environment of the core zone due to quarrying
- Soil erosion and sediment deposition in the nearby water bodies due to earthworks during the rainy season
- Siltation of water course due to wash off from the exposed working area

4.1.2 Common Mitigation Measures from Proposed Project

- The mining activity will be gradual confined in blocks and excavation will be undertaken progressively along with other mitigate measures like phase wise development of greenbelt etc.
- Construction of garland drains all around the quarry pits and construction of check dam at strategic location in lower elevations to prevent erosion due to surface runoff during rainfall and also to collect the storm water for various uses within the proposed area.
- Green belt development along the boundary within safety zone. The small quantity of water stored in the mined-out pit will be used for greenbelt
- Thick plantation will be carried out on unutilized area, top benches of mined out pits, on safety barrier, etc.,
- At conceptual stage, the land use pattern of the quarry will be changed into Greenbelt area and temporary reservoir.
- In terms of aesthetics, natural vegetation surrounding the quarry will be retained (such as in a buffer area i.e., 7.5 m safety barrier and other safety provided) so as to help minimize dust emissions.
- Proper fencing will be carried out at the conceptual stage, Security will be posted round the clock, to prevent inherent entry of the public and cattle.

4.2 SOIL ENVIRONMENT

No top soil will be removed in this project. However, some of the common mitigation measures is discussed in the following sections.

4.2.1 Anticipated Impact on Soil Environment

Following impacts are anticipated due to mining operations:

- Removal of protective vegetation cover
- Exposure of subsurface materials which are unsuitable for vegetation establishment

4.2.2 Common Mitigation Measures from proposed project

- Run-off diversion Garland drains will be constructed around the project boundary to prevent surface flows from entering the quarry works areas and will be discharged into vegetated natural drainage lines, or as distributed flow across an area stabilised against erosion.
- Sedimentation ponds Run-off from working areas will be routed towards sedimentation ponds. These trap sediment and reduce suspended sediment loads before runoff is discharged from the quarry site. Sedimentation ponds should be designed based on runoff, retention times, and soil characteristics. There may be a need to provide a series of sedimentation ponds to achieve the desired outcome.
- Retain vegetation Retain existing or re-plant the vegetation at the site wherever possible.
- Monitoring and maintenance Weekly monitoring and daily maintenance of erosion control systems so that they perform as specified specially during rainy season.

4.3 WATER ENVIRONMENT

The total water requirement for this project will be 8.0 KLD. The water will be sourced initially from outside agencies. Later the rainwater collected in the mine pit sump will be used for this purpose. The domestic effluent to be generated from the project will be collected in septic tank with soak pits arrangements. There are no waste dumps in this quarry. Based on the available information and the geophysical investigations the study concluded that the project area is considered to have poor groundwater potential. Besides, the mining area consists of hard compact rock, no major water seepage within the mine is expected.

4.3.1 Anticipated Impact

The major sources of water pollution normally associated due to mining and allied operations are:

- ✤ Generation of waste water from vehicle washing.
- ✤ Washouts from surface exposure or working areas
- Domestic sewage
- Disturbance to drainage course in the project area
- Mine Pit water discharge
- Increase in sediment load during monsoon in downstream of lease area
- This being a mining project, there will be no process effluent. Waste from washing of machinery may result in discharge of oil & grease, suspended solids.
- ♦ The sewage from soak pit may percolate to the ground water table and contaminate it.
- Surface drainage may be affected due to Mining.

As the proposed project acquires 8.0 KLD of water from water vendors, it will not extract water by developing abstraction structures in the lease area. Therefore, the project will not deplete aquifer beneath the lease area.

4.3.2 Common Mitigation Measures for the Proposed Project

- Garland drainage system and settling tank will be constructed along the proposed mining lease area. The garland drainage will be connected to settling tank and sediments will be trapped in the settling tanks and only clear water will be discharged to the natural drainage
- Rainwater from the mining pits will be collected in sump and will be allowed to store and pumped out to surface settling tank of 15 m x 10 m x 3 m to remove suspended solids if any. This collected water will be judiciously used for dust suppression and such sites where dust likely to be generated and for developing green belt. The proponent will collect and judicially utilize the rainwater as part of rainwater harvesting system
- Benches will be provided with inner slopes and through a system of drains and channels, rain water will be allowed to descent into surrounding drains to minimize the effects of erosion and water logging arising out of uncontrolled descent of water
- The water collected will be reused during storm for dust suppression and greenbelt development within the mines
- Interceptor traps/oil separators will be installed to remove oils and greases. Water from the tipper wash-down facility and machinery maintenance yard will be passed through interceptor traps/oil separators prior to its reuse
- Flocculating or coagulating agents will be used to assist in the settling of suspended solids during monsoon seasons
- Periodic (every 6 month once) analysis of ground water quality of quarry pit water and ground water of nearby villages will be conducted.
- Domestic sewage from site office and urinals/latrines provided in ML is discharged in septic tank followed by soak pits
- Waste water discharge from mine will be treated in settling tanks before using for dust suppression and tree plantation purposes
- De-silting will be carried out before and immediately after the monsoon season
- Regular monitoring (once every 6 months) and analysing the quality of water in open well, bore wells and surface water.

4.4 AIR ENVIRONMENT

The air borne particulate matter is the main air pollutant by opencast mining. The mining operation will be carried out by jack hammer drilling, excavation, loading and transportation.

4.4.1 Anticipated Impact from proposed project

- During mining at various stages of activities such as excavation, drilling and transportation of materials, particular matter (PM), gases such as sulphur dioxide, oxides of nitrogen from vehicular exhaust are the main air pollutants
- Emissions of noxious gases due to incomplete detonation of explosive may sometimes pollute the air
- The fugitive dust released from the mining operations may cause effect on the mine workers who are directly exposed to the fugitive dust
- Simultaneously, the air-borne dust may travel to longer distances and settle in the villages located near the mine lease area

4.4.2 Emission Estimation

Emission resulting from different mining activities is estimated using relevant empirical formulae developed by Chaulya et al.,2001. The equations used for SPM, SO₂, and NO_X emission estimation have been given in Table 4.1.

	Pollutant	Source	Empirical Equation	Parameters
		Туре		
Overall	SPM	Area	$E = [u0.4a0.2\{9.7+$	u = Wind speed(m/s); p =
Mine			0.01p+b/(4+0.3b)]	Mineral production (Mt/yr); b =
			-	Overburden handling (Mm ³ /yr);
				a = Lease area (km^2) ; E =
				Emission rate(g/s).
Overall	SO_2	Area	$E=a0.14\{u/(1.83+0.93u)\}$	u = Wind speed(m/s); p =
Mine			[{p/(0.48+0.57p)}	Mineral production (Mt/yr); b =
			$+\{b/(14.37+1.15b)\}]$	Overburden handling (Mm ³ /yr);
				a = Lease area (km^2) ; E =
				Emission rate(g/s).
Overall	NO _X	Area	$E=a0.25\{u/(4.3+32.5u)\}$	u = Wind speed(m/s); p =
Mine			$[1.5p+{b/(0.06+0.08b)}]$	Mineral production (Mt/yr); b=
			<u> </u>	Overburden handling (Mm ³ /yr);
				$a = Lease area(km^2); E =$
				Emission rate(g/s).

Table 4.1 Empirical Formula for Emission Rate from Overall Mine

The emission rate thus calculated using the empirical formula is used as one of the inputs in the AERMOD modelling. As the SPM emission calculation for overall mine is not considering pollution control measures, one-third of the SPM value is taken for derivation of PM_{10} keeping in mind that proper control measures are followed. It is important to note that PM_{10} emission rate

is derived from the SPM estimation in the background that PM_{10} constitutes 52% of SPM emission. The $PM_{2.5}$, PM_{10} , SO₂ and NO_X emission results have been given in Table 4.2.

Activity	Pollutant	Calculated Value (g/s)	Lease Area in m ²	Calculated Value (g/s/m ²)
Overall Mine	PM _{2.5}	0.00899078282	20250	4.43989E-07
Overall Mine	PM10	0.01965484874	20250	9.7061E-07
Overall Mine	SO_2	0.00838860393	20250	4.14252E-07
Overall Mine	NO _X	0.00692803478	20250	3.42125E-07

 Table 4.2 Estimated Emission Rate

4.4.2.1 Frame work of Computation and Model Details

By using the above-mentioned inputs, Ground Level Concentrations (GLC) due to the quarrying activities have been estimated to know the incremental concentration in ambient air quality and impact in the study area. The effect of air pollutants upon receptors are influenced by concentration of pollutants and their dispersion in the atmosphere.

Air quality modelling is an important tool for prediction, planning and evaluation of air pollution control activities besides identifying the requirements for emission control to meet the regulatory standards and to apply mitigation measures to reduce impact caused by quarrying activities. Suspended Particulate Matter (SPM) is the major pollutant occurred during quarrying activities. The prediction includes the impacts of excavation, drilling, loading and movement of vehicles during transportation and meteorological parameters such as wind speed, wind direction, temperature, rainfall, humidity and cloud cover.

The model was used to predict the impact on the ambient air environment at each receptor at various localities within 10km radius around the project site and the maximum incremental GLC at the project site. All the prediction models in Figures 4.1- 4.4 shows the maximum concentrations of PM_{2.5}, PM₁₀, SO₂ and NO_X close to the proposed project site due to low to moderate wind speeds.

4.4.2.2 Modelling of Incremental Concentration

The air borne particulate matter such as PM_{10} and $PM_{2.5}$ generated by quarrying operation, transportation, and wind erosion of the exposed areas and emissions of sulphur dioxide (SO₂) and oxides of nitrogen (NOx) due to excavation and loading equipment's and vehicles plying on haul roads are the significant air pollutants arising from mining operation, leading to an adverse impact on the ambient air environment in and around the project area. Anticipated incremental concentration and net increase in emissions due to quarrying activities within 500 m around the project area is predicted by open pit source modelling using AERMOD Software and the

incremental values of the air pollutants were added to the base line data monitored at the proposed site to predict total GLC of the pollutants, as shown in Tables 4.3-4.6.

4.4.2.3 Model Results

The post project resultant concentrations of PM_{10} , $PM_{2.5}$, $SO_2 \& NO_X (GLC)$ is given in Tables 4.3-4.6.

	to		PM 2.5 COI	ncentration			of ()	ce
Station ID	Distance t core	Direction	Baseline	Predicted	Total	Comparison against air quality standard (60 µg/m ³)	Magnitude of change (%)	Significance
AAQ1	0.51	NNW	21.1	2	23.1		9.5	
AAQ2			20.9	6.08	26.98		29.1	
AAQ3	0.40	S	19.1	2	21.1		10.5	
AAQ4	3.37	WSW	14.8	0.8	15.6	ndar	5.4	ican
AAQ5	4.68	SW	14.9	0.3	15.2	Below standard	2.0	Not significant
AAQ6	2.92	SSE	16.9	0.3	17.2	elow	1.8	Vot s
AAQ7	2.22	NE	20.3	0.4	20.7		2.0	2
AAQ8	4.90	NNW	15.8	0	15.8		0.0	
AAQ9	4.35	NNE	17.4	0.1	17.5		0.57	

Table 4.3 Incremental & Resultant GLC of PM_{2.5}

_	Table 4.4 Incremental & Resultant GLC of PM10												
	0		PM10 co	oncentratio	ons(µg/m ³)	u		y		3)	of	(9	ce
on II	ince to ore (km)	ection	ine	ted	la	oariso	ainst	lualit	Idard	mg/m	itude	ge (%	fican

	area (km Core Distance 0.51 0.40 3.37 4.68 2.92 2.92 2.22	Direction Direction	Baseline 39.7 39.2 37.6 33.8 33.3 35.8 27.6	J J J J J J J J	Image: constraint of the second system 33 42.9 35 32 30.7 30.3	Comparise against Below standard air qualit standard (100 µg/m	Image Image <th< th=""><th>Not significant Significan</th></th<>	Not significant Significan
5 6						elow stanc		Vot signific
AQ6						Below		Not si
Q7 Q8	2.22 4.90	NE NNW	37.6 34.1	1 0	31 30		0.0	
AQ9	4.35	NNE	35.6	0.3	30.3		1.00	

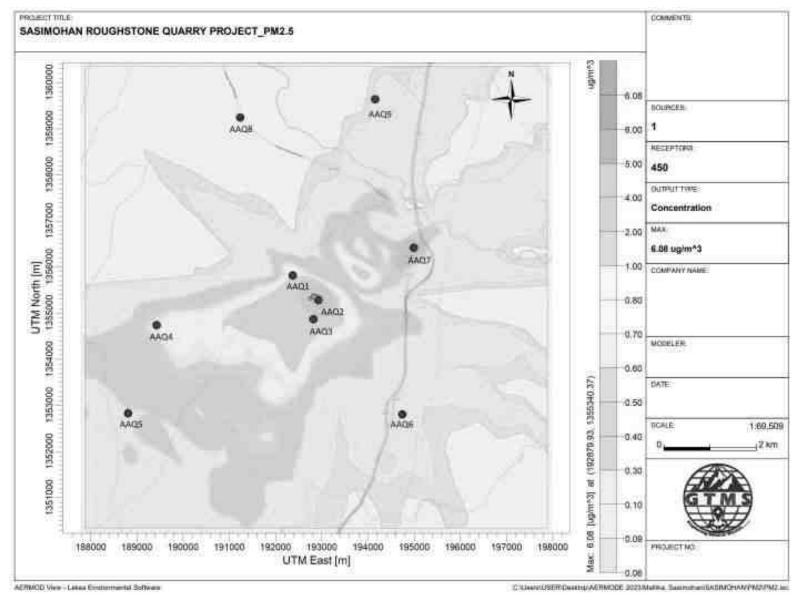


Figure 4.1 Predicted Incremental Concentration of PM_{2.5}

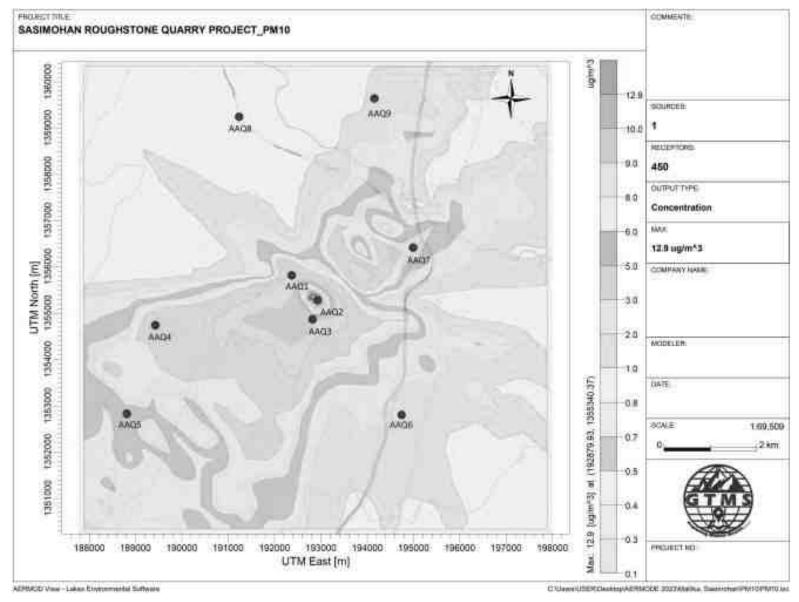


Figure 4.2 Predicted Incremental Concentration of PM₁₀

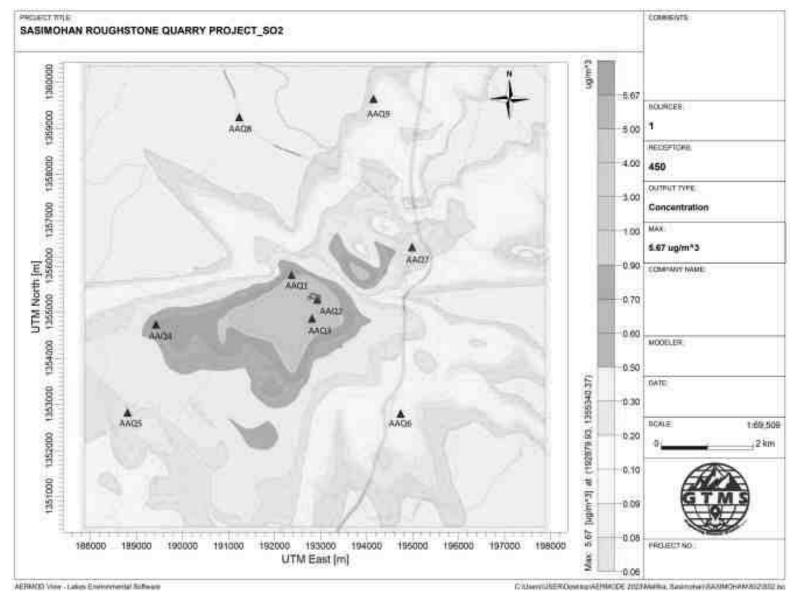


Figure 4.3 Predicted Incremental Concentration of SO₂

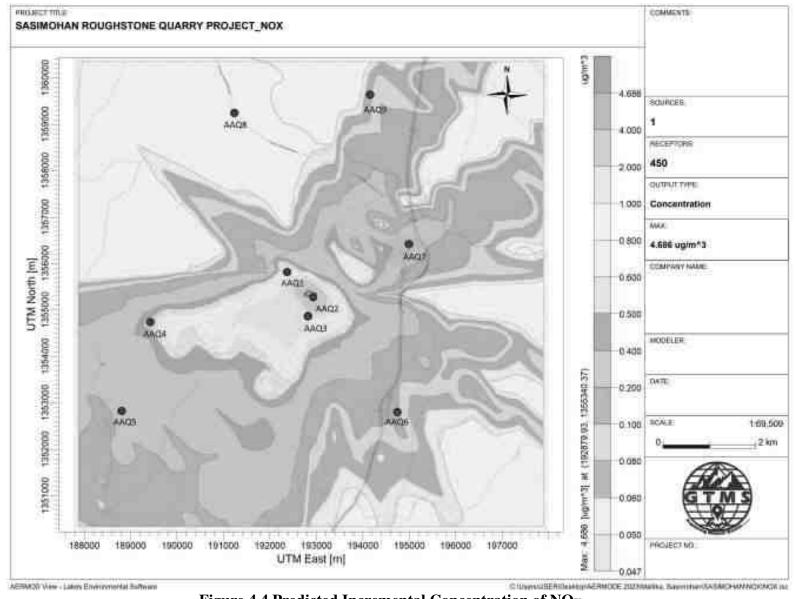


Figure 4.4 Predicted Incremental Concentration of NOx

	0	_	SO ₂ conc	entrations	(µg/m ³)	n y (of ()	ce
Station ID	Distance to core	Direction	Baseline	Predicted	Total	Comparison against air quality standard (80 μg/m ³)	Magnitude of change (%)	Significance
AAQ1	0.51	NNW	10.1	1	11.1		9.9	
AAQ2			9.1	5.67	14.77		62.3	
AAQ3	0.40	S	8.4	3	11.4		35.7	
AAQ4	3.37	WSW	5.8	0.7	6.5	Below standard	12.1	Not significant
AAQ5	4.68	SW	6.2	0.3	6.5	/ staı	4.8	ignif
AAQ6	2.92	SSE	8.8	0.2	9	elow	2.3	lot si
AAQ7	2.22	NE	9.1	0.5	9.6	<u> </u>	5.5	Z
AAQ8	4.90	NNW	7.1	0	7.1		0.0	
AAQ9	4.35	NNE	7.3	0.1	7.4		1.37	
		Та		remental &		nt GLC of NOx		
	-		NUX cond	centrations	S(Ug/m ²)		•	
	to	n		1	· (r·ə·)	d ty on	e of %)	JCe
Station ID	Distance to core	Direction	Baseline	Predicted	Total	Comparison against air quality standard (80 µg/m ³)	Magnitude of change (%)	Significance
Station ID	Distance to core	Direction				Comparison against air quality standard (80 µg/m ³)	Magnitude of Change (%)	Significance
			Baseline	Predicted	Total	Comparison against air quality standard (80 µg/m ³)		Significance
AAQ1	0.51	NNW	Baseline 18.5	Predicted	L 19.3	-	4.3	
AAQ1 AAQ2	0.51	NNW	Baseline 18.5 18.1	Dredicted 0.8 4.68	International Control of Control	-	4.3 25.9	
AAQ1 AAQ2 AAQ3	0.51	NNW S	Baseline 18.5 18.1 15.5	Dedicted 0.8 4.68 2	Integrate 19.3 22.78 17.5	-	4.3 25.9 12.9	
AAQ1 AAQ2 AAQ3 AAQ4	0.51 0.40 3.37	NNW S WSW	Baseline 18.5 18.1 15.5 11.0	Dredicted 0.8 4.68 2 0.6	TepoL 19.3 22.78 17.5 11.6	-	4.3 25.9 12.9 5.5	
AAQ1 AAQ2 AAQ3 AAQ4 AAQ5	0.51 0.40 3.37 4.68	NNW S WSW SW	Baseline 18.5 18.1 15.5 11.0 10.7	Deedicted 0.8 4.68 2 0.6 0.4	TepoL 19.3 22.78 17.5 11.6 11.1	Comparison Below standard against Below standard air quality standard standard	4.3 25.9 12.9 5.5 3.7	Not significant Significance
AAQ1 AAQ2 AAQ3 AAQ4 AAQ5 AAQ6	0.51 0.40 3.37 4.68 2.92	NNW S WSW SW SSE	Baseline 18.5 18.1 15.5 11.0 10.7 14.3	Description 0.8 4.68 2 0.6 0.4 0.2	Tep 19.3 22.78 17.5 11.6 11.1 14.5	-	4.3 25.9 12.9 5.5 3.7 1.4	

Table 4.5 Incremental & Resultant GLC of SO2

The values of cumulative concentration i.e., background + incremental concentration of pollutant in all the receptor locations are still within the prescribed NAAQ limits without effective mitigation measures. By adopting suitable mitigation measures, the pollutant levels in the atmosphere can be controlled further.

4.4.3 Common Mitigation Measures

Drilling

To control dust at source, wet drilling will be practiced. Where there is a scarcity of water, suitably designed dust extractor will be provided for dry drilling along with dust hood at the mouth of the drill-hole collar.

Advantages of Wet Drilling

- In this system dust gets suppressed close to its formation. Dust suppression becomes very effective and the work environment will be improved from the point of view of occupational comfort and health
- ✤ Due to dust free atmosphere, the life of engine, compressor etc., will be increased
- The life of drill bit will be increased
- The rate of penetration of drill will be increased. Due to the dust free atmosphere visibility will be improved resulting in safer working conditions.

Blasting

- Suitable time of blasting will be chosen according to the local conditions and water will be sprinkled on blasting face.
- Blasting will be avoided when temperature inversion is likely to occur and strong wind blows towards residential areas.
- Controlled blasting will be carried out using suitable explosive charge and short delay detonators, adequate stemming of holes at collar zone.
- Solution Blasting will be restricted to a particular time of the day i.e., at the time of lunch hours.
- Before loading of material water will be sprayed on blasted material.
- ♦ Dust mask will be provided to the workers and their use will be strictly monitored.

Haul Road and Transportation

- Water will be sprinkled on haul roads twice a day to avoid dust generation during transportation
- Transportation of material will be carried out during day time and material will be covered with tarpaulin
- The speed of tippers plying on the haul road will be limited to < 20 km/hr to avoid generation of dust</p>
- ♦ Water sprinkling on haul roads and loading points will be carried out twice a day
- Main source of gaseous pollution will be from vehicle used for transportation of mineral; therefore, weekly maintenance of machines improves combustion process and reduces pollution

- ✤ The un-metaled haul roads will be compacted weekly before being put into use
- Overloading of tippers will be avoided to prevent spillage
- ✤ It will be ensured that all transportation vehicles carry a valid PUC certificate
- ✤ Haul roads and service roads will be graded to clear accumulation of loose materials

Green Belt

- Planting of trees all along main mine haul roads and regular grading of haul roads will be practiced to prevent the generation of dust due to movement of tractors/tippers
- ✤ Green belt of adequate width will be developed around the project site

Occupational Health

- Dust mask will be provided to the workers and their use will be strictly monitored
- Annual medical checkups, trainings and campaigns will be arranged to ensure awareness about importance of wearing dust masks among all mine workers and tipper drivers
- Ambient air quality monitoring will be conducted every six months to assess effectiveness of mitigation measures proposed area.

4.5 NOISE ENVIRONMENT

Predictions have been carried out to compute the noise level at various distances around the working pit due to these major noise-generating sources. Noise modelling has been carried out to assess the impact on surrounding ambient noise levels.

Basic phenomenon of the model is the geometric attenuation of sound. Noise at a point generates spherical waves which are propagated outwards from the source through the air at a speed of 1, 100 ft/sec with the first wave making an ever-increasing sphere with time. As the wave spreads the intensity of noise diminishes as the fixed amount of energy is spread over an increasing surface area of the sphere. The assumption of the model is based on point source relationship i.e., for every doubling of the distance the noise levels are decreased by 6 dB (A).

For hemispherical sound wave propagation through homogeneous loss free medium, one can estimate noise levels at various locations at different sources using a mathematical model based on first principle.

$Lp_2 = Lp_1 - 20 \log (r_2/r_1) - Ae_{1,2}$

Where,

 Lp_1 & Lp_2 are sound levels at points located at distances r_1 and r_2 from the source

 $Ae_{1,2}$ is the excess attenuation due to environmental conditions.

Combined effect of all sources can be determined at various locations by logarithmic addition.

Lp total = $10 \log \{10^{(Lp1/10)} + 10^{(Lp2/10)} + 10^{(Lp3/10)} + \dots\}$

4.5.1 Anticipated Impact

Attenuation due to Green Belt has been taken to be 4.9 dB (A). The inputs required for the model are:

- Source data
- Receptor data
- Attenuation factor

Source data has been computed taking into account of all the machinery and activities used in the mining process. Same has been listed in Table 4.7.

S. No.	Machinery / activity	Impact on environment?	Noise produced in dB(A) at 50 ft from source*
1	Blasting	Yes	94
2	Jack hammer	Yes	88
3	Compressor	No	81
4	Excavator	No	85
5	Tipper	No	84
	Total		95.8

Table 4.7 Activity and Noise Level Produced by Machinery

*50 feet from source = 15.24 meters

Source: U.S. Department of Transportation (Federal Highway Administration) – Construction Noise Handbook

The total noise to be produced by mining activity is calculated to be 95.8 dB (A). Generally, most mining operations produce noise between 100-109 dB (A). We have considered equipment and operation noise levels (max) to be approx. 109 dB (A) for noise prediction modelling.

 Table 4.8 Predicted Noise Incremental Values

Noise Monitoring Location	Distance From Project Site(m)	Baseline Noise Level (dBA)m During Day Time	Predicted Noise Level (dBA)	Total (dBA)
Mallika Core	540	45.8	42.51	47.47
Sasimohan core	100	45.6	57.16	57.45
Kuppangari	450	45.8	44.10	48.04
Sunnampatti	3550	40.2	26.16	40.37

Kunthiamman Kovilur	4700	40.3	23.72	40.39		
Matlampatti	2900	49.8	27.91	49.83		
Periyampatti	2180	51.6	30.39	51.63		
Kottumaranahalli	4110	39.8	24.88	39.94		
Naganampatti	4380	40.6	24.33	40.70		
NAAQ Standards	Industrial Day Time - 75 dB (A) & Night Time- 70 dB (A)					
The Standards	Residential	Day Time -55 dB ((A) & Night Time-	45 dB (A)		

The incremental noise level is found to be 57.16 dB (A) in core zone and ranges between 23.72 and 44.10dB (A) in buffer zone. The noise level at different receptors in buffer zone is lower due to the distance involved and other topographical features adding to the noise attenuation. The resultant Noise level due to monitored values and calculated values at the receptors are based on the mathematical formula considering attenuation due to several factors including ground reflection, atmosphere, wind speed, temperature, trees, and buildings as 35.5 dB (A), the barrier effect. From the above table, it can be seen that the ambient noise levels at all the locations near habitations are within permissible limits of Residential Area (buffer zone) as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000 (The Principal Rules were published in the Gazette of India, vide S.O.123(E), dated 14.2.2000 and subsequently amended vide S.O. 1046(E),dated 22.11.2000, S.O. 1088(E), dated 11.10.2002, S.O. 1569 (E), dated 19.09.2006 and S.O. 50 (E) dated 11.01.2010 under the Environment(Protection) Act, 1986.).

4.5.2 Common Mitigation Measures

The following noise mitigation measures are proposed for control of noise:

- Usage of sharp drill bits while drilling which will help in reducing noise
- Secondary blasting will be totally avoided and hydraulic rock breaker will be used for breaking boulders
- Controlled blasting with proper spacing, burden, stemming and optimum charge/delay will be maintained
- The blasting will be carried out during favourable atmospheric condition and less human activity timings by using nonelectrical initiation system
- Proper maintenance, oiling and greasing of machines will be done every week to reduce generation of noise
- Provision of sound insulated chambers for the workers working on machines (HEMM) producing higher levels of noise

- Silencers / mufflers will be installed in all machineries
- Greenbelt/Plantation will be developed around the project area and along the haul roads.
 The plantation minimizes propagation of noise
- Personal Protective Equipment (PPE) like ear muffs/ear plugs will be provided to the operators of HEMM and persons working near HEMM and their use will be ensured though training and awareness
- Regular medical check-up and proper training to personnel to create awareness about adverse noise level effects

4.5.3 Ground Vibrations

Ground vibrations due to the proposed mining activities are anticipated due to operation of mining machines like excavators, drilling and blasting, transportation vehicles, etc., however, the major source of ground vibration from the quarry is blasting. The major impact of the ground vibrations is observed on the domestic houses located in the villages nearby the mine lease area. The kutcha houses are more prone to cracks and damage due to the vibrations induced by blasting whereas RCC framed structures can withstand more ground vibrations. Apart from this, the ground vibrations may develop a fear factor in the nearby settlements.

Another impact due to blasting activities is fly rocks. These may fall on the houses or agricultural fields nearby the mining lease area and may cause injury to persons or damage to the structures. Nearest habitation from the proposed project areas is listed in below table. The ground vibrations due to the blasting in the quarry are calculated using the empirical equation.

The empirical equation for assessment of peak particle velocity (PPV) is given below:

$V = K [R/Q^{0.5}]^{-B}$

Where,

V = peak particle velocity (mm/s)

K = site and rock factor constant (500)

Q = maximum instantaneous charge (kg)

B = constant related to the rock and site (usually 1.6)

R = distance from charge (m)

Location	Maximum	Nearest	PPV in	Fly rock	Air	Blast		
ID	Charge in kgs	Habitation	mm/s	distance	Pressure	Sound		
	Charge in Kgs	in m	11111/5	in m	(kPa)			
P1	12.4	450	0.213	19	0.04	127		

 Table 4.9 Predicted PPV Values due to Blasting

.		Radial		Fly rock	Air	Blast
Location ID	Maximum Charge in kgs	Distance in m	PPV in mm/s	distance in m	Pressure (kPa)	Sound Level (dB)
		100	2.364		0.27	143
		200	0.780		0.12	135
P1	12.4	300	0.480	19	0.07	131
		400	0.257		0.05	128
		500	0.180		0.04	126

Table 4.10 Predicted PPV Values due to Blasting at 100-500 m radius

4.5.3.1 Common Mitigation Measures

- The blasting operations in the cluster quarries are carried out without deep hole drilling and blasting using delay detonators which reduce the ground vibrations
- Proper quantity of explosives, suitable stemming materials and appropriate delay system will be adopted to avoid overcharging and for safe blasting
- ✤ Adequate safe distance from blasting will be maintained as per DGMS guidelines
- Blasting shelter will be provided as per DGMS guidelines
- Blasting operations will be carried out only during day time
- The charge per delay will be minimized and preferably a greater number of delays will be used per blasts
- During blasting, other activities in the immediate vicinity will be temporarily stopped
- Drilling parameters like depth, diameter and spacing will be properly designed to give proper blast
- A fully trained explosives blast man (Mining Mate, Mines Foreman, 2nd Class Mines Manager/ 1st Class Mines Manager) will be appointed
- A set of shot firing rules will be drawn up and blasting shall commence outlining the detailed operating procedures that will be followed to ensure that shot firing operations on site take place without endangering the workforce or public
- Sufficient angular stemming material will be used to confine the explosive force and minimise environmental disturbance caused by venting / misfire
- The detonators will be connected in a predetermined sequence to ensure that only one charge is detonated at any one time and a NONEL or similar type initiation system will be used
- The detonation delay sequence shall be designed so as to ensure that firing of the holes is in the direction of free faces so as to minimise vibration effects

- Appropriate blasting techniques shall be adopted in such a way that the predicted peak particle velocity shall not exceed 0.251mm/s
- Vibration monitoring will be carried out every 6 months to check the efficacy of blasting practices.

4.6 ECOLOGY AND BIODIVERSITY

4.6.1 Impact on Ecology and Biodiversity

- There shall be negligible air emissions or effluents from the project site. During loading the truck, dust generation will be likely. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly.
- Most of the land in the buffer area is undulating terrain with crop lands, grass patches and small shrubs. Hence, there will be no effect on flora of the region.
- Carbon released from quarrying machineries and tippers during quarrying would be 1464 kg per day, 395167 kg per year and 1975834 kg over five years, as provided in Table 4.11.

	Per day	Per year	Per five years
Fuel consumption of excavator	103	27899	139495
Fuel consumption of compressor	12.4	3348	16740
Fuel consumption of tipper	430	116203	581017
Total fuel consumption in liters	546	147450	737251
Co ₂ emission in kg	1464	395167	1975834

Table 4.11 Carbon Released During Five Years of Rough Stone Production

4.6.2 Mitigation Measures on Flora

- During conceptual stage, the top bench will be re-vegetated by planting local /native species and lower benches will be converted into rainwater harvesting structure following completion of mining activities, which will replace habitat resources for fauna species in this locality over a longer time.
- Existing roads will be used; new roads will not be constructed to reduce impact on flora.

Carbon Sequestration

- To mitigate carbon emission due to mining activities, we recommend planting trees around the quarry to offset the carbon emission during quarrying. A tree can sequester 24276 kg of carbon per year. Therefore, we recommend 1013 planting large number of trees around the quarry and near school campuses, government wasteland, roadsides etc.
- As per the greenbelt development plan as recommended by SEAC (Table 4.13), about 1013 trees will be planted within three months from the beginning of mining. These trees, when grown up would sequester carbon of about 15454 kg of the total carbon, as provided in Table 4.12.

CO ₂ sequestration in kg	90	24276	121379	
Remaining CO ₂ not sequestered in kg	1374	370891	1854455	
Trees required for environmental compensation	15454			
Area required for environmental compensation in hectares	31			

Table 4.12 CO2 Sequestration

Greenbelt Development

The main objective of the green belt is to provide a barrier between the source of pollution and the surrounding areas. In order to compensate the loss of vegetation cover, it is suggested to carry out afforestation program mainly inside and outside of the lease area in different phases. This habitat improvement program would ensure the faunal species to re-colonize and improve the abundance status in the core zone. Greenbelt development plan and budget required for green belt development plan are given in Tables 4.14-4.15. For greenbelt development, species are recommended, as shown in Table 4.13 on the basis of:

- Natural growth of existing species and survival rate of various species.
- Suitability of a particular plant species for a particular type of area.
- Creating of biodiversity.
- Fast growing, thick canopy copy, perennial and evergreen large leaf area.
- Efficient in absorbing pollutants without major effects of natural growth.

Table 4.13 Recommended Species for Greenbelt Development Plan

S.	Botanical Name	Family	Common		Dust Capturing
		Family		Category	Efficiency
No	of the Plant	Name	Name		Features
1	Azadirachta indica	Meliaceae	Neem, Vembu	Tree	Well distinct thick at
2	Techtona grandis	Lamiaceae	Teak	Tree	both the layer Well distinct in
3	Polyalthia longifolia	Annonaceae	Nettilingam	Tree	Well distinct in Palisade & Spongy
4	Albizia lebbeck	Fabaceae	Vagai	Tree	parenchyma.
5	Delonix regia	Fabaceae	Cemmayir- konrai	Tree	Spongy parenchyma
6	Bauhinia racemose	Fabaceae	Aathi	Tree	present at lower
7	Cassia fistula	Fabaceae	Sarakondrai	Tree	epidermis Many
8	Aegle marmelos	Rutaceae	Vilvam	Tree	vascular bundles
9	Pongamia pinnata	Fabaceae	Pungam	Tree	arranged almost
10	Thespesia populnea	Malvaceae	Puvarasu	Tree	parallel series

	No. of trees proposed for	No. of trees expected to	Area to be	
	plantation	survive @ 80%	covered(m ²)	
Plantation in the construction phase (3 months)	Number of plants inside the mine lease area			
	405	324	3645	
	Number of plants outside the mine lease area			
	608	486	5468	
Total	1013	810	9112	

Table 4.14 Greenbelt Development Plan

	Plantation in		Capital	Recuring
Activity	the construction	Cost	Cost	Cost-per
	phase(3Months)		(Rs.)	annum
Plantation inside the mine lease area (in safety margins)	405	Site clearance, preparation of land, digging of pits / trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area and @ 30 per plant maintenance (recurring))"	81000	12150
Plantation outside the area	608	Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	182250	18225
Total			2,63,250	30,375

Table 4.15 Dudget for Creenhalt Development Dian

Source: EMP budget

After complete extraction of mineral, the excavated pits will be allowed to collect rainwater and seepage water to serve as a reservoir to charge the nearby wells. Fish culture will also be attempted. A bund will be constructed around the pits. In order to minimize the impact of mining on the vegetation outside the mine lease area, it is recommended that adequate protection measures must be implemented. As mining involves movement of vehicles and increased anthropogenic activities, some of the areas can be fenced by involving local people and educating them about increased benefits of such activities.

4.6.3. Anticipated Impact on Fauna

♦ There is no Wildlife Sanctuary and Biosphere Reserve within 10 km radius of the project site.

- No rare, endemic & endangered species are reported in the buffer zone. However, during the course of mining, the management will practice scientific method of mining with proper Environmental Management Plan including pollution control measures especially for air and noise, to avoid any adverse impact on the surrounding wildlife.
- Fencing around all the proposed mine lease areas will be constructed to restrict the entry of stray animals
- Green belt development will be carried out which will help in minimizing adverse impact on the flora found in the area.

4.6.4 Measures for Protection and Conservation of Wildlife Species

- ✤ All the preventive measures will be taken for growth & development of fauna.
- Creating and development awareness for nature and wildlife in the adjoin villages.
- The workers shall be trained to not harm any wildlife, should it come near the project site. No work shall be carried out after 6.00 pm.
- Undertaking mitigation measures for conducive environment to the flora and fauna in consultation with Forest Department.
- Dust suppression system will be installed within mine and periphery of mine for proposed project
- Plantation around mine area will help in creating habitats for small faunal species and to
- create better environment for various fauna. Creating and developing awareness for nature and wildlife in the adjoining villages.

Aquatic Biodiversity

Mining activities will not disturb the existing aquatic ecology as there is no effluent discharge proposed from the rough stone quarry. There is no natural perennial surface water body within the mine lease area. Hence, aquatic biodiversity is not observed in the mine lease area.

S. No	Attributes	Assessment		
1	Activities of the project affects the	No breeding and nesting sites were identified		
	breeding/nesting sites of birds and	in the lease area.		
	animals			
2	Located near an area populated by rare	No endangered, critically endangered,		
	or endangered species	vulnerable species were sighted in core area.		
	Proximity to national park/wildlife	There are no reserve forest or national parks or		
3	eco-sensitive zones around 10 km radius			

 Table 4.16 Ecological Impact Assessments

	sanctuary/reserve forest /mangroves/	
	coastline/estuary/sea	
4	Proposed project restricts access to	No. The proposed project does not restrict
	waterholes for wildlife	access to water holes for wildlife.
5	Proposed mining project impact surface	No scheduled or threatened wildlife animal
	water quality that also provide water to	were sighted in core area.
	wildlife	
6	Proposed mining project increase	Surface runoff management system will be
	siltation that would affect nearby	developed properly. So, there will be no
	biodiversity area.	siltation in nearby mining area.
7	Risk of fall/slip or cause death to wild	Barbed wire fencing will be installed around
	animals due to project activities	the lease area. Therefore, wild animals will not
		fall into the quarry pit.
8	The project release effluents into a	No water bodies were found close to core zone
	water body that also supplies water to a	so chances of water becoming polluted will be
	wildlife	low.
9	Mining project effect the forest-based	No. The proposed project does not involve any
	livelihood/ any specific forest product	forestland. Therefore, it will not affect the
	on which local livelihood depended	livelihood of people depending the forest
		product.
10	Project likely to affect migration routes	No migration routes were found crossing the
		lease area.
11	Project likely to 0affect flora of an area,	No flora with medicinal values were found in
	which have medicinal value	the study area.
12	Forestland is to be diverted, has carbon	As the proposed project does not involve any
	high sequestration	forestland, there will be no need for diversion.
13	The project likely to affect wetlands,	Wetland was not present in and around mining
	fish breeding grounds, marine ecology	lease area. No fish breeding grounds were
		present in core area.

S. No	Aspect Description	Likely Impacts on Ecology and Biodiversity (EB)	Impact Consequence - Probability Description / Justification	Significance	Mitigation Measures		
	Pre-Mining Phase						
1	Uprooting of vegetation of lease area	Site specific loss of common floral diversity (Direct impact) Site specific loss of associated faunal diversity (Partial impact) -Loss of Habitat (Direct	Site possesses common floral (not trees) species. Clearance of these species will not result in loss of flora Site supports only common species, which use wide variety of habitats of the buffer zone reserve forest area. So, there is no threat of faunal diversity. Site does not form Unique / critical habitat structure for unique flora or	Less severe	No immediate action required. However, Greenbelt /plantation will be developed in project site and in periphery of the project boundary, which will improve flora and fauna diversity of the project area.		
	impact)		fauna.				
Mining Phase							
2	Excavation of mineral using	Site-specific disturbance	Site does not form unique / critical	Less severe	Mining activity should not be		

Table 4.17 Anticipated Impact of Ecology and Biodiversity

	machine and	to normal	habitat structure		operated after
	labours,	faunal	for unique flora or		5PM.
	Transportation	movements	fauna.		Excavation of
	activities will	at the site			dump and
	generate	due to noise.			transportation
	noise.	(Partial			work should
		impact)			stop before
					7PM.
					All vehicles will
	Vehicular	Impact on			be certified for
	Movement for	surrounding			appropriate
	transportation	agriculture			Emission levels.
	of materials	and			More plantation
	will result in	associated	Impact is less as		has been
3	generation of	fauna due to	the agricultural	Less severe	suggested
5	dust (SPM)	deposition	land far from core	Less severe	Upgrade the
	due to haul	of dust and	area.		vehicles with
	roads and	Emission of			alternative fuel
	emission of	CO.			such biodiesel,
	SO ₂ , NO ₂ , CO	(Indirect			methanol and
	etc.	impact)			biofuel around
					the mining area.

4.7 SOCIO ECONOMIC ENVIRONMENT

4.7.1 Anticipated Impact from Proposed and Existing Projects

- Dust generation from mining activity can have negative impact on the health of the workers and people in the nearby area.
- ✤ Approach roads can be damaged by the movement of tippers
- Increase in Employment opportunities both direct and indirect thereby increasing economic status of people of the region.

4.7.2 Common Mitigation Measures for Proposed Project

Good maintenance practices will be adopted for all machinery and equipment, which will help to avert potential noise problems.

- Green belt will be developed in and around the project site as per Central Pollution Control Board (CPCB) guidelines.
- Air pollution control measure will be taken to minimize the environmental impact within the core zone.
- For the safety of workers, personal protective appliances like hand gloves, helmets, safety shoes, goggles, aprons, nose masks and ear protecting devices will be provided as per mines act and rules.
- Benefit to the State and the Central governments through financial revenues by way of royalty, tax, duties, etc.., from this project directly and indirectly.
- From above details, the quarry operations will have highly beneficial positive impact in the area

4.8 OCCUPATIONAL HEALTH AND SAFETY

Occupational health and safety hazards occur during the operational phase of mining and primarily include the following:

- Respiratory hazards
- Noise
- Physical hazards
- Explosive storage and handling

4.8.1 Respiratory Hazards

Long-term exposure to silica dust may cause silicosis the following measures are proposed:

- ✤ Cabins of excavators and tippers will be enclosed with AC and sound proof
- Use of personal dust masks will be made compulsory

4.8.2 Noise

Workers are likely to get exposed to excessive noise levels during mining activities. The

following measures are proposed for implementation

- No employee will be exposed to a noise level greater than 85 dB(A) for a duration of more than 8 hours per day without hearing protection
- The use of hearing protection will be enforced actively when the equivalent sound level over 8 hours reaches 85 dB(A), the peak sound levels reach 140 dB(C), or the average maximum sound level reaches 110 dB(A)
- Ear muffs provided will be capable of reducing sound levels at the ear to at least 85 dB(A)
- Periodic medical hearing checks will be performed on workers exposed to high noise levels.

4.8.3 Physical Hazards

The following measures are proposed for control of physical hazards

- Specific personnel training on work-site safety management will be taken up;
- Natural barriers, temporary railing, or specific danger signals will be provided along rock benches or other pit areas where work is performed at heights more than 2m from ground level;
- Maintenance of yards, roads and footpaths, providing sufficient water drainage and preventing slippery surfaces with an all-weather surface, such as coarse top soil will be taken up.
- ♦ Mining for safety management awareness meeting monthly one-time discussion.

4.8.4 Occupational Health Survey

All the persons will undergo pre-employment and periodic medical examination. Employees will be monitored for occupational diseases by conducting the following tests

- General physical tests
- ✤ Audiometric tests
- Full chest, X-ray, Lung function tests, Spirometric tests
- Periodic medical examination yearly
- ✤ Lung function test yearly, those who are exposed to dust
- Eye test

Essential medicines will be provided at the site. The medicines and other test facilities will be provided at free of cost. The first aid box will be made available at the mine for immediate treatment. First aid training will be imparted to the selected employees regularly. The lists of first aid trained members shall be displayed at strategic places.

4.9 MINE WASTE MANAGEMENT

No waste is anticipated from any of the proposed quarries.

4.10 MINE CLOSURE

Mine closure plan is the most important environmental requirement in mining project. The mine closure plan should cover technical, environmental, social, legal and financial aspects dealing with progressive and post closure activities. The closure operation is a continuous series of activities starting from the decommissioning of the project. Therefore, progressive mine closure plan should be specifically dealt with in the mining plan and is to be reviewed along with mining plan. As progressive mine closure is a continuous series of activities, it is obvious that the proposals of scientific mining have included most of the activities to be included in the closure plan. While

formulating the closure objectives for the site, it is important to consider the existing or the premining land use of the site; and how the operation will affect this activity.

The primary aim is to ensure that the following broad objectives along with the abandonment of the mine can be successfully achieved:

- To create a productive and sustainable after-use for the site, acceptable to mine owners, regulatory agencies, and the public
- \clubsuit To protect public health and safety of the surrounding habitation
- ✤ To minimize environmental damage
- ✤ To conserve valuable attributes and aesthetics
- ✤ To overcome adverse socio-economic impacts.

4.10.1 Mine Closure Criteria

The criteria involved in mine closure are discussed below:

4.10.1.1 Physical Stability

All anthropogenic structures, which include mine workings, buildings, rest shelters etc., remaining after mine decommissioning should be physically stable. They should present no hazard to public health and safety as a result of failure or physical deterioration and they should continue to perform the functions for which they were designed. The design periods and factors of safety proposed should take full account of extreme events such as floods, hurricane, winds or earthquakes, etc. and other natural perpetual forces like erosion, etc.,

4.10.1.2 Chemical Stability

The solid wastes on the mine site should be chemically stable. This means that the consequences of chemical changes or conditions leading to leaching of metals, salts or organic compounds should not endanger public health and safety nor result in the deterioration of environmental attributes. If the pollutant discharges likely to cause adverse impacts is predicted in advance, appropriate mitigation measures like settling of suspended solids or passive treatment to improve water quality as well as quantity, etc., could be planned. Monitoring should demonstrate that there is no adverse effect of pollutant concentrations exceeding the statutory limits for the water, soil and air qualities in the area around the closed mine.

4.10.1.3 Biological Stability

The stability of the surrounding environment is primarily dependent upon the physical and chemical characteristics of the site, whereas the biological stability of the mine site itself is closely related to rehabilitation and final land use. Nevertheless, biological stability can significantly influence physical or chemical stability by stabilizing soil cover, prevention of erosion/wash off, leaching, etc.,

A vegetation cover over the disturbed site is usually one of the main objectives of the rehabilitation programme, as vegetation cover is the best long-term method of stabilizing the site. When the major earthwork components of the rehabilitation programme have been completed, the process of establishing a stable vegetation community begins. For re-vegetation, management of soil nutrient levels is an important consideration. Additions of nutrients are useful under three situations.

- Where the nutrient level of spread topsoil is lower than material in-situ e.g., for development of social forestry
- Where it is intended to grow plants with a higher nutrient requirement than those occurring naturally.
- Where it is desirable to get a quick growth response from the native flora during those times when moisture is not a limiting factor. For example, development of green barriers

The Mine closure plan should be as per the approved mining plan. The mine closure is a part of approved mine plan and activities of closure shall be carried out as per the process described in mine closure plan.

CHAPTER V

ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE) 5.0 INTRODUCTION

Consideration of alternatives to a proposed project is a requirement of EIA process. During the scoping process, alternatives to a proposed project can be considered or refined, either directly or by reference to the key issues identified. A comparison of alternatives helps to determine the best method of achieving the project objectives with minimum environmental impacts or indicates the most environmentally friendly and cost-effective options.

5.1 FACTORS BEHIND THE SELECTION OF PROJECT SITE

The proposed project is site specific and has the following advantages:

- The mineral deposit occurs in a non-forest area.
- There is no habitation within the project area; hence no R & R issues exist.
- ◆ There is no river, stream, nallah and water bodies in the applied mine lease area.
- ♦ Availability of skilled, semi-skilled and unskilled workers in this region.
- All the basic amenities such as medical, firefighting, education, transportation, communication and infrastructural facilities are well connected and accessible.
- The mining operations will not intersect the ground water level. Hence, no impact on ground water environment.
- As the proposed project area falls in seismic zone II, there is no major history of landslides, earthquake, subsidence etc., recorded in the past history.

5.2 ANALYSIS OF ALTERNATIVE SITE

No alternatives are suggested as the mine site is mineral specific.

5.3 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY

Manual open cast mining method with secondary blasting will be applied to extract rough stone and gravel in the area. The proposed mining lease areas have following advantages:

- As the mineral deposition is homogeneous and batholith formation, opencast method of working is preferred over underground method.
- The material will be loaded with the help of excavators into tractors/tippers and transported to the need by customers.
- Semi-skilled labours fit for quarrying operations are easily available around the nearby villages.

5.4 ANALYSIS OF ALTERNATIVE TECHNOLOGY

Open cast mechanized method has been selected for this project. This technology is having least gestation period, economically viable, safest and less labour intensive. The method has inbuilt flexibility for increasing or decreasing the production as per market condition.

CHAPTER VI

ENVIRONMENTAL MONITORING PROGRAMME

6.0 GENERAL

The monitoring and evaluation of environmental parameters indicates potential changes occurring in the environment, which paves way for implementation of rectifying measures wherever required to maintain the status of the natural environment. Evaluation is also a very effective tool to judge the effectiveness or deficiency of the measures adopted and provides insight for future corrections. The main objective of environmental monitoring is to ensure that the obtained results in respect of environmental attributes and prevailing conditions during operation stage are in conformity with the prediction during the planning stage. In case of substantial deviation from the earlier prediction of results, this forms as base data to identify the cause and suggest remedial measures. Environmental monitoring is mandatory to meet compliance of statutory provisions under the Environment (Protection) Act, 1986, relevant conditions regarding monitoring covered under EC orders issued by the SEIAA-TN as well as the conditions set forth under the order issued by Tamil Nadu Pollution Control Board while granting CTE/CTO.

6.1 METHODOLOGY OF MONITORING MECHANISM

Implementation of EMP and periodic monitoring will be carried out by respective project proponents. A comprehensive monitoring mechanism has been devised for monitoring of impacts due to proposed project; Environmental protection measures like dust suppression, control of noise and blast vibrations, maintenance of machinery and vehicles, housekeeping in the mine premises, plantation, implementation of Environmental Management Plan and environmental clearance conditions will be monitored by the respective mine management. On the other hand, implementation of area level protection measures like green belt development, environmental quality monitoring etc., are taken up by a senior executive who reports to their Mine Management.

An Environment monitoring cell (EMC) will be constituted to monitor the implementation of EMP and other environmental protection measures in the proposed quarry. The responsibilities of this cell will be:

- Implementation of pollution control measures
- ✤ Monitoring programme implementation
- Post-plantation care
- ✤ To check the efficiency of pollution control measures taken
- ✤ Any other activity as may be related to environment

✤ Seeking expert's advice when needed.

The environmental monitoring cell will co-ordinate all monitoring programs at site and data thus generated will be regularly furnished to the State regulatory agencies as compliance status reports.

The sampling and analysis report of the monitored environmental attributes will be submitted to the Tamil Nadu Pollution Control Board (TNPCB) at a frequency of half-yearly and yearly by the proposed project proponent. The half-yearly reports are submitted to Ministry of Environment and Forest, Regional Office and SEIAA-TN as well.

The sampling and analysis of the environmental attributes will be as per the guidelines of Central Pollution Control Board (CPCB)/Ministry of Environment, Forest and Climate Change (MoEF & CC). The Environmental Monitoring Cell will be formed for the proposed project. The structure of the cell will be as shown in Figure 6.1.

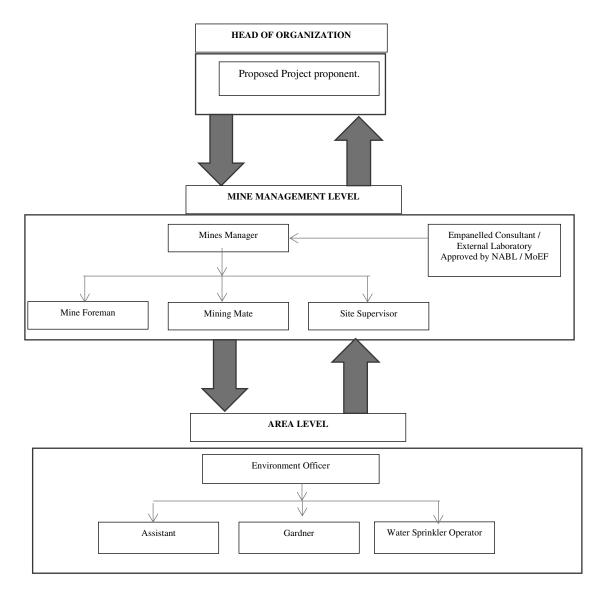


Figure 6.1 Proposed environmental monitoring chart

6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES

The mitigation measures proposed in chapter IV will be implemented so as to reduce the impact on the environment due to the operations of the proposed project. Implementation schedule of mitigation measures is given in Table 6.1.

S. No.	Recommendations	Time Period	Schedule
1	Land Environment Control Measures	Before commissioning of the project	Immediately after the commencement of project
2	Soil Quality Control Measures	Before commissioning of the project	Immediately after the commencement of project
3	Water Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
4	Air Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
5	Noise Pollution Control measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
6	Ecological Environment	Phase wise implementation every year along with mine operations	Immediately and as project progress

Table 6.1 Implementation Schedule for Proposed Project

6.3 MONITORING SCHEDULE AND FREQUENCY

Monitoring shall confirm that commitments are being met. This may take the form of direct measurement and recording of quantitative information, such as amounts and concentrations of discharges, emissions and wastes, for measurement against statutory standards. Monitoring may include socio-economic interaction, through local liaison activities or even assessment of complaints.

The environmental monitoring will be conducted in the mine operations as follows:

- ✤ Air quality
- ✤ Water and wastewater quality
- ✤ Noise levels

- ✤ Soil quality and
- ✤ Greenbelt development

The details of proposed monitoring schedule have been provided in Table 6.2.

S.	Environment	I	Monitoring		Parameters	
No.	Attributes	Location	Duration	Frequency	Parameters	
1	Air Quality	2 Locations (1 Core & 1 Buffer)	24 hours	Once in 6 months	Fugitive Dust, PM _{2.5} , PM ₁₀ , SO ₂ and NO _x .	
2	Meteorology	At mine site before start of Air Quality Monitoring & IMD Secondary Data	Hourly / Daily	Continuous online monitoring	Wind speed, Wind direction, Temperature, Relative humidity and Rainfall	
3	Water Quality Monitoring	2 Locations (1SW & 1 GW)	-	Once in 6 months	Parameters specified under IS:10500, 1993 & CPCB Norms	
4	Hydrology	Water level in open wells in buffer zone around 1 km at specific wells	_	Once in 6 months	Depth in m BGL	
5	Noise	2 Locations (1 Core & 1 Buffer)	Hourly – 1 Day	Once in 6 months	Leq, Lmax, Lmin, Leq Day & Leq Night	
6	Vibration	At the nearest habitation (in case of reporting)	_	During blasting operation	Peak particle velocity	
7	Soil	2 Locations (1 Core & 1 Buffer)	_	Once in six months	Physicalandchemicalcharacteristics	
8	Greenbelt	Within the project area	Daily	Monthly	Maintenance	

Table 6.2 Proposed Monitoring Schedule Post EC for the Proposed Quarry

Source: Guidance of manual for mining of minerals, February 2010

6.4 BUDGETARY PROVISION FOR ENVIRONMENT MONITORING PROGRAM

The cost in respect of monitoring of environmental attributes, parameter to be monitored, sampling/monitoring locations with frequency and cost provision against each proposal is shown in Table 6.3. Monitoring work will be outsourced to external laboratory approved by NABL / MoEF. The proposed recurring cost for Environmental Monitoring Programme is Rs **2,95,000** /- per annum for the proposed project site.

S. No.	Parameter	Capital Cost	Recurring Cost per annum
1	Air Quality	-	Rs 60,000/-
2	Meteorology	-	Rs 15,000/-
3	Water Quality	-	Rs 20,000/-
4	Water Level Monitoring		Rs 10,000/-
5	Soil Quality	-	Rs 20,000/-
6	Noise Quality	-	Rs 10,000/-
7	Vibration Study	-	Rs 1,50,000/-
8	Greenbelt	-	Rs 10,000/-
	Total	-	Rs 2,95,000 /-

Table 6.3 Environment Monitoring Budget

Source: Field Data

6.5 REPORTING SCHEDULES OF MONITORED DATA

The monitored data on air quality, water quality, noise levels and other environmental attributes will be periodically examined by the Cluster Mine Management Coordinator and Respective Head of Organization for taking necessary corrective measures. The monitoring data will be submitted to Tamil Nadu State Pollution Control Board in the Compliance to CTO Conditions & environmental audit statements every year to MoEF & CC and Half-Yearly Compliance Monitoring Reports to MoEF & CC Regional Office and SEIAA.

Periodical reports to be submitted to:

- ✤ MoEF & CC Half yearly status report
- TNPCB Half yearly status report
- Department of Geology and Mining: quarterly, half yearly annual reports

Besides the Mines Manager/Agent of respective project will submit the periodical reports to:

- Director of mines safety
- ✤ Labour enforcement officer
- Controller of explosives as per the norms stipulated by the department.

CHAPTER VII ADDITIONAL STUDIES

7.0 GENERAL

Additional studies deal with:

- Risk Assessment
- Disaster Management Plan
- Cumulative Impact Study
- Plastic Waste Management
- Post-COVID Health Management Plan

7.1 PUBLIC CONSULTATION FOR PROPOSED PROJECT

Application to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district was made and the public opinions on the proposed project will be updated in the final EIA/EMP report.

7.2 RISK ASSESSMENT FOR PROPOSED PROJECT

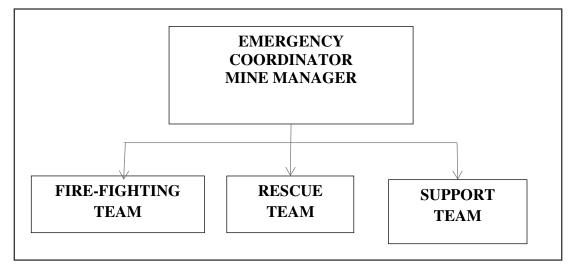
Risk Assessment is all about prevention of accidents and to take necessary steps to prevent it from happening. The methodology for the risk assessment is based on the specific risk assessment guidance issued by the Directorate General of Mine Safety (DGMS), Dhanbad, vide circular No.13 of 2002, dated 31st December, 2002. The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention. Further, mechanisms responsible for these hazards are identified and their control measures, set to timetable are recorded along with pinpointed responsibilities. The whole quarry operation will be carried out under the direction of a Qualified Competent Mine Manager holding certificate of competency to manage a metalliferous mine granted by the DGMS, Dhanbad for proposed project.

Factors of risks involved due to human induced activities in connection with these proposed mining & allied activities with detailed analysis of causes and control measures for the mine is given in Table 7.1.

C	Table 7.1 Risk Assessment & Control Measures for Proposed Project Dil f. f. too.		
S.	Risk factors	Causes of risk	Control measures
No.			
1	Accidents due	Improper	\checkmark All safety precautions and provisions of Mine Act
	to explosives	handling and	1952, Metalliferous Mines Regulation, 1961 and
	and heavy	unsafe working	Mines Rules, 1955 will be strictly followed during al
	mining	practice	mining operations.
	machineries.		\checkmark Workers will be sent to the Training in the nearby
			Group Vocational Training Centre Entry of
			unauthorized persons will be prohibited.
			\checkmark Fire-fighting and first-aid provisions in the mine
			office complex and mining area.
			Provisions of all the safety appliances such as safety
			boot, helmets, goggles etc. will be made available to
			the employees and regular check for their use.
			✓ Working of quarry, as per approved plans and
			regularly updating the mine plans.
			✓ Cleaning of mine faces on daily basis shall be daily
			done in order to avoid any overhang or undercut.
			✓ Handling of explosives, charging and firing shall be
			carried out by competent persons only under the
			supervision of a Mine Manager.
			✓ Maintenance and testing of all mining equipment as
			per manufacturer's guidelines.
2	Drilling	Improper and	✓ Safe operating procedure established for drilling
		unsafe practices;	(SOP) will be strictly followed.
		Due to high	\checkmark Only trained operators will be deployed.
		pressure of	✓ No drilling shall be commenced in an area where shots
		compressed air,	have been fired until the blaster/blasting foreman has
		hoses may burst;	made a thorough Examination of all places,
		Drill Rod may	\checkmark Drilling shall not be carried on simultaneously on the
		break;	benches at places directly one above the other.

Table 7.1 Risk Assessment & Control Measures for Proposed Project

			./	Deviadical proventive maintenance and real content
			v	Periodical preventive maintenance and replacement
				of worn-out accessories in the compressor and drill
				equipment as per operator manual.
			✓	All drills unit shall be provided with wet drilling
				shall be maintained in efficient working in condition.
			✓	Operator shall regularly use all the personal
				protective equipment.
3	Transportation	Potential hazards	~	Before commencing work, drivers personally check
		and unsafe		the truck/tipper for oil(s), fuel and water levels, tyre
		workings		inflation, general cleanliness and inspect the brakes,
		contributing to		steering system, warning devices including
		accident and		automatically operated audio-visual reversing alarm,
		injuries		rear view mirrors, side indicator lights etc., are in
				good condition.
		Overloading of	\checkmark	Not allow any unauthorized person to ride on the
		material		vehicle nor allow any unauthorized person to operate
				the vehicle.
		While reversal &	\checkmark	Concave mirrors should be kept at all corners
		overtaking of	✓	All vehicles should be fitted with reverse horn with
		vehicle		one spotter at every tipping point
			✓	Loading according to the vehicle capacity
		Operator of truck	✓	Periodical maintenance of vehicles as per operator
		leaving his cabin		manual
		when it is loaded.		
4	Natural	Unexpected	√	Escape Routes will be provided to prevent
	calamities	happenings		inundation of storm water
			~	Fire Extinguishers & Sand buckets
5	Failure of Mine	Slope geometry,	~	Ultimate or over all pit slope shall be below 60° and
	Benches and	Geological		each bench height shall be 5m.
	Pit Slope	structure		
L		ad and Proposed by I		4.52


Source: Analysed and Proposed by FAE & EC

7.3 DISASTER MANAGEMENT PLAN FOR PROPOSED PROJECT

Natural disasters like Earthquake, Landslides have not been recorded in the past history as the terrain is categorized under seismic zone II. The area is far away from the sea. Hence, the disaster due to heavy floods and tsunamis are not anticipated. The Disaster Management Plan is aimed to ensure safety of life, protection of environment, protection of installation, restoration of production and salvage operations in this same order of priorities. The objective of the Disaster Management Plan is to make use of the combined resources of the mine and the outside services to achieve the following:

- Rescue and medical treatment of casualties;
- Safeguard other people;
- Minimize damage to property and the environment;
- Initially contain and ultimately bring the incident under control;
- Secure the safe rehabilitation of affected area; and
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency.

In case a disaster takes place, despite preventive actions, disaster management will have to be done in line with the descriptions below. There is an organization proposed for dealing with the emergency situations. Structure of the team has been shown in Figure 7.1.

Figure 7.1 Disaster management team layout for proposed project

The emergency organization shall be headed by emergency coordinator who will be qualified competent mines manager. In his absence senior most people available at the mine shall be emergency coordinator till arrival of mines manager. There would be three teams for taking care of emergency situations – Fire-Fighting Team, Rescue Team and Support Team. The proposed composition of the teams is given in Table 7.2.

DESIGNATION	QUALIFICATION		
FIRE-FIGHTING TEAM			
Team Leader/ Emergency Coordinator (EC)	Mines Manager		
Team Member	Mines Foreman		
Team Member	Mining Mate		
RESCUE	ТЕАМ		
Team Leader/ Emergency Coordinator (EC)	Mines Manager		
Team Member/ Incident Controller (IC)	Environment Officer		
Team Member	Mining Foreman		
SUPPOR	Г ТЕАМ		
Team Leader/ Emergency Coordinator (EC)	Mines Manager		
Assistant Team Leader	Environment Officer		
Team Member	Mining Mate		
Security Team Leader/ Emergency Security	Mines Foreman		
Controller	wines i oreman		

Table 7.2 Proposed Teams for Emergency Situation

Once the mine becomes operational, the above table along with names of personnel will be prepared and made easily available to workers for respective proposed quarries. A mobile communication network and wireless shall connect Mine Emergency Control Room (MECR) to control various departments of the mine, fire station and neighbouring industrial units/mines.

7.3.1 Roles and Responsibilities of Emergency Team

(a) Emergency coordinator (EC)

The emergency coordinator shall assume absolute control of site and shall be located at MECR.

(b) Incident controller (IC)

Incident controller shall be a person who shall go to the scene of emergency and supervise the action plan to overcome or contain the emergency. Shift supervisor or Environmental Officer shall assume the charge of IC.

(c) Communication and advisory team

The advisory and communication team shall consist of heads of Mining Departments i.e., Mines Manager

(d) Roll call coordinator

The Mine Foreman shall be Roll Call Coordinator. The roll call coordinator will conduct the roll call and will evacuate the mine personnel to assembly point. His prime function shall be to account for all personnel on duty.

(e) Search and rescue team

There shall be a group of people trained and equipped to carryout rescue operation of trapped personnel. The people trained in first aid and fire-fighting shall be included in search and rescue team.

(f) Emergency security controller

Emergency Security Controller shall be senior most security person located at main gate office and directing the outside agencies e.g., fire brigade, police, doctor and media men etc.,

7.3.2 Emergency Control Procedure

The onset of emergency, will in all probability, commence with a major fire or explosion or collapse of wall along excavation and shall be detected by various safety devices and also by members of operational staff on duty. If located by a staff member on duty, he (as per site emergency procedure of which he is adequately briefed) will go to nearest alarm call point, break glass and trigger off the alarms. He will also try his best to inform about location and nature of accident to the emergency control room. In accordance with work emergency procedure the following key activities will immediately take place to interpret and take control of emergency.

- On site fire crew led by a fireman will arrive at the site of incident with fire foam tenders and necessary equipment.
- Emergency security controller will commence his role from main gate office
- Incident controller shall rush to the site of emergency and with the help of rescue team and will start handling the emergency.
- Site main controller will arrive at MECR with members of his advisory and communication team and will assume absolute control of the site.
- He will receive information continuously from incident controller and give decisions and directions to:
- Incident controller
- Mine control rooms
- Emergency security controller

7.3.3 Proposed Fire Extinguishers

The following type of fire extinguishers has been proposed at strategic locations within the mine, as shown in Table 7.3.

Location	Type of Fire Extinguishers
Electrical Equipment	CO ₂ type, foam type, dry chemical powder type
Fuel Storage Area	CO ₂ type, foam type, dry chemical powder type, Sand bucket
Office Area	Dry chemical type, foam type

Table 7.3 Proposed Fire Extinguishers at Different Locations in P1

7.3.4 Alarm System

On receiving the message of disaster from Site Controller, fire-fighting team, the mine control room attendant will sound siren wailing for 5 minutes. Incident controller will arrange to broadcast disaster message through public address system. On receiving the message of "Emergency Over" from Incident Controller the emergency control room attendant will give "All Clear Signal", by sounding alarm straight for 2 minutes.

The features of alarm system will be explained to one and all to avoid panic or misunderstanding during disaster. In order to prevent or take care of hazard / disasters if any the following control measures have been adopted.

- Fire-fighting and first-aid provisions in the mines office complex and mining area are provided.
- Provisions of all the safety appliances such as safety boot, helmets, goggles, dust masks, ear plugs and ear muffs etc. are made available to the employees and the use of same is strictly adhered to through regular monitoring.
- * Training and refresher courses for all the employees working in hazardous premises.
- Working of mine, as per approved plans and regularly updating the mine plans.
- Cleaning of mine faces is regularly done.
- Checking and regular maintenance of garland drains and earthen bunds to avoid any inflow of surface water in the mine pit.
- Provision of high-capacity standby pumps with generator sets with enough quantity of diesel for emergency pumping especially during monsoon.
- Regular maintenance and testing of all mining equipment were carried out as per manufacturer's guidelines.

7.4 CUMULATIVE IMPACT STUDY

The Cumulative Impact is mainly anticipated due to drilling & blasting and excavation and transportation activities in all the quarries within the cluster and major impact anticipated is on Air & Noise Environment and Ground Vibrations due to blasting. For this cumulative study, 4 proposed projects, known as P1, P2, P3 and P4 are taken into consideration. The details of P1 have been given in Table 1.2 and the details of P2, P3, P4 is given in the Table 7.4, 7.5,7.6.

Name of the Quarry	Tmt.M.Maliga Rough Stone Quarry			
Type of Land	Government Land			
Extent	3.70.0 На			
S.F.No		401 (I	Part)	
Toposheet No		57 L/03 &	57 L/04	
Location of Project Site	12°14'5	3.30500"N to	12°15'00.92	683"N
Location of Project Site	78°10'2	20.33495"E to	78°10'27.16	153"E
Highest Elevation		480 m A	AMSL	
	Pit	Length	Width	Depth
	Level	(m)	(m)	(m)
	Ι	64	75	4 AGL
Existing Pit Dimensions	II	55	35	1 AGL
	III	130	120	3 BGL
	IV	45	45	5 BGL
Ultimate depth of Mining		54 m BGL		
Geological Resources	Rough Stone in m ³			
Geological Resources	1730944			
Mineable Reserves	Rough Stone in m ³			
willeable Reserves	755480			
Proposed reserves for five years	Rough Stone in m ³			
rioposed reserves for rive years	755480			
Method of Mining	Open-Cast Semi Mechanized mining			
Topography	Flat Topography			

Table 7.4 Salient Features of the Proposed Project 'P2'

	Jack Hammer	3	
Machinery proposed	Compressor	1	
Wideliniery proposed	Tipper	6	
	Excavator	1	
	The quarrying operation is proposed to c	arried out by	
Blasting Method	open cost, using jack hammer drilling followed by		
Diasting Method	manual breaking will be adopted to release the rough		
	stone and nonel blasting is proposed in this lease area.		
Proposed Manpower Deployment	20 Nos		
Project Cost	Rs.1,56,07,100		
CER Cost	Rs.5,00,000		
Proposed Water Requirement	3 KLD		

 Table 7.5 Salient Features of the Proposed Project 'P3'

Name of the Quarry	Thiru. M.G. Sekar- Rough stone and Gravel Quarry.		
Toposheet No	57-L/04		
Extent	2.41.0 ha		
Lattitude	10°58'43.00" N to 10°58'50.22" N		
Longitude	77°55'27.40" E to 77°55'32.32	"Е	
Highest Elevation	485 m AMSL		
Ultimate depth of Mining as for Tor	35 m BGL		
Geological Resources	Rough Stone in m ³	Gravel in m ³	
	760590	48178	
Mineable Reserves	Rough Stone in m ³	Gravel in m ³	
	376173	36104	
Proposed reserve for five years	Rough Stone in m ³	Gravel in m ³	
	376173	36104	
Method of Mining	Opencast Mechanized Mining Method		
Topography	Plain area		
Ultimate Pit Dimension as for	73m (L) x 140m (W) x 35m (D)		
ToR			
Machinery proposed	Jack Hammer	3 Nos	

	Compressor	1 Nos	
	Hydrualic Excavator	1 Nos	
	Tippers	4 Nos	
Blasting Method	Controlled Blasting Method by shot hole drilling and small diameter of 25mm slurry explosive are proposed to be used for shattering and heaving effect for removal and winning of Rough Stone. No deep hole drilling is proposed.		
Proposed Manpower Deployment	13 Nos	5	
Project Cost	Rs.51,33,0	00 /-	
CER Cost	Rs.5,00,000/-		
Proposed Water Requirement	2.5 KLD		

 Table 7.6 Salient Features of the Proposed Project 'P4'

Name of the Quarry	Thiru. M.G.Sekar- Rough stone and Gravel Quarry.		
Extent	0.66.0 ha		
Toposheet No	57-L/04		
Lattitude	12°14'49.37" N to 1	2°14'52.63" N	
Longitude	78°10'52.49" E to 7	8°10'56.12" E	
Highest Elevation	485 AS	ML	
Ultimate depth of Mining as for Tor	25 m BC	GL .	
Geological Resources	Rough Stone in m ³	Gravel in m ³	
Geological Resources	147314	7344	
Mineable Reserves	Rough Stone in m ³	Gravel in m ³	
	36030	5724	
Proposed reserve for five years	Rough Stone in m ³	Gravel in m ³	
	36030	5724	
Ultimate Pit Dimension as for	66m (L) x 49m (W) x 25m (D)		
ToR			
Method of Mining	Opencast Mechanized Mining Method		
Topography	Plain area		
Machinery proposed	Jack Hammer	3 Nos	

	Compressor	1 Nos	
	Hydrualic Excavator	1 Nos	
	Tippers	2 Nos	
	Controlled Blasting Method b	y shot hole drilling and	
	small diameter of 25mm slurry	v explosive are proposed	
Blasting Method	to be used for shattering and heaving effect for removal		
	and winning of Rough Stone.	No deep hole drilling is	
	proposed.		
Proposed Manpower Deployment	11 Nos		
Project Cost	Rs.45,29,000 /-		
CER Cost	Rs.5,00,000/-		
Proposed Water Requirement	2.0 KLD		

7.4.1 Air Environment

As the production of rough stone and gravel plays a vital role in affecting the air environment. The data on the cumulative production resulting from the proposed project have been given in Tables 7.7 and 7.8.

Proposed Production Details						
Quarry	5 Years in m ³	Per Year in m ³	Per Day in m ³	Number of Lorry Load Per Day		
P1	1743305	348661	1291	215		
P2	1730944	346189	1282	214		
P3	376173	75235	279	46		
P4	36030	7206	27	4		
Grand Total	3886452	777291	2879	479		

 Table 7.8 Cumulative Production Load of Gravel

Quarry	Production for 1 Year (m ³)	Yearly Production (m ³)	Daily Production (m ³)	Number of Lorry Loads Per Day
P1				
P2				
P3	36104	7221	27	4
P4	5724	1144	4	1
Grand Total	41828	8365	31	5

The cumulative study shows that the overall production of rough stone from the quarry is 2879 m³ per day with a capacity of 479 trips of rough stone per day and that production of gravel from the proposed quarry is 31 m³ per day accounting for 5 trips/day.

7.4.1.1 Cumulative Impact of Air Pollutants

The results on the cumulative impact of the 4 proposed projects on air environment of the cluster have been provided in Table 7.9. The cumulative values resulting from the 4 projects for each pollutant do not exceed the permissible limits set by CPCB.

	Baseline Incremental Values (µg/m³)				Cumulative	
Pollutants	Data (µg/m ³)	P1	P2	Р3	P4	Value (µg/m ³)
PM _{2.5}	17.9	6.08	9.6	4.84	3.85	42.27
PM ₁₀	36.3	12.9	15.0	11.66	8.46	84.32
SO ₂	8.0	5.67	7.78	4.43	3.32	29.2
NO _x	14.7	4.68	7.05	3.44	3.28	33.15

 Table 7.9 Cumulative Impact Results from the 4 proposed projects

7.4.2 Noise Environment

Noise pollution is mainly due to operation like drilling & blasting and plying of trucks & HEMM. Cumulative Noise modelling has been carried out considering blasting and compressor operation (drilling) and transportation activities. Predictions have been carried out to compute the noise level at various distances around the different quarries within the 500 m radius.

Table.7.10 Cumulative Impact of Noise from 4 Proposed Quarries onKuppangari Habitation

	1				1	
Location ID	Distance (m)	Direction	Background Value (Day) dB(A)	Incremental Value dB(A)	Total Predicted dB(A)	Residential Area Standards dB(A)
Habitation Near P1	450	NE	45.8	44.10	48.04	
Habitation Near P2	430	SSE	45.8	44.49	48.20	
Habitation Near P3	690	S	45.8	40.38	46.90	55
Habitation Near P4	800	SSW	45.8	39.10	46.64	
Cum	ulative N	Noise (dB (A))		53.52	

Source: Lab Monitoring Data

The cumulative analysis of noise due to 4 proposed projects shows that habitation of Kuppangari will receive about 53.52dB(A) respectively. The cumulative results for all the villages in consideration do not exceed the limit set by CPCB for residential areas for day time.

Ground Vibrations

Cumulative results of ground vibrations due to mining activities in the all the 4 mines have been shown in Table 7.11.

Location ID	Maximum Charge in kgs	Nearest Habitation in m	PPV in mm/s			
P1	12.4	450	0.213			
P2	53.8	430	0.741			
P3	26.8	690	0.199			
P4	2.5	800	0.024			
	1.177					

Table 7.11 Cumulative Effect of Ground Vibrations Resulting from 4 Mines onHabitation of Kuppangari

Results from the above tables 7.10 indicate that the cumulative PPV value of each habitation is well below the peak particle velocity of 8 mm/s as per Directorate General of Mines Safety for safe level criteria through Circular No. 7 dated 29/8/1997.

7.4.3 Socio Economic Environment

Socio Economic benefits of the proposed project were calculated and the results have been shown in Table 7.12 the project together will contribute Rs. 20,00,000/-towards CER fund.

Location ID	Project Cost	CER Cost @
P1	Rs.1,04,94,000	Rs. 5,00,000
P2	Rs.1,56,07,100	Rs. 5,00,000
P3	Rs. 51,33,000	Rs. 5,00,000
P4	Rs. 45,29,000	Rs. 5,00,000
Grand Total	Rs. 3,57,63,100	Rs. 20,00,000

 Table 7.12 Socio Economic Benefits from 4 Mines

 Table 7.13 Employment Benefits from 4 Mines

Location ID	Employment
P1	17
P2	20
P3	13
P4	11
Grand Total	61

A total of 61 people will get employment due to 4 proposed mines in cluster

7.4.4 Ecological Environment

	Table 7.14 Greenbelt Development Benefits from Mine			
Code	Number of Trees proposed	Area to be covered (m ²)	No. of Trees expected to be grown @ 80% survival rate	Species recommended
P1	1013	9112	810	
P2	1850	16650	1480	Azadirachta indica, Albizia
P3	1205	10845	964	lebbeck, Delonix regia,
P4	330	2970	264	Techtona grandis, etc.,
Total	4398	39577	3518	

Table 7.14 Greenbelt Development Benefits from Mine

Cumulative studies show that the proposed project will plant about 4398 native tree species like *Azadirachta indica*, *Albizia lebbeck*, *Delonix regia*, *Techtona grandis*, etc inside and outside the lease area. It is expected that 80 % of trees, i.e., 3518 trees will survive in this green belt development program.

7.5 PLASTIC WASTE MANAGEMENT PLAN FOR PROPOSED PROJECT

All the Project Proponent shall comply with Tamil Nadu Government Order (Ms) No. 84 Environment and Forest (EC.2) Department Dated: 25.06.2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) Act, 1986.

7.5.1 Objective

- ✤ To investigate the actual supply chain network of plastic waste.
- To identify and propose a sustainable plastic waste management by installing bins for collection of recyclables with all the plastic waste
- Preparation of a system design layout, and necessary modalities for implementation and monitoring.

A detailed action plan to manage plastic waste has been provided in Table 7.14.

S. No.	Activity	Responsibility
1	Framing of Layout Design by incorporating provision of the	Mines Manager
	Rules, user fee to be charged from waste generators for plastic	
	waste management, penalties/fines for littering, burning plastic	
	waste or committing any other acts of public nuisance.	
2	Enforcing waste generators to practice segregation of bio-	Mines Manager
	degradable, recyclable and domestic hazardous waste.	

Table 7.15 Action Plan to Manage Plastic Waste

3	Collection of plastic waste.	Mines Foreman
4	Setting up of Material Recovery Facilities.	Mines Manager
5	Segregation of Recyclable and Non-Recyclable plastic waste at	Mines Foreman
	Material Recovery Facilities.	
6	Channelization of Recyclable Plastic Waste to registered recyclers.	Mines Foreman
7	Channelization of Non-Recyclable Plastic Waste for use either in Cement kilns, in Road Construction.	Mines Foreman
8	Creating awareness among all the stakeholders about their responsibility.	Mines Manager
9	Surprise checking's of littering, open burning of plastic waste or committing any other acts of public nuisance.	Mine Owner

Source: Proposed by FAEs and EC

7.6 POST COVID HEALTH MANAGEMENT PLAN FOR PROPOSED PROJECT

COVID – 19 diseases caused by SARS-CoV-2 Coronavirus is relatively a new disease, with fresh information being known on a dynamic basis about the natural history of the disease, especially in terms of post-recovery events.

After acute COVID-19 illness, recovered patients may continue to report wide variety of signs and symptoms including fatigue, body ache, cough, sore throat, difficulty in breathing, etc. As of now there is limited evidence of post-COVID sequalae and further research is required and is being actively pursued. A holistic approach is required for follow up care and well-being of all post COVID recovering patients.

7.6.1 Post-COVID Follow up Protocol

- Continue COVID appropriate behaviour (use of mask, hand & respiratory hygiene, physical distancing).
- Drink adequate amount of warm water (if not contra-indicated).
- ✤ Make sure your workplaces are clean and hygienic
- Surfaces (e.g., desks and tables) and objects (e.g., telephones, helmet) need to be wiped with disinfectant regularly
- Put sanitizing hand rub dispensers in prominent places around the workplace. Make sure these dispensers are regularly refilled
- ✤ Display posters promoting hand-washing.
- Make sure that staff, contractors and customers have access to places where they can wash their hands with soap and water.
- Display posters promoting respiratory hygiene.

- Brief your employees, contractors and customers that if COVID-19 starts spreading in your community anyone with even a mild cough or low-grade fever (37.3°C or more) need to stay at home. They should also stay home (or work from home) if they have had to take simple medications, such as paracetamol/acetaminophen, ibuprofen or aspirin, which may mask symptoms of infection.
- Keep communicating and promoting the message that people need to stay at home even if they have just mild symptoms of COVID-19.
- Consider whether a face-to-face meeting or event is needed. Could it be replaced by a teleconference or online event?
- Could the meeting or event be scaled down so that fewer people attend?
- Pre-order sufficient supplies and materials, including tissues and hand sanitizer for all employees. Have surgical masks available to offer anyone who develops respiratory symptoms.
- It is also suggested by the Ministry of AYUSH that the use of Chyawanprash in the morning (1 teaspoonful) with Luke warm water/milk is highly recommended (under the direction of Registered Ayurveda physician) as in the clinical practice Chyawanprash is believed to be effective in post-recovery period.
- If there is persistent dry cough / sore throat, do saline gargles and take steam inhalation. The addition of herbs/spices for gargling/steam inhalation. Cough medications, should be taken on advice of medical doctor or qualified practitioner of Ayush.
- ♦ Look for early warning signs like high grade fever, breathlessness, Sp $0_2 < 95\%$, unexplained chest pain, new onset of confusion, focal weakness.
- ✤ Avoid smoking and consumption of alcohol.
- Communicate to your employees and contractors about the plan and make sure they are aware of what they need to do – or not do – under the plan. Emphasize key points such as the importance of staying away from work even if they have only mild symptoms or have had to take simple medications (e.g., paracetamol, ibuprofen) which may mask the symptoms.
- The plan should address how to keep your business running even if a significant number of employees, contractors and suppliers cannot come to your place of business - either due to local restrictions on travel or due to illness.

CHAPTER VIII PROJECT BENEFITS

8.0 GENERAL

The proposed project at Kalappanahalli Village aims to produce 174305 m^3 of rough stone over a period of 5 years. This will enhance the socio-economic activities in the adjoining areas and will result in the following benefits:

- ✤ Increase in Employment Potential
- Improvement in Socio-Economic Welfare
- Improvement in Physical Infrastructure
- Improvement in Social infrastructure

8.1 EMPLOYMENT POTENTIAL

It is proposed to provide employment to about 17 persons for carrying out mining operations and give preference to the local people in providing employment in this cluster. In addition, there will be an opportunity for indirect employment to the form of contractual jobs, business opportunities, and service facilities etc. Because of this, the economic status of the local people will improve.

8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED

The impact of mining activity in the area will be more positive on the socio-economic environment in the immediate project impact area. The employment opportunities both direct and indirect will contribute to enhanced money incomes to job seekers with minimal skill sets especially among the local communities.

8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE

The proposed quarry project is located in Kalappanahalli Village, Karimangalam Taluk, Dharmapuri District, and Tamilnadu State. The area has already well-established communications roads and other facilities. The following physical infrastructure facilities will further improve due to proposed project.

- Road transport facilities
- Communications
- Medical, Educational and social benefits will be made available to the nearby civilian population in addition to the workmen employed in the mine.

8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE

Employment is expected during civil construction period, in trade, garbage lifting, sanitation and other ancillary services, Employment in these sectors will be primarily temporary or contractual and involvement of unskilled labour will be more. A major part of the labour force will be mainly from local villagers who are expected to engage themselves both in agriculture and mining activities. This will enhance their income and lead to overall economic growth of the area.

8.5 OTHER TANGIBLE BENEFITS

The proposed mine is likely to have other tangible benefits as given below

- Indirect employment opportunities to local people in contractual works like construction of infrastructural facilities, transportation, sanitation for supply of goods and services to the mine and other community services
- ✤ Additional housing demand for rental accommodation will increase
- Cultural, recreation and aesthetic facilities will also improve
- Improvement in communication, transport, education, community development and medical facilities and overall change in employment and income opportunity
- The State Government will also benefit directly from the proposed mine, through increased revenue from royalties, cess, DMF, GST etc.,

8.6 CORPORATE SOCIAL RESPONSIBILITY

Individual project proponents will take responsibility to develop awareness among all levels of their staff about CSR activities and the integration of social processes with business processes. Those involved with the undertaking of CSR activities will be provided with adequate training and re-orientation.

Under this programme, the project proponents will take-up following programmes for social and economic development of villages within 5 km of the project site. For this purpose, separate budget will be provided every year. For finalization of these schemes, proponent will interact with LSG. The schemes will be selected from the following broad areas –

- Health Services
- Social Development
- ✤ Infrastructure Development
- Education & Sports
- Self-Employment
- CSR Cost Estimation

CSR activities mainly contributing to education, health, training of women self-help groups and infrastructure etc., will be taken up in the Kalappanahalli Village. CSR budget is allocated as 2.5% of the profit.

8.7 CORPORATE ENVIRONMENT RESPONSIBILITY

Allocation for Corporate Environment Responsibility (CER) shall be made as per Government of India, MoEF & CC Office Memorandum F.No.22-65/2017-IA.III dated 01.05.2018. As per para 6 (II) of the office memorandum, being a green field project & capital investment is ≤ 100 crores, the proposed project shall contribute 2% of capital investment towards CER as per directions of EAC/SEAC. However, the SEAC has suggested to allocate CER fund on the basis of the extent of the project. Therefore, Rs. 5,00,000 is allocated for CER. The proposed utilization of the budget of CER activities is given in Table 8.1.

S. No.	Activity	Budget (Rs.in Lakh)
1	The applicant Indents to involve in corporate environment responsibilities (CER) activities such as renovation of existing toilet, plantation within the school premises, donating environment related books to the nearby school library, etc.	Rs.5,00,000
	Total	Rs.5,00,000

Table 8.1	CER	Action	Plan
-----------	-----	--------	------

Source: Field survey conducted by FAE in consultation with project proponent

8.8 SUMMARY OF PROJECT BENEFITS

The project would pay about Rs. 1,00,80,680 to the state government through various ways, as provided in Table 8.2.

Particulars	Budget for Rough Stone
	(Rs.)
CER	5,00,000
Seigniorage @ Rs.90/m ³ of Rough stone	79,83,900
District Mineral Foundation Tax @ 10% of Seigniorage	7,98,390
Green Tax @ 10% of Seigniorage	7,98,390
Total	1,00,80,680

 Table 8.2 Project Benefits to the State Government

CHAPTER IX

ENVIRONMENTAL COST BENEFIT ANALYSIS

Not Applicable, Since Environmental Cost Benefit Analysis not recommended at the Scoping stage.

CHAPTER X

ENVIRONMENTAL MANAGEMENT PLAN

10.0 GENERAL

Environment Management Plan (EMP) aims at the preservation of ecological system by considering in-built pollution abatement facilities at the proposed site. Good practices of environmental management plan will ensure to keep all the environmental parameters of the project in respect of ambient air quality, water quality, socio economic improvement standards. Mitigation measures at the source level and an overall environment management plan at the study area are elicited so as to improve the supportive capacity of the receiving bodies. The EMP presented in this chapter discusses the administrative aspects ensuring that mitigative measures are implemented and their effectiveness monitored after approval of the EIA.

10.1 ENVIRONMENTAL POLICY

The project proponent is committed to conduct all its operations and activities in an environmentally responsible manner and to continually improve environmental performance. The Proponent **Thiru.A.Sasimohan** will:

- Meet the requirements of all laws, acts, regulations, and standards relevant to its operations and activities.
- Implement a program to train employees in general environmental issues and individual workplace environmental responsibilities.
- ✤ Allocate necessary resources to ensure the implementation of the environmental policy.
- Ensure that an effective closure strategy is in place at all stages of project development and that progressive reclamation is undertaken as early as possible to reduce potential long-term environmental and community impacts.
- Implement monitoring programs to provide early warning of any deficiency or unanticipated performance in environmental safeguards.
- Conduct periodic reviews to verify environmental performance and to continuously strive towards improvement.

10.1.1 Description of the Administration and Technical Setup

The environment monitoring cell discussed under chapter VI will ensure effective implementation of environment management plan and to ensure compliance of environmental statutory guidelines through mine management level of each proposed quarry. The said team will be responsible for:

- Monitoring of the water/ waste water quality, air quality and solid waste generated.
- ✤ Analysis of the water and air samples collected through external laboratory.

- Implementation and monitoring of the pollution control and protective measures/ devices which shall include financial estimation, ordering, installation of air pollution control equipment, waste water treatment plant, etc.
- Co-ordination of the environment related activities within the project as well as with outside agencies.
- Collection of health statistics of the workers and population of the surrounding villages.
- ✤ Green belt development.
- ✤ Monitoring the progress of implementation of the environmental monitoring program.
- Compliance to statutory provisions, norms of State Pollution Control Board, Ministry of Environment and Forests and the conditions of the environmental clearance as well as the consents to establish and consents to operate.

10.2 LAND ENVIRONMENT MANAGEMENT

Landscape of the area will be changed due to the quarrying operation, restoration of the land by converting the quarry pit into temporary reservoir and the remaining part of the area (unutilized areas, infrastructure, haul roads) will be utilized for greenbelt development. Aesthetic of the environment will not be affected. There is no major vegetation in the project area. During the course of quarrying operation and after completion of the quarrying operation thick plantation will be developed under greenbelt development program. A detailed land environment management plan has been provided in Table 10.1.

Control	Responsibility
Design vehicle wash-down areas so that all runoff water is captured and passed through oil water separators and sediment catchment devices.	Mines Manager
Refueling to be undertaken in a safe location away from vehicle movement pathways & 100m away of any watercourse. Refueling activity to be under visual observation at all times. Drainage of refueling areas to sumps with oil/water separation.	Mine Foreman & Mining Mate
Soil and groundwater testing as required following up a particular incident of contamination.	Mines Manager
At conceptual stage, the mining pits will be converted into Rain Water Harvesting. Remaining area will be converted into greenbelt area.	Mines Manager
No external dumping i.e., outside the project area.	Mine Foreman

Table 10.1 Proposed Controls for Land Environment

Garland drains with catch pits / settlement traps to be provided all around	Mines Manager	
the project area to prevent run off affecting the surrounding lands.		
The periphery of project area will be planted with thick plantation to	Mines Manager	
arrest the fugitive dust, which will also act as acoustic barrier.		

Source: Proposed by FAEs & EIA Coordinator

10.3 SOIL MANAGEMENT

There is no overburden or waste anticipated from proposed project.

Table 10.2 Proposed Controls for Soil Management

Control	Responsibility
Surface run-off from the project boundary via garland drains will	Mine Foreman &
be diverted to the mine pits	Mining Mate
Design haul roads and other access roads with drainage systems to minimize concentration of flow and erosion risk	Mines Manager
Empty sediment from sediment traps Maintain, repair or upgrade garland drain system	Mines Manager
Test soils for pH, EC, chloride, size & water holding capacity	Manager Mines

Source: Proposed by FAE's & EIA Coordinator

10.4 WATER MANAGEMENT

In the proposed quarrying project, no process is involved for the effluent generation, only oil & grease from the machinery wash and domestic sewage from mines office is anticipated. The quarrying operation is proposed up to a depth of 37 m. The water table in the area is at 80 m below ground level. Hence, the proposed project will not intersect the ground water table during entire quarry period. A detailed water environment management plan has been provided in Table 10.3.

Control	Responsibility
To maximize the reuse of pit water for water supply	Mines Foreman
Temporary and permanent garland drain will be constructed to contain the catchments of the mining area and to divert runoff from undisturbed areas through the mining areas	Mines Manager
Natural drains/nallahs/brooklets outside the project area should not be disturbed at any point of mining operations	Mines Manager
Ensure there is no process effluent generation or discharge from the project area into water bodies	Mines Foreman

 Table 10.3 Proposed Controls for Water Environment

Domestic sewage generated from the project area will be disposed in septic tank and soak pit system	Mines Foreman
Monthly or after rainfall, inspection for performance of water management structures and systems	Mines Manager
Conduct ground water and surface water monitoring for parameters specified by CPCB	Manager Mines

Source: Proposed by FAEs & EIA Coordinator

10.5 AIR QUALITY MANAGEMENT

The proposed quarrying activity would result in the increase of particulate matter concentrations in the ambient air. Daily water sprinkling on the haul roads, approach roads in the vicinity will be undertaken and will be continued as there is possibility for dust generation due to truck mobility. It will be ensured that vehicles are properly maintained to comply with exhaust emission requirements. A detailed ambient air environment management plan is provided in Table 10.4.

Control	Responsibility
Generation of dust during excavation is minimized by daily (twice)	
water sprinkling on working face and daily (twice) water sprinkling on	Mines Manager
haul road	
Wet drilling procedure /drills with dust extractor system to control dust	Mines Manager
generation during drilling at source itself is implemented	Willies Wallager
Maintenance as per operator manual of the equipment and machinery	Mines Manager
in the mines to minimizing air pollution	Willies Wallager
Ambient air quality Monitoring carried out in the project area and in	
surrounding villages to access the impact due to the mining activities	Mines Manager
and the efficacy of the adopted air pollution control measures	
Provision of dust mask to all workers	Mines Manager
Greenbelt development all along the periphery of the project area	Mines Manager

 Table 10.4 Proposed Controls for Air Environment

Source: Proposed by FAEs & EIA Coordinator

10.6 NOISE POLLUTION CONTROL

There will be intermittent noise levels due to vehicular movement, trucks loading, drilling and blasting and cutting activities. No mining activities are planned during night time. A detailed noise environment management plan has been provided in Table 10.5.

Control	Responsibility
Development of thick greenbelt all along the buffer zone (7.5 meters) of	Mines Manager
the project area to attenuate the noise and the same will be maintained	wintes wianagei
Preventive maintenance of mining machinery and replacement of worn-	Mines Foreman
out accessories to control noise generation	Willes Foreman
Deployment of mining equipment with an inbuilt mechanism to reduce	Mines Manager
noise	winnes wianager
Provision of earmuff / ear plugs to workers working in noise prone zones	Mining Mate
in the mines	Winning Wrate
Provision of effective silencers for mining machinery and transport	Mines Manager
vehicles	Willes Wallager
Provision of sound proof AC operator cabins to HEMM	Mines Manager
Sharp drill bits are used to minimize noise from drilling	Mines Foreman
Controlled blasting technologies are adopted by using delay detonators to	Mines Manager
minimize noise from blasting	winnes wianager
Annual ambient noise level monitoring is carried out in the project area	
and in surrounding villages to access the impact due to the mining	
activities and the efficacy of the adopted noise control measures.	Mines Manager
Additional noise control measures will be adopted if required as per the	
observations during monitoring	
Reduce maximum instantaneous charge using delays while blasting	Mining Mate
Change the burden and spacing by altering the drilling pattern and/or delay	Mines Manager
layout, or altering the hole inclination	wines wanager
Undertake noise or vibration monitoring	Mines Manager

Table 10.5 Proposed Controls for Noise Environment

Source: Proposed by FAEs & EIA Coordinator

10.7 GROUND VIBRATION AND FLY ROCK CONTROL

The rough stone quarry operation creates vibration due to the blasting and movement of heavy earth moving machineries, fly rocks due to the blasting. A detailed ground vibration management plan has been provided in Table 10.6.

Table 10.6 Proposed Con	trols for Ground	Vibrations	& Fly Rock
		1 = 10 = 000 = 0 == 10	

Responsibility
Mines Manager
Mines Manager
whiles whatager
Mines Manager
Manager Mines
Wanager Wines
Manager Mines
Mining Mate
Mines Manager
Mines Foreman
wines i oreman

Source: Proposed by FAEs & EIA Coordinator

10.8 BIOLOGICAL ENVIRONMENT MANAGEMENT

The proponent will take all necessary steps to avoid the impact on the ecology of the area by adopting suitable management measures in the planning and implementation stage. During mining, thick plantation will be carried out around the project periphery, on safety barrier zone, on top benches of quarried out area etc. Following control measures are proposed for its management and will be the responsibility of the mines manager.

- Greenbelt development all along the safety barrier of the project area.
- It is also proposed to implement the greenbelt development program and post plantation status will be regularly checked for every season.
- The main attributes that retard the survival of sapling is fugitive dust, this fugitive dust can be controlled by water sprinkling on the haul roads and installing a sprinkler unit near the newly planted area.
- Year wise greenbelt development will be recorded and monitored based on the area of plantation, period of plantation, type of plantation, spacing between the plants, type of manuring and fertilizers and its periods, lopping period, interval of watering, survival rate and density of plantation.

The ultimate reclamation planned leaves a congenial environment for development of flora & immigration of small fauna through green belt and water reservoir. The green belt and water reservoir developed within the Project at the end of mine life will attract the birds and animals towards the project area in the post mining period.

10.8.1 Green Belt Development Plan

The main objectives of the greenbelt development plan are to:

- Combat the dispersal of dust in the adjoining areas.
- Protect the erosion of the soil and conserve moisture of the soil.
- ✤ Increase the rate of recharge of ground water.
- Restore the ecology of the area, restore aesthetic beauty of the locality and meet the requirement of fodder, fuel and timber of the local community. The proposed green belt development plan is given in Table 10.7.

	No. of trees proposed	No. of trees expected to	Area to be
	for plantation	survive @ 80%	covered(m ²)
Plantation in the construction phase (3 months)	Number of plants inside the mine lease area		
	405	324	3645
	Number of plants outside the mine lease area		
	608	486	5468
Total	1013	810	9112

Table 10.7 Proposed Greenbelt Development Plan

Source: Proposed by FAEs & EIA Coordinator

About 1013 saplings will be planted in and around the lease area with the survival rate of 80%. A well-planned green belt of trees with long canopy leaves shall be developed with dense plantations around the boundary and along the haul roads to prevent air, dust noise propagation to undesired places and efforts will be taken for the enhancement of survival rate.

10.9 OCCUPATIONAL SAFETY & HEALTH MANAGEMENT

Occupational safety and health are very closely related to productivity and good employer-employee relationship. The main factors of occupational health impact in quarries are fugitive dust and noise. Safety of employees during quarrying operation and maintenance of mining equipment will be taken care as per Mines Act 1952 and Rule 29 of Mines Rules 1955. To avoid any adverse effect on the health of workers due to dust, noise and vibration sufficient measures have been provided.

10.9.1 Medical Surveillance and Examinations

- Identifying workers with conditions that may be aggravated by exposure to dust & noise and establishing baseline measures for determining changes in health.
- Evaluating the effect of noise on workers.
- Enabling corrective actions to be taken when necessary.
- Providing health education.

The health status of workers in the mine shall be regularly monitored under an occupational surveillance program. Under this program, all the employees are subjected to a detail medical examination at the time of employment. The medical examination covers the following tests under mines act 1952.

- ✤ General Physical Examination and Blood Pressure.
- ✤ X-ray Chest and ECG.
- Sputum Test, Sperm Count Test.
- Detailed Routine Blood and Urine Examination.

The medical histories of all employees will be maintained in a standard format annually. Thereafter, the employees will be subject to medical examination annually. The below tests (Table 10.8) keep upgrading the database of medical history of the employees.

Activities	1 st	2 nd	3 rd	4 th	5 th		
	Year	Year	Year	Year	Year		
Initial Medical Examination (Min	ne Worker	rs)	1	L	1		
Physical Check-up							
Psychological Test							
Audiometric Test							
Respiratory Test							
Periodical Medical Examination (Mine Workers)							
Physical Check – up							
Audiometric Test							
Eye Check – up							
Respiratory Test							
Medical Camp (Mine Workers							
& Nearby Villagers)							
Training (Mine Workers)							
	Initial Medical Examination (Min Physical Check-up Psychological Test Audiometric Test Respiratory Test Periodical Medical Examination Physical Check – up Audiometric Test Eye Check – up Respiratory Test Medical Camp (Mine Workers & Nearby Villagers)	YearInitial Medical Examination (Mire WorkerPhysical Check-upPsychological TestAudiometric TestRespiratory TestPhysical Check – upPhysical Check – upAudiometric TestPhysical Check – upAudiometric TestSepiratory TestPhysical Check – upAudiometric TestEye Check – upRespiratory TestMedical Camp (Mine Workers & Nearby Villagers)	Initial Medical Examination (Mine Workers)Physical Check-upIPsychological TestIAudiometric TestIRespiratory TestIPhysical Check – upIPhysical Check – upIAudiometric TestIPeriodical Medical Examination (Mine Werkers)Physical Check – upIAudiometric TestISepiratory TestIPhysical Check – upIAudiometric TestISepiratory TestIMedical Camp (Mine WorkersI& Nearby Villagers)I	NumberProblemProblemInitial Medical Examination (Mire Workers)Physical Check-upPhysical Check-upPsychological TestAudiometric TestRespiratory TestPeriodical Medical Examination (Mine Workers)Physical Check – upAudiometric TestImage: Specific Check – upImage: S	YearYearYearYearInitial Medical Examination (Mine Workers)Physical Check-upIIIPsychological TestIIIAudiometric TestIIIIRespiratory TestIIIIPhysical Check – upIIIIAudiometric TestIIIIPeriodical Medical Examination (Mine Workers)IIIPhysical Check – upIIIIAudiometric TestIIIIEye Check – upIIIIRespiratory TestIIIIMedical Camp (Mine WorkersIIIIMedical Camp (Mine WorkersIIII<		

 Table 10.8 Medical Examination Schedule

Medical Follow ups: Work force will be divided into three targeted groups age wise as follows:

Age Group	PME as per Mines Rules 1955	Special Examination			
Less than 25 years	Once in a Three Years	In case of emergencies			
Between 25 to 40 Years	Once in a Three Years	In case of emergencies			
Above 40 YearsOnce in a Three YearsIn case of emergencies					

preventive aspects.

10.9.2 Proposed Occupational Health and Safety Measures

- The mine site will have adequate drinking water supply so that workers do not get dehydrated.
- ✤ Lightweight and loose-fitting clothes having light color will be preferred to wear.
- Noise exposure measurements will be taken to determine the need for noise control strategies.
- The personal protective equipment will be provided for mine workers.
- Supervisor will be instructed for reporting any problems with hearing protectors or noise control equipment.
- ✤ At noisy working activity, exposure time will be minimized.
- Dust generating sources will be identified and proper control measure will be adopted.
- Periodic medical examinations will be provided for all workers.
- Strict observance of the provisions of DGMS Acts, Rules and Regulations in respect of safety both by management and the workers.
- The width of road will be maintained more than thrice the width of the vehicle. A code of traffic rules will be implemented.
- In respect of contract work, safety code for contractors and workers will be implemented. They will be allowed to work under strict supervision of statutory person/officials only after they will impart training at vocational training centers. All personal protective equipment's will be provided to them.
- A safety committee meeting every month will be organized to discuss the safety of the mines and the persons employed.
- Celebration of annual mines safety week and environmental week in order to develop safety awareness and harmony amongst employees and co quarry owners.

Figure 10.1 Personal Protective Equipment to the Mine Workers 10.9.3 Health and Safety Training Program

The Proponents will provide special induction program along with machinery manufacturers for the operators and co-operators to run and maintain the machinery effectively and efficiently. The training program for the supervisors and office staffs will be arranged in the Group Vocational Training Centers in the State and engage Environmental Consultants to provide periodical training to all the employees to carry out the mining operation in and eco-friendly manner, as shown in Table 10.9.

Course	Personnel	Frequency	Duration	Instruction
New-Employee Training	All new employees exposed to mine hazards	Once	One week	 ✓ Employee rights, ✓ Supervisor responsibilities ✓ Self-rescue ✓ Respiratory devices ✓ Transportation controls ✓ Communication systems ✓ Escape and emergency evacuation ✓ Ground control hazards ✓ Occupational health hazards

Table 10.9 List of Periodical Trainings Proposed for Employees

				 ✓ Electrical hazards and First aid Explosives
Task Training Like Drilling, Blasting, Stemming, safety, Slope stability, Dewatering, Haul Road maintenance.	Employees assigned to new work tasks	Before new Assignments	Variable	 ✓ Task-specific health &safety procedures and SOP for various mining activity ✓ Supervised practice in assigned work tasks.
Refresher Training	All employees who received new-hire training	Yearly	One week	 ✓ Required health and safety standards ✓ Transportation controls ✓ Communication systems ✓ Escape ways, emergency evacuations ✓ Fire warning ✓ Ground control hazards ✓ First aid on electrical hazards ✓ Accident prevention ✓ Explosives ✓ Respirator devices
Hazard Training	All employees exposed to mine hazards	Once	Variable	 ✓ Hazard recognition and avoidance ✓ Emergency evacuation procedures ✓ Health standards ✓ Safety rules ✓ Respiratory devices

Source: Proposed by FAEs & EIA Coordinator as per DGMS Norms 10.9.4 Budgetary Provision for Environmental Management

Adequate budgetary provision has been made by the company for execution of Environmental Management Plan. The Table 10.10 gives overall investment on the environmental safeguards and recurring expenditure for successful monitoring and implementation of control measures.

Attribute	Mitigation measures	Provision for Implementation	Capital Cost	Recurring Cost/annum
Air Environment	Compaction, gradation and drainage on both sides	Rental Dozer & drainage construction on haul road @ Rs. 10,000/- per hectare and yearly maintenance @ Rs. 10,000/- per hectare	(Rs.) 20250	(Rs.) 20250
	Fixed Water Sprinkling Arrangements + Water sprinkling by own water tankers	Fixed sprinkler installation and new water tanker cost for capital; and water sprinkling (thrice a day) cost for recurring	800000	50000
	Air quality will be regularly monitored as per norms within ML area & ambient area	Yearly compliance as per CPCB norms	0	50000
	Muffle blasting – To control fly rocks during blasting	Blasting face will be covered with sand bags / steel mesh / old tyres / used conveyor belts	0	5000

Table 10.10 EMP Budget for Proposed Project

	Wet drilling procedure / latest eco-	Dust extractor @ Rs. 25,000/- per unit		
	friendly drill machine with separate	deployed as capital & @ Rs. 2500 per	75000	7500
	dust extractor unit	unit recurring cost for maintenance		
	No overloading of	Manual Monitoring through Security	0	5000
	trucks/tippers/tractors	guard	0	3000
	Stone carrying trucks will be covered	Monitoring if trucks will be covered by		
	by tarpaulin to avoid escape of fines to	tarpaulin	0	10000
	the atmosphere			
	Enforcing speed limits of 20 km/hr	Installation of Speed Governors @ Rs.	20000	0
	within ML area	5000/- per tipper/dumper deployed Monitoring of Exhaust Fumes		-
	Regular monitoring of exhaust fumes		0	5000
	as per RTO norms			
	Regular sweeping and maintenance of	Provision for 2 labours @		
	roads for at least about 200 m from	Rs.10,000/labour (Contractual) / hectare	0	40500
	quarry entrance			
	Installing wheel wash system near exit	Installation + Maintenance +	50000	20000
	gate of quarry	Supervision		
	Total Air Environment			213250
Noise	Source of noise will be transportation	Provision made in Operating Cost	0	0
Environment	vehicles, and HEMM. For this, proper	r tovision made in Operating Cost	U	U

maintenance will be done at regular			
intervals.			
Oiling & greasing of Transport			
vehicles and HEMM at regular interval	Provision made in Operating Cost	0	0
will be done.			
Adequate silencers will be provided in	Provision mode in Onemating Cost	0	0
all the diesel engines of vehicles.	Provision made in Operating Cost	0	0
It will be ensured that all			
transportation vehicles carry a fitness	Provision made in Operating Cost	0	0
certificate.			
Safety tools and implementations that			
are required will be kept adequately	Provision made in OHS part	0	0
near blasting site at the time of	Fiovision made in Oris part	0	0
charging.			
Line Drilling all along the boundary to			
reduce the PPV from blasting activity	Provision made in Operating Cost	0	0
and implementing controlled blasting.			
Proper warning system before blasting	Blowing Whistle by Mining Mote /		
will be adopted and clearance of the	Blowing Whistle by Mining Mate /	0	0
area before blasting will be ensured.	Blaster / Competent Person		

	Provision for Portable blaster shed	Installation of portable blasting shelter	50000	2000
	NONEL Blasting will be practiced to control Ground vibration and fly rocks	Rs. 30/- per 6 tons of blasted material	0	488054
	Total Noise Environr	nent	50000	490054
Water Environment	Water Management	Provision for garland drain @ Rs. 10,000/- per hectare with maintenance of Rs. 5,000/- per annum (2.02.5 ha X 10000)	20250	10125
	Total Water Environ	20250	10125	
Waste	Waste management (Spent Oil, Grease etc.,)	(capital cost, recurring cost for		20000
Management		Installation of dust bins	5000	2000
	Bio toilets will be made available outside mine lease on the land of owner itself	Provision made in Operating Cost	0	0
	Total Waste Manager	30000	22000	

Implementation of EC, Mining Plan & DGMS Condition	Size 6' X 5' with blue background and white letters as mentioned in MoM Appendix II by the SEAC TN	Fixed display board at the quarry entrance as permanent structure	10000	1000
	Total Implementation of EC,	10000	1000	
	Workers will be provided with Personal Protective Equipment	Provision of PPE @ Rs. 4000/- per employee with recurring based on wear and tear (say, @ Rs. 1000/- per employee)	68000	17000
Occupational	Health checkup for workers will be provisioned	IME & PME Health checkup @ Rs. 1000/- per employee	0	17000
Health and Safety	First aid facility will be provided	Provision of 2 Kits per Hectare @ Rs. 2000/-	0	8100
	Mine will have safety precaution signages, boards.	Provision for signages and boards made	10000	2000
	Barbed Wire Fencing to quarry area will be provisioned.	Per Hectare fencing Cost @ Rs. 2,00,000/- with Maintenance of Rs 10,000/- per annum (2.02.5 hectare)	405000	20250

	No parking will be provided on the transport routes. Separate provision on the south side of the hill will be made for vehicles /HEMMs. Flaggers will be deployed for traffic management	Parking area with shelter and flags @ Rs. 50,000/- per hectare project and Rs. 10,000/- as maintenance cost	101250	20250
Installation of CCTV cameras in the mines and mine entrance		Camera 4 Nos, DVR, Monitor with internet facility	30000	5000
	Implementation as per Mining Plan and ensure safe quarry working	Mines Manager (1 st Class / 2 nd Class / Mine Foreman) under regulation 34 / 34 (6) of MMR, 1961 and Mining Mate under regulation 116 of MMR,1961 @ 40,000/- for Manager & @ 25,000/- for Foreman / Mate	0	780000
	Total Occupational Health	and Safety	614250	869600
Development of Green Belt	Green belt development - 500 trees per hectare (200 Inside Lease Area & 300 Outside Lease Area)	Site clearance, preparation of land, digging of pits /trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area and @ 30 per plant maintenance (recurring))"	81000	12150

	Total Seigniorage Fee TOTAL			0 1636404 (Excel. Mine Closure)
	G.O.(Ms)No.23, Dated: 28.09.2021	Section IVA of TNMMCR 1959 (@10% of Seigniorage Fee) (Seigniorage Fee for Roughstone = Rs.90 and for Gravel= Rs.56)	1568745	0
Mine Closure	Closure includes 10% of the amount allotted for Greenbelt development, wire fencing, and garland drainage (Rule 27 in MCDR 2017 for Cat B mines will pay 2 lakhs per hectare or minimum amount of financial assurance of 5 lakhs)			68850
	Total Development of Green Belt			30375
		Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	182250	18225

I st Year	II nd Year	III rd Year	IV th Year	V th Year (including Mine Closure Cost)	Total Recurring Cost	Total EMP Cost
1636404	1718224	1804135	1894342	2057909	9111015	12632760

 Table 10.11 Estimation of Overall EMP Budget after Adjusting 5% Annual Inflation

In order to implement the environmental protection measures, an amount of **Rs.3521745** as capital cost and recurring cost as **Rs.1636404** as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the overall EMP cost for 5 years will be **Rs.12632760** as shown in Table 10.11.

10.10 CONCLUSION

Various aspects of mining activities were considered and related impacts were evaluated. Considering all the possible ways to mitigate the environmental concerns Environmental Management Plan was prepared and fund has been allocated for the same. The EMP is dynamic, flexible and subjected to periodic review. For project where the major environmental impacts are associated, EMP will be under regular review. Senior Management responsible for the project will conduct a review of EMP and its implementation to ensure that the EMP remains effective and appropriate. Thus, the proper steps will be taken to accomplish all the goals mentioned in the EMP and the project will bring the positive impact in the study area.

CHAPTER XI SUMMARY AND CONCLUSION

11.0 INTRODUCTION

This EIA report was prepared in compliance with ToR obtained vide Lr No. SEIAA-TN/F.No.10021/SEAC/ToR-1501/2023 Dated:19.07.2023 by considering 4 proposed quarries and 1 existing quarries in a cluster with the total extent of 11.35.0 hectares in Kalappanahalli Village, Karimangalam Taluk, Dharmapuri District and Tamil Nadu State. Cluster area was calculated as per MoEF & CC Notification S.O. 2269(E) Dated 1st July 2016. Baseline Monitoring studies were carried out during the period of October – December 2023.

11.1 PROJECT DESCRIPTION

The proposed project deals with excavation of rough stone which is primarily used in construction projects. The method adopted for rough stone excavation is an open cast semimechanized mining method involving drilling, blasting and formation of benches with 5 m height and 5 m width and secondary blasting. The proposed project area is located between latitudes from 12°14'42.56830"N to 12°14'47.16412"N and from longitudes from 78°10'33.87094" E to 78°10'41.82401"E in Kalappanahalli Village, Karimangalam Taluk, and Dharmapuri District. The project site is a government land with the extent of 2.02.5 ha owned by the project proponent. The proponent had applied for quarry lease on 26.07.2017 to extract rough stone and obtained the precise area communication letter was issued by Department of Geology and Mining, Dharmapuri vide Rc.No.155/2017 (Mines) dated:07.08.2017. Based on the precise area communication letter, mining plan was prepared. The mining plan prepared was approved by Assitant Director of Geology and Mining, Dharmapuri Roc.No.308/2022 (Mines) dated:03.03.2023.

According to the approved mining plan, about 174305 m^3 of rough stone and about 304 m³ of top soil will be mined up to the depth of 37 m BGL in the first five years. It is the quantity that has been mentioned in this EIA report.

To achieve the estimated production, 3 jack hammers, 1 compressor, 1 excavator with bucket/rock breaker, and 4 tippers will be deployed. To operate the machineries and to break the rough stone to preferred dimension, about 17 persons will be employed. At the end of the quarry life, the dimension of the ultimate pit will be 150 m*65 m*37 m. At present about 1.09.05 ha of land is used for quarrying and 0.89.45 ha of land is unutilized, Whereas, at the end of the mine life, about 0.05.50 ha of land is unutilized; about 0.25.23 ha of land is used for green belt and 0.08.0 will be used for roads and 0.02.0 is used for infrastructure.

The final mine closure plan shows that about **Rs.6,88,500** with the annual recurring cost of **Rs.60,750** will be spent towards mine closure.

11.2 DESCRIPTION OF THE ENVIRONMENT

The baseline monitoring studies were carried out during October - December, 2023 to assess the existing environmental conditions in the study area. For the purpose of the EIA studies, project area was considered as the core zone and area outside the project area up to 5 km radius from the periphery of the project site was considered as buffer zone. Baseline Environmental data has been collected for land, water, air, noise, ecology, socio-economy, and traffic.

11.2.1 Land Environment

Land Use and Land Cover (LULC) map, as shown in Figure 3.3 was prepared using Sentinel II image for the study area of 5 km radius to provide a baseline status of the study area covering 5 km radius around the proposed mine site. Totally, 6 LULCs were mapped. The areal extent of each LULC is provided in Table 3.2. Of the total area, mining area covers only 35.93 ha accounting for 0.47 %, of which lease area of 2.02.5 ha contributes only about 0.026%. This small percentage of mining activities shall not have any significant impact on the land environment

11.2.2 Soil Characteristics

Eight soil samples were obtained from the study area and sent to laboratory for analysing physical and chemical characteristics of soil.

Physical Characteristics

The soil samples in the study area show sandy loam textures varying between silty clay loam, silty loam and sandy loam. pH of the soil varies from 6.0 to 7.8 indicating slightly acidic to slightly alkaline nature. Electrical conductivity of the soil varies from 175 to 803 μ s/cm. Organic Matter ranges between 3.8 to 16 %.

Chemical Characteristics

Nitrogen ranges between 0.8 and 1.9 %. Phosphate ranges between 0.05 and 0.13 %. Potassium ranges between 0.02 and 0.055 %. Calcium ranges between 34 and 74 mg/kg. Sodium ranges between 0.012 and 0.023 %.

11.2.3 Water Environment

Surface Water Resources

Kupangarai Lake, Baisuhalli Lake and Periyapoolapatti Thumbala Halli Lake are the three prominent surface water resources present in the study area. These are ephemeral in nature, which convey water only after rainfall events. The proposed project area is located 0.88 km S of Kupangarai Lake, 3.74 km SE of Baisuhalli Lake and 2.97 km NE of Periyapoolapatti Thumbala Halli Lake, as shown in Table 3.5 and Figure 3.5. Three surface water samples, known as SW1, SW2 and SW3 were collected from the three surface water bodies to assess the baseline water quality. Table 3.7 summarizes surfacewater quality data of the three samples.

Result for surface water sample in the Table 3.7 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

Ground Water Resources

Five groundwater samples, known as BW1, BW2, BW3, OW1 and OW2 collected from bore wells and open wells were analysed for physico-chemical conditions, heavy metals and bacteriological contents in order to assess baseline quality of ground water. Ground water sampling locations and their distance and direction from the lease area are provided in Table 3.5 and the spatial occurrence of water sampling locations is shown in Figure 3.7. Table 3.6 summarizes ground water quality data of the five samples.

Results for ground water samples in the Table 3.6 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

11.3 AIR ENVIRONMENT

Site Specific Meteorology

Site specific meteorology during the study period was recorded by an automated weather station. According to the onsite data, the temperature in October 2023 varied from 15.36 to 30.46° C with the average of 24.04° C; in November, 2023 from 13.61 to 29.0° C with the average of 22.45° C; and in December, 2023 from 15.15 to 29.12° C with the average of 22.16° C. In October, 2023, relative humidity ranged from 47.06 to 100 % with the average of 84.21%; in November, 2023, from 49.19 to 100% with the average of 85.67%; and in December, 2023, from 39.88 to 100 % with the average of 84.18%. The wind speed in October, 2023 varied from 0.13 to 6.09 m/s with the average of 2.30 m/s; in November, 2023 from 0.72 to 6.03 m/s with the average of 2.72 m/s; and in December, 2023 from 1.06 to 357.75° with the average of 172.33° ; in November, 2023, from 0.17 to 359.27° with the average of 80.56° ; and in December, 2023, from 0.00 to 359.48° with the average of 88.23° . In October, 2023, surface pressure varied from 94.97 to 95.99 kPa with the average of 95.51 kPa; in November, 2023,

from 95.28 to 96.09kPa with the average of 95.69 kPa; and in December, 2023, from 94.68 to 96.45 kPa with the average of 95.66 kPa.

Ambient Air Quality Results

As per the monitoring data, PM2.5 ranges from $15.6 \,\mu g/m3$ to $20.5 \,\mu g/m3$; PM10 from $33.7 \mu g/m3$ to $39.0 \mu g/m3$; SO2 from $6.6 \,\mu g/m3$ to $9.5 \,\mu g/m3$; NOX from $12.3 \,\mu g/m3$ to 17.9 g/m3. The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

11.4 NOISE ENVIRONMENT

Noise level in core zone was 45.6 dB (A) Leq during day time and 38.4 dB(A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 39.8 to 51.6dB (A) Leq and during night time from 36.2 to 45.3 dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB.

11.5 BIOLOGICAL ENVIRONMENT

There is no schedule I species of animals observed within study area as per Wildlife Protection Act 1972 as well as no species is in vulnerable, endangered or threatened category as per IUCN. There is no endangered red list species found in the study area. Hence this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

11.6 SOCIO-ECONOMIC ENVIRONMENT

An attempt has been made to assess the impact of the proposed mining project on Socioeconomic aspect of the study area. The various attributes that have been taken into account are population composition, employment generation, occupational shift, household income and consumption pattern. Implementation of the Proposed Mine Project will generate both direct and indirect employment. Besides, mining operation will be legally valid and it will bring income to the state exchequer. At present seasonal agriculture is the main occupation of the people as more than half of the population depends on it. With the implementation of the proposed mining project the occupational pattern of the people in the area will change making more people engaged in mining-based activities rather in seasonal agriculture.

11.7 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES FOR PROPOSED PROJECT

The summary of anticipated adverse environmental impacts due to the proposed project and mitigation measures are given below:

 d Environment Mining will be carried out as per approved mine plan in scientific and systematic way Safety Zone or Buffer area will be maintained and
plan in scientific and systematic waySafety Zone or Buffer area will be maintained and
• Safety Zone or Buffer area will be maintained and
•
will not be mined and instead plantation will be
carried out in the safety zone
• Barbed wire fencing will be provided all along the
proposed mine boundary
• At conceptual stage, the land use pattern of the
quarry will be changed into Greenbelt area and
temporary reservoir
• Construction of garland
• Construction of garland drains all around the quarry
pit and construction of settling traps at strategic
location in lower elevations to prevent soil erosion
due to surface runoff during rainfall and also to
collect the storm water for various uses within the
proposed area
er Environment
• Construction of garland drains all around the quarry
pit and construction of settling traps at strategic
location in lower elevations to prevent soil erosion
due to surface runoff during rainfall and also to
collect the storm water for various uses within the
proposed area
De-silting will be carried out before and
immediately after the monsoon season and the
settling tank and drains will be cleaned weekly,
especially during monsoons
Domestic sewage from site office &
urinals/latrines provided in project area will be

Table 11.1 Anticipated Impacts & Mitigation Measures

contamination by particulate	discharged through septic tank followed by soal
matter or waste;	pit system.
 Contamination of aquifers due 	 Tippers & HEMM will be washed in a designated
to removal of the natural filter	area and the washed water will be routed through
medium.	drains to a settling tank, which has an oil & grease
	trap, only clear water will be reused for greenbel
	development.
	Air Environment
 ✤ Generation of Fugitive Dust 	◆ Haul roads will be well maintained by sprinkling
✤ Dust will be generated mainly	water twice a day
during excavation, loading	✤ The access road will be cleaned and brushed to
&unloading activities.	ensure that mud and dust deposits do no
✤ Gaseous pollutants will by	accumulate.
generated mostly by the	✤ To ensure that dust and debris is minimised on the
traffic.	access road, all the tipper drivers will be instructed
✤ Reduction in visibility due to	to use water spray system on all the tyres and spray
dust plumes.	water on the loaded material that is provided at the
✤ Coating of surfaces leading to	compound area before leaving the site
annoyance and loss of	Speed restrictions will be imposed to avoid
amenity.	spillage of loaded materials upon the road and to
✤ Physical and/or chemical	reduce wear and tear of the road.
contamination and corrosion.	✤ Weekly inspections of the condition of the acces
✤ Increase in the concentration	road by competent person employed, and
of suspended particles in	immediate action will be taken to address any
runoff water.	potholes or damage to the road surface.
✤ Coating of vegetation leading	✤ Dust wetting agents can be mixed with the wate
to reduced photosynthesis,	applied to haul roads during hot, dry weathe
✤ Inhibited growth, destroying	conditions to increase the duration that the road
of foliage, degradation of	surface remains damp.
crops;	 Personal Protective Equipment's will be provided
 Increase in health hazards due 	to all workers
to inhalation of dust.	✤ All drilling rods used will have dust suppression
	systems fitted which injects water into the hole.

	✤ Wet gunny bags will be used as a cover while
	drilling.
	\bullet The blast zone will be kept damp by the
	application of water from the rain gun fitted to the
	water tanker prior to each blast to control any
	fugitive dust emissions that could arise from the
	surface during detonation.
	✤ A daily visual inspection shall be conducted by the
	site manager who will keep a daily log of all
	process operations and site activities and note any
	malfunctions which could lead to abnormal
	emissions from the quarry operations.
	✤ A site speed limit of 20 km/h will be set to
	minimise the potential for dust generation
	✤ Weekly maintenance programme to identify
	machinery due for maintenance, based on the
	number of hours it has been in operation.
	• Air filters are renewed after every $10^{\circ}0$ hours of
	use, unless otherwise indicated by an on-board
	computer system.
	✤ All site machineries & tippers will be serviced and
	maintained 6 months once and drivers will report
	any defects immediately to the site manager to
	enable repairs to be carried out promptly.
]	Noise & Vibration
✤ Annoyance and deterioration	 Usage of sharp drill bits while drilling which will
of the quality of life;	help in reducing noise;
 Propelling of rocks fragments 	$\boldsymbol{\diamondsuit}$ Secondary blasting will be totally avoided and
by blasting.	hydraulic rock breaker will be used for breaking
\clubsuit Shaking of buildings and	boulders;
people due to blasting;	✤ Controlled blasting with proper spacing, burden,
	stemming and optimum charge/delay will be
	maintained;

	 The blasting will be carried out during favourable
	atmospheric condition and less human activity
	timings by using nonelectrical initiation system;
	✤ Proper maintenance, oiling and greasing of
	machines will be done every week to reduce
	generation of noise;
	✤ Provision of sound insulated chambers for the
	workers working on machines (HEMM)
	producing higher levels of noise;
	Silencers / mufflers will be installed in all
	machineries;
	✤ Green Belt/Plantation will be developed around
	the project area and along the haul roads. The
	plantation minimizes propagation of noise;
	 Personal Protective Equipment (PPE) like ear
	muffs/ear plugs will be provided to the operators
	of HEMM and persons working near HEMM and
	their use will be ensured though training and
	awareness.
Pic	logical Environment
	0
✤ Direct impacts include land	 Only some common herbs, shrubs and grass will
clearance and excavation	be cleared. So, there will be no impact on the
causing destruction of flora	biodiversity.
and fauna and loss of habitats;	 Green belt development with suitable species will
 Indirect impacts include 	enhance the biodiversity of the project area.
habitat degradation due to	 The core zone or buffer zone does not encompass
noise, dust, and human	any threatened flora or fauna species.
activity.	
Socio-	Economic Environment
✤ Health and safety of workers	✤ The mining activity puts negligible change in the
and the general public;	socio-economic profile.
 Increase in traffic volumes and 	
sizes of road vehicles;	

✤ Economic issues, including	Around 88 1	ocal workers will get employment
the increase in employment	opportunities	along with periodical training to
opportunities;	generate loca	l skills.
	• New patterns	s of indirect employment/ income
	will generate.	
	• Regular healt	h check-up camp.
	Assistance to	schools and scholarship to children
	will be provid	led.
Оссир	onal Health &	Safety
 Exposure to Dust 	Provision of	rest shelters for mine workers with
 Noise and Vibration Exposure 	amenities like	e drinking water etc.
 Physical Hazards 	• All safety me	asures like use of safety appliances,
✤ Respiratory hazards due to	such as due	st masks, helmets, shoes, safety
Dust exposure	awareness p	rograms, awards, posters, slogans
	related to safe	ety etc.
	• Training of	employees for use of safety
	appliances a	nd first aid in vocational training
	centre.	
	• Weekly main	tenance and testing of all equipment
	as per manufa	acturers' guidelines.
	• Pre placemen	at and Yearly Medical Examination
	of all workers	s by a medical Officer
	• First Aid faci	lity will be provided at the mine site.
	Close survei	llance of the factors in working
	environment	and work practices which may affect
	environment	and worker's health by the mine's
	manager emp	loyed.

11.8 ANALYSIS OF ALTERNATIVES

There are no alternatives suggested as the proposed mining area has the following advantages:

- ✤ The mineral deposit occurs in a non-forest area.
- ✤ There is no habitation within the applied lease area; hence no R & R issues exist.

- There is no river, stream, nallas and water bodies in the or passing through the applied mine lease areas.
- Availability of skilled, semi-skilled and unskilled workers in this region.
- All the basic amenities such as medical, firefighting, education, transportation, communication and infrastructural facilities are accessible.
- ✤ Mine connectivity through road and rail is good.
- The proposed mining operations do not intersect the ground water level. Hence, no impact on ground water environment.

11.9 ENVIRONMENTAL MONITORING PROGRAM

Environmental Monitoring program will be conducted for various environmental components such as air quality, meteorology, water quality, water level monitoring, soil quality, noise level, vibration, and greenbelt as per conditions stipulated in Environmental Clearance Letter issued by SEIAA & Consent to Operate issued by TNPCB. For this environmental monitoring program, Rs **2,95,000** /- per annum will spent by the project proponent. The monitored data on air quality, water quality, noise levels and other environmental attributes will be periodically examined by the cluster mine management coordinator and Respective Head of Organization and submitted to Tamil Nadu State Pollution Control Board in the Compliance to CTO Conditions & environmental audit statements every year to MoEF & CC and Half-Yearly Compliance Monitoring Reports to MoEF & CC Regional Office and SEIAA.

11.10 ADDITIONAL STUDIES

Public Consultation

Application to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district is submitted along with this Draft EIA / EMP Report and the outcome of public hearing proceedings will be detailed in the Final EIA/EMP Report.

Risk Analysis & Disaster Management Plan

The methodology for the risk assessment has been based on the specific risk assessment guidance issued by the Directorate General of Mine Safety (DGMS), Dhanbad vide Circular No.13 of 2002, dated 31st December, and 2002. The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention.

Further, mechanisms responsible for these hazards are identified and their control measures set to time table are recorded along with pinpointed responsibilities.

In the unlikely event that a consequence has occurred, disaster management kicks in. This includes instituting procedures pertaining to a number of issues such as communication, rescue, and rehabilitation. These are addressed in the disaster management plan. Both, the RA and DMP, are living documents and need to be updated whenever there are changes in operations, equipment, or procedures Assessment is all about preventing accidents and taking necessary steps to prevent it from happening.

The Disaster Management Plan (DMP) is a guide, giving general considerations, directions, and procedures for handling emergencies likely to arise from planned operations. The DMP has been prepared on the basis of the Risk Assessment and related findings covered in the report.

Cumulative Impact Studies

- The results on the cumulative impact of the four proposed projects on air environment of the cluster do not exceed the permissible limits set by CPCB for air pollutants.
- The cumulative results of noise for the habitation in consideration do not exceed the limit set by CPCB for residential areas for day time.
- PPV resulting from four proposed and one existing projects is well below the permissible limit of Peak Particle Velocity of 8 mm/s.
- The four proposed projects will allocate Rs.20,00,000/- towards CER as recommended by SEAC.
- The four proposed projects will directly provide jobs to about 61 local people.
- The four proposed projects will plant about 4398 saplings in and around the lease area.
- The four proposed projects will add 1452 PCU per day to the nearby roads.

11.11 PROJECT BENEFITS FOR PROPOSED PROJECT

Various benefits are envisaged due to the proposed mine and benefits anticipated from the proposed project to the locality, neighbourhood, region and nation as a whole are:

- ✤ Direct employment to 17 local people
- Rain water harvesting structures to augment the water availability for irrigation and plantation and ground water recharge
- Creation of community assets (infrastructure) like school buildings, village roads/ linked roads, dispensary & health Centre, community Centre, market place etc.,

- Strengthening of existing community facilities through the Community Development Programme
- Skill development & capacity building like vocational training
- Awareness program and community activities, like health camps, medical aids, sports & cultural activities, plantation etc.,
- CSR activities mainly contributing to education, health, training of women self-help groups and infrastructure etc., will be taken up in the Kalappanahalli Village. CSR budget is allocated as 2.5% of the profit.
- ✤ Rs. 5,00,000 will be allocated for CER.

11.12 ENVIRONMENT MANAGEMENT PLAN

In order to implement the environmental protection measures, an amount of **Rs.3521745** as capital cost and recurring cost as **Rs.1636404** as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the overall EMP cost for 5 years will be **Rs. 12632760**

11.13 CONCLUSION

EIA study was performed as per the approved ToR. Various environmental attributes were studied relating with aspects of mining activities. The related impacts were identified and evaluated. Considering all the possible ways to mitigate the environmental concerns Environmental Management Plan was prepared and accordingly fund was allocated. The EMP has been dynamic, flexible and subject to periodic review. CER activities were identified and for its time bound implementation, fund has been allocated.

The project will increase the revenue of the State Govt. as well as it will help in the social upliftment of the local community. The green belt development programme will help in increasing the green cover in the area. Thus, the proposed project is not likely to affect the environment or adjacent ecosystem in an adverse way.

The Mines Management will be responsible for the project review of EMP and its implementation to ensure that the EMP remains effective and appropriate. Thus, the proper steps will be taken to accomplish all the goals mentioned in the EMP and the project will bring the positive impact in the study area.

CHAPTER XII

DISCLOSURES OF CONSULTANT

The Project Proponent, Thiru.A. Sasimohan has engaged **Geo Technical Mining Solutions**, a NABET accredited consultancy for carrying out the EIA study as per the ToR issued.

Address of the consultancy:

No: 1/213B Natesan Complex, Oddapatti, Dharmapuri – 636705, Tamil Nadu, India. Email:<u>info.gtmsdpi@gmail.com</u> Web: <u>www.gtmsind.com</u> Phone: 04342 232777.

The accredited experts and associated members who were engaged in this EIA study are given below:

S.No	Name of the expert	In house/ Empanelled	Sector	Functional Area	Categ ory			
	Approved Functional Area Experts & EC							
1.	Dr. S. Karuppannan	EIA Coordinator (EC) In-house	1(a)(i)	Mining	В			
2.	Dr. M. Vijayprabhu	In-house FAE	1(a)(i)	HG, LU, GEO	В			
3.	Dr. J. Rajarajeswari	In-house, FAE	1(a)(i)	EB, SC	В			
4.	Dr. G. Prabakaran	In-house, FAE	1(a)(i)	SE	В			
5.	Dr. R. Arunbalaji	In-house, FAE	1(a)(i)	AP, AQ, NV	В			
6.	J.N. Manikandan	Empanelled FAE	1(a)(i)	RH, SHW, AP	В			
7.	Dr. S. Malar	In-house, FAE	1(a)(i)	WP	В			
8.	G. Umamaheswaran	In-house, FAE	1(a)(i)	HG, LU, GEO	В			
9.	S. Gopalakrishnan	In-house, FAE	1(a)(i)	HG, GEO	В			
10.	P. Venkatesh	In-house, FAE	1(a)(i)	AP	В			
11.	Dr. D.Kalaimurugan	In-house, FAE	1(a)(i)	SC	В			
	A	pproved Functional Area	Associate	S				
12.	G. Prithiviraj	FAA	1(a)(i)	LU, HG	В			
13.	C. Kumaresan	FAA	1(a)(i)	NV	В			
14.	P. Vellaiyan	FAA	1(a)(i)	HG, GEO	В			
15.	P. Dhatchayini	FAA	1(a)(i)	AQ	В			
16.	V. Malavika	FAA	1(a)(i)	NV, SHW	В			
	Abbreviations							

EC	EIA Coordinator	NV	Noise and Vibration
FAE	Functional Area Expert	SE	Socio Economics
FAA	Functional Area Associates	HG	Hydrology, ground water and water conservation
ТМ	Team Member	SC	Soil conservation
GEO	Geology	RH	Risk assessment and hazard management
WP	Water pollution monitoring, prevention and control	SHW	Solid and hazardous wastes
AP	Air pollution monitoring, prevention and control	MSW	Municipal Solid Wastes
LU	Land Use	ISW	Industrial Solid Wastes
AQ	Meteorology, air quality modelling, and prediction	HW	Hazardous Wastes
EB	Ecology and bio-diversity	GIS	Geographical Information System

DECLARATION BY EXPERTS CONTRIBUTING TO THE EIA & EMP

I, hereby, certify that I was a part of the EIA team in the following capacity that developed the EIA & EMP report.

Signature

1

(par.	2
-------	---

P.Venkatesh

Date	:	
Name	:	Dr. S. Karuppannan
Designation	:	EIA Coordinator
Name of the EIA Consultant Organization	:	Geo Technical Mining Solutions
Period of Involvement	:	Till date

We, the FAEs and FAAs hereby declare that information furnished in this EIA/EMP report for Thiru.A. Sasimohan rough stone quarry project with the extent of 2.02.5 ha situated in the cluster with the extent of 11.35.0 ha in Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District of Tamil Nadu is true and correct to the best of our knowledge.

Name of the S. Functional Involvement Signature No. Area Experts Identification of different sources 0 of air pollution due to the proposed J.N. Manikandan enge mine activity AP o Prediction of air pollution and

propose mitigation measures /

control measures

List of Functional Area Experts Engaged in this Project

T		0]	
		• Suggesting water treatment			
		systems, drainage facilities			
		• Evaluating probable impacts of		1 20	
2	WP	effluent/waste water discharges		B. Matt.	
		into the receiving	Dr.S. Malar		
		environment/water bodies and			
		suggesting control measures.			
		• Interpretation of ground water			
		table and predict impact and			
3	HG	propose mitigation measures.	G. Uma	G umaniky	
2	110	 Analysis and description of aquifer 	Maheswaran	4 Winner 7	
		Characteristics			
		• Field Survey for assessing the			
		regional and local geology of the			
		area.			
4	GEO °		G.Gopala Krishnan	Sleap Quinho	
		geological maps.	1		
		• Geology and Geo morphological			
		analysis/description and			
		Stratigraphy/Lithology.			
		• Revision in secondary data as per			
		Census of India, 2011.			
5	CE.	• Impact Assessment & Preventive	Dr. C. Drithsteiner	(D) (King)	
5	SE	Management Plan	Dr. G. Prabhakaran	Healand	
		• Corporate Environment			
		Responsibility.			
		• Collection of Baseline data of			
		Flora and Fauna.			
		 Identification of species labelled as 			
		Rare, Endangered and threatened			
6	EB	as per IUCN list.	Dr.J.	T. Gurt =	
U	LD	 Impact of the project on flora and 	Rajarajeshwari	0.00	
		fauna.			
		• Suggesting species for greenbelt			
		development.			
		• Identification of hazards and		- 21 - 12 - 12 - 12 - 12 - 12 - 12 - 12	
7	RH	hazardous substances	J.N. Manikandan	Ciblept	
	/	0	• Risks and consequences analysis		0
				1945	

		 Preparation of Emergency Preparedness Plan Management plan for safety. 		
8	LU	 Construction of Land use Map Impact of project on surrounding land use Suggesting post closure sustainable land use and mitigative measures. 	Dr.M. Vijay Prabhu	M. (Bhrynus)
9	NV	 Identify impacts due to noise and vibrations Suggesting appropriate mitigation measures for EMP. 	Dr.R. Arun Balaji	R Jaholoji
10	AQ	 Identifying different source of emissions and propose predictions of incremental GLC using AERMOD. Recommending mitigations measures for EMP 	Dr.R. Arun Balaji	R folaliji
11	SC	 Assessing the impact on soil environment and proposed mitigation measures for soil conservation 	Dr. D.Kalaimurugan	Dfrint
12	SHW	 Identify source of generation of non-hazardous solid waste and hazardous waste. Suggesting measures for minimization of generation of waste and how it can be reused or recycled. 	J.N. Manikandan	libept

List of Functional Area Associate Engaged in this Project

S.No.	Name	Functional Area	Involvement	Signature
1	G. Prithiviraj	LU, HG	 Site visit with FAE Provide inputs & Assisting FAE for LU and HG 	9 pm ert

2	C. Kumaresan	NV	 Assistance to FAE in both primary and secondary data collection Assistance in noise prediction modelling 	-turney - c	
3	P. Vellaiyan	HG & GEO	 Field visits along with FAE Assistance to FAE in both primary and secondary data collection 	Althrewweit-	
4	P. Dhatchayini	AQ	 Site visit with FAE Assistance to FAE in collection of both primary and secondary data 	P. Dhatahajini	
5	V. Malavika	NV, SHW	 Site visit along with FAE Assistance in report preparation 	V-flab.	
DECLARATION BY THE HEAD OF THE ACCREDITED CONSULTANT					

ORGANIZATION

I, Dr. S. KARUPPANNAN, Managing Partner, Geo Technical Mining Solutions, hereby, confirm that the above-mentioned functional area experts and team members prepared the EIA/EMP report for Thiru.A. Sasimohan rough stone quarry project with the extent of 2.02.5ha situated in the cluster with the extent of 11.35.0 ha in Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District of Tamil Nadu is true and correct to the best of my knowledge.

Signature

(ppans

Date	:	
Name	:	Dr. S. Karuppannan
Designation	:	Managing Partner
Name of the EIA Consultant Organization	:	Geo Technical Mining Solutions
NABET Certificate No & Issue Date Validity	:	NABET/EIA/2124/SA 0184 Till April 02, 2024

THIRU. DEEPAK S. BILGI, LF.S. MEMBER SECRETARY

STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY-TAMILNADU

3rd Floor, Panagal Maaligai, No.1, Jeenis Road, Saidapet, Chennai - 600 015. Phone No. 044-24359973 Fax No. 044-24359975

TERMS OF REFERENCE (ToR)

Lr No.SEIAA-TN/F.No.10021/SEAC/ToR-1501/2023 Dated: 19.07.2023

To

Thiru, A. Sasimohan,

S/o. K.P.Anbalagan.

1/136-A, Kerakodahalli Village,

Karimangalam Taluk.

Dharmapuri District - 635 111.

Sir / Madam,

- Sub: SEIAA, Tamil Nadu Terms of Reference with Public Hearing (ToR) for the Existing Rough Stone quarry lease over an extent of 2.02.5 Ha at S.F.No. 389 (Part) of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District, Tamil Nadu by Thiru, A. Sasimohan - under project category – "B1" and Schedule S.No.1(a) – ToR issued along with Public Hearing - preparation of EIA report – Regarding.
- Ref: 1. Online proposal No. SIA/TN/MIN/428504/2023, dated 09.05.2023
 - 2. Your application submitted for Terms of Reference dated: 11.05.2023
 - 3. Minutes of the 390th SEAC meeting held on 07.07.2023
 - 4. Minutes of the 640th SEIAA meeting held on 19.07.2023

Kindly refer to your proposal submitted to the State Level Impact Assessment Authority for Terms of Reference.

The proponent, Thiru. A. Sasimohan has submitted application for Terms of Reference (ToR) on 11.05.2023, in Form-I, Pre-Feasibility report for the Existing Rough Stone quarry lease over an

MEMBER SECRETARY SELA

Page 1 of 24

extent of 2.02.5 Ha at S.F.No. 389 (Part) of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District, Tamil Nadu.

Discussion by SEAC and the Remarks:-

Existing Rough stone quarry over an extent of 2.02.5 Ha at S.F. No. 389 (Part) (Government Poramboke Land) of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District, Tamil Nadu by Thiru. A. Sasimohan - For Terms of Reference

The proposal was placed in this 390th meeting of SEAC held on 07.07.2023. The details of the project furnished by the proponent are available in the website (parivesh.nic.in). The SEAC noted the following:

- Earlier, the PP has obtained EC in DEIAA vide Lr.No.08/DEIAA-DPI/EC.No.08/2017 dated 31.10.2017 for the production quantity of 153815 m³ up to depth of 17m (12m AGL + 5m BGL).
- 2. Earlier the PP has applied for Extension of EC vide File No. 9896/2023. The proposal was placed in the 378th SEAC Meeting held on 11.05.2023. The PP requested to withdraw the project based on OM dated 28.04.2023, since PP has obtained EC in DEIAA vide Letter No.08/DEIAA-DPI/TN-EC.No.08/2017 dated 31.10.2017 valid for 5 years. Hence the Committee decided to recommend to SEIAA to accept the withdrawal request of the PP.

The proposal was placed in the 625th SEIAA meeting held on 01.06.2023. After detailed discussions, the authority decided to accept the request of SEAC and the authority accepted the withdrawal request of PP.

- 3. CCR obtained from IRO(SZ), MOEF&CC Dt:23.12.2022.
- Now, the Project Proponent, Thiru. A. Sasimohan has applied seeking Terms of Reference for the existing Rough stone quarry over an extent of 2.02.5 Ha at S.F. No. 389 (Part) of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District, Tamil Nadu.
- The proposed quarry/activity is covered under Category "B1" of Item 1(a) "Mining Projects" of the Schedule to the EIA Notification, 2006, as amended.
- The precise area communication was issued for the period of 10 Years. The mining plan is for 5 Years. The production for Five Years period shall not to exceed 174305 m³ of Rough and the ultimate depth of 37m (12m AGL & 25m BGL).

Based on the presentation and details furnished by the project proponent, SEAC decided to grant Terms of Reference (TOR) with Public Hearing subject to the following TORs, in addition to (i) the standard terms of reference for EIA study shown in Annexure-I and (ii) the Standard ToR for

MRMBER SECRETARY SEIAA-TN

Page 2 of 24

196

non-coal mining projects and details issued by the MOEF & CC to be included in EIA/EMP Report:

- 1. The PP shall submit photographs of fencing, greenbelt and garland drain.
- 2. The PP shall submit the Modified Mining Plan duly approved by the concerned AD (Mines). Dept. of Geology & Mining in regard to the provision of the bench height of 5m / 6 m each instead of 7m shown as proposed bench height in the AMP submitted.
- 3. The PP shall submit the letter obtained from the concerned AD (Mines) showing details on the date of lease executed, date of last working day, Mining Plan approved quantity, EC Approved Quantity and Achieved quantity (year wise).
- 4. The study on impact of the dust & other environmental impacts due to proposed quarrying operations on the Rose flowers being cultivated through greenhouse nearby.
- 5. The revised and corrected version of the Production & Development Plan shall be produced with showing the safety berm width of 2m is maintained for the bench height of not exceeding 1.5 m distinctly in the gravel formation and it shall be duly signed by the concerned QP & approved by the concerned AD (Geology & Mining), Dept. of Geology & Mining.
- 6. Since the quarry is existing with a depth of excavation varies from 6 m to 19 m without benches of appropriate dimension (or) partially formed as per the approved Mining Plan, the Project Proponent (PP) shall carry out a 'Slope Stability Assessment Studies' for the existing conditions of the quarry wall by involving anyone of these reputed Research and Academic Institutions - CSIR-Central Institute of Mining & Fuel Research (CIMFR) / Dhanbad, NIRM - Bengaluru, IIT-Madras, NIT Surathkal - Dept of Mining Engg. and Anna University Chennai -Dept of Mining Engg. The above studies shall spell out a 'Slope Stability Action Plan' for the proposed quarry covering the existing condition of the quarry wall including the overall pit slope angle and it shall cover the aspects of stability of quarry walls including the access ramp keeping the benches intact.
- 7. The PP shall prepare the EMP for the entire life of mine and also furnish the sworn affidavit stating to abide the EMP for the entire life of mine.

ANNEXURE-I

1. The PP shall furnish the letter obtained from the AD (Mines) indicating the existing pit dimensions and pit conditions showing the details on mine having worked during the earlier lease period.

MEMBER SECRETARY SEIAA-T

Page 3 of 24

- The PP shall furnish DFO letter stating that the proximity distance of Reserve Forests. Protected Areas, Sanctuaries, Tiger reserve etc., up to a radius of 25 km from the proposed site.
- The PP shall provide individual notice regarding the Public Hearing to the nearby house owners located in the vicinity of the project site.
- 4. The Proponent shall justify the selection of the site for carrying out the stone quarrying with the total volume arrived for the excavation & production adequate details such as lithology of the deposit, reserve estimation, place for waste dump/mined mineral storage, end-use of mined materials, identified potential customers/end-users and travel path.
- The PP shall also justify the selection of mining methodology (conventional or nonconventional) adopting blasting techniques/non-explosive techniques with proper ground reality & laboratory testing.
- 6. The proponent shall submit the "Blast Design Parameters for controlling the vibration and fly rock from the quarry blasting" considering the existence of sensitive structures including habitations within 500 m from the lease boundary.
- The PP shall justify the estimation of HEMM population for excavation and transportation in the proposed quarries with proper calculation methodology adopted.
- The PP shall enumerate the environmental settings situated within a radial distance of 1 km such rivers/water bodies/reserve forests/ grazing land/existence of the hospitals and educational institutions/structures.
- The PP shall provide the details of the anticipated impacts of the mining operations on the surrounding environment and the remedial measures for the same.
- 10. The proponent is requested to carry out a survey and enumerate on the structures located within the radius of (i) 50 m, (ii) 100 m, (iii) 200 m and (iv) 300 m (v) 500m with details such as dwelling houses with number of occupants, whether it belongs to the owner (or) not, places of worship, industries, factories, sheds, etc with indicating the owner of the building, nature of construction, age of the building, number of residents, their profession and income, etc.
- 11. The PP shall submit a 'Slope Stability Action Plan' for the proposed quarry where the proposed depth exceeds 30 m and it shall cover the aspects of stability of quarry walls including the access ramp keeping the benches intact.

MEBER SECRETARY

Page 4 of 24

- 12. If the blasting operation is to be carried out, the PP shall present a conceptual design for carrying out the NONEL initiation based controlled blasting operation including the line drilling & muffle blasting techniques and a Simulation Model indicating the anticipated Blast-induced Ground Vibration levels in the proposed quarry as stipulated by the DGMS Circular No.7 of 1997, during the EIA Proposal.
- 13. The PP shall furnish the affidavit stating that the blasting operation in the proposed quarry is carried out by the statutory competent person as per the MMR 1961 such as blaster, mining mate, mine foreman, II/I Class mines manager appointed by the proponent.
- 14. The PP shall give an affidavit stating that no contractual persons provided by the explosive suppliers will be employed for carrying out the blasting operations in the proposed quarry.s
- 15. The PP shall also give an affidavit that no highly sensitive structure such as fire-cracker manufacturing units, Gas godown/explosive Magazine, LPG Bottling Units, etc are located within a radial distance of 300 m from the lease boundary of the proposed quarry.
- 16. The PP shall present a conceptual design for carrying out only controlled blasting operation involving line drilling and muffle blasting in the proposed quarry such that the blast-induced ground vibrations are controlled as well as no fly rock travel beyond 20 m from the blast site.
- 17. The EIA Coordinators shall obtain and furnish the details of quarry/quarries operated by the proponent in the past, either in the same location or elsewhere in the State with video and photographic evidences.
- The PP shall provide the environmental mitigation measures implemented for the crusher(s) located within the mining lease.
- 19. If the proponent has already carried out the mining activity in the proposed mining lease area after 15.01.2016, then the proponent shall furnish the following details from AD/DD, mines.
 - a. What was the period of the operation and stoppage of the earlier mines with last work permit issued by the AD/DD mines?
 - b. Quantity of minerals mined out.
 - c. Highest production achieved in any one year
 - d. Detail of approved depth of mining.
 - e. Actual depth of the mining achieved earlier.
 - f. Name of the person already mined in that leases area.

EMBER SECRETAR

Page 5 of 24

- g. If EC and CTO already obtained, the copy of the same shall be submitted.
- h. Whether the mining was carried out as per the approved mine plan (or EC if issued) with stipulated benches.
- 20. If any quarrying operations were carried out in the proposed quarrying site for which now the EC is sought, the Project Proponent shall furnish the detailed compliance to EC conditions given in the previous EC with the site photographs which shall duly be certified by MoEF&CC, Regional Office, Chennai (or) the concerned DEE/TNPCB.
- 21. All corner coordinates of the mine lease area, superimposed on a High-Resolution Imagery/Topo sheet, topographic sheet, geomorphology, lithology and geology of the mining lease area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
- 22. The PP shall carry out Drone video survey covering the cluster. Green belt, fencing etc.,
- 23. The proponent shall furnish photographs of adequate fencing, green belt along the periphery including replantation of existing trees & safety distance between the adjacent quarries & water bodies nearby provided as per the approved mining plan.
- 24. The Project Proponent shall provide the Organization chart indicating the appointment of various statutory officials and other competent persons to be appointed as per the provisions of Mines Act*1952 and the MMR, 1961 for carrying out the quarrying operations scientifically and systematically in order to ensure safety and to protect the environment.
- 25. The Project Proponent shall conduct the hydro-geological study considering the contour map of the water table detailing the number of ground water pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds etc. within 1 km (radius) along with the collected water level data for both monsoon and non-monsoon seasons from the PWD / TWAD so as to assess the impacts on the wells due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided.
- 26. The proponent shall furnish the baseline data for the environmental and ecological parameters with regard to surface water/ground water quality, air quality, soil quality & flora/fauna including traffic/vehicular movement study.
- 27. The Proponent shall carry out the Cumulative impact study due to mining operations carried out in the quarry specifically with reference to the specific environment in terms of soil health, biodiversity, air pollution, water pollution, climate change and flood control &

MEMBER SECRETAR

Page 6 of 24

health impacts. Accordingly, the Environment Management plan should be prepared keeping the concerned quarry and the surrounding habitations in the mind.

- Rain water harvesting management with recharging details along with water balance (both monsoon & non-monsoon) be submitted.
- 29. Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
- 30. Details of the land for storage of Overburden/Waste Dumps (or) Rejects outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be provided.
- 31. Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided.
- 32. If the Village road/State highway/National highway are located within a radial distance of 500 m from the lease boundary of the quarry proposal, the PP shall carry out traffic studies to indicate impact on local transport infrastructure due to the Project and mitigation measures.
- 33. A tree survey study shall be carried out (nos., name of the species, age, diameter etc..) both within the mining lease applied area & 300m buffer zone and its management during mining activity.
- 34. A detailed mine closure plan for the proposed project shall be included in EIA/EMP report which should be site-specific.
- 35. Public Hearing points raised and commitments of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project and to be submitted to SEIAA/SEAC with regard to the Office Memorandum of MoEF& CC accordingly.
- 36. The Public hearing advertisement shall be published in one major National daily and one most circulated vernacular daily.
- 37. The PP shall produce/display the EIA report. Executive summary and other related information with respect to public hearing in Tamil Language also.

SIBER SECRETAR

Page 7 of 24

- 38. As a part of the study of flora and fauna around the vicinity of the proposed site, the EIA coordinator shall strive to educate the local students on the importance of preserving local flora and fauna by involving them in the study, wherever possible.
- 39. The purpose of Green belt around the project is to capture the fugitive emissions, carbon sequestration and to attenuate the noise generated, in addition to improving the aesthetics. A wide range of indigenous plant species should be planted as given in the appendix-I in consultation with the DFO, State Agriculture University and local school/college authorities. The plant species with dense/moderate canopy of native origin should be chosen. Species of small/medium/tall trees alternating with shrubs should be planted in a mixed manner.
- 40. Taller/one year old Saplings raised in appropriate size of bags, preferably eco-friendly bags should be planted as per the advice of local forest authorities/botanist/Horticulturist with regard to site-specific choices. The proponent shall earmark the greenbelt area with GPS coordinates all along the boundary of the project site with at least 3 meters wide and in between blocks in an organized manner
- 41. A Disaster Management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.
- 42. A Risk Assessment and Management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.
- 43. Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 44. Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
- 45. The Socio-economic studies should be carried out within a 5 km buffer zone from the mining activity. Measures of socio-economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.
- 46. Details of litigation pending against the project, if any, with direction /order passed by any

MEMBER SECRETARY SEIAA-TI

202

Court of Law against the Project should be given.

- 47. Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.
- 48. If any quarrying operations were carried out in the proposed quarrying site for which now the EC is sought, the Project Proponent shall furnish the detailed compliance to EC conditions given in the previous EC with the site photographs which shall duly be certified by MoEF&CC, Regional Office, Chennai (or) the concerned DEE/TNPCB.
- 49. The PP shall prepare the EMP for the entire life of mine and also furnish the sworn affidavit stating to abide the EMP for the entire life of mine.
- 50. Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act, 1986.

Appendix

List of Native Trees Suggested for Planting

- 1. Aegle marmelos Vilvam
- 2. Adenaanthera pavonina Manjadi
- 3. Albizia lebbeck Vaagai
- 4. Albizia amara Usil
- 5. Bauhinia purpurea Mantharai
- 6. Bauhinia racemosa Aathi
- 7. Bauhinia tomentosa Iruvathi
- 8. Buchanania axillaris Kattuma
- 9. Borassus flabellifer Panai
- 10. Butea monosperma Murukka maram
- 11. Bobax celba Ilavu, Sevvilayu

12. Calophyllum inophyllum - Punnai

13. Cassia fistula - Sarakondrai

14. Cassia roxburghii- Sengondrai

15. Chloroxylon sweitenia - Purasa maram

- 16. Cochlospermum religiosum Kongu, Manjal Ilavu
- 17. Cordia dichotoma Mookuchali maram

18. Creteva adansonii - Mavalingum

MEMBER SECRETARY SELAA-TN

Page 9 of 24

203

SEIAA-TN

19. Dillenia indica - Uva, Uzha

20. Dillenia pentagyna - Siru Uva, Sitruzha

21. Diospyros ebenum - Karungali

22. Diospyros chloroxylon - Vaganai

23. Ficus amplissima - Kal Itchi

24. Hibiscus tiliaceus - Aatru poovarasu

25. Hardwickia hinata - Aacha

26. Holoptelia integrifolia - Aayili

27. Lannea coromandelica - Odhiam

28. Lagerstroemia speciosa - Poo Marudhu

29. Lepisanthus tetraphylla - Neikottai maram

30. Limonia acidissima - Vila maram

31. Litsea glutinosa - Pisin pattai

32. Madhuca longifolia - Illuppai

33. Manilkara hexandra - Ulakkai Paalai

34. Mimusops elengi - Magizha maram

35. Mitragyna parvifolia - Kadambu

36. Morinda pubescens - Nuna

37. Morinda citrifolia - Vellai Nuna

38. Phoenix sylvestre - Eachai

39. Pongamia pinnata - Pungam

40. Premna mollissima – Munnai

41. Premna serratifolia - Narumunnai

42. Premna tomentosa - Purangai Naari, Pudanga Naari

43. Prosopis cinerea - Vanni maram

44. Pterocarpus marsupium - Vengai

45. Pterospermum canescens - Vennangu, Tada

46. Pterospermum xylocarpum - Polavu

47. Puthranjiva roxburghii - Puthranjivi

48. Salvadora persica - Ugaa Maram

49. Sapindus emarginatus - Manipungan, Soapu kai

50. Saraca asoca - Asoca

MEMBER SECRETARY SEIAA-TN

- 51. Streblus asper Piraya maram
- 52. Strychnos nuxvomica Yetti
- 53. Strychnos potatorum Therthang Kottai
- 54. Syzygium cumini Naval
- 55. Terminalia bellerica Thandri
- 56. Terminalia arjuna Ven marudhu
- 57. Toona ciliate Sandhana vembu
- 58. Thespesia populnea Puvarasu
- 59. Walsuratrifoliata valsura
- 60. Wrightia tinctoria Veppalai
- 61. Pithecellobium dulce Kodukkapuli

Discussion by SEIAA and the Remarks:-

The proposal was placed in the 640th Authority meeting held on 19.07.2023. The authority noted that this proposal was placed for appraisal in 390th SEAC meeting held on 07.07.2023. After detailed discussions, the Authority accepts the recommendation of SEAC and decided to grant Terms of Reference (ToR) along with Public Hearing under cluster for undertaking the combined Environment Impact Assessment Study and preparation of separate Environment Management Plan subject to the conditions as recommended by SEAC & normal conditions in addition to the conditions in ***Annexure B*** of this minutes.

Annexure 'B'

Cluster Management Committee

- Cluster Management Committee shall be framed which must include all the proponents in the cluster as members including the existing as well as proposed quarry.
- The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development, Water sprinkling, tree plantation, blasting etc.,
- The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.
- 4. Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.

MBER SECRETARY

Page 11 of 24

- 5. The committee shall deliberate on risk management plan pertaining to the cluster in a holistic manner especially during natural calamities like intense rain and the mitigation measures considering the inundation of the cluster and evacuation plan.
- 6. The Cluster Management Committee shall form Environmental Policy to practice sustainable mining in a scientific and systematic manner in accordance with the law. The role played by the committee in implementing the environmental policy devised shall be given in detail.
- The committee shall furnish action plan regarding the restoration strategy with respect to the individual quarry falling under the cluster in a holistic manner.
- 8. The committee shall furnish the Emergency Management plan within the cluster.
- The committee shall deliberate on the health of the workers/staff involved in the mining as well as the health of the public.
- The committee shall furnish an action plan to achieve sustainable development goals with reference to water, sanitation & safety.
- 11. The committee shall furnish the fire safety and evacuation plan in the case of fire accidents.

Impact study of mining

- 12. Detailed study shall be carried out in regard to impact of mining around the proposed mine lease area covering the entire mine lease period as per precise area communication order issued from reputed research institutions on the following
 - a) Soil health & soil biological, physical land chemical features .
 - b) Climate change leading to Droughts, Floods etc.
 - c) Pollution leading to release of Greenhouse gases (GHG), rise in Temperature, & Livelihood of the local people.
 - d) Possibilities of water contamination and impact on aquatic ecosystem health.
 - e) Agriculture, Forestry & Traditional practices.
 - f) Hydrothermal/Geothermal effect due to destruction in the Environment.
 - g) Bio-geochemical processes and its foot prints including environmental stress.
 - h) Sediment geochemistry in the surface streams.

Agriculture & Agro-Biodiversity

- 13. Impact on surrounding agricultural fields around the proposed mining Area.
- 14. Impact on soil flora & vegetation around the project site.

MEMBER SECRETARY SEIAA-TN

Page 12 of 24

206

- 15. Details of type of vegetations including no. of trees & shrubs within the proposed mining area and. If so, transplantation of such vegetations all along the boundary of the proposed mining area shall committed mentioned in EMP.
- 16. The Environmental Impact Assessment should study the biodiversity, the natural ecosystem, the soil micro flora, fauna and soil seed banks and suggest measures to maintain the natural Ecosystem.
- Action should specifically suggest for sustainable management of the area and restoration of ecosystem for flow of goods and services.
- The project proponent shall study and furnish the impact of project on plantations in adjoining patta lands, Horticulture, Agriculture and livestock.

Forests

- The project proponent shall detailed study on impact of mining on Reserve forests free ranging wildlife.
- The Environmental Impact Assessment should study impact on forest, vegetation, endemic, vulnerable and endangered indigenous flora and fauna.
- The Environmental Impact Assessment should study impact on standing trees and the existing trees should be numbered and action suggested for protection.
- 22. The Environmental Impact Assessment should study impact on protected areas. Reserve Forests, National Parks, Corridors and Wildlife pathways, near project site.

Water Environment

- 23. Hydro-geological study considering the contour map of the water table detailing the number of ground water pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds etc. within 1 km (radius) so as to assess the impacts on the nearby waterbodies due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided, covering the entire mine lease period.
- 24. Erosion Control measures.
- 25. Detailed study shall be carried out in regard to impact of mining around the proposed mine lease area on the nearby Villages. Water-bodies/ Rivers, & any ecological fragile areas.
- The project proponent shall study impact on fish habitats and the food WEB/ food chain in the water body and Reservoir.

MEMBER SECRETARY

Page 13 of 24

- The project proponent shall study and furnish the details on potential fragmentation impact on natural environment, by the activities.
- 28. The project proponent shall study and furnish the impact on aquatic plants and animals in water bodies and possible scars on the landscape, damages to nearby caves, heritage site, and archaeological sites possible land form changes visual and aesthetic impacts.
- The Terms of Reference should specifically study impact on soil health, soil erosion, the soil
 physical, chemical components and microbial components.
- The Environmental Impact Assessment should study on wetlands, water bodies, rivers streams, lakes and farmer sites.

Energy

31. The measures taken to control Noise, Air, Water, Dust Control and steps adopted to efficiently utilise the Energy shall be furnished.

Climate Change

- 32. The Environmental Impact Assessment shall study in detail the carbon emission and also suggest the measures to mitigate carbon emission including development of carbon sinks and temperature reduction including control of other emission and climate mitigation activities.
- 33. The Environmental Impact Assessment should study impact on climate change, temperature rise, pollution and above soil & below soil carbon stock.

Mine Closure Plan

34. Detailed Mine Closure Plan covering the entire mine lease period as per precise area communication order issued.

EMP

- 35. Detailed Environment Management Plan along with adaptation, mitigation & remedial strategies covering the entire mine lease period as per precise area communication order issued.
- 36. The Environmental Impact Assessment should hold detailed study on EMP with budget for Green belt development and mine closure plan including disaster management plan.

Risk Assessment

 To furnish risk assessment and management plan including anticipated vulnerabilities during operational and post operational phases of Mining.

NEMBER SECRETARY SEIAA-TN

Page 14 of 24

Disaster Management Plan

38. To furnish disaster management plan and disaster mitigation measures in regard to all aspects to avoid/reduce vulnerability to hazards & to cope with disaster/untoward accidents in & around the proposed mine lease area due to the proposed method of mining activity & its related activities covering the entire mine lease period as per precise area communication order issued.

Others

- 39. The project proponent shall furnish VAO certificate with reference to 300m radius regard to approved habitations, schools, Archaeological sites, Structures, railway lines, roads, water bodies such as streams, odai, vaari, canal, channel, river, lake pond, tank etc.
- 40. As per the MoEF& CC office memorandum F.No.22-65/2017-IA.III dated: 30.09.2020 and 20.10.2020 the proponent shall address the concerns raised during the public consultation and all the activities proposed shall be part of the Environment Management Plan.
- 41. The project proponent shall study and furnish the possible pollution due to plastic and microplastic on the environment. The ecological risks and impacts of plastic & microplastics on aquatic environment and fresh water systems due to activities, contemplated during mining may be investigated and reported.

A. STANDARD TERMS OF REFERENCE

- Year-wise production details since 1994 should be given, clearly stating the highest production achieved in any one year prior to 1994. It may also be categorically informed whether there had been any increase in production after the EIA Notification 1994 came into force, w.r.t. the highest production achieved prior to 1994.
- A copy of the document in support of the fact that the Proponent is the rightful lessee of the mine should be given.
- 3) All documents including approved mine plan, EIA and Public Hearing should be compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and should be in the name of the lessee.
- 4) All corner coordinates of the mine lease area, superimposed on a High Resolution Imagery/ topo sheet, topographic sheet, geomorphology and geology of the area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
- 5) Information should be provided in Survey of India Topo sheet in 1:50,000 scale indicating

MENBER SECRETARY

Page 15 of 24

geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.

- 6) Details about the land proposed for mining activities should be given with information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.
- 7) It should be clearly stated whether the proponent Company has a well laid down Environment Policy approved by its Board of Directors? If so, it may be spelt out in the EIA Report with description of the prescribed operating process/procedures to bring into focus any infringement/deviation/ violation of the environmental or forest norms/ conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the Company and/or shareholders or stakeholders at large, may also be detailed in the EIA Report.
- 8) Issues relating to Mine Safety, including subsidence study in case of underground mining and slope study in case of open cast mining, blasting study etc. should be detailed. The proposed safeguard measures in each case should also be provided.
- 9) The study area will comprise of 10 km zone around the mine lease from lease periphery and the data contained in the EIA such as waste generation etc, should be for the life of the mine / lease period.
- 10) Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
- Details of the land for any Over Burden Dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be given.
- 12) Certificate from the Competent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned

MBER SECRETARY SELAA-TN

Page 16 of 24

above be issued. In all such cases, it would be desirable for representative of the State Forest Department to assist the Expert Appraisal Committees.

- 13) Status of forestry clearance for the broken up area and virgin forestland involved in the Project including deposition of Net Present Value (NPV) and Compensatory Afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished.
- Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act. 2006 should be indicated.
- 15) The vegetation in the RF / PF areas in the study area, with necessary details, should be given.
- 16) A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.
- 17) Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger/ Elephant Reserves/(existing as well as proposed), if any, within 10 km of the mine lease should be clearly indicated, supported by a location map duly authenticated by Chief Wildlife Warden. Necessary clearance, as may be applicable to such projects due to proximity of the ecologically sensitive areas as mentioned above, should be obtained from the Standing Committee of National Board of Wildlife and copy furnished.
- 18) A detailed biological study of the study area [core zone and buffer zone (10 km radius of the periphery of the mine lease)] shall be carried out. Details of flora and fauna, endangered, endemic and RET Species duly authenticated, separately for core and buffer zone should be furnished based on such primary field survey, clearly indicating the Schedule of the fauna present. In case of any scheduled-I fauna found in the study area, the necessary plan along with budgetary provisions for their conservation should be prepared in consultation with State Forest and Wildlife Department and details furnished. Necessary allocation of funds for implementing the same should be made as part of the project cost.
- 19) Proximity to Areas declared as 'Critically Polluted' or the Project areas likely to come under the 'Aravali Range'. (attracting court restrictions for mining operations), should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the SPCB or State Mining Department should be secured and furnished to the effect that the proposed mining activities could be considered.
- 20) Similarly, for Coastal Projects, a CRZ map duly authenticated by one of the authorized

IPMBER SECRETARY SEIAA-TT

Page 17 of 24

agencies demarcating LTL. HTL, CRZ area, location of the mine lease with respect to CRZ, coastal features such as mangroves, if any, should be furnished. (Note: The Mining Projects falling under CRZ would also need to obtain approval of the concerned Coastal Zone Management Authority).

- 21) R&R Plan/compensation details for the Project Affected People (PAP) should be furnished. While preparing the R&R Plan, the relevant State/National Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs /STs and other weaker sections of the society in the study area, a need based sample survey, family-wise, should be undertaken to assess their requirements, and action programmes prepared and submitted accordingly, integrating the sectoral programmes of line departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area will be shifted or not. The issues relating to shifting of village(s) including their R&R and socio-economic aspects should be discussed in the Report.
- 22) One season (non-monsoon) [i.e. March-May (Summer Season): October-December (post monsoon season) ; December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction of PM10, particularly for free silica, should be given.
- 23) Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of Vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The wind roses showing pre-dominant wind direction may also be indicated on the map.
- 24) The water requirement for the Project, its availability and source should be furnished. A detailed water balance should also be provided. Fresh water requirement for the Project should

MBER SECRETARY SEIAA-TN

Page 18 of 24

be indicated.

- Necessary clearance from the Competent Authority for drawl of requisite quantity of water for the Project should be provided.
- 26) Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided.
- 27) Impact of the Project on the water quality, both surface and groundwater, should be assessed and necessary safeguard measures, if any required, should be provided.
- 28) Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. In case the working will intersect groundwater table, a detailed Hydro Geological Study should be undertaken and Report furnished. The Report inter-alia, shall include details of the aquifers present and impact of mining activities on these aquifers. Necessary permission from Central Ground Water Authority for working below ground water and for pumping of ground water should also be obtained and copy furnished.
- 29) Details of any stream, seasonal or otherwise, passing through the lease area and modification / diversion proposed, if any, and the impact of the same on the hydrology should be brought out.
- 30) Information on site elevation, working depth, groundwater table etc. Should be provided both in AMSL and bgl. A schematic diagram may also be provided for the same.
- 31) A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution.
- 32) Impact on local transport infrastructure due to the Project should be indicated. Projected increase in truck traffic as a result of the Project in the present road network (including those outside the Project area) should be worked out, indicating whether it is capable of handling the incremental load. Arrangement for improving the infrastructure, if contemplated (including action to be taken by other agencies such as State Government) should be covered. Project Proponent shall conduct Impact of Transportation study as per Indian Road Congress

MEMBER SECRETARY SEIAA-TN

Page 19 of 24

Guidelines.

- 33) Details of the onsite shelter and facilities to be provided to the mine workers should be included in the EIA Report.
- 34) Conceptual post mining land use and Reclamation and Restoration of mined out areas (with plans and with adequate number of sections) should be given in the EIA report.
- 35) Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 36) Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
- 37) Measures of socio economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.
- 38) Detailed Environmental Management Plan (EMP) to mitigate the environmental impacts which, should inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project.
- 39) Public Hearing points raised and commitment of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project.
- 40) Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project should be given.
- 41) The cost of the Project (capital cost and recurring cost) as well as the cost towards implementation of EMP should be clearly spelt out.
- 42) A Disaster management Plan shall be prepared and included in the EIA/EMP Report.
- 43) Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.
- 44) Besides the above, the below mentioned general points are also to be followed:
 - a) Executive Summary of the EIA/EMP Report

MEMBER SECRETARY SELAA-TN

Page 20 of 24

Lr No.SEIAA-TN/F.No.10021/SEAC/ToR-1501/2023 Dated: 19.07.2023

- b) All documents to be properly referenced with index and continuous page numbering.
- c) Where data are presented in the Report especially in Tables, the period in which the data were collected and the sources should be indicated.
- d) Project Proponent shall enclose all the analysis/testing reports of water, air, soil, noise etc. using the MoEF&CC/NABL accredited laboratories. All the original analysis/testing reports should be available during appraisal of the Project.
- e) Where the documents provided are in a language other than English, an English translation should be provided.
- The Questionnaire for environmental appraisal of mining projects as devised earlier by the Ministry shall also be filled and submitted.
- g) While preparing the EIA report, the instructions for the Proponents and instructions for the Consultants issued by MoEF&CC vide O.M. No. J-11013/41/2006-IA.II (I) dated 4th August, 2009, which are available on the website of this Ministry, should be followed.
- h) Changes, if any made in the basic scope and project parameters (as submitted in Form-I and the PFR for securing the TOR) should be brought to the attention of MoEF&CC with reasons for such changes and permission should be sought, as the ToR may also have to be altered. Post Public Hearing changes in structure and content of the draft EIA/EMP (other than modifications arising out of the P.H. process) will entail conducting the PH again with the revised documentation.
- As per the circular no. J-11011/618/2010-IA.II (I) dated 30.5.2012, certified report of the status of compliance of the conditions stipulated in the Environment Clearance for the existing operations of the project, should be obtained from the Regional Office of Ministry of Environment, Forest and Climate Change, as may be applicable.
- j) The EIA report should also include (i) surface plan of the area indicating contours of main topographic features, drainage and mining area, (ii) geological maps and sections and (iii) sections of the mine pit and external dumps, if any, clearly showing the land features of the adjoining area.

In addition to the above, the following shall be furnished:-

The Executive summary of the EIA/EMP report in about 8-10 pages should be prepared incorporating the information on following points:

1. Project name and location (Village, District, State, Industrial Estate (if applicable).

MEMBER SECRETARY SEIAA-TN

Page 21 of 24

- Process description in brief, specifically indicating the gaseous emission, liquid effluent and solid and hazardous wastes.
- 3. Measures for mitigating the impact on the environment and mode of discharge or disposal.
- 4. Capital cost of the project, estimated time of completion.
- The proponent shall furnish the contour map of the water table detailing the number of wells located around the site and impacts on the wells due to mining activity.
- 6. A detailed study of the lithology of the mining lease area shall be furnished.
- 7. Details of village map, "A" register and FMB sketch shall be furnished.
- Detailed mining closure plan for the proposed project approved by the Geology of Mining department shall be shall be submitted along with EIA report.
- 9. Obtain a letter /certificate from the Assistant Director of Geology and Mining standing that there is no other Minerals/resources like sand in the quarrying area within the approved depth of mining and below depth of mining and the same shall be furnished in the EIA report.
- EIA report should strictly follow the Environmental Impact Assessment Guidance Manual for Mining of Minerals published February 2010.
- Detail plan on rehabilitation and reclamation carried out for the stabilization and restoration of the mined areas.
- 12. The EIA study report shall include the surrounding mining activity, if any,
- 13. Modeling study for Air, Water and noise shall be carried out in this field and incremental increase in the above study shall be substantiated with mitigation measures.
- 14. A study on the geological resources available shall be carried out and reported.
- 15. A specific study on agriculture & livelihood shall be carried out and reported.
- Impact of soil erosion, soil physical chemical and biological property changes may be assumed.
- 17. Site selected for the project Nature of land Agricultural (single/double crop), barren, Govt./ private land, status of is acquisition, nearby (in 2-3 km.) water body, population, with in 10km other industries, forest, eco-sensitive zones, accessibility, (note - in case of industrial estate this information may not be necessary)
- Baseline environmental data air quality, surface and ground water quality, soil characteristic, flora and fauna, socio-economic condition of the nearby population
- Identification of hazards in handling, processing and storage of hazardous material and safety system provided to mitigate the risk.

EMBER SECRETARY

< SEIAA-TN

Page 22 of 24

Lr No.SEIAA-TN/F.No.10021/SEAC/ToR-1501/2023 Dated: 19.07.2023

- 20. Likely impact of the project on air, water, land, flora-fauna and nearby population
- 21. Emergency preparedness plan in case of natural or in plant emergencies
- 22. Issues raised during public hearing (if applicable) and response given
- 23. CER plan with proposed expenditure.
- 24. Occupational Health Measures
- 25. Post project monitoring plan
- The project proponent shall carry out detailed hydro geological study through intuitions/NABET Accredited agencies.
- 27. A detailed report on the green belt development already undertaken is to be furnished and also submit the proposal for green belt activities.
- 28. The proponent shall propose the suitable control measure to control the fugitive emissions during the operations of the mines.
- A specific study should include impact on flora & fauna, disturbance to migratory pattern of animals.
- 30. Reserve funds should be earmarked for proper closure plan.
- 31. A detailed plan on plastic waste management shall be furnished. Further, the proponent should strictly comply with. Tamil Nadu Government Order (Ms) No.84 Environment and forests (EC.2) Department dated 25.06.2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) Act. 1986. In this connection, the project proponent has to furnish the action plan.

Besides the above, the below mentioned general points should also be followed:-

- A note confirming compliance of the TOR, with cross referencing of the relevant sections / pages of the EIA report should be provided.
- b. All documents may be properly referenced with index, page numbers and continuous page numbering.
- c. Where data are presented in the report especially in tables, the period in which the data were collected and the sources should be indicated.
- d. While preparing the EIA report, the instructions for the proponents and instructions for the consultants issued by MoEF & CC vide O.M. No. J-11013/41/2006-IA.II (I) dated 4th August, 2009, which are available on the website of this Ministry should also be followed.
- e. The consultants involved in the preparation of EIA/EMP report after accreditation with Quality Council of India (QCI)/National Accreditation Board of Education and Training

MEMBER SECRETARY SEIAA-TN

Page 23 of 24

(NABET) would need to include a certificate in this regard in the EIA/EMP reports prepared by them and data provided by other organization/Laboratories including their status of approvals etc. In this regard circular no F. No.J -11013/77/2004-1A-1I(1) dated 2nd December, 2009, 18th March 2010, 28th May 2010, 28th June 2010, 31st December 2010 & 30th September 2011 posted on the Ministry's website http://www.moef.nic.in/ may be referred.

- After preparing the EIA (as per the generic structure prescribed in Appendix-III of the EIA Notification, 2006) covering the above mentioned points, the proponent will take further necessary action for obtaining environmental clearance in accordance with the procedure prescribed under the EIA Notification, 2006.
- The final EIA report shall be submitted to the SEIAA, Tamil Nadu for obtaining Environmental Clearance.
- The TORs with public hearing prescribed shall be <u>valid for a period of three years</u> from the date of issue, for submission of the EIA/EMP report as per OMNo.J-11013/41/2006-IA-H(I)(part) dated 29th August, 2017.

MEMBER SECRET SELAA-TN

Copy to:

- The Additional Chief Secretary to Government, Environment, Climate Change and Forests Department, Govt. of Tamil Nadu, Fort St. George, Chennai - 9.
- The Chairman, Central Pollution Control Board, Parivesh Bhavan. CBD Cum-Office Complex, East Arjun Nagar, New Delhi - 110 032.
- The Chairman, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai - 600 032.
- The APCCF (C), Regional Office, MoEF & CC (SZ), 34, HEPC Building, 1st & 2nd Floor, Cathedral Garden Road, Nungambakkam, Chennai - 34.
- Monitoring Cell, IA Division, Ministry of Environment, Forests & CC. Paryavaran Bhavan, CGO Complex, New Delhi - 110 003.
- 6. The District Collector. Dharmapuri District.
- 7. Stock File.

-348-

From

۰

۲

۲

۲

•

۲

۲

۲

۲

۲

۲

۲

۲

۲

۲

•

0

0

۲

0

۲

0

To

Dr.G.Panneer Selvam, M.Sc, M.Phil, Ph.D., Assistant Director, Geology and Mining, Dharmapuri.

Thiru.A.Sasimohan, S/o.K.P.Anbalagan, 1/183-A, Kerakodahalli Village, Karimangalam Taluk, Dharmapuri District.

Roc.No.308/2022 (Mines)

Dated. 08.05.2023.

Sir,

Mines and Minerals - Rough Stone - Dharmapuri District - Karimangalam Taluk - Kalappanahalli Village - Govt. Poramboke land - S.F.No.389 (P) over an extent of 2.02.5 Hects. - quarry lease granted to Thiru.A.Sasimohan, S/o K.P.Anbalagan, Kerakodahalli village, Dharmapuri - Scheme of Mining approved with direction to obtain clearance from State Level Environment Impact Assessment Authority - existing/proposed/abandoned quarries situated within 500 mts. radial distance - requested by the lessee - details furnished - reg.

Ref:

Sub:

The District Collector, Dharmapuri proceedings 1 Roc.No. 155/2017 (Mines) dated 26.12.2017.

2. Thiru.A.Sasimohan, S/o K.P.Anbalagan, Kerakodahalli village, Dharmapuri letter dated. 08.05.2023.

Quarry lease for quarrying Rough Stone over an extent of 2.02.5 Hectares of Govt. Poramboke land in S.F.No.389 (Part) of Kalappanahalli Village, Karimangalam Taluk, Dharmapuri District has been granted to Thiru.A.Sasimohan, S/o K.P.Anbalagan for a period of 10 years from 26.12.2017 to 25.12.2027 vide reference 1st cited after obtaining Environmental Clearance vide DEIAA Letter No.08/DEIAA-DPI/ Ec.No.08/2017 dated.31.10.2017 valid upto 25.12.2022.

In the reference 2nd cited, Thiru.A.Sasimohan, S/o K.P.Anbalagan have requested to furnish the details of all mines/quarry located within 500 mts. radius from the lease area for obtaining extension of environmental clearance from SEIAA for carrying quarry operation in the remaining lease period.

219

< ASL

As requested, the following are furnished.

۰

• • • •

Abandoned Quarry

		he following are Abandoned (**	
S	. Name and Address o				
N		of Taluk & Village	≥ S.F.No	 Extent (in Hects.) 	Remark
1.	Tmt.Malliga, W/o.K.P.Antialagan, Kerakodahalli Village and Post, Palacode Taluk, Dharmapuri District.	Karimangalam 8 Kalappanahalli	390	1.24.0	
2.	Tmt.A. Mallika, W/o. Manikam, Kairukaran kottai Villagi Kerakodhalli Post, Karimangalam Taluk, Dharmapuri District.	e, Karimarigalam & Kalappanahalli	372/1,2	1,10.5	a)
З.	Tmt.Saradhasekar, W/o.M.G.Sekar, 10-A Appavoo Nagar, Dharmapuri	Karimangalam & Kalappanahalli	334/1, 383/1,4	1.51.0	
4,	Tmt.Malliga, W/o.K.P.Anbalagan, Kerakodahalli Village and Post, Karimangalam Taluk, Dharmapuri District	Karimangalam & Kalappanahalli	334/2, 383/2,5	0.84.0	
5.	Thiru.P.Saravanan, Panneer Selvam, 1/3, Chinnapoolapatty Village,Karimangalam Taluk, Dharmapuri District.	Karimangalam & Kalappanahalli	335	1.78.0	
6.	Thiru.P.Ravisankar, S/o.Paneer Selvam, 1/3, Chinnapoolapatty Village,Karimangalam Taluk, Dharmapuri District.	Karimangalam & Kalappanahalli	333(Part)	1.74.0	
Th	Thiru.P.Saravanakumar, S/o.Rajagopal, 1/183, Kerakodhalli Post, Karmiangalam Taluk, Dharmapuri District.	Karimangalam & Kalappanahalli	384	0.69.0	
			Total	8.90.5 Hects.	

220

< A.S.

279

-3794-

Existing Quarry

۲

0 0 0

¢

0

•

0

...............

۲

٠

0

000

.

0

SI. No.	Name and Address of the lessee	Taluk &Village	S.F. No.	Extent (in Hects.)	Classificat ion of land	Lease
1.	Tmt.M.Mallika, W/o P.Manickam, 5/20, Kairukarankottai, Kerakodahalli post, Karimangalam Taluk, Dharmapuri District	Karimangalam & Kalappanahalli	401 (Part	3.70.0	Govt. Poramboke land	12.02.2018 to 11.02.2028
z.	M.G.Sekar, 10-A Appavoo Nagar, Dharmapuri	Karimangalam Kalappanahalii	329/1A, 331/1A, 1B, 1C, 331/2, 332/1, 332/2,3	2.55.5	Patla land	08.03.2019 to 07.03.2024
			Total	6.25.5 H	ects.	

Proposed Quarry

SI. No.	Name and Address of the lessee	Village & Taluk	S.F.No.	Extent (in	Classification of land
1.	M.G.Sekar, No.10-A, First Street, Appavu Nagar, Dharmapuri Taluk & District	Karimangalam & Kalappanahalli	387/3, 387/4	Hects.)	Patta land
2.	M.G.Sekar, No.10-A, First Street, Appavu Nagar, Dharmapuri Taluk & District	Karimangalam & Kalappanahalli	385	0.66.0	Patta land
			Total	3.07.0 Hec	ts.

Assistant Director, Geology and Mining, Dharmapuri.

< A.S.

From

Dr.G.Panneer Selvam., Assistant Director, Geology and Mining, Dharmapuri. То

Thiru.A.Sasimohan, S/o. K.P.Anbalagan, 1/136, Kerakodahalli Village and Post, Karimangalam Taluk, Dharmapuri District.

it

11

Ġ.

é

μi

Roc.No.308/2022(Mines) Dated: 03.03.2023.

Sir,

- Sub:- Mines and Minerals Minor Mineral Rough Stone-Scheme of Mining - Rough Stone Quarry lease granted through Tender Cum Auction for a period of 10 years in S.F.No. 389(Part) over an extent of 2.02.5 Hects, Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District to Thiru.A.Sasimohan -Environmental Clearance produced for 1st five years -Scheme of Mining prepared and submitted for II^{ed} five year periods for approval - reg.
- Ref:- 1) The District Collector, Dharmapuri proceedings Roc.No.155/2017(Mines) dated 26.12.2017.
 - The District Environment Imapct Assessment Authority Environmental Clearance Letter No. 08/DEIAA-DPI/EC.No.08/2017 dated 31.10.2017
 - Thiru.A.Sasimohan, S/o. K.P.Anbalagan, 1/136, Kerakodahalli Village and Post, Karimangalam Taluk Dharmapuri District letter received this office on 05.12.2022.
 - Assistant Director of Geology and Mining, Dharmapuri inspection report dated 24.11.2022.
 - This office letter addressed to Revenue Divisional Officer, Dharmapuri vide Rc.No. 308/2022(Mines), dated 24.11.2022.
 - Revenue Divisional Officer, Dharmapuri Rc.No. 7143/2022/A5, dated 28.02.2023 & 02.03.2023.
 - Other connected Records.

Kind attention is invited to the references cited.

 A quarry lease for quarrying Rough Stone over an extent of 2.02.50 Hectares of Government Poramboke land in S.F.No.389(Part) of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District has been granted under Rule 8(8) of TamilNadu Minor Mineral Concession Rules, 1959 through Tender Cum Auction to Thiru.A.Sasimohan for a period of 10 years from 26.12.2017 to 25.12.2027 vide District Collector, Dharmapuri proceedings in the reference 1st cited. In this connection the lessee has submitted approved mining plan for the 1st five years period.

3) The lessee has obtained Environmental Clearance from the District Environment Impact Assessement Authority in Letter No. 08/DEIAA-DPI/EC.No.08/2017 dated 31.10.2017 for a period of five years valid up to 31.10.2017 vide reference 2nd cited.

4) In the reference 3rd cited, Thiru.A.Sasimohan has submitted three copies of the Scheme of Mining prepared for the subject quarry lease area for the next five years period.

5) In this connection, the subject quarry lease area was inspected by the Assistant Director of Geology and mining and reported that, the lessee has operated the quarry operations without providing safety distances as conditioned in the lease agreement. Therefore the Revenue Divisional Officer, Harur had been requested to take necessary penal action for the violations made under Rule 36(A) of TamilNadu Minor Mineral Concession Rules, 1959 vide this office reference 5th cited.

L)L

,85

西

6) The Revenue Divisional Officer, Dharmapuri, has levied a penalty of Rs.25,000/- for the violations made by the lessee and the same was realized vide reference 6th cited dated 28.02.2023 & 02.03.2023 respectively.

7) In the circumstances stated above, The Scheme of Mining submitted by the lessee has been scrutinized as per rule 41 of the TamilNadu Minor Mineral Concession Rules, 1959 and the guidelines issued by the Commissioner of Geology and Mining, Chennai in letter Rc.No.3868/LC/2012, dated 19.11.2012 and also based on the available records and ground realities. As authorized by the Commissioner of Geology and Mining, Chennai in letter Rc.No.3868/LC/2012, dated

19.11.2012, I hereby approve the Scheme of mining prepared for the subject area. This approval is subject to the following conditions:

- That the Scheme of Mining is approved without prejudice to any other law applicable to the quarry lease from time to time whether such laws are made by the Central Government, State Government or any other authority.
- ii) This approval of the Scheme of Mining does not in any way imply the approval of the Government in terms of any other provisions of the Mines and Minerals (Development and Regulation) Act, 1959 or any other connected laws including Forest (Conservation) Act, 1980, Forest Conservation Rules, 1981, Environment Protection Act, 1980, Indian Explosives Act, 1884 (Central Act IV of 1884) and the Rules made there under the TamilNadu Minor Mineral Concession Rules, 1959.
- iii) That the Scheme of Mining is approved without prejudice to any other order or direction from any court of contempt jurisdiction.
- iv) Quarrying shall be done as per the approved Scheme of Mining and that the Scheme of Mining is approved without prejudice to any other law applicable to the quarry lease from time to time whether such laws are made by the Central Government, State Government or any other authority.
- v) The lessee should take necessary measures to provide the distances of 10mts and 7.5 mts to the adjacent Government Poramboke lands and patta land.

The lessee Thiru.A.Sasimohan is directed to produce Environmental Clearance from the State Level Environment Impact Assessment Authority, Chennai over the subject area as per rule 42 of the TamilNadu Minor Mineral Concession Rules, 1959 for carrying quarry operation for the next five years.

Encl.:

2 Copies of approved Scheme of Mining.

Assistant Director, Geology and Mining, Dharmapuri.

Copy to:

The Commissioner of Geology and 44 ming, Chennai-32,

SCHEME OF MININ

FOR KALAPANAHALLI VILLAGE ROUGH STONE MINING LEASE SCHUDING

PROGRESSIVE QUARRY CLOSURE PLAN

Government land /Opencast, Semi-Mechanized mining/non-forest/Non-captive use / 'B2' Category (Lease Period: 26.12.2017 – 25.12.2027 for 10 years lease period)

Scheme of Mining Period: - 2022-2023 to 2026-2027

(Prepared under rule 41 (3) (i) and submitted under rule 41 (8) (i) of Tamil Nadu Minor Mineral Concession Rules, 1959)

LOCATION OF THE LEASE AREA

STATE		TAMILNADU
DISTRICT	3	DHARMAPURI
TALUK		KARIMANGALAM
VILLAGE	1	KALAPANAHALLI
S.F. No.		389 (PART)
EXTENT	3	2.02.5 HECTARES

ADDRESS OF THE APPLICANT

Thiru.A. SASIMOHAN,

S/o. K.P.Anbalagan, No.I/136-A, Kerakodahalli Village, Karimangalam Taluk, Dharmapuri District.

PREPARED BY

Dr.S.KARUPPANNAN.M.Sc., Ph.D.,

RQP/MAS/263/2014/A

GEO TECHNICAL MINING SOLUTIONS

(A NABET Accredited & ISO certified Company) No: 1/213 -B, Ground Floor, Natesan Complex. Oddapatti, Collectorate Post office, Dharmapuri -636705. Tamil Nadu. Mob. : +91 9443937841, +917010076633, E-mail: info.gimsdpi@gmail.com Website: www.gtmsind.com

	CONTENTS	S TA HAR 2
SI. No.	Description	Page No.
-	Certificates	5-8 mai caria
543	Introductory notes	9
1.0	General	- U
2.0	Location and Accessibility	13
	PART-A	
3.0	Geology and Mineral reserves	16
4.0	Mining	21
5.0	Blasting	27
6.0	Mine drainage	29
7.0	Stacking of mineral rejects and disposal of waste	30
8.0	Uses of mineral	30
9.0	Others	31
10.0	Mineral processing/Beneficiations	32
	PART-B	
11.0	Environmental management plan	34
12.0	Progressive mine closure plan	39
13.0	Financial assurance	42
14.0	Certificates	42
15.0	Plan and sections, etc	42
16:0	Any other details intend to furnish by the applicant	42
17.0	CSR Expenditure	43

	A	N	NE	XU	IR	ES
--	---	---	----	----	----	----

78

Buit Blan Bran

1010 ×

SL No.	Description	Annexure No.
1.	Copy of Tender Gazette Notification	ALBORNON D
2.	Copy of previous precise area communication letter	п
3.	Copy of previous approval letter	m
4.	Copy of previous lease particulars a. Environmental Clearance certificate b. TNPCB CTO & CTE consent c. District Collector proceeding letter d. Lease execution deed	īv
5.	Copy of DFO letter	v
б,	Copy of the FMB (Field Measurement Book)	VI
7.	Copy of combine sketch	VII
8.	Copy of "A' Register and adangal	VIII
9,	Photo copy of the lease area	IX
10.	Copy of explosive willing letter, agreement from explosive license holder & explosive license	x
11.	Copy of ID Proof of the authorized signatory	XI
12.	Copy of RQP certificate	XII

	LIST OF PLATES		(T 3 NAR
SI. No,	Description	Plate No.	Scale
1	Кеу Мар	1	Not to scale
2	Location Plan	I-A	Not to scale
3	Toposheet Map	I-B	1:1,00,000
4,	Satellite imagery map	I-C	1: 5,000
5	Environmental plan	I-D	1; 5,000
6	Mine lease plan	п	1:1000
7	Surface, Geological plan	ш	1:1000
8	Geological section	ША	Section HOR 1:1000 VER 1:500
9	Year wise Development and Production plan	1V	1:1000
10	Year wise Development and Production section	IVA	Section HOR 1:1000 VER 1:500
11	Mine layout plan and land use pattern	v	1:1000
12	Conceptual plan	VI	1:1000
13	Conceptual section	VIA	Section HOR 1:1000 VER 1:500

11

H

228

ž

20 M H

A. SASIMOHAN, S/o. K.P.Anbalagan, 1/136-A,Kerakodahalli Village, Karimangalam Taluk, Dharmapuri District.

CONSENT LETTER FROM THE LESSEE

The Scheme of Mining in respect of existing rough stone quarry lease in S.F.No :

389 (P), over an extent of 2.02 Shectares of Kalapanahalli Village, Karimangalam Taluk,

Dharmapuri District, Tamil Nadu State has been prepared by

Dr. S. KARUPPANNAN., M.Sc., Ph.D. Regn. No. RQP/MAS/263/2014/A

I request the Assistant Director, Department of Geology and Mining, Dharmapuri District to make further correspondence regarding modifications of the scheme of mining with the said Recognized Qualified Person on this following address

> Dr.S.KARUPPANNAN,M.Sc.,Ph.D. RQP/MAS/263/2014/A GEO TECHNICAL MINING SOLUTIONS (A NABET accredited & ISO certified Company) No: 1/213-B, Ground Floor, Natesan Complex, Oddapatti, Collectorate Post office, Dharmapuri-636705 Ph: +91 9443937841, +917010076633, E-mail: info.gtmsdpi/@gmail.com, Website: www.gtmsind.com

I hereby undertake that all modifications so made in the Scheme of Mining the Recognized Qualified Person may be deemed to have been made with my knowledge and consent and shall be acceptable to me and binding on me in all respects.

Place: Dharmapuri, TN

Date:

Signature of the applicant (A. SASIMOHAN)

229

indition allow

MAR 201

ក្សារណ៍ក្នុង

ាំ ហេតុការធំ ភូមិ

2.000

A.SASIMOHAN, S/o.K.P.Anbalagan, 1/136-A,Kerakodahalli Village, Karimangalam Taluk, Dharmapuri District.

DECLARATION

............

The Scheme of Mining in respect of existing rough stone quarry lease in S.F. No: 389 (P), over an extent of 2.02.5hectares of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District, Tamil Nadu State have been prepared with my consultation and I have understood the contents and agree to implement the same in accordance with the Mining Laws.

Place: Dharmapuri, TN

Date:

Signature of the applicant (A. SASIMOHAN)

Dr.S.KARUPPANNAN,M.Sc.,Ph.D. RQP/MAS/263/2014/A GEO TECHNICAL MINING SOLUTIONS (A NABET accredited & ISO certified Company) No: 1/213-B, Ground Floor, Natesan Complex, Oddapatti, Collectorate Post office, Dharmapuri-636705 Ph: +91 9443937841, +917010076633, E-mail: info.gtmsdpi@gmail.com, Website: www.gtmsind.com

CERTIFICATE

This is to certify that, the provisions of 8 (a) and (c) of Tamil Nadu Minor Minerals Concession Rules, 1959 have been observed in the Scheme of Mining for an existing rough stone quarry lease in S.F.No: 389(P), over an extent of 2.02.5hectares of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District, Tamil Nadu State applied to **Thiru.A.Sasimohan**, Dharmapuri District - 635111.

Wherever specific permission / exemptions / relaxations or approvals are required, the applicant will approach the concerned authorities of State and Central governments for granting such permissions etc.,

Place: Dharmapuri, TN Date: 14 4 2022

mor

괸

¢.

N

en arange

MAR

的状态增加

in regionen a

Signature of the Redognized Qualified Person. Dr. S. KARUPPANNAN, M. P.D., ROP/MAS/263/2011/4 GEO TECHNICAL MINING 5 - 0110NS 1/213-8, Ground Float, Nates - Complex, Collectorate Post Office Of - path, Obsermation: 636 705; Tamil More India. Dr.S.KARUPPANNAN,M.Sc.,Ph.D. ROP/MAS/263/2014/A GEO TECHNICAL MINING SOLUTIONS (A NABET accredited & ISO certified Company) No: 1/213-B, Ground Floor, Natesan Complex, Oddapatti, Collectorate Post office, Dharmapuri-636705 Ph: +91 9443937841, +917010076633, E-mail: info.gtmsdpi@gmail.com. Website: www.gtmsind.com

CERTIFICATE

Certified that, in preparation of Scheme of Mining in respect of existing rough stone quarry lease in S.F.No : 389(P), over an extent of 2.02.5hectares of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District, Tamil Nadu State prepared to Thiru.A.Sasimohan, Dharmapuri District - 635111, Covers all the provisions of Mines Act, Rules, and Regulations etc made there under and whenever specific permission are required, the applicant will approach the Director General of Mines Safety, Chennai. The standards prescribed by DGMS in respect of Mines Health will be strictly implemented.

Place: Dharmapuri, TN 14 Date:

GAT

1.0

2.5.98

ň

liaios

BIO

and an

MAR

板截出山

abrab common a

Signature of the Recognized Qualified Person.

DL S. KARUPPANNAN, MEG.PhD. 20P/MAS/263/2014/A **INCOMPANIES AL MINING SOLUTIONS** 17712-E. Ground Plaor, Natesan Complex, (Indectores Puct Office, Oddapatt), Dhamble 138305 Tamil Nadu, India.

FOR KALAPANAHALLI VILLAGE ROUGH STONE MINING LEASE INCLUDING PROGRESSIVE OUARRY CLOSURE PLAN

Government land /Opencast, Semi-Mechanized mining/non-forest/Non-captive use/

B2 Category

(Lease Period: 26.12.2017 - 25.12.2027 for 10 years lease period) Scheme of Mining Period: - 2022-2023 to 2026-2027

(Prepared under rule 41 (3) (i) and submitted under rule 41 (8) (i) of Tamil Nadu Minor Mineral Concession Rules, 1959)

INTRODUCTORY NOTES:

- a) Lease particulars: The Thiru.A. Sasimohan, S/o. K.P. Anbalagan has residing at 1/136-A, Kerakodahalli Village, Karimangalam Taluk, Dharmapuri District, TamilNadu State - 635111 and the District Collector, Dharmapuri, has granted a quarry lease for a period of 10 years his proceedings letter vide Roc.No.155/2017 (Mines) dated .12.2017 and lease was executed from 26.12.2017 to 25.12.2027 in favor of Thiru.A. Sasimohan to quarrying rough stone in Government poramboke Land at S.F.No : 389(P), over an extent of 2.02.5hectares of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District, Tamil Nadu State.
- b) Previous mining plan approved & EC: The Mining plan was prepared Recognized Qualified Person as per precise area communication letter Roc.No.155/ 2017(Mines) dated 07.08.2017 and got approved by the Assistant Director, Department of Geology and Mining, Dharmapuri letter vide Roc.No.155/2017(Mines) dated 05.09.2017 and Environmental Clearance was obtained from the District level Environmental Impact Assessment Authority (DEIAA), Dharmapuri vide Lr.No. 08/ DEIAA-DPI/EC-No.08/2017 Dated 31.10.2017. (Ref. Annexure- IV). The mining lease deed was executed on 26.12.2017 and the lease will be expiry on 25.12.2027 (Ten years plan period).
- c) Preparation and submission of scheme of mining: Accordingly, scheme of mining with progressive mine closure plan has prepared under rule 41 (3) (i) and submitted under rule 41 (8) (i) of Tamil Nadu Minor Mineral Concession Rules, 1959 for a existing quarry of rough stone of Government Land in S.F.No : 389(P), over an extent of 2.02.5hectares of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri

Sand analogo

MAR

10 points

District, Tamil Nadu State vide the District Collector, Dharmapuri, his proceedings letter vide Roc.No.155/2017(Mines) dated .12.2017.

d) <u>Present existing pit dimensions</u>: During this, previous mining period the Sugh stone was exploited and there is existing pit was noticed with an average pit dimension as given under the table and the existing pit marked in the surface. Geological plan (Ref Plate No: III).

Pit no's	Length(m)	Width(m)	Depth(m)	Area (Hect)
1	130	60	9 AGL	0.78.0
Ш	45	69	5 BGL	0.31,05

e) <u>Previous approved quantity and achieved quantity</u>: As per the previous approved Mining plan, the proposed quantity of Mineable reserves is 260105m³ of rough stone and 32556m³ of topsoil up to depth of 37m (12m above the ground level + 25m below ground level). The approved year wise production of 153815m³ of rough stone up to a depth of 17m (which is 12m above the ground level and 5m below ground level). The details of approved and achieved production in the below,

		Approved qu	iantity (m ³)	Achieved quar	atity (m ³)
S.No	Year	Rough stone	Topsoil	Rough stone up to June-2022	Topsoil
1	2017-2018	31920	25256	7500	
2	2018-2019	29900		12600	
3	2019-2020	31725	1217	16200	2455
4	2020-2023	33000	322	40500	(12)
5	2021-2022	27270	7300	9000	
_	Total	153815	32556	85800	1117

f) <u>Updated Geological resources and Mineable reserves</u>: The lease area of 2.02.5hectares have been splitted into two sections XY-AB and XY-CD. In both sections, the same applicant quarried about 12m depth above the ground level of area in the previous lease period. Now, he continued the lease on the same area to do quarry of 37m below the ground level.

The updated geological resources were computed by cross section method with respect to the boundaries of the lease area. In this method, the lease area was divided into two sections (longitudinal and transverse) to calculate the volume of material up to the depth of 37m (which is 12m (R.L.484m-472m) above ground level (AGL) +

25m (R.L.472m-447m) below ground level (BGL). Using the cross-sectional method, total resources is estimated to be 561449m³ including the resources of safety zone, and topsoil. Of which, rough stone is about 559631ml-and tailing the resources of about 1818m³ (Refer Plate No's, III & IIIA).

The updated mineable reserve is estimated to be **174609m³** by deducting the reserve safety zone, block in benches from the total Geological resources. Of which, rough stone is about **174305m³** and topsoil is about **305m³** upto a depth of 37m (which is 12m (R.L.484m-472m) above ground level (AGL) + 25m (R.L.472m-447m) below ground level (BGL) (Refer Plate No's. VI & VIA) after leaving necessary safety distance from the lease boundary.

- g) <u>Proposed Production Schedule</u>: Total proposed production of rough stone is about 174305m³ up to a depth of 37m (which is 12m (R.L.484m-472m) above ground level (AGL) + 25m (R.L.472m-447m) below ground level (BGL) for five years plan period. Average production is 34861m³ of rough stone per year (Refer Plate No's. IV & IVA).
- h) Environmental Sensitivity of the Proposed Lease Area: -
 - Interstate Boundary: No interstate boundary around 10Km radius periphery of proposed lease area.
 - Wildlife Protection Act, 1972: There is no wild life animal sanctuary within radius of 10Kms from the project site area under the Wildlife (Protection) Act, 1972.
 - 3. Indian Reserve Forest Act, 1980: The is no reserve forest about 10km radius. The nearest reserve forest is Mallehalli RF is situated about 14.7km away from the western side of the lease area.
 - CRZ Notification, 2019: There is no Sea coastal zone found around 10km radius and this project site doesn't attract CRZ Notification, 2019.

й.,	Name of the Applicant	1	Thiru.A.SASIMOHAN
	Applicant address	1	Thiru.A.SASIMOHAN, S/o. K.P.Anbalagan, 1/136-A,Kerakodahalli Village, Karimangalam Taluk, Dharmapuri District,
	District		Dharmapuri
	State	+	Tamil Nadu

1.0 GENERAL:

	Pin code	4	635111 (Juis@1910	2
	Phone	E		12 - 50
	Fax		Nil	1
j)	Gram	1	NII A TAMAR	10
	Telex	Б	Nil	Т
	E-mail	1		1
5.	Status of the applicant			E D
	Private individual		Private individual	P
	Cooperative Association	:		
	Private company	÷		1
	Public Company	E		L
	Public Sector Undertaking	E.	A+++ 2	L
	Joint Sector Undertaking	1		
	Other (pl. specify)	11		
	Mineral(s) Which are occurring in the area and which the applicant intends to mine	÷.	Rough Stone quarry lease	
d.	Period for which the mining		The District collector, Dharmapuri has lease	
	lease granted /renewed/ proposed to be applied	÷	deed executed to the project proponent for the period of 10years	
C.	Name of the RQP preparing the Mining Plan	1.	Dr. S.KARUPPANNAN, M.Sc., Ph.D.	
	Address	×	GEO TECHNICAL MINING SOLUTIONS (A NABET accredited & ISO certified Company) No: 1/213-B, Ground Floor, Natesan Complex, Oddapatti, Collectorate Post office, Dharmapuri-636705 Ph: +91 9443937841, +917010076633, E-mail: info.gtmsdpi@gmail.com, Website: www.gtmsind.com	
	Phone	+	+91 9443937841, 7010076633	÷.
	Fax	T	Nil	
	e-mail	-	info.gtmsdpi@gmail.com	
	Telex		Nil	
	Registration Number	1	ROP/MAS/263/2014/A	
	Date of grant/renewal	+	16.12.2014	
	Valid upto		15.12.2024	
f.	Name of the prospecting	+	The commissioner,	
	In the second state of the second se second second sec	1	Department of Geology and Mining	
	Address	4	Department of Geology and Mining, Department of Geology and Mining, Thiru Ve Ka Industrial Estate, Guindy, Chennai.	
	Phone	÷	044-22501874	
g.	Reference No. and date of consent letter from the state government	1.000		

Details of the Area:	Refe	r plate no: IA & IB
District & State	Dhar	mapuri, Tamil Nudu 3 MAR
Taluk	Kari	mangalam
Village	Kala	panahalli wana wa
Khasra No./ Plot No./ Block Range / Felling Series etc.	389(P)
Lease area (hectares)	2.02	5 hectares
Whether the area is recorded to be in forest (please specify whether protected, reserved, etc)	Gove	proposed lease area is recorded as rmment land. Copy of land ments are enclosed. (Ref. Anne. /III)
Ownership / Occupancy	: Gov	ernment of Tamil Nadu
Existence of Public Road / Railway line if any nearby and approximate distance	v n ~ N a ~ 1 1 1 1 7	exploited rough stone materials will be transported to through the art track is situated on the ortheastern side. Northing of SH- road is situated round 5km radius. The NH-44-road is situated at .79km away on the eastern side of the lease area. There is no railway line situated round 5km radius.
Toposheet No. with latitude and longitude	Latit	osheet No. 57 L/04 ude : From 12° 14' 42.56830" N To 12° 14' 47.16412" N itude: From 78° 10' 33.87094" E to 78° 10' 41.82401" E

		the lease bound s conducted in s		IL OH A CH. MANN	Malaka	The second and
ID	Latitude (Global)	Longitude	Easting	Northing	Elivation	3-448-202
BS	12" 11' 42.56830" N	(Global) 78° 10' 41.56515" E.	(Meter) 192089 3815	(Metrr) 1355267.364	1(Meigr)	ROCKMARK
11		ROVER POINTS (2	and the second second second	1.1.20.3/12/12/13	A DESCRIPTION OF THE OWNER.	
10	Latitude (Global)	Lingitude (Global)	Easting (Meter)	Northing (Meter)	Elevation (Meter)	fusture Code
-V	12" 14',45,499427.14	78" 10741.82401" E.	192998-1852	1355354.643	471.682	Boondary Point
1	12*14/43/290317.0	19" HFALA7232" E.	192993.075	1355304.994	471,564	buermediate point
3	12" 14' 42 56830" M	78° 112 41 563152° B	1929/89.3815	1355267.364	471.057	Rock mail: + (Boundary Point)
4	12*14*42.93552*39	78* 10 39.95161* E	192940.7586	1355379-162	484.923	bitermediate phint
5	12*14 43.33181*31	70° 10' 30.34295° E	192892 2334	1355291.856	484.945	fintermediate point
6	12*14/43 72634*34	78*10 36 73964* E	192841.8692	1355304.495	492.165	Internation
7	12" 14" 14.12295" N	TR* 107.35.13111* E	192795.3645	1355317.199	471.558	Intermediane
	12* 14* 64.43544* N	28° 40' 33.87094' E	192757.332	1355327.147	476.59	Rock mark * (Boundary Point)
9	12" 14" 45,92671" N	THE 10 24 (1404) E	192777.2679	1355572,862	471.326	Intermediate
10	12*18-47.16412*1	78° 10' 35.04715° E	192793.7872	1355410.744	471.383	Ravenue Stone + (Boundary
11	12*14*47.25071*N	18" (0") 5.94007" E	192821.0838	1355413.123	471.976	Print Doundary Point
12	12° 10 6694361° N	78° 10' 35,68231" E	192873.414	1355403.132	472.105	Interescitate
13	12"14"4637111" N	78* 00'39/22011" E	192919.982	1353385.05	472.198	pooit Inistenediaiz
14	12" 14" 46 126 11" N	78" 10' 39 254684" E	192920.7042	1355377.496	472,297	point Boundary Point
15	12" H1 45 79854" N	TE* 10' 45 8TV15" E	192969 731	1355366.938	191	Intermediate point
16	12*1414535664*IN	78" 10 41 64097" 8	192992.6709	1335398.621	471.683	Boundary Point
-	cultural, Grazin			s a existing		sae area.
vicin ooun orop hat urve or a he c hese sh	th a genera ity map idaries and osed access rol the area to f the area to f the area to f the area to f the area to f cadastral map case may be. Ho case may be. Ho case may be. Ho case available, town on an acc cale of 1 : 5000	showing a existing a uts. It is preferr be marked on ographical m or forest map owever if none the area shou urate sketch m	rea nd red a ap as of udd	fer plate no		

ŧ.

	Place	Distance	Direction
office	Periyampatti	1.97Km	* (NOTIMAR
ce station	Karimangalam	7.17km	Nonh
station	Dharmapuri	15.5km	Southenin
ical facility	Periyampatti	2.03km	NE
loi	Periyampatti	1.51Km	NE
vay station	Dharmapuri	13.4km	South
facility	Chennai	247.5km	East
ort	Salem	52.7km	South
office	Dharmapuri	13.0km	South
iges	Periyanahalli	2.04km	North
	Kuppangari	0.51 km	South
	Periyampatti	2.20km	East
	Begarahalli	4.58km	West
	station ical facility ol vay station facility ort	stationDharmapuriical facilityPeriyampattiolPeriyampattiolDharmapurivay stationDharmapurifacilityChennaiortSalemofficeDharmapurigesPeriyanshalliKuppangariPeriyampatti	stationDharmapuri15.5kmical facilityPeriyampatti2.03kmolPeriyampatti1.51KmolDharmapuri13.4kmfacilityChennai247.5kmortSalem52.7kmofficeDharmapuri13.0kmgesPeriyanshalli2.04kmKuppangari0.51 kmPeriyampatti2.20km

239

÷

.

PART-A

3.0 GEOLOGY AND MINERAL RESERVES:

(a) Briefly describe the topography and general geology and local mine geology of the mineral deposit including drainage pattern:

(i)	Topography	The lease area exhibits an elevated topography which is elevation difference of 6m. The highest elevation observed in center of the lease area is 484m AMSL, whereas the lowest elevation in East and western side as respectively of 478m AMSL. The lease area is exploited and reached depth is 12m AGL. The area is sloping towards east and western side and falls in Toposheet no. 57 L/04.
100	General Geolo	

(ii) General Geology:

a) Geology:

The geological formations of the district belong mainly to Archaean age along with rock of Proterozoic age. The former is represented by Khondalite Group of rocks, Chamockite Group of rocks, Migmatite Complex, Sathyamangalam Group of rocks, Bhavani Group of rocks and Kolar Alkaline rocks. The Khondalite Group includes garnet-sillimanite gneiss and quartzite which occur as small patches. The Charnockite Group occupies a major part of southern part of this district, and it is mainly charnockites along with some small bands of pyroxene granulites and magnetite quartzite. Two small patches of pyroxenite and gabbro are seen to occur in the pyroxene granulite near about 10 km. NE of Harur. The Migmatite Complex includes garnetiferous quartzofeldspathic gneiss and hornblende-biotite gneiss, the former exposed on the western part of the district. The Sathyamangalam Group of rocks include fuchsite quartzite, sillimanite mica schist and amphibolites. The Bhavani Group in this area includes fissile hornblendebiotite gneiss, granitoid gneiss and pink migmatite. Amphibolites with banded ferruginous quartzite and associated quartzo-feldspathic rocks (Chapion Gneiss) represent the Kolar Group and are found west and southwest of Veppanapalli. Following this there are basic intrusions occurring as dykes. The Alkaline Complex is represented by epidote-hornblende gneiss, ultramafics, syenite and carbonatite and these are distributed in the eastern

part of the district. Innumerable basic dykes and felsites, quartz, barites and pegmatite veins form part of the Alkali Complex. e/ MAR

Order of superposition as under,

Age	Group	Rock Formation
Recent to Sub recent	canada .	Topsoil Lapogui
Proterozoic	Alkali/Ultrama fic complex	Felsite's porphyre biotite dyke Carbonatite
Archaean to lower Proterozoic		Dolerite granite
	Kolar Group	Meta basalt, Metagabbro
Archaean	Migmatite complex	Hornblende -biotite gneiss
	Ultrabasic complex	Gabbro/Proxenite
	Charnockite Group	Magnetite quartzite, Pyroxene Granulite, Charnockite
	Khondalite Group	Quartzite Garnet-sillimanite gneiss

(iii)

Local / Mine Geology of The Mineral Deposit :

a) Topography of the proposed lease area:

The lease area exhibits an elevated topography which is elevation difference of 6m. The highest elevation observed in center of the lease area is 484m AMSL, whereas the lowest elevation in East and western side as respectively of 478m AMSL. The lease area is exploited and reached depth is 12m Above Ground Level.

The Surface plan showing elevation, contour, existing pit dimension, accessibility road and Geological map was prepared the lease area.

b) Mode of origin:

The Charnockite series originally was assumed to have developed by the fractional crystallization of silicate magma. Subsequent studies have shown, however, that many, if not all, of the rocks are metamorphic, formed by recrystallization at high pressures and moderately high temperatures.

c) Physiography of the rocks:

Dark colour and clouding of the feldspars are typical features of these rocks as bluish in quartz

d) Chemical composition of rocks:

The compositional characteristics of coexisting or hopyroxene, earner, and biotite have established several petrographic varieties within the Charnockites-Enderbites such as the granulite's and grosses. Plantine factor feldspars, alkali feldspars and quartz are the salic minerals present in the series of rocks.

Order of superposition of rocks in the proposed site:

	Ag	ze .		Group	Rock Formation
	Recent to S	Sub ree	cent	****	Topsoil
	Arch	acan		Charnockite Group	Charnockite:
(iv)	Drainage Pattern	(1)	with natur	in a radius of 100m as re and receive flow du	bodies like rivers, etc., located nd these are also ephemeral in aring monsoon period only. In y area, the drainage pattern is

sub-dentritic and dentritic. Radial and parallel drainage

(b) The topographic plan of the lease area prepared on a scale of 1 :1000 or 1 : 2000 with contour interval of 3 to 10m depending upon the topography of the area should be taken as the base plan for preparation of geological plan. The details of exploration already carried out including evidences of mineral existence should be shown on the geological plan:

patterns are also in the study area.

a. Present status:	 No exploration carried out. The lease area in S.F.No. 389(P) was presently operated quarrying of rough stone, Thiru.A.Sasimohan, over an extent of 2.02.5hectares, the District Collector, Dharmapuri has granted a quarry lease for a period of 10 years his proceedings letter vide Roc.No.155/ 2017 (Mines) dated .12.2017 and lease was executed from 26.12.2017 to 25.12.2027 The two existing pit level was noticed with an average pit dimension of Level-I, L130m X W60m X H9m AGL and level-II, L45m X W69m X D5m BGL. Hence, RQP personally examined during mining survey
--------------------	---

242

	b. Surface Pla	: :	pit and acce of 1: 1000, a	ssibility road was as shown in Plate N	1 # / T . A. HUMA
(c)	Geological should be suitable inte scale of 1: 2000:	1.1.2.1.2.1.2.1.1.2.2.1.1.2.2.1.1.2.1.1.1.2.1	sections we	re prepared at the l the vertical scale of	borizantal scale of a
(d)	anna Sharana	the future pro		Alteres and Standard	loration, taking int next five years as i
	Year	No.of boreholes	Total meterage	No.of Pits and Dimensions	No.of Trenches and Dimensions
	VI	N.A.			N.A
	VII	N.A.			N.A.
	VIII	N.A.			NA
	IX	N.A			N.A
	X	N.A			N.A.
e)	rock. Hence e	exploration proj	posal is not req	uired to this minin	homogeneous parer g project. duly supported b
e)	rock. Hence e Indicate geo standard me (giving split cut-off grade	exploration prop logical and re thod of estima up of various	posal is not req ecoverable re- tion and calc categories Le	uired to this minin serves and grade, sulations along wi c. proved, probable	g project.
(e)	rock. Hence e Indicate geo standard me (giving split cut-off grade leasehold.	exploration proj logical and re thod of estima up of various 2. Availability o	posal is not req ecoverable re- ation and calc categories i.e of resources s	uired to this minin serves and grade, sulations along wi proved, probable should also be ind	g project. duly supported b ith required section e, possible). Indicat
(e)	rock. Hence e Indicate geo standard me (giving split cut-off grade leasehold. The le AB and XY-	exploration proj logical and ra thod of estima up of various 2. Availability of ase area of 2.0 CD. In both se	posal is not req ecoverable re- ation and calc categories i.e of resources s 2.5hectares ha ctions, the san	uired to this minin serves and grade, sulations along wi proved, probable should also be ind we been splitted in ne applicant quarri	g project. duly supported b th required section e, possible). Indicat licated for the entir to two sections XY- ed about 12m depth
(e)	rock. Hence e Indicate geo standard me (giving split cut-off grade leasehold. The le AB and XY- above the gro	exploration proj logical and re thod of estima up of various 2. Availability of ase area of 2.0 CD. In both se bund level of a	posal is not req ecoverable re- ation and calc categories i.e of resources s 2.5hectares ha ctions, the san rea in the pre-	uired to this minin serves and grade, sulations along wi proved, probable should also be ind we been splitted in ne applicant quarri- vious lease period.	g project. duly supported b th required section e, possible). Indicat licated for the entir to two sections XY-
(e)	rock. Hence e Indicate geo standard me (giving split cut-off grade leasehold. The le AB and XY- above the gro the lease on t above ground	exploration proj logical and ra thod of estima up of various Availability of ase area of 2.0 CD. In both se bund level of a he same area to level (AGL) +	posal is not req ecoverable re- ation and calc categories i.e of resources s 2.5hectares ha ctions, the san rea in the pre- o do quarry of 2.5m (R.L.472	uired to this minin serves and grade, sulations along wi proved, probable should also be ind we been splitted int ne applicant quarri- vious lease period. 37m (which is 12r 2m-447m) below gr	g project. duly supported b th required section e, possible). Indicat licated for the entir to two sections XY- ed about 12m depth Now, he continued n (R.L.484m-472m) round level (BGL).
(e)	rock. Hence e Indicate geo standard me (giving split cut-off grade leasehold. The le AB and XY- above the gro the lease on t above ground The u	exploration proj logical and ra thod of estima up of various Availability of ase area of 2.0 CD. In both se bund level of a he same area to level (AGL) + pdated geologic	posal is not req ecoverable re- ation and calc categories i.e of resources s 2.5hectares ha ctions, the san rea in the pre- o do quarry of 25m (R.L.472 cal resources v	uired to this minin serves and grade, sulations along wi proved, probable should also be ind ve been splitted int ne applicant quarri- vious lease period. 37m (which is 12r 2m-447m) below gr vere computed by c	g project. duly supported b th required section e, possible). Indicat licated for the entir to two sections XY- ed about 12m depth Now, he continued n (R.L.484m-472m)
(e)	rock. Hence e Indicate geo standard me (giving split cut-off grade leasehold. The le AB and XY- above the gro the lease on t above ground The u with respect t divided into t	exploration proj logical and ra thod of estima up of various : Availability of ase area of 2.0 CD. In both se bund level of a he same area to level (AGL) + pdated geologie to the boundarie two sections (le	posal is not req ecoverable re- ation and calc categories i.e of resources s 2.5hectares ha ctions, the san rea in the pre- o do quarry of 25m (R.L.472 cal resources v es of the lease ongitudinal and	uired to this minin serves and grade, sulations along wi proved, probable should also be ind we been splitted int ne applicant quarri- vious lease period. 37m (which is 12r 2m-447m) below gr vere computed by c area. In this method i transverse) to cali	g project. duly supported b ith required section e, possible). Indicat licated for the entir to two sections XY- ed about 12m depth Now, he continued in (R.L.484m-472m) round level (BGL). cross section method d, the lease area was culate the volume of
(e)	rock. Hence e Indicate geo standard me (giving split cut-off grade leasehold. The le AB and XY- above the gro the lease on t above ground The u with respect t divided into t	exploration proj logical and ra thod of estima up of various : Availability of ase area of 2.0 CD. In both se bund level of a he same area to level (AGL) + pdated geologie to the boundarie two sections (lo to the depth of	posal is not req ecoverable re- ation and calc categories i.e of resources s 2.5hectares ha ctions, the san rea in the pre- o do quarry of 25m (R.L.472 cal resources v es of the lease ongitudinal and 37m (which is	uired to this minin serves and grade, sulations along wi proved, probable should also be ind we been splitted int ne applicant quarri- vious lease period. 37m (which is 12r 2m-447m) below gr vere computed by c area. In this method transverse) to cali- 12m (R.L.484m-4	g project. duly supported b ith required section e, possible). Indicat licated for the entir to two sections XY- ed about 12m depth Now, he continued in (R.L.484m-472m) round level (BGL). cross section method d, the lease area was

id topsoi	l is about	1818m ³ (Refer Pla	te No's. II	I & ША).	127	
		GEO	OLOGIC	AL RESC	DURCES	12 (F	3 MAR 20
Section	Bench	length in (m)	Width in (m)	Depth in (m)	Volum e in m ³	Rough Stone in m ³	Top Soil
	1	21	25	2	1050		1050
	II	13	19	5	1235	1235	
ĺ	ш	23	31	2	1426	1426	××1++
	ш	150	95	3	42750	42750	
XY- AB V VI VII VII VII VII VII VII VII VII V	IV	155	95	5	73625	73625	
	V	171	95	5	81225	81225	
	VI	171	95	5	81225	81225	
	VII	171	95	5	81225	81225	
	VIII	171	95	5	81225	81225	2003
				TOTAL	444986	443936	1050
	i Li	24	16	2	768	1.7111	768
	11	27	19	5	2565	2565	+++++
	ш	30	21	5	3150	3150	595446S
XY-	IV	34	-26	5	4420	4420	000005
CD	V	58	91	5	26390	26390	14145
	VI	58	91	5	26390	26390	44446
	VII	58	91	5	26390	26390	******
	VIII	58	91	5	26390	26390	*****
			h	TOTAL	116463	115695	768
			GRAND		561449	559631	1818
The eserve sa	updated r fety zone n (which n-447m)	, block in is 12m (below gr	eserves is benches R.L.484m ound leve ree of abo	from the -472m) a d (BGL). out 304m	total Geold bove grou Of which ³ . The con	609m ³ by de ogical resour nd level (A0 1, rough stor imercially v	rces up to a GL) + 25m ne is about iable rough
74305m				ente and s	ections an	e prepared in	n a scale of
174305m	been pre		1:500 as	vertical as		plate no's. V	I & VIA).
174305m	been pre	il axis and		vertical as			I & VIA).
174305m	been pre	il axis and	1:500 as	vertical as		Rough Stone in m ³	I & VIA). Top Soil in m ³
74305m tone has :1000 in	been pre horizonte	l axis and N length in (m)	1:500 as IINEABI Width in (m)	vertical as E RESE Depth in (m)	RVES Volum e in m ³	Rough Stone in m ³	Top Soil in m ³
74305m tone has :1000 in	been pre horizonta Bench	l axis and N Jength	1:500 as IINEABI Width	vertical as E RESE Depth	RVES Volum	Rough Stone in	Top Soil

AB

Ш

.....

Si.

	IV	140	55	5	38500	38500	1231-
	V	150	45	5	33750	33750	110
	VI	145	35	5	25375	25375	
	VII	140	25	5	17500	17,500	E 3 HAT
	VIII	135	15	5	10125	1025	
-		100	10	TOTAL	153019	152875	144
	I	16	5	2	160		160
	<u> </u>	18	7	5	630	630	
XY- CD	III	18	7	5	630	630	
	IV	18	7	5	630	630	222204
	V	37	46	5	8510	8510	WHRA .
	VI	32	36	5	5760	5760	100020
	VII	27	26	5	3510	3510	
	VIII	22	16	5	1760	1760	1111
<u></u>		A		TOTAL	21590	21430	160
			GRANI) TOTAL	174609	174305	304
paramete (Note: deposits,	In case sequ	of poc ience	ket of	mining me (a) of the	thod. Unde Metallifere	and doesn't or the regula ous Mines I workings it	tion 106 (i) Regulations,
paramete (Note: deposits, developr indicated	rs, In case sequ nent/ wor I on the sa	of poc ience king may me plan)	ign of be	mining me (a) of the 1961 in all the benche benched an not exceed not less the the benche horizontal.	thod. Unde Metallifere open cast is and sid d sloped. T 5m and t an the ben is should	and doesn't or the regula ous Mines I	change any tion 106 (i) Regulations, a hard rock, be properly eight should idth should he slope of 1 45% from

245

ň

Year	PH No.(s)	Topsoli/Over hurden (m ³)	ROM (m ³)	Saleable rough stone (\mathbf{m}^A) (2)	100% Rough stone	Sub grade Weathered rock in (m ²)	(Talenble	Monten Rechtsten
VI	I	304	29189	2888	5		Carry 9	CO HERE
VII	1	(rest)	39130	3913	0		100 11	are again
VIII	I		42260	4226	-			-
IX	1		31135	3113				
	1.000						225	
X	1	100	32895	3289	2 100		2253	. 53
Total		304	174609	1743	05 -	+++=1		
Composit					DUCTION Depth	Section 200	Rough	Top Sail
Year	Section	Bench	in (m)	in (m)	in (m)	in m ³	Stone in m?	(0.m ³
		1	12	6	2	144	and the	144
	XY-AB		13	6	- 5	790	390	
VI-		- 111	139	5	2	130	130	
YEAR		1	16	5	2	160		160
	XY-CD	U.	18	7	5	630	630	
	125353	ur	18	7	5	630	630	
			13 - 76	-	TOTAL	29189	28885	304
VII-	XY-AB	1V	140	35	5	38500	3#500	1122
CAPPER IN TAIL	XV-CD	IV	11	1	3	630	630	Het
YEAR	1				TOTAL	39130	39130	
	XY-AB	V V	150	45	- 5	33750	33750	11111
VIII-			37	46	5 TOTAL	8510 42260	8510 42260	Million (
	XY-CD				the second s	25375	25375	tim
VIII- YEAR	11000-000	VI	145	- 6.5	5		6 M (1 M)	1000
VIII- YEAR	XY-AB	VI VI	145	35	5	and the second se	5760	and the second s
VIII- YEAR	11000-000	VI VI	145 32	35	5	5760	5760 31135	
VIII- YEAR	XY-AB XY-CD					5760 31135	31135	2000
VIII- YEAR IX- YEAR	XY-AB	VI	32	36	5 TOTAL	5760		1000
VIII- YEAR	XY-AB XY-CD XY-AB	VI VII	32	36 25	5 TOTAL 5	5760 31135 17500	31135 17500	1111 1014
VIII- YEAR IX- YEAR	XY-AB XY-CD	VI VII VIII	32 140 135	36 25 15	5 TOTAL 5 5	5760 31135 17500 10125	31135 17500 10125	
VIII- YEAR IX- YEAR	XY-AB XY-CD XY-AB		32 140 135 27	36 25 15 26	5 TOTAL 5 5 5	5760 31135 17500 10125 3510	31135 17500 10125 3510	14144 1016-0
VIII- YEAR IX- YEAR	XY-AB XY-CD XY-AB		32 140 135 27	36 25 15 26 16	5 TOTAL 5 5 5 5	5760 31135 17500 10125 3510 1760	31135 17500 10125 3510 1760	
VIII- YEAR IX- YEAR X-YEAR	XY-AB XY-CD XY-AB XY-CD	VI VII VIII VIII	32 140 135 27	36 25 15 26 16 GRANI	5 TOTAL 5 5 5 5 TOTAL 0 TOTAL	5760 31135 17500 10125 3510 1760 32895 174609	31135 17300 10125 3510 1760 32895 174305	

	Indicate propos	ed rate of produc	tion when the min	te is full	y devel	oped an	d the		
	expected life of t	the mine and the y	wear from which ef	Tected:	12				
	At this	rate of production	n, the expected life	e of qua	for the second	af Jank	LAB,Z		
			given as below: -		1. 1. 1	2.00			
	Rough stone:								
	Mineable reserves of rough stone = 174305m ³								
	Five years production = 174305m ³								
	Monthly pro	duction of rough :	stone = 2905	m ³					
	Life of Mine	(174305/2905)	= 5 ye	ars					
	The reg	ular working of t	he quarry and its	productio	on depe	nds upo	n the		
	demand from	the market, Acco	ordingly, there is	a possil	bility to	increas	e or		
	Contraction and Streets		r wise production,				1010124		
	etc., are only a t	CA O been revealed and reaction of the second		70					
5	Attach a note furnishing a conceptual mining plan for the entire lease period (for" B" category mines) and upto the life of the mine (for "A" category mines) based on the geological, mining and environments considerations:								
i)	Time frame of a	and the second	: Considering the indefinite depth persistence						
	mineral explora	tion program	of the rough stone deposit is proved beyond						
	in leasehold are	a: Give broad	the workable limits about depth of 37m						
	description iden	tified potential	(which is 12m (R.L.484m-472m) above						
	areas to be cove	red in the	ground level (AGL) + 25m (R.L.472m-447m)						
	given time fram	e:	below ground level (BGL) from the						
	· · · · ·		petrogenetic ch	aracter	of the	Charne	ckite		
			TENSE CONTRACTO	as from	the a	ctual m	ining		
			rock as well a						
			practice in the a		with the	current	trend		
			ALTER ALTER ALTER A	rea and			trend		
ii)	Whether ultima	te pit limit has b	practice in the a	rea and v roductio	n the qu	arry.	Situacies.		
ii)	Whether ultima geological plan		practice in the a of rough stone p	rea and v roductio	n the qu	arry.	Situacies.		
ii)	geological plan		practice in the a of rough stone p	rea and s roductio d demar	n the qu cated o	arry. n surface	e and		
ii)	geological plan The ultima		practice in the a of rough stone p een determined an	rea and s roductio d demar	n the qu cated o	arry. n surface	e and		
ii)	geological plan The ultima	:- ate pit limit has b ds as given below	practice in the a of rough stone p een determined an	rea and v roductio d demar nd dema	n the qu cated o reated	arry. n surface	e and		
(ii)	geological plan The ultima	ete pit limit has b ds as given below ULTIMATE Bench R.L	practice in the a of rough stone p een determined an been determined ar	rea and v roductio d demar nd dema	n the qu cated o reated	arry. n surface	e and		
(ii)	geological plan The ultima years plan perio Bench	te pit limit has b ds as given below ULTIMATE Bench R.L R.L.484-482m	practice in the all of rough stone p een determined and been determined and PIT – SECTION (Overburden/ Mineral Topsoil	rea and v roductio d demar nd dema MY-AB L (m) 12	n the que cated of reated) W (m) 6	arry. n surface at end o D (m) 2	e and		
(ii)	geological plan The ultima years plan perio	ete pit limit has b ds as given below ULTIMATE Bench R.L	practice in the all of rough stone p een determined an been determined ar PIT – SECTION (Overburden/ Mineral	rea and v roductio d demar nd dema M dema XY-AB	n the qu cated o reated () W (m)	arry. n surface at end o D (m)	e and		

		IV	R.L.472-467m	Rough stone	140	55	5.00	100
		V	R.L.467-462m	Rough stone	150	A50	5	010
		VI	R.L.462-457m	Rough stone	145 /	35	5	100
		VII	R.L.457-452m	Rough stone	140/	725 -	Sat N	p 20
		VШ	R.L.452-447m	Rough stone	135	15	35 M.K	11 40
	1				Total	depth	37m	Lin
			III TIMATI	PIT - SECTION	VV CI	136	in the second	and the
	8	Bench	Bench R.L	Overburden/ Mineral	L (m)	W (m)	D (m)	-
	-	E	R.L.484-482m	Topsoil	16	5	2	
	-	11	R.L.482-477m	Rough stone	18	7	5	1
	-	III	R.L.477-472m	Rough stone	18	7	5	1
	-	IV	R.L.472-467m	Rough stone	18	7	5	
		V	R.L.467-462m	Rough stone	37	46	5	1
		VI	R.L.462-457m	Rough stone	32	36	5	
		VII	R.L.457-452m	Rough stone	27	26	5	
	12	VIII	R.L.452-447m	Rough stone	22	16	5	1
					Total	depth	37m	1
	and suit	ed for a ability (e/ has been dequacy of land of long term use continuation of					
(iv)	examine and suit in the er mining a	ed for a ability of vent of activity	dequacy of land of long term use continuation of	: As the depth	of persi	stence	of the d	leposit
(iv)	examine and suit in the er mining a Whether after rec techno-t depth	ed for a ability of vent of activity r back covery econom envisa the br	dequacy of land of long term use continuation of :- filling of pits of mineral upto ically feasible	: As the depth may likely to e proposed not to	ontinue	for furt	her depti	h, it is
(iv) (v)	examine and suit in the er mining a Whether after rec techno-e depth describe the prop	ed for a ability of vent of activity r back covery econom envisa the br posal:- r post i	dequacy of land of long term use continuation of :- filling of pits of mineral upto ically feasible aged. If so,	may likely to c	ontinue backfill f minin y be ut n wate	for furt led the c g activ illized f	her depti juarry pit itics ove ish culti	h, it is L er the ure of
	examine and suit in the er mining a Whether after rec techno-e depth describe the prop Whether	ed for a ability of vent of activity r back covery econom envisa the br posal:- r post i ed:-	dequacy of land of long term use continuation of :- filling of pits of mineral upto ically feasible aged. If so, road features of mining land use	may likely to c proposed not to : At the end o quarry pit may storage of rai	ontinue backfill f minin y be ut n wate	for furt led the c g activ illized f	her depti juarry pit itics ove ish culti	h, it is L er the ure of

1	Mechanized, manual)		106 (i) (a) of the Metalliferous Mines Regulations, 1961 in all open cost workings in hard rock, the benches and sines the WTP2 properly benched and sloped. The bench height should not exceed 5m and the bench width should not less than the bench height. The slope of the benches should not exceed
	Describe briefly the layout of mine workings, the layout of faces and sites for disposal of overburden/waste. A reference to the plans enclosed under 4(b) and 4(d) will suffice		45° from horizontal. The rough stone is proposed to quarry at 5m bench height & width conventional opencast semi-mechanized method. It is a semi mechanized quarrying operation using shot hole drilling with the help of tractor mounted compressor attached with jack hammers, smooth blasting and waste and are removal using Hydraulic excavator and loaded directly to the tippers and transported to the needy customer. Bench height = 5mts. Bench width = 5mts.
	n. Details of Topsoil/ Overburden	100	The topsoil will be removed about 304m ³ and stacked for earth bund of safety area to prevent inherent entry of cattle's and human.
	b. Rough Stone waste and side burden waste: -	1991	There is no waste or side burden shall be proposed.
1.	Underground Mines:	4	Not applicable
	machinery and equipment propo (1) Drilling Machines:	1521	the calculation for adequacy and type of d to be used in different mining operations. e carried out using tractor mounted compressor

249

2

- in the second s

Туре	No	Dia of hole (mm)	Size / Capacit	- N	lake	Motive	H.P.	
Jack Hammer	3		Hand hel	d	- (9)	trigel	MR 202	
Compressor	1		Air	1	- (Diesel	min	
(2) Loading Ed Hydraufic transport sizea	excavi	stor and atte			sker shall u	tilized for	nii 617610	
(a) Haulage an (a) Haulage			and market	ld:				
Type	Nos	Size / Ca	spacity	Make	Motive	ower	H.P.	
Tipper	4				Dies	el		
 c. Describe system (ple 	ase spo	scify)		utilized for rough stor customers	excavato or internal ne lumps r crusher arc	transport i nd deliver a.	to the	
		y: own true	sks / 🤅	 Hired tippers and hydraulic excavator for initially production purposes. 				
d. Ore transpo hired trucks				for initiall	y productio	n purposes	D	
hired truck: e. Main desti	s nation	to which o ig to and		The exca metal will	vated ston be supplies laying, ear	e materia i to the cor	ls road isumers	
hired truck: e. Main desti transported distance)	s nation (givir		from	The exca metal will like road constructi	vated ston be supplies laying, ear	e materia i to the cor	ls road isumers	
hired truck: e. Main desti transported distance)	s nation (givir	ng to and i	from	The exca metal will like road constructi	vated ston be supplies laying, earl on, etc.	e materia i to the cor	ls road isumers	
 hired truck: e. Main destitition transported distance) f. Details of Type 	s nation (givir hauling No	ng to and g/transport	from	The exca metal will like road constructi	vated ston be supplies laying, earl on, etc.	e materia i to the cor h filling, l	ls road nsumers suilding	
hired trucks e. Main desti- transported distance) f. Details of Type (4).Miscelland	s nation (givir hauling No cous:	ng to and g/transport Size/Cap	from equipme acity	The exca metal will like road constructi ent: Make	vated ston be supplies laying, earl on, etc: Motiv	e materia i to the cor h filling, i e power	ls road isumers suilding H.P.	
 hired truck: e. Main destitition transported distance) f. Details of Type 	s nation (givir hauling No cous: ly any	ng to and g/transport Size/Cap	from equipme acity	The exca metal will like road constructi ent: Make	vated ston be supplies laying, earl on, etc: Motiv	e materia i to the cor h filling, i e power	ls road isumers suilding H.P.	

0	R) M	chinarias deployed	and on single shift bas Machineries like	(P)
(B) Machineries deployed		conneries deployed		to drilling and Excavators and
		TING :		a
		ad blasting parameters like ch maximum number of holes bla	1530	
	iring,		incu in a round, manner	ини зециенсе ој
25	Suida	g pattern:		
		The quarrying operation is p	roposed to carried by	open cost. Sem
N		nized mining in conjunction w		
19		ummer drilling and blasting for s		
100		Drilling and Blasting paramete		
	1	Diameter of the hole		32 mm
	2	Spacing between hole	1.2m	
	3	Burden for hole		1.0m
	4	Depth of each hole		1.5m
	5	Output per hole = Spacing × B 1.2 × 1.0	burden × depth) × 1.5 = 1.8 x 2.8	5.04 T
	6	Output per hole = $1.8 \times 2.8 = 5$	5 T	5 T
	7	Production per annum 34861n	n ³ * 2.8 = 97611 T	97611 T
	8	Total handling per day (300 w	orking day)	325 T
	9	Nos. of holes per day (325/5.0	4 = 64)	64holes.
	10	Meterage required per day (64	× 5.5 = 352)	352meters
	11	Charge per hole	R.	0.5 kg
15	12	32 kg		
1		Powder factor (64 holes X 0.5		
11.			1900 St. 2001 No. 10	

251

Staggered "V" pattern	of blasti	ng design
Spacing	=	1/200
Burden	=	10m
Depth of hole	=	ISM T-3 MAR ZUZA
No of holes proposed per day	=	64holes

b) Type of explosives used / to be used:

Following explosives are recommended for efficient blasting with safe practice.

Small dia. 25mm slurry explosives are proposed to be used for shattering and heaving effect for removal and winning of rough stone. No deep hole drilling or primary blasting is proposed.

c) Measures proposed to minimize ground vibration due to blasting:

The control blasting measures is being adopted for minimizing ground vibration and fly rock.

Shallow depths jackhammer drilling and blasting is proposed to be carried out with minimum use of explosive mainly to give hearing effect in rough stone for easy excavation and to control fly rock.

Delay detonators:

Delay blasting permits to divide the shot to smaller charges, which are detonated in a predetermined millisecond sequence at specific time intervals.

The major advantages of delay blasting are:

- Reduction of ground vibration
- Reduction in air blast.
- Reduction in over break
- Improved fragmentation
- Better control of fly rock

Blasting program for the production per day

	No of holes	ŧ	64holes
	Yield Total explosive required		352tons
			32kg- Explosives
	Charge per hole	:	0.5kg
	Blasting at day time only	1.4.9	12.00-1.00p.m
over	Powder factor in ore an ourden / waste / developmen ing / stope		 Powder factor is proposed as 0.5kg pe holes of explosives

the tradition of the

	 d) Whether secondary blasting is needed, if so describe it briefly
	e) Storage of explosives (like capacity and type of explosive magazine)
6.	All
	b) Workings expected to be m. above / reach below water table by the year
	c) Quantity and quality of water likely to be encountered, the pumping arrangements and places where the mine water is finally proposed to be discharged

		_	the second se
-50	Whether secondary blasting is eded, if so describe it briefly		Irrespective of the method of primary blasting employed, it may be necessary to re-blast a proportion of the more of the quarry floor so as to reduce it to a size suitable for handling by the excavators and crushers.
0.50	Storage of explosives (like pacity and type of explosive agazine)		 1.The applicant will engage an authorized explosive agency to carry out the small amount of blasting and it will be supervised by competent and statutory foreman/mines manager. 2. First Aid Box will be keeping ready at all the time. 3. Necessary precautionary announcement will be carried out before the blasting operation.
. M	INE DRAINAGE		
.00	Likely depth of water table based o observations from nearby wells ad water bodies	2	The ground water table is reported as of 55m in summer and 45m in rainy season from the general ground level in the adjacent bore wells of the area.
b) w	Workings expected to be m. above / reach below ater table by the year	3	The proposed ultimate depth is 25m below the ground level. Hence, quarrying may not affect the ground water.
lii pu w	Quantity and quality of water kely to be encountered, the amping arrangements and places here the mine water is finally oposed to be discharged	3	The ground water may not rise immediately in this type of mining. However, the rain water percolation and collection of water from the seepage shall be less than 300 Lpm and it shall be pumped about periodically by a stand by diesel powered Centrifugal pump motivated with 7.5
	253		······································

				H.P. Motor.	A Contraction of the second		
7.	STACKING	GOF MINERAL REJEC	TS.	AND DISPOSAL O	WASTE:		
(a)	Indicate br	efly the nature and qu	antit	y of top soil, over	burden Swiste and		
	mineral reje	cts likely to be generated	dur	ing the next five year	Birnente Sala		
	Year	Topsoil/ Overburden (m ³)	We	athered rock/ Side burden (m ³)	Mineral rejects/Waste		
	First	304					
	Second						
	Third	2815/)	_				
	Fourth	300			***		
	Fifth	(***)		. 			
	Total	304		999 1910	1 T		
(c)	Attach a note indicating the manner of disposal and configuration, sequence of buildup of dumps along with the proposals for the stacking of			proposed in this lease area.			
8.	Yearwise.	ore, to be indicate	u				
2.5	12002252		1				
(a)	mineral (sa	riefly the end-use of th le to intermediary parties consumption, expor se)	្ត	are one of the m building materials	ugh stone materials ost valuable natura , it is important to se of their differen ed characteristics		
				different stone typ for specific purpos For instance, agg	es can be used only		

#11

30 | Page

different grades of ores is being practiced or is to be practiced at the mine to meet specifications stipulated by buyers. - • OTHERS •) Describe briefly the following Site services 2 •) Describe briefly the following Site services 2 •) Infrastructure required for such mines like office, stores, canteen, first aid station, shelter latrine and bath rooms have been provide as per the Metalliferous Mines Regulations, 1961 as a welfare amenities for mine laborers. No manual mine or stack of spares, lubricant and fuels are required to be maintained at the mine site. Approach road is available from the mine road to the site.					concrete, coated with asphalt or used 'dry construction. Mostly concrete and building there is no chemical s specified.	as bulk fill in used 3 MAR 24 g. products So
a) Describe briefly the following Site services Infrastructure required for such mines like office, stores, canteen, first aid station, shelter latrine and bath rooms have been provide as per the Metalliferous Mines Regulations, 1961 as a welfare amenities for mine laborers. No manual mine or stack of spares, lubricant and fuels are required to be maintained at the mine site. Approach road is available from the mine road to the site. b) Employment potential: As per Mines safety under the provisions of Metalliferous Mines Regulations, 1961 under the Mines Act, 1952, whenever the workers are employed more than 10, it is preferred to have a qualified Mining Mate to keep all the production workers directly under his control and supervision. The following man power is proposed for quarrying Rough Stone during the five years period the same manpower will be utilize for this Mining Plan period to achieve the proposed production and to comply the provisions of the MMR, 1961 norms. 1. Highly Skilled Quarry Manager 1No.	(c)	different practiced mine t	grades of ores is be or is to be practiced at to meet specificati	the	Not blending process is	s involved.
Site services like office, stores, canteen, first aid station, shelter latrine and bath rooms have been provide as per the Metalliferous Mines Regulations, 1961 as a welfare amenities for mine laborers. No manual mine or stack of spares, lubricant and fuels are required to be maintained at the mine site. Approach road is available from the mine road to the site. b) Employment potential: c) Employment potential: c) As per Mines safety under the provisions of Metalliferous Mines Regulations, 1961 under the Mines Act, 1952, whenever the workers are employed more than 10, it is preferred to have a qualified Mining Mate to keep all the production workers directly under his control and supervision. The following man power is proposed for quarrying Rough Stone during the five years period the same manpower will be utilize for this Mining Plan period to achieve the proposed production and to comply the provisions of the MMR, 1961 norms. 1. Highly Skilled Quarry Manager 1No.		OTHERS	š			
As per Mines safety under the provisions of Metalliferous Mines Regulations, 1961 under the Mines Act, 1952, whenever the workers are employed more than 10, it is preferred to have a qualified Mining Mate to keep all the production workers directly under his control and supervision. The following man power is proposed for quarrying Rough Stone during the five years period the same manpower will be utilize for this Mining Plan period to achieve the proposed production and to comply the provisions of the MMR, 1961 norms.	(a)	Site servi	ces	12	like office, stores, ca station, shelter latrine have been provide Metalliferous Mines R as a welfare amen laborers. No manual a spares, lubricant and f to be maintained at Approach road is av	anteen, first aid and bath rooms as per the Regulations, 1961 titles for mine mine or stack of fuels are required the mine site.
Windos i Winnan	(b)	As Regulation employed the product The five years achieve the norms.	per Mines safety un ons, 1961 under the M d more than 10, it is prefor ection workers directly un following man power is s period the same manpo he proposed production Highly Skilled Q	Mines / ferred to mder his s propor ower will and to c huarry M	Act, 1952, whenever have a qualified Mining control and supervision sed for quarrying Rough Il be utilize for this Mini comply the provisions of Manager	the workers are g Mate to keep all n. a Stone during the ing Plan period to f the MMR, 1961

		1	Accom	itar	nt cum & admin //	Mille:
	2.	Skilled	Earth n	بتنتخط		
		ORINGA	Driver	-	I of	2 Nosaven 201
			Mechan	nĭc	1.46	3 MAN-O
			Blaster	100.00		Thuman 2
	3.	Semi - skilled	and the state of t	a da	lreaser's	1 No
	4:	Unskilled	the second s	_	Labours	10Nos
	-3+	to abalitory	Cleane		1000000	A WA TOOLS,
			Attend		Te.	1No
			- Aucua		Total =	
0	MINER	AL PROCESSING	BENEFT	CI		11////
	be cond the extr the na /benefic size and concentr	iation. This should I grade of feed mat	ljacent to describe rocessing indicate		directly will be used i his own crusher for r and 1½ inches Jelly used in road and bui purpose. The recovery of gravel in this quarry i	equired size %, % which are mainly lding construction rough stone and
(b)	tailings plant (q propose capacity of such adopted before t excess v	the disposal me or waste from the p uantity and quality o d to be discharged, of tailing pond, to tailings, if any, with to neutralize any so heir disposal and d water from the tailing	rocessing of tailings size and xic effect h process ach effect lealing of g dam).	*	No water shall be use any other processing water to be drawn fro Some stagnation of re- shall be used for dri haul roads. Therefore dam doesn't arise. If of rain water flow d has to be done by dee a pit before passing natural system.	g except drinking om public sources, ain water in the pit lling and spraying e, need for tailing But tailing contro- uring rainy seasor canting the SPM in
(c)	Contraction of the second	sheet or schematic processing procedur hed.		4	Not applicable	
(d)	1.7	quantity and als to be used	1.515	S.	Not applicable	
(a)		ing plant.				

۰.

(f) Indicate quantity (KLD per day) of water required for mining and processing and sources of supply of water. Disposal of water and extent of recycling. Drinking is 0.200KLD, utilized water is 0.8KLD. Days suppression is 1.0KLD and Green Belt is 0.0KHD. Minimum quantity of water200KHD. Minimum quantity of water200KHD. Generated from the mine office toilet and mine labour toilet will be diverted to the septic tank followed by soak pit.			Contraction of the Contraction o
	(f)	water required for mining and processing and sources of supply of water. Disposal of water and extent	is 0.8KLD, Dust suppression is 1.0KLD and Green Belt is (500KfD) Minimum quantity of water Direct D per day has to be maintained as per the Mines Rules, 1952. Drinking water will be bought to authorized vendor of the nearby the village. The dust suppression and green belt development will be bought to water tanker. The sewage water to a tune of 0.8KLD generated from the mine office toilet and mine labour toilet will be diverted

PART-B

11.0 ENVIRONMENTAL MANAGEMENT PLAN:

a) Attach a note on the statuts of Baseline information with regard to the Following :

11.1	Existing land use pattern indicating the area already degraded due to
	quarrying /pitting, dumping, roads, processing plant, workshop, township
	etc in a tabular form. The present land use pattern is given as below.

				02		* 85A 1201 17 122 1001	
	1.0	S. No.	La	nd	Use	Present area (Hect.)	
	-	1. Under q 2 Infrastru			ying area	1.09.05	
					e	Nil	
	3 Roads					0.04.0	
	-	4	Plantatio	n a	ren	Nil	
		5	Unutilize	d		0.89.45	
			T	ota	=	2.02.5	
	11.2 Water Regime			season fro presently proposed it will depletion be bough nearby th	Sm in summer and 45m in om the general ground leve the quarrying of rough sto up to a depth of 25m bgl. H not affect the ground of this area. Drinking wate t to authorized vendor o e village. The dust suppre belt development will be b inker.	I and me is ence, water r will f the ession	
11.3	Flora and	Fauna		1440	major flor	ting quarry lease. There a found in this area and no rees are noticed in the lease	other
11.4	Quality noise leve	Con the second	ambient. /ater		drilling p excavation periodical spraying. Quarrying	st expected to be generated rocess, hauling roads, plac n etc, will be suppresse wetting of land by g of rough stone will be c illing and blasting by usin	es of ed by water arried

258

W& BURT STONE

3 MAR 2023

1

「御湯水

			III WARDEN AND ELSINA	n. However, p ng will be ca	y site. motistif	100					
11.5	Climatic conditions:										
	humidi humidit average general blow fri to Marc May to May to Rainfa 760mm norther Tempe and nig daily m the plai The lo minimu with th	ic Conditions:- The The driest months a by of about 30% in humidity is appred by light to moderate it om northeasterly to a ch and from southwe September. April an it about 910mm. If a part of the district. rature: The district ht temperatures from aximum is about 30° ns. The day temperature is about 19°C. Ap e mean daily maxim	are February and the afternoons. I ciably below the in strength round t easterly directions esterly to westerly d October are the al rainfall over the al rainfall over the is lowest around temperature is a p function onwards to C and the mean of tures increase grad is reached in Jan oril and May are to turn temperature of	March with a During the rai saturation let he year. In op during the pe directions du transition mor he district var Rayakota (70 gradual decrea II December, laily minimun fually from Ja uary when t he hottest mo of about 37°C	hole is slightly werage relative iny months the wel. Winds are en areas, winds riod November aring the period aths. ies from about 56.5mm) in the ase of both day when the mean a about 19°C in nuary onwards. he mean daily aths in the year						
11.20	daily minimum temperature of about 25°C in the plains.										
11.6	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Settlement: arest villages are fo msus.	und in the buffer	zone with po	pulation as per						
	S.No	Village	Direction	Distance in Kms	Population						
	1	Periyanahalli	North	2.04km	7388						
	2	Kuppangari	South	0.51 km	2360						
	3	Periyampatti	East	2.20km	1951						
	4	Begarahalli	West	4.58km	2066						

35 | P.a. 6.12

11.7	Public buildings, places of worship and monuments		No infrastructure like residential building places of special interest like archeologica monuments, Sanctuaries, etc., are found around 10km radius.
11.8	Attach plans showing the locations of sampling stations	1.8.8.1	The proposed Ambient air quality, Wate quality Ambient noise level and vibration are periodically tested for every season (or months once) around 5km radius as per the guidance of MoEF and EIA Notification 2006 and also covering DGMS norms.
11.9	Does area (partly or fully) fall under notified area under Water (Prevention & Control of Pollution), Act, 1974	1440	The proposed area not fall under notified area under Water (Prevention & Control o Pollution), Act, 1974

The details of the land use pattern, during the ensuing plan period and till lease period is shown in the tabular form:

	S. No.	Land Use	Area in use during the quarrying period (Hect.)	
	1.	Under quarrying area	1.56.27	
	2	Infrastructure	0.02.0	
	3	Roads	0.08.0	
	4	Green belt	0.25.23	
	5	Drainage & Settling Tank	0.05.50	
	6	Unutilized	0.05.50	
		Total	2.02.5	
ii).	Air Quality	drilling pro excavation	expected to be generated cess, hauling roads, place etc, will be suppressed etting of land by water sprayin	s of by
iii)	Water quality	A water sam	aple from the open/bore wells	was
_		260		_

36 Plge

		tested to NABL approved lith to assess hardness, Salinity, colour, Specific gravity, etc.
iv).	Noise levels	Quarrying of rough stone will be carried out by drilling and blasting by using low power 110 explosives, and hence, noise will be very minimum. However, periodical noise level monitoring will be carried out every six months around the quarry site.
¥))	Vibration levels (due to blasting)	No deep hole blasting envisaged. Small dia shot holes are used for breaking boulders. The maximum peak particles velocity shall be recoded using mini seismograph devises as per the guidance of MoEF and EIA Notification 2006 and also covering DGMS norms.
vi).	Water regime	It is making own exiting borewell for providing uninterrupted supply of RO drinking water, dust suppression and green belt development.
vii).	Socio-economics	 To provide Employment opportunities of the nearby villagers. For the cultural development of the nearby villagers.
viii).	Historical monuments etc.	There are no historical monuments, etc found around 10km radius,

-

c) Attach an Environmental Management Plan (supported by appropriate plans and sections) defining the time bound action proposed to be taken with sequence & timing in the following areas (or diagrams should be used):

i).	temporary storage and utilization of topsoil	The topsoil will be removed about 304m ³ and stacked for earth bund of safety area to prevent inherent entry of cattle's and human.
ii).	Yearwise proposal for reclamation of land affected by abandoned quarries and other mining activities during	The present mining is proposed depth of 37m (which is 12m (R.L.484m-472m) above ground level (AGL) + 25m (R.L.472m-447m) below ground level

	first five	years (and	upto	(BGL) h	nas been e	nvisaged	as workable
ii).	conceptua category extent of contourin use of uni excavatio slopes a abandone proposed reservoir, holding c for utiliza given.	years (and l plan period f mines) clarifyin back filling an g and / or alter filled / partially ns / road si nd mine. In d quarries/ pi to be use their size, apacity and pro- tion of such wa me of afforestic	for 'A' ng the nd re- native filled des / case ts are d as water oposal iter be	depth foi the lease be fence with S1 water lo culture. closure o still at do	r safe & ec period. The d on top fencing. 1 ogging sho No imm of pit as the seper level.	onomic m he minea of open o Low lying all be us ediate pr he rough	ining during t met with ast, working areas with and for fish roposals for stone persist
50	conceptu	al plan period ith name of s	for 'A' ca	tegory n	nines) indi	icating th	e number of
	hectares, 7 approach native spo	5m, safety ba Roads has bee ecies of Neem,	urrier, near m identifie Pungan an	by scho d to be t d other t	ol area a utilized for	nd Neare: Greenbel	st Panchayat t appropriate
	hectares, 7 approach native spo	5m, safety ba Roads has bee	urrier, near m identifie Pungan an	by scho d to be t d other t	ol area a utilized for	nd Neare: Greenbel	st Panchayat t appropriate
	hectares, 7 approach native spo phased m	5m, safety by Roads has bee ecies of Neem, anner as descri Place Lense	urrier, near m identifie Pungan an bed below Area in	by scho d to be t d other t No.of	ol area a utilized for regional tre Rate of	nd Neares Greenbel res will be	at Panchayat t appropriate planted in a Amount
	hectares, 7 approach native spo phased m Year	5m, safety by Roads has been ecies of Neem, anner as descri Place Lease Boundary Approach road and Nearby	nrier, near n identifie Pungan an bed below Area in Sq.m	by scho d to be t d other t No.of Plants	ol area a atilized for regional tre Rate of survival	nd Neares Greenbel res will be	st Panchayat t appropriate planted in a Amount in Rs
	hectares, 7 approach native spo phased m Year First	5m, safety by Roads has been ecies of Neem, anner as descri Place Lense Boundary Approach road and	urrier, near m identifier Pungan an bed below Area in Sq.m 2523	by scho d to be t d other t No.of Plants 280	ol area a atilized for regional tro Rate of survival 80%	nd Nearer Greenbel res will be Rate @100 Rs Per sapling	st Panchayat t appropriate e planted in a Amount in Rs 28000/- 50000/-
	hectares, 7 approach native spo phased m Year First Second Third	5m, safety by Roads has been ecies of Neem, anner as descri Place Lease Boundary Approach road and Nearby Village Road Schools	arrier, near m identifier Pungan an bed below Area in Sq.m 2523	by scho d to be t d other t No.of Plants 280 500 200	ol area a atilized for regional tro Rate of survival 80% 80%	nd Nearer Greenbel es will be Rate @100 Rs Per sapling Total	st Panchayat t appropriate planted in a Amount in Rs 28000/- 50000/- 20000/- 98,000/-
v).	hectares, 7 approach native spe phased m Year First Second Third Stabilizat dumps al- managem first five	5m, safety by Roads has been ecies of Neem, anner as descri Place Lease Boundary Approach road and Nearby Village Road	tion of the upto	by scho d to be t d other t No.of Plants 280 500 200	ol area a atilized for regional tro Rate of survival 80%	nd Nearer Greenbel es will be Rate @100 Rs Per sapling Total	st Panchayat t appropriate planted in a Amount in Rs 28000/- 50000/- 20000/- 98,000/-
v).	hectares, 7 approach native spe phased m Year First Second Third Stabilizat dumps al- managem first five	5m, safety by Roads has been ecies of Neem, anner as descri Place Lense Boundary Approach road and Nearby Village Road Schools ion and vegetation ong with waster tent Year wise e years (and al plan period	tion of the upto	by scho d to be t d other t No.of Plants 280 500 200	ol area a atilized for regional tro Rate of survival 80% 80%	nd Nearer Greenbel es will be Rate @100 Rs Per sapling Total	st Panchayat t appropriate planted in a Amount in Rs 28000/- 50000/- 20000/- 98,000/-

1

v).	Measures to control erosion / sedimentation of water courses.	(10)	Not applicable. There are no major- dumps are stabilize in this quarry area. 202
vi).	Treatment and disposal of water from mine.	100	It will not be harmful and it does not require any treatment before discharging into the natural courses.
vii).	Measures for minimizing adverse effects on water regime.	1010	There is no water to be pumped out will be very pure and portable and therefore, it will not affect any water regime surrounding the quarry.
viii).	Protective measures for ground vibrations / air blast caused by blasting,	1.0	It is a small B2 category open cost, semi mechanized mining and no heavy machinery shall be used. The only smooth blasting is proposed, therefore no change for ground vibration or noise from the quarry.
īx).	Measures for protecting historical monuments and for rehabilitation of human settlements likely to be disturbed due to mining activity.	4	No historical monuments and for rehabilitation of human settlements doesn't to be disturbed during mining activity.
x)	Socioeconomic benefits arising out of mining.	3	The nearest villages are will get employment benefits.

d). Monitoring schedules for different environmental components after the commencement of mining and other related activities. (for 'A' category mines only)

Not applicable. It is B2 category quarry

12.0 PROGRESSIVE MINE CLOSURE PLAN:

12.1 Steps proposed for phased restoration, reclamation of already mined out area.	The present mining is proposed to depth of 37m (which is 12m (R.L.484m-472m) above ground level (AGL) + 25m (R.L.472m-447m) below ground level (BGL). The mined-out area will be fenced on top of open cast working with \$1 fencing to arrest the entry of cattle's
--	--

1			and public in to the querry site.
2.2	Measures to be under taken on mine closure as per Act & Rules		Measures will be taken as per the ACIS and Rules. The quarried pit will be fenced by Barbed wire fencing Green belt development at the rate of 325 trees per year will be proposed. No immediate proposals for closure of pit as the Rough Stone persist still at deeper level.
	Mitigation measures to be undertaken for safety and restoration/ reclamation of the already mined out area	1991	The quarry lease is a existing quarry lease to be continued the same applicant
12.4	Mine closure activity	1	The mined-out area will be fenced on top of open cast working with S1 fencing. Low lying areas with water logging shall be used for fish culture. No immediate proposals for closure of pit as the rough stone persist still at deeper level.
12.5	Safety and security	144	Safety measures implement to the prevent access to surface opening excavations will be taken as Metalliferous Mines Regulations, 1961, it is a open cast mining method adopted. Safety provisions like helmet, goggles, safety shoes, Dust mask, Ear muffs etc have to be provided as per the circulars and amendments made for Mine labours under the guidance of DGMS being a mechanized operation.
12.6	Disaster management and Risk Assessment	-	Open cast mining method is adopted in this quarry. If the benches are made with proposed height and width no risk will be there. Even then if any minor or major accident happens the quarry staffs having

+

			First aid facilities with first aid box with all necessary medicine and stretches close (17) to give first aid treatment at the site and will arrange immediately the vehicle to reach nearest hospital, if any disaster happens the lessee is capable to meet such eventualities. At the time of any accident during mining activity, proposal of first aid facility at quarry and one vehicle always ready at quarry site.
2.7	Care and maintenance during temporary discontinuance	14.5 5	During temporary discontinuance the working place will be fenced completely and a board of discontinuance will be changed on the main entrance of the working place. Already one watch man will be made on the quarry area for security purposes also look after the survival of the plants.
12.8	Economic repercussions of closure of quarry and man power entrenchments	(4))) (1)	This is existing quarry lease. During the next five years mining period the employment potential will be generated, general financial status and socio- economic conditions of approx. 17 labors will be improved. During the next five- year compensations will be given as per rules.

Fixed Asset Cost: 1. Land Cost (Tender Cost)	1	Rs. 46,01,000/-
2. Labour Shed		Rs. 1,00,000/-
3. Sanitary Facility	:	Rs. 75,000/-
4. Fencing	-	Rs. 3,00,000/~
 Other expenses (Security guard, dust bin, etc) 	100	Rs. 5,00,000/-
Total	÷	Rs. 55,76,000/-

41 | P 3 g e

в	B. Machinery cost	4	Rs. 20,00,000/- (Hero Bilsis)		AN
C	Total Expenditure of EMP cost (for five years)				
101 - V.V.	1. Drinking Water Facility	1	Rs. 2,00,000/-	IRC	23
	2. Sanitary facility & Maintenance	1	Rs. 1,50,000/-	otilit.	1
	3. Permanent water sprinkler		Rs. 75,000/-	-	6.8
	4. Afforestation and its maintenance	1	Rs. 98,000/-	=	/
	5. Safety Kits	1	Rs. 1,00,000/-		
	6. Provision of tyre washing facility	1	Rs. 75,000/-		
	 Surface runoff management structures like garland drain, settling pond & Bund (0.05.50Hect or 550Sq.m X 400 	142	Rs. 2,20,000/-		
	8. Blasting materials with blast mat cost	4	Rs. 15,00,000/-		
	9. Environment monitoring	1	Rs. 5,00,000/-		
	Total	1	Rs. 29,18,000/-		
D	Total Project Cost (A+B+C)	12	Rs. 1,04,94,000/-		

13.0 FINANCIAL ASSURANCE:

Not applicable, it is a small B2 rough stone quarry.

14.0 CERTIFICATES:

All required certificates are enclosed.

15.0 PLAN AND SECTIONS, ETC:

Plan and Sections are submitted along with mining plan.

16.0 ANY OTHER DETAILS INTEND TO FURNISH BY THE APPLICANT

- Care and precautionary measures will be taken for the safety of workers as per Rules and Acts.
- (ii) The applicant will endeavor every attempt to quarry the rough stone economically without any wastage and to improve the environment and ecology.
- (iii)Accordingly, the Scheme of mining prepared for a grant of quarrying of rough stone as per District Collector, Dharmapuri proceeding letter Roc.No.155/2017 (Mines) dated .12.2017
- (iv)Total proposed production of rough stone is about 174305m³ up to a depth of 37m below the ground level (R.L.484m-447m) for five years plan period. Average production is 34861m³ of rough stone per year.

17.0 CSR Expenditure:

CSR (Corporate Social responsibility) shall provide by the applicant @ 2.0% of average net profit of the company for the last three financial years to the nearby vittage on the Ministry has notified the amendments in section 135 of the Act as well in the CSR Rules on 22nd January 2021 as circular no. CSR-05/01/2021-CSR-MCA dated 25th August 2021.

Place: Dharmapuri, TN

Date: 14

कारणी लेखा

Signature of the Recentrate Qualified Person. Dr. S. KARUPITANNAN, Use Publ. ROP/MATES 372014 (A. 6E0 TECHNICAL SIMING STLUTIONS 1/210-8, Ground PL., Nutrian Complex, Collectorate Part Office, Od Spatti, Observatori, 635 (C. Tamie N. Ju, India.

This Mining Plan is approved based on the Incorporation of the particulars specified in the latter of the Commissioner of Geology and Mining, Chennai Roc. No. 3868/LC/2012 Dated: 19.11.2012 and subject to further fulfilment of the condition feid down under Tamilnatic Minor Mineral Concession Rules 1959 This Mining Plan is Approved Subject to the Conditions / Stipulation & Indicated in the Mining Plan Approval Letter No. 307 / 2024 Mining Office of the DD. Goology & Mining Dharmapuri

63.63.2023 ASSISTANT DIRECTOR

GEOLOGY AND MINING DHAMMAPURL

267

12.2017

தர்வரி, ஜூலை 8, 2017 [ஷேவீளம்பி, ஆளி 23 – திருவள்ளுவர் ஆண்டு 2048] [எண் 17

மாவட்ட ஆட்சியர் அறிவிக்கை

[5.a. main. 012012 (mathenia) gener : 07. 07. 2017

சாதாரண கற்குவாரி ஒப்பத்தப்புள்ளி (டெண்டர்) மற்றும் ஏலம் குறித்த அறிவிப்பு

டெஸ்டர் மீண்ணப்பங்கள் தொகள்.	April	8	26.07.2017
பொது ஒலம் நடத்துதல் மற்றும் டெண் விண்ணப்பங்களை பிரித்து பரிசீசிக்கு		je.	27.07.2017
தர்புரி வருவாய் கோட்டத்தில் அமைந் சாதாரண சுற் குயாரிகள்	துவின	#	07
அருர் வருவாம் கோட்டத்தில் அமைத் சாதல்யா கற்குகளிகள்	डमांग्य	ŧ.	02
		83	
	Quingestà	3 5	0.9

ப் தர்ப்பி மாலதாக முற்றகிங்கியகளுக்க மலாஜான மங்குழ்பதை கிலைவது குக்பபில்லு. சரத மித்த்பட்டிய ரிப்பர்த .1 மாலகு குக்குமன்கைகளுத் ராயிக்கு வருத்ய பலிரத குத்துமல்லி கழுத்துமிடிட்டன என்கத்தானாகைகள் மைகத்தில் காலீட்டீ தப்பிக்கும் குக்குமன் குகுந்தில் சிக்கிப்பிரைக்கில் (ர்பன்படு) (மன்படுத்துப்கு பட்பட்ட மோகித்து 445 கள்தல வீலிட

138A/7 (m-R.On. 17-4

[1]

2. 1959 ஆம் ஆள்டு தமிழ்தாடு சிறாளில் எதனை விதிகளின் விடு 8 எப்பு தர்ப்பி மாயட்டத்தில் இந்துடன் இணைக்கப்பட்ட ஆட் வணைகில் குறிப்பட்டுள்ள அரசு மும்போக்கு திலங்களில் அமைந்தன்ள எர்தானை எற்றுவைியில் விழுத்து சாதாரணகற்களை குபளி செய்து எடுத்தும் செய்ற டேண்டருடன் இணைந்த எய முலைகில் குபரி குத்தனை உரிலம் வருக்க முடி முத்திரைப்பட்ட டெண்டர் விண்ணப்பினர் 2 பிரதிகளில் தப்பழி மாலட்ட ஆட்சியரால் வாலேத்துபடுகின்றன. .

3. இந்த அறியில்லையின்படி விண்ணப்பிக்கப்படும் ஒப்புத்தப்புல்னி (டொள்டர்) விண்ணப்பம் 1959 ஆம் ஆண்டு அமிழ்படு சிருகனியல் சதுவை விதிகளின் பின் இணைப்பு VI-ல் குறிப்பேட்டட்டுள்ள படிலத்தில் இருக்க வேண்டும். பாதிரி விண்ணப்பபடிலம் இந்த மாவட்ட அரசிதற் சிறப்பு வெளியிட்டின் இணைப்பில் பொசிர்கங்கட்டுள்ளது. இணைப்பில் பிரசுரிக்கப்பட்டுள்ள படிலல் VI-ஸ்படி புரத்தி செல்து அனுப்பப்பாத விண்ணப்பதிகள் ஏற்றுக் கொள்ளப்படலாட்டாது.

4. ஒப்பந்தப்புள்ளி (டென்டர்) விண்ணப்பங்களுடன் இணைத்து அனுப்பட்ட வேண்டிய இணைப்புகளின் வியாங்கள் மற்றும் குக்ககை நிபந்தனைகள் பற்றிய விவரங்கள் குறிப்பிடப்பட்டுள்ள அரசிகழ் தர்மாரி மாலட்ட ஆட்சியர் அனுவகைம். தர்மாரி டிவிமெல பற்றும் காங்கத்துறை உதவி இயக்குறர் அறுவலகப்டதர்மாரி யாலட்டத்திலுள்ள அனைத்து வருவாய் கோட்டலட்சியர், வட்டலட்சியர் மற்றும் வாராட்சி ஒன்றிய ஆணையர் அனுவலகங்களின் தகவல் பணைவில் விளப்பரம் செய்யப்பட்டுள்ளது.

5. அப்பலையில் குறிப்பட்டுள்ள குவளிகளின் குத்தலை காலம் குத்தலை ஒப்பத்த பத்திரம் நிறைவேற்றப்பட நாளிலிருந்து ஏற்னையே குவளி சூத்தலை வழங்கப்பட்டு குத்தலை காலம் முடிவற்ற சாதனரை சுந்தவளிகளுக்கும் ஐந்து ஆண்டுகள் பற்றும் புதியதாக சேர்க்கப்பட்டுள்ள சாதனரை கற்தவளில்கும் 10 ஆசை்டுகளாகும்.

E. ஒப்பந்தப்பள்ளி (டென்டர்) விண்ணப்பதாரர் நனது விண்ணப்பத்தில் குவளியின் மொத்த குதல்ல வாலத்திற்குள்ள ஒரே தலணையில் செலுத்தத்தை சூத்தகை தொகையை உரிய இடத்தில் எண்ணியும் எழுத்திலும் தேவியாக குறிப்பிட வேண்டும்.

7. மாலட்ட ஆட்சியர், வருவாய் வேட்டாட்சியர், வருவாய் வட்டாட்சியர், னராட்சி ஒன்றிய ஆணையர், உதவி இயக்குதர் (புவியியல் மற்றம் காங்கத்துறை) அழுவலக தகவல் பலகைகளில் அறிவிப்பு செய்யப்பட்டுள்ள அரசித்தில் கண்டுக்க நிபற்றைகாகளின்படி பூர்த்தி செய்யப்பட்ட ஒப்பத்தப்புள்ளி (டெஸ்டர்) விண்ணப்பங்களை அனைத்து இணைப்புகளுடன் கவரில் வைத்து மூடி முத்திரை இட்டு மனவட்ட ஆட்சியர் தர்ப்பரி என்று விலாசமிட்டு நேர்வோ அல்லது ஒப்புகை பெறத்தக்க பதிவஞ்சல் மூலமாகவோ மாலட்ட வார்க்கி முகலை கட்டிடத்தில் உள்ள முமியியர் மற்றும் காங்கத்துறை, உதவி இயக்குதர் அனுவலைத்தில் மூலமாகவோ மாலட்டனாக வளர்க்கி முகலை கட்டிடத்தில் உள்ள முமியியர் மற்றும் காங்கத்துறை, உதவி இயக்குதர் அனுவலைத்தில் 2017-ம் ஆண்டு திலை 26 அன்று மாலை 05,00 மணிக்குள் கிடைக்கும்படி அனுப்பட்டட்டுள்ளது. கணின் மீலு விண்ணப்பிக்கும் மூலாவின் விரைப் மற்றும் அட்டலனையில் குறிப்பிட்டுள்ள குவளியின் வரிகை எண் போற்றவற்றை தலறாகல் குறிப்பிட வேன்டும்.

8. மேமே குதிப்பேட வாலக்கெடுவீற்றார் வாப்பெற்ற விண்ணப்பக்கள் மட்டும்பாவட்ட ஆப்சியராம் அல்கது அவாது அல்கோரம் பெற்ற அறுவலால் தர்வாரி மாவட்ட ஆட்சியர் அறுவலக வாராகத்தில் தர்வபர்/அருர் வருவாய் கோட்டத்தில் அமைத்துள்ள குவாரிகளுக்கு 2017ம் ஆனர்டு தல்மை 27 ஆம் நானன்ற முத்வகல் 10:30 மணிக்கு ஆறுராகியிருக்கும் சப்பத்தப்பட்ட குவாரிக்கு விண்ணப்தேதுள்ள விண்ணப்புதான் வற்றும் பொது வைத்தில் கலந்து கொள்பவர்கள் மூன்னிலையில் ஆட்டவணைகளில் உள்ள குவாரிகளின் வரிசை பிரமலாக முதலில் பொது எல்மும் மேன்னர் ஒப்பத்தப்புள்ளி (டெண்டர்) விண்ணப்புல்கள் திறப்பதும் மேற்கோள்வப்புல.

269

2

TRANSPORT CHERON

3 MAR 2023

Partico I

2. மேலே குறிப்பிட்ட நாளில் ஒப்புத்தப்புள்ளி (டெஸ்டர்) விண்ணப்பல்கள் திறப்புதற்கு முன்னா என்னோ குணிக்கு தனித்தனியே பொஜு எய்ப விடப்படும். என நடவடிக்கை முடியு மேற்ற பில்பு எம்பத்தப்பட்ட குகளிக்கு கிண்ணப்பக்கள் பிரித்து பரிசீலிக்கப்படும். டெஸ்டர் விண்ணப்பர் மூலம் கோரப்பட்டுள்ள உயர்ந்தும். டெஸ்டர் தொகை அல்லது எலல் ரூலம் கோரப்பட்ட உபர்ந்தபட்ச குத்தகை தொகை இதில் எது அதிக்கின அத்தொகையே எப்பற்றைக் இருக்கான உற்றத்தப் உருவற்கு விக்குக்கு வில் என்பு பில் குண் வில் என்று குற்றுக்கு வில்லு வில்லுக்கு கில்லது உற்றத்தப் ச குற்றகை தொகையாக எடுத்துக்கொன்னப்பட்டு குலாரி குத்தகை உரிலம் வழங்குகல் எப்பற்றனை நடலடிக்கைகள் மேற்கொள்ளப்படும்.

3

autional entra

MAR 2023

200

1 alento

10. மேற்கண்டாடி வரப்பெறும் டெண்டர் / எல விண்ணப்பங்கள், 1958ஆம் ஆஸ்டு தமிழ்காடு சிறுகளிலர் சலுகை விதிகள், கடிக்கங்கள் மற்றும் களியல்கள் (வேக்குத்துல் மற்றும் முறைப்படுத்துதல்) லட்டம் 1957 மற்றும் இந்த எல அறியியில் குறிப்பிட்டுள்ள முக்கிய திபற்றுளைகளிஸ்டி பிடிதேக்கப்பட்டு அவற்றின்றும் முறைப்படுத்துரைல் தக்க ஆணைகள் பிறப்பிக்கப்படும்.

11. இந்த மாலட்ட அரசிலு அதிலிக்கை ரெகரிக்கப்பட்ட பின்னரே, குத்தலை உறுதி ஆணை நெப்பிப்புற்கு முன்னரோ, திபற்றனைகளை மாற்றவோ அல்லது ரத்து செய்யயோ மற்றம் பட்டியலில் கண்டுள்ள எல்லா குவாரிகளின் குத்தலை உரிலம் கேலகும் ஒப்பத்தப்புள்ளி மனுக்களை எக்காரண்டும் சு.அப்பட்ட ரத்து செய்யவோ அல்லது மேற்படி மனுக்களை மூடி முத்தினைப்பப்பட்ட உறைகளை திறக்கும் நால் தேல் மற்றப் எலம் நடத்தும் நான் மற்றப் நோம் ஆயியலைகளை தன்னிலைங்களே நிறுத்திலைக்கவே மாலட்ட ஆட்சியருங்கு முழு அதிலாரம் உண்டு, எதுவது காரணத்தினால் ஒத்திலைக்க தேர்த்தால் அதற்கு மனுஹர்கள் பாருக்கும் நட்ட ஈடு வேட்டி உரியை இல்லை.

12. விண்ணப் தார் தவ்வொரு தளரிக்கும் தனிந்துசியே ஒரு தப்பத்தப்பின் விண்ணப்பத்தை உரிய இவனப்புகளோடு அனுப்ப வேண்டும். ஒரு பின்ணிடில் பல அபர்வது வானியாகு பல இன்றியாகு அதல்தேபர்கள்கில் இதுப்புக்

13. ஒப்பந்தப்பள்ளி விண்ணப்பம் அருப்புவதற்கு முன்/ மூலத்தில் கலந்து வெளங்கதற்கு முன் இம்மாவட்ட அரசிகழ் அறிவிக்கையுடன் இணைக்கப்பட்டுள்ள பட்டியலில் கண்ட சப்பந்தப்பட்ட குவளியை / குவளியரை விண்ணப்புதாரர் தனது சொந்த செலவியேயே நேரில் மன்னைப்புடு மாதை வசதி களிலத்தின் தாம் மற்றும் கனிலத்தின் இருப்பு ஆகியவற்றை ஆராய்த்து வேள்ளர் குவ்வாசு உரியம் வேளி விண்ணப்பேல் வாதை வசதி களிலத்தின் தாம் மற்றும் கணித்தின் இருப்பு ஆகியவற்றை ஆராய்த்து வேள்ளர் குவ்வாசு உரியம் வேளி விண்ணப்பேல் வரைடும் மற்றும் மாத்தில் கலந்து கொள்ளவேள்டும். ஆணை வழங்கப்பட்ட வின் குவாரி அமைந்துள்ள புள வன், பரப்பு குவளிலவின் நான்கு எவ்வகைக், பலை வசதி, வளிலத்தின் தரம் கணிலத்தின் இருப்புக்குறித்து மல்லித் தரைவாற்குக்காகதாகைகளுக்கு உரிமை கிடையாது.

14. 1950ஆம் ஆண்டு மற்றுகிற்றை சிறன்றில் சற்றைக விதிகளில் என்டுக்கா அனைத்து சாராம்சுக்கலையும் மாலட்ட அரசிலும் உன்ற அனைத்து நிபற்றனை கலையும் நன்கு தெரிந்து கொண்டபின் ஒப்பற்கப்புள்ளி விண்ணப்பங்களை உரில இணைப்புகளோடு ுனுப்பிலான்டும். விண்ணப்பட அனுப்பே தேரு விதிகள் பற்றும் குத்தகை நிபற்றனைகள் பற்றி சபியாக தெரியாது என மனுதாரர் திப்படில் தது வற்றுக்கொள்ளப்பட பாட்டாது.

15. gouggountal (Communt) upped an pluppermant :

 நக்கொரு குவரிக்கும் இந்த அரசித்தின் தேசேக்கையில் நேசுசிக்கப்பட்டுள்ள இணைப்பு VL-ம் கானுல் மாதிரி வின்னப்ப நவத்தின் படி தனித்தனி விரையையங்களில் விண்ணப்பிக்க வேண்டும்,

2) நாப்பில் ஒரு நாகுக்கு இரண்டு குவளிகளுக்கு வட்டுத்தான் குத்தகை உசியம் வழக்கப்படும்.

Cab wingin sutingit 3) இந்த அரசிதழின் அட்டவணையில் குறிப்பிட்டுள்ள குவார்களில் குத்தகை காலம் குத்தனத RUISER UNSIDE நிறைவேற்றப்பட்ட நாளிலிருந்து வற்களாலே குண்டி குத்தகை வழங்கப்பட்டு குத்தகை காலம் முடிவற்ற சாதாரண கற்குமாரிகளுக்கும் மற்றும் புதிப்தாக சேர்க்கப்பட்டுள்ள சாதாரண கற்குயாரிகளுக்கும். ஐந்து ஆண்டுகளாகும். குத்தகை ஒப் த்தப்பத்திரத்தில குறிப்பிடப்படும் இறுதி நாளில் குத்தனை வாலம் முடிவடையும், குத்தவை காலம் எக்களணத்தைக்கொண்டும் தீட்டிக்கப்பட மாட்டாது.

4

STUR GUEREN PURCH

MAR 2023

DESTRUCT

4) ஒப்பத்தப்புள்ளி(டெண்டர்) விண்ணப்புத்துடன் கீழ்கண்டவற்றை இணைத்து அலுப்ப வேண்டும்.

(.2) திரும்ப வழங்க இயனது வீணியாட்டக் கட்ட வைசக ரூ. 1500/-க்கான கேட்டி வணவேகையை (டிமானிட் ஒராட்ட்) சதேலும் ஒரு தேசிய யானக்கப்பட்ட வங்கிலில் மாவட்ட ஆட்சியர் தருஷரி யாவட்டம் அவர்களின் பதலிலின் பெயில் பெற்ற generities Course (Sin.

(அ.) பிணை கைப்புத்தொகை (Earnest money deposit) ரு. 25000/- (ரூபாய் இருதிதைந்தாமியம் மட்டும்)க்கான கேட்டி வரைபோலை ஏதேலும் ஒரு தேசியல்யாக்கப்பட்ட வங்கியில் மாலட்ட ஆட்சியர் தற்றுரி மாலட்டம் அவர்களின் பதவியில் பெயில் பெற்று இணைக்க வேளிடும், குத்தகை உரிமம் வழங்கப்படுபவர் செலுத்த மேண்டிய டொல்டர்/மூலத் தொலையில் இந்த தொகை பின்னர் சரி செய்து கொல்லப்படும்.

(இ) ஒப்பந்தப்புள்ளி (டெண்.ர்) விண்ணப்பத்தில் குறித்துள்ள பொத்த குத்தகை தொகையில் 10 சத்திதத் தொகைக்கான வேட்டி வரைவோலை (டிமாண்ட் டிராப்ட்டை) மாயட்ட ஆட்சியர் தர்மபரி மாலட்டம் அவர்களின் புதலிலின் பெயரில் ஏதேலும் ஒரு தேசியாயமாக்கட்டட் யங்கிலிய் டெற்ற இஸ்ளக்க வேண்டும்.

 நலத்தில் நேரடியாக கலந்து கொள்வார்கள் திருப்பித்தரம் உரத விண்ணப்புக்கப்பாரம் ரூ.1500/- மற்றும் பிணை னக்கிடித்தொகை ரூ.25000/- ஆகியலற்றிற்கான கேட்டி வரைகோலைகள் (டிமாணிட்டிலாம்ட்.) முடைப்ப, ஆட்சியர் தங்களி மாலப்பம் அவர்களின் பதவியின் பெயரில் ஏதேனும் ஒரு தேசியமைலாக்கப்பட்ட வங்கியில் பெற்று ஏலத்தில் நேரடியாக கலந்து கொன்வதல்த முள்ளர் ஏவப்படத்தம் அலுவலரியம் சயர்ப்பிக்க வேண்டும். மேலும் ஏலம் மூலம் கோரப்பட்ட உயர்ந்தபட்ச தொகை டெனப்பர் மூலம் கோப்பட்ட உலர்த்த பட்ச தொகையையிட அதிகமாக இருந்தால் மூலத்தொகையில் 10 சதலித்த்தொகையை உடன் ஏலம் நடத்தல் அறுவைபிடம் தேசிய மயமாக்கப்பட்ட ஏதேஜம் ஒரு வங்கிலில் பெறப்பட்ட கேட்டி வளதிலாலையாகவோ அல்லது றொக்க தொகைபாகவோ செலுத்தி தக்க இரசீதுகள் செற்றுக்கொள்ள கேண்டும்.

6) - மாலட்ட வாரியாக களிய வாரியாக விண்ணப்பதாரர் / வெதாரர் தேரடியாகலோ அம்லது பங்குதாரராகவோ தொடர்புள்ள துகளிகள் பற்றிய கீழ்களம். வீஸ்ரங்களை ஆளனா உறுகி வாக்குருலம் (அபிடயிட்) மூலம் தெரிவிக்க வேண்டும்.

- அறு யத்திலிருக்கும் குவாரி நத்தகை அறுமதி பற்றிய வியரம். LC .
- ஏற்கனவே விண்ணப்தேது இதுவரை அறுமதி வழங்கப்படாத குவாரி குத்தலை அனுபதி மற்றிய விவரம்.
- <u>கற்</u>போது உடனிலற்லாக வினினாப்பிக்கும் குவளி குக்ககை அனுவதி விலரம், iii.
- வீலல்காப் குறைக்கு களில் குத்தகைவுள்ள மாவட்ட ஆட்சியலல் வழங்கப்பட்ட செல்லத்தக்க சுறப்பவரி நிறுவை இல்லா ĸ சான்றிதழ் அல்லது கரங்களி திழலை இல்லை என்பதற்கான ஆணையதுதி வரச்சுமூலம் இணைச்சுப்ப, வேன்டுப்
- v. வருபாமா வரி செலுத்தில் சான்றிதழ் அம்லது வருமானவரி பாக்கிலில்லை என்பதற்றான ஆணையறுதி வாக்குமூலம் இலைனக்கப்படவேளர்டுப்

7) ஒம்பத்தப்புள்ளி(டெண்டர்) வின்னைப்பல்கள் மேற்கூறிய இணைப்புகளுடன் நேரியோ ஹலைம் ஒப்பாக பொத்ததர் பதிவத்கம் மூலமாகயோ மாவட்ட ஆட்சீயர் கட்டிடத்தின் வேற்றம் உள்ள மாவட்டனரசு வளர்ச்சி மூலைம் கட சுத்தித் இப்பிரும் தர்வழி புளியியல் மற்றும் கரங்கத்தனற உதவி இயக்குநர் அறுவலைத்தில் 2017,யூம் ஆண்டு ஐசேன 23 அன்று மானை 05.00 வனிக்குள் கிடைக்கும் டி வெஸ் வேண்டும். நேரில் விள்ளைப்பங்கள் அளித்தால் அனதப்பெற்றுக்கொண்டதற்கான ஒப்புகல் கைதம் அண்றைய தினமே வழங்கப்படும். நேரில் விள்ளைப்பங்கள் அளித்தால் அனதப்பெற்றுக்கொண்டதற்கான ஒப்புகல் கைதம் அண்றைய தினமே வழங்கப்படும். தால் மூலம் தெய்ப்புல் விள்ளைப்பத்திற்கு ஒப்புதல் சுடியம் மூன்று தினங்களுக்குள் தயாலில் அனுப்பியைக்கப்படும் வென்பதாற்கள் வேல் மூல்குக் விவாகம் தேனியாக குறிப்பே படி அனும் இனைக்கப்பட வேண்டும். கவரின் வேற்றைக்கும் வின்னங்கள் அடி முத்திலையிடல் உள்ளில் மட்டுமே அனும்வைக்கப்பட தேவைலில் களின் வேற்றுக்கில் வின்னங்களுகள் வெல் தேனியாக குறிப்பிட்டிட வேண்டும். கலின் இடத மூலைவில் களிலத்தின் பெயர் குவாரி அமைத்துள்ள திரமைப், புல எனர், பரப்பு அரசிதழின் இனைப்பில் செனில்கப்படுள்ள தனதிகளின் பட்டிலில் உள்ள வறியல் வரைப்பத்தும் விவாகம் தெனியாக குறிப்பிட்டிய வேன்டும். கலின் இடத துணவில் களிலத்தின் பெயர் குவாரி அமைத்துள்ள கிரமைப், புல எனர், பரப்பு அரசிதழின் இனைப்பில் செனில்கப்படுன் தனரிகளின் பட்டிலில் உள்ள வற்கத்துற்கு திரமைப், புல எனர், பரப்பு அரசிதழின இனைப்பில் செனில்கப்பேறன் தன்வில் களிலத்தின் பெயர் குவாரி அமைத்துன்ன கிரமைப், பல எனர், பரப்பு தானிகழின் இனைப்பின் செனில்கப்பட்டுள்ள தலை தலில் உள்ள வறைக்கு வன் ஆகியலன்றை கலைவர் களில் தான் தைப்புக் செனில் வால் செனில் பெற்றும். தல் தல் பல என் வரைப்பில் தலைக்கு வரம் குடியில் பில் செனில் பல் சிறில் பல் வின் கைப்பில் வரைப்பில் வனைப்பு வரையின் கலைக்குப்பில் வரல் களின் வரல் சில் பலைக்கள் இடதுக்குப்பில் திரில் தல் கள் வரல் கள் தல் வரைப்பில் வரைப்புக் வரின் வரைப்பில் விலைக்கள் வரல் வில் தில் விலைக்கு தலைக்கு தலைக்கு தல் கள் கள் வரல் வில் விள்ளைப்புகள் கைப் தன் கைப்பு கள் வரல் கள் வரல் வில் பில் விலைக்குக்கு வரைப்புக்கள் வில் வில் வரல் வரல் கள் வரல் களைப்புன் வரல் வர் வரல் வரல் வில் வில் வில் வில் வில் வரல் வில் வின் வில் வரல் வின் வரன் வரல் வரல் வரைப்புன் வர

8) மாவட்ட ஆட்சியரால்/அல்லது அவரால் அல்கீகாரம் வழங்கப்பட்ட அறுவளரிடம் உள்ள வருகை பதிவேட்டில் விண்ணப்பதாரர்கள் / ஒல்தாரர்கள் கையோப்பட்டபின்றதே ஒல அறைக்குல் அனுவதிக்கப்படுவரர்கள்.

9) குறிப்பிட்ட காலவெடுவிற்றர் மரப்பெற்ற விளர்காப்பட்டையூட்சியர் அல்லது அவரால் அங்கீகாரம் வழங்கப்பட்டுள்ள அனுவராய் மாலட்ட ஆட்சியர் அனுவைத்தில் தம்வரி மற்றம் அருர் வருவாப் கோட்டத்தில் அமைந்துள்ள குவாரிவருக்கு 2017ம் ஆண்டு ஜங்கை 27 அன்ற முற்லகல் 10.30 வணிக்கு வருகை தந்திருக்கும் தொடர்டின் அமைந்துள் வின்னப்படுள்ள அனுவராய் மாலட்ட ஆட்சியர் அனுவு மற்லகல் 10.30 வணிக்கு வருகை தந்திருக்கும் தொடர்டின் குவாரிக்கு வின்னப்படுள்ள விள்ளாப்புதாரங்கள் மற்றம் எலம் கோர் வந்திருக்கும் நமாகளில் முன்னிலையில் ஒம்பந்தட்டின் (டெஸ்டர்) வின்னப்படுகள் திறக்கப்படுவதற்கு முன்னர் மற்றும் கல் கோர் வந்திருக்கும் கைத்து வெளர் விரும்,வேள் மின்னா வைட்டித்தானை கு.25000/ க்னன கேட்டி வறைவேலை பற்றும் விள்ளாப்புக்கட்டனம் கு.1500/ க்கான கேட்டி வரைவேலை என்றும் வின்னப்புக்குப் குட்டின் நடையத்தினை கைய்புத்தானை கு.25000/ க்னன கேட்டி வறைவேலை பற்றும் வின்னப்பிக்கட்டனம் குற்றோறைகள் உடல் வரைவேலை எத்தியின்றி ஆவனரி, வழயானைரி நிறைவில்லானர்திலும் அன்னது உறுதியொழி ஆயணம், முதலிய ஆவனங்களை சூ20/- மதிப்புன் முக்தினைத்தானில் எனர்து உறுதி அன்றை உறுதியாறி ஆயணம், முதலிய ஆவணங்களை சூ20/- மதிப்புன் முன் ஆண்டுத்தரிண்டும், எலம் மற்றும் ஒப்புதப்புள் பொருக் வால்பில் பெறு வின்னப்புத்துட்சியன் குறுக்குக்கு தொலை குடிப்பிட தேவைவில்லை, ஏற்றை தெல்குப்பில் தொலால் வெறுவே வினர்ணப்புதில் குன்றுகை குப்பில் அறுதல் துடிதிருடித்தரியடைபுன் உறுக்குப்புகள் விண்ணப்பட் கொடுதொனியன் வருத்தில் கலத்துவெலன் குனை து.1500/- திருப்பில்லை, ஏற்றைவே டெனம் ர விண்ணப்படு கொடுத்தலாலில் வின்னைப்பிலில் கலத்தில் வருக்கை தொலைவ குதிப்பிட தேவைவில்லை, ஏற்றைவே வென் ர விண்ணப்பட் கொடுத்தலால் வரைவுக்கும் வின்னைப்புக்கு மதற்கு அனைவை குகிப்பிட தேவைவில்லை, ஏற்றைவே டெனம் ர விண்ணப்படு கொடுத்தலால் அன்றுக்குப் வின்னப்புதில் கலத்துவைக்கு அனைவை தல் குடிதலுக்கள் என்று வேன்பர். உறு ஒரு நான் மட் இடை தோட்டிப்பில் வென்னப்புக்கில் கலத்தில் கலத்து வெள்ள அறைக்குப்படில் வரல் தல் வரை குற்றது ஆனை (அப்பி) அல்லை வென்னப்தில் வேற்றுக்கை கைக்கை அறைக்குப் தலை வரைகை வற்று ஆனை வருக்கை திருவை வரைக்கை வேற்று வேன்னப் தில் வரை வரை வருவன் வற்றன் வை வருதல் வரை வறைக்கை தல் தினை கான் வரைக்குப்பதில் வறல் வற்றுக்கு தன் வர் வறைக்கை வேன்னைகள் வரைத்தில் வரைக்கை

10) ஒப்புக்ப்புர்ளி விண்ணப்படியத்தில் மறு செய்யும் நபர்கள் தால்கள் மறு செய்யுல் குவாரிக்கு குத்தனை தொலையாக செலுந்த விரும்பும் தொலையை விண்ணப்பத்தில் குறிப்பிடாமல் இருத்தாலோ. அல்லது விணிணப்ப கட்டனாம், சென்னைப்புத் தோலை, அதிலப்பையாக குறிப்படும் குத்தலை தொலையின் 10% தொலை ஆகியலற்றிற்னான வாசேலைலனை விளர்பாட்டித்துடன் இன்னங்களால் இருந்தாலோ, விளர்ணப்பத்தாளில் விண்ணப்பதாரம் தன் லைபொப்பம் செல்யாலல் இருத்து வேட 1959ம் ஆண்டு தமிழ்நாடு கிறனைய எதுவை விதிலலில் கூறப்பட்ட வாங்கவரி பால்கியில்லைய வாண்டுதுர், வருமானவரி மால்கியில்லை எனன்றிருத் தல்லது இணைகளுக்காக வழங்கப்படும் ஆனைம் உதுதி ஆணைம் பற்றல் ஏற்றையே மற்றைரர் தேஷயாலியை பல்ததாறாகவேன தல்லது இணைஞர்களை வழங்கப்படும் ஆனைச் ஆகி ஆணைம் பற்றல் ஏற்றையே மற்றாரர் தேஷயாலியை பல்ததாறாகவேன உல்ல துவாரிகள் தொடல்லன் ஆகியலற்றை இணைக்கப்படாலல் இருத்தானோ லேல்ஷ ஒப்பத்தப்புள்ளி விண்ணப்பல் மாலட்ட ஆட்சியால் ஆல்லது அவளவி அல்லேக்கில்லைப்பட்ட அறுவரைல் திரைகிக்கப்படும். வேத்ததிலேட்டவாறு 1380-7 ஆட்-சிரபேடல் டுடலி

5

alle halles

MAR 232

4

(agin the

விண்ணப்பட்றின விக்கப்பட்ட ஒம்தூரப்புள்ளி விண்ணப்பதான் களுக்கு ஒப்பத்த பள்ளிகள் திறுக்குப் சுவத்தில் விண்ணப்பதான ஆஜில் இருந்தால் பட்டும் மாவட்ட ஆட்சியர் அல்லது அலாது அங்கொலம் பெற்ற அறுமலரால் விண்ணப்புதானிப்பத்தில் ஒம்தில் பெற்ற வங்கியாரமோலை திருப்பி வழங்கப்படும். ஒப்புத்தப்புள்ளி திறல்கும் சுவத்தில் ஆறில் இல்லாத நபருக்கு பதிலஞ்சல் மூலம் வாம்கி வரையோலைகள் தனியே அறுப்பி வைக்கப்படும்.

11) ஒல்லொரு குணிக்கும் பொது எலம் நடத்தி முடித்தப்பின்னர் எம்மத்தப்பட்ட குலளிக்கான டென்டர் விண்ணப்பங்கள் வரசை தத்திருக்கும் சுப்பத்தப்பட்ட டென்டர் விண்ணப்பதாரர்கள் பற்றம் முதுவரிகள் அல்லது ஆலர்களது அதிகாலம் பெற்ற நபர்கள் முள்ளிலைகில் சம்வத்தப்பட்ட அதிகளிகளால் திறக்கப்படும். ஒப்பத்தப்புள்ளி (டெண்டர்) திறக்கும் நேற்திய விண்ணப்பதார் அல்லது மாதாரர் அல்லது அப்சின்றம் பெற்ற நபர் ஆறில் இல்லைதற்கு வாலப்ட நிர்காகம் பொறப்பு அல்ல. வேலும் ஒப்பத்தப்புள்ளி (டெண்டர்) விண்ணப்பும் திறப்பதோ எலம் நடத்துவதோ நிறுத்தி வைக்கப்பான். பாது.

12) மானப்ப ஆப்சியர் துல்லது அவரது அங்கோரம் பெற்ற துறுவார் பேற்னாட குவரிக்கு வரப்பெற்ற சொத்த செல்லத்தக்க லிண்ணப்பல்கள், விளர்ணப்பதாரர்களின் பெயர்கள் ஒம்மொரு விண்ணப்பதாராகும் குதிப்பிடப்பட்ட அதில் ட்ச டெண்டர் தொகை ஆகியலற்றையும் அதிக்கட்ச தொடைக்கு ஏலம் கேட்ட நமர் பெயர் மற்றும் அதிக்கட்ச ஏலத்தொகை ஆகியலற்றையும் ஏலம் முடிவடைத்தவுடார் அறிலியார், மூலத்தொகை, ஒப்பிருப்புள்ளி (டொட்டர்) விளர்னாயத்தில் குறிப்பிடப்பட்டுள்ள குற்தகை (டொட்டர்) தொகையை விட குறைவாக இருந்து ஒப்புந்தப்புள்ளி (டெ.வர்டர்) விண்ணப்பங்கள் மூலமாக கோரப்படும் குத்தகை தொகைகள் ஒன்றக்கும் தேப்பட விண்ணப்புதாரிகளால் ஒரே மாதிரியாக குறிப்பெப்பட்டிருந்தால் மாவட்ட ஆட்சிலர் அன்னு ஆவரால் ஆங்கினரம் அளிக்கட்டெற்ற அதுவவர் சம்பத்தப்பட்ட விண்ணப்பதாரங்களை மட்டும் அழைத்து சம்பத்தப்பட்ட குவாரிக்கு மட்டும் மற்கேட்டி மூலம் உயர் குத்தகை தொகை பெற நடவடிக்கை எடுக்கப்படும். அதிகமட்ச குத்தகைத்தொகை கோரும் நமர் அதிகமட்ச எலத்தோகை கோரிய தமராக அதியிக்கப்படுவார். ஒய்வொரு குவாரிக்குப் பெறப்பட்ட ஒப்பத்தப்புள்ளி (டெண்டர்) வின்ணப்பங்களில் ருறிப்பேப்பட்டுள்ள அதிகபட்ச குத்தகைத்தொகை அங்கது பொது ஏகத்தின் மூலம் வேட்கப்படும் அதிகப்பட்ச குத்தகைத் தொகையை இலற்றில் எது அதிகமோ அந்த தொகை மேற்கனர்ட குவாரிக்கு கோரப்பட்ட அதில்பட்ச குத்தகை தொகை என அறிவிக்கப்பட்டு அறிகப்பட்ச குத்தகைத் தொகை குதிப்பிட்டவராக அறிவிக்கப்படுகளர். அறிகப்பட்சத்தொகைக்கு டெண்டர்/ ஏலம் மூலம் கேட்ட நபர் என மாலட்ட ஆட்சியர் துல்லது அவரால் அங்கீகாரம் வெற்ற நபர் மூலம் உறுதிரெய்யப் பட ஷடன், டெண்டர்/ எஸ்கேட்ட நபர் அவரால் அதில்க் சமாக கோரப்பட்ட தொகையில் பத்து சதாரிகித் தொகையினை வேட்டி வரைவாலையாகவோ / பண்மாகயோ உடனடியாக செதுத்திடவோர்டும். அவ்வாறு செலுத்தத் தவறம் பட்சத்தில் அவரது ஏலம் / டெண்டர் ரத்து செய்யப்பட்டு அவருக்கு அடுத்துடியாக அதிகமட்சத்தொகை கேட்ட நபருக்கு வாய்ப்பளிக்கப்படும். அவரும் பத்து சதவீதத்தொகையினை செலுத்த தலறும் பட்சத்தில் இதே நடைமுறையை தொடர்ந்து நடத்துவது ஆல்லது மறு ஏலம் விட ஆசணல்டுதை போன்றவை மாவட்ட ஆட்சியரின் இறுகி முடிவு பற்றும் அதிவார வரம்பிற்கு உட்பட்டதாகும்... அதிலாட்ச எனம் / டெனப்பர் கேட்ட தபரை தவிர மற்றவர்களுக்கு அவர் தாம் செலுத்திய பிணைவைப்புத்தொகை திரும்ப தரப்படும்.. ஏவம் / டெனப்டர z ஸ்ரி செய்பப்பட்ட நமர் மீதமுள்ள 90 சதவீத தொகையினை ஏழு திளங்களுக்குள் செதுத்திலிட வேண்டும், தவறும் பட்சத்தில்--enu) / டென்டர் ரத்துச்செய்யப்பட்டு அவர்செறுக்கிய அனைத்து தொகைகளும் பரிமுதல் செய்து அரசு கலைக்கில் சேர்க்கட்டும்…

13) (அ) சிறப்பு நிபத்தனைகள்

(i) இந்த டெண்டர் மற்றும் ஏலரனதாக்க் கலத்து கொள்ளும் விளர்பைப்புதாரர்கள் அனைவரும் இத்திய அரசின் வருயாச வரீத்துறையினாஸ் வரும்கப்படும் நிரந்தா கலைக்கு எண் (PAN - CARD) அட்டையை பெற்றிருக்கவேண்டும்.

273

adini dia

MAR 2023

(II) இந்த நிரத்தர களாக்கு என்னை சமர்பித்து டென்டர் மற்றும் எலம் கோரும் தொகைக்கு இன்று நாகோணுகள் aften stud anu'r yddan afge arnadsme, a sel Busest seitemen agare affendarffe துளிக்கப்பட்டுள்ள TAN.No. CHEA11977A-ன் கீழ் உரிய லருமாயாயரித்துறை தெறுத்துக்கிட்டியி மூலம் தெறுத்தவேண்டும்.

7

Guide futer and

MAR 202

- E-Color

*

(10) மேலும் குத்தகை உரியப் பெற்ற பீள்ளர் களியங்களை எடுத்துச் செல்ல போக்றுவரக்கு அமைதி சிட்டுபெற ஒல்மொருமுறையும் செலுத்துகின்ற சீளியறேற் தொகையின் பீது இரண்டு சதவீத வருமான வரி தொகை செலுத்தவேண்டும்.

14). ஒரு குலாரிக்கு ஒரு டொஸ்டர் விண்ணப்பப் பட்டும் வரப்பெற்று ஏலம் கேட்க யாரும் முன்வரலிக்கை எனில் ஆந்த ஒரு லிண்ணப்பதாரர் குதிப்பேட்ட தொகை நிசைபனைது என்றும் களில் அமெருத்திக்கு உகந்தது என்றும் மலைப், ஆட்சியால் கத்தப்பட்டால் அவருக்கு மாவட்ட ஆட்சியால் குத்தகை உரியம் வழங்கமேடும். அந்த ஒரு விண்ணப்பதாரால் குதிப்பிடப்பட்ட தொகை நியாயனாகது அல்ல என்றும் அவருக்கு உசியம் வழங்குதை கனிம் அமேநேத்திக்கு உகத்ததல்ல என்றும் மாவட்ட ஆட்சியர் கத்தினால், அவருடைய விண்ணப்பர் மாயட்ட ஆட்சியரால் நிராகரிக்கப்படும். ஒரு குவாரிக்கு ஒன்றுக்கு வேற்பட்ட லிலானப்பங்கள் வரப்பெதின் அதிகபட்ச ஏவத்தொகை / டெண்டர் தோகை நீயாயமாதை எனக் கருதப்படும் பட்சத்தில் குவாரி குத்தகை வழங்க ழடாடிக்கை எடுக்கப்படும். ஒரு குவாரிக்கு பெறப்பட்ட அதிகபட்ச ஏல தொகை / டென்டர் தொகை நியாயமானது அல்ல பற்றும் களிய அபியிருக்திக்கு உகத்ததல்ல என மாவட்ட ஆட்சியர் கருதும் பட்சத்தில் அதனை ஏற்தாமல் நிராகரித்து ஏலத்தொகை / ு ஸ்டர் தொகையில் 10 % தொகையை பெற மறுத்து மறு ரலம் மற்றும் டெண்டருக்கு கொண்டு வர நடவடிக்கை hGarminit. Gab

15) மாளப்புக்கு இந்திய உச்சந்தியன்றம் வழக்கு என் துஏ 12-13/2012 எஸ்.எல்.மி (சி) என்.19529 - 19525/2009 புகியவற்றின் மீது 27.02.2012 அன்று வருங்கியுள்ள ஆனனாகளின்படியும், இந்திய அரசு கற்றுச் குழுக் மற்றும் உனத்துறை 3.56 Aurrasson creat. ereb. 11011/47/2011 - IA. II(M) great 18.05/2012afrugetala, gaperanaeur eresel. (antiereb)erest. 79, Gganglade-(ஸ்ஸ்சி1)தல்ற நாள் 06:04:2015ஸ்டி 1959ம் வகுடத்திய தமிழ்நாடு கிறுகளில் சதுகை விதிகளில் திருத்தம் செய்யப்பட்டு சேச்சுப்பட்ட விதிகள் எண். 41 மற்றம் 42-ன் பதாம் அனைத்து சிற்களில் குவாரிகளுக்கும் குவாரி குத்தனசு வழங்குமுன்பு றுக்கிக்கப்பட்ட சாங்கத்திட்டம் மற்றம் தமிழ்நாடு பாஜில சுற்றுகழங்காக்க மதியிட்டு ஆணைவம் மற்றம் இந்திய அரசு சுற்றக்கு (prin மற்றும் வளத்துறையேக் தடையின்மை சான்று பெற்று சமல்ப்பித்து சின்பு மட்டுமே குவாரி குத்தகை வழங்க முடியும்.

 அதிகப் சத்தொலை வேட்ட நபருக்கு குவாரி குத்தகை உரிபல் உறுதிலெய்பப்படுபாயில் அவகுக்கு குவாரி குத்தகை உரில் கழங்கப்படலுள்ள குவளிலின் புல எளர், பரப்பளவு, ஆகிய மிஷங்கன் அடங்கிய ஆதிலிக்கை வருக்கப்பட்டு ஆங்கிக்கப்பட்ட கால்கத்திட்டம் மற்றும் தமிழ்நாடு மாதில சத்துச்சூழல் தாக்க மதிப்பிட்டு ஆணையம் மற்றும் பத்திய அரசின் சுற்றுச்சூழல் மற்றும் வளத்துறையின் தடையின்மைச்சான்று எந்தும் தமீழ்காடு மாசுக்கட்டும்பாட்டு வாரில் இனக்ஷ ஆனை ஆகியவற்றை உரிய காலத்திற்றுள் வார்ப்பின்றுவறு தெரிவிக்கப்படும்.

L. மேற்கண்ட அதிலிக்கை பெற்றுக்கொண்ட பறுதால் கரங்கத்திட்டத்தை அங்கியாம் பெற்ற தகுதி வாய்த்த நபர் (RQP) மூலம் அரசு தெரிவித்தும்ன விதிகள் யற்றும் வழிகாட்டுதலின் படி தயாரித்து அறியிக்கை பெறப்பட்ட நாளிவிருந்து மூன்று மாத காலத்திற்குள் தர்யபரி புகியீவல் மற்றும் சரவ்யத்துறை உதுவி இயக்குழரியம் அங்கீனரம் பெற சாஸ்பிக்க வேண்டும்.

்.பேற்காள்ட மறுதாரர் தர்வடிரி புலியியம் மற்றும் கரங்கத்துறை உதவி இயக்குதாரல் அங்கீகாரம் வழங்கப்பட்ட ெய்ப்தில் கல்கது அன்றுக்கான கழ்த்துக்கு இப்பிழல் அன்றுக்கு வந்து அன்று கால்கான கற்றது. அன்று பிழக்கல் என ஆணையல், மத்திய ஆரசின் கற்றுக்குழக், வனத்துகதுமின் தடையின்னைன்று மற்றும் தமிழ்தாடு மாககட்டுப்பாட்டு வலிய இசாசவு ஆகியவற்றை பெற்று சுகர்பிக்க வேண்டும்.

8

automie hatoduna

, de 10

பி. இரு மாநில ாய்மையிலிருந்து ஐந்து கியோகிட்டர் தொலைதெருக்கும் வலவிலுது சண்மையத்தியிலுது முக்கு கியோகிடர் தொலையிற்குள்றம் அமைதுள்ள குவாகொருக்கு மத்திய அரசு சுற்றுக்கும் ஆணையத்தில் முன் அனுக்குப்பது வுல்பிக்க வேண்டும்.

iv. வளவீலங்கு ஷனாயயத்திலிருந்து பத்து கிலோமீட்டர் தொலையிற்குள் அமைந்துள்ள குயுளிகளுக்கு வளவிலங்கு தேசிப வளிய திலைக்குழுமிடமிருந்து (Standing Committee of National Board of Wildlife) தடையிள்ளம் சான்று பெற்ற சயர்பிக்க வேணிடுப்

அங்கீகரிக்கப்பட்ட சரங்கத்திட்டம் குதல் ஐந்து ஆன்டு காலத்திற்கு மட்டுமே செல்லத்தக்கதாகும்.

vi. மேற்கனர்ட ஆவணங்களை சமர்பித்தபின்பு எனுமாருக்கு ருவாரி குத்தகை வழங்கி மாலட்ட ஆட்சியராம் ஆணைபிடப்படும், அங்கீளிர்சுபட்ட சாங்கத்திட்டம் மற்றும் வழிழ்நாடு மாதில் கற்றுகுழம் மதிப்பட்டு ஆணைபம் மற்றும் மற்றிய அரசின் சுற்றுகுழம் மற்றும் வளத்தனைபேம் தலையின்னம் சான்று ஆகியவற்றை ரூறிப்பிட்ட காலக்கேடுவித்துள் சமரித்த தலறினால் மாலட்ட ஆட்சியர் அவர்களைல் மதுதாராக்கு மாலட்ட ஆட்சியர் பிரையைக்கு ஆனுகை காப்பரித்து விளையை நடத்தப்பட்டு ஏற்றையே வரைக்குவரு முற்றும் பிரியில் தற்றானுது தல் காலக்கு ஆனுகை வலியற்று நடத்தப்பட்டு நடத்தப்பட்டு ஏற்றையே வரல்கள் முற்று புக்கு பேல்பட்டத்து நடத்தப்பட்டு ஏற்றையே வரல்காலப்பட்ட உத்தாவு முத்து பேலப்பட்டிது.

17) மேற்கறிய உத்திரவு மாலட்ட ஆட்சியரிடயிருந்து கிடைக்கப்பெற்றவுடன் விண்ணப்பதாரர் மாலட்ட ஆட்சியரின் ஆணையில் குறிப்பிட்ட வலக்கெடுவிற்குள் கீழ்கண்ட ஆயணங்களை குத்தகை ஒட்டந்த ஆவணம் நிரைகேற்றவது தொடர்பாக மாலட்ட ஆட்சிவருக்கு சமங்கிக்க வேண்டும்.

(அ) விள்ளைப்புதாரரின் கையொப்பிட்ட வரைவு குத்தகை ஒப்பத்திரம் மற்றும் வரைப்பட்

(ஆ) அசல் குத்தாக ஒம்தோம் தீதிரம் தமார் செய்வதற்கு தேவையான நீதித்துறை சாரா முந்திரைத்தால்

(இ) வாப்புத்தொகைக்காக எல்ம் / டெண்டர் தொகைவில் பத்து சநவீதம் அல்லது ரூ.5000/-ப் இதில் எது அதிலமோ அதை செதுத்தியதற்காள அசல் செதுத்தச்சிட்டு (சவான்).

(#) பாமட்ட ஆட்சியர் ஆணைபில் குறிப்பிட்டுள்ள பொற்ற குக்ககை பட்டிற்றான படிபுவர் ஹெக்கியதற்கான அசல் சுவால்.

18) அல்லாறு குறிப்பிட்ட வாலத்திற்குள் மேற்லாம். ஆவணக்களை மாவட்ட ஆட்சியரிடம் சமர்ப்பிக்க தலதிலால் மாவட்ட ஆட்சியரால் வழங்கப்பட்ட குத்தகை உரிவர் எத்து செய்யப்பட்டு அவர் செலுத்தில் அனைத்து தொகைகளும் அரசுக்கு ஆதாயம் செய்து அரசு கணக்கில் சேர்க்கப்படும்.

19) வேற்கண்ட ஆவாலிகளை ஒப்படைத்து குவாரி குத்தலை ஒப்பந்த ஆலைம் நிறைவேற்றிய மில்பே குவாரிட்டணியை தொடல்லவேண்டும். குவாரி குதலாக ஆவாம் நிறைவேற்றுண் குவாரிட்டாளி கெய்வது கண்ட திபட்டடால் அது அறுபதியின்ப் சுனிபல் வெட்டியெடுத்ததாக கருதப்பட்டு தமிழ்நாடு சிறுவறிய சதுவை விதிகள் 1959ன் விதி 36-அ-ஸ் படி உரிய நடவடில்கை மடுக்கப்படுவதுடஸ் குற்றவெல் நடவடிக்கப்ப் எடுக்கப்பும்.

20) குயாரி குக்கைக்காக வேரப்பட்ட வொத்த குத்தலை காலத்தித்தமான ஒரே நடலையில் பொத்தமாக வெறுத்தப்படும் குத்தலைத்தொகை நீங்கலாக குத்தலைதாரர் மேற்படி குவாரியில் இருந்து எடுத்துக்கெல்ல உற்தேரிக்கும் சிறுகலிலத்திற்ற 1959ம் ஆண்டைய தமிழ்நாடு சிறுவளிய சலுகை விதிகவின் தப்பலணை 2ல் குறிப்படப்படுள்ள விகிலங்காரப்படி சீலியரேஜ் கட்டனாத்தை செலுத்தி பொத்த இசைவாணைச்சிட்டு மற்றம் அருப்பிலை சீட்டு பெற்றதான் சிதைலிலை எடுத்துக்கெல்லவேண்டும். மேலும் அரசால் அய்வப்போது திருகவில் நிர்வைக்கை படுதல்லே தொகையை செலுத்தி திரையில் குடில் குறைக்க அரசால் அய்வப்போது திருக்கு நிரைக்கை விதிகளில் நிறைவேற்ற தொகையை செலுத்து குறுவதுக்கில்ல தேன் குறுவிலாக தல்லை அரசால் அய்வப்போது திருக்கு திரைவில் மற்றும் சீலை விதிலை விதல் கிருக்கு இரசுவில் திருக்கு திரைவிலை வாரு சில வரசு திற்றைக்கு திரைவர்க்கு மற்று தலையன் திறைக்கு விருக்கு திரைவில் திருவில் குறுவதுக்கிற்றுக்கு அன்னை அரசுவில் வரசுவல இதல் திருவில் திரண்டு தல்லில் விருவதோ தொகையை செலுக்கு அனுவதிக்கிட்டுப்பு வேண்டும்.

23) குத்தகைதாரர் ஒம்மொரு மாதமும் குவாரிட்டணி செய்த தொழியாளர்கள், குயனி கெய்த கணின்றாய இ களாக்குகளை பிரதியாதம் ஐத்தாம் நாளுக்குள் உதவி இயக்குதர் பலியேல் பத்தும் கலங்கத்தாரு. தர்களி அன்னதைக்கு நிற்றுக்காக்கு AgriGonia Gamifile.

ÿ

Buun Bibit Bigunganga

MAR 2023

*

14

22) குவாரிகளுக்கு அருகில் உள்ள போக்குவரத்து சானவலா், கிராம மலைகள் குடியிருப்பு பகுதிகள் விடுகள், வார்டிப்பாதைகள், மின் மற்றும் தொலைபேசி கம்கேள், நராண்டையிலர்கள், மலில்பாதைகள் பொதுப்பளித்துறை, வாய்க்கால், மதசுப்பத்தமான வழிபாட்டுத்தலக்கள் மற்றும் இது நிலையான அமைப்புகள் இவற்றிலிருந்து 1959ம் ஆனர்கடல அதிந்தடு சிறுகளிய எதலை விதிகளின் படி பாதகாப்பு இடைவெளி விட்டு பிதமுள்ள இடத்திற்குள் தான் குளார்ப்பணி செய்யரிவண்டுப். பொதுவக்கள் உபபோகில்கும் இடங்கள் குடியிகுப்புக்கள் பட்டா நிலங்கள் அன்கு பொதுச்மொத்துக்கள் ஆகியவற்றிற்கு சேதம் ஏதும் எற்படாமல குவாரிப்பணி செய்யவோல்டுப். குவாரி பணியால் தேய் எதும் ஏற்பட்டால் அதற்கு குக்தகைதாரரே முழு பொறுப்பேற்ற அதில் தொடும் நட்டத்தை எழு் தொடுத் தாகேவன்டும்.

23) குத்தாகதாரார மேற்குறிப்பிட்ட நிடத்தனாகள் அம்லாமல் 1959ம் ஆலாடைய நமிழ்நாடு சிறுகளிலர் சலுகை விதிகள், களிடங்கள் மற்றும் காங்கங்கள் (மேம்படுத்துதள் மற்றும் முறைப்படுத்துதல்) சட்டம் 1957 மற்றும் இந்த அரசிதழில் குறிப்படப்படுள்ள சிறப்பு நியற்தனைகள் மற்றம் அரசால் அம்வட்போது வொண்டுவாப்படும் ஆணைகளும் லிதிகளும் கட்டுப்படுத்தும்.

24) இல்லிதிகளின் கீழ் வழங்கப்படும் குவாரிகளின் குத்தகை காலம் எக்களுனத்தைக் கொண்டும் சூத்தகை வழங்கப்பட்ட காலத்திற்கு வேல் நிட்டிக்கப்படவோ அல்லது குத்தகை காலம் புதும்பிக்கப்படனோ மாட்டாது. குத்தகை காலம் முடிந்தபின் குத்தகைகுறைர்கள் குத்தகைக்கு விடப்பட்ட பத்திகளில் எல்விதலான உரிமையும் கொண்டாடக்கூடாது மற்றும் குலார் மன்னம் எண செய்யப்பட்டு மனழக்காலங்களில் எவரும் விழுந்துவிடாதவாறு பாதுகாப்பு செய்யப்பட வோற்டும்.

25) குழந்தை தொழிலாளர்களை குவாரிப்பனியில் ஈடுபடுத்தக்கடாது.

25) இந்த அரசிதழில் குவாரி ருத்தகை உரிமத்திற்காக அறிவிக்கப்பட்டிருக்கும் பட்டியலில் s.afm குத்தகை விடப்படும் குவாகௌா டொஸ். ர் / ஏவம் நடை பெறுவதற்கு முன்பாக நிழத்தி வைக்கவோ, திக்கவோ, புதியதாக சேர்க்கவோ குவாரி பரப்பாலை. பாற்றவோ, பாகட்ட ஆட்சியருக்கு அமிகாம் உண்டு.

27) நிர்வாக குழக் காரணமாக டெண்டர் எற்றும் ரலத்தை ரத்து செய்ய மாவட்ட ஆட்சியருக்கு அதிகளும் உண்டு.

28) செய்தித்தாள் மூலமாகவோ, மாலட்ட அரசிதத் மூலமாகவோ, அறிவிட்டி செய்யப்படாத குவாரிகளுக்கு தொய்து ஒரேத்தப்புள்ளி விண்ணப்பங்கள் கிடைக்கப்பெற்றால் அவையாலும் முதிர்ச்சி அடையாத விண்ணப்பயாக எதுதப்பட்டு மாலட்ட ஆட் பொல் உடனடியாக நிலகரிக்கப்படும். குறித்த காலக்கெடுமிற்கும் வந்து போத விண்ணப்பங்கள் வாலவரையதை வடத்த விளினப்பாக கருதப்பட்டு அமையாலம் மாவட்ட ஆட்சியால் நிராவிர்கப்படும் நிராவிர்கப்பட்ட விண்ணப்பங்களின் வங்கி வளதோலைகள் மட்டும் விள்ணப்புகாரகுக்கு திருப்ப அனுப்பி வைக்கப்படுப்.

29) 1959ம் ஆண்டு தமிழ்தாடு சிறுகளிக சதுகை விதிகள் அட்டலனைப்படிகல் 1ம் கண்ட ஒப்பத்தியத்தில் ஹோப்பான அளவிற்கு நிபந்தனைகளை பதியதாக சேர்க்கவோ, நீக்கவோ மாற்றி அமைக்கவோ மாலட்ட ஆட்சியருக்கு அதிகளும் உண்டு, குத்தகை பத்தில் எற்படுத்தியலேடியும் எண் மற்றும் குலாரி செய்ய ஒதுக்கப்பட்ட பரப்புக்குறித்து. எவ்வித தாயாயும் செய்ய ருந்தகைதாரருக்கு உரியை கிடையாது.

138A/7 (01-9Gen 0-1

30) குக்ககை ஒப்பத்தியிரத்தை மலையடத்துடன் சொத்து மற்றகைக்கப்பம் 1982 ல் பிரிய மற்றக்கு குக்கு (00 தனது சொத்த செல்லில் மறியிலியத்து பற்றில் இடல்கள் பற்றிக்கில் கிறையில் மற்றில் கிறையில் கிறையில் காறில் இயற்றத் தலைக்கில் உடன் ஒப்படக்கவேண்டும்.

31) தபிழ்றாடு சிறுகளில் எலுமை விதிகள் 1953ள் விதி 38(1)ம் வலைஞக்கப்பட்டுள்ளவாலு அருகிலுள்ள அமிருப்புலருக்கு மாதுகாப்பு இடைவெளியாக 390 மீட்டரும் கிராம சாவல்களுக்கு 10 மீட்டரும் இதர சாலைகள் கட்டிடங்கள், வழியாட்டு தலங்கள், கேள்கம்பி பாதைகள், தொலைபேரி மாதைகள், முகைவண்டிப்பாதைகள், ஒராயங்க்டனம்பகல், ஆறு, எரி, குளம், குட்டை மற்றும் இரை கொது சொத்துக்கள் ஆகிலவற்றிற்கு மாதலைப்பு இரையெளியல் 50 மீட்டரும் விட்டு மீதமுள்ள இடத்திற்றுள் தான் குண்டியனி செற்றப்பட்ட நேன் ஆகிலவற்றிற்கு மாதலைப்பு இரையெளியல் 50 மீட்டரும் விட்டு மீதமுள்ள இடத்திற்றுள் தான் குண்டியணி வெடலை விட்டும் விட்டியன் விறுக்கு கொல்லேல் ஹைமால் வரையறுக்கப்பட்டுள்ள மாதுவாம்பு இடைவெளி விட்டும் குவாரிப்பணி வேப்பலேண்டும். மொதுவக்கள் உடலைக்கும் இடங்களான குடிதேப்புக்கள் பட்டா திலங்கள் மற்றும் இதர தொதுசொத்துக்கள் ஆகியலத்திற்கு தேல் எதும் தேப்பால் அதற்கு சூத்தைக்குள்ள முழுபோறும்பேற்ற அதில் ஏற்படும் நட்டத்தை வடுவெற்று தரவேண்டும்.

32) நிர்வாக காரணம் மற்றம் பொதுநாணை கருத்தில்வாண்டு குத்தகைக்கு விடப்பட்ட பரப்பினை பின்னர் குறைக்கு நிர்ணமிக்கவும், குவாரி குத்தகையை ரத்த செய்யவும் மாலட்ட ஆட்சியருக்கு அதிகாரம் உண்டு.

33) குக்கலைனர் 1959ல் ஆண்டு தமிழ்நாடு சிறனிம் எறுகை விதிகரின்படியும் பாவட்ட அரசிதுரில் கண்டுள்ள திபத்தனைகளின்பட்டப்பாளார். இதன்கைகின்படியும் தடத்துகொள்ள கடலைப்பட்டலராளார். இத்தகைகலைத்தில் சட்டதிட்டன் மற்றம் குவாரி சுக்குகை நிடத்தனைகளுக்கு ஒல்றக விதிகளுக்கு முரண்டிற ருக்ககைகளை நடந்தகொண்டால் குக்குகை ருத்துக்கொண்டும் குலான கல்ல்கு தாகை மற்றம் அலர் செறுத்தில் அனைத்து தொகைகளும் அரசுக்கு பற்றுகம் செய்யப்படும். அக்குவாரிக்கு மின்டும் குவாரி சூத்தனை வழல்ல நடலத்தை விடைகு குறைக்கு பற்றுக்க செய்யப்படும். அக்குவாரிக்கு மின்டும் குவாரி சூத்தனை வழல் நடலத்தை பற்றுக்கு வேற்றுக்கு செய்யப்படும். அக்குவாரிக்கு மின்டும் குவாரி சூதைக்கை வழல்ல நடலத்தை திரைக்கு பற்றுக்கு செய்யப்படும். அக்குவாரிக்கு மின்டும் குவாரி சூதன் வழல் வரைக்கு பற்றுக்கு காலுக்கு பற்றுக்கு பற்றுக்கு பற்றுக்கு செய்யப்படும். அக்குவாரிக்கு மின்டும் குவாரி சூதைக்கை வழல்ல நடலத்தை திரைக்கு பற்றுக்கு கிருவால் துக்க செய்யப்படும். அக்குவாரிக்கு மின்டும் குவாரி சூதன் வழல்ல நடைத்தை திரலை தேற்றும்.

34) குவாரி குத்தாக வழங்கப்பட்ட இடத்தில் சாதாரண கற்களை குவாரி செய்யதில் ஏற்படக்கூடிய நாடியிலருக்கு அரசால் எல்லித் நாடிய எடும் வலங்கப்பட மாட்டாது.

35) வழங்கப்பட்ட குத்தகை உரிமத்திற்கு பொதுமக்கள் மற்றும் அரசு துறை மூலம் கணெயமன அட்சேபம் இருப்பின் பொதுதன்மையை கருகி மாவட்ட ஆட்சியர் குத்தனையை ரத்துச்செய்ய தேசிட்டால் அதனால் ஏற்படும் இழப்பிற்கு எடுவோர ருத்ததைராரருக்கு உசியை இல்லை.

36) குத்தகைதார் அயரியை வேற்பாகுக்கும் மாஹ்மோ உள்குத்தாகத்தில் தாட்டியா அப்படி ஏதாவது செய்திரும் ஆ மிருடப்பட்சும் வந்தால் தேர்காகத்து குத்ததில் பிருவத்து மிடத்தைக்கு பிருதியில் காகத்து ஒப்பில் கைற்றப்பில் திரைப

37) குத்தைதார், பலியியல் மற்றம் சாங்கத்தாத, உதவி இயக்கும் ஆரலமைத்தில் அரசு குறிப்பிட்ட படிலத்தில் அருப்பகைச் கிட்டுக்கான அர்சிட்டு சயர்ப்பிக்க வேள்டும். குத்தாதைதாரி சிறுவரியம் எடுத்து செல்லும் வாகனத்துடன் அனுப்பகைச் கிட்டு கோடுத்து அனுப்ப வேண்டும். இந்தவடச்சிட்டை இரு பேதிகள் அரச்சிட்டு வரிசை வான்னிட்டு தாங்கள் உத்தேசமாக எடுக்க இருக்கும் லோடுகளுக்கு மொடு நன்றுக்கு ஒரு சிட்டு வீதம் ணைக்கிட்டு அற்றுகிய கிளியரேற் தொலைகியான செலுத்திய பின்னர், தர்ஷ்சி புனிபியப் மற்றும் காங்கத்துறை, உதவி இயன்றுகிய அறுப்புகைச்சிட்டு மற்றும் வொத்த இணைகளைச் சிட்டு ஆகியலத்தில உரிய முற்றியை மற்றும் காங்கத்துறை, உதவி இயன்றுகிய அறுப்புகைச்சிட்டு மற்றும் வொத்த இணைகளைச் சிட்டு ஆகியலத்தில் உரில முத்திரையும் கையெய்றும் வெற்றும் பென்னுக்கு தேன் கொடுத்த வேன்றுக்க உரிய முத்திரையும் கையேப்புல் பெற்றும்கிய மற்றுக்கு வேள்டுல்.

Button i aland

MR 2023

De Contra

10

38) ஒப்புதல் தெற்பதாக அனுப்புகைச்சிட்டுடன் கனிலம் வாண்டு செல்லும் வாய்லும்தன் அதிலும் கிறைக்காக முறையற்ற வாகவில் எடுத்துச்செல்லறாக கருதப்படு உரிய சட்டத்தில்படி உரிய அனுவைர்களின் அதிலும் கிறைக் லிதில்கப்படும்.

39) பலியியல் மற்றம் கரங்கத்துறை அறுவலர்கள் அல்லது வருவாய்த்துறை அறுவலர்கள் முகவரனோர் தளரிக்கை செய்யும்போது உரிய களாக்குகள் மற்றும் அனுப்பாகம் சிட்டு முதலாளவைகளை குவாரி குத்தாமக உரியம் பெற்ற குத்தகைதாரர் காண்டுக்கவேண்டுப்.

60) அரசு அதுவலர்கள் தணிக்கை செய்யும் போது சிறுகளிலைகள் கொண்டு செல்லும் வாணங்களை அணிக்கைக்கு உட்படுத்த காணா ஓட்டுளர்களை சூத்தகைதாரர்கள் அறிவறுத்த வேண்டும்.

41) அனுக்கைக்கிட்டில் உள்ள கண்கள் பூர்த்தி செய்வப்படமானோ அல்லது தயறாக எழுதப்பட்டு வாணைக்குக்கு சொடுக்கப்பட்டிருந்தானே சிறுகளியி கொண்டு சேல்லும் வானை உரிமையாளருக்கு அபராதம் விதித்து வருல் செய்பப்படும் மற்றும் குவாரி ஆத்தனைய ரத்து செய்ய நடவடிக்கை பேற்கொண்ளப்படும்.

42) ஆத்ததையார் ஒல்வாரு நாளும் குவாரியில் எஸ்லாயு சிறுகவிலங்கள் வேட்டி எடுக்கப்பட்டது. எஸ்லது நார்த துரைபு களிலங்கள் வாரி, வண்டி மூலம் வெளியே அனுப்பப்பட்டது. என்ற வியரத்தையும் காட்டும் புதியேடு பராமரிக்க வேண்டும் குவாரி குத்தகை சம்பத்தமான இதா புதிவேடுகளை பராமரிக்க வேண்டும்.

43) அரசு மற்றம் மாவட்ட ஆட்சியரால் குவாரி குத்தகை உரியம் சம்பத்தமாக ஏற்படுத்தப்பட்டுள்ள மற்றம் அம்வப்பெது. ஏற்படுத்தப்படும் எட்ட திட்டங்களுக்கும் நிடிந்தனைகளுக்கும் குத்ததைகளான் கட்டுட்பட்டு நடக்க வேண்டும். குத்தனை வைத்தியோ அல்லது அதைதேவின்னமோ கிரைக்கு பிருக்திரும் விழ்த்தில் இரைக்கும் குத்தனை இரைக்கும் குத்ததை குலைப்புக்கி பொறுப்பேற்க வேண்டும். இதற்தாக விழியத்தாற்கு அறைக்கு மற்றுக்கிலும் அறைக்கும் அதைத்து மற்றும் பிரு தல்லு அதைத்துவில் பிருக்கு அறைக்கு விழுத்து விருக்கு மற்றும் அனை இரசு விருக்கும் குத்ததை பாற்றும் அதைத்தால் அறைக்கு குலைப்புக்கு விழுத்து விருக்கும் அன்று பிரசு விருக்கும் குலை இரு பிருக்கு விருக்கு விழுதியில் அன்று விருக்கு விருக்கு அறைக்கு விருக்கு விருக்கு பிருக்கு விரும் கு தல்லு விருக்கு விருக்கு விழுதியர்கள் விருக்கு விருக்கு விருக்கு விருக்கு விருக்கு விருக்கு விருக்கு இல்லு விரு விருக்கு விருக்கை விருக்கு விருக்கை விருக்கு விருக்கு விருக்கை விருக்கு விரு விருக்கு விரு விருக்கு விரு விருக்கு விரு விரு

44) குக்ககை தியற்றான நேப்படால் குத்தகையை ரத்துச் செய்யமோ செய்யப்பட்ட தவனுகளுக்கு குத்தகைதாரருக்கு தான்...என விடுக்கவோ கிரியிலை வழக்குதொடரனே மாயட்ட ஆட்சியருக்கு அதிலாரம் உண்டு. குத்தகை ரத்துச் செய்யப்படால் வாப்புத்தொகை உள்பட தாலைக்கு தொகைகளும் தரசுக்கு ஆமாயம் செய்யப்படும். மாவட்ட ஆட்சியல் எக்களானத்திற்காவது குயாரி சூத்தகையை ரத்துச்செய்யும் பட்சத்தில் அதனால் ஏற்படும் வல்வித நட்டங்களுக்கும் அரசு பொறுப்பல்ல. குத்தகை எடுத்தும் எத்த வரணத்தை முன்னிட்டும் தனக்கு இதய்பு ஏற்பட்டால் நல்பாடு கேட்கல் குடலது.

45) குத்தனை எடுத்தாம் குத்தனையை அறுபலிக்காமல் விட்டாலும், செலுத்தல்லட்ட ருத்தகை தொகை எக்காமனத்தை முன்ஸிட்டும் திரும்ப வழங்கப்படயாட்டாது.

46) குவாங்களின் எவ்வைன் பற்றி பிரச்சினைகள் எற்பட்டால் மாவட்ட, ஆட்சியின் திப்பே இறுதியானது.

47) கற்றவாரி ஒத்தகை உரிவர் வழங்கப்பட்ட பேஸ்னர் அக்கத்துவாரியின் ஏதாவது ஒரு பகுதியில் வரலாற்று முக்கியத்துயம் வாய்ந்த புதானக்கால கல்வெட்டுக்கள், சிற்ப வடியமைப்புகள் போன்றவைகள் காணப்பட்டால் அது குறித்து அரசுக்கு தகவல் தாலேண்டும். வேலும், ஆப்பகுதியில் சுத்தன் உள்பபேது நிறுத்தப்பட்டு அப்படியா அன சின்னவில் பாதுவாக்கப்பட வேண்டும்.

48) டென்டரிம் வேரப்பதர் புல எனக்களில் பேரில் எமையேறும் நீதிலம்மத்தில் ஆணை / தடையானை முதலாலைல மல்ஷரு மிரியிட்டது. பியால மிதிகளுக்கும் பியிட்ச கனதற்கு ஆல் கைவயைத் ஸ்கற்லபித்தி தாதபிபட்டும் மிதித்தங்கிதீ இந்தியாளது.

278

Buinding and the state of the s

MAR 2023

* Patro

49) குத்தகைதார் சூத்தகை வழங்கப்பட்ட நவாரி முகப்பில் குவாரியின் புல எண் மரப்பு துத்துர்களுட்டுப்புக் இடுந்த வழங்கப்பட்ட மாயட்ட ஆப்சியர் செயல்முறை எனி குத்தகை தொகை, குத்தகை காலம் போன்ற விவரங்கள் குறிக்கப்பட்ட தகவல் பலகையை நனது சொத்த செவலில் வைத்து குத்தகை காலம் முழுதும் பராயரிக்கவேளாடும்.

50) குக்காகதார் குவரியின் எல்லைகளை தெரியாக தெரியும்படி வண்ணகேட்ட எல்லைக்கற்கள் ஊன்றி அடையாளபிட் மேல்பில் குவரிசெய்ய வேண்டும், எல்லைத்தனை குத்தகை காலம் முழுவதும் தனத் கொழ்த செல்லில் நம்கு பரப்சிக்கல்லை (ப

51) குத்தகைக்கு வழங்கப்பட்ட கல்குவாரிகளில் சாதாரண சுற்கள், உளிக்கல், சக்கை எற்கன், ஐங்கிகற்கள் ஆகியலைகளை - மட்டுமே குவாரி செய்ய வேண்டும் ஆயல் நாட்டித்து ஏற்றுவதி செய்வதற்கும் மெருது தேறுவதற்கும் பயன்படும் வடிவளங்கள்பட - சற்களை உற்றத்தி செய்யக்க டாது.

52) குணரியில் வெடி வைத்து கற்களை உடைக்க அங்கிகாரம் பெற்ற வெடியொருள் விற்பனையாளரிடம் (Licenced Exploave Dealer) வெடிபொருட்களை வொள்ளுகள் சொன்று பெற்ற வெடி வெடிப்பலைரக்(Licenced shot Firer) கொண்டு அணைத்து பாதுகா/பு திரத்தனைகளையும் கடைத்தது மிகத்திதிய அளவில் பட்டுமே வெடிகளை வெடிக்க மைக்க வேண்டும்.

53) குவளியில் சாதாரண ஏர் வப்புசர்களை கொண்டு தனையிட்டு வெடிவைக்க வேண்டும். ஆழ்துகை கின்று உண்ணங்களை (Rig Bore) கொண்டு தனையிட்டு வெடிவைக்கக் டாது. அருகிலுள்ள விவசய நிலங்கள், பொதுக்கொத்துக்கள் மற்றும் பொதுகைகள் ஆகியோருக்கு எல்வித மாதிப்பும் ஏற் உலகம் வெடி வைக்க வேண்டும். அல்லாற செப்பும் முன் கிராம நிங்காக அறுவலர் மூலம் ஆல்கு தியக்களுக்கு தண்டுரா மூலை மாதுவாப்பு எச்சரிக்கை செப்பட்ட கேண்டும்.

54) ஆளாயாம் புலியிலல் மத்தம் வரங்கத்துறை மற்றும் மாவட்ட ஆட்சியாால் இது தொடர்பரசு ஏற்படுத்தப்பட்டுள்ள மற்றும் அல்லப்போது ஏற்படுத்தப்படும் சுட்டதிட்டல்வளுக்கும் நிடத்தனைகளுக்கும் சூத்ததையாரர் கட்டுப்பட்டு நடக்க வேண்டும்.

55) 1961ம் ஆண்டின் மேட்டாலிபெரம் வைன்ஸ் நெருவேடினர், 1936 ஆம் ஆண்டின் சம்பாம் வரங்குதல் சட்டம், 1884 ஆம் ஆண்டின் இந்திய வெடியொருட்கள் கட்டம், 1864 ஆம் ஆண்டு குறைத்துட்ச வாதியச்சட்டம் ஆகியவற்றிற்கு உட்பட்டு குத்தகைதாரர் கனிலங்கள் வெட்டி எடுத்து வெளிபேற்ற வேண்டும்.

அட்டவனை -1

தர்யாரி கோட்டம்

காரிமல்கலம் வட்டத்தில் அமைந்துள்ள சாதாரன கற்குவாரி பட்டியல்.

ец. етесті.	sanc's rid	கிராமம்	Usterini		எலம் விடும் பரப்பு (ஹெல்)	enererina (b	குக்தன. காலம்
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
î,	anAataanii	காசப்பை தன்ளி	333 (uලළ)	3,56.5	1.74.0	84®	服 過 細心(()) web
2	ണ്ടെങ്കൾ	காளப்பாகுள்ளி	364	0.60.0	0.69.0	திருக (வர்வாங்குத்து)	Magi Qura Magi Qura
3	differences	References and the	389 (പത്രഎ)	6445	2.02.5	Bng (#1(9)	usias _agent@ant

Burgen parent and and

ទាស់ជាវេណី

MAR 202

						& Bull	L MAR 200
		2		13			5 139969 Gran
(1)	(2)	(3)	(4)	(5)	(6)	40 - 40 - 40 - 10 - 10 - 10 - 10 - 10 -	eminuin enim a tation
			64 a				
4,	හාරියන්න	களைப்பன அன்னி	-335	1.78.0	1.78.0	₹ ¶& (5¶(9)	ஜுல் ஆண்டுகள்
5	anfluciaezh	References and a second	401 (പട്ടലി)	4.18.0	3.70.0	கல்லாய்தத்து	புத்து ஆண்டுவர்
6.	anflasiaadi	பூயாண். ஆள்ளி	260	0.77.5	0.77.5	தீஎ.த. (னடு)	HaniQuat HaniQuat
		பாலக்கோடு வட்ட	इंद्रीय) आज	पहुं खुन क	полтан а	ற்குலாரி ப <i>்டி</i> பள்	
7.	unwállar))	வெல்லாகள _{்குக்கி}	354 (පලළු)	241.0	0.77.5	தீஎத (கரடு)	பத்து ஆண்டுகள்
	17,000		arcyri	Canild.	a		100
	เมตรับที่ไ	Doiginity and L	க்தில் அமை	गोड्डमो थ स	Baden er	தேவளி பட்டியல்.	
8.	பால்ஹேல்தம் பல்த	ංශීණියලුද්සි	143 (u麦劇)	1.67.5	0.71.0	ക്കാന്നിരുർക്ക	ஆண்டுகள்
	5	அருர் வட்டத்தில்	_manust mid	ள சாதாரன	ச கற்குவா	A uLyweb.	90 g (
9.	900)	ഭണവളിവാനു	4/1	0.71.0	0.71.0	ക്രണ്ടിക്കു	பத்து ஆண்டுகள்
5年4月 07.07					tan	அ. சங்கர், வட்ட ஆட்சியர்(செ),	a * *
					CALLS.	<u> អត់លេវ</u> ា <u>លោប់ វង</u>	
							- 11 N
						8	2014 B
							. 34

தமிழ்னடு வழுதுவொருள் மற்றும் அச்சுத்துறை இயக்குதுரால் சேலம் அரசினர் கொன அச்சகத்தில் அச்சிடப்பட்டு மானட்ட ஆட்சியரால் வெளிலிடப்பட்டது.

1.666

25

*

4

280

A Buide Colorit Colorit Coloritation and the Colori

14

பின் இணைப்பு VI

11512.1

ெண்டர் விண்ணப்பர் / குவாரி குத்தகை உரியர் வழங்குவதற்கான விண்ணப்பர் (மூன்ற பிரதிகளில் சமுப்பிக்கப்பட வேண்டும்)

-BERNULINA

Quality

மாவட்ட ஆட்சியர், தர்மபுரி

gainm,

தமிழ்தாடு சிறு கனிய சலுகை விதிகள் 1959 விதி 8ன் கீழ் குவாரி குத்தகை உரியம் வழங்கும் படி நான் கேட்டுக்கொல்மிறேன் / நாங்கள் கேட்டுக்கொள்கிறோம்

Ŧ.

ź.

7

÷

1

22

தேவையான விவரங்கள் கீழே கொடுக்கப்பட்டுள்ளது

- 1) விண்ணப்பதாரர் பெயர் மற்றும் முழு முகவரி
- 2) នៅអាវាតអាប់បន្តពារាំ
- அ) 1) தனிதபரா?
 - 2) தளிப்பட்ட நிறுவனமா ?
 - 3) நிரில்லால் அந்துல் அந்துல்
- ஆ) தனிதபரானால் விண்ணப்பதாரர் எந்த நாட்டைச் சார்ந்தவர்
- இ) தளிப்பட்ட நிறுவனமானால்/ கழகமானால் மேற்கண்ட நிறுவளத்தின் / கழகத்தின் இயக்குதர்களின் தாய் நாட்டை பற்றிய
 - லிவாம் (எழுத்துப் பூர்வ ஆதாரங்கள்)
 - இணைக்கப்பட வேண்டும்)

South State of State

15

£,

17

2

τ.

பீனை வைப்பத்தொகை செலுத்திய விலரம் 3) வேட்டி வளர்வேயலையின் என் மற்றும் நாள் / : கு. வங்கி வரைவோலை இணைக்கப்பட வேண்டும்

- விண்ணப்பதாரால் கீழ்க்கண்ட இளங்களுக்கு : ஆணை உறுதி ஆலணம் (அபிடவிட்) இணைக்கப்பட்டுள்ளதா?
- வீளர்ணப்பதாரர் குவாரி செய்ய விருப்பும் சிறுகளிலத்தின் பெயர் மற்றும் விவரம்
- குவளி குத்தகை வரிலம் கோகும் காலம் :
- 7) விண்ணப்பிக்கும் இடத்தின் மொத்த பரப்பனவு :
- 8) டென்டர் விண்ணப்பம் அல்லது 1 வின்னைப்பம் செய்யப்படும் இடத்தின் விலரம் மாவட்டம் 1 வட்டம் 1 வட்டம் 1 கிராமம் 1 புல என் 1
- 9) குத்தகை உரிலம் பெறுவதற்கு வின்னப்பதாரால் செலுத்தப்படவர்ன அதிக பட்ச ஒரு தடவை குவாரி குத்தகை தொகை (எண்ணாலும் எழுத்தாலும் எழுத்தப்பட வேண்டும்)

(GamsGL.fin)

LITLEJOTAL

- ஏற்கனவே தமிழ்தாட்டில் குவாரி குத்தகை உரிலம் பெற்ற இடத்தின் விவரம்
- 11) (அ) குவளிகளுக்கு உரிய நிலுவை : செலுத்துதல் தொடர்பாக வங்க நிலுவை இல்லா எஸ்று இணைக்கப்பட்டுள்ளதா? (ஆ) விண்ணப்பிக்கும் நாளில் குத்தகை உரியம்: எதும் விண்ணப்புதாரருக்கு இல்லை எனில் அதற்கு உண்டான ஆணை உறுதி ஆவனம் இணைக்கப்பட்டுள்ளதா? .

282

.

1.57

12) விளர்ணப்பதாரால் அளிக்கப்படும் வேறு ஏதேனும் கூடுதல் விவரங்கள்

என்னால்/ எங்களால் மேலே கொடுக்கப்பட்ட வியரங்கள் அனைத்தும் உண்மை. நான்/நாங்கள் அரசு /மாவட்ட ஆட்சியர், மாவட்ட வன அனுவலர் ஆகியலர்களால் கேட்கப்படும் இதர விவரங்கள் மற்றும் பிணை வைப்பு தொகையினை அளிக்க சம்மதிக்கின்றேன் / சம்மதிக்கிறோம். தமிழ்தாடு சிறக்கிய சலுகை விதிகள் 1959ன் கீழ் குத்றகை உரியம் வழல்க உள்ள விதிகள் மற்றும் குவாரி செய்ய கொடுக்கப்பட்ட இதர நிபந்தனைகள் அனைத்தையும் தேரிந்து கொண்டேன் / கொண்டோம் என உறுதி அளிக்கின்றேன் / அளிக்கின்றோம். மேலும் எந்த குழ்தினையிலும் மேற்கனர். குத்தகை உரிய இடத்திலிருத்து ஏற்றுமதிக்கு ஏற்ற அல்லது அலக்கி வெருகேற்றுவதற்கு (Polish) உலத்த பரியானமுன்ன கற்கள் (Dimension storie) மற்றும் பலகை கற்கள் (Stabs) வெருகேற்றுவதற்கு (Polish) உலத்த பரியானமுன்ன கற்கள் (Dimension storie) மற்றும் பலகை கற்கள் (Stabs) வெருகேற்றுவதற்கு மட்டேன் / மாட்டோம் என உறுதி அளிக்கின்றேனம்.

283

16

÷

®டர்: ®பது:

Hie.

gnizesait e estinesconcentritor.

விண்ணப்பதாரரில் கையொப்பப்

n.a.mmi. 155/2017 (continh).

umain sui fuit sugartistiu (பலியியல் மற்றும் காங்கத்துக் assouff what with urst. 07.08.2017.

ANNEXURE

And Substant Stational B

கருப்புரி

AND BRIDE HAR PARTY

-Carlo

கறிப்பானன

வொருள்:

களிடல்களும் குவாக்களும் - சிறுகனிடம் - சாதாரண கந்கள் தரும்புரி யால, டம் - காரிக்கலம் லட்டம் - கான(பனஅள்ளி கிகாமம் - புல எனர்.389(பகுதி)-ல் 202.5 ஹெக்டேர் பாப்பளவில் நிலத்தில் அமைத்துள்ள சாதாரண கற்குவாரிக்கு 505 CB டெண்.ருடன் இவைதை எல முறையில் குத்தகை வுடிய்க டெண்டர்/பொது எஸ் நடத்தப்பட்டது - பொது மைத்தில் அதிக தொளை கோரிய திரு.அ.சசியோகன் என்பவருக்கு சாதாரன மற்றவாரி குத்தலை வழங்துல் தொடர்பாக அங்கிகரிக்கப்பட்ட கரங்கத்திட்டம், தகழ்காடு மாநில/மாவட்ட கற்றுக்குழல் மாதிப்பு மதிப்பிட்டு ஆணையத்தின் தடையின்மைக் சான்று மற்றும் and a second unter a milita and a second mailing பெற்று வையிக் கோருதல் - தொடர்பாக.

Landenkais

1. தருமாரி பாலப்ப அரசிதற் சிறப்பு வெளியீடு எண்.17 நாள்: 08.07.2017.

- 2 திரு.அச்சியோகள் என்பலாது முடி முத்திலிடங்கட்ட மனு BINT. 26.07-2017.
- வாது எஸ் நடைப்பெற்ற நாள். 27.07.2017.
- 4. இவ்வதுவலக குறிப்பாணை நாள்.27.07.2017.

second man in a sufficiency and in an annihum parall. Sharing the எஸ்.389-ல் 2.02.5 வெழக்டேர் பரப்பளவில் ஆணவந்துள்ள சாதாரண் கற்குவாரிக்கு பக்து ஆண்டுகளுக்கு குவாரி குத்தாக வரங்குவது தொடங்காக 27.07.2017 அன்று நடைபெற்ற பெண்டருடல் இணைந்த பொது ஏவத்தில் திரு.அச்சியோகன், த/பெ கேபிட்டின்பதலன், 1/193-ஏ, கொகோடலுள்ளி கிராமம், களிமங்கலம் வட்டம், தருமபுரி மாவட்டம், என்மன் அரசு நிர்னாயம் செய்த குறைந்தபட்ச குத்தகை தொகையை விட அதிக தொகையான ரூ.46,01,000/- (ரூபாம் நாற்பத்து ஆறு இன்புசத்து ஒராயிரம் மட்டும்) ஐ பொது எலத்தில் கோரியதால் அலருக்கு தமிழ்நாடு சிறுகளிய சலுகை விதிகள் 1959ஸ் வதி 8(6)(a)-ஸ்படி SLIDESITE. 的自己的历 (man) Ducidiment complant dibeaurin. Sinutdes 1. க்கேசிக்கப்பட்டுள்ளது.

(i) குவார் குத்தகை வழங்க உத்தேசிக்கப்பட்டுள்ள குவாரிக்கு அருகிலுள்ள பட்டா தியங்களுக்கு 7.5 மீட்டர் மகதுகாப்பு இடைவெளியிட்டு குவாரியணி செய்யவேண்டும். (ii) அருகிலுர்ள அரசு மும்போக்கு புலங்கள், கண்டிப்பள்கத் மந்தும் கிராம சாலைகளுக்கு 10 வீட்டர் மாதுகாப்பு இடைவெளியும், இதர நெடுஞ்சரலை மற்றும் யின்சும்பி பாதைக்கு 50 கீட்டர் பாதுகாப்பு இடைவெளியும் விட்டு குவளிப்பணி செய்யவேண்டும்.

Buid and Dig 2.600 di munut Van Logismito and (CONCERCION OF

(iii) மேலும் மாவட்ட அரசிதற் எனர்.17, நாள்.08.07:2017வ் குறி திரத்தனை எம்மா தவறாமல் கனட்பிடித்து குவாரிப் பணி செய்ய வேண்டும்.

2. எனவே, தருப்பரி மாலட்டம், காரிண்கலம் வட்டம், காளம்பன அள்ளி கிரம்ப், தாசு பல எனம்.389 (பகுதி)-ல் 2.02.5 ஹெக்டேர் பாப்பாலில் புல வரைபடத்தில் குறிப்பிட்டுள்ள பகுதிலில் குவளி குத்தகை ஒப்பந்த ஆவணம் நிறைவேற்றும் நாளிலிருந்து பத்து ஆண்டுகளுக்கு சாதராண கற்கள் வெட்டியெடுக்க குவளி குத்தகை வழங்குதல் தொடர்பாக தமிழ்நாடு சிறுகனிய சறுகை வீதிகள் 1959ன் வீதி 41 மற்றும் 42 ஆகியாற்றில் கண்டுள்ள காலகாராயறைக்குள் அங்கிகிக்கப்பட்ட சரங்கத்திட்டம், தமிழ்நாடு மாறில/மாவட்ட சுற்றுக்குமும் பாதிப்பு மதிப்பிட்டு ஆணைமத்தின் இசைவு மற்றும் தமிழ்நாடு மாதில/மாவட்ட சுற்றுக்குமும் பாதிப்பு மதிப்பிடு ஆணைமத்தின் இசைவு மற்றும் தமிழ்நாடு மாக்கட்டுப்பட்டு மாரிய இசைவு ஆகியவற்றை சமல்பிக்கவேண்டும் பன திரு.அச்சியைகள் என்பவருக்கு தெரிவிக்கப்படுகிறது.

ு. 3. உரிய தாலத்தில் பேற்கண்ட ஆகணங்களை சமாப்பிக்க தலறினால் விதிகளின்படி உரிய நடவடிக்கை எடுக்கப்படும் எனவும், தெரியிக்கப்படுகிறது.

4. மேற்கூற்ப ஆவனங்களை சமர்ப்பித்த பின்பு குயாரி குத்தகை வழங்கப்பட்டு குவாரி குத்தகை ஒப்பத்த ஆவனம் நிறைவேற்றில் பிள்பே மேற்கள்ட புலத்தில் குவாரிப்பனிகளை தொடங்கவேண்டும். தவறினால் தமிழ்நாடு சிறுகளியல் சமூனக விதிகள் 1959ன் விதி 36 (அ)ஸ்படி உரிய நடவடிக்கை எடுக்கப்படும் என்ஷல் தெரிவிக்கப்படுகிறது. இனைப்பு > புல் வரையும்.

> > SBun ift.

மாவட்ட ஆட்சியருக்காக, schull A

பெறுகல் : -

1/2 mitamin (Senso//

திரு. த.சசியோகள், ு}(711 த/பெ கே.9. தார்ப்தகன், 1/183-ஏ. கொனேட துள்ளி கிராயம், காலேங்கலம் வட்டம், தருவரி மாலட்டம், தருவரி மாலட்டம், -------- பதிவத்சம் ஒப்பைடன்

16.060 :-

- 1) தலைம், யாலப், சுந்றச்சூழல் தாக்க மதிப்பிட்டு ஆணையம், தரும்பி
- 2) ஆணையர், புலிறியல் மற்றும் கரங்கத்துறை, திரு.வி.க. தொழிற்போட்டை, கிண்டி செள்னை - 32.
- 3) வட்டாட்சியர், காரியங்கவல் குவாரி குக்கலை வழங்க உள்ள புலத்தினை புல வரைடத்தில் உள்ளவாறு குறுவட்ட அளவர் மூலம் அளவிடு செய்து என்னைக்கத்கள் ஏற்படுத்தி ஒரு வார காலத்திற்கும் அறிக்கை அளிக்க இதன் மூலல் கேட்டுக் கொள்ளப்படுகிறது.

Category of the Industry :

AN	N	EX	Ű	R	E-	ik
		_				

district

அமைப்

(Guideliff

DATED: 02/09/20

9

ю	-	1		
E	D	11	ъ	
L	в.	100		

CONSENT ORDER NO. 2208247657791

DATED: 02/09/2022.

s

PROCEEDINGS NO.F.0549DMP/RS/DEE/TNPCB/DMP/A/2022

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT -M/s. A SASIMOHAN ROUGH STONE QUARRY, S.F.No. 389 part, KALAPPANAHALLI village, Karimangalam Taluk and Dharmapuri District - Renewal of Consent for the operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) -Issued- Reg.

REF: 1.Proc No. F.0549DMP/RS/DEE/TNPCB/DMP/W/2018 DATED: 12/09/2018 2.Units application dated 02.09.2022 3. IR No : F.0549DMP/RS/AEE/DMP/2022 dated 02/09/2022

RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Proprietor M/s. A SASIMOHAN ROUGH STONE QUARRY, S.F.No. 389 part, KALAPPANAHALLI village, Karimangalam Taluk, Dharmapari District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending December 25, 2022

Digitally signed by A SAMUEL A SAMUEL RAJKUMAR Date: 2022.09.03 18:07:19 +05'30' District Environmental Engineer, Tamil Nadu Pollution Control Board, DHARMAPURI

286

SPECIAL CONDITIONS

 This renewal of consent is valid for operating the facility for the manufacture of printings (Col.2) it the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

SI. No.	Description	Quantity()	(1 :3 MAR 2023)
	Product Details	13	a munu
1.	Rough stone quarrying in an extent of 2.02.5 Ha at S.F.No.389 part,Kalappanahalli Village,Karimangalam Taluk,Dharmapuri District.	153815	Cu.m/5years

 This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.

I	Point source emission with stack :						
Stack No.	Point Emission Source	Air pollution Control measures	Stack height from Ground Level in m	Gaseous Discharge in Nm3/hr			
11	Fugitive/Noise emission :			N			
11 Sl. No.	Fugitive or Noise Emission sources	Type of emission	Control measures				
1.	Loading Unloading	Fugitive	Dust suppression system/Foggi ng system				

Special Additional Conditions:

The unit shall install the approved retrofit emission control device/equipment without less and particulate matter reduction efficiency on all DG sets with capacity of 125 KVA and above of otherwise the unit shall be shift to gas based generators within the tone frame prescribed in the notification No. TNPCB/Labs/DD(L)02151/2019 dated 10.06.2020 issued by TNPCB. 1.

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu 3 National Bio Diversity Authority if the unit is using any Biological resources or knowledge. ii. associated thereto as per the provisions of Biological Diversity Act 2002, BUSUBUR

Additional Conditions:

10.20 1. The unit shall provide, operate and maintain the APC measures in the form of portable water sprinklers effectively and continuously so as to satisfy the NAAQ / Emission standards prescribed by the Board.

The unit shall adhere to the AAQ/emission/ANL standards prescribed by the Board.

3. The unit shall comply with the conditions stipulated in the Environmental Clearance of DISTRCIT LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY, TAMILNADU vide Letter dated 31.10.2017

4. The unit shall comply all the conditions prescribed in the Mining Lease Agreement executed with the District Collector, Dharmapuri on 26.12.2017 valid for 10 years i.e., upto 25.12.2027.

5. Roads shall be graded to mitigate dust emission

6. Water shall be sprinkled at regular interval on the main road and other service roads to suppress dust emissions

7. The unit's operation/ activity for the mining shall not disturb the nearby agricultural land if any at any circumstances.

The unit shall develop green belt around the periphery of the premises to attenuate noise and air pollution.

The unit shall not use 'use and throw away plastics' such as plastic sheets used for food wrapping, spreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumblers, water pouches and packets, plastic straw, plastic carry bags and plastic flags irrespective of thickness, within the industry premises. Instead unit shall encourage use of eco friendly alternative such as banana leaf, arecanut palm plate, stainless steel, glass, porcelain plates/cups, cloth bag, jute bag etc.,

In case of revision of consent fee by the Government, the unit shall remit the difference in amount within one month from the date of notification, failing which this order will be withdrawn without any notice and further action will be initiated against the unit as per law.

Digitally signed by A SAMUEL

•2

A SAMUEL RAJKUMAR RAJRUMAR Date: 2022.09.03 18:07:46 +05'30' District Environmental Engineer, Tamil Nadu Pollution Control Board, DHARMAPURI

To

The Proprietor, M/s.A SASIMOHAN ROUGH STONE QUARRY. 1/136-A.Kerakodahalli Village, Karimangalam Taluk, Dharmapuri District.,

Pin: 635111

Copy to:

 The Commissioner, KARIMANGALAM-Panchayat Union, Karimangalam Taluk, Dharmapuri District. 2. Copy submitted to the Member Secretary, Tamil Nadu Pollution Control Board, Chennai for favour of kind information.

3. Copy submitted to the JCEE-Monitoring, Tamil Nadu Pollution Control Board, Vellore for favour of kind information.

4. File

Category of the Industry :

RED

CONSENT ORDER NO. 2208147657791

DATED: 02/09/2022.

PROCEEDINGS NO.F.0549DMP/RS/DEE/TNPCB/DMP/W/2022 DATED: 02/09/2022

- SUB: Tamil Nadu Pollution Control Board RENEWAL OF CONSENT M/s. A SASIMOHAN ROUGH STONE QUARRY , S.F.No. 389 part, KALAPPANAHALLI village, Karimangalam Taluk and Dharmapuri District - Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) - Iasued- Reg.
- REF: 1.Proc No. F.0549DMP/RS/DEE/TNPCB/DMP/W/2018 DATED: 12/09/2018 2.Units application dated 02 09.2022 3. IR No : F.0549DMP/RS/AEE/DMP/2022 dated 02/09/2022

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Proprietor M/s & SASIMOHAN ROUGH STONE QUARRY, S.F.No. 389 part, KALAPPANAHALLI Village, Karimangalam Taluk, Dharmapuri District.

Authorising the occupier to make discharge of sewage and /or trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending December 25, 2022

Cigitally signed by A SAMUEL A SAMUEL RAJKUMAR RAIKUMAN Date 2022 09:03 1856:11 +05'30' District Environmental Engineer, Tamil Nadu Pollution Control Board, DHARMAPURI

1

SPECIAL CONDITIONS

 This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

SI. No.	Description	Quantity	Unit
	Product Details		
t:	Rough stone quarrying in an extent of 2.02.5 Ha at S.F.No.389 part.Kalappanahalii Village,Karimangalam Taluk,Dharmapuri District.	153815	Cu.m/5years

This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh content has to be obtained.

Outlet No.	Description of Outlet	Maximum daily discharge in KLD	Point of disposal
Effluent Ty	pe : Sewage		
1.	Sewage	0.3	On Industrys own land
Effluent Ty	pe : Trade Effluent	CARGO D	

Special Additional Conditions:

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

Additional Conditions:

1. The unit shall treat the sewage in septic tank with soak pit arrangement provided as reported.

2. The unit shall ensure that no trade effluent is generated at any point of its activity.

 The unit shall comply with the conditions stipulated in the Environmental Clearance of DISTRCIT LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY, TAMILNADU vide Letter dated 31 10:2017

 The unit shall comply all the conditions prescribed in the Mining Lease Agreement executed with the District Collector, Dharmapuri on 26.12.2017 valid for 10 years i.e., upto 25.12.2027.

The unit's operation/ activity for the mining shall not distuib the nearby agricultural land if any at any circumstances.

6. The operation of the unit shall not attract any public complaints.

7. The unit shall utilize only the earmarked & leased executed mining area only.

8. The unit shall collect & store the rejects of the mining activities within the unit's area.

9. The unit shall take effective measures to conserve top soil.

10. The snit shall not use 'use and throw away plastics' such as plastic sheets used for food wrapping, apreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumblers, water ponches and packets, plastic straw, plastic carry bags and plastic flags irrespective of thickness, within the industry premises. Instead unit shall encourage use of eco friendly alternative such as banana leaf, arecand name plate stumess sterl, rass, purcelain plates/cups, cloth bag, ute bag etc.

arecanut palm plate, stainless steel, glass, porcelain plates/cups, cloth bag, jute bag etc., 11. In case of revision of consent fee by the Government, the unit shall remit the difference in amount within one month from the date of notification, failing which this order will be withdrawn without any notice and further action will be initiated against the unit as per law.

> A SAMUEL RAJKUMAR

Digitally signed by A SAMUEL RAJKUMAR

MAR Date: 2022.09.03 18:06.37 +05'30' District Environmental Engineer, Tamil Nadu Pollution Control Board, DHARMAPURI

To

The Proprietor, M/s.A SASIMOHAN ROUGH STONE QUARRY, 1/136-A,Kerakodahalli Village, Karimangalam Taluk, Dharmapuri District., Pin: 635111

Copy to:

 The Commissioner, KARIMANGALAM-Panchayat Union, Karimangalam Taluk, Dharmapari District.
 Copy submitted to the Member Secretary, Tamii Nadu Pollution Control Board, Chennai for favour of kind information

Copy submitted to the JCEE-Monitoring, Tamil Nadu Pollution Control Board, Vellore for favour of kind information.

4. File

APPENDIX - I (See Rule 8 and 8-A)

FORM OF LEASE FOR QUARRYING AND CARRYING AWAY MINOR MINERALS BY PRIVATE PERSONS

Roc.No.155/2017(MINES) DATED: .12.2017.

THIS INDENTURE MADE THIS the _________ day of December 2017 between the Governor of Tamil Nadu (hereinafter referred to as "the lessor" which expression shall where the context so admits include his successors in office and assigns) on the one part and Thiru.A.Sasimohan, S/o K.P.Anbalagan 1/136-A, Kerakodahalli Village, Karimangalam Taluk, Dharmapuri District (hereinafter called "the Lessee" which expression shall where the context so admits include his/heirs, executors, administrators, legal representatives and assigns) on the other part.

LESSEE

1

E.

t

.

1

umont 12018 ailli Poste 292

1/15 LESSOF

Qad: 9965380553

Keragoda kalli Keragoda kalli Keragoda kalli K.M.Chreshed uppersons of the lessee has been the successful bidder in a sealed weider 220 mm 1/2014-9 order entered by the Government of Tamil Nadu as per the District 9985380553 Estraordinary Notification No.17, dated: 08.07.2017 (hereinafter referred as "the Government") for a lease of lands in Dharmapuri District for the purpose of quarrying for Rough Stone and has deposited with Collector of Dharmapuri the sum of Rs.4,60,100/- (Rupees Four Lakhs Sixty Thousand and One Hundred only) in

challan No. Nil, at State Bank of India, Dharmapuri on 22.11.2017 as security Deposit for the due and faithful performance by the lessee of covenants and conditions on the part of lessee hereinafter contained.

AND WHEREAS the lessor has agrees to grant the lessee, a lease of the lands and premises hereinafter described.

NOW THESE PRESENTS WITNESS as follows:-

LESSER

 The lessor hereby demises to the lessee all those several pieces or parcels of land situated as defailed below:-

Taluk	Village	S.F. No.	Extent (in Hect).
Karimangalam	Kalappanahalli	389 (Part)	2.02.5 /

in the State Tamil Nadu being more particularly described in the schedule hereunder written and delineated in map or plan hereunto annexed and therein coloured.

ocument 120 18 293

2/16. LESSOF

भारतीयभेरन्य VDIA NON JUDICIAL IAR COZ3 \$505,401,01 2500TWENTY FIVE THOUSAND RUPEES पच्चीस हजार रुपये 10.000 INDIA किंगिलनाड TAMILNADU 🕞 २८०००/-8 789595 10:m. Aram A. Sasimohan , К.М. Авалер Keragodahalli முத்திரைத்தாள் விற்பனையாளர் 1. filmia ereint : 5220 / 21 / 2014- 9 கைரகோடலன்னி, தரும்புரி. Qad:9965380553

- There are included in the said demise and for the purpose there of the liberties 2 following -
- To get from the said demised pieces of land. eu

For the purpose aforesaid to use any water in or under the said demised pieces (2)

of land and to divert the same and to make or construct any water courses or ponds so, however, that nothing shall be done in the exercise of this authority which shall interfere with the rights of any adjoining owners or tenants of the lessor in respect of such water.

Generally to do all things which shall be convenient or necessary for getting the (3). rough stones and materials hereby authorised to be got and for removing and disposing there of as aforesaid.

There are excepted from and the reserved to the lessor out of this demise. 3.

All earth minerals and other substances not herein before expressly authorised (1). to be got from the demised lands by the lessee.

LESSEE

iogument) 120 8 2 110 Page No. otal Pages 294

316 LESSOR

BIT & A. Sasimohan, Kevagodahalli

भारतीयग्रेरन्य

25000

पच्चीस हजार रूपये

டு. ஸ. சென K.M. இநகாஷ் முத்தினாத்தாள் விற்பனையாளர் உரியப் என் : 5220 / ஆ1/2014- 9 தைதேகட்குள்ளி, தரும்புரி. செல் : 9965380553

B 789596

4/35

LESSOR

AR

Counting they want the

TWENTY FIVE THOUSAND RUPEES

(2). Liberty for the lessor or other persons authorised by him to search for, work, get, carry away and dispose of the excepted minerals and other substances and for such purposes to have the right of ingress, egress and regress over the said demised pieces of lands and to make erect and use all pits, machinery, buildings, roads and other necessary works and conveniences provided that the rights hereby reserved shall be exercised in such a way as to cause as little obstruction as possible to the lessee in the use and enjoyment of his rights hereunder and that reasonable compensation for damages caused by any such obstruction shall be paid to the lessee the amount thereof in case of difference to be settled by arbitration as hereinafter provided.

INDIA

NDIA NON JUD

4. The said premises shall be held by the lessee for the term of **TEN YEARS** from the $\frac{36}{12}\frac{12}{17}$. Day of December 2017 to the $\frac{36}{12}\frac{12}{17}$. Day of December 2027 which shall however be determinable as hereinafter provided.

5. Thellessee shall pay during the said term, the area assessment, the cess and seigniorage fee or dead rent whichever is greater, for the minerals removed or consumed at the rates prescribed from time to time in Appendix - II.

120.19

locument

NO.

Page No. Total Page

LESSEE

IDIA NON JUDICIALIA 2121202 भारता MAR 2023 United by 25000 TWENTY FIVE THOUSAND RUPEES पच्चीस हजार रूपये menters) INDIA मेलनाडु TAMILNADU RS 25000/-B 789597 A Sasimokan, Keragodahalli 1cm. fran K.M. BESTER முத்திரைத்தாள் விற்பனையாளர் n_filais stait : 5220 / al.1 / 2014- B கைரகோடஅள்ளி. தருமபும்.

(1). The said assessment and cess amount applicable per year payable by the lessee, shall be paid in advance before the commencement of the period of each year of the lease; and

(2) The said Seigniorage fee as prescribed in Appendix II, from time to time, shall be paid before the same is removed from the said demised pieces of land.

(3) The Lessee has paid Rs.46,01,000/- (Rupees Forty Six Lakhs and One Thousand only) towards one time lease amount for the said lease period

The lessee hereby covenants with the lessor as follows:-

(1). To pay the assessment, cess and seigniorage fee or dead rent whichever is greater, on the days and in the manner aforesaid.

(2) To bear, pay and discharge all existing and future rates, taxes, assessment, duties, impositions, outgoings and burdens whatsoever imposed or charged upon the demised premises or the produce thereof or the land assessment, the cess and the seigniorage fee hereby reserved or upon the owner or occupier in respect thereof or payable by either in respect thereof except such charges or impositions as the lessee is or may hereby be, by law, exempted from.

LESSEE

ment 120 3 P44001065 oun Palas.

5).14 LESS

JDIA NON JUDICIA 1121200 MAR 292 េក្រណេញ doibmin annie 25000 TWENTY FIVE THOUSAND RUPEES पच्चीस हजार रूपये no toping INDI கமிழ்தாடு तमिलनाड TAMILNADU RS-2-5000/-B 789598 mitian 2015 A Sasimohan, K.M. பிரகாஷ் Keragodahelli முத்திரைத்தாள் விற்பனையாளர் YLHE a. flunis arein : 5220 | 251 / 2014- 9 கைதகோட்குள்ளி, தகும்புரி, Ged:9965380553

(3). Before digging or opening any part of the said demised pieces of land for Rough Stone carefully removed the surface soil and lay aside and store the same in some convenient part of the said demised piece of land until the land from which it has been removed is again restored to a state, fit for cultivation as hereinafter provided.

(4). To effectually fence off the same demised place of land from the adjoining lands and to keep the fences in good repairs and condition.

(5) Not to assign, underlet or part with the possession of the demised premises or any part thereof without the written consent of the lessor first obtained.

(6). After working out any part of the said demised pieces of land forthwith to level the same and replace the surface soil thereof and slope the edges where necessary so as to afford convenient connection with the adjoining land.

LESSEE

1022000 12018

4/16

ा 6 तमिलनाडु TAMILNADU RS 15000

A. Sasimohan. Keragodahalli

K.M.BIBIBIO முத்திரைத்தாள் விற்பளையாளர் a.fluin eraier : 5220 / 3/1 / 2014- 9

ampour

That the lessee shall keep correct accounts in such form as the Collector shall accounts from time to time require and direct showing the quantities and other particulars of the mineral obtained by the lessee from the said lands and also the number of persons employed in carrying on the said quarrying operations therein and shall from time to time when so directed by the Collector prepare and maintain complete and correct plans of all mines and workings in the said lands and shall allow any officer hereunto authorised by the Government from time to time and at any time, to examine such accounts and any such plans and shall when so required supply and furnish to the Government all such information and returns regarding all or any of the matters aforesaid, the Government shall from time to time require and direct.

(8). That the lessor's agents, servants and workmen shall be at liberty at all reasonable times during the said term to inspect and examine the works carried on by the lessee under the liberties hereinbefore granted and the lessee shall and will from time to time and at all times during the said term hereby granted conform to and observe all orders and regulations which the lessor or his authorised agent as the result of such inspection may from time to time see fit to impose to keep the premises in good and substantial repair, order and condition or in the interest of public health and safety;

ment Ne: 1201 2 Page No. fotel Page/

LESSEE

LESSOR

தமிழ்நாடு तमिलनाडु TAMILNADU PSI000/-

A Sasimohan, Keragodahalli AR 929471 10 m. Processi 10 M. Bristonski Discher Station Aller and 1920 (al. 12010 - 9 Michigan Station of Fred 1928 53800 00

That the lessee shall not without the express sanction in writing of the Collector but down or injure any timber or trees on the said lands but he may clear away bush wood or undergrowth which interferes with any operations authorised by these presents.

(10). That if the lands shall be used for any purpose other than quarrying for ordinary Rough Stone or, if they are not under or at any time cease to be used for the said purpose the lessor shall be at liberty at any time to terminate the lease without notice.

(11) That this lease may be terminated in respect of the whole or any part of the premises by six months notice in writing on either side.

(12). That on such determination the lessee shall have no right to compensation of any kind.

LESSEE

ĩ

NU 120 3 Page N. otal Par

LESSO

That the land assessment, cess and seigniorage, rents or other amounts payable under these presents shall be recoverable under the provisions of Tamil Nadu Revenue Recovery Act, 1864 (Tamil Nadu Act II of 1864) or any subsisting statutory modification thereof.

(14). At the determination of the lease to deliver up the demised premises in such condition as shall be in accordance with the provisions of these presents save that the lessee shall, if so required by the lessor, restore in manner provided by the foregoing covenant in that behalf the surface of any part of the land which has been occupied by the lessee for the purpose of the works hereby authorised and has not been so restored.

(15). That the lessee shall abide by the conditions laid down in the payment of Wages Act, 1936 (Central Act IV of 1936), the Mines Act, 1952 (Central Act XXXV of 1952) and the Indian Explosives Act, 1884 (Central Act IV of 1884) and

LESSEE

locument 120 18 Page Na. Total Paries

LESSO

9/1-

தமிழ்நாடு तमिलनाडु TAMILNADU கெ-1000/-

A. sasimohan, Keragodahalli.

Gegenrösten algunarutati

10 15

the Basor heroby covenants with the lessee that the lessee baying the 5228/ 51/2014-9 assessment (the lease amount and seigniorage fee or the dead rent her the figses 380553 கைரகோடல்ளனி. தகம்பும், bserving and performing the several covenants and stipulations on the part of he lease herein contained shall peacefully hold and enjoy the premises, liberties and powers hereby demised and granted during the said term without any interruption by the lessor or any persons rightfully claiming under or in trust for him.

It is hereby further agreed between the parties as follows:-8.

(1). If any part of the land assessment, cess, seigniorage fee or dead rent hereby reserved shall be unpaid for thirty days after becoming payable (whether formally demanded or not) or if the lessee which the demised premises or any part thereof remain vested in him, shall become insolvenet or if any covenant on the lessee's part herein contained shall not be performed or observed, then and in any of the said cases it shall be lawful for the lessor at any time thereafter to declare the whole or any part of the said security deposit of Rs.4,60,100/- (Rupees Four Lakhs Sixty Thousand and One Hundred only) in challan No. Nil, at State Bank of India, Dharmapuri on 22.11.2017 to be forfeited and also to re-enter upon the demised premises or any part thereof in the name of the whole and thereupon the demise shall absolutely determine but without prejudice to the rights of action of the lessor in respect of any breach or non-observance of the lessee's covenants herein contained.

Document 12010 Page No LESSEE Total Pane.

Son Broughand At the determination of the lease, the lease should be at Burrty to remove, 121. carry away and dispose of all the stock of rough stones, jelly etc// ready for delay and all engines, machinery, and all plant, articles and things whatsoever 190, Unity building or brick or stones), the lesses first paying any land assessment, cess and and seigniorage and other sums which may be due and performing and observing the UNI CASE covenants on his part hereinbefore reserved and contained and also making good and damage done by such removal but any buildings which shall be erected on the said demised piece of lands by the lesses and left thereon at the determination of lease shall be absolute property of the lessor who shall not be bound to pay any price for the same.

If the lessee shall have paid the land assessment, ceas and seigniorage due to 131. the Government and duly observed and performed the covenants and conditions on his part therein contained, the said deposit Rs.4,60,100/- (Rupees Four Lakhs Sixty Thousand and One Hundred only) in challan No. Nil, at State Bank of India, Dharmapuri on 22.11.2017 shall be returned to him at the expiration of the said term of Ten years.

(H). Should any question or dispute arise regarding this agreement executed in pursuance of these Rules or any other matter or thing connected therewith or the powers of the lesses thereunder, the amount or payment of the seignlorage fee or area assessment made payable thereby, the matter in issue shall be decided by the Commissioner of Geology and Mining, Chennai. In case the lessee is not satisfied with the decision of Commissioner of Geology and Mining, Chennal the matter shall be referred to the State Government for decision.

9. If the lesses is in occupation of the lesse-hold area after the expiry of the period for which the lease has been granted or renewed or after the determination of the lease, the lessee shall be deemed to be in unlawful possession of the said area and he shall be liable to eviction from the lease-hold area in addition to being liable to be charges at double the rate of the lease amount or bid amount as the case may be, for the period of such occupation.

Buidemanis

LESSEE

- 1. குத்தாக பாத்தியை அடுத்துள்ள பட்டா நிலங்களுக்கு 7.5 மீட்டர் இடைவெளி அளித்து manifumil utile Gasences
- 2. பொதுயக்களுக்கோ, பொது சொத்துக்களுக்கோ யாதொரு சேதமுப் இன்றி பாலுகாப்பான முறையில் குவாரிப்பணி செய்ய வேண்டுப்
- பொதுமக்களின் (smit) களுதி பாறுகாப்பான முறைலே 供助加加品 .500680pmm ஷெபொகுட்கள் பயய்படுத்தியும், கைத்தனைப்பான் ககுவி Genumica Banarual Oil. தொடுவாளர்களின் பாறுகாப்பினை உறுதி செய்ய பாதுகாப்பானதும், அவையான தேலுக்கு அணைத்து குவாரிப்பணி செய்ய வேண்டும்.

Document No. 29 12018 Page N. To302

::/6

LESSOR

11

- 4. மாவட்ட கற்றுக்கும் நாக்க மதிப்பேடு ஆணையத்தில் மரிந்துரை கடிக்க பெற்று Lr.No.08/DEIAA-DPI/Ec.No.08/2017 நாள்: 31.10.2017-ல் கடை சிறப்பு நிபந்துளைகளை முறையாக கடைபிடித்து குவாரிப்பணி செய்யதுடல், சிறப்பு நிபந்தின் 1 இட்ட கண். காறு குவாரிப் பணி தூய்பிப்பதற்கு முன்பாக தமிழ்நாடு மாகக்கட்டுப்பட்டு காரியத்தில் தடையில்லை சான்று பெற்ற அதன் சின்னரே குவாரிப்பணி துவங்க வேண்டும் பிறப்புளி மற்றுப்புக்கும் காரியத்தில் குறுப்புள்ளது. குவாரிப்பணி துவங்க வேண்டும் பிறப்புள் காரியத்தில் கார் கார் காரியத்தில் கான் கால் குறுப்புள்ளது. குவாரிப்பணி துவங்க வேண்டும் காரியத்தில் குறுப்புள் கான் காறு குவாரிப் பணி துரம்பில் துவரி கான் துவருக்கு வேண்டும் காரியத்தில் குறுப்புள் கால் கான் தலை வில் கான் குவாரிப்பணி துவங்க வேண்டும் காரியத்தில் காரியத்தில் காரியத்தில் துருக்கும் கான் தல் குறைப்பில் காரியத்தில் காறு குன்று குன்று குவாரிப்பனி துவங்கு வேண்டும் குறைப்பில் காரியத்தில் குறுப்புள் குறும் குறுக்கும் குறு குன்று குன்று குவாரிப்பனி துவங்கு வேண்டும் குறைப்புக்கும் குறுக்கும் குறுக்கும் குறுக்கும் குறைப்பில் கான் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறுக்கு குவாரிப்பன் துவரிப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் தல் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குறைப்பில் குன்று குவாரிப்பில் குறைப்பில் குறைப்பில் குறைப்பில் கைப்பில் திலைப்பில் குறைப்பில் கைப்பில் கைப்பில் குறைப்பில் குறைப்பில் காறு குவால் கைப்பில் தல் கைப்பில் கைப்
- குத்தகைதான் தனக்கு அளிக்கப்பட்ட குத்தகை பகுதியின் எல்லைகரை தெளிவாக காட்டும் லகையில் கல் நட்டு வண்ணம் இட்டு குத்தகை காலம் முழுமைக்கும் பராமரிக்க வேண்டும்.
- 6. குக்ககைதாரர் குவாரியின் அருகே குத்தகைதாரர் பெயர், கிராமத்தின் பெயர், வட்டத்தின் பெயர், புல எண், பரப்பு, குத்தனை ஆன்னா எஸ். குத்தகை காலம், களிமத்தின் பெயர், போன்ற விபரங்கள் குறிக்கப்பட்ட தகலன் பலகையை தயது சொந்த செலமில் வைத்து நன்கு பராமரிக்க வேண்டும்.
- குவாரிக்கு சென்றுவரும் பாதை வசதிகள் குத்தகைதாரிகள் அவர் தம் சொந்த பொறுப்பிலேயே அமைத்துக் கொள்ள வேண்டும்.
- குத்தகை வழங்கப்பட்ட பாறையில் குண்டுக்கல், ஜய்லி, அரனை கல், யேலிக்கற்கள், போன்ற சிறுகளியங்கள் உடைத்தெடுக்க மட்டுமே அறுபதியுண்டு. வெளிநாடுவளுக்கு எற்றுபதியாகும் மெருகூட்டுய் கனவடில சத்கள் வெட்டி எடுக்கக் கூடாது.
- 3. குவாரியிலிருந்து கொண்டு சேல்லப்படும் மேற்கண்ட வகை கற்களுக்கு 1959-ம் ஆண்டு தமிழ்நாடு சிறுகனிம் சலுகை விதிகள் பின் இணைப்பு 2-ல் கண்டுள்ளவாறு உரிம்வரி செலுத்த வேண்டும். ஆரசு அவ்வப்போது அறிவிக்கும் உரிம்வரி மாற்றங்களுக்கு எற்ப வல்வித ஆட்சேபனை இன்றி செலுத்துதல் வேண்டும்.
- 10. குத்தகை அனுமதி வழங்கப்பட்ட நிலத்திலிருத்து கொண்டு செல்லப்பட்ட சுற்களுக்கு முறையான கணக்குகளும், குழிலாயில் புதிவேடும் முறையாக பராமரித்தல் வேண்டும். அலற்றை சம்பந்தப்பட்ட அழுவயர்கள் தணிக்கைக்கு ஆஜர்படுத்த கோரினால் தலநாது சவர்ப்பிக்க வேண்டும்.
- 11. உதவி இயக்குதர் (புவியியல் மற்றும் கரங்கத்துறை)-ன் அனுவலக முத்திரை, கையொப்ப முத்திரையுடன் கட்டிய உரிய அனுப்புகைச் சிட்டை வாகனங்களுக்கு கொடுக்கப்படும் போது அனுப்புகைச் சிட்டிம் வாகன எனர். தேதி, பறப்படும் நோம், செலுத்துமிடம் ஆகியவற்றை முறையாகக் குறிப்பிட்டு வையொப்பம் இட்ட பின்னரே, குத்தகைதாரரோ அல்லது அவரது அனுவதி பெற்ற நபரோ கொடுக்க வேண்டும். மேற்கண்டவாறு குறிப்படுவதில் எதேலும் தலறுகள் இருந்தானோ, கலங்கள் பூர்த்தி செய்யப்படாமல் இருந்தானே முறையற்ற வலையில் கனியம் எடுத்துச் செவ்வதாகக் கருதப்பட்டு வாகனத்தை கைப்பற்றி அபராகம் விதிப்பதோடு, அதற்கு குத்தகைதாரணர பொறுப்பாக்கி களிய விதிகளின் படி வேல் நடவடிக்கை எடுக்கப்படும்.
- 12. இந்த ஆணையில் குத்தகை அனுமதி வழங்கப்பட்ட புலத்ததை முழுமையாகவோ, பகுதியாகவோ எயருக்கும் உள் குத்தகைக்கு விடுவதோ அல்லது கிரையம் செய்வதோ கூடாது.

LESSEE

Document 12019 Page 303 otal Patton

LESSOR

121 15

13. குக்தகைதார் ஒவ்வொரு நாளும் குவாரியில் இருந்து எவ்வளவு சிறுகனியங்கள் எடுக்கார். பு ாள்பதையும் எந்த அளவு களியங்கள் லாரி/ வள்டி மூலம் வெளியே அமைப்பிட்டது. என்ற விபாத்ததையும் காட்டும் பதிவேட்டின்னப் பராமரித்து வரவேண்டும்.

*idi

कल्डमाम्मी

- 14 குத்தகைதாரர், தமக்கு குத்தகை வழங்கப்பட்ட பகுதிக்கு அருகில் உள்ள எவ்வித இடையூதும் இல்லாமம் குவாரிப் பணி செய்யப்பட வேண்டும்.
- 15. வள்டிப்பாதை மற்றும் நன்ப,பாதைகளில் இருந்து 10 மீட்டர் தாரம் தார்ரி குணர் செய்ய வேள்டும். ரோடுகள், புகைவள்டிப்பாதை, பொதுப்பணித்துறை, வாய்க்லால், பொதுமக்கள் உபயோகத்திற்கான பகுதிகள், பின்சாரம் மற்றும் தொலைபேசி கய்பி செல்லும் பகுதிகள், வழிபாட்டு இடங்கள் மற்றும் பழங்கால சின்னங்கள் உள்ள பகுதிகள் ஆகியவற்றில் இருத்து 50 மீட்டர் பாதுகாப்பு தூரம் விட்டு குவாரி செய்ய யேண்டும்.
- 16. குத்தகைக்கு விடப்பட்டுள்ள விஸ்தீரளாத்தில் மட்டுமே குத்தகைதாரர் குவாரி செய்ய வேண்டும். அதற்கான கூடுதனை விஸ்தீரனாத்தில் குவாரி செய்யது தெரியவற்றால் அபராத நடவடிக்கை மேற்கொள்வதுடன் குத்தகை இரத்து செய்ய நடவடிக்கை எடுக்கப்படும்.
- 17. குத்தகை நிபந்தனை மீறப்பட்டால் குத்தகை இரத்து செய்யவோ, செய்யப்பட்ட தவறுதலுக்கு அபராத நடவடிக்கை எடுத்து தண்டம் விதிக்கவோ அல்லது கிரியினம் வழக்குத் தொடுக்க மாயட்ட ஆட்சியருக்கு அதிகாரம் உண்டு, குத்தகை ரத்து செய்யப்பட்டால் காப்புத் தொகை உட்ட அனைத்து தொகைகளும் அரசுக்கு ஆதாயமாக்கப்படும்.
- 18. குத்தனக்தார் தமிழ்நாடு சிறுவகைக்களிம் சலுகை வீதிகள் 1959ல் கண்டுள்ள வீதிகளுக்கும் மற்றும் அரசு அவ்வப்போது அறிவிக்கும் சட்டதிட்டங்களுக்கும் உட்டட்டு குவாரிப்பணிகள் செய்ய வேண்டும்.
- 19. குயாரி குத்தகை உரியம் காலாவதியான பிள்பு எக்காரணத்தை முல்னிட்டும் மீண்டும் பதுப்பிக்கவோ அல்லது காய நீட்டிப்போ செய்து தரப்பட மாட்டாது.
- 20. வெடிபொருள் சட்டம் 1884ம் தெரிவிக்கப்பட்ட சரத்துக்கன்படி குறைந்த அளவு வெடிபொருளை உபயோகித்து கற்கள் வெளியே சிதனால்லும், சத்தம் அதிகம் ஏற்படாயலும், பொதுயக்களுக்கும், கால்நடைகளுக்கும், எவ்வித பாதிப்பும் இள்றியும் கல்குவாரி பணி செய்யப்பட வேண்டும்.
- 21. வெடிகொருள்கள் அரசு உரிமம் பெற்ற வீற்பனைதாரரிடம் மட்டுமே பெற்று வெடிப்பதற்கு உரிகர் / அங்கீகாரம் பெற்ற வெடிப்பாளர்களை (Blaster / Mines mate) கொண்டு கல் குலாரியில் வெடி வைக்க பேண்டும்.
- 22. குழந்தை தொழிலாளர்கள் எவரையும் வேலைக்கு அவர்த்துதல் கூடாது.

As per the Approved Mining Plan, the total production of Rough stone for Ten years lease period is 260105 cubic meter. Hence, based on the approved Mining Plan, for the purpose of calculating stamp duty the anticipated seigniorage fee is Rs.1,17,04,725/- (Rupees One Crore Seventeen Lakha Four Thousand and Seven Hundred and Twenty Five Only) and the Lease Amount is Rs.46,01,000/- (Rupees Forty Six Lakha and one Thousand only).

LESSEE

13/55

சிறப்பு நிபத்தளைகள்:-

- குவாரி குத்தகை வழங்க உத்தேசிக்கப்பட்டுள்ள குவாரிக்கு அருகிலுள்ள பட்டா நிலங்களுக்கு 7.5 மீட்டர் பாதுகாப்பு இடைவெளிவிட்டு குவாரிப்பணி செய்யவேண்டும். மற்று கல்லு
- அருகிலுள்ள அரசு பறம்போக்கு புலங்கள், வண்டிப்பாதை மற்றும் கிராம சாலைகளுக்கு
 10 மீட்டர் பாதுகாப்பு இடைவெளியும், இதர நெடுஞ்சாலை மற்றும் மின்கம்பி பாதைக்கு
 50 மீட்டர் பாதுகாப்பு இடைவெளியும் விட்டு குவாரிப்பணி செய்யவேண்டும்.
- மேலும் தருப்புரி மாவட்ட அரசிதழ் எண். 17, நாள்.08.07.2017ல் குறிப்பிட்டுள்ள நிபந்தனைகளை தவறாமல் கடைபிடித்து குவாரிப் பணி செய்ய வேண்டும்.

THE SCHEDULE

1.	Name of the District		Dharmapuri	
1. 2.	Name of the Taluk	3	Karimangalam	
з.	Name of the Village	à.	Kalappanahalli	
4.	Name of the Sub Registration District	÷.	Dharmapuri	
5.	Lease Period	Ξ.	10 years	
	From		.12.2017 to .12.2027	

OP No	Extent	Area		Bound	lary	
S.F. No.	(in Hect)	Assessment	North by S.F. No	South by S.F. No.	and the second	West by S.F. No.
389 (Part)	2.02.5	2,025/- (Rs.100/- per hects, per year)	317/3, 388/3 & 390	389 (Part)	331/1B, 331/1C, 331/2	318

LESSEE

LESSOR

salest etchilage

Document No 120(8 age N. 1.3 otal Page.

IN WITNESS WHEREOF Thiru.K.Vivekanandan, I.A.S., District Collector, Dharmapuri acting for and on behalf of and by the order and direction of the Obverner of Tamil Nadu and Thiru.A.Sasimohan, S/o K.P.Anbazhagan 1/136A, Kerakodahalli village, Karimangalam Taluk, Dharmapuri District "the lessee" have hereunto set their respective hands.

15

LESSEE

Signed by the above named THIRU.A.SASIMOHAN In the lessee the presence of the following witnesses

Signed by the above named In the presence of

1. S.S. Bry-(S.S. DHANAPAL. S/O Marle subban Kaviman galam.

2 A. Senthil Kuman SIO IC- APPUNU 85, Amaximil Stant Dharmapuri-636701

usant enguado

15/64

Signed by the above named THIRU.K.VIVEKANANDAN, the lessor in the presence of the following witnesses

Signed by the above named In the presence of

T. (P. JAYAFML)

ASSISTANT DIRECTOR Dept. of Goology and Mining DHARMAPURI

CK AMUNICASSIC SPA

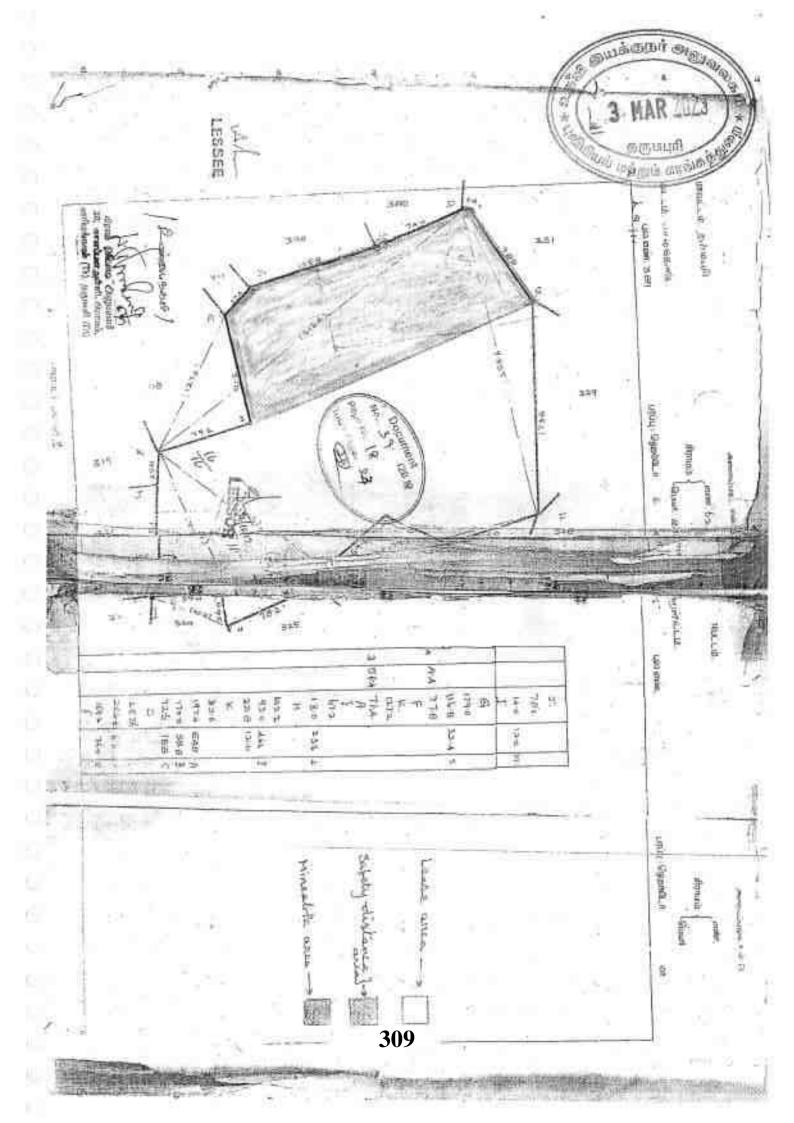
Sciel Revence inspector So, the Assistant Director Genlogy and Mining DHARMAPURI-536705.

Document Ňĸ 120 10 Page No iotal Pag 306

39/2018/BK1

GUISTON THEE BUILD

paid between hou


Presented in the Office of SUB REGISTRAR of Karimangalam and fee of Rs DOM: NOT 1 Left Thumb 动力的 西瓜市 Additions As per the recitals of the document Execution Admitted by 1 Left Thumb Additions As per the recitals of the document identified by 1 S. I. Shy Name : DHANAPAL S/o K.SUBBAN KARIMANGALAM Name : SENTHILKUMAR S/6 K.APPUNU -85, ANNAMAILSTREET 8th day of January 2018 (14) SUB REGISTRAR Karimangalam Descritent 39 120 16 NO 100 16 Endorsement Sheet no. 1 of 2 307

Endorsement Sheet no. 2 of 2 308

TP/611571/201

15.25

Applit Applit Ingles and Under and Under Gardes SAV 5/8 ver-	AND E and A Contract of the second se	1023 5 ×
	6962 3887 8096	
1947 201 1481	Pasatista generation	62223

and the second Desyment 120 18 1.5 212 Peip-Tr-19 Test Phili

6

					TP/611571/20
aller	INTER PRODUCE	NIE WORKS	Without the second	Ana shirt and	COMPANY AND A REAL PROPERTY OF
	भारत	Constant and a second second	पहचान	avreated by the	
2	1 Mar 124		सरकार		CIERCED THINKING
this given	Uniq	ue Identificati Governm	ent of Inc	ia Ia	Conserver of the second
		E-Aadh	aarLetter		(I 3 HAR I)
	og/Teics	3 melEmolnier	± No. 2007/2	650254765	Arment Constant of the second
Ehanapal Subban (5/0, Subban, 2/223	(iiiiii) aiuma				Annual
CONTRACTOR AND A DESCRIPTION OF A DESCRI	THERPETTALSTRE	244.521.01			an xx前前,在他们有1000年后,他们也
KARMANGALAM, F Dharmapuri, Tamil Nadu - 63511	VALACOBE, Kariman	galam.			ணம் ஆதம்புகேஷம் முயாமல் பெற்று. மக்க ஓயர் தயர்கோடில், கருதல தர
Tamil Nadu - 63511	1		- 38		and have been serviced without the
	Your Aedhaar No.:			INF	ORMATION
States Strategy					identity, not of othership.
2171	7951 48	106	- 110 - 15 - 17 S	111111202000	uthenticate online, merated letter
acant and	rran walkafdr a	dia an			annus municipality
8	চন্দ্র	www			Explore operation concentration of allows
100.200 1007	mit Bertin gin et	are add good			
அயசிலம் எற்படும் சி தலைரேல்து உடும் எற்றும் சுவெலில் உடல் குஷ்கு பல்போ செய்தரியன் கிண்	alar səhiyənən işfəri yəmləri işfəş Ərbinə 1991-cə filsənər Təşiyət i	lanassa palan na Samini Darihigui	withoutp y		e runder and e-mel attitudes. The us services in future
	Constant and the	10.1210.12-000		-	
20	NIACTO TRANSFORMENT				สิโรงอะ ๆชิตาว มาโซลงขา มาร่วงทองวันประเทศการกระจะเอง
9	gancrai suuan Diaragai Subban Simka siriri DOB 0 Ajimi (MALE		500 +000 3400 -000 100 -000	2, 2, 2, 2, 3, 3 14 . 1-11:424-3 14 . 14:31141	Address: htt:Suite: 2021 DetroyTte: Indiana Indiana No.Addressing.com No.Addressing. No.Addressing. Sections: Sections: - 43000
	2171 7951 4806			21717	9514805
	егда төп шабдаяба	Second and	Aadh	aar-Aan	n Admi ka Adhikar
- 31 - 31	mont F2018	8		0 c.	Shy-

 $\mathcal{D}_{\mathcal{C}}$

TP/611571/201

Regi	stration Department cknowledgement
R	eference Details
SRO Name	Karimangalam
Application No.	S01SAS0KK201801080003051
Transaction No.	REG20180108004891
Transaction Date	08/01/2018
Ар	plication Details
Applicant Name	SASIMOHAN
Service Type	Document Registration (New) in SRO
Registration Fee	20400.00
IP Camera Fee	50.00
P	ayment Details
Name Of the Bank	CanaraBank
Bank Ref. No.	2080801180145
Payment Mode	Online
Amount Paid	Rs:20450.00
Payment Date	08/01/2018

.

THIRC.E VIVEKANANDAN, LA.S., CHAIRPERSON-DEIAA/ DISTRICT COLLECTOR.

Buistoni angliana Dharman an District Environment 6 Impact Assessment Autor 1917 Collectorate, Dharmapurta, த்தும்புரி Lr.No.08/DELAA-DPI/EC.No.08/2017 dated. 31 10:2017 (11) ENVIRONMENTAL CLEARANCE

To

Thiru A.Sasimohan, S/o K.P.Anbhazhagan, 1/136A, Keraleodahalli/Vilb. Karimangalam Taluk, Dharmapuri District.

Sir,

DEIAA-Dharmapuri - Proposed Rough Stone quarry over an Sub: extent of 2.02.5 Hects in Government land - S.F.No.389 (Part) of Kalappanahalli village of Karimangulam Talux and Dharmapuri District by Thiru A.Sasimohan - issue of Environmental Clearance - Reg.

T.

- 1. Application of Thirn A. Sasimohan for Environment Ref: Clearance dated 18 09.2017 submitted at DEIAA. Dharmapur, Tamil Nadu.
 - Minutes of the DEAC meeting held on 12 10.2017
 - 3. Minutes of the DEIAA meeting held on 17 10 2017.

(another

Details of Minor mineral Activity:-

This has reference to your application first cited. The proposal is for obtaining Environmental Clearance for mining / quarrying of minor minerals based on the particulars furnished in your application as shown below:

1.	Name of Project Proponent or address	Id Thiru A.Sasimohan, S/o K.P.Anbhazhagan, I/ 135 , A. Kerokodahalli(Vill), Karimangalam Taluk, Dhurmapuri District.
2.	Location of the Proposed Activit	389 (Part) and 2.02.5 Heres.
	-PEAR ON MICH-INSPA SCHEERSCHERKEN ON HET	
	Lantude and Longitude	12º 14'42 70" N 10 12+ 14'47.58" N 78* 10'33.88" E to 78* 10'41.80" K

B BONGA MEMBER SECRETARY REVENUE DIVISIONAL OFFICER, DETAA.DHARMAPURL

(5d/- Thiru, K. Vivekamandan) CHAIRFERSONI DISTRICT COLLECTOR DELAA, DHARMAPURI

	Villo	pe	Kailapanahaila
_	Taha	and the second s	Kurimangalam
_	Dist	N	Dharmapari
E		osed Activity	10000000000000000000000000000000000000
	1	Minor mineral	Rough Stone
1	ä.	+ Mining Lease Area	2.02.5 Hects.
	333.	Approved quantity	153815 Cu.m. of Rough Stone for a period of Five years.
	īv.	Depth of Mining	17 mts. (12mts AOL · 5 mts BGL)
	×	Type of mining	Opencast, acmi mechanised
	Vi.	Category (B1/B2)	82
	i vis,	Provise Area Communication	The District Collector, Dhurmapod notice Roc.No. 155/2017 (Mines) dated 07.08.2017.
	viii.	Mining Plan approval	The Assistant Director of Geology and Mining, Dharmapuri Letter Noc.No.155/2017 [Mines] dated 05.09.2017
	38.	Mining lease period	Five years
ł	gene	ther Project area attracts any ral conditions specified in EIA notification, 2006 as nded:-	Not attracted. Affidavit furnished
8	Man	Power requirement per dag	11 Employees
2	1.2tilli	lies	
		Source of Water	a. For Drinking and Domestic purpose water to be proposed to make a borchole for providing uninterrupted supply of dracking water.
			b. Air or Dust expected to be generated from drilling process, hauling roads, pieces of excavation etc., will be suppressed by periodical wetting of land by water spraying.

A BONG OF MEMBER SECRETARY REVENUE DIVISIONAL OFFICER, DELAA, DHARMAPURI.

à.

[9d/- Thiru, K. Vive kamendars] CHAIRPERSON/ DELAS, DHARMAPURI.

1.11.	Cha	antity of Water	- Contract - Martin
ü.		uirement in KLD	Bud tapping an internet
ř.	Ų.	Drinking & domestic purposes	0.300 - 60
. 77	15	Dust suppression	0.300 KLD
1	. C.	Green Belt	0.400 KLU
m.	Pov	er requirement	
	а.	Domestic purpose	TNEB
Î	3.	Industrial purpose	Diesel [HSD] will be used for quarrying machineries around 128486 Liters of HSD will be used for the entice project life. Diesel will be brought from nearby diesel pumps. No power is required for the project.
ĩ	Pro	ject Cost	x#.99,74,0007
, ii.	EN	P Cost	Rs.6,80,000/-
Pi	iblic (Consultation:	Not required as per O.M. dated 24.12.2013 of MonF, COL
1.34	e-uda	Appraisal by DEAC: No.	Agenda No.3 of DEAC meeting conducted on 12.10,2017.
u tu Si ol	Thu 17 gram cone + Envi alidity	10.2017 and the Authority is Environmental Clearance subject to terms and condi- ronment Impact Assessme for Environmental Clearan	after cureful consideration, decider after cureful consideration, decider to the said project Mining of Rough tions stipulated under the provisions at Notification, 2006 as amended.
		for the gradiention mantily	and 153815 Chen of rough stone for date of execution of the mining leas

- if The project has been accorded Environmental Clearance
- ii) Copies of clearance letters are available with the Tamil Nadu Pollution Control Board, Dharmapuri District.

& Signative MEMBER EDCRETARY REVENUE DIVISIONAL OFFICER, DELAA, BRARMAPURL

293

(Sd/- Third.K. Vivekanaudau) CHAIRPERSON/ DISTRICT COLLECTOR DELAS, DHARMAPCRI.

2

- Bavironmental Clearance may also be seen on the website of the District Environment Impact Assessment Authority, Dharmapuri (TamilNadu).
- iv) The advertisement should be made within 7 days from the date of receipt of the clearance letter and a copy of the same shall be forwarded to the DEIAA, Dharmapuri.
- The applicant has to obtain land use classification us industrial use before issue / renewal of mining lease.
- NOC from the Standing committee of the NBWL shall be obtained, if protected areas are located within 10 Km from the proposed project site.
- The project proponent shall comply the conditions laid down m section V, Rule 36 of Tamil Nadu Minor Mineral Concession Rules, 1959.
- 5. A copy of the Environment Clearance letter shall be sent by the proponent to the concerned Punchayat. Town Panchayat, Panchayat Union / Municipal Corporation, Urban Local Body and the local NGO, if any, from whom suggestions/ representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the proponent and also kept at the site, for the general public to see.
- Quarty lease area should be demarcated on the ground with wire feating to show the boundary of the lease area on all sides with red flags on every pillar shall be erected before commencement of quarrying.
- 7. The proponent shall ensure that First Aid Box is available at site
- The excavation activity shall not alter the natural drainage pattern of the area.
- 9 The excavated pit shall be restored by the project proponent for useful purposes
- The proponent shall quarry and remove only in the permitted areas as per the approved Mining Plan details.
- The quarrying operation shall be restricted between 7A.M. and 5 P.M.

- ANDONS MEMBER SECRETALT

MEMBER SECRETALLY REVENUE DIVISIONAL OFFICER, DELA, DRAFMAPURI, (54/- Thirs.K. Vive kanandan) CHAIPPERSON/ DISTRICT COLLECTOR DRIAA, DHARMAPURI

12. The proponent shall take necessary intersure to cardure that flore shall -the may adverse impacts due to quarty interation on the new by human babitations, by way of pollution to the advirontrensulf

No. of Concession, Name

Store Statuted

- 13. A minimum distance of 15 mts, from any civil all different available kept from the periphery of any escavation area.
- Depth of quarrying shall be 2m above the ground water table /approved depth of mining whichever is lesser to be considered as a safe guard against Environmental Contamination and over exploitation of resources.
- 15. The mined out pits should be backfilled where warranted and area should be suitably tandscaped to prevent environmental degradation. The mine closure plan as furnished to the proposal shull be strictly followed with back filling and tree plantation.
- 16. Wet drilling method is to be adopted to cantrol dust emissions. Delay detanetors and shock tube initiation system for blasting shall be used no as to reduce vibration and dust.
- 17. Drilling and blanting shall be done only either by lionnacd explosive agent or by the proponent after obtaining required approvals from Competent Authorities.
- 18. The explosives shall be stored at site as per the conditions scipulated in the permits issued by the licensing Authority.
- Blasting shall be carried out after announcing to the public adequate through public address system to avoid any underst.
- 20. A study has to be conducted to assess the optimum blast parameters and blast design to keep the vibration limits less than prescribed levels and only such design and parameters should be implemented while blasting is done. Periodical monitoring of the vibration at specified location to be conducted and records kept for inspection.
- The following measures are to be implemented to reduce Air Pollution during transportation of mineral
 - Roads shall be graded to mitigate the dust emission.
 - Water shall be sprinkled at regular interval on the main road and other service roads to suppress dust.
- The following measures are m be implemented to reduce Noise Pollotion

 Proper and regular maintenance of vehicles and other equipment.

00000 38 MEMBER SECRET REVENUE DIVISIONAL OFFICER. DELAA, DHARMAPURI

184/ Thiru.R.Viveksussillers CHAIRPERSON/ DISTRICT COLLECTOR DEIAA, DHARMAPUTIL

- ii. Limiting the exposure of workers to excessive outse
- ill. Der workers employed alight be provider with protection.

Buisepri Starage

ς,

- equipment and earmatis etc. iv. Speed of trucks entering or leaving the mine is to be limited in an indumoderate speed of 25 kmph to prevent undue noise from empty trucks.
- 23. Measures should be taken to comply with the provisions laid under Noise Follution (Regulation and Control) (Amendment) Rules, 2010 dated 11 01 2010 issued by the MoE(M), GOI to control noise to the prescribed levels.
- 24. Suitable conservation measures to sugment ground water resources in the area shall be planned and implemented in consultation with Regional Director, CGWB. Suitable measures should be taken for minwater baryesting.
- Permission from the competent authority should be obtained for drawi of ground water, if any, required for this project.
- Topsoil, if any, shall be stacked properly with proper slope with adequate measures and should be used for plantation purpose.
- 27. The following measures are to be adapted to control crossion of dumps:-
 - Retention/ toc walls shall be provided at the fool of the dumps.
 - Worked out slopes are to be stabilized by planting oppropriate shrub/grass species on the slopes.
- 28. Wante oils, used oils generated from the EM machines, mining operations, if any, shall be disposed as per the Hazardous Wastes (Management, Handling and Trans boundary movements Rules, 2008 and its amendments thereof to the recyclers authorized by TNPCR.
- Coocealing the factual data or failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Environment (Protection) Act, 1986.
- Rain water baryesting to cullect and utilize the entire water falling in tand area should be provided.
- 31. Rain water getting accumulated in the quarry floor shall not be discharged directly to the nearby stream or water body. If it is to be let into the nearby water body, it has to be discharged into a site trap on

T: DEADA

MEMBER BICHERACY/ REVENUE DIVISIONAL OFFICER, DELAS, DILARMAPURI, H4/- Thick K. Vivekmandani CHAIRPERSON/ DISTRICT COLLECTOR DELAS. DILAPMAPURI

கமிழ்நாடு வனத்துரை

3 BULLEO

unit in 16 and

GLITPERS

unu'i gu'dhigeanad, huiuiti - 5

கிதக்குகிருள்ளர், இ.வப்பு மாவட்ட வன் அனுவளர், நருவழரி காசல்கோட்டத், தருவழரி – 5, மில்லத்சம் – ராண்ணைற்றைக்குவை ஹால்லியர் வல் – 04042 – 200000 தல் – 04042 – 20000

L.C. Main 3828 / 2015/01 STUT 09.00.2018

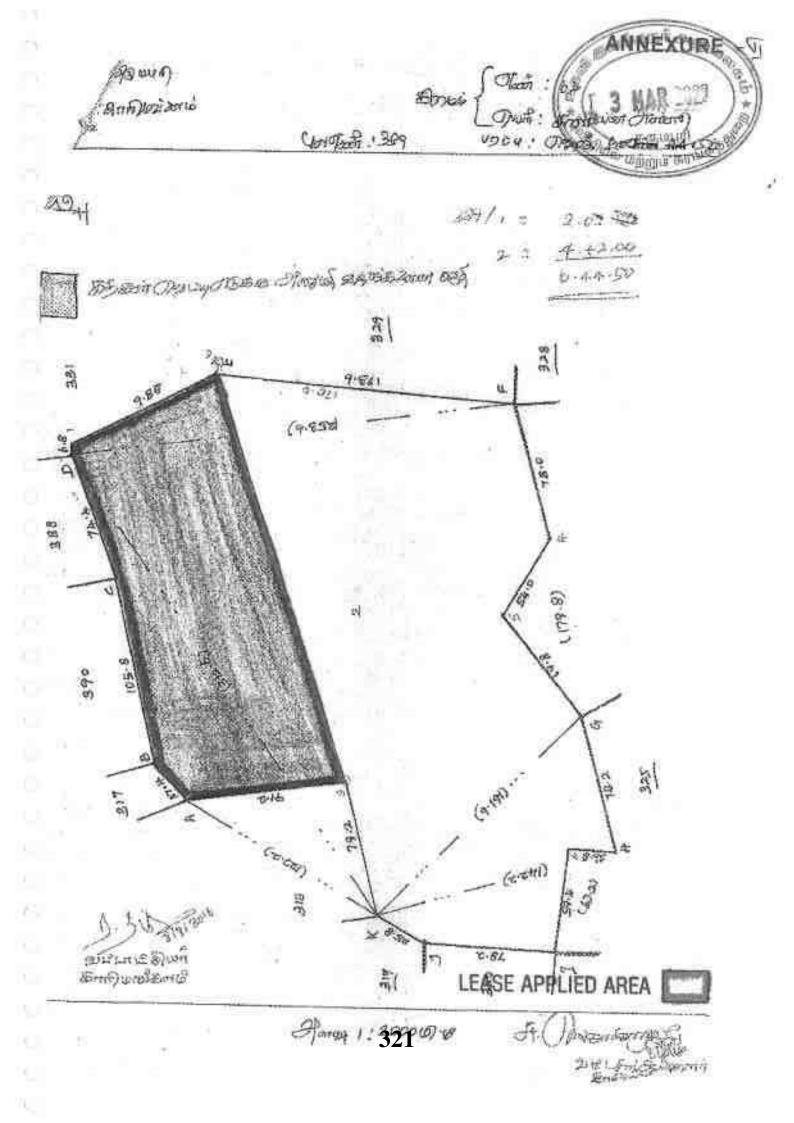
BRILLIN,

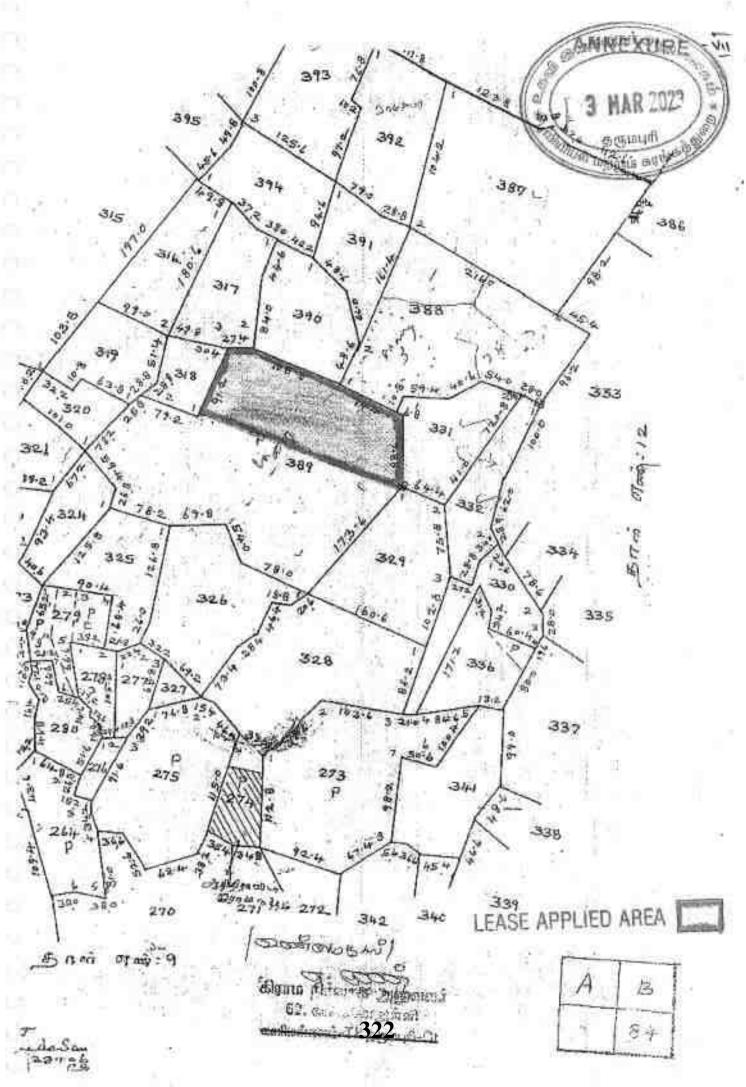
Quantitair

கஸ்ஸ்களும், குணர்களும் – சிற கவிமம் – என்றான் கத்கள் – தருப்புரி மாகப்பத்தில் உன்ன அரசு புலம்போல்கு திலங்களில் னதானை கத்கள் மேட்டி எடுக்க டென்பருடன் இன்னந்த பொது எல முறையில் குவாரி குத்தகை வழங்குதல் – வளத்தறை தொடர்பான தடையின்னை சான்று வழங்க கோருதல் – வளத்தறை தொடர்பான தடையின்னை சான்று வழங்க கோருதல் – தொடர்பாக

Litama:

---- 00000ne----


பார்கையில் காணும் கதைத்து விரத்துத்து பிடப்பில் பிட்டியில் கண்ட குவரிகளில் எதனான கற்கள் பெட்டி எடும்றத்து, இத்துறைவின் ஆட்வேள்கவின்னம் குதித்த விரைப் ஆத்தத்த குவரியின் எதிரே பிட்டி பிட்டுள்ளது தையில் குதிதியில்தில் கொள்கியின்.


ह). डाक्रीत	مدينه	Byunii	1 jab meet	-	ويقلق
1	timmelilient@	semilan Spinit	401 (100)	3.70.0	Hillen anar Seimen
2	Linsois@Gar(j)t	Constant South	833 (139)(3)	1.74.0	Agi Carmon Submar
3	(Jus\$Sem)	South and the state of the stat	364	0.69.0	20 Gromer Baumo
4	unmäßnu@	காண்டன அவ்வாக	(idetsel) unit	2.02.5	milloument (Disease
5	(statelien)	Arenage miaster	335	178.0	mil Courses Diama

BILLART SHITCHING,

ழம்க திறார், மாயட்டல்ல் ஆண்ண், தருகளி வாக்கோட்டம்

320

0.00

VIII wastin Sim Genteria 8. - R + ī D ь η., 62 os. mu. Ges. ot in (3, mez. 283 121 0 62 1 73-0 1 02 8-5 10 2.1 1.14 - 74 Lommia 60 184 0 69 0 384 W 8.04 ыi, 110 110 -111 111 10 66-03 1 42 1088 - 4000 - 8 15 2 Ď. 385 鸿 **#**/ н \mathbf{x}_{i+1} 15-0 386 ł, e presi 644 14 ti di l 85.0 2.15 Ű. 960, 60, 17, 19, 08, 389 ERATE TO SAL 1-3 ,\$ 1 35 ad 13 1.00 (1) -0.2 324 em# (0) ----8.2 .2 15 0 58-0 1 26 940 64. 386 10 s 4 10 3h ίų. (1).译 #### 114 2.5 2 15 0 73-0 2 6-3 1 16 601 aprendered đ. all. 콠 λĘ. 1 22 14 石田 3 8-3 1 17:5 2. 52 ā. HOTY shan been ŵ. 4 190 144 T 1 6.0 8 早 1 23-5 1-3 2 15 2 65 8 - 14 44 ø 111 y^{2} 4 3 ĥ 58+0 4 9. 85 388 8-3 0 66 1 4 43 1119 Glat. mining 14 ũ. 3 1 188-1 10.3 111. 15 G. C. W. 1 39 4 3 00 8-3 2 73 8 H - C 168 Gaminsansin 1 17:0 8-3 8 2 15 3 80° 54 3 3 13:0 1 25 389 159 in the day 1 4113 390 843 1810 Qer, eten offeren 14 1 34.0 a.E. 1.13 2. 69 201 ALC: NO. Trink V to Henry 391 12 0 67 8-5 0 62 1 08.0 CIP Car, Guade 0.0 Sa sil S 392 RE 72 2 15 0 55'0' 125 's. Farrend 1 89 99. Ca .

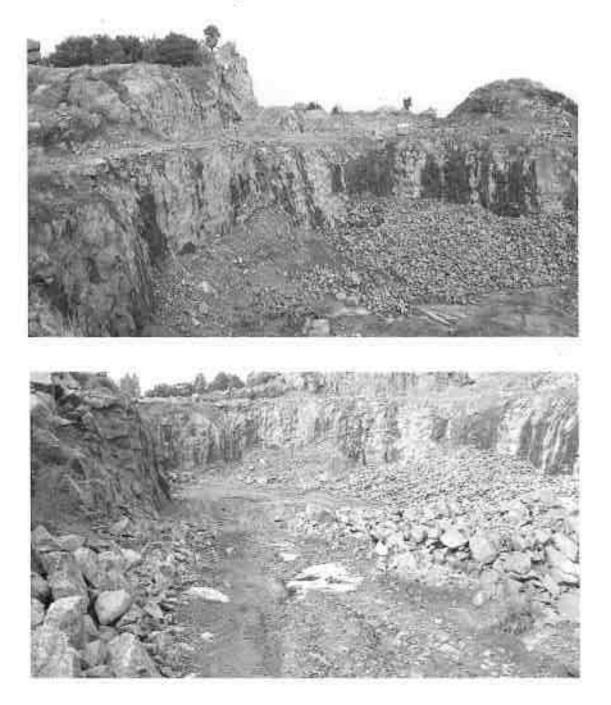
1.0

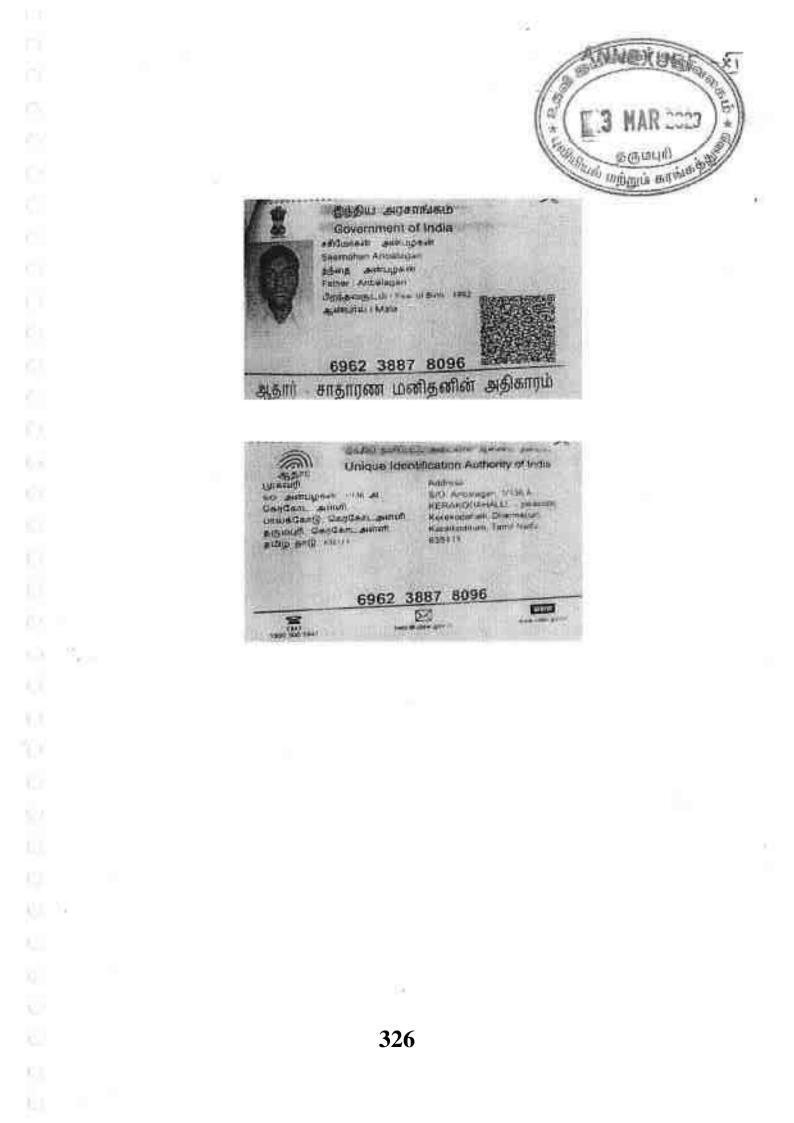
5

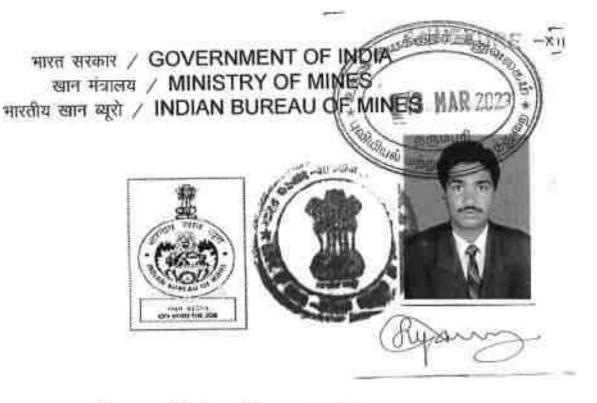
1

TAHSILDAR

14	Consistent B. rug to subject of the sec		ar ^{it}		6	1		11	2	X.				10		1	10	-			37-1	200
Allow Andreas and Allowing All	A constraint of the second sec	a Billing Inc.	A CONTRACTOR OF	A Contraction of the Contraction		AND		AND A DECEMBER OF		807 15						and the second	12/21	m /.ell	「「「「「」」	AR	201	25
Aland -		13					1			1.2				2	-	-		24			90	
7	Antipation and a straight of the straight of t	10-3		-	-22		Gal	2322		21.6 21.6		111	12.20				ľ.,	1000	145		110	
0 7	aline algorithm algorithm algorithm from the algorithm algorit	Ena	101					Horas -		1000000		and a constant	NAL PACE	and the second second			日本の		100 IN		Wit of the	10- 12- 1- 12- 1- 12- 12- 12- 12- 12- 12-
u	Swiften Swiften				1				125.	See of	1.000	i.		101.1		163		24	8			1
and until	200720 - 0101010 - 2 2007	174							5	123	12					1.1	0			The second		遗
Brand.	ALENT SALES OF Y ALL OPT		13		3	13				1				100				6. ji	1		12	
No. aug.	3000 Ho/OP			120					12	1.4	1980	100		2836			Ľ				1	
Overside and	Ber anness marker gystan bis afre ansar	101-11	1			NHE I	Mr. a	1000			1.22	100	Service of the servic	100 CAN	the second			100		1		÷


Steer in luni	ataninaliseDer 7 auser ataninaliseDer 7 auser acces		20100	53	1					No. 12	E C	al an	1000	100		10	1		1		
盡	ifter orrented mendels größban Nach förster och ober ettelsten och		10 - M		Termes .						No. of Street, or Stre	NIN .		Contraction of the local distribution of the							
	arget		The second	(Barl	122.00	「日本	rigital, Alimon,	A COLUMN					新学生	Station .				-			1 1 C 24/0
	Breaking .	2		e-land		14/10/1	Circles of Circles				2	100			100		11			10	3
	nande Bereiten.	ed.	1305	- 16	2	1	dimits.		1000		110		ia M			1			22		1
direction.	The structure	2	12 N	12		10	and and		14						E H					22	1
autor	reite aner	a,	100			T		and and a	1000	10.5	111			1949		1		G,		14	29
1 North	Turnelle alfester alfe a formeller alfe a considers alfe alfester, vile	9 T	25. It					25.12	1.755 1.755	3	33		SHE STR			11			2		
and a second	and a rest of the second s	5			E E			12 - 14 H	100		1000							11			
	and the second s	a			C. Aber W. T.			Number of Street						Contraction of the second			2 2 2 3 9 5 5 2				101
3.	The energy and energy and	iñ.		1	24	100				10.1								1		1-	1
1	50g#	\$		13	j.			34			E			1:	1	F	1	+	1	1	-
and drive share	and the second second	6 9	-		100	1 IE		4		1	12	-			-		k	1		1	400
	l sala sala sala sala sa	6	1	1			32	24	-		123		15	1	11		12		+	-	+
F	are mouth as	=	Sec.		3			er ly	E.		B	1	19	1	1	1		17		3	1


PHOTOCOPY OF THE LEASE AREA


តុក្រឈូពី Field photos in respect of rough stone quarry lease, Govt land, in S.P.Nores 89(P), overige an extent of 2.02.5hectares of Kalapanahalli Village, Karimangalam Taluk, Dharmapuri District, Tamil Nadu State belongs to Thiru.A.SASIMOHAN.

3 MAR 222

ANNEXURE -IX

अर्हता प्राप्त व्यक्ति के रूप नेमान्यता प्रमाण पत्र (खनिज रियायत नियमावली, 1960 के नियम 22सी के तहत) CERTIFICATE OF RECOGNITION AS QUALIFIED PERSON (Under Rule 22C of Mineral Concession Rules, 1960)

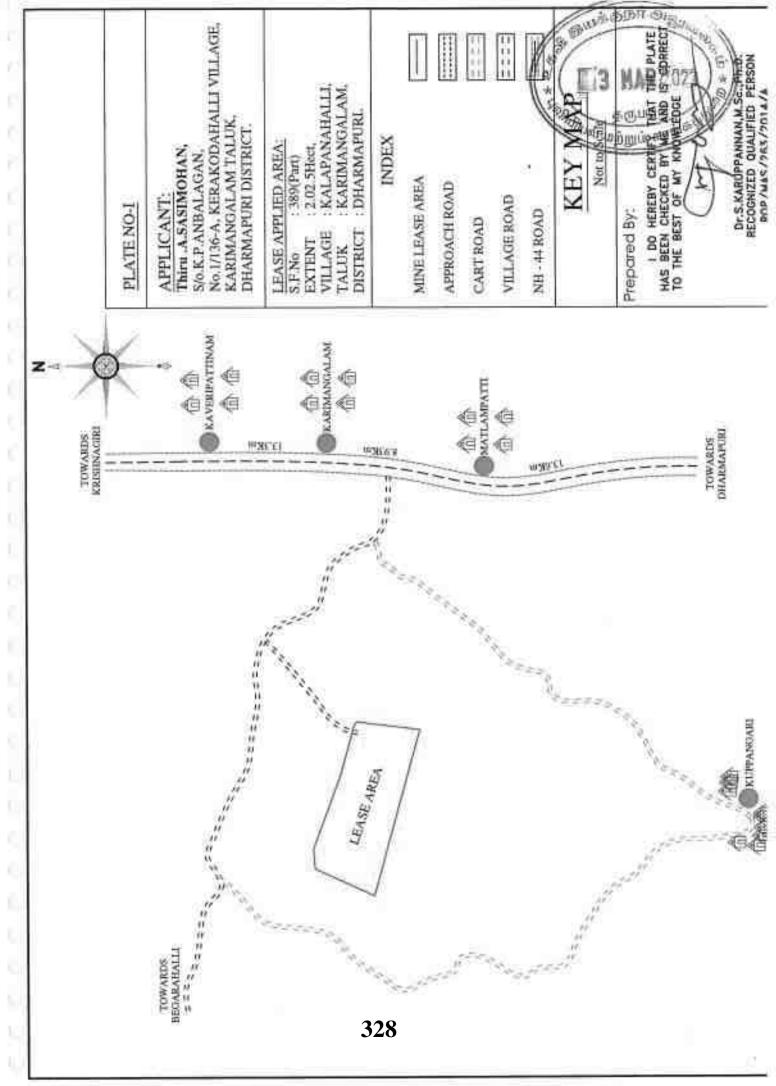
श्री एस. करुपण्नण, मॉग्गनीकाडू, मुत्तमंपटटी पोस्ट, बोम्मीडी ययॉ , ओमलूर तालुक, सेलम डीस्टीक्ट, तमिलनाडू – 635 301, जिनका फोटो और हस्ताक्षर ऊपर दिया हुआ है, तथा जिनहोंने अपनी अहंता और अनुभव का संतोष जनक सक्ष्य दिया है, को खनन योजना तैयार करने हेतु खनिज रियायत नियमावली 1960 के नियम 22सी के तहत अर्हता प्राप्त व्यक्ति के रूप में मान्यता प्रदान की जाती है ।

Shri S. Karuppannan, Manganikadu, Muthampatty (Post), Bommidi (Via), Omalur Taluk, Salem District, Tamilnadu – 635 301, whose Photograph and signature is affixed herein above, having given satisfactory evidence of his qualifications & experience hereby RECOGNISED under Rule 22C of the Mineral Concession Rule, 1960 as a Qualified Person to prepare Mining Plans.

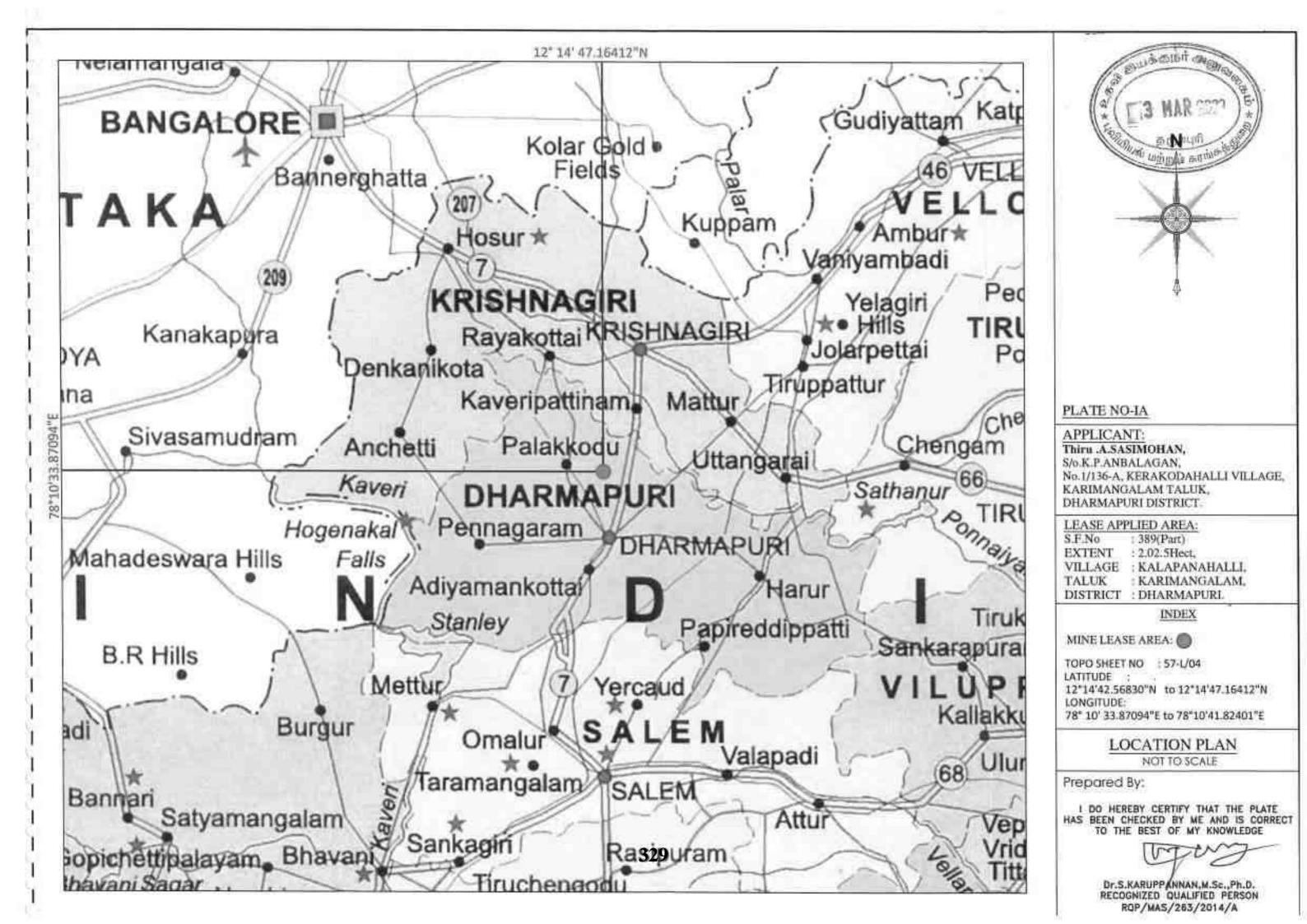
उनकीपंजीयन संख्या है His registration number is RQP /MAS/263/2014/A

यह मान्यता 10 वर्षों की अवधि के लिए मान्यता है जो दिनांक 15.12.2024 को समाप्त होगी। This recognition is valid for a period of 10 years ending on 15.12.2024.

उनके द्वारा प्रस्तुत खनन योजना में गलत जानकारी / दस्तावेज पाए जाने की रिथती में यह प्रमाण पत्र वापस लिया जाएगा / निरस्त किया जाएगा।


This certificate will liable to be withdrawn / cancelled in the event of furnishing the wrong information / documents in the Mining Plan submitted by him.

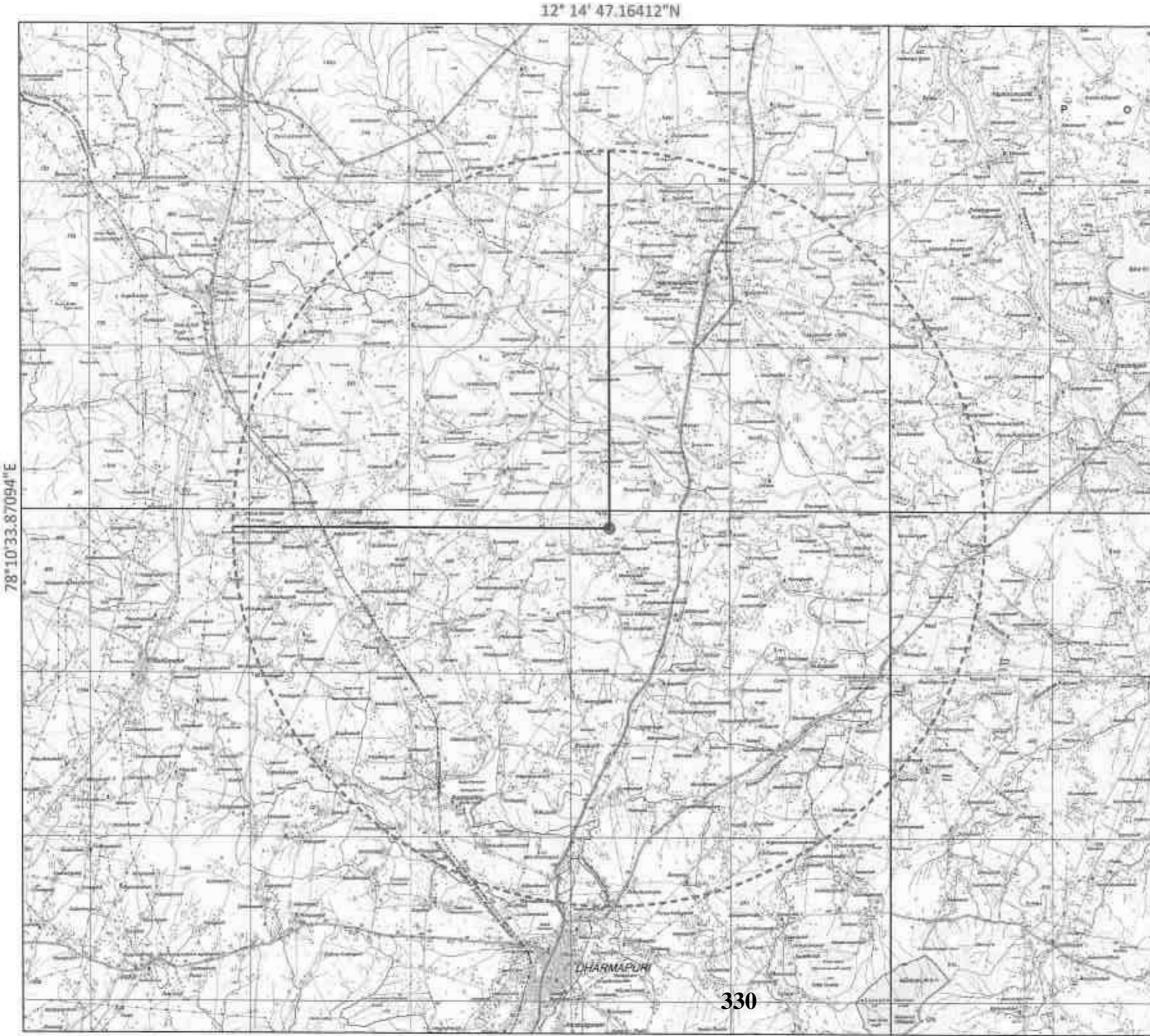
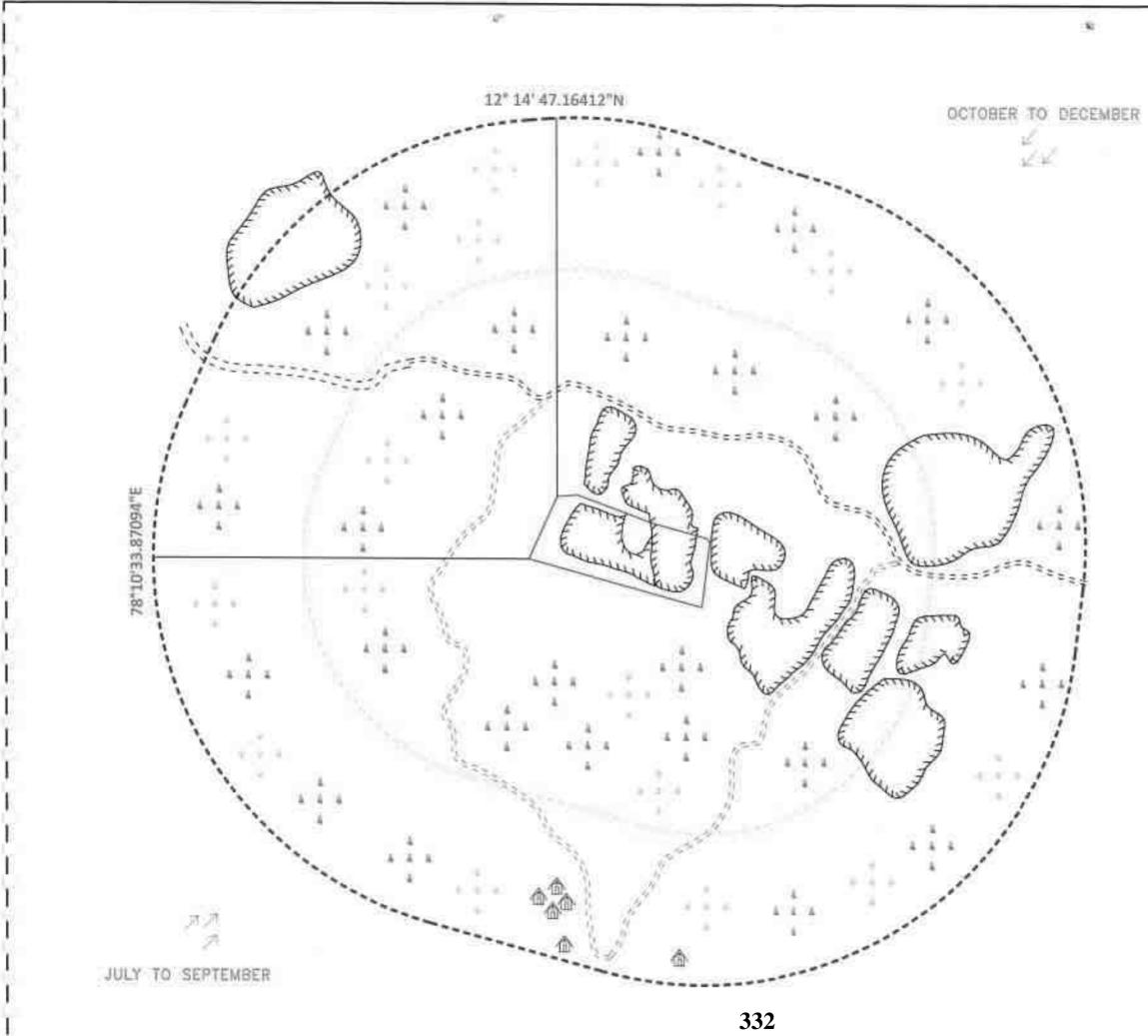
स्थान/ Place : Chennai हिनाक/ Date : 16.12.2014.

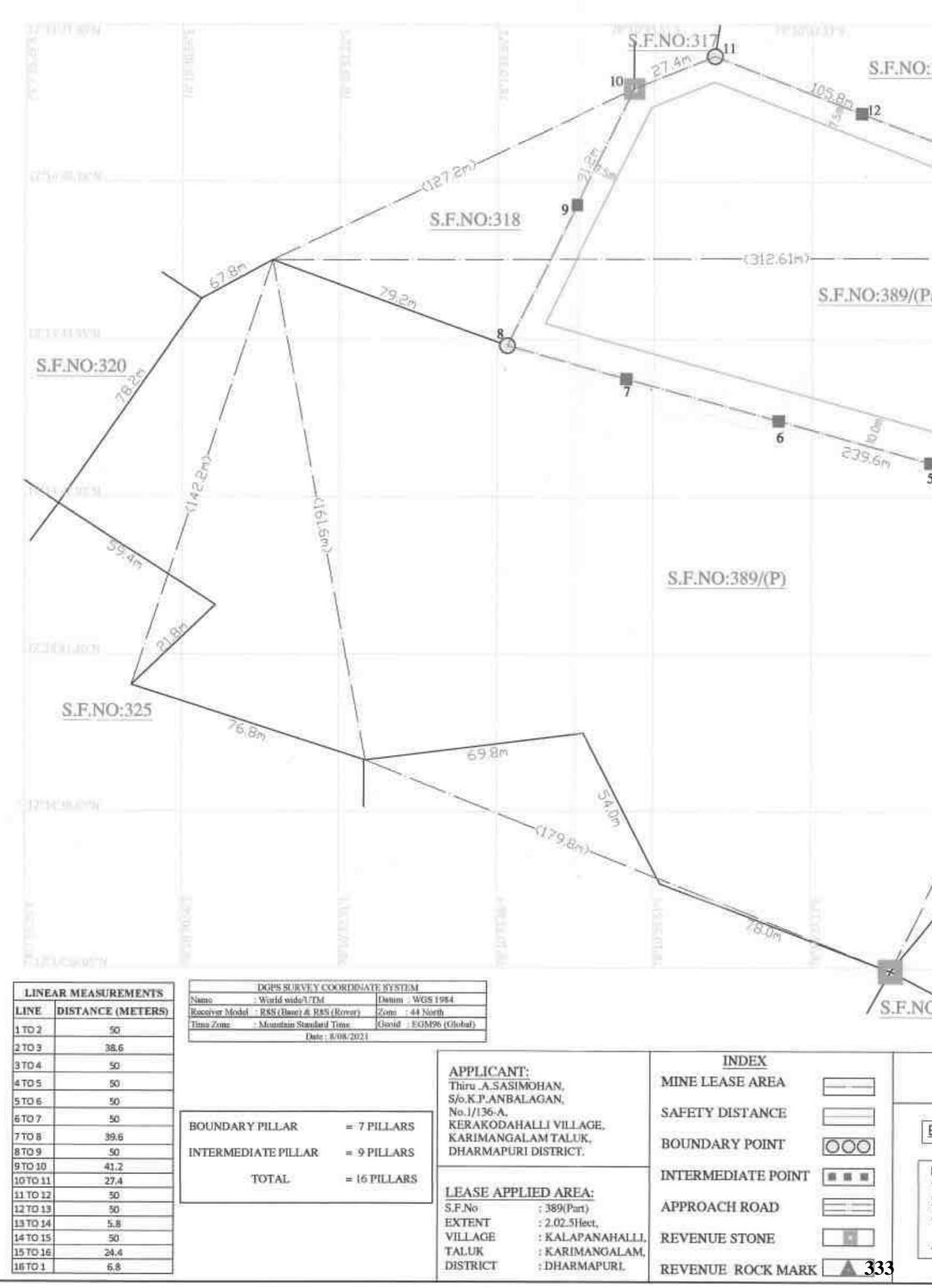

327

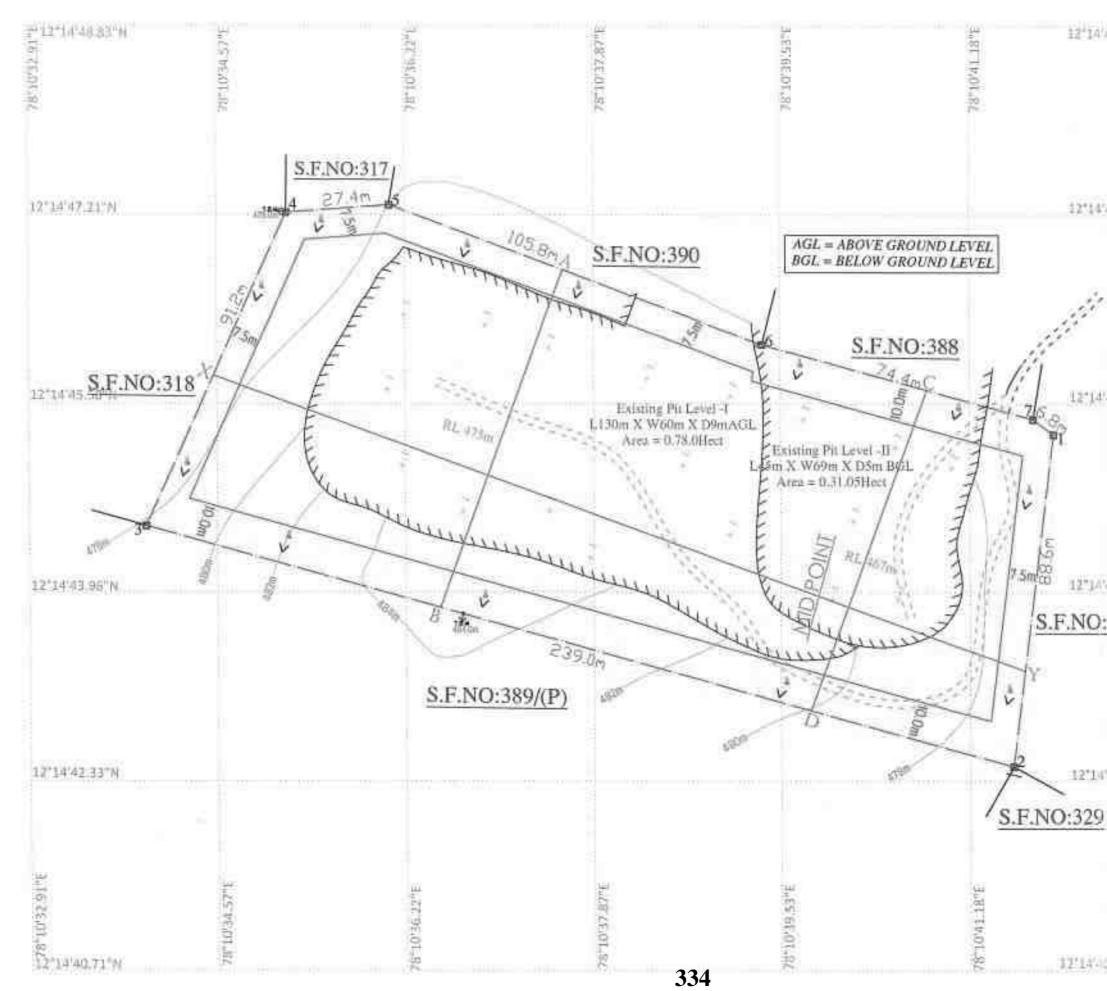
gerail

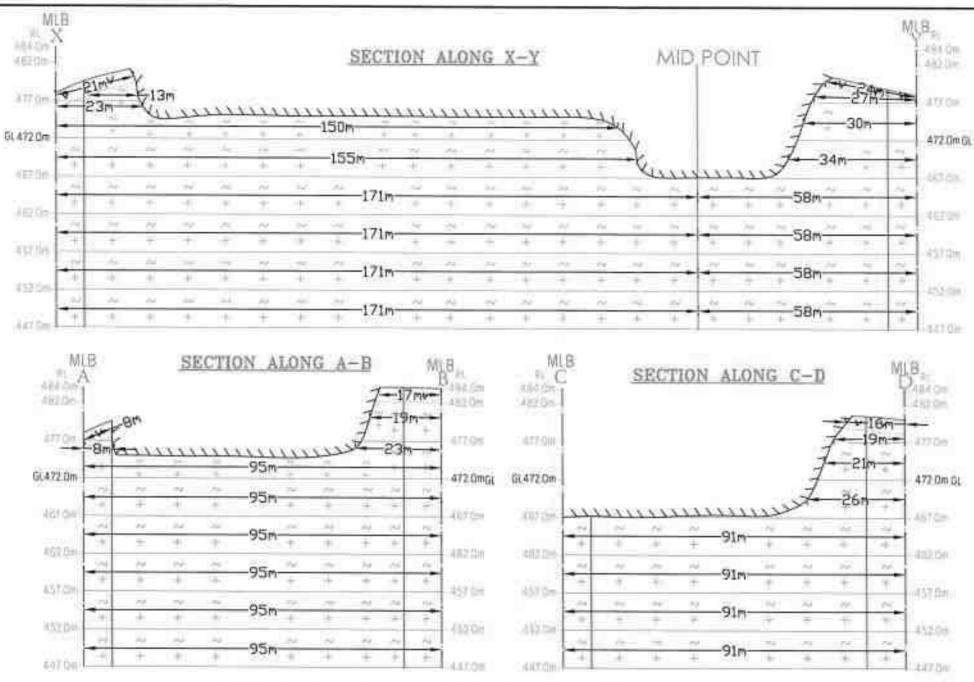
क्षेत्रीय खाननियंत्रक / Regional Controller of Mines मारतीय खानवारी/ Indian Bureau of Mines

-Q

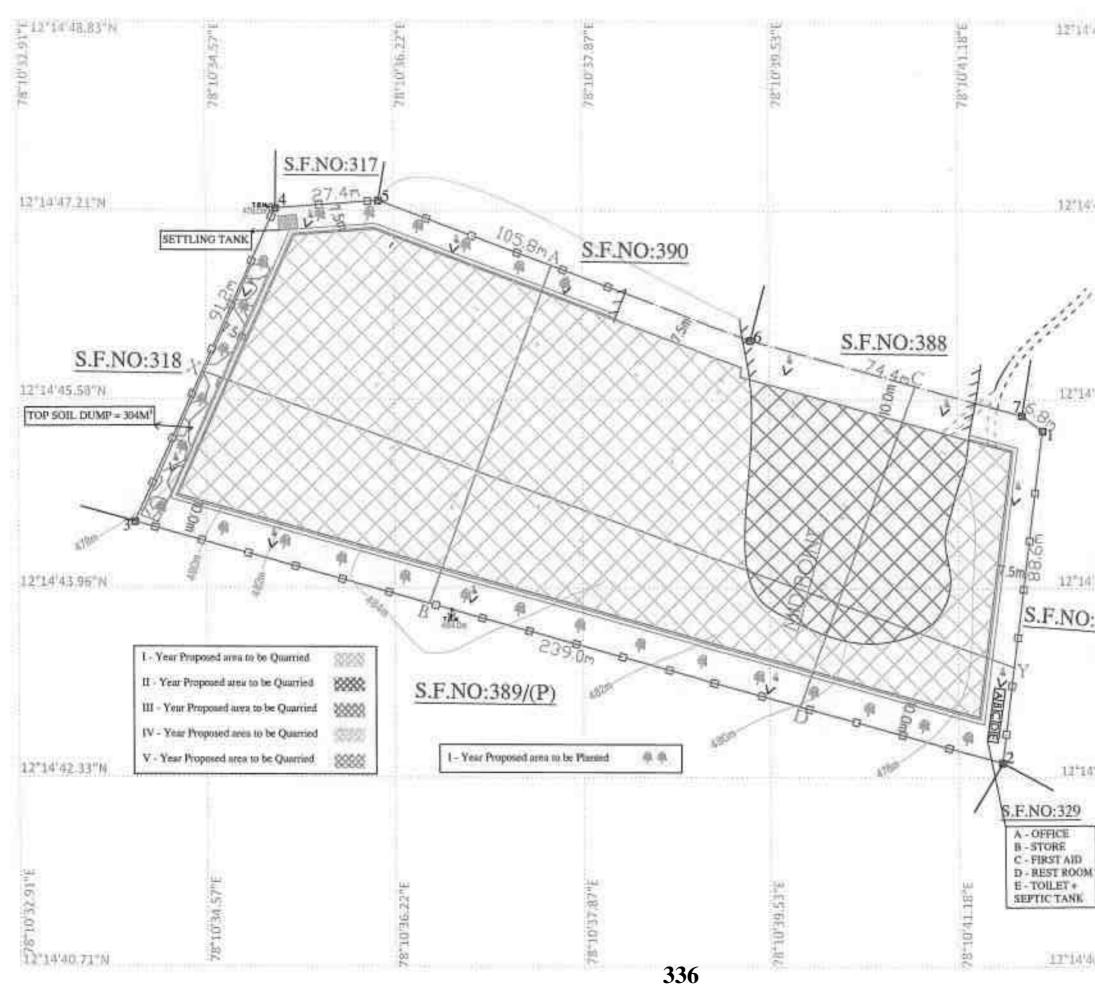



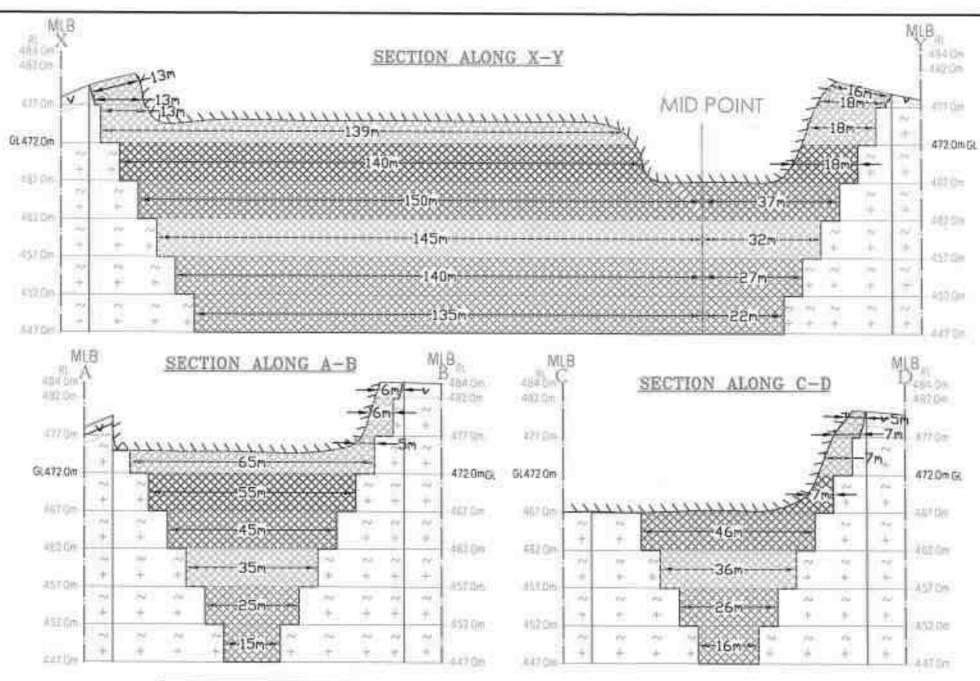

PLATE NO/IB APPLICANT Thiru A.SASIMOHA S/o.K.P.ANBALAGAN, No.1/136-A, KERAKODAHALLI VILLAGE. KARIMANGALAM TALUK. DHARMAPURI DISTRICT. LEASE APPLIED AREA: S.F.No : 389(Part) EXTENT : 2.02.5Hect, VILLAGE : KALAPANAHALLI, TALUK KARIMANGALAM, DISTRICT : DHARMAPURL TOPO SHEET NO : 57-L/04 LATITUDE : 12"14'42.56830"N to 12" 14'47.16412" N LONGITUDE: 78" 10' 33.87094"E to 78" 10'41.82401" E MINE LEASE AREA 1.1 10KM RADIUS DON/ENTRONE, SYMBOLD 相应者 to be in such that is not standing of the local diversion in which the real diversion in the local diversion in the l and look some light and through the surround it -60 Annotice Desides ere stationale proof the It is not if the second in the second ÷ the sub-two partial linear st No. of Address of ----TOPOSHEET MAP SCALE- 1-1,00,000 Prepared By: I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE Dr.S.KARUPPANNAN,M.Sc.,Ph.D. RECOGNIZED QUALIFIED PERSON ROP/MAS/263/2014/A


A CONTRACTOR	AR 2027 (AR 2027)
PLATE NO-IC	
APPLICANT: Thiru .A.SASIMOHAN, S/o.K.P.ANBALAGAN, No.1/136-A, KERAKODAHAL KARIMANGALAM TALUK, DHARMAPURI DISTRICT.	LI VILLAGE,
LEASE APPLIED AREA: S.F.No : 389(Part) EXTENT : 2.02.5Hect, VILLAGE : KALAPANAHAI TALUK : KARIMANGALA DISTRICT : DHARMAPURI.	AM,
IND	EX
MINE LEASE AREA	
APPROACH ROAD	22223
CARTROAD	
VILLAGE ROAD	
300m RADIUS	
500m RADIUS	O
EXISTING QUARRY & PIT	EIID
TOPO SHEET NO : 57-L/04 LATITUDE : 12"14"42-56830"N to 12"14"47. LONGITUDE: 78" 10" 33.87094"E to 78"10"41.1	
SATELLITE IMAGE	
SCALE- 115000	E
Prepared By:	
I DO HEREBY CERTIFY T HAS BEEN CHECKED BY ME TO THE BEST OF MY KNOWL	AND IS CORRECT
(mpc	D
Dr.S.KARUPPANNAN RECOGNIZED QUALIF ROP/MAS/263/20	IED PERSON


5.11800	ont construction
and the state	AR man
PLATE NO-ID	
APPLICANT: Thiru .A.SASIMOHAN, S/o.K.P.ANBALAGAN, No.1/136-A, KERAKODAHALLI KARIMANGALAM TALUK, DHARMAPURI DISTRICT.	VILLAGE,
LEASE APPLIED AREA: S.F.No : 389(Part) EXTENT : 2.02.5Hect, VILLAGE : KALAPANAHALI TALUK : KARIMANGALA DISTRICT : DHARMAPURI.	
INDI	EX
MINE LEASE AREA	
SAFETY DISTANCE	
APPROACH ROAD	12222
CARTROAD	
VILLAGE ROAD	E2223
300m RADIUS	10
500m RADIUS	CO.
EXISTING QUARRY & PIT	6JJD
HABITATIONS	命命
TOPO SHEET NO : 57-1/04 LATITUDE : 12°14'42.56830"N to 12°14'47.1 LONGITUDE: 78° 10' 33.87094"E to 78°10'41.8	GV/207/23
ENVIRONMENTAL	PLAN
SEALE- 115000	
Prepared By:	0.2752112770270274
I DO HEREBY CERTIFY TH HAS BEEN CHECKED BY ME AN TO THE BEST OF MY KNOWLED	AT THE PLATE ND IS CORREC DGE
670	3
Dr.S.KARUPPANNAN, RECOGNIZED QUALIFIE ROP/MAS/263/201	D PERSON

						with	mint me
D:390							HAREOZ3
13 14 S.F.NO:3	388	fizikalistici).					
Part)	15				T		
5		BS BS	0:331				
3.04	1						
je /	\vdash		WAS CONDUTED	N STATIC METI	A REAL PROPERTY AND ADDRESS OF THE OWNER	Contraction of the local division of the loc	POINT)
	ID	Latitude (Global)	Longitude (Global)	Easting (Meter)	Northing (Meter)	Elevation (Meter)	Feature Code
	BS		Longitude (Global) 78° 107 41.56315" E	Easting (Meter) 192989.3815 LLARS AND 20 M	Northing (Meter) 1355267.364 HINUTESFOR INT	Elevation (Meter) 471.037	Feature Code ROCK MARK
	BS	Latitude (Global) 12° 14' 42.56830* N	Longitude (Global) 78° 107 41.56315" E	Easting (Meter) 192989.3815	Northing (Meter) 1355267.364 HINUTESFOR INT	Elevation (Meter) 471.037 ERMEDIATE PI Elevation	Feature Code ROCK MARK
	BS ROV	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N	Longitude (Global) 78° 10' 41.56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41.82401" E	Easting (Meter) 192989-3815 LLARS AND 20 N METHOD Easting (Meter) 192998-1852	Northing (Meter) 1355267.364 dINUTESFOR INT Northing (Meter) 1355354.643	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BS ROV ID 1 2	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 43.79031" N	Longitude (Global) 78° 10' 41.56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41.82401" E 78° 10' 41.67232" E	Easting (Meter) 192989-3815 LLARS AND 20 M METHOD Easting (Meter) 192998-1852 192993-075	Northing (Meter) 1355267.364 4INUTESFOR INT Northing (Meter) 1355354.643 1355364.904	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682 471.564	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar
1000	BS ROV	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N	Longitude (Global) 78° 10' 41.56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41.82401" E	Easting (Meter) 192989-3815 LLARS AND 20 N METHOD Easting (Meter) 192998-1852	Northing (Meter) 1355267.364 dINUTESFOR INT Northing (Meter) 1355354.643	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar
	BS ROV ID 1 2 3 4	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N 12° 14' 42.93552" N	Longitude (Global) 78° 10' 41.56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41.82401" E 78° 10' 41.67232" E 78° 10' 41.563152" E 78" 10' 39.95161" E	Easting (Meter) 192989.3815 LLARS AND 20 M METHOD Easting (Meter) 192998.1852 192993.075 192989.3815 192940.7586	Northing (Meter) 1355267.364 HINUTESFOR INT Northing (Meter) 1355354.643 1355364.904 1355267.364 1355279.162	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682 471.682 471.037 484.923	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar
50° 515° 515°	BS ROV ID 1 2 3	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N	Longitude (Global) 78° 10' 41.56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41.82401" E 78° 10' 41.67232" E 78° 10' 41.563152" E	Easting (Meter) 192989-3815 LLARS AND 20 M METHOD Easting (Meter) 192998-1852 192993-075 192989-3815	Northing (Meter) 1355267.364 HINUTESFOR INT (Meter) 1355354.643 1355364.904 1355267.364	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682 471.564 471.037	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Rock mark + (Boundary Pillar)
50° 5138 5138 5138	BS ROV ID 1 2 3 4 5	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N 12° 14' 42.93552" N 12° 14' 43.33181" N	Longitude (Global) 78° 10′ 41.56315″ E FOR BOUNDARY PI Longitude (Global) 78° 10′ 41.82401″ E 78° 10′ 41.67232″ E 78° 10′ 41.563152″ E 78° 10′ 39.95161″ E 78° 10′ 38.34295″ E	Easting (Meter) 192989.3815 LLARS AND 20 M METHOD Easting (Meter) 192998.1852 192993.075 192989.3815 192989.3815 192940.7586 192892.2334	Northing (Meter) 1355267.364 4INUTESFOR INT Northing (Meter) 1355354.643 1355364.904 1355267.364 1355279.162 1355291.856	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682 471.564 471.037 484.923 484.945	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Intermediate Pillar Intermediate Pillar
50 ⁹ 51 ³⁵⁶ <u>S.F.NO:329</u>	BS ROV ID 1 2 3 4 5 6	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N 12° 14' 43.33181" N 12° 14' 43.72634" N	Longitude (Global) 78° 10' 41 56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41 82401" E 78° 10' 41 67232" E 78° 10' 41 563152" E 78° 10' 39.95161" E 78° 10' 38.34295" E 78° 10' 36.73964" E	Easting (Meter) 192989-3815 LLARS AND 20 M METHOD Easting (Meter) 192998-1852 192993-075 192989-3815 192940-7586 192892-2334 192843-8692	Northing (Meter) 1355267.364 HINUTESFOR INT (Meter) 1355354.643 1355364.904 1355267.364 1355279.162 1355291.856 1355304.495	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682 471.682 471.037 484.945 484.945 492.165	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar
50° 51350 S.F.NO:329	BS ROV ID 1 2 3 4 5 6 7	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N 12° 14' 43.33181" N 12° 14' 43.72634" N 12° 14' 44.12295" N	Longitude (Global) 78° 10' 41 56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41 82401" E 78° 10' 41 67232" E 78° 10' 41 563152" E 78° 10' 39.95161" E 78° 10' 38.34295" E 78° 10' 36.73964" E 78° 10' 35.13171" E	Easting (Meter) 192989-3815 LLARS AND 20 M METHOD Easting (Meter) 192998-1852 192993-075 192989-3815 192989-3815 192989-3815 192892-2334 192892-2334 192843-8692 192795-3645	Northing (Meter) 1355267.364 dINUTESFOR INT (Meter) 1355354.643 1355364.904 1355267.364 1355267.364 1355291.856 1355304.495 1355317.199	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682 471.682 471.037 484.923 484.945 492.165 471.558	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar
50° 513° S.F.NO:329	BS ROV ID 1 2 3 4 5 6 7 8	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N 12° 14' 43.33181" N 12° 14' 43.72634" N 12° 14' 44.12295" N 12° 14' 44.43344" N	Longitude (Global) 78° 10' 41 56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41 82401" E 78° 10' 41 67232" E 78° 10' 41 563152" E 78° 10' 39.95161" E 78° 10' 38.34295" E 78° 10' 38.34295" E 78° 10' 35.13171" E 78° 10' 33.87094" E	Easting (Meter) 192989-3815 LLARS AND 20 M METHOD Easting (Meter) 192998-1852 192993-075 192989-3815 192989-3815 192940-7586 192892-2334 192843-8692 192795-3645 192757-332	Northing (Meter) 1355267.364 dINUTESFOR INT (Meter) 1355354.643 1355364.904 1355267.364 1355267.364 1355279.162 1355291.856 1355304.495 1355317.199 1355327.147	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682 471.682 471.564 471.037 484.945 484.945 492.165 471.558 476.59	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Rock mark + (Boundary Pillar)
50° 53° S.F.NO:329	BS ROV ID 1 2 3 4 5 6 7 8 9 10 11	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N 12° 14' 42.56830" N 12° 14' 43.33181" N 12° 14' 43.72634" N 12° 14' 44.12295" N 12° 14' 44.43344" N 12° 14' 47.16412" N 12° 14' 47.25071" N	Longitude (Global) 78° 10' 41 56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41 82401" E 78° 10' 41 67232" E 78° 10' 41 563152" E 78° 10' 39.95161" E 78° 10' 38.34295" E 78° 10' 36.73964" E 78° 10' 35.13171" E 78° 10' 33.87094" E 78° 10' 34.51414" E	Easting (Meter) 192989-3815 LLARS AND 20 M METHOD Easting (Meter) 192998-1852 192993-075 192989-3815 192940-7586 192892-2334 192843-8692 192795-3645 192797-332 192777-2679	Northing (Meter) 1355267.364 HINUTESFOR INT (Meter) 1355354.643 1355364.904 1355267.364 1355267.364 1355279.162 1355304.495 1355317.199 1355317.199 1355327.147	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682 471.682 471.564 471.037 484.945 492.165 471.558 476.59 471.326	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar
50° 5136 S.F.NO:329	BS ROV 1D 1 2 3 4 5 6 7 8 9 10 11 12	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N 12° 14' 42.93552" N 12° 14' 43.33181" N 12° 14' 43.72634" N 12° 14' 44.12295" N 12° 14' 44.13344" N 12° 14' 44.43344" N 12° 14' 45.92671" N 12° 14' 47.16412" N 12° 14' 46.94361" N	Longitude (Global) 78° 10' 41.56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41.82401" E 78° 10' 41.67232" E 78° 10' 41.563152" E 78° 10' 39.95161" E 78° 10' 36.73964" E 78° 10' 36.73964" E 78° 10' 35.13171" E 78° 10' 33.87094" E 78° 10' 35.04715" E 78° 10' 35.04715" E 78° 10' 35.94887" E 78° 10' 37.68231" E	Easting (Meter) 192989.3815 LLARS AND 20 M METHOD Easting (Meter) 192998.1852 192993.075 192998.1852 192993.075 192989.3815 192940.7586 192892.2334 192843.8692 192795.3645 192795.3645 192757.332 192777.2679 192793.7872 192821.0838 192873.414	Northing (Meter) 1355267.364 HINUTESFOR INT Northing (Meter) 1355354.643 1355364.904 1355267.364 1355267.364 1355279.162 1355304.495 1355317.199 1355317.199 1355317.199 1355327.147 1355372.862 1355410.744 1355413.123 1355403.132	Elevation (Mcter) 471.037 ERMEDIATE PI Elevation (Mcter) 471.682 471.682 471.682 471.037 484.923 484.945 492.165 472.105 471.383 471.976 472.105	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Revenue Stone + (Boundary Pillar) Boundary Pillar
	BS ROV ID 1 2 3 4 5 6 7 8 9 10 11 12 13	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N 12° 14' 42.93552" N 12° 14' 43.33181" N 12° 14' 43.72634" N 12° 14' 44.12295" N 12° 14' 44.12295" N 12° 14' 44.13344" N 12° 14' 45.92671" N 12° 14' 47.16412" N 12° 14' 46.94361" N 12° 14' 46.94361" N	Longitude (Global) 78° 10' 41 56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41 82401" E 78° 10' 41 82401" E 78° 10' 41 563152" E 78° 10' 39.95161" E 78° 10' 38.34295" E 78° 10' 38.34295" E 78° 10' 35.13171" E 78° 10' 33.87094" E 78° 10' 34.51414" E 78° 10' 35.04715" E 78° 10' 37.68231" E 78° 10' 39.22811" E	Easting (Meter) 192989-3815 LLARS AND 20 M METHOD Easting (Meter) 192998-1852 192993-075 192993-075 192993-075 192993-075 192993-075 192993-075 192993-075 192993-075 192993-075 192993-075 192892-2334 192843-8692 192892-2334 192843-8692 192795-3645 192795-3645 192777-2679 192777-2679 192793-7872 192873-414 192919-982	Northing (Meter) 1355267.364 HINUTESFOR INT (Meter) 1355354.643 1355364.904 1355267.364 1355267.364 1355279.162 1355291.856 1355304.495 1355317.199 1355317.199 1355317.199 1355317.199 1355317.147 1355410.744 1355410.744	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682 471.682 471.682 471.037 484.923 484.945 492.165 471.558 476.59 471.326 471.383 471.383 471.976 472.105 472.198	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Revenue Stone + (Boundary Pillar) Boundary Pillar
	BS ROV ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N 12° 14' 42.93552" N 12° 14' 43.33181" N 12° 14' 43.33181" N 12° 14' 44.12295" N 12° 14' 44.43344" N 12° 14' 45.92671" N 12° 14' 47.16412" N 12° 14' 46.94361" N 12° 14' 46.37151" N 12° 14' 46.12613" N 12° 14' 45.79954" N	Longitude (Global) 78° 10' 41.56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41.82401" E 78° 10' 41.67232" E 78° 10' 41.563152" E 78° 10' 39.95161" E 78° 10' 36.73964" E 78° 10' 36.73964" E 78° 10' 35.13171" E 78° 10' 33.87094" E 78° 10' 35.04715" E 78° 10' 35.04715" E 78° 10' 35.94887" E 78° 10' 39.22811" E 78° 10' 39.254684" E 78° 10' 40.87915" E	Easting (Meter) 192989.3815 LLARS AND 20 M METHOD Easting (Meter) 192998.1852 192993.075 192998.1852 192993.075 192989.3815 192940.7586 192892.2334 192843.8692 192795.3645 192795.3645 192757.332 192777.2679 192793.7872 192821.0838 192873.414	Northing (Meter) 1355267.364 HINUTESFOR INT Northing (Meter) 1355354.643 1355364.904 1355267.364 1355267.364 1355279.162 1355304.495 1355317.199 1355317.199 1355317.199 1355327.147 1355372.862 1355410.744 1355413.123 1355403.132	Elevation (Mcter) 471.037 ERMEDIATE PI Elevation (Mcter) 471.682 471.682 471.682 471.037 484.923 484.945 492.165 472.105 471.383 471.976 472.105	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Revenue Stone + (Boundary Pillar) Boundary Pillar
50 5136 5136 5136 5136 5136 5136 5136 5136	BS ROV 1D 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14	Latitude (Global) 12° 14' 42.56830" N ER POINTS 1 HOUR Latitude (Global) 12° 14' 45.40942" N 12° 14' 45.40942" N 12° 14' 43.79031" N 12° 14' 42.56830" N 12° 14' 42.56830" N 12° 14' 43.33181" N 12° 14' 43.33181" N 12° 14' 43.72634" N 12° 14' 44.12295" N 12° 14' 44.43344" N 12° 14' 44.592671" N 12° 14' 47.16412" N 12° 14' 46.94361" N 12° 14' 46.37151" N 12° 14' 46.12613" N	Longitude (Global) 78° 10' 41 56315" E FOR BOUNDARY PI Longitude (Global) 78° 10' 41 82401" E 78° 10' 41 67232" E 78° 10' 41 563152" E 78° 10' 39.95161" E 78° 10' 36.73964" E 78° 10' 36.73964" E 78° 10' 33.87094" E 78° 10' 33.87094" E 78° 10' 35.04715" E 78° 10' 35.04715" E 78° 10' 35.04715" E 78° 10' 37.68231" E 78° 10' 39.254684" E	Easting (Meter) 192989.3815 LLARS AND 20 M METHOD Easting (Meter) 192998.1852 192993.075 192989.3815 192940.7586 192892.2334 192843.8692 192795.3645 192795.3645 192795.3645 192777.2679 192793.7872 192821.0838 192873.414 192919.982 192920.7042	Northing (Meter) 1355267.364 HINUTESFOR INT Northing (Meter) 1355354.643 1355364.904 1355267.364 1355267.364 1355279.162 1355304.495 1355304.495 1355317.199 1355317.199 1355327.147 1355410.744 1355410.744 1355413.123 1355403.132 1355385.05 1355377.496	Elevation (Meter) 471.037 ERMEDIATE PI Elevation (Meter) 471.682 471.682 471.682 471.037 484.923 484.923 484.945 492.165 472.105 471.383 471.383 471.976 472.105 472.198 472.297	Feature Code ROCK MARK LLARS IN STATIC Feature Code Boundary Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Intermediate Pillar Intermediate Pillar Intermediate Pillar Rock mark + (Boundary Pillar) Intermediate Pillar Revenue Stone + (Boundary Pillar) Boundary Pillar) Boundary Pillar

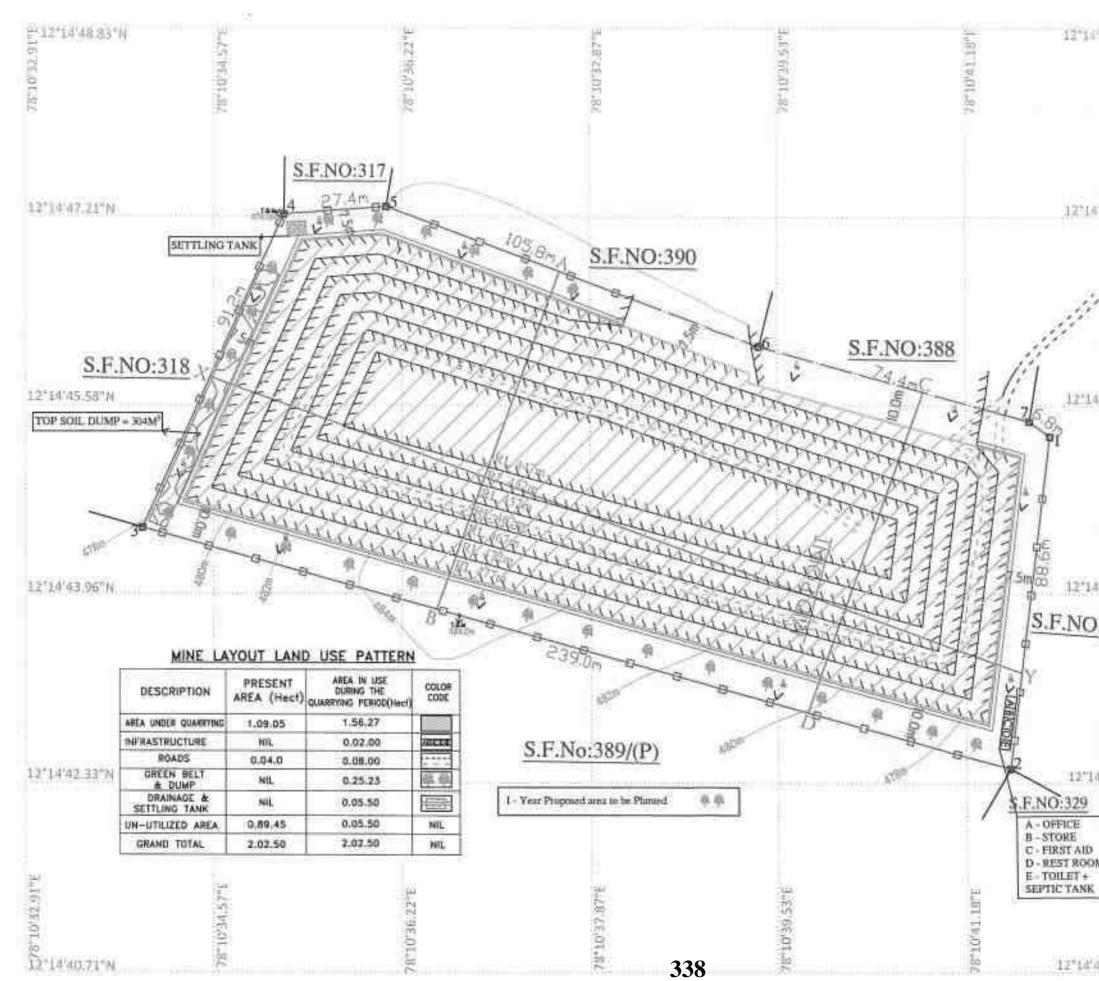

10.71 E8 CP/01.92	3 MAR 3 MAR	2023
	PLATE NO-III	
'47.21"N	APPLICANT: Thiru .A.SASIMOHAN, S/o.K.P.ANBALAGAN, No.1/136-A, KERAKODAHALLI KARIMANGALAM TALUK, DHARMAPURI DISTRICT.	VILLAGE,
	LEASE APPLIED AREA:	
'45.98" N	S.F.No : 389(Part) EXTENT : 2.02.5Hect, VILLAGE : KALAPANA TALUK : KARIMANG DISTRICT : DHARMAPI	ALAM.
	INDEX	
	MINE LEASE AREA	<u> </u>
	SAFETY DISTANCE	
	APPROACH ROAD	
43.96"N	MINE HAUL ROAD	
331	BOUNDARY PILLAR	[0]
	TEMPORARY BENCH MARK	<u>「北京朝</u> 」
	CONTOUR LINES	100
	SHRUBS	4 5 5
	TOP SOIL	
42.33"N	ROUGH STONE	1 × 1
	EXISTING PIT	GIID
	SURFACE AND GEOLOGI SCALE 1:1000	CAL PLAN
3,82,24,0	Prepared By: I DO HEREBY CERTIFY THA HAS BEEN CHECKED BY ME AN TO THE BEST OF MY KNOWLED	T THE PLATE D IS CORRECT GE
0,71°N	Dr.S.KARUPPANNAN,M	.Sc.,Ph.D.,
	RECOGNISED QUALIFIED ROP/MAS/263/2014	PERSON


	_		EOLOGIC	AL RESO	URCES		
Section	Bench	length in (m)	Width in (m)	Depth in (m)	Volume in m ²	Rough Stone in m ⁹	Top Soil in m ¹
	1	21	25	23	1050	1.1.1.1	1050
	11	13	19	5	1235	1235	
		23	31	2	1426	1426	
1	111	150	95	3	42750	42750	100
XY-AB	IV	155	95	5	73625	73625	
	V	171	95	S.	81225	81225	
	VI	171	95	5	81225	81225	
	VII	171	95	5	81225	81225	1
	VIII	171	- 95	5	81225	81225	1444
		TOTAL			444986	443936	1050
	1	24	16	2	768	114-0	768
	11	27	19	5	2565	2565	
	ш	30	21	5	3150	3150	122
XY-CD	IV	34.	26	5	4420	4420	
APCD	v	58	91	5	26390	26390	122
	VI	58	91	5	Z6390	26390	14
	VII	58	- 91	5	26390	26390	335
	VIII	58	91	5	26390	26390	55
		TOTAL.			116463	115695	768
	G	AND TOT	AL		561449	559631	1818

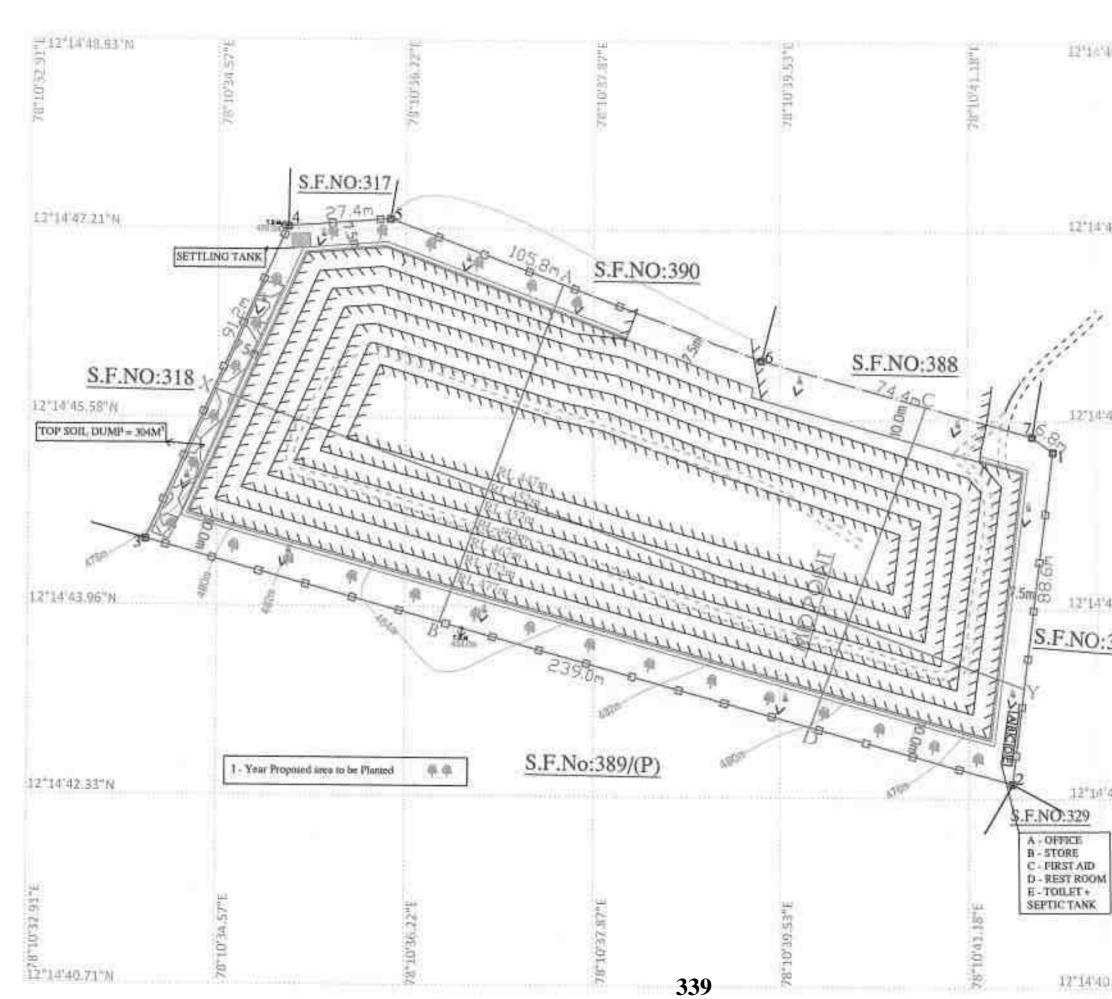
- 8	GL =	GROUND LEVEL
- 1	0 = 1	CHECOLONID LEVEL
- 1	UL	ON OUND LEVEL

Buisost an 7666 MAR TRAVELU dimin annias PLATE NO-IIIA APPLICANT: Thiru A.SASIMOHAN, S/o.K.P.ANBALAGAN. No.1/136-A, KERAKODAHALLI VILLAGE, KARIMANGALAM TALUK, DHARMAPURI DISTRICT. LEASE APPLIED AREA: S.F.No : 389(Part) : 2.02.5Hect. EXTENT VILLAGE : KALAPANAHALLI, TALUK : KARIMANGALAM, : DHARMAPURI DISTRICT INDEX MINE LEASE AREA SAFETY DISTANCE V V V TOP SOIL ROUGH STONE EXISTING PIT and GEOLOGICAL SECTION SECTION HOR 1 : 1000 & VER 1: 500 Prepared By: I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE m \overline{v} 0 Dr.S.KARUPPANNAN, M.Sc., Ph.D., RECOGNISED QUALIFIED PERSON ROP/MAS/263/2014/A

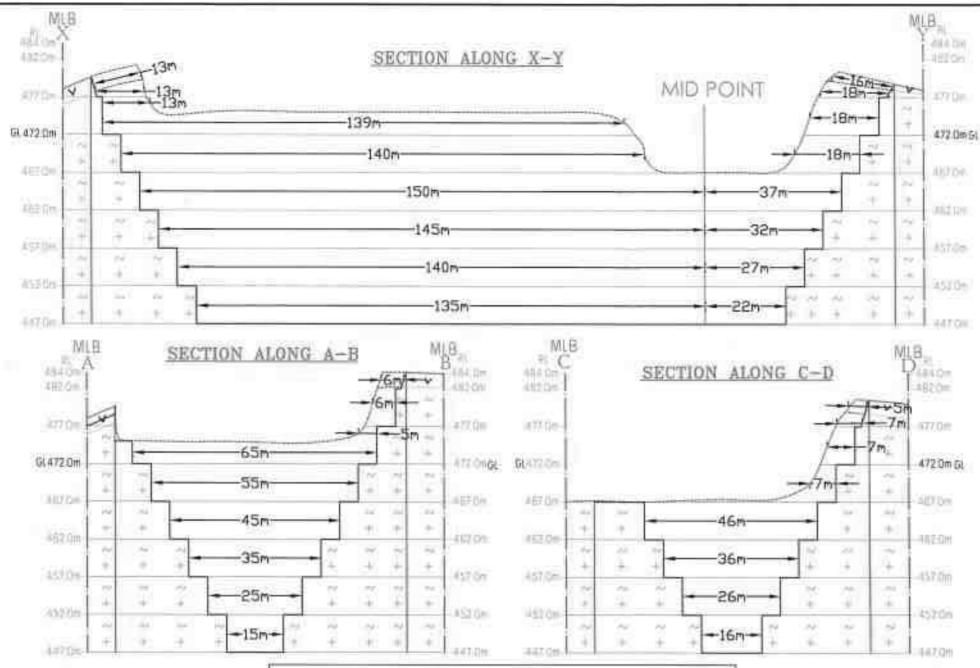
0.71 ¹ 2.511700	PLATE NOTV3 MAR 202	121
1.82	APPLICANTS Thiru .A.SXSIMOHAN, S/o.K.P.ANBAEAGANTICE BUT No.1/136-A, KERAKODAHALLI KARIMANGALAM TALUK, DHARMAPURI DISTRICT.	VILLAGE,
17.21"N	LEASE APPLIED AREA: S.F.No : 389(Part) EXTENT : 2.02.5Heet, VILLAGE : KALAPANA TALUK : KARIMANG DISTRICT : DHARMAPU	ALAM,
	INDEX	
	MINE LEASE AREA	
15 2004	SAFETY DISTANCE	
15,58"N	APPROACH ROAD	
	MINE HAUL ROAD	
	BOUNDARY PILLAR	[D]
	TEMPORARY BENCH MARK	I.H.M.
	CONTOUR LINES	2002
3.96"11	SHRUBS	4 4 4
331	TOP SOIL	VVV
	ROUGH STONE	1.1.1
	EXISTING PIT	(STD)
	TOP SOIL DUMP	00
12.33"N	FENCING	
ra-22,39	DRAINAGE & SETTLING TANK	
100	YEARWISE DEVELOP PRODUCTION PI SCALE 1 : 1000	
0'12.83°F	Prepared By: I DO HEREBY CERTIFY THA HAS BEEN CHECKED BY ME AN TO THE BEST OF MY KNOWLED	D IS CORRECT
71*NR	Ep.	D
	Dr.S.KARUPPANNAN,M RECOONISED QUALIFIEL ROP/MAS/263/201-	PERSON



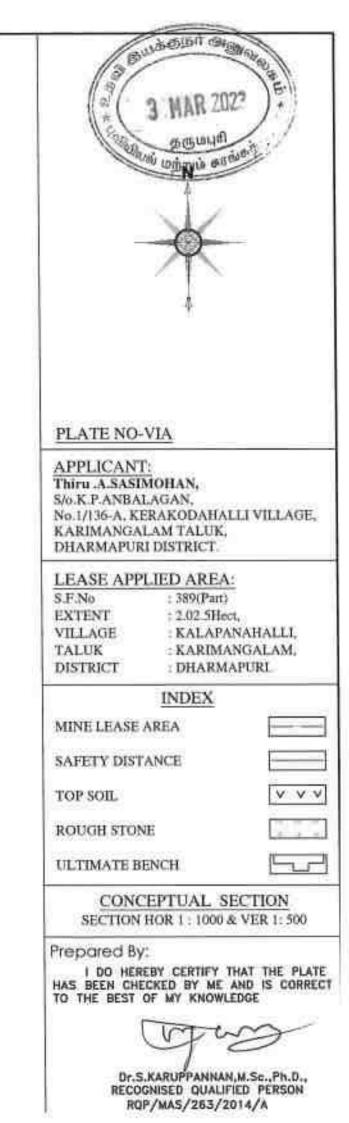
_			YEAR	WISE PRO	DUCTION	V		
Year	Section	Bench	iongth in (m)	Width In (m)	Depth in (m)	Volume in m ³	Rough Stone in m ³	Top Soil in m ³
		11.	12	6	2	144	100	144
	XY-AB	- 0	13	6	5	390	390	110
	ALAD	111	13	5	2	130	130	-
I-YEAR		111	139	65	3	27105	27105	
	1	1	16	5	2	160		160
	XY-CD	11	18	7	5	636	630	
_		ш	18	1	5	630	630	
		TO	AL			29189	28685	304
II-YEAR	XY-AB	iV	140	55	5	38500	38500	1000
H-YEAH	XY-CD	IV	18	7	5	630	630	
		TOT	TAL		1	39130	39130	Ū
III-YEAR	XY-AB	.9.	150	245	5	33750	33750	And A
III-TEAR	XY-CD	V	37	46	5	8510	#510	
	attrana_n	TOT	AL			42260	42260	0
IV-YEAR	XY-AB	VI.	145	35	5	25375	25375	tent (
TA-S PREM	XY-CD	VI	32	36	5	5760	5760	
		TOT	AL		11	31135	31135	0
	XY-AB	VII	140	25	5	17500	17500	
V-YEAR	ALAR	V7II	135	15	5	10125	10125	- 3
ALC: UNK	XY-CD	VII	27	26	5	3510	3510	- 3
	ATICO	VIIE	22	16	5	1760	1760	
		101	AL			32895	32895	0
		GRAND	TOTAL			174609	174305	304


GL = GR	OUND	LEVEL
---------	------	-------

I - Year Proposed area to be Quartied	20085
II - Year Proposed area to be Quarried	*****
III - Year Proposed area to be Quarried	10000
IV - Year Proposed area to be Quarried	2335
V - Year Proposed area to be Quartied	8888


	3 MAR	State.
PLATE NO-IV	A	
APPLICANT: Thiru .A.SASIMO S/o.K.P.ANBALA No.1/136-A, KER/ KARIMANGALA DHARMAPURI D	GAN, AKODAHA M TALUK,	
LEASE APPLI S.F.No EXTENT VILLAGE TALUK DISTRICT	: 389(Part) : 2.02.5He : KALAP/	el, ANAHALLI, ANGALAM,
	INDEX	
MINE LEASE AR	EA	
SAFETY DISTAN	CE	
TOP SOIL		V V V
ROUGH STONE		
		1420
EXISTING PIT	-	
PROPOSED BEN	СН	
PRODU	CTION S	OPMENT & ECTION & VER 1: 500
Prepared By:	2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	STREET, STREET, STREET, ST
I DO HEREBY HAS BEEN CHECK TO THE BEST OF	ED BY ME	
\Box	de la	D
RECOGNI	RUPPANNA SED QUALI MAS/263/2	N.M.Sc.,Ph.D., FIED PERSON 2014/A

-		
A0.71 40.71 82.24,01-82	BLATE NO-V COMUNICATION APPLICANT: Comunication APPLICANT: Comunication Thiru .A.SASIMOHAN, S/o.K.P. ANBALAGAN, No. 1/136-A. KERAKODAHALLI KARIMANGALAM TALUK, DHARMAPURI DISTRICT.	VILLAGE.
F47.21"N	LEASE APPLIED AREA: 5.F.No : 389(Part) EXTENT : 2.02.5Heet, VILLAGE : KALAPANA TALUK : KARIMANG DISTRICT : DHARMAPU INDEX	ALAM,
	MINE LEASE AREA	
613F 7 8141	SAFETY DISTANCE	
4'45,58"N	APPROACH ROAD	[
	MINE HAUL ROAD	E
		5
	BOUNDARY PILLAR	0]
	TEMPORARY BENCH MARK	Territe
4"43.95"N	CONTOUR LINES	2-49h-1
The Contract of the	SHRUBS	4.4.4
):331	TOP SOIL	VVV
	ROUGH STONE	0.0.0
	ULTIMATE BENCH	87778
	TOP SOIL DUMP	00
4'42.33"N	FENCING	[]
	DRAINAGE & SETTLING TAN	
	MINE LAYOUT PLAN	
na	LAND USE PATTE SCALE 1 : 1000	RN
3,1872101,82	Prepared By: I DO HEREBY CERTIFY THA HAS BEEN CHECKED BY ME AN TO THE BEST OF MY KNOWLEDO	D IS CORRECT
	Dr.S.KARUPPANNAN,M RECOGNISED QUALIFIED HOP/MAS/263/2014	PERSON



10.71"N	13	muisout a	aleie Bill
3"E0.51"01"8		L 3 MAR 2 P Con union of	
N 147.21'N	APPLICANT Thiru .A.SASIN S/o.K.P.ANBAL No.1/136-A. KE KARIMANGAL DHARMAPURI	IOHAN, AGAN, RAKODAHALLI AM TALUK,	VILLAGE.
	LEASE APPL S.F.No EXTENT VILLAGE TALUK		a sea a s
	DISTRICT	DHARMAPU	
		INDEX	
	MINE LEASE A	REA	
P45.58"N	SAFETY DISTA	NCE	
	APPROACH RC	DAD	2222
	MINE HAUL R	OAD	[22222]
	BOUNDARY P	ILLAR	[II]
	TEMPORARY	BENCH MARK	15W Tritler
'43.96"N	CONTOUR LIN	ES	100
:331	SHRUBS		4 4 4
1001	TOP SOIL		V V V
	ROUGH STON	Е	
	ULTIMATE BE	NCH	2114
	TOP SOIL DUN	4P	00
1'42.33"N	FENCING		
p I	DRAINAGE &	SETTLING TAN	K -
M	CON	SCALE 1:1000	
0,42,83%	HAS BEEN CHE	EBY CERTIFY THA CKED BY ME AN OF MY KNOWLED	T THE PLATE
10,71"N		my vz	T
	RECOO	KARUPPANNAN,M INISED QUALIFIED	PERSON

			MINEAB	LE RESER	RVES		
Section	Bench	length in (m)	Width in (m)	Depth in (m)	Volume in m ²	Rough Stone in m ³	Top Soil in m ³
	1	12	6	2	144	1944 I	144
3	u –	13	6.	5	390	390	+1+++
	m	13	5	2	130	130	
	ш	139	65	3	27105	27105	
XY-AB	EV.	140	55	5	38500	38500	Her
	V.	150	45	5	33750	33750	
. ji	VI	145	35	S	25375	25375	144
	VII	140	25	5	17500	17500	-
	VIII	135	15	5	10125	10125	
		TOTAL			153019	152875	144
	1	16	5	2	160		160
	11	18	7	-5	630	630	1440C
	m	18	7	5	630	630	100
XY-CD	IV	18	7	5	630	630	
A1-C1/	V	37	46	5	8510	8510	
	V1	32	36	5	\$760	405760	
	VII	27	26	5	3510	3510	
	VIII	22	16	5	1760	1760	1181
		TOTAL			21590	21430	160
	GF	AND TOT	TAL		174609	174305	304

360 M S		111110	111221-5	1
(21) · · · · ·	GROU	INIO.	LEU	1.1
	1200010	ENGEL.	1.0	111
w		- -	10- Sec. 7.	Arr 20

தமிழநாடு வனத்துறை

அனுப்புதல்

din King diren

1

-

T

T

மாவட்ட ஆட்சித்தலைவர், தடும்புரி – 5.

திரு.க.திருமால், இ.வப., மாவட்ட வள அஜுவவர், நருமபுரி வனக்கோட்டம், தருமபுரி – 5. பின்னஞ்சல் – <u>dfodttarmapurj@omiai.com</u> தொகைபேசி என் – 04342 – 230003 தகி – 04342 – 230613

ந.க. எண். 3828 / 2015/லு. நால், 69.08.2016

அப்பா,

பொருள்

கனிடங்களும், குவளிகளும் – சிறு கலிடம் – சாதாரண் கற்கள் – தருபபுரி மாவட்டத்தில் உள்ள அரசு புறம்போச்கு நிலங்களில் சாதாரண சுற்கள் வெட்டி எடுக்க டெண்டருடன் இணைந்த பொது ஏல முறையில் குவாரி குத்தகை வழங்குதல் – வனத்துறை தொடர்பான தடையின்மை சான்று வழங்க கோருதல் – தொடர்பாக

ដាវីវិតភាគរ

U 5 (Nutranticity) setation must device size - 2015 Admes - 2015 Cellector letterado

மாவட்ட ஆட்சித்தலைவர், தரும்பரி ந.க.எண்.1/2012/(கனிமம்) நாள் 02.06.2015

பார்வையில் காணும் கடிதத்துடன் அனுப்பப்பட்ட பட்டியலில் கண்ட குவாரிகளில் காதாரண கற்கள் லெட்டி எடுப்பதற்கு, இத்துறையின் ஆட்சேபனையின்னை குறித்த விபரம் அந்தந்த குவாரியின் எதிரே குறிப்பிடப்பட்டுள்ளது என்பதை ஆன்புடன் தெரிவித்துக் கொள்கிறேன்.

ல. என்	லட்டம்	Barnaio	LIND STERET	LITTAL	குறிய	
1:	பாலக்கோடு	காளப்பன் ஆள்ளி	401 (පලණි)	3.70.0	ஆட்சேபனை இல்வை	
2	பாலக்கோடு	காளப்பன அள்ளி	833 (பகுதி)	1.74.0	ஆட்சேபனை இல்லை	
3	பாலக்கோடு	காளப்பன ஆள்னி	384	0.69.0	ஆட்சேபனை இவ்லை	
4	பாலக்கோடு	காலப்பன அள்ளி	<u>389 (u</u> යුණු)	2.02.5	ஆட்சேபனை இல்லை	
5	பாலக்கோடு	காளப்பன அள்ளி	335	178.0	 அட்சேபனை இல்வை	

தங்கள் அன்புள்ள,

ழம்க திருமால், மாவட்ட வன் ஆலுவலர், தரும்புரி வனக்கோட்டம்.

110 59 11.11 ELESSIF GR

341

National Accreditation Board for Education and Training

Certificate of Accreditation

Geo Technical Mining Solutions

1/213B, Natesan Complex, Dharmapuri Salem Main Road, Oddapatti, Collectorate post office, Dharmapuri, Tamil Nadu-636705

The organization is accredited as Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant Organization, Version 3: for preparing EIA-EMP reports in the following Sectors –

S. No	Sector Description	Sector (as per)		6.4
	Sector Description	NABET	MoEFCC	Cat.
1	Mining of minerals including opencast/ underground mining	1	1 (a) (i)	B

Note: Names of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated September 13, 2022 posted on QCI-NABET website.

The Accreditation shall remain in force subject to continued compliance to the terms and conditions mentioned in QCI-NABET's letter of accreditation bearing no. QCI/NABET/ENV/ACO/23/2641 dated January 19, 2023. The accreditation needs to be renewed before the expiry date by Geo Technical Mining Solutions following due process of assessment.

