

The Ramco Cements Limited

EC for Amalgamated Periyanagalur Limestone Mine Extent - 53.32 Ha Production in Plan Period - 15 Million Tonnes @ 3.00 MTPA Limestone S.F. Nos. 51/2, 51/3, 51/4, 229/1, 267, 268/1, 269, 271, etc., Periyanagalur Village, Ariyalur Taluk, Ariyalur District, Tamil Nadu

Amalgamation GO (Ms) No. 126 dated 26.02.2021 with validity till 19.08.2053

Mining Plan Approval by IBM, Chennai vide Letter No. TN/ALR/LST/MP-2079.MDS dated 23.07.2021 valid till 31.03.2025 ROMP for Plan Period 2025-26 to 2029-30 - submitted for Approval

> Environmental Clearance under EIA Notification 2006 Schedule SI. No. 1(a) & Category 'B' (<250 Ha)

Draft Environmental Impact Assessment Report

(after TOR for Public Hearing) Awarded TOR : SEIAA-TN/F.No.9220/TOR-1215/2022 dated 14.07.2022

July 2024

EIA Consultant

ABC Techno Labs India Private Limited, Chennai Accreditation Certificate : NABET/EIA/2225/RA0290 dated 11.06.2023 with Validity till 16.11.2025 (SI. No. 4 of QCI/NABET List dated 15.07.2024) Lab Accreditation : NABL Certificate No. TC-5770 dated 03.04.2022 Lab Recognition : MoEF&CC vide Letter F. No. Q-15018/04/2019-CPW dated 14.10.2019

Content

<u>SI. No.</u>	Description	Page No.
I	Content	2-6
П	Amalgamated Periyanagalur Mine Details	7
	ML Area FMB Sketch	9
IV	Project Proponent Declaration	10
V	EIA Consultant Undertaking	11
VI	Affidavit	12
VII	VAO Certificate	13
VIII	DFO NOC	14
IX	ROMP Submissions for the Period 2025-26 to 2029-30	16
Х	Awarded TORs	17-44
XI	Awarded TORs & their Incorporation in the EIA Report	45-66
1.0	Introduction	67
1.1	Purpose of the Report	67
1.2	Project Proponent	69
1.3	Govindapuram Cement Plant	70
1.4	RCL Periyanagalur Mining Leases	74
1.5	Production from the Leases	74
1.6	Need for the Proposal	75 76
1./	Amaigamated Penyanagalur Lease (53.320 Ha)	/0
1.0	The Proposal	02 83
1.9	Environmental Setting	83
1.10	EIA Study	80
1.11	EIA Sludy	09
2.0	Project Description	90
2.1	Type of the Project	90
2.2	Magnitude of Operation	90
2.3	Technology & Project Description	91
2.4	Mining Method	96
2.5	Yearwise Development & Production Plan	96
2.6	Mining Machineries with Justification	103
2.7	Competent Mining Personnel	103
2.8	Dumps Rehandling & Utilisation	104
2.9	Conceptual Plan & Land Use Pattern	104
2.10	Financial Closure Plan	106
2.11	Green Belt Dewar & Eval Demand	106
2.12	Power & Fuel Demand	100
2.13	Water Domand & Balanco	100
2.14	Occupational Health	100
2.15		100
3.0	Description of the Environment	109
3.1	Study Area	109
3.2	Environmental Components	113
3.3	Methodology Adopted	114
3.4	Micrometeorology	118
3.5	Ambient Air Quality	123
3.6	NOISE LEVEIS	136

	Description	Dogo No
<u>37</u>	Water Environment	130
3.8	Land Environment	150
3.9	Biological Environment	154
3.10	Socioeconomic Environment	168
3.11	Summary of Baseline Status	179
4.0	Anticipated Environmental Impact and Mitigation Measures	180
4.1	Identification of Impacts	180
4.2	Construction Phase	180
4.3	Impacts during Operation Phase	180
5.0	Analysis of Alternatives (Technology & Site)	212
5.1	Technology	212
5.2	Alternative Sites Considered	212
6.0	Environmental Monitoring Programme	213
6.1	Environment Cell and Compliances	213
6.2	Post Project Monitoring	213
6.3	Current Post Project Monitoring Data	214
7.0	Additional Studies	228
7.1	Hazards Identification & Risk Assessment	228
7.2	Emergency Preparedness Plan	228
7.3	Disaster Management Plan	229
8.0	Project Benefits	233
9.0	Environmental Cost Benefit Analysis	233
10.0	Environmental Management Plan	234
10.1	EMP for Construction Phase	234
10.2	EMP for Operation Phase	234
10.3	Plastic Waste Management	237
10.4	EMP Budget	237
11.0	Summary Environmental Impact Assessment	241
12.0	Disclosure of Consultants	263
_	Documents	
Doc 1	MOEF&CC IRO -Certified Compliance Report-Periyanagalur Mine	270
Doc 2	MOEF&CC IRO -Certified Compliance Report-Periyanagalur West Mine	296
Doc-3	GO 126 for Amalgamation	341
Doc-4	IBM Approval	348
Doc-5	Lab Test Reports	352
	Anna University Satety Barrier Report	370
	Blasting Report	395
D0C-8	Siope Stability Report	430
D0C-9	пуагодеоюду кероп	466

List of Figures

<u>SI. No.</u>	Description	Page No.
Plate I	ML Area FMB Sketch	9
Plate II	Regional Setting	71
Fig. 1.1	Index Map	77
Plate III	Mining Lease Area	78
Plate IV	ML Area Aerial Photographs	79
Plate V	ML Area Photographs	80
Plate VI	ML Area Photographs with its Infrastructures	81
Fig. 1.2	Topo Map – 10 km Radius	84
Fig. 1.3	Environmental Setting	85
Fig. 2.1	Surface & Geological Plan & Sections	94
Fig. 2.2	Development & Production Plan – 2025-26	98
Fig. 2.3	Development & Production Plan – 2026-27	99
Fig. 2.4	Development & Production Plan – 2027-28	100
Fig. 2.5	Development & Production Plan – 2028-29	101
Fig. 2.6	Development & Production Plan – 2029-30	102
Fig. 2.7	Conceptual Plan	105
Plate VII	Transplanted Trees in PNR Old Crusher Area	107
Fig. 2.8	Water Balance Diagram	108
Fig. 3.1	Environmental Quality Monitoring Stations	110
Fig. 3.2	Physiography	111
Fig. 3.3	Drainage Pattern	112
Fig. 3.4	Seasonal Wind Rose	122
Plate VIII	Hydrogeological Study	140
Plate IX	Water Quality Monitoring	141
Plate X	Ground Water Level Contours	143
Fig. 3.5	Satellite Imagery	152
Fig. 3.6	Land Use Pattern	153
Plate XI	Implication of Safety Distance – 150 m for SH-139	182
Plate XII	Radius of Influence / Cone of Depression	201
Fig. 4.1	Predicted GLC - PM10	205
Plate XIII	CSR Activities	209
Plate XIV	CSR Activities	210

List of Tables

<u>SI. No.</u>	Description	<u>Page No.</u>
Table : I	Amalgamated Periyanagalur Mine Details	7
Table 1.1	RCL Govindapuram Cement Plant & its Statutory Approvals	72
Table 1.2	RCL Captive Mines in Ariyalur Region & their Approvals	72
Table 1.3	Periyanagalur Leases I&II – Production & Royalty Paid	75
Table 1.4	Lease Area Coordinate	86
Table 1.5	Environmental Setting – 15 km Radius	87
Table 2.1	Yearwise Development & Production	91
Table 2.2	Amalgamated Lease – Proved Mineable Reserves ('111') on 01.04.2024	95
Table 2.3	Proved Reserves & Resources	95
Table 2.4	Limestone Quality (Avg.)	95
Table 2.5	Yearwise Development & Production Programme - ROMP Period	97
Table 2.6	Mine Machineries	103
Table 2.7	Mining Personnel	103
Table 2.8	Proposed Land Use	104
Table 2.9	Green Belt Developed	106
Table 3.1	Baseline Data Collection - Monitoring Locations	113
Table 3.2	AAQ Parameters-Detectable Range	116
Table 3.3	Methodology Adopted for Water Analysis	117
Table 3.4	Micrometeorological Data – Dec. 2023	119
Table 3.5	Micrometeorological Data – Jan. 2024	120
Table 3.6	Micrometeorological Data – Feb. 2024	121
Table 3.7	Ambient Air Quality Monitoring Stations – Location & Bearing	123
Table 3.8-	Ambient Air Quality Data	125-132
3.15		120 102
Table 3.16	Abstract of Ambient Air Quality Data	133
Table 3.17	Ambient Air Quality Status	135
Table 3.18	RSPM Analytical Data	136
Table 3.19	Ambient Noise Level Data (Abstract)	137
Table 3.20	Workzone Noise Level Data	137
Table 3.21	Monitored Ground Water Level Data in PNR Mine	139
Table 3.22	Monitored Ground Water Level Data-2 km from the Lease	142
Table 3.23	Ground Water Level Data (TWAD)	142
Table 3.24	CPCB Criteria for Designated Best Use of Water	145
Table 3.25	Surface Water Quality Data	140
Table 3.20	Weter Quality Data	140
Table 3.27	Soil Status	150
Table 3.20	Land Lice Pattern	151
Table 3.29	List of Elora in the Decore Ecreste	151
Table 3.30	List of Flora Core Zone (including Green Bolt)	154
Table 3.31	List of Flora – Distribution of Vogotation in Buffor Zono	155
Table 3.32	List of Fauna in the Reserve Forests	162
Table 3.33	List of Fauna in the Study Area	102
Table 3.34	List of Planktone	167
Table 3.33	List of Aquatic Plante	167
Table 3.30	Diversity Index	169
Table 2.28	Population – Decennial Growth	160
Table 3.39	Periyanagalur Village Profile	170

<u>SI. No.</u>	Description	Page No.
Table 3.40	Demographic Profile – 2011 Census	171
Table 3.41	Occupation of Population and Work Forces – 2011 Census	172
Table 3.42	Educational Facilities in the Study Area	173
Table 3.43	Medical Facilities in the Study Area	174
Table 3.44	Communication & Transport Facilities in the Study Area	175
Table 3.45	Water & Drainage Facilities in the Study Area	176
Table 3.46	Other Facilities in the Study Area	177
Table 4.1	Industrial Activities Considered for Cumulative Impact	181
Table 4.2	Ground Vibrations recorded during different Blastings	184
Table 4.3	Recommended Blasting Parameters	186
Table 4.4	Existing traffic Volume – Baseline Status	188
Table 4.5	Projected Traffic Volume – Operation Phase	189
Table 4.6	Level of Service & Performance of a Road (IRC:64-1990 Norms)	189
Table 4.7	Predicted Traffic Scenario at the Junction	189
Table 4.8	Pumping Test	192
Table 4.9	Mine Pit Dewatering Data during Apr.2023-Mar.2024	195
Table 4.10	Gainful Utilisation of Mine Pit Water	195
Table 4.11	Estimation of Ground Water Seepage Quantity in Mine Pits	199
Table 4.12	Emission Levels - Inputs	203
Table 4.13	Maximum Mixing Height (meter) with Standard Deviation over Indian Region	203
Table 4.14	Predicted GLCs	204
Table 4.15	CER Budget	208
Table 6.1	Post Project Monitoring Schedule	213
Table 7.1	Potential Hazards due to Proposal	228
Table 7.2	Risk Matrix (R)	228
Table 7.3	DMP Measures	229
Table 10.1	Proposed EMP Budget	237
Table 10.2	EMP Budget	238
Table 10.3	CER Budget	240

ei.			Lease-I	Lease-II	Amalgamated
No.	Project Detail		Periyanagalur Mine	Periyanagalur West	Periyanagalur Mine
			(35.96 Ha)	Mine (17.36 Ha)	53.32 Ha
1	Land	Own Patta	32.835	0.445	33.280
		Govt.	3.125	16.915	20.040
		Total	35,960	17 360	53 320
		Villago	Boriyapagalur	Porivapagalur	Dorivanagalur
2	MI	Poriod	CO (Mc) No. 77 dated		Ampleomation
2	IVIL Extone	ion under	26 07 2018 valid till	dated 22 12 2016	GO Ma No 126
				valid till 00 01 2067	doted 26 02 2021
			19.00.2035		valid till 10.02.2021
2	Sup 1	oaso Dood/	Sup Loase Dood dt	Losso Dood dt	To be executed
5			28 06 2019 registered on	23 12 2016	
	Evecut	tion	03 07 2010	registered on	
			03.07.2019		
4	Enviro	nmental	(i) MoEELtr No. I-	10.01.2017	Applied for prior EC
-	Cleara	nce Details	11015/10/99-IA II(M) dt	SEIAA/TN/E 462/	for 3.0 MTPA
	Ciculu	nee Detaile	26 11 1999 (0 105 MTPA)	2012/FC/45/1(a)/	Limestone
			(ii) MoFF Ltr No .I-	Arivalur dated	production over an
			11015/ 556/2007-IA II(M)	14 11 2016 (for 0.3	extent of 53 32 Ha
			dt 10 10 2007 (Expn	MTPA) over an	TOR Granted &
			0.105 to 0.9 MTPA)	extent of 17.36 Ha	Draft EIA submitted
5	Approv	ved Minina	TN/ALR/LST/ROMP-	TN/ALR/LST/ROMP-	TN/ALR/LST/MP-
	Plan D	etails	1704.MDS dated	1642 MDS dt.	2079.MDS. dated
			14.12.2022 - valid till	23.02.2021 - valid till	23.07.2021 - valid
			31.03.2028 for the Period	31.03.2026 for the	till 31.03.2025
			2023-24 to 2027-28	Period 2021-22 to	ROMP for Plan
				2025-26	Period 2025-26 to
					2029-30 being
					submitted for
					Approval
6	Existin	g Consent to	2308150516922 (W) &	2409157816355 (W)	To be obtained on
	Operat	e	2308250516922 (A) dated	& 2409257816355	obtaining EC
			28.12.2023 - valid till	(A) dt. 29.02.2024 -	
			31.03.2024; CTO	valid till 31.03.2026	
			Renewal application		
			submitted.		
7	Conse	nted	0.9 MTPA	0.3 MTPA	3.0 MTPA
	Quanti	ty			
8	Method	d of Mining	Opencast both	Opencast both	Opencast both
			Conventional & Non-	Conventional & Non-	Conventional &
			Conventional Method	Conventional	Non-Conventional
				Method	Method
9	Mineat	ble Reserves	0.62 Million I onnes as on	6.55 Million Tonnes	15.85 Million Tonnes
10	110.	be Dentil	01.09.2022	as on 01.04.2021	as on 01.04.2024
10	Ultimat	e Depth -	63 m BGL	40 m BGL	92 m BGL
		plual Stage		00.1/	
11	LITE OF	the Mine	5 Years	22 Years	IU Years

Table : I Amalgamated Periyanagalur Mine Details

ML Area Survey Numbers

Amalgamated Periyanagalur Mining Lease over an extent of 53.32 Ha is falling in SF Nos. 51/2, 51/3, 51/4, 51/5A, 51/5 B, 51/5C, 51/5D, 51/5E, 51/5F, 51/5G, 51/5H, 224/1, 224/2, 226/1A, 226/1B, 226/2, 226/3, 226/4, 226/5, 226/6A, 226/6B, 226/6C, 226/6D, 226/6E, 226/7, 226/8A, 226/8B, 226/8C, 226/9A, 226/9B, 226//9C, 226/10A, 226/10B, 226/10C, 226/11A, 226/11B, 226/12, 226/13A, 226/13B, 226/13C, 226/14, 226/15A, 226/15B, 226/16, 228/1, 228/2, 228/3A, 228/3B. 228/3C, 228/3D, 228/5, 229/1, 229/2, 229/3, 229/4, 229/7, 229/8, 229/9, 229/11, 230/1A, 230/1B, 230/2A, 230/2B, 230/3, 230/4A, 230/4B, 230/5A, 230/5B, 230/5C, 230/5D, 230/6A, 230/6B, 230/6C, 230/6D, 230/6E, 230/6F, 230/6G, 230/6H, 230/6I, 230/7A, 230/7B, 230/7C, 230/8, 230/9, 230/10, 230/11A, 230/11B, 230/11C, 230/12, 230/13, 230/14, 230/15A, 230/15B, 230/15C, 230/15D, 230/16, 230/17, 230/18, 230/19, 230/20, 231/1A, 231/1B, 231/1C, 231/1D, 231/1E, 231/1F, 231/1G, 231/1H, 231/1I, 231/1J, 231/1K, 231/1L, 231/1M, 231/1N, 231/2A, 231/2B, 231/2C, 231/2D, 231/2E, 231/2F, 231/2G, 231/2H, 231/2I, 231/2J, 231/2K, 231/2L, 231/2M, 231/2N, 231/2O, 231/2P, 231/2Q, 231/2R, 231/2S, 231/2T, 231/2U, 231/2V, 231/2W, 231/2X, 231/3A, 231/3B, 231/3C, 231/4, 231/5A, 231/5B, 231/5C, 231/6A, 231/6B, 231/6C, 231/6D, 231/6E, 231/6F, 231/6G, 231/6H, 231/6I, 231/6J, 231/6K, 231/6L, 231/6M, 231/6N, 231/6O, 231/6P, 231/6Q, 231/6R, 231/7, 231/8, 231/9, 231/10A, 231/10B, 231/10C, 231/11A, 231/11B, 231/11C, 231/11D, 231/12A, 231/12B, 231/12C, 231/12D, 231/12E, 231/12F, 231/12G. 231/12H, 231/12I, 231/12J, 231/12K, 231/12L, 232/1A, 232/1B, 232/1C, 232/1D, 232/1E, 232/1F, 232/2, 232/3, 232/4, 232/5A, 232/5B, 232/5C, 232/5D, 232/5E, 232/5F, 232/5G, 232/5H, 232/6A, 232/6B, 232/6C, 232/6D, 232/7A, 232/7B, 232/8, 232/9A, 232/9B, 232/10A, 232/10B, 232/11, 232/12A, 232/12B, 232/12C, 232/13, 232/14, 232/15A, 232/15B, 232/16, 232/17A, 232/17B, 232/18, 232/19A, 232/19B, 232/19C, 232/19D, 232/20, 233/1, 233/2, 233/3, 233/4, 233/5, 233/6, 233/7A, 233/7B, 233/7C, 233/8A, 233/8B, 233/9, 233/10, 233/11A, 233/11B, 233/11C, 233/11D, 233/11E, 233/11F, 233/11G, 233/11H, 233/12A, 233/12B, 233/12C, 233/12D, 233/12E, 233/12F, 233/12G, 233/12H, 233/12I, 234, 234 Part, 235/1, 235/2, 235/3, 237/1, 267, 268/1, 268/2, 269 & 271 of Periyanagalur Village, Ariyalur Taluk & District of Tamil Nadu State.

8

(formerly Madras Cements Ltd.)

Project Proponent Declaration

[in compliance with MoEF Office Memorandum No. J-11013/41/2006-IA.II (I) dated 04.08.2009]

We, M/s. The Ramco Cements Limited (RCL), have applied for prior Environmental Clearance for 'Amalgamated Periyanagalur Mine under GO 126 over an extent of 53.32.0 hectares at Periyanagalur Village, Ariyalur Taluk & District, Tamil Nadu' vide Online Proposal No. SIA/TN/MIN/76439/2022 on 02.05.2022. The Proposal under SI. No. 1(a), Category B1 was deliberated in State Level Expert Appraisal Committee-Tamil Nadu (SEAC-TN) in its 287th Meeting held on 22.06.2022 and in 532nd SEIAA-TN Meeting held on 14.07.2022. Terms of Reference (TOR) for carrying out Environmental Impact Assessment (EIA) Study has been awarded vide Letter SEIAA-TN/F.No.9220/TOR-1215/2022 dated 14.07.2022 with Public Hearing.

EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including Sector-1 (Mining Projects) for Category 'A' by the National Accreditation Board for Education & Training (NABET) vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025 (SI. No. 4 of List dated 15.07.2024). ABC Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2022. The Lab is also recognised by the Ministry of Environment, Forest and Climate Change (MoEF&CC) vide Letter F. No. Q-15018/04/2019-CPW dated 14.10.2019 with validity of 5 years.

The EIA Report and Summary Environmental Impact Assessment Reports (both in English and Tamil versions) have been prepared in compliance with the awarded TORs and as per the generic structure proposed in EIA Notification 2006 and submitted. The data submitted in the EIA Report are factually correct.

For The Ramco Cements Limited

Sr. Vice President (ESG) Authorised Signatory

Date : 18.07.2024 Place : Chennai

EIA Consultant Undertaking

[in compliance with MoEF Office Memorandum No. J-11013/41/2006-IA.II (I) dated 04.08.2009]

M/s. The Ramco Cements Limited (RCL), have applied for prior Environmental Clearance for 'Amalgamated Periyanagalur Mine under GO 126 over an extent of 53.32.0 hectares at Periyanagalur Village, Ariyalur Taluk & District, Tamil Nadu' vide Online Proposal No. SIA/TN/MIN/76439/2022 on 02.05.2022. The Proposal under SI. No. 1(a), Category B1 was deliberated in State Level Expert Appraisal Committee-Tamil Nadu (SEAC-TN) in its 287th Meeting held on 22.06.2022 and in 532nd SEIAA-TN Meeting held on 14.07.2022. Terms of Reference (TOR) for carrying out Environmental Impact Assessment (EIA) Study has been awarded vide Letter SEIAA-TN/F.No.9220/TOR-1215/2022 dated 14.07.2022 with Public Hearing.

EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including Sector-1 (Mining Projects) for Category 'A' by the National Accreditation Board for Education & Training (NABET) vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025 (SI. No. 4 of List dated 15.07.2024). ABC Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2022. The Lab is also recognised by the Ministry of Environment, Forest and Climate Change (MoEF&CC) vide Letter F. No. Q-15018/04/2019-CPW dated 14.10.2019 with validity of 5 years.

The EIA Report and Summary Environmental Impact Assessment Reports (both in English and Tamil versions) have been prepared in compliance with the awarded TORs and as per the generic structure proposed in EIA Notification 2006 and submitted. The data submitted in the EIA Report are factually correct.

For ABC Techno Labs India Private Limited

Date: 18.07.2024 Place: Chennai

SSa

ABC TECHNO LABS INDIA PRIVATE LIMITED

(Accredited by NABL, NABEL, Approved by FSSAL APEDA & Agmark, Recognised by MoEFACC, BIS (Accredited by NABL, NABEL, Approved by FSSAL APEDA & Agmark, Recognised by MoEFACC, BIS (Approve Offer & Let : 'ABC TOWER', #400, 13th Street, SDCO Eduction Estate North, Planet, Ambotive, Chemics - 600 098, Tamil Nadu, INDIA. Ph : +97-44-3829 7788, 2625 7799 www.abctechnisi8.com stic@abctechnish.com

Authorised Signatory

AFFIDAVIT

21.06.2024

The Member Secretary State Level EIA Authority - Tamit Nadu, Panagal Building No. 1, Jeenin Road, Saidapet Chennai-600 015

Dear Sr.

Sub Proposed Amalgameted Perlyanagatur Linestone Mine (Extent 53.32 Ha & Production 3.00 MTPA) in S.F. Nos. 51/2, 51/3, 51/4, 229/1, 267, 268/1, 269 & 271, etc., in Perlyanagatur Village, Anyalur Taluk & District, Tamil Nadu by Mo. The Ranco Cements Limited – Awarded TORb- Attidevit in compliance with Additional TORb-5 by SEAC-TN- reg.

Fiel: Awarded TOR vide Letter SEIAA-TN/F, No 9220/TOR-1215/2022 dated 14.07 2022

We, M/a. The Ramoo Cements Limited (RCL), have applied for prior Environmental Clearance for Analgemented Perivanagalar Mine under GO 126 over an extent of 50.32.0 Ha at Perivanagalar Village, Anyalar Taluk & District, Tamil Nadu, vide Online Proposal No. SIA/TN/MIN/76439/2022 on D2.05.2022. The Terms of Reference (TOR) for carrying out Environmental Impact Assessment (EIA) Study has been awarded vide Letter SEIAA-TN/F No 9220/TOR-1215/2022 dated 14.07.2022 with Public Hearing.

The mining operation will be camed out by both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Rippers.

In order to comply with Additional TOR-5 by SEAC-TN condition, we bereby aftirm objectivity that the Mine will be operated with the required Statutory Officials and Competent Persons such as Blaster, Mining Mate, Mine Foreman & MI Class Mines Manager mandatority appointed by us as per the provisions of Mines Act 1952 and Metallifemous Mines Regulations 1961.

For The Ramoo Oements Limited

St. Vice President (ESG) Authorised Signatory

Date : 21.06.2024 Place : Chennai

Acystemic Office: The survey of the American - 400 117. Territ Ratio

அறிவதார் மனமாம் , சுதிலதார் வாமி 19 அறியாள்கும் திரையி சீதிய கான் கடிக்கில SILA 151/50 WENT WELT CENT 1408 20 ยสิท () และเป็นหนึ่ง 58-32-0 อาเมส์ยัง และแหล่ง) สารสารายนั้นสารอง สารายสารายสารา สาราชิด (การการการ engent Stuffultimett. பேற்படி சுதல்க குத்தலை அடிப்பத கோற்பன் இட்டுகாதர் காடுத் சுயால் 300 மிலதி காற்றான்டு கொயில்கள், புராதன் வரலாறில รัษสารพิเอริชา เอริชาอี เลยสองและสารเลือกสารสาร Euger and a article and a start தோடுயுள்ள கடித்தில் 60 மீல்பி அரையையில் குடிறந்தே வித்தன் இன்னது . கருதே இரைக் தொர் อสอร์การเป็นปฏิญรีตา เมษฐ์ติติติ อาร์การติ อเตลีญเป Byne Strand 2 Strang Throad Byre Bar อาเอริเมพระนอกิ อาธุริสมิติสรี อุลแฟรสออาริร

Document-I: VAO Certificate

Document-II: DFO NOC

Tel: No. 04329-299195 E-Mail dfoariyalur@gnuil.com

TAMIL NADU FOREST DEPARTMENT

From Dr.T.Flungøvan, M.Con., B.Ld., District Forest Officer, Ariyalur Forest Division, Ariyalur,

To Principal Chief Contervator of Forests, Velachery, Chennal.

(Through Chief Conservator of Forests, Tricity circle)

C.No.4559/2022/D dated, 04.07.2023

Sir.

- Sub : Mines and Minerals Mines and quarries Amalgamation of Mining Lenses – Limestone – Periyanagalor Village – Ariyalur taluk & District SF No.51/2, 51/3, 267, 268/1 etc., over an extent of 53.32.0 Electares of patta & Poramboke lands – of Tvl. The Rumeo Cements Ltd., Ariyalur – Fulfilling SEIAA – Terms of Reference (ToR) Conditions – Regarding.
- Ref 1) Rameo Cements Ltd, Ariyalur Letter dated 04.11 2022
 - Forest Range Officer, Ariyahar Range No.509/2022 dated 25.11.2022.

I submit that in the reference 1st cited M/s Ramco Cement Ltd, Perlyanagalar, Works had requested "No Objection Certificate" for obtaining Environmental Clearance from Ministry of Environment and Climate Change for Perlyanagalar in the mining lense area of \$3.32 Ha comprised in SF.No.51/2, 31/3, 267, 268/1 etc., Perlyanagalar village of Ariyalar Taluk and District.

In this connection the Forest Range Officer, Ariyahar has inspected the mining areas on 22.11.2022 and submitted in his report vide reference 2rd cited above has report as detailed below.

- The lease area consists of two mining pits a shallow pit and a deeper pit. And now two pits is going to be amaignmated.
- At present mining activity is going on which involves blasting.
- The mine area does not comprise any forest land.
- No Reserve forest is present within the one kilometer radius of the mines.

- The nearest reserve forest is Villargish Extension RF which is 5.51 = kilometers away from the mines.
- Other Reserved Forens lies within ten kilometers radius of the mines are Vinnakurichi RF, Vilangadi RF, Managethi RF which are 6.20, 5.64, 6.58 kilometers away from the mines respectively.

In this regard I subout that as reported by the Forest range Officer, Ariyalur, No Reserved Forests or any other Forest land is similard within 1 Kin from the Periphery of the above mining lease area.

The Elistrici Forest Officer had have inspected the above mining area on 23.11.2022. The distance between existing lime stone mining area of Ramco Cements Ltd, Govindapuram works, Ariyular in Periyanagalar village over an extent of 53.32 hectares Karaivetti Birds Sanctuary is 17.5 Kilometers away from the said mines and h idao informed that no National park, Sanctuaries, Biosphere Reserves, Wildlife corridors, Ramuer ste, Tiger/Elephant Reserves does not lies with in 10 Kmi of the existing lime stone mine area. Further no any Schedule – I Fanna found in the study area. I here with enclose the list of Flora and Fauna the proposed mining lease area.

Therefore I request that necessary orders may kindly be given for the issue of the "No Objection Certificate" in the above matter. Further I submit that there is no objection from Forestry and Wildlife point of view in according the No Objection Certificate for the operation of mining in the above subject londs.

> Youry faithfully, Sd²- T.Flangovan, District Forest Officer, Ariyalur Forest Division, Ariyalur,

Copy :

 Submitted to Chief Conservator of Foresits, Trichy Circle 2 Copy to General Manager (Mines), Ranico Cements Ltd. Govindapuram, Ariyalur (Dt).

Lebo

 $\underset{\substack{\beta \in \mathcal{B}^{(\alpha,\beta)}(\mathcal{B}^{(\alpha)}) \\ \text{Superintendent}}}{\beta \in \mathcal{B}^{(\alpha,\beta)}} |\mathcal{B}^{(\alpha,\beta)}|$

表... Linuxina

Document-III: ROMP Submission for Plan Period 2025-26 to 2029-30

Chapter 1: General Information

C Lenni Dehilli	10 m m
MAL Vicentiation Toronty	1 POLICE AND ALL AND AL
Lawy Calc.	rinātāta.
82%E	# (2/1 - 10)
State of Latina-	1003 () (00 CONDITION (00)
Addition of Linear	Styles. Ann Prepart Lines. 96, 11 Substitutions Stat. Million Dama
Lipt of Lipson	
Nons of Mining Lines	An inpassed Programmedia Massieran Blain Princip Ba
s47)	7AML SADC
TO HELL	A2094
Tabell' Table (M/wild)	Madar
11 ¹	Petersupian
land Arter Carl	44.50
Trees Sets (Hull:	0.0094
Marcal Marcan	11100376000
Note of annual controls	

Dip	Pariety Law
Wood of the proposit (PTC) from (1000 S
Poisson in provide UND In-	305(30)
Type of leading	(10-mont)
Sec. 214	Large and
Lagran within	Cignet (

111 International Losse grant Assort

Gear	2101	De Marine IV	Loud Rid smedet for	Lang stational and date
Table Figure	20000	aucuit	erotane.	20043021

1.1.2 : Manag Plan Settemaining Coloris Dendit

Tage of Chemanan	Review OCMany the Jame Rat 13/2118 MDR, 2010.
Brannes You Stabilitation	Contrast, Parch Die, So Dopter Hall D. 20205, House Microsof D. Minary Para In Network Dis- Trie Deced 2025 29 (In 2020 49).
Period for a list modify more or prograd.	2021-204 to 2021.004

12:1 and Oversetig Peters

1	Vanis Lord Demonstry Britain Bunn	Land Howsman Databases
-		

1.7 / Externa Lone

Description of the second	Sec.

Awarded TORs

THER. DEEPAK SJHLGI, LES. MEMBER SECRETARY STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY-TAMILNADU

Y⁴ Flores, Parried Maulipal, Nucl. Termis Read, Scillaget, Opening 5 600 (15), Phone No. 044-24359973 Tax, No. 044-24359975

TERMS OF REFERENCE CORP. Ly No.SELAA-TNFENS 9229/Toll, 1215/2012 Dotted:14.07.2022.

Ta

Mis. The Ranko Commis Linuted

10. Florg, Almas Corpolate Cisure

Mo. 66.6, Dr. Haffustrishmov Road

Myliquee

Chirman (#00.004)

Sir? Motom,

Sule: SEI3A: Tanut Saita - Tanno of Barlannas with public Baaring (Tolk) for the proposed. Alimentative MinerieSer successorie of 35,9900 (actual at 78.F. 512, 51.7, 314. SLSC, SLS R. SLSC, JUMD, SLSE, SLSE, SLSE, ALSO, Mull. 224(1):2240. 226(1), 225(1), 226(2), 226(1), 226(2), 22 256768, 226760, 226717C 226700, 2267522643A, 226700, 22675C, 2.8-14. 228-25A, 220-158, 228-16, 228-1, 228-2, 228-3A, 228-3B, 228-3C, 228-3D, 278 4, 2207, 2207, 2204, 2207, 2208, 2207, 2208, 2207, 22071, 220714, 220711 210/2A, 2002B, 2004A, 201910, 2005A, 2005B, 2005D, 2005A, 250 eff, 230/efc, 230/efc, 230/efc, 230/efc, 230/efc, 230/efc, 230/7A, 230/7D. 250 %C, 236 K, 256 K, 250 (0, 236 (1A, 136 (1B, 736 (K, 256 (2, 236 (1) 230/14, 200115A, 230/15B, 250/15C, 230/15B, 230/16, 210/17, 230/18, 236/19, 310(20,251 (A, 231 (B, 253) (C, 251) (B, 753 (BE, FT) (F, 26) (G, 251 (0, 211)). 231/14 291/16, 291/14.231/34, 251/08, 231/26, 231/20, 231/20, 211/0F, 221/0F, 231/3G, 231/2B, 231/2B, 231/2B, 231/2B, 231/2B, 231/2B, 20100. 20109; 20100; 20109; 20105; 20107; 20120; 20109;20109; 20103; 20104; 20100; 20100; 2014; 20104; 20108; 20104; 20104; 231 mill, 234 mill, 234 mill, 234 mill, 231 mill, 231 mill, 231 mill, 231 mill, 231 mill, 211 ML 211 MM, 211 (ML 211 MO, 211 MM, 211 MM, 211 MK, 211 F, 211 M, 211 M 231/10A, 231/10B, 231/10C, 231/11A, 231/10B, 231/11C,231/11D, 230/12A, 231/126, 231/12C, 231/12D, 231/12E, 231/12F, 231/12D, 231/12H, 201/12L 2111121211126, 211112, 21211A, 2321B, 2021C, 23210, 2324B, 2524F, 3524F, 3524F, 2524F, 252F, 2

EMBER SEFRETARY SELAA TN

Fight End 2K

Lr Ne.SEIAA-FN/F/No.9220/5EIAA/TuB-(215/2022/0atod):14.07.2022 SEIAA/TN

232-5H, 232-6A, 252-6B, 232-6C, 252-6B, 232-7A, 232-7B, 232-62, 232-6A, 232-6B, 232-15B, 232-15B,

Hef. 1. Online propried No. 31 ATTA MIN. 764316 2023, dome 10,205, 2022.

2 Your syndiamine submitted for Jerror of Patimence datat, 04.05 2922.

3.55 mars of the 2877 SEAL months held on 22.06.2022

4. Atleness of the 332" conforms motion had on 14.07/2022.

Kindly referitory-out purpoid tube intel to the State Loyal Impict Assessment Authority, Se-Turns of Reference.

The proposing Mts. The Barrow Common United this submitted approaches for Terms of Reference. (Tably such public Heaving on \$4.06,2072, in Fernal, Pro. Stanibility ergot for that prepared Linemus. "Miles your an estant of \$5.86314 Incommune at 0.7 312, 5171, 5514, 51/54, 5173 W. SLOE, 31/6D, 51/5D, 51/5D, 51/5D, 21120. UNICEDID. 2247, 2247. 22478. 22408, 2242, 2240, 2246, 2245, 2148A, 22460, 2246C, 2244D, 226/04. 2267.02008A. 220/00. 226/07. 226/08. 226/08. 226/08. 226/08. 226/108. 226/106. 226/11A. 216 108, 22602 22603 A, 226 108; 226 100; 226 14; 12 9 15A (236 108) 226 16, 228 1, 228 3 A 224/18 224/10/285 (D) 2265, 2297 3260, 2266, 2264, 2267, 2268, 1269, 2267, 2267, 2267, 126 2362A, 2102B,7503, 2304A, 2300B, 2305A, 3365B, 2103C, 2103D, 205A, 2205B, 2556C, 3365D 234831, 214 nr. 200 pt/, 226 036, 226 nr. 226 7A, 230 7B, 236 7C, 236 8, 236 7, 200 (14A, 235 17B) 230/10, 230/12, 250/13, 250/14, 230/14, 250/240, 230/240, 230/140, 230/16, 230 236/2021/108, 2010 B. 25010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 21101.231080/20098, 20128, 20128, 20028, 20128, 20128, 20128, 20128, 20128, 20128, 20128, 20128, 20128, 20128, 211/74731/78, 251/74, 201/28, 201/28, 251/20(271)29, 231/20(251/78, 201/28, 231/27, 211/28, 211/28/20129, 20128, 20138, 20108, 20106, 2016, 2016, 20158, 20186, 20168, 20168, 20168, 21140.23(40) 231/6E, 2 231/00.231/0P. 201/00. 201/00. 201/07. 201/0. 231/0. 201/04. 201/00. 201/07. 201/14. 201/18. 2110 R 2110 HD, 2210 JA, 2210 IB, 2110 20, 2210 JD, 2200 2E, 2210 JP, 2210 JD, 2100 JD, 2100 JD 2310 21210 128, 2110 21, 255 (A, 253 (B, 212 (C, 283 (B, 280 (C, 212 (F, 313 (C, 212 (F, 312 (

MEMBER SECRETARY STIAA-TN 18

Page 2 (678)

Lr No.SELAA-TNF-No.9220/SELAA/LoR-1215/2022 Dated:14.07.2022

SELLA-TN

EXTERIBUTING, 191000, 192000, 2020000, 2020000, 2020000, 2020000, 2020000, 2020000, 2020000, 2020000, 2020000, 2020000, 202000, 202000, 202000, 202000, 202000, 202000, 2020000, 2020000, 2020000, 2020000, 2020000, 2020000, 2020000, 2020000, 202000, 202000, 202000, 202000, 202000, 202000, 202000, 202000000

Discussion in NEAC and the Remarico-

Proposed amalgamation of lime atoms guarry leate over as extent of 53 32.0 He at S.F. No. 51/2. 51/3, 51/4, 51/5A, 51/5 B, 51/5C, 51/5D, 9U/5E 57/5F, 51/5G, 51/5H, 224/1.224/2. 226/1A, 226/1B, 226/2, 226/3, 226/4, 226/5, 226/6A, 226/6B, 226/6C, 226/6D, 226/6E. 226/7.220/EA: 236/80, 226/8C, 226/9A, 226/9B, 226//9C, 226/70A, 226/10B, 226/10C, 226/11A, 226/118, 226/12, 226/13A, 226/13B, 226/13C, 226/14, 226/15A, 226/15B, 226/16B, 228/1. 228/2. 228/3A. 228/38. 228/30. 228/30. 228/5. 229/1. 229/2. 229/1. 229/4. 229/7. 229/8. 229/9. 229/11. 230/14. 290/18, 290/24, 230/28/230/3. 290/44, 230/46, 230/34. 230/68, 230/5C, 230/5D, 230/6A, 230/68, 230/6C, 230/6D, 230/6E, 280/6F,230/6C, 230/6H 230/6L 230/7A 230/7K 230/7C, 230/8, 230/9, 230/90, 230/0A, 230/11E, 230/11C. 230/12; 230/13; 230/14; 230/15A; 230/15B; 230/15C; 230/15D; 230/16; 230/17; 230/18, 230/19, 230/20/231/1A, 230/8, 231/1C, 231/RD, 231/RE, 231/RE, 231/RE, 231/1E, 235/11, 231/11, 231/1K, 231/11,231/1M, 231/1N, 231/2A, 231/2B, 231/2E, 231/2E, 231/2E, 231/2F, 231/2G, 231/2H, 231/2J, 231/2J, 231/2K, 231/2E, 231/2M, 231/2H, 281/2O, 231/2F, 231/2Q, 231/2R, 231/2R, 231/2L, 231/2U, 230/2V/231/2W, 230/2X, 231/3A, 231/3B, 231/3C, 231/8, 231/5A; 231/5B; 231/5C; 231/6A, 231/6B; 231/6C 231/6D; 231/6E; 231/6F; 231/60, 231/6H, 231/6H, 231/6L, 231/6K, 231/6L, 231/6M, 231/6N, 231/6D, 231/6P, 231/6D 231/64, 231/7, 231/8, 231/9, 231/10X, 231/108, 231/10C, 231/11A, 251/110, 231/11C, 231/11D, 231/12A 231/12B, 211/12C 231/12D, 231/12E 231/12F, 231/12G, 231/12B, 231/12B, 231/121.251/128, 231/121, 232/1A, 232/1B, 232/1C, 232/1D, 232/1E, 232/1F, 232/2, 232/3, 232/4, 232/5A, 282/58,282/5C, 282/5D, 232/5E, 232/9F, 232/5G, 232/5H, 232/6A. 232/68, 232/60, 232/60, 232/7A, 232/78, 232/8,232/9A, 232/98, 232/104, 232/106, 232/11, 232/12A, 232/12B, 232/12C, 232/13, 232/14, 232/15A, 232/15B, 232/16, 232/17A, 232/179, 232/18, 232/19A, 232/198, 232/19C, 232/190, 232/20, 233/1, 233/2,233/1, 253/4, 233/5, 233/6, 283/7A, 283/7B, 253/7G, 293/8A, 233/8B, 233/9, 233/10, 233/11A, 233/118,233/11C, 233/11D, 233/11E, 233/11F, 233/11C, 233/11H, 233//2A, 233//20, 233/12C, 233/12D, 233/12E,233/12F, 233/12G, 235/12H, 233/12L, 234, 234 Pert, 235/1. 235/2, 235/3, 237/1, 267, 268/1, 268/2, 269 6, 271 of Pertyapagalut Village, Artyalur Taluk Clittlet of Tamil Nadu by MVs.The Rameo Coment Limited for Terms of Reference. [NA/TN/MIN/76439/3022. Df 02:05:2022]

MEMBER SECRETARY SELAA/TN

Page 3 of 28

- 25

Lr Na.SEIAA-TN/F.No.9220/SEIAA/ToR-1215/2022 Dated:14.07.2022

SEIAA/IN

The proposal was placed in this 287° Meeting of SEAC and on 22.06.2022. The details of the project functioned by the proponent are available to the sublistic (particulus).

The SEAC noted the following

1. The Project Proposent Mus. The Range Certain Limited has applied for Terms of Reference for the proposed analgemetics of lime story query, have over an exterit of SE32,0Ho in SE200-51/2, 51/3, 51/4, 51/6A, 51/5 B, 50/2C, 51/50, 51/5E, 51/FF. 515G SUSH, 2241, 2247, 2267A, 226/0, 125/2, 226/1, 226/4, 236/5, 226/A, 226mli, 226/6K, 226/6B, 226/6E, 226/7, 226/8A, 226/6K, 226/6K, 226/9A, 226/9A 226//9C 226//0A 226/10B 226/10C 226/11A 226/11B 226/12.226/13A 226/13B 226/13C 226/14, 226/154, 216/15E, 226/16, 228/1, 228/2, 229/3A, 228/1E, 228.30.228/80, 228/5, 220/1, 224/2, 229/3, 229/4, 229/7, 229/8, 229/9, 229/11 230/1A, 230/1B, 230/2A, 230/2B,230/3, 230/4A, 230/4B, 230/5A, 230/5B, 230/5C 230 SD 210/64, 230/68, 230/6C 210/6D 230/6E, 230/6F 230/6G, 270/6H. 230/6L 230/7A, 230/76, 230/7C, 230/9, 230/9, 230/10, 230/10, 230/10, 230/10, 230/17: 230/13: 230/14: 280/15A: 230/15E: 230/15C: 230/15D: 230/14: 230/17. 230/18. 230/19. 230/20.231/14. 231/10. 231/10. 231/10. 231/10. 231/16. 231/16. 250/HE 250/H. 250/H. 230/H. 230/H.231/HM. 231/IN, 230/2A, 230/2E, 230/2C. 27/20, 20/0E, 28/2F, 20/26, 20/0H, 20/2L 20/20,3802K, 20/2L 20/2KL 25U/2N, 23U/2O, 25U/2P, 25U/2D, 23U/2P, 23U/2D, 23U/2D, 23U/2D, 24U/2P, 23U/2W. 2H/2X, 2H/MA, 23U/H, 2H/AC, 2H/4, 2H/5A, 2H/5H, 031/5C; 2H/6A, 231/6H. 231/0C,231/6D, 231/6E, 233/MM. 231/6N, 331/63/231/6F, 231/6E, 231/6B, 231/6, 231/0, 231/0, 231/0, 231/0, 231/08: 231/00C 231/08, 231/08, 231/0C 231/00, 231/2A, 231/28, 231/2C 231/02D, 231/02E, 231/02E, 230/02G, 231/02H, 231 232/1A, 232/1B, 252/1C, 232/1D, 232/1E, 232/1F, 232/2, 232/3, 232/4, 232/5A. 232/58.232/6C, 210/6D, 232/5E, 232/5F, 212/6G, 212/6H, 232/6A, 232/6B, 232/6C. 232/6D. 232/7A. 232/7B; 232/8A. 232/9B, 232/9B, 232/0A. 232/0B. 332/01, 232/02A, 2332/02E, 332/02C, 232/03, 232/05A, 232/05A, 232/05E, 232/06. 332/17A, 332/17B, 232/18, 232/19A, 332/19B, 232/19C, 232/19D, 233/20, 233/1 233/2.253/3, 233/4, 233/5, 233/6, 233/74, 233/70, 233/7C, 233/0A, 233/0B, 23/9, 23/06, 233/10, 233/10/23/06, 233/10, 210/1E, 23/06, 233/06, 233/10H 233/12A 233/12E 233/12C 233/12E 233/12E 233/12E 233/12E 233/12H, 233/12L 234, 234 flat, 235/1, 235/2, 239/3, 237/1, 267, 366/1, 268/2, 266 & 271 of Penyanagalur Village. Aliyalur Talul District of Tamil Natu.

 The proposed quarry/activity is covered under Category "B1" of Item 1(a) "Musing Projects" of the Schedule to the EIA Notification, 2005.

MEMBER SECRETARY

SELAAGEN

B.

Page 4 (1728)

Lr No.SEIAA-IN/F.Na.9220/SEIAA/Tolt-1215/2822 Datest 14.07.2022

SELAA-TN

 A) per the mining plan the lane period is 50 years. The mining plan is for the period of five years & production should not exceed 92.11.880T of Limentone. The annual peak production is 29.87,000T of Limentone (4* year). The ultimate depth is 71 m 964.

Based on the projectation made by the proponent SEAC recommended to grant of Terms of Reference (TOR) with Public Hearing subject to the following TORs, in addition to the canderd terms of reference for EIA study for non-coal mixing projects and details touged by the MOEF 6 CC to be included in EIA/KMP Report:

- The PR shall carryonal Hydro geological study through reputed initihation and the same shall be included in EIA report.
- As habitation is locator dote to the life, the report should esses the implications of the proposal on the habitants.
- 3. In the case of proposed leave is an existing for old) quarry where the benches are not formed (ar) partially formed as per the approved Mining Flats the Project Proposent (PP) shall prepare and submit an "Action Plac" for carrying old the Hallgument of the limitant in the proposed quarry here after it is approved by the concerned Act. Director of Geology and Mining during the time of appraisal for obtaining the EC.
- The Proponent shall submit a conceptual 'Slope Itability Plan' for the proposed outry during the approximit while obtaining the EC, when the depth of the working is extended beyond 30 m below ground level.
- 3. The PP shall formula the adiidault stating that the blasting operation in the proposed quarry is carried out by the statutory completent perion as per the MMR 1961 such as blaster, mining mate, inline foremary JD1 Class mines manager applointed by the proposed.
- 6. The PP shall present a conceptial design for carrying out only controlled blasting operation involving line drilling and multile blasting in the proposed quarry such that the blast-induced ground vibrations are controlled as well as no fly rock travel beyond 30 m from the blast site.

MEMBER SECRETARY

SEIAA-TN

Dags Will 2H

Lr Na.SEJAA-TN/F.Na.9220/SEIAA/TuR-1215/2022 Dated:14.07.2022

SELLA-TN

- The BA Econdinators shall obtain and furnish the details of quarty/quarter operated by the proponent in the past, either to the same location or elsewhere in the State with video and photographic evidences.
- E. If the proponent has already earlied out the mitting activity in the proposed mirring leave once, after 15:01:2016, then the proponent shall turnish the following details from AD/DO, minks.
- Whit was the period of the operation and it oppage of the entire miner with last work permit layed by the AD/DD mined.
 - a. Quantity of minerain mined out:
 - h. Highest production achieved in any one year
 - Detail of approved depth of musing.
 - dr. Actual depth of the entring achieved ender-
 - 4. Name of the period dryady moved in that leaves area.
 - U EC and CTO aimedy obtained, the copy of the came shall be submitted.
 - Whether the mining was cannot out as per the approved mine plan for EC if housely with a putated begins.
- 10:All content coordinates of the mine have and, superimpored on a High Resolution Imagery/Topic sheet, happy public sheets geomorphology. Utilitiogy and geology of the mining lease area should be provided. Such an imaginy of the proposed area should clearly show the land use and other ecological features of the study and (core and buller some).
- The PP that carry out Drone video survey covering the cluster. Green bell , forcing str...
- 12. The proponent shall furnish photographs of adeistate feeting, grown belt along the periphers (including replantation of withing trees & safety distance between the adjacent quarter & water bodies nearby provided as per the approved mixing plan.
- 13. The Project Proponent'shall provide the debils of mineral neurons and manable reserves, planned production sapacity, proposed working methodology with junifications, the anticipated impacts of the mining operations on the samounding environment and the remedial measure for the same.

MHER SECRETAR

Page 6 (c) 18

L# Nu/SEIAA-TN/F/Nu/9220/SEIAA/Tail-1215/2022 (Dated:14.07.2022 SEIAA-TN

- 14. The Project Proponent shall provide the Organization chair indicating the appointment of Vielbus statutory officials and other competent periods to be appointed as per the providenci of Mines Act 1952 and the NMAR. 1961 for carrying out the quarrying operations adentifically and systematically in order to mine safety and to protect the environment.
- 15 The Project Proponent shall conduct the hydro-geological itsely considering the contour map of the water table detailing the number of ground voter pumping & open wells, and suffice water bodies such as rivers, table, canalit, poeds etc. within 1 km (radius) atoms with the collected water level data for both relotscon and conmonitorin instant from the PWD / TWAD solar to assess the impacts on the wells due to mining activity. Based on actual monitoried data, it may clearly be shown whether working will interact groundwater. Necessary data and documentation in the regard may be provided.
- 16. The proponent shall turnish the blocking data for the environmental and ecological partimeters with regard to surface writing point water quality, air quality, soil quality & flora/terms (adoding mittle/witicular movement) study.
- 17. The Proponent shall carry out the Constative impact shidy due to mining operations carried out to the quarry specifically with reference to the specific environment in terms of soil health, backweithy, as pollution, water pollution, climate change and flood control 6, health impacts and its miniligation measures. Accordingly, the Environment Management plan should be prepared keeping the conterned quarry and the conterned quarry and the contented quarry and the contented quarry.
- Rain water han-enting management with reduciping details along with water balance (both monicon & non-monicon) be submitted.
- 19. Land use of the study area defineating forest area, agricultural land, grazing land, wildlife sanchasty, entitiesal parts, migratory tostes of fauna, water bodies, burnars settlements and other ecological features should be indicated. Land use plan of the mine lanse area should be prepared to encompare preoperational, operational and post operational phases and submitted, impact, if any, of charge of land use should be gives.

MEMBER SECRETARY SEIAATN

Puge 7 0 (28

LF NuSELAS-TN/F.No.922058LIAA/ToR-1215/2022 Dottol:14.07.2022 SILIAA-TN

- 20.Details of the land for storage of Overburden/White Dumps for) Rejects outside the mine lease, such as extent of land area, distance from mine lease, its land use, RSR issues, if any, should be provided.
- 21. Providely to Areas declared as Critically Polluted for; the Project areas which attracts the court restrictions for priving operations, should also be indicated and where so required, depresse certifications from the presentest Authorities, such as the TNPCB for? Digit, of Geology and Mining should be second and furnished to the offers that the processed mining activities rould be considered.
- 22 Discription of write conservation measures proposed to be adopted in the Project record for given. Details of reinwater hanceding proposed in the Project. If any, should be provided.
- 23 Impact on local transport infinitivities due to the Proket Incute be listicated.
- 24 A tree servey only dial to carried but (host, name of the species, aps, diameter stat.) both within the mining lasts applied area 6. 200m traffer some and its monagement during mining activity.
- 25:A detailed mine downe plan for the proposed project shall be recluded in EIA/EAP report which concludes specific.
- 26 Public Heating policie raised and commitments of the Project Proponent on the same along with time housid Action Plan with the dynamy provident to implement the same incutif be provided and also incorporated in the final EUCENP Report of the Project and to be submitted to SENA/SEAC with regard to the Office Memorandum of MoEPE CC accordingly.
- The Public hearing education and be published in one marge National daily and one most occulated semicolar daily.
- 28 The PP shall product/diplay the EIA report. Executive summery and other related information with raped to public hearing in Terol Language also.
- 29 Ar a part of the study of flore and fauria around the visinity of the proposed site, the EIA coordinator shall entry to educate the local students on the importance of preserving local flora and fauria by involving them in the mudy, wherever possible.

Page 8 of 25

Lr NuSEIAA-TN/F.Nu.9220/5EIAA/TuR-1215/2022 Dated:14.07.2022

SELAACEN

- 30 The purpose of Green belt around the project is to capture the fugitive emission, carbon sequestration and to attenuate the noire generated, in addition to improving the aesthetics. A underrange of indigenous plant species should be planted as given in the appendix-I in committation with the DFO, state Agriculture University and local school/college authorities. The plant species with decomposition decompy of native origin should be chosen. Species of unall/medium/tall times alternating with should be planted in a mixed measure.
- 31. Tallescore year old Saplings raved in appropriate size of bags, preferably eco-friendly bags should be planted as per the advice of foosi forest authorities/botanist/Horriculturist with regard to site specific choice. The preportent shall earmark the geombelt area with GPS coordinates all along the boundary of the project site with at least 3 meters with and in between blocks in an organized manuar.
- 32 A Diverse management Plan shall be propared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) fill the end of the issue period.
- 23.4 Enk Assessment and management Plan duals be prepared and included in the EAVEAP Report for the complete life of the proposed quarry (org till she end of the Tease period.
- 34 Occupational Health impacts of the Protect should be anticipated and the proposed proventive measures spelt out in detail. Details of pre-oblicement medical examination and periodical medical monitorition schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 35.Public fieldsh implications of the Project and related activities for the population in the impact cone should be systematically evaluated and the proposed remedial meaning should be detailed along with budgetary allocations.
- 36. The Socio-economic studies should be carried out within a 5 km buffer zone from the mining activity. Measures of socio-economic significance and influence to the local community proposed to be provided by the Project Proponent should be incluated. At far ai possible, quantitative dimensionu may be given with time frames for

MEMBER SECRETARY

SELAA-TN

25

Page 9 id 28

Ly NuSEIAA-TN/F.Nu/9220/SEIAA/ToR-1215/2022 Dated:14.05.2022

SEIAA-TN

implementation.

- 37.Details of lingation pending against the project. If any, with direction forder paired by any Court of Lew egainst the Project should be given.
- 18. Benefits of the Project II the Piolect-is harplemented should be spell out. The benefits of the Project-shall clearly indicate keyronmental, jogial, economic, employment potential, etc.
- 39.If any paintying operation, were partied out in the proposed quarrying site for which
- involve the EC is spulphed the Recitent Persponent shall turnish the detailed compliance to EC conditions given in the previous EC with the site photographs which shall doly be certified by MoEF&CC. Regional Office: Creminal (or) the entiremed DEE/Th/PCB.
- 40. The PP shall prepare the ENP for the entire life of mine and also furnish the sworkaffidavit stating to abide the EMP too the entire life of mine .
- 41: Crecusling any instaal information or administrator of faiterfabricated data and failure. to comply with any of the conditions mentioned above may result in withdrawal of this Tenns' of Conditistor besides attracting penal providents to the Environment. (Protection) Act. 1906)

Child Instantike Content	Lord time-	Cash Press
Agh armidde	1 Tot care:	and the second s
C. Charlenberg a phonesis	Alaman B.	A TRACK AND AND
and a second sec		A State State State
A CONTRACT OF A CONTRACT	1.1.2.1.2.	
a second s	1.1.275	
And a state of the		
	- and a second s	
The local design of the second	and the second s	Allowed B.
B	J & reader	
P. Stetaut hild in	Contraction of the second seco	1.00
THE PART NEW YORK	The second second	2177-00
L PL I Bar Internet	and the local distances in an	- Belline
THE DEPENDENCE INTERNAL	Chempel .	
LTL Court Strict	Sector Sector	
CHILIPPINE COMPANY	The second second	- Booghanding
1. Alternative Automation	Contractor Contractor	get the second
in the second statement	R manner, 1 - manual time in	No. or a second
		- Berley
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contraction of the local division of the loc	a and
1 200 - 7 Citylene Mellenette	Concernation of the second	1000.000
The Party Advances of the Institute of t	1004 Light	- Martin Co
10 This sector in the sector is	New York, Wignesslage	100 pt 10.01
a fit is the second second second	Tarranti.	410410
The Property of the second second	T ADDRESS	
Contract and an other lands	Danish.	Ted 300
1 M Billion Streets	A site of minimum.	Automatica and and and and
< 130 Table Bridge Street	Addition	Committee and a second
The Physics Company of the	These line	and the shall
The off-dataset methods and the other sectors of the	Traderia dadi	where .
The The second second	Star Marinellan	Carl Colora
Contraction of the later	The second second	They have been as
THE DOCTOR AND AND AND	The summer	1000 400
CH Lines maren	C Provide service	There is a second second
The Plant of Second	We can be a set of the	- Barrison
A DESCRIPTION OF A DESC	A R MAR AND A	A COMPANY OF ANY A
-D++Clinet - Contract		+1.8.
hall a set of the set	and the second s	+ T1.04
and a second sec	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE	- British
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second s	+ 100 miles - 800
A Real Products of the second se		1 PERIOD
Contraction and the second	and the second s	

MENDER SECRETARY SELAA-TN

Pepi 18 H 28

Lr Nu SEIAA-TN/F.No.9220/SEIAA/TuR-1215/2022 Dated:14.07.2022

SPIAATN

Ph., Participation and	Aborne	0.0444
11. Parent arranges at	Terrumitana.	Ad United
et, Permitentia	Thispment :	1001 1000
FL Protect Intern	Valo same	4.84 tota
12. O'benigen alternet	Treas	beens .
D. Parameter interes	Temperater	112000
to Production Montrole	Filmy	100
2 Roberts and dr	XALLING	within
ST. : Schellite proces	The Dense	1007 100
a). Spinkering ment	1-famplinghts	D-MILLING M
5 A 10 B A 10 C 4. 17 I	- Secola	Soladelo
Str. (Sman server)	Anna	almsr
in Southing Agent	Yest and the	Sec. int
22 Simplified Institutes	Yale	8.4
O Deputicy process	Derbaue Kaller	Tabler Set an.
March Test Sprace - protection	Alarest .	3044
M Serenda Mary	Thanks .	jond .
in Lowedge and	The sumfire	keet ung
w Take shift	Sublime reality.	154.8 Same
46 Taranta pipulant	Patraute	245
N. Statement Street	ndiwa.	ates-
NO CENTRES INCOME.	- Treptio	Desizent
and the state of the state	Tankingan	- Biofergertal

Appendix-II Display Board (Size 6' x5' with Blue Backstround and White Letters)

- -

annabe got bearinging apply and Ann. Adminish tool sub-

have been some build	(pressingly) and prime applying . A. but some pair lister.
	and the second stand and allow how to have a
	in the second
A DATE TO A DATE OF	provide the print of the local states of
a start to the second	A Design of the second s
and here	and a subject of the local distribution of t
CONTRACT OF A DESCRIPTION OF A DESCRIPTI	and the second sec
Contract of the second	of the second second with the station of
Contraction of the second second	CONTRACTOR OF A CONTRACTOR OF
rear for \$100 to in \$1	Start Martin Print, and Bardid Jon. No. Starting Street or Street
our careta de altra	and the second se
sees the sease and a	A restant and restanting hast allow atoms often and
second stress of the	tions with a source of the second second
and state in the later.	
ARAL PLAN STREET	and the second second second second second second
the state of the	and the summary have been been been and the second state of the se
something only here	bant effite unrell aber rauften birt gemmennen birtigten unt
reproductive in the second second	An other than the second point from the
Address of the second second	A starter of a light of each product of the business
num a reference and	they also sha side was broughted by the property
them what community range	of Street card Subserve variables, Parrilling Instants with manage
party and the part of the	
A farmer of the second second	On regard the investment of the Business space, succession, and the date
Allowers house annually	mented rot office offices houseds from all ton

MEMULR SECRETARY SELAA-TS

5

Page 61 of 28

Lr NuSEIAA-IN/F.No.9220/SEIAA/TuR-1215/2022 Dated:14.07.2022

SPIAA-IN

Discussion by SEIAA and the Hemarket-

The proposal was placed in the 532rd Authority meeting hold on 14:07:2022. The Authority after detailed distances accepts the recommendation of 287rd SEAC meeting thinks 22:06:2022 and the Authority has decided to graza Termi of Schreece inbject to the standard meditions as per Autocore – (1) of SEAC attention score normal conditions, unsignal by MOEEdecC & all other specific condition experimented by IEAC meditions to the following conditions.

- 1. As per Gamil Multi Minor Mineral Concession Rules. 1989 a safety distance of 50 Min. Investigations and millions lines as well be fail and maintained. The proposed Mine hour area is shalling the Start Highway 139, the proposed to scene the tail and area is the Lane II area in the scene of the vehicles play the proposed size for a distance of 100m considering the safety aspects of the vehicles playing through the scene Highway 139 and accordingly terms, the mining plan. Further, Brancomernal impact to recommit specific to the State Highway 139 and Editory 139 and 139 and
- Parnish Handborgs of Enstrumental and Landborg Plan (Scale 3(40,000), Querry Lenie Plan & Sortike Plan (Scale 1/1000), Dependents, Geological Plan, Five Your solid-Development & Postumien Plan & Sections (Scale 1/1000) approved in the Mining Plan.
- Mining Operations/Process.
 - 10 Appropriate aviding process and machinery (Net High tapocity fact atticient) should be spleened as carry our voctors, mining -possibles, that generate minimal durbais pellining noise, waspectury and orbit waste.
 - (ii) Ditally regarding minigative steps taken in the existing Lease area to ances and quintify emission load generation (0) series of an petitolog, minit, scate when and wild while) from each of the reacting arrays (vicialize comparison) or annual basis.
 - (iii) Athen plat to effectate commute promition of an polymonidus, more, wastewater solid waste promition in potential years through soc of better technology for the proposal availance of their area.
 - (iv) The PP shall explore the possibilities of providing Digital processing of the militer lease area for the existing phasing consists seming technique.
 - (v) The measures taken 16 monitor the land use pattern and mining activity for the proposed monitormated size.

MENIBER SECRETARY SEIAA-TN 28

Phile 12 (028)

Lr NuSELAA-TN/F.No.9220/SELAA/ToR-1215/2922 Dated:14.07/2022

SEIAA-TN

. Huter/Wastewater

- (i) The mixing operations should be restricted to above ground water table and a should not interved ground water table.
- (ii) However, if account resources are addinated below the ground water table, the same may be explored after conducting detailed geological statics by GSI and bytergeological studies by CGWD or NBI or institute of informit/report, and emissing that we during a pathe land subtry overcognities solver shall below.
- (no) The density outcome of much a sity may be achieved a incorporated in the EIA.TMP import of the more appropriately.
- (e) The exciting managers (2009) 103.59(36) has transacted the Ground water table. The minighting resonance and Hydro probability report regarding the impact of terming on Ground water quality in the mine lesse area and the surrounding water codies within their eacher, that be functional.
- (b) The NOC obtained for immediate of Ornard states in the Lasse Lasse Lass from the Control Ground Water Autocity, (COWAy) Concerning Local automay share to furnished.
- (55) The Depth and the data at which the Ground Water interrupted the table Lease Area
- (vii) The existing immunoity that were taken after the intrareption of gridual water due to mining were its with existing famous.
- (vin) The Water quality analysis report of the mine pit water utilized for nois water domand and the relation agricultural enorgy.
- (is) The details regarding the per-reconnect purvided for the mine pit water utilized for solving agricultural crops.
- (a) The details about the second if land Ge which the mine pit some was utilized for using the agricultural engential date shall be formithed.
- (a) Provisions for regular monitoling of ground some first and its quality provided for the existing fease area and for the proposed annalgonialed lease area shall be formished.
- (vol) Details about the outwork of existing wells and percentitizes provided for monitoring the existing Lange Longe.

MEMBER SECRETARY

B. SEIAA-TN

Page 15 of 28

Lr Nu.SEIAA-TN/F.Nu.9220581AA/TuR-J215/2022 Dated:14.07.2022

SELAA-TN

- (sill) The project proprinent shall furnish the continue map of the water table detailing the marker of well located around the locat minic area and the impact on the wells due to mining activity.
- (said) Details regarding suitable conservation measures to examine provide some second second water to the collining Lense area architekters of per the guidelines of Control Occord Water Doute (COWD) may be foreighted.
- (55) 'Approximate antitization measures (via: STW) gadated drains, interiming shalls, collection of month via 1 fakan to prevent purflation sit neurop commother mater bodies for the extense University.
- (xy) Water quality Analysis study conducted by TamiT Nada Solbation Council Board to structs studies of contact and ground water scatters on regular havin for the existing larger Anna shall be furnished.
- 100.00 Details reporting the mide of quarter of narrane and protect write senses at my write the fittigency in which here was conducted by NADL, NADLT approved water setting laboratory for the axialog lasse miss area shall be torinities.
- (cviii) Privisions provided to mg, all originating due to reduing activity term sensing intethe mutdee water colume or any other water builty.
- 600 Appropriate many sets for prevention and created of soil environ end management of off-indertailing for the costing lease line.
- (xx) Orbits of Quantity of Obsoil precised in this existing lines area, measured on repolaritiests stell by formitiest.
- (xii) Provision of remaining scale for damps for principal. Monitors taken to prevent maximum from damps and Distally of plantation surport out at the damp alopes.
- Details about trenches partiand drain provided on the relation Of Domp one-Detailed report responses in the second second contract out.
- (xxiii) thinks regarding scores of score actived for Open Belt development, had route shall be tigelisted. The score for above minimized activity for the prepared analyzement least any above to handled.
- (5003) Water balance diagrami proposed out monthly basis for efficient commoption/onlitization in different activities shall be furnished for existing lense area

EMBERSECRETARY

Page 1410720

Lr No.SELAA TN/F.No.9220/SELAA/ToR/1215/2022 Dated/14.07/2022

SELAA-IN.

5 Land/Soil/ Overbailden

- (i) The details about top soil world in annuacked story) for the existing Lease area shall be furnished.
- 10.1 Furnish the report of slope Stability study conducted on the example OB Damp one, as per 1051 agroup of white plat and DCMS guidelines.
- (iii) The preventive measures solution of the OB sharps site to the smith environment success minioff for the experies Leave accs.
- (iv) The preventive measures adopted at OD during site for stabilization of the during in orthogic areas.
- Stoge wise reclamation plan of the mise up to the period of conceptual pit limit shall be provided.
- 7. The PP shall explore the possibilities of significing supportional-boost appointizable intendable trabang program every part with appropriate adjaced for the gooth and enter programs to enhance the statt of the level people. The data shall be materiated for the training imported to the persons and the entergies of the training, for the associated of the reasons program which should be material people.
- Details regarding occupational health check-up of 1/3 of the persons conducted every year may be furnished.
- The proponent shall shift (w) shall leave safety distance for the loss high tension line is the proponed inlining term accordingly as extraorerarided in prepare area convention at in A. Meser plan approval before encouring mise jeans and obtaining CTO transitie (NPCO).
- 10. A high Tornion Power Line Jocowsh within the mining home sees on the exceenance parsing
- Norm that South West direction was proposed to be remained overy freprictic lease area. The correct status of the proposed shall be formulated along with the tung frame in which the High Tension proversions will be recented.
- The content status of proposal to remnte full Free Low Techlor Power Lines along with the time frame or which the power lines will be presented birling shall be furnished.
- The current status of proposal to predute a read approaching to Chimanagaba stillage located in the South-Western side of the Lease boundary in consultation with Displet Authorities shull be furnished.

MEMBER SECRETARY SELAA-TN

Page 15 of 18

Lr Sn.SEIAA-IN/F.No.9220/SEIAA/ToR/1215/2022 Dated:14.07.2022 SEIAA-IN

- 13. No three in the area should be removed and all the trees multibrest and plonetted. In cost tizes fall within the proposed come quarry site the trees may be transplacted in the Directbelt page.
- 14. The AO/DD, Dept. of Giology 6/Shingg, shall ansure operation of the proposed quarky after the submission dope subhity usefu for this utrimute depth as per approved mining plan conducted straingholds reputed we are to & Academic Docturious such as SURM, UTs, NTTS, Anna & pertury, and any CNIR Laboratory etc.
- 15. The ADPDD, Dept. of Geology AMining & Director General of Mine unity shall occurs must complement and emplementation of bench once recommendations active plane an recommended in the secentric slope subline must all the reported research & Academic Institutions as a nalidy presenteenacy measure to avoid unterward accidents during mining operators.
- 16. The propagate shall assume that the activation should be service result is strategies or frequencies of registration.
- 17. The proposition shall arrange that the operation shall not proof in how of soil biological proposition and mathematic
- 10 The arithety should not itsuid in COs relative and temperature the and add to many elimant allot markets.
- The mining administ plan about the strictly adhered with appropriate well performance mentions tripulate togical addition of the area.
- 20 Recommendation of the second size desided sensitive dial the Ocean children and the Second children in the second sensitive composition is held-up, during the process of restoration.
- 31. The proposent shall secure that the activity slove not distants the ancesment of grading months and first mapping with the
- 22. The proposition shall ensure that the sensity does not dought that handscenary, the flars a formation for operation.
- 25. The proposent shall ensure that the activity does not distarb the water bodies and control flew of surface and ground water, not cause any publichters as water sources in the area.
- 24. The proposent shall some that this activities undertaken should not result in contemposition, and temperature rise, in the area.

ANALHER SECRETAR SEIAA-TN

Page:10 of 28

Le No.5ELAA-TN/F.Nu.9220/SELAA/T=R-1215/2022 Dated:14.07.2022 SELAA-TN

- 25. The proponent shall ensure that the mine choice plan are followed as per mining plan and the mine enstancion should be done with native species, and site manced to near original status.
- 26. The proposition shall ensure that Allocating be earlied out with reference to the quantum of particulture matter memory exercisition, blacking manierful transport and also from curring manie damage and back matter.
- The propropert shall ensure that the area is includently realized to conserve the convisions and ensure they of goods and services.
- 38. The proponent shall ensure that the activities shall not disturb the agen haddwarshy and agen terms.
- 29. The proposent shall entrone that the adjusty shall put result in involves by involve allow spectrum.
- 30. Autimus to be taken to promote agro forestry, mixed plants to support biodeversity conservation in the mini, instabilities effort.
- The proponent shall ensure that activity shall not deplete the indigenois sollneed busy, and disturb the proceeding things, usil organized, soll community nor crisilt intestrophication. of wells and water.
- 32. The activities should not dimark the soil groperties and soil and plant grown. Soil, accessible up as received high cardial later to improve cell much.
- 33. Blo semediation using misseorgeniums should be carried out to reation the will previous out to practice carbon requirements.
- 34. The proponent shall ensure that all weight of reservers thread in the PIA-TOOP are taken to protect me binding only and natural processes in the area.
- 33 The proposition shows around show the activities a Number or insent the water bodies, wells in the multipletoning open smills and here wells.
- 36. The propertiest shall country that the activities should writter in any way affect the outer quantity and quality in the open walls and hore wells in the viscosity use impact the outer rathe and levels.
- 37. The proportion shall ensure that in the preen belt development more indigeness trees species (Appendix is per the SEAC Minutes) to be planted.

MUMBER SECRETAR SELAA-T

75apr 17 of 28

Lr No.SELAA-TN/F.No.9226/SELAA/Tolk-1215/2922 Dated:14.07.2022

SELAA-TN

- The proposent shall ensure that the activities should not disturb the moldane and migratory birds.
- The proposition shall money the area should be restored and rahabilitated with native trees as recommended SEAC Minutes (or Appendix)
- 40. The proposent shall ensure that the value equivalent is would be done tiving my corrund VAM, yermicating, Bjo facturers to ensure soft health and, boddwaring to hearth in.
- The proposent shall end or that the report should be presented with and in planting activities in the area
- 42. The proposent shall comme that the activities alreadd net distarb the river flew, nor affect the Oday Water heding. Donor in the vicinity.
- The proposent shall entries that the activities should not distant the vegetation and wildlife in the attributeness fury to and assau around.
- 44. The proposed theorem want have the three derivatives in the opticative plantations, social forestry plantations, wants hands, breads, something or matical parks. There should be un impact on the tands, water, and and bedraged are presented and other natural resources due to the mining activation.
- 45 The proprietar shall assume that torstoll to be stilling the and mail only a and Grown built about within the proposited area.
- (b) The proposent dull ensure dult activities should not support green hands/grazing fields of all types surrounding the scine losse area which we food source for the grazing cattle.

A. STANDARD TERMS OF REFERENCE

- Yore-wise production data is since 1994 shinkli be given, clearly would be highert production indices of it any one pairs prior to 1994. It may also be unlegisdenily indicated whether deep hild features immune in production after the title. Nonitication 1994 came/into force, work the highert pipilaritor achieved prior to 1994.
- A copy of the document in support of the fact that the Propulsent is me rightful lesser of the mill-should be given.
- (3) All discussions including approved time plan, ELA and Public Henring should be compatible with one another in ferms of the mine lease area, production levels, scatte guarantee and to manupement, solving methodicity exc. and should be in the name of the lease.
- 41 All comer coordinates of the raise area, superimposed on a High Nasolution imagery?

MEMDER SECRETARY SELAA-TN

Page 18 of 28

Lr Nu.SEIAA/TN/F.No.9220/SEIAA/ToR-1215/2022 Dated:14.07.2022

SEIAA-TN

- tupe short, reportablic short, geomorphology and geology of the arm should be particled. Such an lotagety of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer score).
- 51 Information should be provided in Survey of India Topo sheet in 1/50,000 scale indicating antifoldial map of the area, geomorphology of fand from of the stea, existing minorsis and mining binary of the area, important scare holies, strains and rivers and soil characteristics.
- 61 Denii's about the hard propiring for minding activities should be given with information as to whicher mining confidents in the hard ince policy of the Shife hard-direction for mining should have apprived from finan hard incovered in the concerned nicherally.
- 7) If shall be clearly stand whether the proposent Compary law a well had down Euclemann Polley approach by its Board of Discram? If so, if may be spott out in the EDA Report with discription of the prescribed operating process procedures to being into flacts any intringeneen/dectation? Vallarke, or the environmental or target prime, deviations? The functional system or administrative order of the Company to dom with the environmental inner and for ensuring compliance with the ECA company tipe be given. The system of reporting of non-compliance, with the ECA company and/or chardedders or subtributes at large, may also be detailed or the ECA Report.
- 3) Insues relating to Mine Safety, including subsidence multy in some of undergopoint mining and slope study in case of open cast mining. Itiating study exc. should be detailed. The proposed autogrand mining such case should also be provided.
- (i) The study area will comprise of 10 km some a ourd the more lines from losse periphery and the data combined in the TRA such as some generation etc. should be for the life of the office losse period.
- 10) Used size of the slidly area detoenting forest area: a provinced land, graving haid, weldlife sanchary, italienal park, migridiery risities of failure, where hoding haids settlements and other contegical fermions, should be initiated. Land use glob of the tubor lesse area should be prepared to encompton propagations), operational and post operational phases and submitted. Impact, if rays, of change of haid use should be group.
- (11) Details of the land for any Over Bunkes Domps minide the trape base, such as estern of haid area, demonst from more leave, its land out, R&R issues, if any, should be given.

MEMHER SECREVARY SELAA-TN

35

Lr Nr.SELAA-TN/F.Nn/9220/SELAA/ToB-1215/2022 Dated:14.07.2022 SELAA-TN

- 321) Certificate from the Compotent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary dialiti by the Project Propertient regarding the states of forests, the sile may be imported by the State Project Department along with the Regional Officer of the Ministry to societion the thirds of forests, based on which, the Centralization of the segard as munimad above be included for all such cases, is would be derivable for appreciative of the State Forest Department of the anticide for appreciative of the State Forest Department to assist the Forest Centralization.
- 13) Stilling of Occurry Concurry for the broken up once and origin formuland involved in the Propert including deposition of Net Present Value (NPV) and Competitionary Affloredation (CA) should be influented. X copy of the formerty climaters is a children to the limit.
- 14) Implementation many of reception of these rights under the Scheduled Tribes and other Traditional Encode Dwellers (Recognition of Forest R) (90). Set, 2005 should be indicated.
- 3.5) The separation in the RF / PE areas with static area, with recursing details, signaid by given.
- 16) A study shall be got done in accorranging impact of the Mining Project on soldlife of the study area and details formatical, (impact of the grouter on the weblick or the summability and sup other pretacted area and accordingly, denoted periods to according equival, should be weaked and with each implications and accordingly.
- 17) Learning of National Parks, Sectionaries, the place Mostries, Wildlife Considers, Ramon and Types English Reserves (consisting as well as proposed) of any, without 39 keys of the prior lease should be chearly believes a supported by a because map duly authout another Coart World for Warden, Non-researcy cleations, so may be applicable as much projects due to providely of the resolutionally semittive series as reserves of should be abrained roots the Stariding Committing of National Deputy of Wildlife and youry functions.
- 18) A detailed indegreat many of the study and [companie and metfer roug (10 km radius of the property of the minis leave)] shuff be carried out. Details of flerk and famile endangered, indemic and RET Species duly authenticated, separately for accession hutter roue should be formated based and much primary field surgey, iteracly indicating the Scholule of the finance present. In case of any scheduled d them from in the study area, the necessary plan along with budgetury providents for their concentration about the propagation of consultation with finance for any scheduled d them from in the study area, the necessary plan along with budgetury providents for their concentration about the propagation of consultation of finade for investmenting the same shindly be made as part of the project and.

EMBER SECRETARY

SETARIA
Lr No.SEIAA-TN/F.Nu.9220/SEIAA/Talk-1215/2022 Dated:14.07.2022

SEIAA-TN

- 19) Provinity to Array declared as Critically Polluted or the Project areas likely to other under the Aravoli Range", (immering court restrictions for mining operations), should also be indicated and where as required, claimance certifications that the prescribed Autoentics, such as the SPCB or Male Mining Digaritrian choicid he around and furnished to the effect that the preprior build of time could be could red.
- 21) Similarly, for Gautal Property a CEZ map duly autoencould by one of the autoencod speakes dominanting LEU HIL, CEZ men, location of the mine case with respect to CEZ, oracla homeos name or mangeoree, if any, should be formidan? Outlet The Moning Projects folling under CEZ would also pred in optime approval of the concepted Coastal Zone Moningment Autoentys.
- 21) RAB Pain comparison diriche fur the Project Affected People (PAP) should be furnished. While proparing the PACK Fam, the relevant State National Heinstellious A. Resettlement Pulses about he laure to state. In support of SCA (ST) and other sensar mention of the security in the study area, a need based herepla survey, family-were, should be undertaken to a set their topaleceneous and action programmers prepared and estimated accordingly, integrating the second programmers of this departments of the state Georgelineous R may be idently inside out whether the village (Claused in the minist losse area will be stated) or not. The inside out whether the village (Claused in the minist losse area will be stated) or not. The inside out whether the village (Claused in the minist losse area will be stated) or not. The inside out whether the village (Claused in the minist losse area will be stated) or not the state inside the flags).
- (22) One nearest units an incored just. March May (Statistic Research, One be-Dreamber sport interview series), December-balancer (white search (Jermany Research and Born and Ross and Ross) spatial on per CPCD Notification of 2005, white resultry, is the level, will and Born and Ross shall be delivered and the 4-\$50 and other data to complish personnel date while in the EEA and EMP Report. Site-operation persons cannol data should also be collected. The location of the monitoring stations should be such as a requirement of the study area and justified lemma in view (as produce and diversion) direction and Jecchina of semantice morphism. These decodes be at least one monitoring station willing 500 in of the mine lines in the prodominant downwind direction. The mineculoped composition of PMUD particularly life free efficiency should be given.
- 23) Air quality modeling should be carried out for prediction of impact of the project on the sitquality of the arra. It should also take teno occupant the respect of recomment of Vehicles for-

MEMBER SECRETARY

SELAA-TI

Page 21 of 28

12

Lr No.SELAA-UN/F.No.9220 SELAA/ToR-1215/2022 Dated:14.07.2022

SELAA-TN

transportation of mineral. The identity of the model used and liquid parameters used for modeling should be provided. The air quality consours may be shown on a location map eleasty indicating the location of the site, location of sensitive receptors, if any, and the hubitation. The wind more showing pre-dominant wind direction may also be indicated on the map.

- 24) The worst requirement for the Project, or availability, and unarea should be furnished. A detailed nexter balance thread also be provided. Freedoware requirement for the Project should be indicated.
- 25) Necksory classifies from the Composition Authority for drawl of requisiting quantity of seasor few the Project should be provided.
- 20 Description of water content stars measures proposed to be adopted in the Project should be given. Denote of many stor hervesting proposed in the Project of any should be provided.
- 27) Internation (for Project on the water quality, both variage and groundwater, should be assessed and very sary sidi-grant measure, if any anyoned, should be previded.
- 28) Bland on additional data, it may clearly be dimen whether working will interact groundwatel. Necessary data will dimensionline to the arguid user be provided to one the working will interact probabilitients tables a detailed rip to Geological Siddy though be inderaken and Report Euroldud. The Report intervalia, shall techede details of the applics present and impact of minibig or tobles on these agasfies. Necessary permission from Courtal Geological Water Althouty for working before provid outer and for peoples of growth some should also be obtained and gopy farmoned.
- (90). Everable of any stream, second configuration prioring through the loss area and modification / diversion prepared. If any, and the impact of the same on the hydrolegy should be brought and.
- 30) "Information on and elements, working depthy propagate and table etc. Should be provided, both is AMSU and but. A schematic sugram may also be provided for the same."
- 71) A time bound Programmy Committee Development Plan dot[], to propertie in a tabular form violating the linear and quantitative systematic plant specific and time frame) and administic keeping in mind, the same will have to be mechanic up front on conconsecution of the Project. Preservice plan of plantation and competitutivy affirestation should be charted clearly informing the arms to be covered under plantation and the species to be planted. The dealls of plantation strendy done should be grown. The plant species scienced for green hold should have

MEMBERSECRETARY SEDANTN

Frage: 22-or 28

Ly Na.SEIAA-TN/F.Na.9220/SEIAA/TaiR-1215/2022 Dated: (4.07)2022

SELAA-TN

 gratter ecological value and should be of good utility value to the local population with supplies on local and survey species and the species which are tolerant to pellution.

- 321 Interact we need transport influencements due to the Project should be induced. Projected increase in truck traffic as a result of the Project in the present road nervork (pictuling them conside the Wolfeet area) should be worked sout indicating whether is to capable of nonling the meritoritat bard. Attributing this improving the influencement of the consider the transport by other agencies such as State Gaussianity should be exceed. Project Proportion shall consluct Impact of Transportation study as per Indian Ring Congruen Guidelings.
- 21) Details of the environmentation and facilities to be provided to the since workers aloudd Se included in the EIA Report.
- (54) Cocceptual pert ruleing hard use and Restamation and Restaration of mined out areas (with plass and with adoptory manifer of accia - or though by given in the fill's report.
- 25) Occupational Health impacts of the Project woold be attacquired and the propheric preventive recomments spelv out in detail. Details of per-placement modulal maximum and periodical inclusive erroritomics actionales should be incorporated in the EMP. The project spectra compatibul health mitigation actionates with required factories propheric in the monor term into be detailed.

304 Public health omplianitions of the Philings and related activities for the population to the import error, abbaild be systematically "viduated and the proposed terrorbid" relatively doubt be detailed along with badgetory allocations.

- 37) Memarco of notio commit algoiffeature and influence to the local community purposed to be provided by the Zhijeer Proposed should be induced. As for an possible, quantitative dimensions may be given with time frames for implementation.
- 39) Denided Environmental Management Plan (EMP) to mitigate the introductional impacts which, should surge dia metado the impacts of change of land use. Ions of applicational and growing land, if any, occupational health impacts bender other superior sportile to the proposed Environ.
- 30) Public Bearing points takent and committeent of the Project Proposent on the same along wim time board. Action Plan with Sudgetary provisions to implement the same should be provided and also incorporated in the fixed ELACEMP Report of the Project.

MEMBER SEPRETARY

Page 23 of 28

SELAA-TN

Lr Nu.SEIAA-TN/F.No.9228/SEIAA/ToR-1215/2672 Dated:14.07.2022.

- 40) Details of Digation pending against the project, if any, with direction worker passed by any Court of Law against the Project should be given.
- 411 The cost of the Project (capital cost and securing cost) as well as the cost sounds, involvementation of END^a should be climate such the.
- 421 A Disuttin encouranter Plan shall be present into burbalish in the FIATMU Report.
- (42) Hending of the Project of the Project is implemented should be well and. The benefits of the Project shall density indicate environmental, sexual, communic, entities new potential, etc.
- (44) Besides the above, the below composed grants points are also in by followed ---
 - a) Executive formmary of the EIA TIMP Report.
 - b) All distances to be properly "offerenced with rades, and continuous page membering
 - c) When data see presented in the Report especially in Eables, the period in schude the data were collected and the sources when the indicated.
 - (b) Pyrgent Pilopennic shall enclose all the analysis bearing reports of building deposit, and enclosing the MAGE/ECC/NAML scanstored faborations. All the informal analysis bearing reports should be as abable charge represent of the Process.
 - a) Where the dominants, provided are in a branage other this English, as Eagle's unsulative should be provided.
 - The Overdermore for unvitorround appealail of tobing particula as devised earlier by the Stilling that also be filled and submitted.
 - a) White preparing the ELA repeat, the likely crimes the the Proposensh and associations the the Consultance on and by Moliford C vote COM. No. 2-11017 44700064A 800 dated stre August, 2007, which are available on the sorbitist of the Ministry should be followed.
 - (h) Charges, if any made in the basis roops and project parameters (or submitted in Form I and the RER the rooming the TOR) should be brought to the attention of MattrACC with reasons for such charges and permission should be mought, as the ToR may announce to be altered. Post Public Hearing charges in stoccurr and content of the draft, ETA/EMP (subscription, motification), arming out of the P.H. property will could compare the contacting the P.H. property will could compare the P.H. property.
 - 11 As per the viscalize ro. 3-13610/01/2010/JA (b(1) dated 10.5.2012, contribut report of the status of compliance of the conditions slipslined in the Distribution University for the estating operations of the project, should be obtained from the Regional Office of

MEMHER SECRETARY SELAA-IN

Page 34.0C28 (

Lr Ns.SEIAA-TNF.No.9220/SEIAA/ToR-1215/2022 Daud: 14.97.3022 SEIAA-TN

dours of
i welling
the last
กระดองเช
Succession and
0.08
of wells
of Mining
niine ma
weil depti
ec:
dumined (New
tiónificie d
scronetta

MESINER SECRETARY

Hours 24, (721)

Lr S6.SEIAA-TNF.S6.9220/SEIAA/ToR-1215/2022 Dated:14.07.2022 5EIAA-T

- Inspect of not environ coll physical chemical and hielogical property changes may be annumed.
- 17. Site selected for the project Notice of land Agricultural (single-double coop), harrow. Government land, status of is acquisition, resulty (to 253 km.) softer body, gegothillan, with in 10km other industries, future, even stratifier zones, accessibility, (one in case of suburbul astate this information (on with the successive).
- Discline etc. numeroual line sit quality, surface and ground were quality, suit characteristic, (binared bious, eco-pro-mic cutaficies of the number population)
- 19. Identification of hazards in handling, processing and storage of humidous material and safety solution provided to as lighter the risk.
- 20 (142) sincear of the project on air, when final, fi we take and marry population
- 21. Encourance perparedness plati in most of summined in plant encourances
- 22. Issues misual charing public hearing of applicable) and suspense given
- 23 CERtation with proposed expenditure:
- 24 Occupational Depth Slimming
- 25 Prost product the classifility plant?
- The project polyconicit shall carry and detailed birder geological study drough matrices/NAUETA-condited.agreenet.
- 27: A data indireport set the grints belt development abouily undertaken as as to furnished and a sutalment the proposal for groen belt additions.
- 38. The processes shall propose the minible control processes at control (by fugitive induition during the specificors of the minist.)
- 20: A specific residy should include impact on flora & form, distorburks to migratory pattern of animals.
- 30. Reserve funds dwamt be consistent for proper closure plan
- 31. A detailed plan or plastic want monoportent shall be formalied. Further, the proponent should infer ourpely with. Tomi 12(abs: Opvention: Online (Mr) No.84 Interimation and foreits (EC2) Department dated 25.06 2018 regarding has no one time use and three away plantice interpretive of their new with affect from 01.00.2019 under Environment (Protection) Act. 1980. In this connection, the project propenses has to family the action plan.

MEMBER SECRETARY

SELAA-TN

Page 26 of 28

2

Lr No.5EIAA-TN/F.No.9220/SEIAA/ToR-1215/2022 Dated:14.07.2022 SEIAA-TN

Besides the above, the below mentioned general points should also be followed:-

- A note continuing compliance of the TOB, with errors referencing of the relevant sections / pages of the ELA report should be provided.
- All documents may be properly referenced with index, muc numbers and continuous page numbering.
- Where data are presented in the separt supscally to tables, the period in which the data ware collected and the sources should be indicated.
- d. While preparing the LLA report, the instructions for the proposents and instructions for the constituents isomed its MoRF & CO wide O.M. No. Art1013-41/2006/A/B (7) dated the August, 2009, which are available on the website of this Ministry should also be followed.
- 7. The animalitatic involved in the projection of EEA/EMP report after accreditation with Quality Council of India (QCD/Scillonal Accreditation Board of Education and Training (NODEEE) sound-merel in metador a continuum in this regard mathe ETA/EMP reports proposed by them and data puryided by other organization/Taboutogies including their states of supportabless. In this regard circulations of F. Nu.3 (1001):77(2004) (A(D)) data(27) December, 2009, 18th March 2010, 24th May 2010, 38th June 2010, 59th Occember 2010 & 10th September 2013 posted on the Ministry's vehicul http://www.moef.nu/m.mog/fc.mfirmt.
 - After permitting the AllA tamper the generic intractore prescribed in Appendix-III of the EIA Notification, 2000 covering the above mentioned points, the paperson will take further necessary action for obtaining intribumphtal clearance in accordance with the procedure prescribed under the ELA Notification, 2000.
 - The final EDA report shall be administed to the SITAX, Tamit Nado for obtaining Environment Consister
 - The TORs with policy income prescribed shall be <u>valid for a period of three scars</u> from the date of local, for submission of the EIA/FMP report to per OMNo.J-(1913/44/2006-IA-IGExpan) dated 29th August 2017.

MUMBER SEÇRETARY SELAA-TN

Page 27 of 28

Lr Nu.SELAA-TN/F-Nu.9220/SELAA/TuR-1215/2022 Dated 14.07.2022

SEIAA-TN.

Copy inc.

- The Additional Chief Scentary to Government, Euvisionment & Foreiro Department, Government, Turnit Natu, Fort St. George, Chengui - 9
- The Chairman, Central Bolinian Commit Board, Parricels Blasser, CBU Cam-Office Unitplice, East Asian Negat, New Dubbi 110032.
- The Meinher Societary, Tantil Nulli Pollution Control Board, W. Mount Sidar, Guindy, Cheminal-600 032.
- 4 :: The APCCE (C), Regional DOSer, Malle & CC (ND), 14, HEPC Building, 174-27 Ploon.
 - Cathedral Gurden Road, Nangreichskinnt, Chensar +34;
 - ⁵⁴ Manufacting Cell, 15 Dittation, Manufactor of Environment, Invests & CC, Parynamer Blacom, COO, Complex, New Dubbi 110002.

Shelf

- 6. The Ofstelet Collectors Arigolar, District.
- 7 Stock File.

Site Protects

Awarded TORs & their incorporation in EIA Report

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
1	The PP shall carryout Hydro geological study through reputed institution and the same shall be included in EIA report.	Department of Remote Sensing, Bharathidasan University, Trichy conducted the Hydrological Study along with Officials of M/s. Thrust Geo-consultants Private Limited, an Accreditated Ground Water Professionals by CGWA and submitted the Report.	Doc-9 466 191-202
2	As habitation is locater close to the site, the report should assess the implication of the proposal on the habitants.	RCL had engaged NITK, Surathkal, a Govt. of India Institute, for Study out the scientific investigation on "Blasting Parameters & Design of Safe Bench Geometry and Evaluation of Slope Stability of existing benches. Safety measures are being implemented.	Doc-7 396 183-186
3	In the case of processed lease in an existing (or old) quarry where the benches are not formed (or) partially formed as per the approved mining plan. Project Proponent (PP) shall prepare submit an 'Action Plan' for carrying out the realignment of the benches in the proposed quarry lease after it is approved by the concerned Asst. Director of Geology and Mining during the time of approved by the concerned Asst. Director of Geology and Mining during the time of appraisal for obtaining the EC.	This is an existing Mine of RCL in operation since 2005 onwards with proper benches in compliance with approved Mining Plans/Schemes.	Plates in 78-79 83
4	The Proponent shall submit a conceptual 'Slope Stability Plan' for the proposed quarry during the appraisal while obtaining the EC, when the depth of the working is extended beyond 30 m below ground level.	NITK, Surathkal, carried out the Study on Slope Stability of existing benches. Safety measures are recommended.	Doc-8 430 186-187
5	The PP shall furnish the affidavit stating that the blasting operation in the proposed quarry is carried out by the statutory competent person as per the MMR 1961 such as blaster, mining mate, mine foreman, II/I Class mines manager appointed by the Proponent.	The Undertaking/Affidavit is submitted.	12
6	The PP shall present a conceptual design for carrying only controlled blasting operation involving line drilling and muffle blasting in the proposed quarry such that the blast-induced ground vibrations are controlled as well as no	NITK, Surathkal, carried out the Blastings Study and give the recommendations to control the impact.	Doc-7 396 183-186

I. Additional TORs by SEAC-TN

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	fly rock travel beyond 30 m from the blast site.		
7	The EIA Co-ordinator shall obtain and furnish the details of quarry/quarries operated by the proponent in the past, either in the same location or elsewhere in the state with video and photographic evidences.	RCL Mines in the Region are given in Table 1.2 and shown in the Plate-II Regional Setting Map.	72 71
8	If the proponent has already carried out the mining activity in the proposed mining lease area after 15.01.2016, then the proponent shall furnish the following details from AD/DD-Mines.	This is an existing Mines of RCL in operation since 2005 onwards and there is no production violation as such.	75
9	 What was the period of the operation and stoppage of the earlier mines with last work permit issued by the AD/DD mines? a. Quality of minerals mined out. b. Highest production achieved in any one year. c. Detail of approved depth of mining. d. Actual depth of the mining achieved earlier. e. Name of the person already mined in that leases area. f. If EC and CTO already obtained, the copy of the same shall be submitted. g. Whether the mining was carried out as per the approved mine plan (or EC if issued) with stipulated benches. 	a. Cement grade mineral. b. The maximum production from Lease-I was 0.868 MTPA during 2012-13 against consented quantity of 0.9 MTPA. The maximum production from Lease-II was 0.299 MTPA during 2022-23 against consented quantity of 0.3 MTPA. c. Lease-I is 63 m BGL & Lease-II is 40 m BGL. d. Lease-I is 50 m BGL & Lease-II is 15 m BGL. e. RCL f. Given in Docs 1 & 2. g. Yes	95 74 7 - 284-295 316-340
10	All corner coordinates of the mine lease area, super imposed on a High-Resolution Imagery/Topo sheet, topographic sheet, geomorphology, lithology and geology of the mining lease area should be provided. Such an imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).	All corner coordinates of the ML is given Table 1.4 and shown in Figs. 1.2 & 1.3.	86 84-85
11	The PP shall carry out Drone video survey covering the cluster, Green belt, fencing etc.	Drone video survey carried out and shown as Plate IV.	79
12	The Proponent shall furnish photographs of adequate fencing, green belt along the periphery including replantation of existing trees & safety distance between the adjacent quarries & water bodies nearby provided as per the approved mining plan.	Required photographs are given in Plates V-VI.	
13	The Project Proponent shall provide the details of mineral reserves and mineable reserves. Planned production capacity, proposed working methodology with justifications, the anticipated impacts of the mining operations on the surrounding environment and the remedial measures for	As per UNFC Norms, the reserve has been estimated as 15.85 Million Tonnes, as on 01.04.2024. The Reserves & Resources are re-estimated as 22.14 Million Tonnes. The mining	90

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	the same.	operation will be carried out by both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Rippers @ 3.00 MTPA. Limestone production during ROMP period will be 15 Million Tonnes. Balance Reserves will be mined out in subsequent Plan Period. The Life of the Mine is 10 years based on established Reserves now. Ultimate Pit Depth on proposed Plan Period will be 92 m BGL from 71 m arrived in the earlier Mining Plan. Mining will intersect the Ground water- table – Para 2.2.	
14	The Project Proponent shall provide the Organization chart indicating the appointment of various statutory official and other competent persons to be appointed as per the provisions of Mines Act'1952 and the MMR. 1961 for carrying out the quarrying operations scientifically and systematically in order to ensure safety and to protect the environment.	Given I Para 2.7 and Table 2.7.	103
15	The Project Proponent shall conduct the hydro-geological study considering the contour map of the water table detailing the number of ground water pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds etc. within 1 km (radius) along with the collected water level data for both monsoon and non-monsoon seasons from the PWD/TWAD so as to assess the impacts on the wells due to mining activity. Based on actual monitored data. It may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided.	On the monitoring day, the water levels observed in the 6 Borewells in the PNR-A Mine vicinity (within 2 km) are given in Table 3.22. The levels were found to be 8.14 m BGL to 22.30 m BGL while it was 15.50 m BGL at PNR Mine. Water table Contour is given as Plate X.	142
16	The Proponent shall furnish the baseline data for the environmental and ecological parameters with regard to surface water/ground water quality, air quality, soil	Chapter-3 provides all Baseline Data for the Winter 2023-24 Season. Traffic study details are	109-179 188-189
17	quality & flora/fauna including traffic/vehicular movement study. The Proponent shall carry out the Cumulative	provided in Para 4.3.5. Chapter 4 dealt the	180-181

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	impact study due to mining operations carried out in the quarry specifically with reference to the specific environment in terms of soil health, biodiversity, air pollution, water pollution, climate change and flood control & health impacts and its mitigation measures. Accordingly, the Environment Management plan should be prepared keeping the concerned quarry and the surrounding habitations in the mind.	anticipated impacts of the Project on the environmental components and their mitigation measures. Accordingly, EMP has been formulated and submitted in Chapter 10.	234-240
18	Rain water harvesting management with recharging details along with water balance (both monsoon & non-monsoon) be submitted.	The Water Balance Diagram is given as Fig. 2.8. Mine Pits dewatering quantity Minimum was about 754 KLD during Apr. 2023-Mar. 2024 Period (Table 4.9) with Non-monsoon Season Discharge-Avg. of 725 KLD and Monsoon Season Discharge-Avg. of 840 KLD.	108 195
19	Land use of the study area delineating forest area, agricultural land, grazing land, wild life sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phase and submitted. Impact, if any, of change of land use should be given.	Satellite Imagery/data (dated 14.03.2022) is used (Fig. 3.5) land use mapping (Fig. 3.6).	150-153
20	Details of the land for storage of Over- burden/ Waste Dumps (or) Rejects outside the mine lease area such as extent of land area distance from mine lease, its land use, R&R issues, if any, should be provided.	Existing Dump details are dealt in Para 2.8. Entire OB quantity in the Dumps will be rehandled and utilized for backfilling in the ROMP period. Thus, there will be no Top Soil Dump or OB Dump in the Lease at the end. No R&R due to the Proposal.	104 76
21	Proximity to Areas declared as 'Critically Polluted' (or) the Project areas which attracts the court restrictions for mining operations, should also be indicated and where so required, clearance certifications from the prescribed authorities, such as the TNPCB (or) Dept. of Geology and Mining should be secured and furnished to the effect that the proposed mining activities could be considered.	Project area does not fall in Critically Polluted Industrial Clusters listed by CPCB. There is no court restrictions / litigation for the mining operations.	109 76
22	Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting	About 14.00 Ha will be Backfilled & Reclaimed and balance 25.17 Ha will be left	104

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	proposed in the Project. If any, should be provided.	out as water reservoir (Fig. 2.7) for harvesting Rain water and recharge the ground water-table.	
23	Impact on local transport infrastructure due to the project should be indicated.	Traffic study details are provided in Para 4.3.5.	188-190
24	A tree survey study shall be carried out (nos., name of the species, age, diameter etc.) both	So far, about 19.70 Ha is brought under green belt	106
	within the mining lease applies area & 300 m buffer zone and its management during mining activity.	(including Dumps) with 44,980 trees @ 2,283 plants per Ha and survival rate is about 90% (Table 2.9). Herbs and shrubs are also made besides tree plantation – Para 2.11. About 216 trees along the common boundaries & OB Dumps are already transplanted in PNR Old Crusher area and maintained as such (Plate VII).	104
25	A detailed mine closure plan for the proposed project shall be included in EIA/EMP report which should be site specific.	Para 2.9 & Fig. 2.7	104-105
26	Public Hearing points raised and commitments of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project and to be submitted to SEIAA/SEAC with regard to the Office Memorandum of MoEF&CC accordingly	To be incorporated after the Public Hearing.	-
27	The Public Hearing advertisement shall be published in one major National daily and one most circulated vernacular daily.	To be complied.	-
28	The PP shall produce/display the EIA report, Executive summary and other related information with respect to public hearing in Tamil Language also.	Summary EIA Reports (both in English and Tamil versions) along with Draft EIA Report are submitted for the Public Hearing.	-
29	As part of the study of flora and fauna around the vicinity of the proposed site, the EIA coordinator shall strive to educate the local students on the importance of preserving local flora and fauna by involving them in the study, wherever possible.	Para 3.9 provides the details on Flora & Fauna of Core & Buffer Zones with EMP measures in Chapter 10.	154-168 234-240
30	The purpose of Green belt around the project is to capture the fugitive emissions, carbon sequestration and to attenuate the noise gathered, in addition to improving the aesthetics. A wide range of indigenous plant	Para 2.11 provides the details.	106

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	species should be planted as given in the appendix-I in consultation with the DFO, State Agriculture University and local school/college authorities. The plant species with dense/moderate canopy of native origin should be planted in a mixed manner		
31	Taller/one year old saplings raised in appropriate size of bags; preferably eco- friendly bags should be planted as per the advice of local forest authorities/botanist/Horticulturist with regard to site specific choices. The proponent shall earmark the greenbelt area with GPS coordinates all along the boundary of the project site with at least 3 meters wide and in between blocks in an organized manner.	Para 2.11 provides the details.	106
32	A disaster management plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.	DMP is dealt in Para 7.3.	229-232
33	A Risk Assessment and management plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.	Paragraphs 7.1 & 7.2 provide the details.	228
34	Occupational Health Impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of the pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The Project specific Occupational Health mitigation measures with required facilities proposed in the mining area may be detailed.	Occupational Health Surveillance Programme is being carried out for all the Mine Employees periodically – Para 4.3.12.	211
35	Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.	Public health details are provided under Para 3.10.	178
36	The Socio-economic studies should be carried out within a 5 km buffer zone from the mining activity. Measures of socio- economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.	Para 3.10 and Tables 3.40 – 3.46.	168 171-177
37	Details of litigation pending against the project, if any, with direction/order passed by the Court of Law against the Project should	No litigation against the Project.	76

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	be given.		
38	Benefits of the Project, if the project is implemented should be spelt out. The benefits of the project shall clearly indicate environmental, social, economic, employment potential, etc.	Chapter 8.0 provides the benefits of the project on environmental, social, economic, employment potential, etc.	233
39	If any quarrying operations were carried out in the proposed quarrying site for which now the EC is sought, the Project Proponent shall furnish the detailed compliance to EC Conditions given in the previous EC with the site photographs which shall duly be certified by MoEF&CC, Regional Office, Chennai (or) the concerned DEE/TNPCB.	CCRs are issued by IRO, Chennai for Periyanagalur Mine EC vide Letter F.No. EP/12.1/940/TN/542 dated 18.04.2024 (<u>Document-1</u>) and for Periyanagalur West Mine EC vide Letter F.No. EP/12.1/2016-17/SEIAA/ 30/TN/1057 dated 15.07.2024 (<u>Document-2</u>). All the EC conditions are complied and no Non- compliance as certified.	74 270-340
40	The PP shall prepare the EMP for the entire life of mine and also furnish the sworn affidavit stating to abide the EMP for the entire life of mine.	As per SEAC Guidelines, Capital EMP Budget arrived is Rs.6.70 Lakhs and Rs.11.27 Lakhs per Annum as EMP Operating Cost (Table 10.2).	237-240
41	Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act, 1986.	Agreed. Factual informations submitted.	-

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
1	As per Tamil Nadu Minor Mineral Concession Rules, 1959 a safety distance of 50 Mts, from the highways and railway lines should be left and maintained. The proposed mine lease area is abutting the State Highway 139; the proponent is requested to leave the tail end area in the Lease II area in the western side of the proposed site for a distance of 150m considering the safety aspects of the vehicles playing through the State Highway 139 and accordingly revise the mining plan. Further, Environmental Impact Assessment specific to the State Highway 139 and may be furnished along with EIA Report due to the proposed mining activity.	State Highway (SH)-139 (Ariyalur-V.Kaikatti- Jayamkondam Section) is passing in east-west direction in southern boundary of the PNR- West Mine (Lease-II) and a Safety Distance of 50 m has already been provided as per GO, approved Mining Plan & MCR 1959. The Department of Mining Engineering, Anna University carried out the detailed Study on the safety aspect of Vehicular Traffic in SH-139 and recommended 50 m buffer.	181-183
2	Furnish Hard copy of Environmental and Land use plan (Scale 1:10,000), Quarry Lease Plan & Surface Plan (Scale 1:1000), Topography, Geological Plan, Five Year wise Development & Production Plan & Sections (Scale 1:1000) approved in the Mining Plan.	IBM Approved Plans are submitted as Figs. 2.1-2.7.	94 98-102 105
3	Mining Operations/Process: i. Appropriate mining process and machinery (viz. right capacity, fuel	(i) The List of Machineries proposed are given in Table	103
	efficient) should be selected to carry out various mining operations that generate minimal dust/air pollution, noise, wastewater and solid waste. ii. Details regarding mitigation steps taken in the existing Lease area to assess and quantify emission load generation (in terms of air pollution, noise, waste water and solid waste) from each of the mining activity (including transportation) on annual basis. iii. Action plan to eliminate/ minimize generation of air pollution/dust, noise, waste water, solid waste generation in successive years through use of better technology for the proposed amalgamated lease area. iv. The PP shall explore the possibilities of providing Digital processing of the entire lease area for the existing pit using	 2.6. (ii) Air pollutant emissions are predicted by using standard equations given in 'Indian Mine and Engineering Journal' and suggested by USEPA (Emission Factors as referred in AP-42) for Mining and Allied activities. (iii) Non-conventional method of Mining is to be adopted preferably. Controlled Drilling & Blasting is being practiced whenever required. On Amalgamation of the Mine, about 1245 KLD mine pit seepage water realization will be there. As in current practice, the pumped out water from Settling Tanks, after 20 KLD consumption for Mine use, will be utilised for 	90 195 199
	remote sensing technique.	Irrigation (Agricultural) activities in eastern side. (iv). DGPS survey completed.	-

II. Additional TORs by SEIAA-TN

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	v. The measures taken to monitor the land use pattern and mining activity for the proposed amalgamated site.	(v) Progressive Mine Closure Plan as approved by IBM.	104
4	Water /Wastewater: i) The mining operations should be restricted to above ground water table and it should not intersect groundwater table	Existing PNR mine has already intersected the GWT. As reserves established and approved mining will be upto 92	90
	 ii) However, if enough resources are estimated below the ground water table, the same may be explored after conducting detailed geological studies by 	m BGL. (ii) A detailed hydro-geological study has been conducted and submitted.	Doc-9 191-201
	GSI and hydro-geological studies by SGWB or NIH or institute of national repute, and ensuring that no damage to the land stability/water aquifer system shall happen. iii) The details/ outcome of such study may be reflected/ incorporated in the	 (iii) Covered under Para 4.3.7. (iv) Plate VIII. The levels were found to be 8.14 m BGL to 22.30 m BGL while it was 15.50 m BGL at PNR Mine. The anticipated cone of depression in such aquifers with low T values will be highly localized, and does not expend the word the second beyond the seco	140
	EIA/EMP report of the mine appropriately. iv) The existing mining pit Lease I (35.96 Ha) has intersected the Ground water table. The mitigation measures and Hydro geological report regarding the impact of mining on Ground water quality in the mine lease area and the surrounding water bodies within 1km radius shall be furnished.	 and does not spread beyond the Mine due to poor permeability of limestone aquifer. (v) RCL has applied to State Ground Water Department (SGWB), WRO, Taramani, Chennai for NOC for dewatering. However, the Applications are still under the Department porusal for want of State Gout 	196-198
	 v) The NOC obtained for intersection of Ground water in the Lease I area from the Central Ground Water Authority (CGWA)/ Concerned Local Authority shall be furnished. vi) The depth and the date at which the 	Policy or direction. (vi) Based on the mine workings, the Ground water-table level in the mine vicinity is at 40 m BGL during Postmonsoon & 45 m BGL	199
	Ground Water intercepted the mine Lease Area. vii) The remediation measures that were taken after the interception of ground water due to mining activity in the existing Lease I area. viii) The Water quality analysis report of the mine pit water utilized for raw water demand and for raising agricultural crops.	during Premonsoon periods. (vii, ix & x) Mine Pits dewatering quantity was about 754 KLD during Apr. 2023-Mar. 2024 Period. The pumped out water from Settling Tanks, after 20 KLD consumption for Mine use, is being utilised for Irrigation (Agricultural) activities in eastern side for about 46 Ha. About 26	195
	 Ix) The details regarding the pre- treatment provided for the mine pit water utilized for raising agricultural crops. x) The details about the extent of land for which the mine pit water was utilized for raising the agricultural crops till date shall be furnished. 	Families are the beneficiaries. (viii, xi & xii) : Existing monitored WQ Data are provided under Para 6.3. (xiv) Area of excavation at the end of the life of the mine will be 39.17 Ha, out of which about	214 218-223 104
	xi) Provisions for regular monitoring of ground water level and its quality	14.00 Ha will be Backfilled & Reclaimed and balance 25.17 Ha	

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	provided for the existing lease area and for the proposed amalgamated lease area shall be furnished.	will be left out as water reservoir for recharging the ground water table in the vicinity.	
	xii) Details about the network of existing wells and piezometers provided for monitoring the existing Lease Larea	(xv, xvi, xvii, xviii, xix, xx, xxii & xxiii)- Para 6.3.	218-223 142-143
	xiii) The project proponent shall furnish the contour map of the water table detailing the number of well located around the lease mine area and its impact	(xxi) Existing OB Dumps are being rehandled for backfilling the mined out voids.	104
	around the lease mine area and its impact on the wells due to mining activity. xiv) Details regarding suitable conservation measures to augment ground water resources in the existing Lease area undertaken as per the guidelines of Central Ground Water Board (CGWB) may be furnished. xv) Appropriate mitigation measures (viz. STP, garland drains, retaining walls, collection of runoff etc) taken to prevent pollution of nearby river/other water bodies for the existing Lease area. xvi) Water Quality Analysis study conducted by Tamil Pollution Control Board to ensure quality of surface and ground water sources on regular basis for the existing Lease Area shall be furnished. xvii) Details regarding the study of quality of surface and ground water sources along with the frequency in which test was conducted by NABL/NABET approved water testing laboratory for the existing lease mine area shall be furnished. xviii) Provisions provided to trap silt originating due to mining activity from entering into the surface water course or any other water body. xix) Appropriate measures for prevention and control of soil erosion and management of silt undertaken for the existing lease area. xx) Details of Quantity of silt/soil generated in the existing lease area, measured on regular basis shall be furnished. xxi) Provision of retaining walls for dumps for protection. Measures taken to prevent erosion from dumps site. Details of plantation carried out at the dump clopes	(xxiv) Table 4.11	199

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	 xxii) Details about trenches/garland drain provided in the existing OB Dump site. Detailed report regarding de-silting at regular intervals carried out. xxiii) Details regarding source of water utilized for Green Belt development, haul roads shall be furnished. The water source for above mentioned activity for the proposed amalgamated lease area may also be furnished. xxiv) Water balance diagram prepared on monthly basis for efficient consumption/utilization in different activities shall be furnished for existing lease area. 		
5	Land / Soil / Overburden: i) The details about top soil stored at earmarked site(s) for the existing Lease area shall be furnished. ii) Furnish the report of slope stability study conducted on the existing OB Dump site as per IBM approved mine plan and DGMS guidelines. iii) The preventive measures adopted at OB dump site to prevent erosion and surface run off for the existing Lease area. iv) The preventive measures adopted at OB dump site for stabilization of the dump in critical areas.	 (i) Topsoil of 332,600 Tons was removed and 301,022 Tons was used for Green Belt development. Balance 31,578 Tons Topsoil was stacked & maintained at the earmarked site (0.17 Ha) and will be used for rehabilitation of backfilled areas during the Plan Period. (ii to iv) There are 4 Nos. OB Dumps with 23,68,205 Tons OB. Existing OB Dumps are being rehandled for backfilling the mined out voids. 	Para 2.8 104
6	Stage wise reclamation plan of the mine up to the period of conceptual pit limit shall be provided.	Area of excavation at the end of the mine will be 39.17 Ha, out of which about 14.00 Ha will be Backfilled & Reclaimed and balance 25.17 Ha will be left out as water reservoir – Para 2.9	104
7	The PP shall explore the possibilities of organizing employment-based apprenticeship/ internship training program every year with appropriate stipend for the youth and other programs to enhance the skill of the local people. The data shall be maintained for the training imparted to the persons and the outcome of the training for the assessment of the training program which should be analyzed periodically.	Plates XIII & XIV	209-210
8	Details regarding occupational health check-up of 1/3 of the persons conducted every year may be furnished	Details provided in Para 4.3.12	211
9	The proponent shall shift (or) shall leave safety distance for the Low/high tension	Details provided in Para 1.7. Five Low Tension Power Lines	82

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	line in the proposed mining area accordingly as recommended in precise area communication & Mine plan approval before executing mine lease and obtaining CTO from the TNPCB.	are rerouted/shifted away from the Lease boundary.	
10	A High-Tension Power Line located within the mining lease area on the eastern side passing North East – South West direction was proposed to be rerouted away from the lease area. The current status of the proposal shall be furnished along with the time frame in which the High-Tension power line will be rerouted.	Details provided in Para 1.7. The High Tension Power Line located within the ML area on the eastern side passing Northeast – Southwest direction is rerouted away from the Lease area.	82
11	The current status of proposal to reroute/shift Five Low Tension Power Lines along with the time frame in which the power lines will be rerouted /shifted shall be furnished.	Details provided in Para 1.7. Five Low Tension Power Lines are rerouted/shifted away from the Lease boundary	82
12	The current status of proposal to reroute a road approaching to Chinnanagalur village located on the South-Western side of the Lease boundary in consultation with District Authorities shall be furnished.	Details provided in Para 1.7. It is proposed to be rerouted from SH-139 along the existing dump area and the consultation with the District Authorities is underway.	82
13	No tress in the area should be removed all the trees numbered and protected. In case trees fall within the proposed come quarry site the trees may be transplanted in the Greenbelt zone.	About 216 trees along the common boundaries & OB Dumps are already transplanted in PNR Old Crusher area and maintained as such (Plate VII).	106-107
14	The AD/DD. Dept.of Geology & Mining shall ensure operation of the proposed quarry after the submission slope stability study for the ultimate depth as per approved mining plan conducted through the reputed research & Academic Institutions such as NIRM, IITs, NITS Anna University, and any CSIR laboratories etc.	NITK, Surathkal, carried out the Study on Slope Stability of existing benches. Safety measures are recommended.	Doc-8 430 186-187
15	The AD/DD. Dept. of Geology & Mining & Director General of Mine safety shall ensure strict compliance and implementation of bench wise recommendations /action plans as recommended in the scientific slope stability study of the reputed research & Academic Institutions as a safety precautionary measure to avoid untoward accidents during mining operation.	NITK, Surathkal, carried out the Study on Slope Stability of existing benches. Safety measures are recommended.	Doc-8 430 186-187
16	The Proponent shall ensure that the activities should in no way result in disturbance to forest and trees in vicinity.	Parts of Managethi RF (6.6 km in east), Vannankurichi RF (7.0 km in NE), Kallankuthu RF (10.0 km ENE), Vilangudi Extn. RF (8.0 km	86 84-85

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
		in ESE), Vilangudi RF (8.2 km in ESE), Sundaresapuram RF (9.5 km in SE) and Ulliyakudi RF (10.0 km in SE) fall in the Study Area – All well away from the Mine.	
17	The Proponent shall ensure that the operations shall not result in loss of soil biological properties and nutrients.	Garland drains are connected to the sedimentation tanks of 3 (L) x 3 (W) x 2 m (D) at the corners to settle the solids before final disposal. Periodical desilting of garland drains and sedimentation tanks is made.	214
18	The activity should not result in CO ₂ release and temperature rise and add to micro climate alternations.	Due to mineral transportation, the total CO ₂ Emission due to the Proposal will be 0.045 Tons/Annum.	190
19	The mining closure plan should be strictly adhered with appropriate soil reclamation measures to ensure ecological stability of the area.	Approved PMCP will be adhered.	104
20	Reclamation/Restoration of the mine site should ensure that the Geotechnical, physical, chemical properties are sustainable that the soil structure composition is build-up, during the process of restoration.	Soil amendments as required will be caried out to improve soil heath. Bio remediation using micro organisms will be carried out to restore the soil environment.	236
21	The Proponent shall ensure that the activity does not disturb the movement of grazing animals and free ranging wildlife.	There is no grazing land nearby.	87
22	The Proponent shall ensure that the activity does not disturb the biodiversity, the flora & fauna in the ecosystem.	Reserved Forests are away from the Lease.	86
23	The Proponent shall ensure that the activity does not disturb the water bodies and natural flow of surface and ground water, nor cause any pollution, to water source in the area.	Recharge cum Settling Pond of 100 (L) x 50 (W) x 2 m (D) is made in the eastern side of the Lease area to collect the surface runoffs through garland drains. Water collected in the settling pond is utilized for green belt and dust control measures. Excess water is drained to nearby irrigation pond for raising agricultural crops in nearby areas.	214
24	The Proponent shall ensure that the activities undertaken should not result in carbon emission, and temperature rise, in the area.	Due to mineral transportation, the total CO ₂ Emission due to the Proposal will be 0.045 Tons/Annum.	190
25	The Proponent shall ensure that the mine closure plan are followed as per mining plan and the mine restoration should be	Approved PMCP & CP will be adhered. Bio remediation using micro organisms will be carried	104

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	done with native species, and site restored to near original status.	out to restore the soil environment.	
26	The Proponent shall ensure that Monitoring be carried out with reference to the quantum of particulate matter during excavation; blasting; material transport and also from cutting waste dumps and haul roads.	The Drilling & Blasting, Excavating, Loading, Unloading, Transporting and Rehandling activities are considered.	202-203
27	The Proponent shall ensure that the area is ecologically restored to conserve the ecosystems and ensure flow of goods and services.	Area of excavation at the end of the life of the mine will be 39.17 Ha, out of which about 14.00 Ha will be Backfilled & Reclaimed and balance 25.17 Ha will be left out as water reservoir for recharging the ground water table in the vicinity.	104
28	The Proponent shall ensure that the activities shall not disturb the agro biodiversity and agro farms.	The mine pit water, after TSS settlement, is discharged for Agricultural activities nearby.	195
29	The Proponent shall ensure that the activity shall not result in invasion by invasive alien species.	There is no invasion of any invasive alien species.	236
30	Actions to be taken to promote agro forestry, mixed plants to support biodiversity conservation in the mine restoration effort.	Fruit bearing trees may also be preferred	236
31	The Proponent shall ensure that activity shall not deplete the indigenous soil seed bank and disturb the mycorrizal fungi, soil organism, soil community nor result in eutrophication of soils and water.	Garland Drains and Settling Tanks will be maintained and desilted periodically. The de- silted quantity from the Garland Drains will be used for Green Belt/Afforestation	214
32	The activities should not disturb the soil properties and seed and plant growth. Soil amendments as required to be carried out to improve soil health.	Soil amendments as required will be caried out to improve soil heath. Bio remediation using micro organisms will be carried out to restore the soil environment to enable carbon sequestration	236
33	Bio remediation using microorganisms should be carried out to restore the soil environment to enable carbon sequestration.	SOM is a complex mixture of carbon compounds, consisting of decomposing plant and animal tissue, microbes (protozoa, nematodes, fungi, and bacteria), and carbon associated with soil minerals. It will be ensured that Plant operations do not result in loss of soil biological properties and nutrients.	236
34	The Proponent shall ensure that all mitigation measure listed in the EIA/EMP	EMP measures are proposed to protect the biodiversity and natural resources in the area.	234-240

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
	are taken to protect the biodiversity and natural resources in the area.		
35	The Proponent shall ensure that the activities should not impact the water bodies/wells in the neighboring open wells and bore wells.	There is no impact on water bodies.	191
36	The Proponent shall ensure that the activities should neither in any way affect the water quantity and quality in the open wells and bore wells in the vicinity nor impact the water table and levels.	There is no impact on quantity and quality in the open wells and bore wells in the vicinity	191
37	The Proponent shall ensure that in the green belt development more indigenous trees species (Appendix as per the SEAC Minutes) to be planted.	Native species are preferred.	236
38	The Proponent shall ensure that the activities should not disturb the resident and migratory birds.	There is no migratory corridor in the mine vicinity.	207
39	The Proponent shall ensure the area should be restored and rehabilitated with native trees as recommended SEAC Minuets (in Appendix).	Native species are preferred and planted.	236
40	The Proponent shall ensure that the mine restoration should be done using mycorrizal VAM, vermicasting, Bio fertilizers to ensure soil health and, biodiversity conservation.	Carbon compounds, consisting of decomposing plant and animal tissue, microbes (protozoa, nematodes, fungi, and bacteria), and carbon associated with soil minerals. It will be ensured that Plant operations do not result in loss of soil biological properties and nutrients.	190
41	The Proponent shall ensure that the topsoil should be protected and used in planting activities in the area.	Balance 31,578 Tons Topsoil was stacked & maintained at the earmarked site (0.17 Ha) and will be used for rehabilitation of backfilled areas during the Plan Period.	104
42	The Proponent shall ensure that the activities should not disturb the river flow, nor affect Odai, Water bodies, Dams in the vicinity.	There is no impact on water bodies.	191
43	The Proponent shall ensure that the activities should not disturb the vegetation and wildlife in the adjoin reserve forest and area around.	Reserved Forests are away from the Lease.	86
44	The Proponent should ensure that there is no disturbances to the agriculture plantations, waste lands, forests, sanctuary or national parks. There should be no impact on the land, water, soil and biological environment and other natural resources due to the mining activities.	There is no impact on the land, water, soil and biological environment and other natural resources due to the mining activities.	180-211

SI. No.	Awarded TOR	Compliance	EIA Report Page No.
45	The Proponent shall ensure that topsoil to be utilized for site restoration and Green belt alone within the proposed area.	Balance 31,578 Tons Topsoil was stacked & maintained at the earmarked site (0.17 Ha) and will be used for rehabilitation of backfilled areas during the Plan Period.	104
46	The Proponent shall ensure that activities should not impact green lands/grazing fields of all types surrounding the mine lease area which are food source for the grazing cattle.	There is no impact on surrounding land use due to the mine.	187

SI. No.	Standard TOR	EIA Report Page No.
1	Year-wise production details since 1994 should be given, clearly stating the highest production achieved in ant one year prior to 1994. It may also be categorically informed whether there had been increase in production after the EIA Notification 1994 came into force, w.r.t. the highest production achieved prior to 1994.	Para 1.5 74-75 No violation in EC Qty.
2	A copy of the document in support of the fact that the Proponent is the rightful lessee of the mine should be given.	68 Doc-3; 341
3	All documents including approved mine plan, EIA and public hearing should be compatible with one another in terms of the mine lease area, production levels, waste generation and its management and mining technology and should be in the name of the lessee.	Complied. All documents are compatible
4	All corner coordinates of the mine lease area, superimposed on a high Resolution Imagery/Topo sheet, topographic sheet, geomorphology and geology of the area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).	84-86
5	Information should be provided in Survey of India Top sheet in 1:50,000 scale indicating geological map of the area, geomorphology of land forms of the area, existing mineral and mining history of the area, important water bodies, streams and rivers and soil characteristics.	84-85
6	Details about the land proposed for mining activities should be given with information as to whether mining conforms to the land use policy of the State; land diversion mining should have approval from State land use board or the concerned authority.	Existing mines being amalgamated
7	It should be clearly stated whether the proponent Company has a well laid down Environment Policy approved by its Board of Directors? If so, it may be spelt out in the EIA Report with description of the prescribed operating process / procedures to bring into focus any infringement/ deviation / violation of the environmental or forest norms/ conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the Company and/ or shareholders or shareholders at large, may also be detailed in the EIA Report.	70
8	Issues relating to Mine Safety, including subsidence study in case of underground mining and slope in case of opencast mining, blasting study etc. should be detailed. The proposed safeguard measures in each case should also be provided.	183-185
9	The study area will comprise of 10 km zone around the mine lease from lease periphery and the data contained in the EIA such as waste generation etc. should be for the life of the mine / lease period.	109-110 91
10	Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary and national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.	150-153 104
11	Details for the land any Over Burden Dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be given.	No external dump & No R&R - 76
12	A Certificate from the Competent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of the forests, the site may be inspected by the State Forest Department along with the Regional office of the Ministry to ascertain the status of forests. based	Not Applicable; No Forest land is involved. 14-15

III. Standard Terms of Reference

SI. No.	Standard TOR	EIA Report Page No.
	on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for representative of the State Forest Department to assist the Expert Appraisal Committees.	1 490 110.
13	Status of forestry clearance for the broken up area and virgin forestland involved in the Project including deposition of net present value (NPV) and compensatory afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished.	Not Applicable.
14	Implementation status of recognition of forest rights under the Schedule Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.	Not Applicable.
15	Vegetation in the RF / PF areas in the study area, with necessary details should be given.	154
16	A study shall be got done to ascertain in the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.	Not Applicable; No wildlife sanctuary exists in10 km
17	Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger / Elephant Reserves / (existing as well as proposed), if any, within 10 Km of the mine lease should be clearly indicated, supported by location map duly authenticated by Chief Wildlife Warden. Necessary Clearance as may be applicable to such projects due to the proximity of ecologically sensitive areas as mentioned above, should be Obtained from the Standing Committee of National Board of Wildlife and copy furnished.	Not Applicable; No eco sensitive zone within the Study Area
18	A detailed biological study for the study area [core zone and buffer zone (10 km radius of the periphery of the mine lease)] shall be carried out. Details of flora and fauna, duly authenticated, separately for core and buffer zone should be furnished based on primary field survey clearly indicating the Schedule of the fauna present.	154-168 14-15
19	Proximity to Area declared as 'Critically Polluted' or the Project areas likely to come under the "Aravali Range', (attracting court restrictions for mining operations), should also be indicated and where so required, clearance clarifications from the Prescribed authorities, such as the SPCB or State Mining Department should also be secured and furnished to the effect that the proposed mining activities could be considered.	Nil 109
20	Similarly, for coastal projects, A CRZ map duly authenticated by one of the authenticating agencies demarcating LTL, HTL, CRZ area., location of the mine lease w.r.t CRZ, coastal features such as mangroves, if any, should be furnished (Note: The Mining projects falling under CRZ would also need to obtain approved of the concerned Coastal Management Authority)	Not Applicable 109
21	R&R Plan/compensation details for the Project Affected People (PAP) should be furnished. While preparing the R&R Plan the relevant State/National Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs/STs and other weaker sections of the society in the study area, a need based sample survey, family-wise, should undertaken to assess their requirements, and action programmes prepared and submitted accordingly, interacting with sectoral departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area will be shifted or not. The issue relating to shifting of village(s) inducing their R&R and Socio- Economic aspects should be discussed in the report.	58 No R&R issue
22	One season (non-monsoon) [i.e. March-May (summer season); October – December (Post monsoon season); December-February (winter season)] primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and fauna shall be collected and AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific Metrological data should also be collected. The locations of the monitoring	Winter Season (Dec. 2023- Feb.2024) Data 109-179
	stations should be such as to represent whole of the study area and justified	118-122

SI. No.	Standard TOR	EIA Report Page No.
	keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be atleast one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.	123 136
23	Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any and the habitation. The wind roses showing predominant wind direction may also be indicated on the map.	202-206 122
24	The water requirement for the project, its availability and source to be furnished. A detailed water balance should also be provided. Fresh water requirement for the project should be indicated.	108
25	Necessary clearance from the Competent Authority for drawl of requisite quantity of water for the project should be provided.	195-198
26	Description of water conservation measures proposed to be adopted in the project should be given. Details of rainwater harvesting proposed, if any, in the project should be provided.	195 & 199
27	Impact of the project on the water quality both surface and groundwater should be assessed and necessary safeguard measures, if any required should be provided.	191-201
28	Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. In case the working will intersect the groundwater table, a detailed Hydro Geological Study should be undertaken and Report furnished. The report inter-alia, shall include details of the aquifers present and Impact of the mining activities on these aquifers. Necessary permission from Central Groundwater Authority for working below ground water and for pumping of groundwater should also be obtained and furnished.	83 191-201 Doc-9-466
29	Details of any stream, seasonal or otherwise, passing through lease area and modification / diversion proposed, if any and the impact of the same on the hydrology should be brought out.	Nil Existing Mines
30	Information on site elevation, working depth, groundwater table etc. should be provided both in AMSL and bgl. A schematic diagram may also be provided for the same.	83
31	A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the project, Phase wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis with local and native species which are tolerant to pollution.	104 106
32	Impact on local transport infrastructure due to the project should be indicated. Projected increase in truck traffic as a result of the project in the present road network (including those outside the project area) should be worked out, indicating whether it is capable of handling the increased load. Arrangement for improving the infrastructure, if contemplated (including action to be taken by other agencies such as State Government) should be covered. Project Proponent shall conduct Impact of Transportation study as per Indian Road Congress Guidelines.	188-189
33	Details of the onsite shelter and facilities to be provided to the mine workers should be included in the EIA Report.	108
34	Conceptual post mining land use and Reclamation and Restoration of mined out	104-105

No.	Standard TOR	EIA Report Page No.
	Areas (with plans and with adequate number of sections) should be given in the EIA report.	
35	Occupational health impact of project should be anticipated and preventive measures initiated. Details in this regard should be provided. Details of preplacement medical examination and periodical medical examination schedules should be incorporated in the EMP. The Project specific occupational health mitigation measures with required facilities proposed in the mining area detailed.	211
36	Public health implication of the project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocation.	178
37	Measures of socio economic significance and influence to the local community proposed to be provided by project proponent should be indicated. As far as possible, quantitative dimensions may be given with time frame for implementation.	207-210
38	Detailed Environmental Management Plan (EMP) to mitigate the environmental which, should inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project.	234-240
39	Public hearing points raised and commitment of the project proponent on the same along with time bound action plan to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project.	To be complied
40	Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the project should be given.	Nil 76
41	The cost of the project (capital cost and recurring cost) as well as the cost towards implementation of EMP should clearly be spelt out.	237
42	A Disaster Management Plan shall be prepared and included in the EIA/EMP of Report.	229-232
43	Benefits of the Project if the Project is implemented should be spelt out. The Benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.	233
44	Besides the above, the below mentioned general points should also be followed:-	
(a)	Executive summary of the EIA/EMP Report.	241-262
(b)	All documents may be properly referenced with index and continuous page numbering.	Complied
(c)	Where data are presented in the report especially in tables, the period in which the data were collected and the sources should be indicated.	Complied
(d)	Project Proponent shall enclose all the analysis/testing reports of water, soil, noise, etc. using the MoEF&CC/NABL accredited laboratories. All the original/testing reports should be available during the appraisal of Project.	Complied
(e)	Where the documents provided are in a language other than English, an English translation should be provided.	Complied
(f)	The Questionnaire for environmental appraisal of mining projects as prescribed by the Ministry shall also be filled and submitted.	Complied with
(g)	While preparing the EIA report, the instructions for the Proponents and instructions for the Consultants issued by MoEF&CC vide O.M. NO. J-11013/41/2006-Ia.II(I) dated 4 th August, 2009, which are available on the website of this Ministry, should be followed.	10 & 11
(h)	Changes, if any made in the basic scope and project parameters(as submitted in Form-I and the Feasibility Report for securing the TOR) should be brought to the attention of MoEF&CC/SEIAA with reasons for such changes and permission should be sought, as the TOR may also have to be altered. Post Public Hearing changes in structure and content of the draft EIA/EMP (other than modifications arising out of the PH process) will entail conducting the PH again with the revised Documentation.	Complied

SI.	Standard TOR	EIA Report
	report of the status of compliance of the conditions stipulated in the environment clearance for the existing operations of the project, should be obtained from the Regional Office of Ministry of Environment, Forest and Climate Change, as many be applicable.	Docs 1 & 2 270-340
(j)	EIA report should also include (i) surface plan of the area indicating contours of main topographic features, drainage and mining area, (ii) geological maps and sections and (iii) sections of the mine pit and external dumps, if any, clearly showing the land features of the adjoining area.	Complied 94
	In addition to the above the following shall be furnished:-	
	Executive Summary of EIA/EMP Report in about 8-10 pages should be prepared incorporating the information on following points:	241-262
1	Project name and location (Village, District, State, Industrial Estate (if applicable).	243
2	Process description in brief, specifically indicating the gaseous emissio9n, liquid effluent and solid and hazardous wastes.	245
3	Measures for mitigating the impact on the environment and mode of discharge or disposal.	256
4	Capital cost of the project, estimated time of completion.	262
5	The Proponent shall furnish the contour map of the water table detailing the number of wells located around the site and impacts on the wells due to mining activity.	139 142, 143 255
6	A detailed study of the lithology of the mining lease area shall be furnished.	93
7	Details of village map. "A" register and FMB sketch shall be furnished.	243
8	Detailed mining closure plan for the proposed project approved by the Geology of Mining Department shall be submitted along with EIA report.	256
9	Obtain a letter/ certificate from the Assistant Director of Geology and Mining standing that there is no other Minerals/resources like sand in the quarrying area within the approved depth of mining and below depth of mining and the same shall be furnished in the EIA report.	Limestone established upto 92 m BGL
10	EIA report should strictly follow the Environmental Impact Assessment Guidance Manual for Mining Minerals published February 2010.	Complied
11	Detail plan on rehabilitation and reclamation carried out for the stabilization and restoration of the mined areas.	No R&R 245
12	The EIA study report shall include the surrounding mining activity, if any.	248-249
13	Modeling study for Air, Water and noise shall be carried out in this field and incremental increase in the above study shall be sustained with mitigation measures.	256
14	A study on the geological resources available shall be carried out and reported.	245
15	A specific study on agriculture & livelihood shall be carried out and reported.	257
16	Impact of soil erosion, soil physical chemical and biological property changes may be assumed.	257
17	Site selected for the project – Name of land – agricultural (single/double crop), barren, Govt./Private land, Status of its acquisition, nearby (in 2-3 k.m) water body, population, within 10 km, other industries, forest, ecosensitive zones, accessibility, (note – in case if industrial estate this information may not be necessary)	Existing Mine 245 248-249
18	Baseline environmental data – air quality, surface and ground water quality, soil characteristic, flora and fauna, socio-economic condition of the nearby population.	250-252

		1
SI. No.	Standard TOR	EIA Report Page No.
19	Identification of hazards in handling, processing and storage of hazardous material and safety system provided to mitigate the risk.	258
20	Likely impact of the project on air, water. Land flora fauna and nearby population.	253-257
21	Emergency preparedness plan in case of natural or in plant emergencies.	258
22	Issues raised during public hearing (if applicable) and response given.	To be complied
23	CER plan with proposed expenditure.	262
24	Occupational health measures	261
25	Post Project monitoring plan.	258
26	The Project Proponent shall carry out hydro geological study through institutions /NABET accredited agencies.	256
27	A detailed report on the green belt development already undertaken is to be furnished and also submit the proposal for green belt activities.	261
28	The proponent shall propose the suitable control measure to control the fugitive emissions during the operations of the mines.	259-260
29	A specific study should include impact on flora & fauna, disturbance to migratory pattern of animals.	Nil 248-249
30	Reserve should be earmarked for proper closure plan.	245
31	A detailed plan on plastic waste management shall be furnished. Further, the proponent should strictly comply with, Tamil Nadu Government order (Ms) No. 84 Environment and Forests (EC.2) Department dated 25.06.2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) act, 1986. In this connection, the project proponent has to furnish the action plan.	262

Besides the above, the below mentioned general points should also be followed:-

(a)	A note confirming compliance of the TOR, with cross referencing of the relevant / pages of the EIA report should be provided.	Complied 45-66
(b)	All documents may be properly referenced with index, page numbers and continuous page numbering.	Complied
(c)	Where data are presented especially in the tables, the period in which the data were collected and the sources should be indicated.	Complied
(d)	While preparing the EIA report, the instructions for the proponents and instructions for the consultants issued by MoEF&CC vide O.M. No. J-11013/41/2006-IA.II(I) dated 4 th August, 2009, which are available on the website of Ministry should also be followed.	Complied 10 & 11
(e)	The consultants involved in the preparation of EIA / EMP report after accreditation with Quality Council of India (QCI) / National Accreditation Board of Education and Training (NABET) would need to include a certificate in this regard the EIA / EMP reports prepared by them and data provided by other organization / Laboratories including their status of their of approvals etc. In this regard circular no F.No.J-11013/77/2004-IA-II(I) dated 2 nd December, 2009, 18 th March 2010, 28 th May 2010, 28 th June 2010 & 30 th September 2011 posted on the Ministry's website http://www.moef.nic.in may be referred.	Complied 248

1.0 Introduction

1.1 Purpose of the Report

M/s. The Ramco Cement Limited (RCL) is operating its Govindapuram Cement Plant near Ariyalur for 3.62 MTPA Clinker & 5.50 MTPA Cement production. The Plant requires about 6.5-7.0 MTPA of different grade Limestone and Kankar depending on the production. The existing Captive Mines viz. Periyanagalur, Periyanagalur-West, Kattupirangium, Reddipalayam, Pudupalayam-North & Usenabad-South Limestone Mines and Illupaiyur & Ottakovil Kankar Quarries in the Ariyalur Region supply the Raw Materials Limestone & Kankar to the Plant.

Periyanagalur Mine (Lease-I; PNR) over an extent of 36.29.5 Ha in Periyanagalur Village was granted to RCL (MCL-Madras Cements Limited at that time) vide GO (3D) No. 2 dated 13.01.2003 for a period of 20 years. Lease Deed was executed for actual worked out Lease Area of **35.960 Ha** on 02.06.2003 with validity from 20.08.2003 to 19.08.2023. Subsequently, extension of mining lease validity upto 50 years has been granted vide GO (Ms) No. 77 dated 26.07.2018 over an extent of 35.96 Ha and is **valid till 19.08.2053**. The supplementary lease deed has been executed and registered on 03.07.2019. First EC dated 26.11.1999 was for 0.105 MTPA Limestone production. The mine was operated for 0.105 MTPA quantity from 2005-06 to 2007-08. Expansion EC dated 10.10.2007 is for 0.90 MTPA (Clean Limestone) production and the mine is operating for this quantity from 2008-09 to till date. Crusher established over an extent of 4.22 Ha in the non-lease area was shifted to RCL Govindapuram Cement Plant. Both Opencast Conventional Mining with controlled Blasting & Non-Conventional Mining Method with X-Centric Rippers are adopted.

Periyanagalur-West Mine (Lease-II; PNR-W) over an extent of **17.360 Ha** in Periyanagalur Village was granted for Limestone & Marl vide GO (Ms) No. 153 dated 23.12.2016 for a period of **50 years**. EC for the production of **0.3 MTPA Limestone & Marl** over an extent of 17.36 Ha was awarded by SEIAA-TN vide Letter No. SEIAA-TN/F.No.-462/2012/EC-45/1(a)/ARY/2016 dated 14.11.2016. Lease Deed is executed on 10.01.2017 with validity from 10.01.2017 to 09.01.2067. Both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Rippers are adopted. Existence of Mineral Marl is not proved.

Need for Amalgamation: The two existing Captive Mines in Ariyalur Region are in Conceptual Stage and will be completely exhausted in another 2 years period. Thus, other Limestone sources are being explored for sustained supply of Limestone to Govindapuram Cement Plant. PNR & PNR-W Leases are located adjacent to each other and are in compact & contiguous nature. With long barriers (550 m long & 35 m depth) between the two leases, about 1.50 Million Tonnes of Limestone reserves would be un-exploited. By amalgamation of both the leases, the Mineable Reserves will be enhanced. Also, 'Common Boundary Workings' with Dalmia PNR Mine is now proposed. Thus, it is proposed to amalgamate both these mining leases.

Amalgamated Periyanagalur Mine under GO 126 : The State Government has granted permission vide GO (Ms.) No. 126 dated 26.02.2021 under Rule 56 of the Minerals (other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016 for amalgamating the two Periyanagalur mining leases totalling over an extent of 53.320 hectares into a single lease for mining Limestone only, duly co-terminus with the Lease Period ending on 19.08.2053. IBM, Chennai has approved the Mining Plan for amalgamated Lease vide its Letter TN/ALR/LST/MP-2079.MDS dated 23.07.2021 for the Period 2020-21 to 2024-25 with its validity till 31.03.2025. With 'Common Boundary Workings' with Dalmia PNR Mine proposed now, the Review of Mining Plan (ROMP) for Plan Period of 2025-26 to 2029-30 is beeing submitted with updated data to IBM for its approval.

The established **Mineable Reserves now is 15.85 Million Tonnes**. The mining operation will be carried out by both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Rippers @ **3.00 MTPA**. Limestone production during ROMP period will be **15 Million Tonnes**. Balance Reserves will be mined out in subsequent Plan Period. The **Life of the Mine is 10 years** based on established Reserves now. Ultimate Pit Depth on ROMP Period will be **92 m BGL** from 71 m established in earlier Plan. Mining will intersect the Ground water-table. Fragmented limestone will be loaded by Hydraulic Excavators into Tippers. The Tippers transport limestone to Govindapuram Cement Plant. Limestone transportation will be **in all 3-Shifts** as District Administration restricted Limestone transportation during peak hours of the day in Ariyalur. The Project Cost is **Rs.9.00 Crores**.

The Limestone to be mined out from this Amalgamated Lease is a Major Mineral over an extent of <250 Ha and falls in Category 'B' of Sl. No. 1(a) of EIA Notification 2006, as amended vide Notification SO 1886(E) dated 20.04.2022, for prior Environmental Clearance (EC) from the State Level Environmental Impact Assessment Authority, Tamil Nadu (SEIAA-TN). Accordingly, RCL has applied for prior EC to SEIAA-TN vide Online Proposal No. SIA/TN/MIN/76439/2022 on 02.05.2022. The Proposal under Sl. No. 1(a), Category B1 was deliberated in State Level Expert Appraisal Committee-Tamil Nadu (SEAC-TN) in its 287th Meeting held on 22.06.2022 and in 532nd SEIAA-TN Meeting held on 14.07.2022. Terms of Reference (TOR) for carrying out Environmental Impact Assessment (EIA) Study has been awarded vide Letter SEIAA-TN/F.No.9220/TOR-1215/2022 dated 14.07.2022 with Public Hearing.

EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including Sector-1 (Mining Projects) for Category 'A' by the National Accreditation Board for Education & Training (NABET) vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025 (SI. No. 4 of List dated 15.07.2024). ABC Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2022. EIA Report has been prepared in compliance with awarded TORs and submitted. Summary EIA Reports (both in English and Tamil versions) along with Draft EIA Report are submitted for Public Consultation & Public Hearing.

1.2 Project Proponent

Ramco Group is one of the leading, highly reputed and Second Largest Industrial Group in South India. It is well diversified in the fields of Cement, Ready Mix Concrete, Cement Fiber Products, Cotton and Synthetic Yarn, Software Systems, Wind Farms, Research & Development, Dry Mortar Plants, Cotton Textiles and Surgical. The total employees are about 15,700 and the Turnover of the Group is Rs.8,000 Crores. The main companies of RAMCO Group are:

- * M/s. The Ramco Cements Limited (formerly M/s. Madras Cements Limited).
- ✤ M/s. Rajapalayam Mills Limited.
- ✤ M/s. Ramco Industries Limited.
- M/s. Ramco Systems Limited.

The Ramco Cements Limited (RCL) is one of the reputed Cement Companies in India. The Company is the Second Largest cement producer in South India and sixth largest manufacturer of cement in the Country. The cement production of RCL is about 17.70 million tons per annum (MTPA) from their **Cement Plants** in India.

- Ramasamy Raja Nagar near Virudhunagar, Tamil Nadu (established in 1961) with 3 Lines -2.7 MTPA Cement.
- Kumarasamy Raja Nagar, near Jaggayyapeta, Andhra Pradesh (1986)-3.65 MTPA (3 Lines).
- Alathiyur near Vriddhachalam, Tamil Nadu (1997): 3.0 MTPA (2 Lines).
- Mathod near Chithradurga, Karnataka : 0.3 MTPA (2000; not in operation now).
- Govindapuram near Ariyalur, Tamil Nadu-5.5 MTPA (2009) (2 Lines).
- Kolimigundla, Andhra Pradesh (Cement 2.0 MTPA).

RCL is operating Cement Grinding Units at:

- Kolaghat (2.0 MTPA) in West Bengal.
- ✤ Kattuputtur (0.75 MTPA) near Chennai, Tamil Nadu.
- Valapadi (2.0 MTPA) near Salem, Tamil Nadu.
- Vizag (2.0 MTPA) near Anakapalli, Andhra Pradesh.
- Haridaspur (0.9 MTPA), Jajpur District, Odisha.

It is also operating a Packing Plant at Nagercoil.

RCL is producing Ordinary Portland Cement (**OPC**), Portland Pozzolana Cement (**PPC**), Slag Cement (PSC), Composite Cement (CC), etc. The cement produced by RCL is marketed in the brand name of 'RAMCO'. The market centers are mainly in Tamil Nadu, Andhra Pradesh, Telangana, Kerala, Karnataka, Odisha and West Bengal States.

RCL which has always been striving for Total Quality, possesses International Certificate **ISO:9001**, **ISO:14001**, **ISO:45001** (18001) and **ISO:50001**. The company has achieved various awards for 'Best Performance' in the Cement Industry.

The Ramco Cements Limited is managed by a Board of Directors comprising of eminent personalities as its members. Under the dynamic leadership of Late Shri.P.R.Ramasubrahmaneya Rajha, the company has grown into a massive organization. Shri.P.R.Venketrama Raja is the Managing Director (MD) of the Board. Shri.A.V.Dharmakrishnan, Chief Executive Officer (CEO) is heading the Cement Division. Each Unit is headed by a Unit Head in the President Level.

RCL has the well laid down Safety, Health and Environmental (SHE) Policy approved by the CMD. The units are having their **Integrated Management System** (IMS) Policy. The Environmental Management Plan (EMP) Cell is functioning under the Unit Head and Corporate Social Responsibility (CSR) Committee is functioning under the Corporate Office. There is a **Hierarchical System** in the company **to deal with the environmental issues and for ensuring compliance** with the environmental clearance conditions. Any non-compliance/violations of environmental norms and corrective actions taken will be reported by the Unit Heads to EDO & CEO and by CEO to the Chairman, the Board and the Shareholders.

The Contact information of RCL Corporate Office is :

Shri.M.Srinivasan, Executive Director (Operations), The Ramco Cements Limited, 5th Floor, Auras Corporate Centre, No. 98A, Dr.Radhakrishnan Road, Mylapore, Chennai-600 004. Tel. No. : 044-28478666/28478661/28478656 Fax No. : 044-28478676 e-Mail : ramcoenv@ramcocements.co.in

1.3 Govindapuram Cement Plant

RCL Govindapuram Cement Plant along with its Captive Power Plant (CPP) and Township have been established in an extent of 157.625 Ha in Govindapuram & Aminabad villages, Ariyalur Taluk & District of Tamil Nadu State. The Cement Plant is being operated for **3.62 MTPA Clinker and 5.50 MTPA Cement** production. Captive Power generation is **66 MW**. The statutory approvals for the Plant are listed in **Table 1.1**. The Cement Plant is supported by Captive Limestone Mines in Ariyalur Region (**Table 1.2**). Centralised Crushers are operated at the Cement Plant. The **Plant and Mines operations are in full compliance with the conditions** stipulated in the Environmental Clearances and Consent Orders issued by TNPCB. Regional Setting of the Plant & Mines is shown in **Plate II**.

Production of	Source	Production	MoEF&CC EC References	TNPCB CTOs	
Clinker &	Line-I	Clinker 1.55 MTPA & Cement 3.00 MTPA	F. No. J-11011/509/2006 IA.II(I) dt. 24.08.2007	CTO Orders 2307154336340 (Water) & 2307254336340 (Air) dt. 14.11.2023-valid till 31.03.2028	
	Line-II	Clinker 1.70 MTPA & Cement 2.50 MTPA	F. No. J-11011/82/2010 IA.II(I) dt. 23.11.2010		
Coment	Lines I & II	Clinker 3.62 MTPA & Cement 5.50 MTPA	NIPL Order T1/TNPCB/F.006053/Ar y/ y/ Cement/2023 dt. 25.07.2023		
Thermal Power Generation	1x40 MW 1x20 MW 1x6 MW	66 MW	EC dt. 23.11.2010 & F. No. J-13012/20/2014 IA.I(T) dt. 07.08.2015 for 6 MW Turbine Addition	DCTO Orders 2305151650241 (Water) & 2305251650241 (Air) dt. 24.06.2023- valid till 31.03.2028	

 Table : 1.1 RCL Govindapuram Cement Plant & its Statutory Approvals

Table : 1.2	RCL Captive	Mines in Ari	yalur Region	& their Approvals
-------------	-------------	--------------	--------------	-------------------

SI. No.	Mine	Extent, Ha	ML Ref.	Latest EC Ref.	CTO Orders	Prodn., MTPA
1	Reddipalayam	63.600	GO No. 224 dt. 27.10.2020	SEIAA- TN/F.No.6907/1(a)/EC.No:5145/2 020 dt. 11.07.2022	2307149389486 (W) & 2307249389486 (A) dt. 20.01.2023- valid till 31.03.2027	3.00
2	Kattupiringium (Conceptual Stage)	44.580	GO No. 221 dt. 21.10.2020	MoEF Ltr. J- 11015/ 557/2007- IA.II(M) dt. 10.10.2007	2308150520129 (W) & 2308250520129 (A) dt. 28.12.2023 - valid till 31.03.2025	0.90
3	Periyanagalur	35.960	GO No. 77 dt. 26.07.2018	MoEF Ltr. J- 11015/ 556/2007- IA.II(M) dt. 10.10.2007	2308150516922 (W) & 2308250516922 (A) dt. 28.12.2023-valid till 31.03.2024. CTO Renewal application submitted.	0.90
4	Periyanagalur West	17.360	GO No. 153 dt. 23.12.2016	SEIAA/TN/F.462/ 2012/EC/45/1(a)/ Ariyalur dt. 14.11.2016	2409157816355 (W) & 2409257816355 (A) dt. 29.02.2024 - valid till 31.03.2026	0.30
5	Pudupalayam North (Conceptual Stage)	26.075	GO 4(D) No. 1 dt. 02.01.2007	MoEF Ltr. J- 11015/ 118/2007- IA.II(M) dt.15.10.2012	2108137877418 (W) & 2108237877418 (A) dt. 28.07.2021 - valid till 31.03.2024	1.50
6	Usenabad South	25.105	GO No. 152 dt. 23.12.2016	SEIAA/TN/F.461/ 2012/EC/44/1(a)/ Ariyalur dt. 14.11.2016	2308150521228 (W) & 23082505212281 (A) dt. 29.12.2023 valid till 31.03.2026	1.00
Total		212.680	-	-	-	7.60
RCL Govindapuram Plant has bagged several Awards/Certificates of Recognition as detailed below :

- Successfully implemented Five-S Workplace Management System Certificate from Quality Circle Forum of India (QCFI) jointly with Union of Japanese Scientists and Engineers (JUSE) on 30.08.2021.
- '5 Star Rating' for Commitment in the southern region EHS meet by CII for two consecutive years (2019 & 2020).
- Economics Times Now 'Best Environmental Sustainability for Water Conservation-8th Edition 2018'.
- Gold Medal and Overall 3rd Prize in the country for India Green Manufacturing Challenge 2018 & 2019.
- RCL Pudupalayam Mine received 5-Star Rating given by Ministry of Mines, Government of India for three consecutive years i.e. 2016-2018.
- ✤ 18th Annual Greentech Occupational Health, Safety Award-2019.
- 19th Annual Greentech Environment Award for the Year 2019.
- Best CSR Impact Award in the CSR Summit & Awards 2019.
- Won best water management award by CII for the year 2019.
- Won special award for best green belt development for the community by CII for the year 2020
- Won Best CSR in Water Management award in the 1st edition of CII SR Industrial Water Management Competitions by CII.
- Apex India Environment Excellence Award 2019 & 2020.
- CSR Summit & Awards 2019 (9th Aug. 2019, New Delhi).
- ✤ World CSR Congress (9th Edition) Best CSR Award 2019.
- ✤ 14th Employer Branding Awards (2019-20) Asia's Best CSR Practices Award.
- ZEE Business National CSR Leadership Award.

The contact information of the RCL Govindapuram Unit is as detailed below :

The Sr. Vice President (Mfg.) & Unit Head, The Ramco Cements Limited, Govindapuram Cement Plant, Sendurai Road, Ariyalur District-621 713. Tel. No. : 04329-226001 to 226004 Fax No. : 04329-226005 e-Mail : madhusudan.k@ramcocements.co.in

1.4 RCL Periyanagalur Mining Leases

Periyanagalur Mine (Lease-I; PNR) over an extent of 36.295 Ha in Periyanagalur Village was granted to RCL (MCL-Madras Cements Limited at that time) vide GO (3D) No. 2 dated 13.01.2003 for a period of 20 years. Lease Deed was executed for actual worked out Lease Area of **35.960 Ha** on 02.06.2003 with validity from 20.08.2003 to 19.08.2023. Subsequently, extension of mining lease validity upto 50 years has been granted vide GO (Ms) No. 77 dated 26.07.2018 over an extent of 35.96 Ha and is **valid till 19.08.2053**. The supplementary lease deed has been executed and registered on 03.07.2019. First EC dated 26.11.1999 was for 0.105 MTPA Limestone production. The mine was operated for 0.105 MTPA Limestone quantity from 2005-06 to 2007-08. Expansion EC dated 10.10.2007 is for 0.90 MTPA (Clean Limestone) production and the mine is operating for this quantity from 2008-09 to till date. Crusher established over an extent of 4.22 Ha in the non-lease area was shifted to RCL Govindapuram Cement Plant. Both Opencast Conventional Mining with controlled Blasting & Non-Conventional Mining Method with X-Centric Rippers are adopted.

Periyanagalur-West Mine (Lease-II; PNR-W) over an extent of **17.360 Ha** in Periyanagalur Village was granted for Limestone & Marl vide GO (Ms) No. 153 dated 23.12.2016 for a period of **50 years**. EC for the production of **0.3 MTPA Limestone & Marl** over an extent of 17.36 Ha was awarded by SEIAA-TN vide Letter No. SEIAA-TN/F.No.-462/2012/EC-45/1(a)/ARY/2016 dated 14.11.2016. Lease Deed is executed on 10.01.2017 with validity from 10.01.2017 to 09.01.2067. Both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Rippers are adopted. Existence of Mineral Marl is not proved.

CCRs : Existing ECs, CTOs, approved Mining Plans, existing Mine Profiles including Depth, Audit Proceedings, etc. of both Leases I & II were submitted and deliberated in issuing the TORs for amalgamated Lease. The Integrated Regional Office (IRO) of MoEF&CC, Chennai has issued the Certified Compliance Reports (CCRs) for Periyanagalur Mine ECs vide Letter F.No. EP/12.1/940/TN/542 dated 18.04.2024 (Document-1) and for Periyanagalur West Mine EC vide Letter F.No. EP/12.1/2016-17/SEIAA/30/TN/1057 dated 15.07.2024 (Document-2). All the EC conditions are complied and no Non-compliance as certified.

1.5 Production from the Leases

Limestone production from both Leases & Royalty paid details are given in **Table 1.3**. The maximum production quantity from Lease-I was 0.868 MTPA (8,67,844.09 Tonnes) during 2012-13 and average production was 0.454 MTPA (4,54,076.92 Tonnes) against consented quantity of 0.9 MTPA. The maximum production quantity from Lease-II was 0.299 MTPA (2,99,937.32 Tonnes) during 2022-23 and average production was 0.299 MTPA (2,99,725.39 Tonnes) against consented quantity of 0.3 MTPA. There is **no production violation** in the Leases.

Dreduction Voor	Leas PNR I	se-l Mine	Lease-II PNR-West Mine	
Audit Proceeding		Royalty Paid.	Audit Proceeding	Royalty Paid.
	Quantity, I onnes	KS.	Quantity, Ionnes	KS.
2004-05	0	0	-	-
2005-06	95,020.170	42,75,907.65	-	-
2006-07	1,04,838.690	47,17,741.05	-	-
2007-08	99,854.730	44,93,462.85	-	-
2008-09	5,39,932.030	2,42,96,941.35	-	-
2009-10	6,13,668.100	3,52,83,590.60	-	-
2010-11	7,80,484.410	4,91,70,517.83	-	-
2011-12	7,70,063.340	4,85,13,990.00	-	-
2012-13	8,67,844.090	5,46,74,178.00	-	-
2013-14	4,99,436.620	3,14,64,507.00	-	-
2014-15	5,76,822.260	4,39,27,664.00	-	-
2015-16	1,84,860.330	1,47,88,826.00	-	-
2016-17	8,24,730.630	6,59,78,450.00	-	-
2017-18	7,97,279.290	6,37,82,343.00	0	0
2018-19	3,44,908.580	2,75,92,686.00	2,99,809.940	2,39,84,795.00
2019-20	2,89,131.560	2,31,30,525.00	2,99,888.700	2,39,91,096.00
2020-21	3,41,572.540	2,73,25,803.00	2,99,538.070	2,39,63,046.00
2021-22	2,98,456.540	2,38,76,560.00	2,99,289.650	2,39,43,172.00
2022-23	2,99,204.900	2,39,36,392.00	2,99,937.320	2,39,94,986.00
2023-24	2,99,352.730	2,39,48,219.00	2,99,888.660	2,43,91,093.00
Total	86,27,461.540	59,51,78,304	17,98,352.340	14,42,68,188

Table : 1.3 Periyanagalur Leases I & II – Production & Royalty Paid

The total production from Lease-I (PNR) during 2005-06 to 2023-24 was 86,27,461.54 Tonnes and the total production from Lease-II (PNR-W) during 2018-19 to 2023-24 was 17,98,352.34 Tonnes. For the Limestone quantity of 1,04,25,813.88 Tonnes transported from these two leases (PNR & PNR-W), an amount of **Rs.73.95 Crores was paid by RCL as Royalty alone** to the Exchequer.

1.6 Need for the Proposal

The production capacity of existing working Mines is about 7.60 MTPA. Also, two existing Captive Mines in Ariyalur Region are in Conceptual Stage and will be completely exhausted in another 2 years period. Thus, other Limestone sources are being explored. Periyanagalur & Periyanagalur West Limestone Mining Leases are located adjacent to each other and are in compact & contiguous nature. With long barriers (550 m long & 35 m depth) between the two leases, about 1.50 Million Tonnes of Limestone reserves would be un-exploited. By amalgamation of both the leases, the Mineable Reserves will be enhanced. Also, 'Common Boundary Workings' with Dalmia PNR Mine is also proposed. Thus, both PNR Mining leases I & II are being amalgamated.

1.7 Amalgamated Periyanagalur Lease (53.320 Ha)

The State Government has granted permission vide **GO (Ms.)** No. 126 dated 26.02.2021 under Rule 56 of the Minerals (other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016 for amalgamating the two PNR Mining Leases granted to RCL totaling over an extent of **53.320** Ha as a single lease for mining limestone only duly co-terminus with the Lease Period ending on 19.08.2053 (Document-3).

Amalgamated Periyanagalur Mining Lease over an extent of 53.32 Ha is falling in SF Nos. 51/2, 51/3, 51/4, 51/5A, 51/5 B, 51/5C, 51/5D, 51/5E, 51/5F, 51/5G, 51/5H, 224/1, 224/2, 226/1A, 226/1B, 226/2, 226/3, 226/4, 226/5, 226/6A, 226/6B, 226/6C, 226/6D, 226/6E, 226/7, 226/8A, 226/8B, 226/8C, 226/9A, 226/9B, 226//9C, 226/10A, 226/10B, 226/10C, 226/11A, 226/11B, 226/12, 226/13A, 226/13B, 226/13C, 226/14, 226/15A, 226/15B, 226/16, 228/1, 228/2, 228/3A, 228/3B. 228/3C, 228/3D, 228/5, 229/1, 229/2, 229/3, 229/4, 229/7, 229/8, 229/9, 229/11, 230/1A, 230/1B, 230/2A, 230/2B, 230/3, 230/4A, 230/4B, 230/5A, 230/5B, 230/5C, 230/5D, 230/6A, 230/6B, 230/6C, 230/6D, 230/6E, 230/6F, 230/6G, 230/6H, 230/6I, 230/7A, 230/7B, 230/7C, 230/8, 230/9, 230/10, 230/11A, 230/11B, 230/11C, 230/12, 230/13, 230/14, 230/15A, 230/15B, 230/15C, 230/15D, 230/16, 230/17, 230/18, 230/19, 230/20, 231/1A, 231/1B, 231/1C, 231/1D, 231/1E, 231/1F, 231/1G, 231/1H, 231/1I, 231/1J, 231/1K, 231/1L, 231/1M, 231/1N, 231/2A, 231/2B, 231/2C, 231/2D, 231/2E, 231/2F, 231/2G, 231/2H, 231/2I, 231/2J, 231/2K, 231/2L, 231/2M, 231/2N, 231/2O, 231/2P, 231/2Q, 231/2R, 231/2S, 231/2T, 231/2U, 231/2V, 231/2W, 231/2X, 231/3A, 231/3B, 231/3C, 231/4, 231/5A, 231/5B, 231/5C, 231/6A, 231/6B, 231/6C, 231/6D, 231/6E, 231/6F, 231/6G, 231/6H, 231/6I, 231/6J, 231/6K, 231/6L, 231/6M, 231/6N, 231/6O, 231/6P, 231/6Q, 231/6R, 231/7, 231/8, 231/9, 231/10A, 231/10B, 231/10C, 231/11A, 231/11B, 231/11C, 231/11D, 231/12A, 231/12B, 231/12C, 231/12D, 231/12E, 231/12F, 231/12G. 231/12H, 231/12I, 231/12J, 231/12K, 231/12L, 232/1A, 232/1B, 232/1C, 232/1D, 232/1E, 232/1F, 232/2, 232/3, 232/4, 232/5A, 232/5B, 232/5C, 232/5D, 232/5E, 232/5F, 232/5G, 232/5H, 232/6A, 232/6B, 232/6C, 232/6D, 232/7A, 232/7B, 232/8, 232/9A, 232/9B, 232/10A, 232/10B, 232/11, 232/12A, 232/12B, 232/12C, 232/13, 232/14, 232/15A, 232/15B, 232/16, 232/17A, 232/17B, 232/18, 232/19A, 232/19B, 232/19C, 232/19D, 232/20, 233/1, 233/2, 233/3, 233/4, 233/5, 233/6, 233/7A, 233/7B, 233/7C, 233/8A, 233/8B, 233/9, 233/10, 233/11A, 233/11B, 233/11C, 233/11D, 233/11E, 233/11F, 233/11G, 233/11H, 233/12A, 233/12B, 233/12C, 233/12D, 233/12E, 233/12F, 233/12G, 233/12H, 233/12I, 234, 234 Part, 235/1, 235/2, 235/3, 237/1, 267, 268/1, 268/2, 269 & 271 of Periyanagalur Village, Ariyalur Taluk & District of Tamil Nadu State (Fig. 1.1).

Out of 53.32 Ha, Patta Land is 33.28 Ha and Govt. Poramboke Land is 20.04 Ha. There is no Forest Land involved. The Lease Area is shown as Plate III. The Aerial Photographs are shown in Plates IV-V. <u>Real time video footage</u> will also be submitted. There is no Rehabilitation & Resettlement issue. There is no litigation/pending case against the Proposal.

The mine area is accessible from SH-139, Ariyalur-V.Kaikatti Section and is about 8 km from Ariyalur in the west. Govindapuram Cement Plant is located at a distance of 6.8 km aerial distance (14 km by road) in northwest.

During the Amalgamation, the following proposals of **re-rerouting / shifting** of existing structures are carried out:

- ✓ A High Tension Power Line located within the ML area on the eastern side passing Northeast – Southwest direction is rerouted away from the Lease area. RCL has remitted the payment of Rs.1,19,85,701/- with acknowledged invoice vide Cl3310200015 & Cl3310200015 dated 18.01.2021 from Power Grid Corporation of India, Madurai and the EB lines are shifted.
- ✓ Five Low Tension Power Lines are rerouted/shifted away from the Lease boundary.
- A road approaching to Chinnanagalur Village located on the south-western side of the Lease Boundary is proposed to be rerouted from SH-139 along the existing dump area and the consultation with the District Authorities is underway.

1.8 Statutory Approvals

Amalgamated Lease : The State Government has granted permission vide GO (Ms.) No. 126 Ind. (MMA.2) Department dated 26.02.2021 under Rule 56 of the Minerals (other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016 for amalgamated PNR Mine over an extent of 53.320 Ha as a single lease for mining limestone only duly co-terminus with the Lease Period ending on 19.08.2053.

Approved Mining Plan: IBM, Chennai has approved the Mining Plan with Progressive Mine Closure Plan for Amalgamated Periyanagalur (PNR-A) Mine over 53.32 Ha vide its Letter TN/ALR/LST/MP-2079.MDS dated 23.07.2021 for the Period 2020-21 to **2024-25** (<u>Document-4</u>). Also, 'Common Boundary Workings' with Dalmia PNR Mine is now proposed. Accordingly, Review of Mining Plan (ROMP) for Plan Period of **2025-26 to 2029-30 has been submitted with updated data** to IBM for its approval (**Document-III**).

EC : The mineral Limestone to be mined out from this Amalgamated Lease is a Major Mineral over an extent of <250 Ha and falls in Category 'B' of SI. No. 1(a) of EIA Notification 2006, as amended vide Notification SO 1886(E) dated 20.04.2022, for prior Environmental Clearance (EC) from the State Level Environmental Impact Assessment Authority, Tamil Nadu (SEIAA-TN). Accordingly, RCL has applied for prior EC to SEIAA-TN vide Online Proposal No. SIA/TN/MIN/76439/2022 on 02.05.2022. The Terms of Reference (TOR) for carrying out Environmental Impact Assessment (EIA) Study has been awarded vide Letter SEIAA-TN/F.No.9220/TOR-1215/2022 dated 14.07.2022 with Public Hearing. EC will be obtained after the Public Hearing and Final EIA Report submission.

CTO : On obtaining the EC, Consents to Operate (CTO) for the Mine will be applied and obtained from TNPCB.

1.9 The Proposal

The established **Mineable Reserves now is 15.85 Million Tonnes upto 92 m BGL**. There is no other **minerals** like sand in the existing Limestone Mine area till the depth of 92 m now.

The mining operation will be carried out by both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Rippers @ **3.00 MTPA**. Limestone production during ROMP period will be **15 Million Tonnes**. Balance Reserves will be mined out in subsequent Plan Period. The Life of the Mine is **10 years** based on established Reserves now. Ultimate Pit Depth on ROMP Period will be **92 m BGL** from 71 m established in earlier Mining Plan. Mining will intersect the Ground water-table.

Fragmented limestone will be loaded by Hydraulic Excavators into Tippers. The Tippers transport limestone to Govindapuram Cement Plant. Limestone transportation will be **in all 3-Shifts** as District Administration restricted Limestone transportation during peak hours of the day in Ariyalur.

15.85 Million Tonnes
3.0 MTPA
300 (3 shifts)
10 years (based on established Reserves now)
1:0.26 (ROMP)
630 (L) x 560 (W) x 92 m (D)
6 m
6 m
45°
92 m (BGL); Top RL 73 m Bottom RL -19 m
40-45 m BGL.

Mine Profile :

1.10 Environmental Setting

Digital processing of entire Lease Area for existing Pits using remote sensing technique has been done. PNR-A Mining Lease Area falls in the Survey of India Topo Sheet No. 58 M/4 (Fig. 1.2). Environmental Setting of the Project Site is given as Fig. 1.3. Administrative unit within 10 km radius area comprises of parts of Ariyalur, Sendurai and Udayarpalayam Taluks of Ariyalur District and Kunnam Taluk of Perambalur District.

The ML is located inbetween the following geographical co-ordinates (Table 1.4).

North Latitude	:	11° 07' 15.8"- 11° 07' 51.4"
East Longitude	:	79° 08' 26.9"- 79° 09' 01.0"

Boundary Pillar Numbers	North Latitude	East Longitude	Boundary Pillar Numbers	North Latitude	East Longitude
BP-1	11 ⁰ 07'30.3"	79 ⁰ 08'46.1"	BP-28	11 ⁰ 07'34.1"	79 ⁰ 08'57.7"
BP-2	11º 07'29.9"	79 ⁰ 08'44.8"	BP-29	11º 07'33.6"	79 ⁰ 08'59.0"
BP-3	11º 07'29.7"	79 ⁰ 08'42.8"	BP-30	11º 07'32.5"	79 ⁰ 08'58.8"
BP-4	11º 07'29.4"	79 ⁰ 08'37.6"	BP-31	11º 07'33.0"	79 ⁰ 08'54.9"
BP-5	11º 07'28.0"	79 ⁰ 08'37.0"	BP-32	11º 07'32.2"	79 ⁰ 08'54.4"
BP-6	11º 07'29.0"	79 ⁰ 08'38.0"	BP-33	11º 07'30.8"	79 ⁰ 08'54.3"
BP-7	11 ⁰ 07'29.7"	79 ⁰ 08'36.3"	BP-34	11º 07'30.8"	79 ⁰ 08'53.0"
BP-8	11º 07'28.8"	79 ⁰ 08'37.4"	BP-35	11º 07'30.7"	79 ⁰ 08'52.6"
BP-9	11º 07'24.9"	79 ⁰ 08'37.6"	BP-36	11º 07'30.3"	79 ⁰ 08'51.1"
BP-10	11º 07'26.3"	79 ⁰ 08'32.3"	BP-37	11º 07'30.0"	79 ⁰ 08'50.5"
BP- 11	11° 07' 24.0"	79° 08' 31.5"	BP-38	11º 07'29.9"	79 ⁰ 08'47.7"
BP-12	11° 07' 24.8"	79° 08' 26.9"	BP-39	11º 07'29.4"	79 ⁰ 08'49.0"
BP-13	11° 07' 31.1"	79° 08' 27.4"	BP-40	11º 07'29.7"	79 ⁰ 08'51.3"
BP-14	11° 07' 39.8"	79° 08' 28.5"	BP-41	11º 07'29.9"	79 ⁰ 08'51.2"
BP-15	11° 07' 37.8"	79° 08' 35.0"	BP-42	11º 07'30.2"	79 ⁰ 08'53.2"
BP-16	11° 07' 45.7"	79° 08' 37.0"	BP-43	11º 07'30.1"	79 ⁰ 08'54.9"
BP-17	11° 07' 44.9"	79° 08' 44.3"	BP-44	11º 07'27.4"	79 ⁰ 08'54.2"
BP-18	11 ⁰ 07'44.4"	79 ⁰ 08'44.7"	BP-45	11º 07'17.9"	79 ⁰ 08'54.2"
BP-19	11º 07'50.7"	79 ⁰ 08'44.5"	BP-46	11º 07'16.9"	79 ⁰ 08'53.8"
BP-20	11º 07'51.4"	79 ⁰ 08'49.3"	BP-47	11º 07'15.8"	79 ⁰ 08'51.8"
BP-21	11º 07'46.9"	79 ⁰ 08'50.0"	BP-48	11º 07'16.4"	79 ⁰ 08'49.4"
BP-22	11º 07'45.9"	79º 08'51.0"	BP-49	11º 07'17.5"	79 ⁰ 08'49.3"
BP-23	11º 07'45.0"	79 ⁰ 08'53.1"	BP-50	11º 07'17.6"	79 ⁰ 08'48.6"
BP-24	11º 07'40.5"	79 ⁰ 08'55.0"	BP-51	11º 07'29.4"	79 ⁰ 08'44.9"
BP-25	11º 07'40.2"	79 ⁰ 08'55.5"	BP-52	11º 07'24.9"	79 ⁰ 08'45.5"
BP-25	11º 07'37.1"	79 ⁰ 09'00.8"	BP-53	11º 07'29.4"	79 ⁰ 08'44.9"
BP-26	11º 07'35.8"	79 ⁰ 09'00.1"	-		
BP-27	11º 07'35.9"	79 ⁰ 08'58.0"	-		

Table : 1.4 Lease Area Coordinate

The area is having almost a gentle slope topography with an elevation of about 65-73 m above mean sea level (aMSL). The site is free from seismic effects (Seismic Zone-III). There are no eco sensitive areas like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Elephant Corridor, Mangroves, Archaeological/Historical Monuments, Heritage sites, etc. within 10 km from the Lease boundary. Parts of Managethi RF (6.6 km in east), Vannankurichi RF (7.0 km in NE), Kallankuthu RF (10.0 km ENE), Vilangudi Extn. RF (8.0 km in ESE), Vilangudi RF (8.2 km in ESE), Sundaresapuram RF (9.5 km in SE) and Ulliyakudi RF (10.0 km in SE) fall in the Study Area.

There is no Forest Land involved and no Reserved Forest (RF) exists within 1 km of the Mine. No grazing land exist in the study area. Environmental Setting is given in Table 1.5.

SI. No.	Areas	Aerial Distance(within 15 km) Proposed Project location boundary
1	Areas protected under international conventions, national or local legislation for their ecological, landscape, cultural or other related value	Nil
2	Areas which are important or sensitive for ecological reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests	Managethi RF – 6.6 km (E) Vannankurichi RF – 7.0 km (NE) Kallankuthu RF – 10.0 (ENE) Vilangudi Extension RF-8.0 km (ESE) Vilangudi RF – 8.2 km (SE) Sundaresapuram RF – 9.5 km (ESE) Ulliyakudi RF – 10.0 km (SE) Ambapur RF – 10.5 km (SE) Alvoy RF – 12.3 km (SE) Suttamalli RF-12.0 (ESE) VadakadalcRF-12.5 (ESE) Udayarpalayam RF – 13.5 (ENE)
3	Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration	Karaivetti Bird Sanctuary is at 17.7 km (SW)
4	Inland, coastal, marine or underground waters	Marudaiyar River – 4.9 km (S) Kallar River - 2.9 km (NW) Uppu Odai-2.7 km (E) Vilangudi Odai - 3.7 km (ENE) Vanchiyam Odai - 8.8 km (WNW)
5	State, National boundaries	Nil
6	Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas	Kallankurichi Kaliyuga Varadharaja Perumal Temple is at 3.4 km in NW
7	Defence installations	Nil
8	Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities	District Headquarters Ariyalur Town is at a distance of 6.3 km in west
9	Areas containing important, high quality or scarce resources(ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)	Limestone bearing areas in Ariyalur Region.
10	Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)	Nil
12	Areas susceptible to natural hazard which could cause the project to present environmental problems	The region falls in Seismic Zone III. Seasonal Kallar River flows at 2.9 km (NW).

Table : 1.5 Environmental Setting – 15 km Radius

None of the followings are also located in the Study Area :

- Protected areas notified under the Wild life (Protection) Act, 1972,
- Critically polluted area as notified by the Central Pollution Control Board constituted under Water (Prevention and Control of Pollution) Act, 1974,
- Eco -Sensitive areas as notified,
- Interstate boundaries within 5 km radius from the boundary of the proposed site.
- Coastal Regulation Zone (CRZ) Area.

Seasonal **River Marudaiyar** drains the region (flows at 4.9 km in the south). Seasonal Nallah Kallar River flows at 2.9 km in northwest. A seasonal nalla flows in the eastern boundary of the Lease from north to south. High Flood Level recorded in the seasonal nalla is 63.9 m in the north to 62.2 m in the south. The Lease is located in an elevation of 66.8 m to 65.7 m and thus, **no flood hazard due to the nearby seasonal nalla**.

State Highway (SH)-139 (Ariyalur-V.Kaikatti-Jayamkondam Section) is passing in east-west direction in southern boundary of the Lease-II and a Safety Distance of 50 m has been provided as per GO, approved Mining Plan, Tamil Nadu Mineral Concession Rules 1959 & Anna University Recommendations and will be maintained till end of the mining.

National Highway (NH)- 81 connecting Trichy-Kilapaluvur-Chidambaram runs at @ 2.5 km (in SE), NH-136 connecting Tanjore-Ariyalur-Perambalur runs at 6.2 km (W). Southern Railway BG Line runs through Ariyalur at a distance of 8.5 km in the west. The nearest Airport Trichy is at 60 km in southwest. The nearest Ports are at Chennai (300 km) and Cuddalore (95 km).

RCL Govindapuram Cement Plant is located at a distance of 6.8 km aerial distance (14 km by road) in northwest. From the Lease, Ultratech Cement Plant-Reddipalayam is at 3.2 km (SE), TANCEM Cement Plant-Kallankurichi at 4.7 km (WNW), Dalmia Ariyalur Plant at 7.2 km (NW) and Chettinad Kilapaluvur Cement Plant at 10.6 km (SW).

The Lease is adjacent to Dalmia Cement Periyanagalur Limestone Mines (west @ 15 m), UltraTech Periyanagalur Limestone Mine (north @ 15 m) and TANCEM PNR & Kallankurichi Mines are (@ 550 m in NW). From the Lease, RCL Mines viz. Usenabad South (@ 4.3 km in NW), Kattupirangium (1.2 km; SW), Pudupalayam-North (1.5 km in S) & Reddipalayam Mines (4.0 km in SE) are existing. Along TANCEM, TAMIN & Dalmia Aminabad-Khairulabad Mines in the west, UltraTech Vellipiringiyum Mine at 4.0 (SE) & Ottakovil Mine at 8.5 km (NNW), ICL Periyathirukonam Mine (5.8 km in SSE) & Chettinad Periyathirukonam Mine (8.2 km in SE), Dalmia Periyathirukonam Mines (8.8 km in SSE), etc. are located in the Study area.

The nearest Town & District Headquarters is Ariyalur at a distance of 6.3 km in the west. ML Area is about 1.0 km from nearby Kattupirangium village. Periyanagalur village is at 1.0-1.5 km in the east.

1.11 EIA Study

The mineral Limestone to be mined out from this Amalgamated Lease is a Major Mineral over an extent of <250 Ha and falls in Category 'B' of SI. No. 1(a) of EIA Notification 2006, as amended vide Notification SO 1886(E) dated 20.04.2022, for prior EC from SEIAA-TN. Accordingly, RCL has applied for TOR to SEIAA-TN vide Online Proposal No. SIA/TN/MIN/76439/2022 on 02.05.2022. The Proposal under SI. No. 1(a), Category B1 was deliberated in State Level Expert Appraisal Committee-Tamil Nadu (SEAC-TN) in its 287th Meeting held on 22.06.2022 and in 532nd SEIAA-TN Meeting held on 14.07.2022. Terms of Reference (TOR) for Environmental Impact Assessment (EIA) Study has been awarded vide Letter SEIAA-TN/F.No.9220/TOR-1215/2022 dated 14.07.2022 with Public Hearing.

Baseline Data has been collected during December 2023-February 2024 representing **Winter 2023-24 Season**. EIA Report has been **prepared in compliance with awarded TORs** and submitted as per generic structure proposed in Appendix-III of EIA Notification 2006 with the following Chapters :

- Chapter-1 : Introduction with Need for the Project & Environmental Setting of the Project.
- Chapter-2 : Project Profile an outline of the Project and allied activities.
- Chapter-3 : Description of Environment (Baseline Status).
- Chapter-4 : Anticipated Impacts along with Prediction of Impacts and Mitigation Measures.
- Chapter-5 : Analysis of Alternatives (Technology & Site).
- Chapter-6 : Environmental Quality Monitoring Programme.
- Chapter-7 : Additional Studies like Risk Assessment, DMP, Hydrogeological Study, etc.
- Chapter-8 : Project Benefits.
- Chapter-9 : Cost-Benefit Analysis, if any.
- Chapter-10 : Environmental Management Plan
- Chapter-11 : Summary EIA.
- Chapter-12 : Disclosure of Consultants engaged.

Summary EIA Reports (both in **English and Tamil versions**) along with Draft EIA Report are submitted for Public Consultation & Public Hearing.

EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including **Sector-1 (Mining Projects) for Category 'A'** by the National Accreditation Board for Education & Training (**NABET**) vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025 (SI. No. 4 of List dated 15.07.2024). ABC Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (**NABL**) vide Certificate No. TC-5770 dated 03.04.2022. The Lab is also recognised by **MoEF&CC** vide Letter F. No. Q-15018/04/2019-CPW dated 14.10.2019 with validity of 5 years.

2.0 **Project Description**

2.1 Type of the Project

The Limestone to be mined out from this Amalgamated Lease is a Major Mineral over an extent of <250 Ha and falls in Category 'B' of SI. No. 1(a) of EIA Notification 2006, as amended vide Notification SO 1886(E) dated 20.04.2022, for prior EC from SEIAA-TN. Accordingly, RCL has filed the TOR Application with Project Feasibility Report (PFR), approved Mining Plans, existing ECs & CTOs and their Compliances, existing Mine Profiles including Depth, Audit Proceedings, etc. of both Leases I & II were submitted to SEIAA-TN vide Online Proposal No. SIA/TN/MIN/76439/2022 on 02.05.2022. Project details were deliberated and TOR for carrying out the EIA Study has been awarded vide Letter SEIAA-TN/F.No.9220/TOR-1215/2022 dated 14.07.2022. EIA Report has been prepared in compliance with awarded TORs and submitted as per generic structure proposed in Appendix-III of EIA Notification 2006.

2.2 Magnitude of Operation

Mining operations will be carried out by working the deposit by systematic formation of benches as per Metalliferous Mines Regulations 1961. During the Mining Plan Period of 2020-21 to 2024-25, it is proposed to excavate 92,11,880 Tonnes of Limestone @ 3.00 MTPA maximum till 71 m BGL. However, there was no production of 3.00 MTPA in the Amalgamated Lease as scheduled in the approved Mining Plan for want of prior EC. The **existing mining operations are continued** in the Leases (PNR & PNR-W) for respective **consented production quantities**.

Subsequently, the Mineable Reserves has been reassessed as 15.85 Million Tonnes, as on 01.04.2024. The Review of Mining Plan (ROMP) for Plan Period of 2025-26 to 2029-30 has been prepared and submitted with updated data to IBM for its approval. The mining operation will be carried out by both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Rippers @ 3.00 MTPA. Limestone production during ROMP period will be 15 Million Tonnes. Balance Reserves will be mined out in subsequent Plan Period. The Life of the Mine is 10 years based on established Reserves now. Ultimate Pit Depth on proposed Plan Period will be 92 m BGL from 71 m arrived in the earlier Mining Plan. Mining will intersect the Ground water-table.

The Blocks SL-1 to SL-7 will be opted for mining with a bench height and width of 6 meters. Fragmented limestone will be loaded by Hydraulic Excavators into Tippers. The Tippers transport limestone to Govindapuram Cement Plant. Limestone transportation will be **in all 3-Shifts** as District Administration restricted Limestone transportation during peak hours of the day in Ariyalur. After exhaustion of all limestone, part of the pit on the northern, eastern & southern sides will be **reclaimed and rehabilitated** and the remaining exhausted pit will be used as water Reservoir for harvesting thr rain water. The proposed Production Schedule is given in **Table 2.1**.

SI. No.	Plan Period & Year	Top Soil, Tons	OB/SB/IB, Tons	Total Waste, Tons	ROM Limestone, Tonnes	Mineral Reject, Tonnes	Ore:OB Ratio
I	2020-21 to 2024-25 (Non operative period)	3,83,560	12,34,120	16,17,680	92,11,880	0	1:0.18
II	ROMP Period (Commenceme nt of operation)						
1	2025-26	1,42,960	9,24,336	10,67,296	30,00,000	0	1:0.36
2	2026-27	49,760	2,42,288	2,92,048	30,00,000	0	1:0.10
3	2027-28	0	0	0	30,00,000	0	1:0
4	2028-29	1,00,480	13,96,512	14,96,992	30,00,000	0	1:0.50
5	2029-30	31,578	9,71,693	10,03,271	30,00,000	0	1:0.33
	Total	3,24,778	35,34,829	38,59,607	1,50,00,000	0	1:0.26

 Table : 2.1
 Yearwise Development & Production

2.3 Technology & Project Description

2.3.1 Regional Geology

The limestone deposit of the study area forms a part of Kallankurichi limestone formations of Middle Ariyalur stage of Cretaceous beds in South India. In the Cauvery basin carbonate rock form a sizable part of the stratigraphic column from the Lower Cretaceous to Recent. These deposits are geologically called the Maestrichian Limestones. This limestone bed is sandwiched between two sandstone/Marl beds. It can be traced continuously for more than 9 km in the North - South direction starting from Srinivasapuram in the north through Kairulabad, Ameenabad, Periyanagalur, Hasthinapuram, Kattupiringium, Pudupaalyam, Nerunchikorai, Vilipiringium and further South up to Idaiyathankudi on the banks of Marudaiyar river.

Limestone of Cretaceous and early Tertiary are also exposed in the three principal outcrop areas viz. Trichirapalli, Virudhachalam, and Pondicherry along the western margin of the basin. The western margin of these sediments have NE- SW trend. The formation in the east trends NE-SW in the north and changes to NW-SE in the Southern part. The dip direction also changes accordingly.

Limestone is exposed on the surface in the nearby TANCEM mines of Kallankurichi and Dalmia Mines of Periaynagalur. Limestone is yellowish brown in colour with prominent and well preserved shells. From the core drilling it is found that top red soil thickness ranges between 1.5-2 m, followed by alternate bands of Sandstone / Marl and limestone. Limestone thickness is 7-9 m with various grades. The strike direction of the formation is limestone deposit is NNE-SSW & NNW- SSE and dips towards south east with dip angle varying from 3-5°. Local variation in dip amount and direction are seen between Kallankurichi and Pudupalayam villages.

The stratigraphic succession for the cretaceous basin of Tiruchirapalli is given below:

Age	Group	Formation	Litho Stratigraphy
Miopliocene		Cuddalore	Ferruginous sand stone
			laterite and clay
	<u> </u>	noonformity	
	0	ncomonnity	
Palaeocene		Niniyur	Predominantly limestone with
			sandstone and marl parting
		Kallamedu	White sandstone and
			Fossilliferous Limestone
		Kallankurichi	calcareous shale marl and
			sandstone
Upper Cretaceous		Un	conformity
		Sillakudi	Uppermember-sandstone
			dominant Lower member -
			limestone / calc. Sandstone
			dominant
	U	nconformity	
Upper Cretaceous	Tiruchirapalli	Anaipadi	Upper-Standstone Lower-
			Shale
		Kulakkantham	
	U	nconformity	
Lippor Crotogogua	Littottur	Koroj	Corol limostono Shaly
	Ollallur	Moruvettur	limestone appletone 8 marl
		Iviaruvallur	
	U	nconformity	
Upper Jurassic to	Upper	Thappai	Brownish, micaceous & silty
Lower Cretaceous	Gondwana		ferrugenous sandstone
	U	nconformity	
Arabaaan		Crystelling	Charpookito & Chaicana
Archaean		Grystalline	Charlockile & Gheisses

2.3.2 Local Geology

The general trend of the limestone deposit in this study area is N-S direction, with dipping Easterly with 3-5°. The deposit covers about 630 m in strike length and has a width of 560 m. The limestone is brown to yellow, reddish brown medium grained and well preserved shells of Gryphea, Exogyra, Alectronia and shells of Ammonites and Echinoid group. The average Thickness of the lithounits such as Topsoil, Micaceous Sandstone, Shell Limestone and Sandstone are detailed below;

Average Top soil Thickness	: 0.5 - 2.0 m
Average Micaceous Sandstone Thickness	: 2.0 - 36.0 m
Average Shell limestone Thickness	: 35.0 - 48.0 m
Average Bottom sandstone	: 4.0 - 6.0 m below.

Topsoil with Sandstone: Underlying the top red soil cover is the whitish weathered friable sandstone. This horizon has to be rejected as waste at the time of mining. The thickness varies between 0.5-2.0 m.

Shell Limestone: Brown to Yellow, reddish brown medium grained and well preserved shells. They do not exhibit any other feature except bedding.

Sandstone: Calcareous in nature with quartz grains and this litho unit is considered as a marker horizon.

Surface & Geological Plan along with Geological Sections is given as Fig. 2.1

2.3.3 Reserves & Resources

Exploration carried out till date is sufficient enough to delineate the limestone band in entire area of 53.320 Ha. RCL has drilled totally 25 Bore Holes covering a meterage of 1138.20 meterage for the purpose of UNFC Reserve Estimation. It has also drilled 2 boreholes on the eastern side of the Lease boundary for 173.00 meterage in 2021-22 and proposes 2 boreholes in this Plan Period. The area between SL- 1-1' to SL 7-7' has been taken for calculation of proved reserves. Tonnage Conversion Factor of **2.0 Tonnes/cu.m** for Limestone has been considered for Reserve Estimation. Proved Mineable Reserves under UNFC Category '111' is given in **Table 2.2**.

As per UNFC Norms, the reserve has been estimated as **15.85 Million Tonnes**, as on 01.04.2024. The Reserves & Resources are re-estimated as 22.14 Million Tonnes.

SI. No.	Section Line	Sectional Area, sq. m	Influence, m	Volume, cu.m	Reserves, Tonnes	Grade, CaO %
1	SL 1	10,624	150	15,93,600	31,87,200	43
2	SL 2	24,776	100	24,77,600	49,55,200	43
3	SL 3	19,615	100	19,61,500	39,23,000	43
4	SL 4	9,164	100	9,16,400	18,32,800	43
5	SL 5	7,467	100	7,46,700	14,93,400	43
6	SL 6	1,199	100	1,19,900	2,39,800	43
7	SL 7	1,345	80	1,07,600	2,15,200	43
Total Mineable Reserves ('111' Category)					1,58,46,600	43

Table : 2.2 Amalgamated Lease – Proved Mineable Reserves ('1	111') on 01.04.2024
--	---------------------

Table 2.3	Proved Reserves	& Resources
-----------	------------------------	-------------

Classification	Code	Quantity, Million Tonnes
A. Mineral Reserves		
1. Proved Mineral Reserve	111	15.85
2. Probable Mineral Reserve	121 & 122	-
B. Remaining Resources		
1. Feasibility Mineral Resource	211	-
2. Pre-feasibility Mineral Resource	221	6.29
3. Measured Mineral Resource	331	-
4. Indicated Mineral Resource	332	-
5. Inferred Mineral Resource	333	-
6. Reconnaissance Mineral Resource	-	
Total Mineral Resources(A+B)	22.14 (CaO +35%)	

2.3.4 Ore Quality

Chemical analysis was performed over the individual sample data of 0.50 m interval for each borehole corresponding to the litho units in, total 46 Check Samples. The entire estimated reserves falls within the threshold limit of CaO % as prescribed by Indian Bureau of Mines (CaO +35%) (Table 2.4). The entire limestone from this lease area, will be captive use.

Table : 2.4	Limestone Quality	(Avg.)
-------------	-------------------	--------

Category	Reserves, Million Tonnes	SiO ₂ , %	Al ₂ O ₃ , %	Fe ₂ O ₃ , %	CaO, %
Fossiliferous Limestone	15.85	6.97	1.7	4.73	46.49

2.4 Mining Method

Both Opencast Conventional Mining (with controlled Drilling & Blasting) and **Non-Conventional Mining Method** (with X-Centric Ripper), for 3.00 MTPA Limestone, will be adopted. The mining comprises the following activities :

- Preparing the face by Excavator EX-350 (1.5 cu.m Bucket capacity).
- Drilling by Atlas Copco Drills (115 mm dia; 25 m/hr.) and Compressor (XA-175).
- Blasting by Controlled Techniques Method to avoid vibration & noise.
- Removal of in-situ limestone by Excavator.
- Transport from mine head to the Crusher by 25 T Tippers.

Pneumatically operated wagon drills (Atlas Copco make) of 115 mm diameter holes are engaged for carrying out the drilling operations. The drills are operated with the help of diesel operated screw compressors. For the maximum targeted production of 3.00 MTPA, it requires 21,000 Holes of spacing x burden x depth ($4 \times 3 \times 6 m$) which will yield roughly of 144 T/Hole. For blasting, 40% of booster and 60% Column Explosive will be used with electric detonator for initiation. Since adopting controlled technique blasting, the Secondary Blasting will not arise.

Blasting Parameters :

Dia of the hole	:	115 mm
Depth	:	6 m
Spacing	:	4 m
Burden	:	3 m
Yield/ hole	:	144 Tons
Charge / hole	:	27 kg.

Type of Explosive :

Cap and non-cap sensitive , slurry explosives. ANFO. Detonating fuse. Millisecond delay detonators. Ordinary and electric detonators.

For storage of explosives, 25 Tonnes Magazine at Nagamangalam village will be utilized [License No. E/HQ/TN/22/162 (E39422) dated 04.06.2020 valid up to 31.03.2025]. For the transport of explosives, RCL has an approved Explosive Van bearing Registration No TN 46H 7237 with License No: E/SC/TN/25/526(E47710) dated 15.03.2024 with validity up to 31.03.2029. Adequate safety precautions will be taken while drilling and blasting. A safety distance of 500 m all around the blasting site will be kept. Proper sentries will be posted to clear the men from the blasting zone. Charging and blasting will be avoided on overcast sky.

The blasted limestone will be excavated with the hydraulic excavators, Tata Hitachi EX-350 of 1.5 cu.m bucket capacity. The limestone is transported to Cement Plant by 25 Ton Tippers. During this ROMP Period, it is proposed to excavate 15.00 Million Tonnes of Limestone and the balance Reserves will be mined out in forthcoming ROMP Period. Life of the Mine is 10 years. Ultimate Pit Depth will be 92 m BGL.

No Mineral Beneficiation is required as the mined out Limestone will be used for Cement manufacturing in RCL Govindapuram Cement Plant.

2.5 Yearwise Development & Production Plan

During this Plan Period, it is proposed to remove 3,24,778 Tons Top Soil and will be fully utilized for development of Green Belt & Afforestation. Further, overburden (OB) quantity of 35,34,829 Tons will be used for backfilling the Northern side of the Lease. Also, it is proposed to rehandle the Dump yard quantity of 0.56 lakhs M³ located on the eastern side of the Lease for backfilling the Northern side of the Lease. The yearwise Development & Production programme is given in **Table 2.5**. The Yearwise Plans are given as **Figs. 2.2-2.6**.

SI. No.	Year	Working Benches	Direction	Top Soil, Tons	Over Burden, Tons	Limestone (ROM), Tonnes	Ore:Waste Ratio
1	2025-26	Topsoil, Sandstone & Limestone	West & East	142960	9,24,336	30,00,000	1:0.36
2	2026-27	Topsoil, Sandstone & Limestone	West & East	49760	2,42,288	30,00,000	1:0.10
3	2027-28	Sandstone & Limestone	West	0	0	30,00,000	1:0
4	2028-29	Sandstone & Limestone	West & South	100480	13,96,512	30,00,000	1:0.50
5	2029-30	Limestone	West & South	31578	9,71,693	30,00,000	1:0.33
		Total		3,24,778	35,34,829	1,50,00,000	1:0.26

 Table : 2.5
 Yearwise Development & Production Programme – ROMP Period

Presently, there are 4 Nos. OB Dumps with 23,68,205 Tons of OB material which will be rehandled in 4th & 5th years of the Plan Period for backfilling the mined out voids in the eastern and southern parts of the Lease.

2.6 Mining Machineries with Justification

The List of Machineries proposed are given in Table 2.6.

SI. No.	Name of the Machinery	Nos.	Capacity	Make	НР
1	Xcentric Rippers (XR-40)	4	180 TPH	Tata Hitachi	226
2	Drilling machine - Pneumatic	2	25 m/hr. (115 mm hole dia)	Atlas Copco	-
3	Compressor -XA-175	2	-	Atlas Copco	140
4	Excavator-EX-350- 1.50 cu.m	3	230 TPH	TATA Hitachi	250
5	Tippers	23	25 Tonnes	AMW	125
6	Lorry (Water Sprinkler)	1	12,000 L	Leyland	128

Table	:	2.6	Mine	Machin	eries
-------	---	-----	------	--------	-------

2.7 Competent Mining Personnel

The Mine will be operated with the required Statutory Officials and Competent Persons mandatorily appointed as per the provisions of Mines Act 1952 and Metalliferrous Mines Regulations 1961 (Table 2.7).

Table : 2.7 Mining Personnel	
------------------------------	--

SI.	Deet	Qualification/Experience	Nu	mbers	Catagony
No	POSI		Direct	Indirect	Category
1	Mines Manager	I Class Manager's Certificate of Competency.	2		Skilled
2	Geologist	Master Degree in Geology	1		Skilled
3	Asst. Manager cum Mining Engineer	II class Manager Certificate holder	1		Skilled
4	Foreman	Foreman's Certificate of Competency	2		Skilled
5	Blaster	Blaster Certificate of Competency			Skilled
6	Mechanical Engineer	BE (Mech)/ Diploma in Mech. Engg.	1		Skilled
7	Clerical		1		Skilled
8	Driller		1		Skilled
9	Mechanical Helpers	ITI	4	6	Semi-Skilled
10	HEMM Operators	Heavy & Light vehicles license holders	16	20	Skilled
11	Workers		3	24	Un Skilled
	T	33	50		

2.8 Dumps Rehandling & Utilisation

Topsoil of 332,600 Tons was removed and 301,022 Tons was used for Green Belt development. Balance **31,578 Tons Topsoil** was stacked & maintained at the earmarked site (0.17 Ha) and will be used for rehabilitation of backfilled areas during the Plan Period. Also, there are 4 Nos. OB Dumps with 23,68,205 Tons OB. The dimension of Dumps are :

Dump-1 : 63 m (L) x 53 m (W) x 12 m (H) Dump-2 : 120 m (L) x 110 m (W) x 13 m (H) Dump-3 : 155 m (L) x 174 m (W) x 26 m (H) Dump-4 : 174 m (L) x 163 m (W) x 20 m (H).

Backfilling with 1,79,638 OB materials was already done and 7,86,278 Tons OB is being utilized for backfilling in northern side of the Pit. Entire OB quantity in the Dumps will be rehandled and utilized for backfilling in the ROMP period. Thus, there will be no Top Soil Dump or OB Dump in the Lease at the end of ROMP Period viz. Year 2039.

2.9 Conceptual Plan & Land Use Pattern

Out of 53.32 Ha, Area of excavation at the end of the life of the mine will be 39.17 Ha, out of which about 14.00 Ha will be Backfilled & Reclaimed and balance 25.17 Ha will be left out as water reservoir (**Fig. 2.7**) for **harvesting Rain water and recharge the ground water-table** in its vicinity. Total Greenbelt (13.45 Ha) & Afforested (14.00 Ha) Area will be **27.45 Ha (51.48% coverage)**. Proposed Land Use Pattern is given in **Table 2.8**.

SI. No.	Неа	Head		Start of Plan Period, Ha		At the end of Plan Period, Ha		eptual Stage, Ha	
4	Area of	Backfilled	07 070	2.700	26.010	11.300	20 170	Reclaimed : 14.000	
	Excavation	Void	27.370	24.670	30.210	24.910	39.170	Water Res. : 25.170	
2	Storage of t	op soil	0.	170	0		1	0	
3	Overburden Dump		6.660			0	1	0	
4	Mineral Storage		0		0		0		
5 Infrastructure		0.200		0.200 (Rehabilitated)		0.200 (Rehabilitated)			
6	Roads		0.500		0.500		0.500		
7	Green Belt		6.	690	10	.650	T	13.450	
8 Backfilled for Reclamation		-		2.700		-			
9	9 Others (Unutilised)		11.	.730	0 3.060		-		
	Total		53.	.320	53.320		53.320		

Table : 2.8 Proposed Land Use

2.10 Financial Closure Plan

The financial assurance as per the Rule 27(1) of amended Mineral Conservation and Development Rules, (MCDR) 2021 is Rs. 2,57,05,000/- (@ Rs.5,00,000/- per Hectare) for 51.410 Hectares will be submitted vide a Bank Guarantee.

2.11 Green Belt

Green belt is developed around the ML areas, all along haulage road, waste dump and around the mine site office. The green belt developed in a phased manner. So far, about 19.70 Ha is brought under green belt (including Dumps) with 44,980 trees @ 2,283 plants per Ha and survival rate is about 90% (**Table 2.9**). Herbs and shrubs are also made besides tree plantation.

Year	No. of Plants Planted	Area, Ha	Location	Survival Rate, %	Species Name
2009-10	10000	2.70		90	
2010-11	6000	2.50		90	Predominantly, local
2011-12	11000	2.50		90	species like Azadirachta
2012-13	5000	2.00		90	siamea (Maniakondrai)
2013-14	4000	2.00	All along the mining lease boundary, dump slopes,	90	Pongamia pinnata
2014-15	3000	3.00		90	(Pungan), Holoptelia
2015-16	500	0.50		90	integrifolia (Arali), Tecoma
2016-17	1000	1.00		90	fistula (Sarakondrai)
2017-18	1000	1.00	haul road,	90	Samanea saman
2018-19	500	0.50	onice, etc.	90	(Thoongumoonji), Albizia
2019 – 20	1000	0.50		90	lebbeck (Vagai), etc. are
2020 – 21	660	0.50		90	developed and maintained
2021-22	660	0.50			mamamou.
2022-23	660	0.50			
Total	44,980	19.70			

Table : 2.9 Green Belt Developed

About 216 trees along the common boundaries & OB Dumps are already transplanted in PNR Old Crusher area and maintained as such (Plate VII).

2.12 Power & Fuel Demand

About 50 KVA industrial supply for lighting is required which will be met from TANGEDCO Grid. For operating the mining equipments, High Speed Diesel (HSD) is required @ 3,000 Liters/day. There will be **no standby DG set**.

2.13 Other Facilities

All the services viz. Mines Office, **First Aid Room**, Rest Shelters, **Drivers Rest Room**, **Toilet**, potable water and other necessary amenities are provided at the Mine. To facilitate the maintenance of all equipments, there is a central workshop available at Factory for electrical, mechanical and instrumentation repairs. Occupational Health Center is established at the Factory. A well established Township exists near the Factory and **no Township is proposed for the Mine**. A licensed fuel storage tanks is established at the Factory and the daily requirement of HSD and other lubricants is met by the mobile bowser.

2.14 Water Demand & Balance

The Mine requires about 20 KLD towards Domestic consumption (5 KLD), Workshop & Dust Control Measures (5 KLD) and Green Belt (10 KLD) which will be met from mine pit seepage water. As per the State Ground Water Board (SGWB), the area falls in **Safe Area Category**. Domestic sewage generation will be about 4.5 KLD which will be biologically treated in a Septic Tank followed by a Dispersion Trench. About 0.9 KLD effluent generation from the small Workshop which is treated in a Oil Separation Filter and treated effluent is used for Green Belt. 'Zero Effluent Discharge' will be adopted. The **Water Balance Diagram** is given as **Fig. 2.8**.

2.15 Occupational Health

The Occupational Health Surveillance Program is being conducted for the Mine workers periodically. An Occupational Health Center is at the Cement Plant. A dedicated dispensary with qualified Doctor in OHS and pharmacy are provided for Occupational Health Surveillance and Monitoring. Personal Protective Equipment are provided for all employees working in the mines. Adequate training on Safety and health aspect has been provided. Review of Impact of various health measures is being undertaken.

108
3.0 Description of the Environment (Baseline Status)

3.1 Study Area

The study area of 10 km radius (from boundary) (Fig. 3.1) has been considered for assessing the baseline environmental status. Project area does not fall in Critically Polluted Industrial Clusters listed by CPCB. As Bay of Bengal is at 100 km from the Lease, Coastal Regulation Zone (CRZ) applicability is not there. The nearest IMD Station is Trichy Airport. The monitoring stations were selected in such a way that the baseline environmental data reflects the Cumulative Impact of existing Mines and Industries in the Study area. Annual Wind Rose of Trichy for the Period 1953 to 2019 (Source IEM Website) is referred while fixing the Monitoring Stations (appended).

Physiography : The minimum and maximum elevation of the study area is 30 m and <120 m aMSL respectively (**Fig. 3.2**). Mine area has the elevation of **65-73 m aMSL**. It is almost flat with gentle gradient towards south and southeast. There is no hillocks noticed in the study area.

Drainage Pattern: There is **no nallah/stream crossing** at the Mine. There is no perennial river in the study area. Seasonal **Marudaiyar River drains** the region and flows at 4.9 km in SSW direction (**Fig. 3.3**). Seasonal Nallah Kallar River flows at 2.9 km in northwest. A seasonal nalla flows in the eastern boundary of the Lease from north to south. High Flood Level recorded in the seasonal nalla is 63.9 m in the north to 62.2 m in the south. The Lease is located in an elevation of 66.8 m to 65.7 m. The overall drainage pattern of the region appears to be dendritic. There are also rainfed irrigation tanks and ponds in the study area.

3.2 Environmental Components

Considering the environmental setting of the project, project activities and their interaction, environmental regulations and standards, the Environmental Attributes covered for the EIA Study is given in **Table 3.1**.

			Sampling			
A	ttributes	No. of Locations	Frequency	Remarks		
Air	Meteorological Parameters	1	For a Season	Wind speed, wind direction (wind rose), temperature, humidity, cloud cover, atmospheric pressure, rainfall, etc.		
	AAQ Parameters	8	24-hourly basis, continuously for 2 days in a week for 4 weeks in a month for a season	For the parameters as per Revised NAAQ Norms		
Noise		8	Once in the season	For Leq, Lday and L night values		
Water	Surface Water Quality Parameters	8	Once in the	As per CPCB Norms (including existing Plant Raw Water)		
water	Ground Water Quality Parameters	8	Season	As per IS:10500 Norms		
Land	Soil Quality	8	Once in the Season	Season for Textural & Physical Parameters & Nutrients.		
	Land Use	Study Area	Once during the Study Period	Based on recent available Satellite Imagery		
Pielogiaal	Aquatic	Study	Once during the	Flora & Fauna in Core &		
ыоюуісаі	Terrestrial	Area	Study Period	Buffer Zones		
Socio economic Parameters		Study Area	Once during the Study Period	Based on 2011-Census and Need Based Assessment, once in the study period for: Total Population / Household Size, Gender Composition, S.C / S.T Population, Literacy Levels, Occupational Structure, etc.		

Table : 3.1 Baseline Data Collection – Monitoring Locations

3.3 Methodology Adopted

Micrometeorology : As a part of the study, the micrometeorology and microclimatic parameters were recorded by installing a weather monitoring station (Envirotech WM 200) near the Lease at 10 m height. Data of wind velocity, wind direction, ambient temperature, relative humidity, cloud cover and atmospheric pressure were recorded at hourly intervals along with rainfall during the monitoring period.

Ambient Air Quality: The study area represents the Industrial, Residential, Rural and other Areas with respect to Revised National Ambient Air Quality (NAAQ) Norms stipulated by CPCB. Calibrated Fine Particulate Samplers (Envirotech APM 550) & Respirable Dust Samplers (Envirotech APM 460) were used for monitoring of PM2.5 & PM10. Gaseous samples are collected by integrated gas sampling assembly (Envirotech APM 411). A tapping provided in the hopper of the sampler is utilised for gaseous sampling. with proper flow controller and a flow of 1.0 l/min.

PM2.5 & PM10 : APM 550 system is a manual method for sampling fine particles and is based on impactor designs standardized by EPA for Ambient Air Quality Monitoring. Ambient Air enters the APM 550 system through an omni-directional inlet designed to provide a clean aerodynamic cut point for particles greater than 10 microns. Particles in the air stream finer than 10 microns proceed to a second impactor that has an aerodynamic cut point at 2.5 microns. The air sample and the fine particulates existing from the PM2.5 impactor is passed through a 47 mm dia filter. Teflon filter membrane that retains the FPM. The APM 550 system allows removal of the PM2.5 impactor from the sample stream so that the same system may be optionally used as a PM10 sampler also.

 SO_2 : Modified West & Gaeke method (spectrophotometric) was adopted. SO_2 was collected in a scrubbing solution of sodium tetrachloro mercurate (TCM) and was allowed to react with sulphamic acid, formaldehyde and then with pararosaniline hydrochloride. The absorbance of product red-violet dye was measured using UV Visible Spectrophotometer at a wavelength of 560 nm. Concentration of SO_2 was calculated by multiplying the absorbance with calibration factor and dividing by volume of air sampled.

NOx : Jacob and Hocheiser modified method was adopted. Nitrogen oxides as nitrogen dioxide were collected by bubbling air through sodium hydroxide-sodium arsenite solution to form a stable solution of sodium nitrite. The nitrite ion produced during sampling was determined spectrophotometrically (at 540 nm) by reacting the exposed absorbing reagent with phosphoric acid, sulphanilamide and N (1-naphthyl) ethylamine dihydrochloride. Concentration of NOx was calculated as described in SO₂ measurement.

Ammonia : Indophenols method (APHA Method 401, Air Sampling and Analysis, 3rd Edition) was adopted. Ammonia in the atmosphere is collected by bubbling a measured volume of air through a dilute solution of sulphuric acid to form ammonium sulphate. The ammonium sulphate formed in

the sample is analysed colorimetrically by reaction with phenol and alkaline sodium hypochlorite to produce indophenols. The reaction is accelerated by addition of Sodium nitroprusside as catalyst.

Ozone : IS:5182 Part IX (Methods for Measurement of Air Pollution - Oxidants)/ APHA Method 410 was adopted. Micro amounts of ozone and the oxidants liberate iodine when absorbed in a 1% solution of potassium iodine buffered at pH 6.8 \pm 0.2. The iodine is determined spectrophotometrically by measuring the absorption of tri-oxide ion at 352 nm. Drager Multiwarn Detector was also used for real time value.

CO : Envirotech APM 850 Organic Vapour Samplers are used for CO monitoring. Standard MSA tubes are used for monitoring carbon monoxide. A measured volume of air is passed at the flow rate of 100 to 200 ml/min for 1 to 8 hours and the colour change (yellow to green) in indicating gel filled in the detector tubes and is matched with the colour chart provided with detector tubes for finding out CO concentration. Drager Multiwarn Detector was also used for real time value.

Particulate Lead : The exposed glass fibre filter papers were cut into small pieces and to it 100 ml distilled water and 10 ml nitric acid were added and heated on a hot plate for 4-6 hours. The clear solution obtained after digestion was filtered and made upto 25 ml and were analysed on a Analytic Jena Atomic Absorption Spectrophotometer (AAS) employing Lead Hollow Cathode Lamp. Concentration of lead was calculated by taking the result obtained from AAS analysis and dividing it with the volume of air sampled.

Benzene : The charcoal tubes are available in different sizes and contain varying amount of activated charcoal. The ambient air was sucked through the tube using a low flow sampler used for collection of BTX sample in a way that results in an enrichment of the relevant substances in the activated charcoal. Desorption of the adsorbed benzene was done using Carbon disulphide (CS_2). The substances desorbed in CS_2 were analyzed by capillary Gas Chromatography.

Benzo (a) Pyrene (BaP) is one of the most important constituent of PAH compounds and also one of the most potent carcinogens. This can be measured in both particulate phase and vapour phase. In the vapour phase the concentration of B(a)P is significantly less than the particulate phase. Therefore, more care to be taken for the measurement of Benzo(a) Pyrene in the particulate phase. It is based on BIS method IS 5182 (Part XII). This method is designed to collect particulate phase PAHs in ambient air and fugitive emissions and to determine individual PAH compounds using capillary Gas Chromatography equipped with flame ionization detector.

Nickel and Arsenic : The Atomic Absorption Spectroscopy (AAS) technique makes use of absorption spectrometry to assess the concentration of an analyte in the sample. The method is based on active sampling using PM10 High Volume Sampler and then sample analysis is done by atomic absorption spectroscopy.

The detectable range of the Air Pollutants are given in Table 3.2.

Parameter	Method	Range	
Respirable Particulate Matter (less than 10 μm or PM10)	IS 5182: (Part 23) : 2006 RA: 2017	5-1000 µg/m³	
Particulate matter (less than 2.5 μm or PM2.5)	USEPA Quality Assurance Handbook Vol II Part II - Guidance Documents 2.12 issue year: Nov-1998	10-1000 µg/m³	
Sulphur Dioxide	IS 5182: (Part 2), 2001 RA: 2017	5-1000 µg/m³	
Nitrogen Dioxide	IS 5182: (Part 6), 2006 RA: 2017	6-750 µg/m³	
Carbon Monoxide	IS 5182: (Part 10), 1999 RA: 2014	1-200 mg/m ³	
Ammonia	Indophenol Method (Method of Air sampling and analysis 3 rd edition method 401)	5-700 μg/m³	
Ozone	IS 5182: (Part 9), 1974, RA 2014	10-19000 µg/m³	
Benzene (C ₆ H ₆)	IS 5182 (Part 11), 2006 RA: 2017	0.01-1000 µg/m³	
Banzo (ɑֽ) Pyrene Particulate Phase only	IS 5182: (Part 12): 2004, RA: 2014	0.1-10,000 ng/ m ³	
Nickel		1.0 -50 ng/m ³	
Arsenic	IS 5182: (Part 22), 2004, RA: 2014 /NAAQS Monitoring & Analysis Guidelines Volume-I	1.0-10 ng/ m ³	
Lead		0.1-50 μg/m ³	

Table : 3.2 AAQ Parameters- Detectable Range

Noise Levels : Noise levels were monitored at all air monitoring locations during day time as well as night time in a day. A totally portable measurement systems, Lutron SL 4001 with an internal calibrator and wind screen was used. The built-in internal oscillation system 1 KHz sine wave generator is used for on the spot calibration at 94.0 dB(A) at 1000 Hz. The basic unit of measurement is A-weighted sound level.

Water Quality : Water samples of both surface and ground waters were collected during the survey period and analysed for physico-chemical and bacteriological parameters (**Table 3.3**). Parameters like pH, conductivity, temperature, DO, etc. were measured in the field itself while collecting the samples using a microprocessor based Portable Water Analysis Kit (Elico Model PE136). Samples for chemical analysis were collected as per IS:2488. Sterilised bottles were used for collection of bacteriological samples.

Soil Quality : Samples at 3 depths viz. 0-30 cm, 30-60 cm and 60-90 cm were collected using sampling augers and field capacity apparatus. Soil extraction (10%) were used for analysis.

Calibration : The monitoring and analytical instruments are being calibrated periodically. The correction factors, if any, are being used in computation of the data.

Flora & Fauna : A general ecological survey covering an area of 10 km radius area were conducted and reported. Faunal survey covers the Terrestrial and Avian Fauna. This study included the identification of endangered and rare species as per Red Book.

Socio-Economic profile of population in study area is based on Census 2011 data.

SI. No.	Parameter	Unit	Reference	Method
1	Taste & Odour	-	IS:3025 (5/7)*	As perceived
2	рН	-	IS:3025 (11)	Digital pH meter
3	Colour	Hazen units	IS:3025 (4)	Comparison with Standards
4	Turbidity	NTU	IS:3025 (10)	Nephelometric
5	Total Dissolved Solids	mg/l	IS:3025 (16)	Gravimetric
6	Total Hardness	mg/l	IS:3025 (21)	Titrimetric (EDTA)
7	Iron (as Fe)	mg/l	32 of IS3025	Colorimetric (Phenonthroline)
8	Chlorides (as Cl)	mg/l	IS:3025 (32)	Titrimetric (Argentometric)
9	Residual Chlorine	mg/l	IS:3025 (26)	Titrimetric
10	Calcium (as Ca)	mg/l	IS:3025 (40)	Titrimetric (EDTA)
11	Magnesium (as Mg)	mg/l	IS:3025 (46)	Titrimetric (by difference between Total Hardness and Calcium Hardness)
12	Alkalinity (as CaCO ₃)	mg/l	IS:3025 (23)	Colour indicator titration
13	Dissolved Oxygen	mg/l	IS:3025 (38)	Winkler titrimetric-azide modification
14	Sulphate (as SO ₄)	mg/l	IS:3025 (24)	Turbidimetric/Gravimetric
15	Fluoride (as F)	mg/l	IS:2488 (II)+	Distillation followed by Colorimetric (SPADNS)
16	Nitrate (as NO ₃)	mg/l	IS:3025 (34)	Colorimetric (PDA)
17	Cyanide (as CN)	mg/l	IS:3025 (27)	Colorimetric (Pyridine-Bispyrazolone)
18	Pesticides	mg/	IS:2488 (III)	Gas chromatograph
19	Phenols (as C ₆ H ₅ OH)	mg/l	IS:3025 (43)	Distillation followed by colorimetric (4-Aminoantipyrine)
20	Manganese (as Mn)	mg/l	35 of IS3025	Colorimetric (Persulpahte)
21	Chromium (as Cr ⁶⁺)	mg/l	IS:2488 (II)	Colorimetric (Diphenyl carbazide)
22	Copper (as Cu)	mg/l	IS:3025 (42)	Atomic Absorption Spectrophotometric
23	Selenium (as Se)	mg/l	IS:2488 (II)	Atomic Absorption Spectrophotometric
24	Cadmium (as Cd)	mg/l	IS:3025 (41)	Atomic Absorption Spectrophotometric
25	Arsenic (as As)	mg/l	IS:3025 (37)	Atomic Absorption Spectrophotometric
26	Boron (as B)	mg/l	IS:2488 (III)	Colorimetric (Curcumin)
27	Mercury (as Hg)	mg/l	IS:3025 (48)	Mercury analyser
28	Lead (as Pb)	mg/l	IS:3025 (47)	Atomic Absorption Spectrophotometric
29	Zinc (as Zn)	mg/l	IS:3025 (49)	Colorimetric (Dithizone)
30	Percent sodium	%	IS:2488 (V)	From Na, K, Ca & Mg values
31	BOD-3 days@27 °C	mg/l	IS:3025 (44)	3 days @ 27°C
32	COD	mg/l	IS:2488 (V)	Dichromate reflux
33	Oil & Grease	mg/l	IS:3025 (39)	Gravimetric
34	Coliforms	MPN/100 ml	IS:1622	Multiple tube fermentation (5 tubes)
35	Plate Counts	No. of Colonies/ml	IS:1622	Colony count in Agar-agar medium

Table : 3.3 Methodology Adopted for Water Analysis

*: IS:3025 (Parts)-Methods of Sampling and Test (Physical and Chemical) for Water and Wastewater;

+ : IS:2488 (Parts)-Methods of Sampling and Test for Industrial Effluents.

3.4 Micrometeorology

Regional Status : Sub-tropical climate prevails over the study area. The nearest IMD station is Trichy Airport. The maximum temperature ranges from 40 °C to 44 °C and minimum temperature from 22 °C to 27 °C. As per TWAD Data, **70 year Normal Rainfall** of nearby Ariyalur Rain Gauge Station is **1,096 mm**. Around 50% of the rainfall occurs during Northeast monsoon and the remaining rainfall occurs during Southwest and Transitional periods. The chances of receiving normal annual rainfall is about 40-45%.

Site Specific Status : The abstract of collected hourly meteorological data are presented in **Tables 3.4-3.6**. Based on the wind parameters, wind rose is drawn and presented as **Fig. 3.4**.

December 2023 : Predominant winds were from NE & NNE directions. Mean Wind velocity was 6.0 kmph. Temperature values were ranging from 21.3 °C to 36.0 °C with mean value of 27.3 °C. Mean maximum relative humidity value was 80.3%. Mean atmospheric pressure value was computed as 759.4 mm of mercury. There were 9 rainy days with total rainfall of 20.4 mm.

January 2024 : Predominant winds were from NE & ENE directions. Mean Wind velocity was 5.2 kmph. Temperature values were ranging from 21.0 °C to 35.0 °C with mean value of 26.8 °C. Mean maximum relative humidity value was 77.4%. Mean atmospheric pressure value was computed as 760.3 mm of mercury. There were 3 rainy days with total rainfall of 12.4 mm.

February 2024 : Predominant winds were from NE & ENE directions. Mean Wind velocity was 6.0 kmph. Temperature values were ranging from 20.1 °C to 38.0 °C with mean value of 28.5 °C. Mean maximum relative humidity value was 70.2%. Mean atmospheric pressure value was computed as 760.4 mm of mercury. There was one rainy day with total rainfall of 0.6 mm in this month.

Winter Season 2023-24 :

- Predominant winds were from NE directions.
- Mean Wind velocity was 5.7 kmph.
- Temperature values were ranging from 20.1 °C to 38.0 °C with mean value of 27.5 °C.
- Mean maximum relative humidity value was 76.0%.
- Mean atmospheric pressure value was computed as 760.0 mm of mercury.
- There were 13 rainy days with total rainfall of 33.4 mm.

The monitored meteorological data were found to be in compliance with local weather phenomena.

Table : 3.4 Micrometeorological Data – December 2023

	Mean	Pred. Wind	Tem	perature	e, °C	Relative	Cloud	Atm.	Rain-
Date	Velocity, kmph	Direction, ° (from)	Min.	Max.	Mean	(Mean), %	Cover, oktas	(Mean), mm of Hg	fall, mm
01.12.2023	4.1	10.5	24.8	33.0	28.0	80	5	757.9	0
02.12.2023	4.6	348.9	25.0	33.0	28.1	77	7	756.8	0
03.12.2023	4.0	294.1	25.0	31.0	27.8	82	7	756.3	0.2
04.12.2023	7.7	274.3	23.9	34.0	28.9	75	7	755.2	0
05.12.2023	6.2	252.5	24.9	36.0	29.8	76	6	755.6	0
06.12.2023	5.1	191.7	24.9	36.0	29.4	80	5	756.9	4.0
07.12.2023	4.1	103.4	26.0	36.0	29.2	82	4	757.9	0
08.12.2023	4.1	67.9	26.0	34.0	28.9	84	5	758.7	5.0
09.12.2023	5.1	54.2	25.8	33.6	28.5	83	5	759.3	0
10.12.2023	6.2	44.9	24.9	33.0	28.2	80	6	758.8	0
11.12.2023	6.2	42.4	24.8	31.0	27.6	80	5	759.3	0
12.12.2023	6.2	51.1	24.0	32.0	26.8	82	4	758.8	0
13.12.2023	7.2	45.5	23.0	32.0	26.6	77	4	759.3	0
14.12.2023	6.7	29.7	22.5	32.0	26.8	75	4	760.2	0
15.12.2023	7.2	26.0	24.9	29.2	26.5	80	6	760.2	0
16.12.2023	5.1	23.6	22.7	30.0	25.6	89	6	759.6	9.0
17.12.2023	7.2	38.3	24.8	30.1	26.3	88	7	759.0	0.6
18.12.2023	6.2	36.7	24.0	28.0	26.1	85	7	760.2	0
19.12.2023	7.2	34.7	24.8	30.0	26.8	77	7	760.3	0
20.12.2023	6.3	30.6	23.2	29.0	26.2	80	7	760.3	0.2
21.12.2023	5.6	34.9	24.0	29.0	25.5	89	7	760.4	1.0
22.12.2023	4.6	50.3	22.2	31.0	26.3	80	3	760.6	0
23.12.2023	6.2	48.7	22.0	32.0	26.1	73	3	761.3	0
24.12.2023	6.2	38.8	22.2	30.0	25.8	77	6	761.7	0
25.12.2023	6.0	45.9	24.0	33.0	27.4	81	5	760.8	0
26.12.2023	6.2	43.3	21.3	32.0	26.9	77	4	761.4	0
27.12.2023	7.7	42.4	22.6	33.0	27.1	77	4	761.2	0.2
28.12.2023	6.2	42.4	24.0	32.0	27.3	80	6	760.4	0.2
29.12.2023	7.7	44.1	24.0	31.0	27.1	82	6	760.7	0
30.12.2023	6.2	48.4	24.0	31.0	27.1	82	5	760.6	0
31.12.2023	6.2	48.3	23.0	32.0	26.7	78	4	760.2	0
Monthly Abstract	6.0	80.3	21.3	36.0	27.3	80.3	5.4	759.4	20.4

Location : PNR Mine Area

Note : Abstract values are taken from the hourly readings (00:00-24:00 hrs.) recorded continuously during the monitoring period.

Table : 3.5 Micrometeorological Data – January 2024

	Mean	Pred. Wind	Ten	nperature	e, °C	Relative	Cloud	Atm.	Rain-
Date	Velocity, kmph	Direction, ° (from)	Min.	Max.	Mean	(Mean), %	Cover, oktas	(Mean), mm of Hg	fall, mm
01.01.2024	5.1	49.3	22.0	32.0	26.6	77	4	760.5	0
02.01.2024	5.7	47.4	23.8	31.1	26.6	78	6	759.9	0
03.01.2024	5.1	57.3	23.0	32.0	26.8	77	5	759.6	0
04.01.2024	5.1	54.9	22.5	30.5	26.8	81	6	759.3	0
05.01.2024	4.6	49.5	24.0	30.0	26.9	82	7	759.4	0
06.01.2024	5.7	41.6	24.8	32.0	27.6	80	6	759.1	0
07.01.2024	5.7	43.5	24.1	30.0	26.8	84	7	759.4	3
08.01.2024	4.1	39.1	23.8	28.0	25.4	92	8	760.1	1
09.01.2024	5.3	39.2	24.6	28.0	26.0	89	7	759.9	8.4
10.01.2024	6.2	35.8	24.0	30.0	26.7	81	7	759.9	0
11.01.2024	6.7	45.2	24.0	31.4	27.0	77	4	760.4	0
12.01.2024	6.2	43.9	23.9	32.0	26.8	76	4	760.4	0
13.01.2024	4.1	48.2	22.0	32.0	26.5	80	4	760.8	0
14.01.2024	4.6	61.5	22.0	32.0	26.4	79	3	760.2	0
15.01.2024	5.1	56.8	21.3	32.0	26.2	77	3	760.0	0
16.01.2024	4.6	67.5	22.0	32.0	26.3	75	3	759.3	0
17.01.2024	3.1	67.9	21.0	33.0	26.0	72	3	758.9	0
18.01.2024	5.1	55.3	22.0	33.0	27.1	78	5	759.1	0
19.01.2024	6.2	66.5	23.8	32.0	26.7	83	6	759.4	0
20.01.2024	4.1	50.5	25.0	31.2	27.6	77	7	760.1	0
21.01.2024	5.1	60.6	24.3	33.3	28.0	76	5	760.2	0
22.01.2024	5.7	63.5	22.0	33.0	27.0	75	2	760.9	0
23.01.2024	4.1	68.8	21.0	32.0	26.4	76	3	761.0	0
24.01.2024	3.3	72.5	21.9	33.0	26.7	73	3	760.5	0
25.01.2024	5.1	75.2	21.8	33.0	26.8	72	3	761.1	0
26.01.2024	6.2	55.0	22.0	33.0	26.9	72	3	762.1	0
27.01.2024	6.2	51.8	22.8	33.0	27.2	70	4	762.3	0
28.01.2024	5.6	52.9	22.9	33.0	27.3	74	4	761.8	0
29.01.2024	6.2	53.0	23.0	31.9	26.7	74	4	761.4	0
30.01.2024	6.7	51.3	22.9	35.0	27.3	70	3	760.8	0
31.01.2024	5.7	58.3	23.0	34.0	28.0	73	3	760.8	0
Monthly Abstract	5.2	54.3	21.0	35.0	26.8	77.4	4.6	760.3	12.4

Location : PNR Mine Area

Note : Abstract values are taken from the hourly readings (00:00-24:00 hrs.) recorded continuously during the monitoring period.

Table : 3.6 Micrometeorological Data – February 2024

	Mean	Pred. Wind	Ten	nperature	e, °C	Relative	Cloud	Atm.	Rain-
Date	Velocity, kmph	Direction, ° (from)	Min.	Max.	Mean	(Mean), %	Cover, oktas	(Mean), mm of Hg	fall, mm
01.02.2024	4.1	63.6	25.0	35.0	29.1	76	5	760.8	0
02.02.2024	5.1	73.7	25.0	35.0	29.3	76	4	760.5	0
03.02.2024	5.1	68.8	24.9	34.0	28.6	74	4	760.8	0
04.02.2024	6.2	48.6	23.0	34.0	27.8	73	3	762.1	0
05.02.2024	5.7	53.6	21.1	33.0	27.3	73	3	762.4	0
06.02.2024	5.1	52.7	21.0	33.0	27.1	74	3	761.9	0
07.02.2024	5.1	62.4	21.0	34.0	27.0	72	2	761.6	0
08.02.2024	5.7	62.5	20.3	35.0	27.2	71	4	760.8	0
09.02.2024	5.4	65.4	22.8	34.0	27.8	74	3	761.2	0
10.02.2024	7.4	52.0	23.2	34.0	28.0	73	4	762.2	0
11.02.2024	6.9	54.5	24.0	34.0	27.8	74	3	762.3	0.6
12.02.2024	6.2	49.2	20.1	34.0	27.4	71	3	762.0	0
13.02.2024	7.2	45.7	23.0	34.0	28.0	75	3	761.3	0
14.02.2024	7.5	51.2	25.0	34.5	28.6	72	3	760.9	0
15.02.2024	6.4	53.1	23.3	35.0	28.0	73	3	760.8	0
16.02.2024	5.7	48.6	23.8	34.0	28.2	71	3	761.1	0
17.02.2024	6.4	51.2	24.0	34.4	28.5	71	2	760.2	0
18.02.2024	6.2	66.8	22.0	35.4	28.3	71	3	759.7	0
19.02.2024	5.1	59.7	24.0	35.0	28.9	72	3	759.9	0
20.02.2024	5.1	70.6	23.8	36.0	28.9	70	3	759.9	0
21.02.2024	5.4	89.0	24.0	37.0	29.4	68	3	759.0	0
22.02.2024	5.1	153.9	24.8	37.0	30.3	67	4	758.8	0
23.02.2024	6.1	137.4	25.8	38.0	30.8	68	3	758.3	0
24.02.2024	6.2	115.7	27.0	36.1	30.4	71	4	758.5	0
25.02.2024	6.2	66.5	24.5	35.0	29.0	70	4	758.4	0
26.02.2024	8.2	57.2	24.9	35.0	29.0	71	3	758.9	0
27.02.2024	6.7	54.5	24.9	35.0	28.9	72	3	759.5	0
28.02.2024	6.7	60.4	23.8	36.0	29.2	69	3	758.9	0
29.02.2024	6.7	61.3	24.0	36.0	29.0	66	3	759.2	0
Monthly Abstract	6.0	67.2	20.1	38.0	28.5	71.7	3.2	760.4	0.6

Location : PNR Mine Area

Note : Abstract values are taken from the hourly readings (00:00-24:00 hrs.) recorded continuously during the monitoring period.

Fig. : 3.4 Seasonal Wind Rose

Period : Dec. 2023-Feb. 2024 (Winter Season)

3.5 Ambient Air Quality

3.5.1 Monitoring Locations

AAQ Monitoring Stations were selected based on the Upwind & Downwind directions for the Season (Table 3.7) and covering the existing Mines & Industries. Mobile Stations were also deployed for the monitoring. All 12 AAQ parameters (24/8/1 hourly basis) were monitored in compliance with NAAQ Norms. The monitored ambient air quality data are presented in Tables 3.8-3.15. The abstract of those monitored data is given as Table 3.16 and ambient air quality status in the study area as Table 3.17.

SI. No.	Location	N-Latitude	E-Longitude	Direction from Mine	Distance from Mine, km	Location Scenario
1	A1-PNR Mine Office	11º07'27.9"	79º08'33.0"	-	-	Core zone
2	A2-Kovilankudikadu	11º09'10.6"	79º09'13.1"	NE	2.2	Upwind
3	A3-Kattupirangiyam	11º07'25.1"	79º08'22.4"	SW	0.9	Downwind
4	A4- Kaikatti near UT Cement Plant	11º06'28.3"	79º ¹ 0'29.2"	SE	4.0	Crosswind
5	A5-Pudupalayam	11º05'28.8"	79°08'05.3"	SSW	4.7	Downwind
6	A6-Hastinapuram	11º07'10.4"	79º07'43.6"	SW	2.3	Downwind
7	A7-Ariyalur Bypass	11º07'40.7"	79º05'03.8"	WSW	6.7	Downwind
8	A8-Kallankurichi	11º08'52.8"	79º07'13.6"	NW	3.0	Upwind

 Table : 3.7
 Ambient Air Quality Monitoring Stations-Location & Bearing

3.5.2 AAQ Status

During the study, each 192 samples were collected, analysed and reported. On the synthesized data, the following observations are made :

PM2.5 values (24 hours Time Weighted) were monitored in the range between 10-46 **microgram/cu.m (ug/m³)** in the Study Area with **mean value of 25.1 ug/m³** against NAAQ Norm value of **60 ug/m³** (24 hours Time Weighted).

PM10 values were monitored in the range between 20-74 ug/m³ with **mean value of 44.6 ug/m³** against NAAQ Norm value of **100 ug/m³** (24 hours Time Weighted).

SO₂ values were monitored in the range between 6-22 ug/m³ with **mean value of 10.9 ug/m³** against NAAQ limit value of **80 ug/m³** (24 hours Time Weighted).

NOx values were monitored in the range between 6-26 ug/m³ with **mean value of 13.3 ug/m³** against NAAQ limit value of **80 ug/m³** (24 hours Time Weighted).

Ammonia (NH₃) concentrations were monitored less than 5 ug/m³ at all monitoring locations against NAAQ limit value of 400 ug/m³ (24 hours Time Weighted).

 O_3 concentrations (hourly samples reported for 8-hour average) were monitored in the range between <10-38.4 ug/m³ with mean value of 23.7 ug/m³ against NAAQ limit value of 100 ug/m³ (8 hours Time Weighted).

CO: Monitored CO values were less than 1000 ug/m³ during the study period against NAAQ limit value of 2 mg/m³ (2,000 ug/m³) (8 hours Time Weighted).

Particulate Lead (Pb) concentrations were monitored less than 0.1 ug/m³ at all monitoring locations against NAAQ limit value of 1.0 ug/m³ (24 hours Time Weighted).

Arsenic (As) concentrations were monitored less than 1 **nanogram/cu.m (ng/m³)** at all monitoring locations against NAAQ limit value of 6 ng/m³ (annual mean).

Nickel (Ni) concentrations were monitored less than 1 ng/m³ at all monitoring locations against NAAQ limit value of 20 ng/m³ (annual mean).

Benzene (C_6H_6) concentrations were monitored less than 0.01 ug/m³ at all monitoring locations against NAAQ limit value of 5 ug/m³ (annual mean).

Benzo(a) Pyrene (BaP) concentrations were monitored less than 0.1 ng/m³ at all monitoring locations against NAAQ limit value of 1.0 ng/m³ (annual mean).

While comparing with the National Ambient Air Quality (NAAQ) Standards revised as per GSR 826(E) dated 16.11.2009, all monitored values were found to be well within the respective limit values for 24-hourly periods for Industrial, Residential, Rural and other Areas.

Exceedance Factor (EF) : (Monitored Avg. Value of criteria Pollutant/NAAQ Norm of the Pollutant) : Critical Pollution if EF is 1.5; High Pollution if EF is between 1.0-<1.5, Moderate Pollution if EF is between 0.5-<1.0 and Low Pollution if EF is <0.5. Study Area is falling under Low to Moderate Pollution Level.

Pollutant	Mean NAAQ		Exceedance Factor	Pollution
	Concentration	Norm	(EF)	Category
PM2.5, ug/m ³	25.1	60	0.42	Low
PM10, ug/m ³	44.6	100	0.45	Moderate
SO ₂ , ug/m ³	10.9	80	0.14	Low
NO ₂ , ug/m ³	13.3	80	0.17	Low

Season : Winter 2023-24

Sample Size : 24 hly. (otherwise mentioned)

Monito	oring	Particula	tes, ug/m ³		Gaseou	us Pollutant	ts, ug/m³		C	Other Polluta	ants (Particu	ulate Phase)
Date	Period, hrs.	PM2.5	PM10	SO ₂	NOx	NH₃	O₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, ug/m ³	As, ng/m³	Ni, ng/m³	C₀H₀, ug/m³	BaP, ng/m³
01-02.12.2023	06:00-06:00	14	30	7	9	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.12.2023	06:00-06:00	18	28	6	7	<5	11.5	<1000	<0.1	<1	<1	<0.01	<0.1
10-11.12.2023	06:00-06:00	21	30	8	9	<5	13.6	<1000	<0.1	<1	<1	<0.01	<0.1
11-12.12.2023	06:00-06:00	17	27	7	8	<5	21.7	<1000	<0.1	<1	<1	<0.01	<0.1
18-19.12.2023	06:00-06:00	14	25	9	11	<5	18.2	<1000	<0.1	<1	<1	<0.01	<0.1
19-20.12.2023	06:00-06:00	19	34	8	9	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
26-27.12.2023	06:00-06:00	21	36	12	15	<5	16.1	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.12.2023	06:00-06:00	23	39	10	12	<5	20.4	<1000	<0.1	<1	<1	<0.01	<0.1
01-02.01.2024	06:00-06:00	22	42	9	12	<5	13.6	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.01.2024	06:00-06:00	26	40	10	12	<5	10.7	<1000	<0.1	<1	<1	<0.01	<0.1
14-15.01.2024	06:00-06:00	24	44	9	11	<5	11.2	<1000	<0.1	<1	<1	<0.01	<0.1
15-16.01.2024	06:00-06:00	25	47	7	8	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.01.2024	06:00-06:00	25	42	11	13	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.01.2024	06:00-06:00	27	45	12	15	<5	11.4	<1000	<0.1	<1	<1	<0.01	<0.1
29-30.01.2024	06:00-06:00	33	56	11	14	<5	10.7	<1000	<0.1	<1	<1	<0.01	<0.1
30-31.01.2024	06:00-06:00	26	45	8	10	<5	11.3	<1000	<0.1	<1	<1	<0.01	<0.1
05-06.02.2024	06:00-06:00	19	40	7	9	<5	12.1	<1000	<0.1	<1	<1	<0.01	<0.1
06-07.02.2024	06:00-06:00	28	48	12	16	<5	17.9	<1000	<0.1	<1	<1	<0.01	<0.1
16-17.02.2024	06:00-06:00	25	43	8	10	<5	15.6	<1000	<0.1	<1	<1	<0.01	<0.1
17-18.02.2024	06:00-06:00	21	44	8	11	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.02.2024	06:00-06:00	27	51	10	12	<5	18.6	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.02.2024	06:00-06:00	23	43	9	12	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.02.2024	06:00-06:00	30	54	11	14	<5	17.5	<1000	<0.1	<1	<1	<0.01	<0.1
28-29.02.2024	06:00-06:00	26	47	12	15	<5	20.2	<1000	<0.1	<1	<1	<0.01	<0.1
Range (Minimu	m-Maximum)	14-33	25-56	6-12	7-16	<5	<10-21.7	<1000	<0.1	<1	<1	<0.01	<0.1
Mean \	/alue	23.1	40.8	9.2	11.4	<5	15.1	<1000	<0.1	<1	<1	<0.01	<0.1
NAAQ N	orms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2,000 (8 hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)

Season : Winter 2023-24

Table : 3.9 Ambient Air Quality Data at A2-Kovilankudikadu

Sample Size : 24 hly. (otherwise mentioned)

Monito	oring	Particula	tes, ug/m³		Gaseo	us Pollutant	ts, ug/m³		C	ther Polluta	Ints (Particu	late Phase)
Date	Period, hrs.	PM2.5	PM10	SO₂	NOx	NH3	O₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, ug/m ³	As, ng/m³	Ni, ng/m³	C6H6, ug/m ³	BaP, ng/m³
01-02.12.2023	06:00-06:00	10	21	6	7	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.12.2023	06:00-06:00	12	22	9	11	<5	12.4	<1000	<0.1	<1	<1	<0.01	<0.1
10-11.12.2023	06:00-06:00	14	25	7	8	<5	11.6	<1000	<0.1	<1	<1	<0.01	<0.1
11-12.12.2023	06:00-06:00	11	20	8	10	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
18-19.12.2023	06:00-06:00	13	23	8	9	<5	11.7	<1000	<0.1	<1	<1	<0.01	<0.1
19-20.12.2023	06:00-06:00	12	25	6	7	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
26-27.12.2023	06:00-06:00	17	30	8	9	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.12.2023	06:00-06:00	15	27	7	8	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
01-02.01.2024	06:00-06:00	17	32	7	7	<5	18.2	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.01.2024	06:00-06:00	12	23	8	8	<5	17.3	<1000	<0.1	<1	<1	<0.01	<0.1
14-15.01.2024	06:00-06:00	15	28	7	8	<5	15.6	<1000	<0.1	<1	<1	<0.01	<0.1
15-16.01.2024	06:00-06:00	15	34	7	8	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.01.2024	06:00-06:00	12	21	8	10	<5	18.2	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.01.2024	06:00-06:00	13	24	7	8	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
29-30.01.2024	06:00-06:00	14	25	8	8	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
30-31.01.2024	06:00-06:00	12	22	7	9	<5	14.5	<1000	<0.1	<1	<1	<0.01	<0.1
05-06.02.2024	06:00-06:00	12	28	6	7	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
06-07.02.2024	06:00-06:00	10	20	7	8	<5	21.2	<1000	<0.1	<1	<1	<0.01	<0.1
16-17.02.2024	06:00-06:00	12	23	8	10	<5	15.7	<1000	<0.1	<1	<1	<0.01	<0.1
17-18.02.2024	06:00-06:00	15	31	7	7	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.02.2024	06:00-06:00	12	20	7	7	<5	11.4	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.02.2024	06:00-06:00	15	23	7	9	<5	15.2	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.02.2024	06:00-06:00	11	21	6	6	<5	13.7	<1000	<0.1	<1	<1	<0.01	<0.1
28-29.02.2024	06:00-06:00	13	24	8	9	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
Range (Minimu	m-Maximum)	10-17	20-34	6-9	6-11	<5	<10-21.2	<1000	<0.1	<1	<1	<0.01	<0.1
Mean \	/alue	13.1	24.7	7.3	8.3	<5	15.1	<1000	<0.1	<1	<1	<0.01	<0.1
NAAQ N	orms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2,000 (8 hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)

Table : 3.10 Ambient Air Quality Data at A3-Kattupirangiyam (on SH-139)

Season : Winter 2023-24

Sample Size : 24 hly. (otherwise mentioned)

Monito	oring	Particula	tes, ug/m ³		Gaseou	us Pollutant	ts, ug/m ³		C	Other Polluta	ants (Particu	ulate Phase	e)
Date	Period, hrs.	PM2.5	PM10	SO ₂	NOx	NH3	O₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, ug/m ³	As, ng/m³	Ni, ng/m³	C ₆ H ₆ , ug/m ³	BaP, ng/m³
01-02.12.2023	06:00-06:00	16	34	7	8	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.12.2023	06:00-06:00	23	38	8	9	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
10-11.12.2023	06:00-06:00	20	36	10	12	<5	13.8	<1000	<0.1	<1	<1	<0.01	<0.1
11-12.12.2023	06:00-06:00	25	41	9	10	<5	17.2	<1000	<0.1	<1	<1	<0.01	<0.1
18-19.12.2023	06:00-06:00	24	37	9	11	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
19-20.12.2023	06:00-06:00	18	38	9	11	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
26-27.12.2023	06:00-06:00	22	40	11	15	<5	26.3	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.12.2023	06:00-06:00	24	44	9	12	<5	25.2	<1000	<0.1	<1	<1	<0.01	<0.1
01-02.01.2024	06:00-06:00	15	31	7	8	<5	24.1	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.01.2024	06:00-06:00	22	45	10	12	<5	25.3	<1000	<0.1	<1	<1	<0.01	<0.1
14-15.01.2024	06:00-06:00	26	49	8	10	<5	23.7	<1000	<0.1	<1	<1	<0.01	<0.1
15-16.01.2024	06:00-06:00	19	40	7	9	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.01.2024	06:00-06:00	27	49	9	10	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.01.2024	06:00-06:00	31	52	11	13	<5	27.9	<1000	<0.1	<1	<1	<0.01	<0.1
29-30.01.2024	06:00-06:00	28	43	8	10	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
30-31.01.2024	06:00-06:00	33	54	10	13	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
05-06.02.2024	06:00-06:00	17	38	8	9	<5	13.6	<1000	<0.1	<1	<1	<0.01	<0.1
06-07.02.2024	06:00-06:00	27	50	10	14	<5	11.2	<1000	<0.1	<1	<1	<0.01	<0.1
16-17.02.2024	06:00-06:00	30	52	8	11	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
17-18.02.2024	06:00-06:00	19	42	7	9	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.02.2024	06:00-06:00	26	47	13	15	<5	20.4	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.02.2024	06:00-06:00	27	50	10	13	<5	21.3	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.02.2024	06:00-06:00	32	53	9	11	<5	20.7	<1000	<0.1	<1	<1	<0.01	<0.1
28-29.02.2024	06:00-06:00	26	45	11	13	<5	20.2	<1000	<0.1	<1	<1	<0.01	<0.1
Range (Minimu	m-Maximum)	15-33	31-54	7-13	8-15	<5	<10-27.9	<1000	<0.1	<1	<1	<0.01	<0.1
Mean \	/alue	24.0	43.7	9.1	11.2	<5	20.8	<1000	<0.1	<1	<1	<0.01	<0.1
NAAQ N	orms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2,000 (8 hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)

Table : 3.11 Ambient Air Quality Data at A4- Kaikatti near UT Cement Plant

Season : Winter 2023-24

Sample Size : 24 hly. (otherwise mentioned)

Monito	oring	Particula	tes, ug/m³		Gaseou	us Pollutant	ts, ug/m³		C	ther Polluta	ants (Particu	ulate Phase	e)
Date	Period, hrs.	PM2.5	PM10	SO ₂	NOx	NH ₃	O₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, ug/m ³	As, ng/m³	Ni, ng/m³	C ₆ H ₆ , ug/m ³	BaP, ng/m³
01-02.12.2023	06:00-06:00	26	50	11	13	<5	28.0	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.12.2023	06:00-06:00	19	40	9	11	<5	29.6	<1000	<0.1	<1	<1	<0.01	<0.1
10-11.12.2023	06:00-06:00	30	55	11	14	<5	31.2	<1000	<0.1	<1	<1	<0.01	<0.1
11-12.12.2023	06:00-06:00	28	51	12	14	<5	33.5	<1000	<0.1	<1	<1	<0.01	<0.1
18-19.12.2023	06:00-06:00	34	57	14	16	<5	30.3	<1000	<0.1	<1	<1	<0.01	<0.1
19-20.12.2023	06:00-06:00	21	44	9	11	<5	32.4	<1000	<0.1	<1	<1	<0.01	<0.1
26-27.12.2023	06:00-06:00	30	52	9	11	<5	31.8	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.12.2023	06:00-06:00	26	44	11	12	<5	20.2	<1000	<0.1	<1	<1	<0.01	<0.1
01-02.01.2024	06:00-06:00	22	45	9	12	<5	29.3	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.01.2024	06:00-06:00	30	53	11	15	<5	21.4	<1000	<0.1	<1	<1	<0.01	<0.1
14-15.01.2024	06:00-06:00	25	47	9	11	<5	20.2	<1000	<0.1	<1	<1	<0.01	<0.1
15-16.01.2024	06:00-06:00	25	48	10	13	<5	21.7	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.01.2024	06:00-06:00	28	50	14	18	<5	20.2	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.01.2024	06:00-06:00	31	53	11	14	<5	25.1	<1000	<0.1	<1	<1	<0.01	<0.1
29-30.01.2024	06:00-06:00	34	58	10	12	<5	28.3	<1000	<0.1	<1	<1	<0.01	<0.1
30-31.01.2024	06:00-06:00	27	51	9	11	<5	20.4	<1000	<0.1	<1	<1	<0.01	<0.1
05-06.02.2024	06:00-06:00	23	48	9	13	<5	18.2	<1000	<0.1	<1	<1	<0.01	<0.1
06-07.02.2024	06:00-06:00	26	45	10	12	<5	19.0	<1000	<0.1	<1	<1	<0.01	<0.1
16-17.02.2024	06:00-06:00	28	48	14	18	<5	23.6	<1000	<0.1	<1	<1	<0.01	<0.1
17-18.02.2024	06:00-06:00	27	51	10	13	<5	27.1	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.02.2024	06:00-06:00	32	57	10	13	<5	20.2	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.02.2024	06:00-06:00	24	41	10	12	<5	25.4	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.02.2024	06:00-06:00	35	58	12	15	<5	27.9	<1000	<0.1	<1	<1	<0.01	<0.1
28-29.02.2024	06:00-06:00	30	54	13	15	<5	30.1	<1000	<0.1	<1	<1	<0.01	<0.1
Range (Minimu	m-Maximum)	19-35	40-58	9-14	11-18	<5	18.2-33.5	<1000	<0.1	<1	<1	<0.01	<0.1
Mean \	/alue	27.5	50.0	10.7	13.3	<5	25.6	<1000	<0.1	<1	<1	<0.01	<0.1
NAAQ N	orms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2,000 (8 hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)

Table : 3.12 Ambient Air Quality Data at A5-Pudupalayam (on NH-81)

Season : Winter 2023-24

Sample Size : 24 hly. (otherwise mentioned)

Monito	oring	Particula	tes, ug/m ³		Gaseo	us Pollutant	ts, ug/m³		C	Other Polluta	ants (Particu	ulate Phase	e)
Date	Period, hrs.	PM2.5	PM10	SO ₂	NOx	NH3	O₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, ug/m ³	As, ng/m³	Ni, ng/m³	C ₆ H ₆ , ug/m ³	BaP, ng/m³
01-02.12.2023	06:00-06:00	36	64	11	14	<5	27.9	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.12.2023	06:00-06:00	21	43	9	13	<5	30.4	<1000	<0.1	<1	<1	<0.01	<0.1
10-11.12.2023	06:00-06:00	29	53	12	14	<5	31.2	<1000	<0.1	<1	<1	<0.01	<0.1
11-12.12.2023	06:00-06:00	33	61	13	15	<5	28.8	<1000	<0.1	<1	<1	<0.01	<0.1
18-19.12.2023	06:00-06:00	25	52	16	18	<5	28.4	<1000	<0.1	<1	<1	<0.01	<0.1
19-20.12.2023	06:00-06:00	23	48	10	13	<5	30.6	<1000	<0.1	<1	<1	<0.01	<0.1
26-27.12.2023	06:00-06:00	28	52	15	18	<5	33.8	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.12.2023	06:00-06:00	31	55	14	17	<5	34.0	<1000	<0.1	<1	<1	<0.01	<0.1
01-02.01.2024	06:00-06:00	25	57	11	13	<5	30.6	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.01.2024	06:00-06:00	37	63	11	15	<5	28.4	<1000	<0.1	<1	<1	<0.01	<0.1
14-15.01.2024	06:00-06:00	41	68	13	18	<5	20.9	<1000	<0.1	<1	<1	<0.01	<0.1
15-16.01.2024	06:00-06:00	28	52	12	15	<5	28.1	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.01.2024	06:00-06:00	31	57	12	15	<5	30.6	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.01.2024	06:00-06:00	27	51	14	18	<5	24.2	<1000	<0.1	<1	<1	<0.01	<0.1
29-30.01.2024	06:00-06:00	34	63	11	14	<5	21.37	<1000	<0.1	<1	<1	<0.01	<0.1
30-31.01.2024	06:00-06:00	32	57	12	16	<5	22.4	<1000	<0.1	<1	<1	<0.01	<0.1
05-06.02.2024	06:00-06:00	27	55	12	15	<5	20.65	<1000	<0.1	<1	<1	<0.01	<0.1
06-07.02.2024	06:00-06:00	35	62	12	15	<5	25.1	<1000	<0.1	<1	<1	<0.01	<0.1
16-17.02.2024	06:00-06:00	31	57	10	13	<5	27.2	<1000	<0.1	<1	<1	<0.01	<0.1
17-18.02.2024	06:00-06:00	29	59	12	16	<5	22.6	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.02.2024	06:00-06:00	35	66	16	20	<5	20.7	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.02.2024	06:00-06:00	33	58	13	15	<5	28.5	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.02.2024	06:00-06:00	42	71	12	14	<5	20.4	<1000	<0.1	<1	<1	<0.01	<0.1
28-29.02.2024	06:00-06:00	34	61	10	13	<5	24.6	<1000	<0.1	<1	<1	<0.01	<0.1
Range (Minimu	m-Maximum)	21-42	43-71	9-16	13-20	<5	20.4-28.5	<1000	<0.1	<1	<1	<0.01	<0.1
Mean \	/alue	31.1	57.7	12.2	15.3	<5	30.9	<1000	<0.1	<1	<1	<0.01	<0.1
NAAQ N	orms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2,000 (8 hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)

Table : 3.13 Ambient Air Quality Data at A6-Hastinapuram (on SH-139)

Season : Winter 2023-24

Sample Size : 24 hly. (otherwise mentioned)

Monito	oring	Particula	tes, ug/m ³		Gaseou	us Pollutan	ts, ug/m³		C	Other Polluta	ants (Particu	ulate Phase)
Date	Period, hrs.	PM2.5	PM10	SO ₂	NOx	NH₃	O₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, ug/m ³	As, ng/m³	Ni, ng/m³	C ₆ H ₆ , ug/m ³	BaP, ng/m³
01-02.12.2023	06:00-06:00	26	45	11	12	<5	23.5	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.12.2023	06:00-06:00	18	38	9	11	<5	29.4	<1000	<0.1	<1	<1	<0.01	<0.1
10-11.12.2023	06:00-06:00	27	45	12	14	<5	21.2	<1000	<0.1	<1	<1	<0.01	<0.1
11-12.12.2023	06:00-06:00	31	48	14	18	<5	27.8	<1000	<0.1	<1	<1	<0.01	<0.1
18-19.12.2023	06:00-06:00	35	60	14	16	<5	32.5	<1000	<0.1	<1	<1	<0.01	<0.1
19-20.12.2023	06:00-06:00	30	54	13	15	<5	27.9	<1000	<0.1	<1	<1	<0.01	<0.1
26-27.12.2023	06:00-06:00	21	43	8	11	<5	30.4	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.12.2023	06:00-06:00	25	43	13	15	<5	28.2	<1000	<0.1	<1	<1	<0.01	<0.1
01-02.01.2024	06:00-06:00	22	46	9	11	<5	25.6	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.01.2024	06:00-06:00	24	40	12	13	<5	30.4	<1000	<0.1	<1	<1	<0.01	<0.1
14-15.01.2024	06:00-06:00	31	44	15	18	<5	22.1	<1000	<0.1	<1	<1	<0.01	<0.1
15-16.01.2024	06:00-06:00	25	42	14	15	<5	28.9	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.01.2024	06:00-06:00	20	37	9	11	<5	32.2	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.01.2024	06:00-06:00	24	40	12	15	<5	30.7	<1000	<0.1	<1	<1	<0.01	<0.1
29-30.01.2024	06:00-06:00	27	43	14	18	<5	27.6	<1000	<0.1	<1	<1	<0.01	<0.1
30-31.01.2024	06:00-06:00	31	45	13	16	<5	30.4	<1000	<0.1	<1	<1	<0.01	<0.1
05-06.02.2024	06:00-06:00	26	44	9	12	<5	28.1	<1000	<0.1	<1	<1	<0.01	<0.1
06-07.02.2024	06:00-06:00	34	59	13	16	<5	25.9	<1000	<0.1	<1	<1	<0.01	<0.1
16-17.02.2024	06:00-06:00	32	47	12	15	<5	30.2	<1000	<0.1	<1	<1	<0.01	<0.1
17-18.02.2024	06:00-06:00	27	45	14	18	<5	32.3	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.02.2024	06:00-06:00	23	44	9	11	<5	34.7	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.02.2024	06:00-06:00	25	38	15	18	<5	30.2	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.02.2024	06:00-06:00	20	36	14	16	<5	30.4	<1000	<0.1	<1	<1	<0.01	<0.1
28-29.02.2024	06:00-06:00	22	39	12	15	<5	25.3	<1000	<0.1	<1	<1	<0.01	<0.1
Range (Minimu	m-Maximum)	18-35	36-60	8-15	11-18	<5	21.2-34.7	<1000	<0.1	<1	<1	<0.01	<0.1
Mean \	/alue	26.1	44.4	12.1	14.6	<5	28.6	<1000	<0.1	<1	<1	<0.01	<0.1
NAAQ N	orms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2,000 (8 hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)

Legend : **PM2.5**-Particulate Matter size less than 2.5 um; **PM10**-Respirable Particulate Matter size less than 10 um; **SO**₂-Sulphur dioxide; **NOx**-Oxides of Nitrogen; **NH**₃-Ammonia; **O**₃-Ozone; **CO**-Carbon monoxide; **Pb**-Particulate Lead; **As**-Particulate Arsenic; **Ni**-Particulate Nickel; **C**₆**H**₆-Benzene & **BaP**- Benzo (a) pyrene in particulate phase. ug-microgram & ng-nanogram. * : **NAAQ Norms-**National Ambient Air Quality Norms-**Revised as per GSR 826(E) dated 16.11.2009** for Industrial, Residential, Rural and other Areas.

130

Table : 3.14 Ambient Air Quality Data at A7-Ariyalur Bypass

Season : Winter 2023-24

Sample Size : 24 hly. (otherwise mentioned)

Monito	oring	Particula	tes, ug/m ³		Gaseou	us Pollutan	ts, ug/m ³		C	Other Polluta	ants (Particu	ulate Phase)
Date	Period, hrs.	PM2.5	PM10	SO ₂	NOx	NH ₃	O₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, ug/m ³	As, ng/m³	Ni, ng/m³	C6H6, ug/m ³	BaP, ng/m³
01-02.12.2023	06:00-06:00	36	60	21	24	<5	38.4	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.12.2023	06:00-06:00	32	55	18	21	<5	30.1	<1000	<0.1	<1	<1	<0.01	<0.1
10-11.12.2023	06:00-06:00	34	58	19	23	<5	32.5	<1000	<0.1	<1	<1	<0.01	<0.1
11-12.12.2023	06:00-06:00	33	53	17	20	<5	27.9	<1000	<0.1	<1	<1	<0.01	<0.1
18-19.12.2023	06:00-06:00	37	62	18	23	<5	32.7	<1000	<0.1	<1	<1	<0.01	<0.1
19-20.12.2023	06:00-06:00	46	74	15	18	<5	32.0	<1000	<0.1	<1	<1	<0.01	<0.1
26-27.12.2023	06:00-06:00	41	70	18	22	<5	28.4	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.12.2023	06:00-06:00	38	67	14	18	<5	29.1	<1000	<0.1	<1	<1	<0.01	<0.1
01-02.01.2024	06:00-06:00	40	71	16	20	<5	30.4	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.01.2024	06:00-06:00	35	64	18	23	<5	29.5	<1000	<0.1	<1	<1	<0.01	<0.1
14-15.01.2024	06:00-06:00	37	68	21	24	<5	32.7	<1000	<0.1	<1	<1	<0.01	<0.1
15-16.01.2024	06:00-06:00	43	72	22	26	<5	33.4	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.01.2024	06:00-06:00	36	65	17	19	<5	30.8	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.01.2024	06:00-06:00	39	68	18	23	<5	36.1	<1000	<0.1	<1	<1	<0.01	<0.1
29-30.01.2024	06:00-06:00	25	48	11	14	<5	29.1	<1000	<0.1	<1	<1	<0.01	<0.1
30-31.01.2024	06:00-06:00	41	64	14	19	<5	27.2	<1000	<0.1	<1	<1	<0.01	<0.1
05-06.02.2024	06:00-06:00	38	61	16	21	<5	29.0	<1000	<0.1	<1	<1	<0.01	<0.1
06-07.02.2024	06:00-06:00	36	55	18	23	<5	30.4	<1000	<0.1	<1	<1	<0.01	<0.1
16-17.02.2024	06:00-06:00	22	45	11	13	<5	32.0	<1000	<0.1	<1	<1	<0.01	<0.1
17-18.02.2024	06:00-06:00	34	55	14	17	<5	30.5	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.02.2024	06:00-06:00	39	59	16	20	<5	28.9	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.02.2024	06:00-06:00	27	56	12	15	<5	32.7	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.02.2024	06:00-06:00	40	63	13	17	<5	31.7	<1000	<0.1	<1	<1	<0.01	<0.1
28-29.02.2024	06:00-06:00	37	57	15	19	<5	33.5	<1000	<0.1	<1	<1	<0.01	<0.1
Range (Minimu	m-Maximum)	22-46	45-74	11-22	13-26	<5	27.2-38.4	<1000	<0.1	<1	<1	<0.01	<0.1
Mean \	/alue	36.1	61.3	16.3	20.1	<5	31.2	<1000	<0.1	<1	<1	<0.01	<0.1
NAAQ N	orms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2,000 (8 hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)

Table : 3.15 Ambient Air Quality Data at A8-Kallankurichi

Season : Winter 2023-24

Sample Size : 24 hly. (otherwise mentioned)

Monito	oring	Particula	tes, ug/m ³		Gaseou	us Pollutant	ts, ug/m ³		C	Other Polluta	ants (Particu	ulate Phase	e)
Date	Period, hrs.	PM2.5	PM10	SO₂	NOx	NH ₃	O₃ (8-hly Avg.)	CO (8-hly Avg.)	Pb, ug/m ³	As, ng/m³	Ni, ng/m³	C ₆ H ₆ , ug/m ³	BaP, ng/m³
01-02.12.2023	06:00-06:00	12	26	7	7	<5	18.7	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.12.2023	06:00-06:00	18	31	12	15	<5	17.3	<1000	<0.1	<1	<1	<0.01	<0.1
10-11.12.2023	06:00-06:00	15	27	12	14	<5	15.2	<1000	<0.1	<1	<1	<0.01	<0.1
11-12.12.2023	06:00-06:00	13	22	10	12	<5	18.6	<1000	<0.1	<1	<1	<0.01	<0.1
18-19.12.2023	06:00-06:00	16	28	10	13	<5	20.6	<1000	<0.1	<1	<1	<0.01	<0.1
19-20.12.2023	06:00-06:00	14	30	7	9	<5	11.4	<1000	<0.1	<1	<1	<0.01	<0.1
26-27.12.2023	06:00-06:00	15	27	9	11	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.12.2023	06:00-06:00	12	22	11	13	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
01-02.01.2024	06:00-06:00	20	39	7	9	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
02-03.01.2024	06:00-06:00	18	30	13	15	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
14-15.01.2024	06:00-06:00	22	36	11	12	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
15-16.01.2024	06:00-06:00	23	44	8	9	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.01.2024	06:00-06:00	24	41	10	12	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.01.2024	06:00-06:00	20	38	14	16	<5	18.4	<1000	<0.1	<1	<1	<0.01	<0.1
29-30.01.2024	06:00-06:00	23	37	11	13	<5	11.6	<1000	<0.1	<1	<1	<0.01	<0.1
30-31.01.2024	06:00-06:00	21	34	10	12	<5	15.9	<1000	<0.1	<1	<1	<0.01	<0.1
05-06.02.2024	06:00-06:00	19	37	7	8	<5	10.5	<1000	<0.1	<1	<1	<0.01	<0.1
06-07.02.2024	06:00-06:00	28	45	11	13	<5	17.1	<1000	<0.1	<1	<1	<0.01	<0.1
16-17.02.2024	06:00-06:00	32	48	12	14	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
17-18.02.2024	06:00-06:00	21	41	8	9	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
21-22.02.2024	06:00-06:00	23	38	13	15	<5	<10	<1000	<0.1	<1	<1	<0.01	<0.1
22-23.02.2024	06:00-06:00	20	33	10	12	<5	18.3	<1000	<0.1	<1	<1	<0.01	<0.1
27-28.02.2024	06:00-06:00	22	35	12	14	<5	10.4	<1000	<0.1	<1	<1	<0.01	<0.1
28-29.02.2024	06:00-06:00	27	42	11	13	<5	11.5	<1000	<0.1	<1	<1	<0.01	<0.1
Range (Minimu	m-Maximum)	12-32	22-48	7-14	7-16	<5	<10-20.6	<1000	<0.1	<1	<1	<0.01	<0.1
Mean \	/alue	19.9	34.6	10.3	12.1	<5	15.4	<1000	<0.1	<1	<1	<0.01	<0.1
NAAQ N	orms*	60 (24 hrs.)	100 (24 hrs.)	80 (24 hrs.)	80 (24 hrs.)	400 (24 hrs.)	100 (8 hrs.)	2,000 (8 hrs.)	1.0 (24 hrs.)	6.0 (annual)	20 (annual)	5.0 (annual)	1.0 (annual)

				Polluta	nt Conce	ntration,	ug/m³		
SI.	Parameter	PM2.5	PM10	SO ₂	NOx	PM2.5	PM10	SO ₂	NOx
		A.	1- PNR N	line Offi	се	A2	-Kovilar	kudikad	u
1	No. of Observations	24	24	24	24	24	24	24	24
2	Minimum	14	25	6	7	10	20	6	6
3	10 th Percentile Value	17	29	7	8	11	20	6	7
4	20 th Percentile Value	19	32	8	9	12	21	7	7
5	30th Percentile Value	21	39	8	10	12	22	7	8
6	40 th Percentile Value	22	40	8	11	12	23	7	8
7	50 th Percentile Value	24	43	9	12	13	24	7	8
8	60 th Percentile Value	25	44	10	12	13	25	7	8
9	70 th Percentile Value	26	45	10	12	14	25	8	9
10	80 th Percentile Value	26	47	11	14	15	28	8	9
11	90 th Percentile Value	28	50	12	15	15	31	8	10
12	95 th Percentile Value	30	54	12	15	17	32	8	10
13	98 th Percentile Value	32	55	12	16	17	33	9	11
14	Maximum	33	56	12	16	17	34	9	11
15	Arithmetic Mean	23.1	40.8	9.2	11.4	13.1	24.7	7.3	8.3
16	Geometric Mean	22.6	39.9	9.0	11.1	12.9	24.4	7.2	8.2
17	Standard Deviation	4.7	8.4	1.9	2.5	2.0	4.0	0.8	1.2
18	NAAQ Norms*	60	100	80	80	60	100	80	80
19	% Values exceeding Norms*	0	0	0	0	0	0	0	0
		A3-Kattupirangiyam				A4-Kai	katti/UT	Cement	Plant
1	No. of Observations	24	24	24	24	24	24	24	24
2	1	1						24	27
<u> </u>	Minimum	15	31	7	8	19	40	9	11
3	Minimum 10 th Percentile Value	15 17	31 36	7 7	8 9	19 22	40 44	9 9	11 11
2 3 4	Minimum 10 th Percentile Value 20 th Percentile Value	15 17 19	31 36 38	7 7 8	8 9 9	19 22 25	40 44 45	9 9 9 9	11 11 12
3 4 5	Minimum 10 th Percentile Value 20 th Percentile Value 30 th Percentile Value	15 17 19 22	31 36 38 40	7 7 8 8	8 9 9 10	19 22 25 26	40 44 45 48	9 9 9 9 10	11 11 12 12
3 4 5 6	Minimum 10 th Percentile Value 20 th Percentile Value 30 th Percentile Value 40 th Percentile Value	15 17 19 22 23	31 36 38 40 41	7 7 8 8 9	8 9 9 10 10	19 22 25 26 26	40 44 45 48 48	9 9 9 10 10	11 11 12 12 12 12
2 3 4 5 6 7	Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value	15 17 19 22 23 25	31 36 38 40 41 44	7 7 8 8 9 9	8 9 10 10 11	19 22 25 26 26 28	40 44 45 48 48 51	9 9 9 10 10 10	11 11 12 12 12 12 13
3 4 5 6 7 8	Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value	15 17 19 22 23 25 26	31 36 38 40 41 44 45	7 7 8 8 9 9 9 9	8 9 10 10 11 12	19 22 25 26 26 28 28 28	40 44 45 48 48 51 51	9 9 9 10 10 10 10 11	11 11 12 12 12 13 13
2 3 4 5 6 7 8 9	Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value	15 17 19 22 23 25 26 27	31 36 38 40 41 44 45 49	7 7 8 8 9 9 9 9 9 10	8 9 10 10 11 12 12	19 22 25 26 26 28 28 28 30	40 44 45 48 48 51 51 51 53	9 9 9 10 10 10 10 11 11	11 11 12 12 12 12 13 13 14
2 3 4 5 6 7 8 9 10	Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value	15 17 19 22 23 25 26 27 27 27	31 36 38 40 41 44 45 49 50	7 7 8 9 9 9 9 9 10 10	8 9 10 10 11 12 12 12 13	19 22 25 26 26 28 28 28 30 30	40 44 45 48 48 51 51 51 53 54	9 9 9 10 10 10 11 11 11 12	11 11 12 12 12 13 13 13 14 15
2 3 4 5 6 7 8 9 10 11	Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value	15 17 19 22 23 25 26 27 27 27 31	31 36 38 40 41 44 45 49 50 52	7 7 8 9 9 9 9 10 10 10	8 9 10 10 11 12 12 13 14	19 22 25 26 26 28 28 30 30 30 33	40 44 45 48 51 51 51 53 54 57	9 9 9 10 10 10 11 11 11 12 14	11 11 12 12 12 13 13 13 14 15 16
2 3 4 5 6 7 8 9 10 11 12	Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value 90th Percentile Value 90th Percentile Value	15 17 19 22 23 25 26 27 27 31 32	31 36 38 40 41 44 45 49 50 52 52 53	7 7 8 9 9 9 9 9 10 10 11 11	8 9 10 10 11 12 12 13 14 15	19 22 25 26 28 28 30 33 34	40 44 45 48 51 51 53 54 57 58	9 9 9 10 10 10 11 11 11 12 14 14	11 11 12 12 12 13 13 13 14 15 16 18
2 3 4 5 6 7 8 9 10 11 12 13	Minimum10th Percentile Value20th Percentile Value30th Percentile Value40th Percentile Value50th Percentile Value60th Percentile Value70th Percentile Value80th Percentile Value90th Percentile Value90th Percentile Value95th Percentile Value98th Percentile Value	15 17 19 22 23 25 26 27 27 31 32 33	31 36 38 40 41 44 45 49 50 52 53 53 54	7 7 8 9 9 9 9 10 10 10 11 11 11	8 9 10 10 11 12 12 12 13 14 15 15	19 22 25 26 28 30 33 34 35	40 44 45 48 51 51 51 53 54 57 58 58 58	24 9 9 10 10 11 11 12 14 14 14	11 11 12 12 12 13 13 13 13 14 15 16 18 18
2 3 4 5 6 7 8 9 10 11 12 13 14	Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value 90th Percentile Value 95th Percentile Value 98th Percentile Value 98th Percentile Value Maximum	15 17 19 22 23 25 26 27 27 27 31 32 33 33 33	31 36 38 40 41 44 45 49 50 52 53 54 54 54	7 7 8 9 9 9 9 10 10 10 11 11 11 12 13	8 9 10 10 11 12 12 12 13 14 15 15 15	19 22 25 26 28 30 33 34 35 35	40 44 45 48 51 51 51 53 54 57 58 58 58 58 58	24 9 9 10 10 11 12 14 14 14 14 14	11 11 12 12 12 13 13 13 14 15 16 18 18 18 18
2 3 4 5 6 7 8 9 10 11 12 13 14 15	Minimum10th Percentile Value20th Percentile Value30th Percentile Value40th Percentile Value50th Percentile Value60th Percentile Value70th Percentile Value80th Percentile Value90th Percentile Value90th Percentile Value95th Percentile Value98th Percentile ValueMaximumArithmetic Mean	15 17 19 22 23 25 26 27 27 31 32 33 33 33 24.0	31 36 38 40 41 44 45 49 50 52 53 54 54 54 4 3.7	7 7 8 9 9 9 9 10 10 11 11 11 12 13 9.1	8 9 10 10 11 12 12 13 14 15 15 15 15 15 11.2	19 22 25 26 28 28 30 33 34 35 35 27 27 28	40 44 45 48 51 51 53 54 57 58 58 58 58 58 58 58 58	9 9 9 10 10 10 11 11 12 14 14 14 14 14 14 14 7	11 11 12 12 12 13 13 13 14 15 16 18 18 18 18 18 13.3
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Minimum10th Percentile Value20th Percentile Value30th Percentile Value40th Percentile Value50th Percentile Value60th Percentile Value70th Percentile Value80th Percentile Value90th Percentile Value90th Percentile Value95th Percentile Value98th Percentile ValueMaximumArithmetic MeanGeometric Mean	15 17 19 22 23 25 26 27 27 31 32 33 33 24.0 23.5	31 36 38 40 41 44 45 49 50 52 53 54 54 43.7 43.2	7 7 8 9 9 9 10 10 11 11 11 12 13 9.1 9.0	8 9 10 10 11 12 12 13 14 15 15 15 15 15 15 11.2 11.0	19 22 25 26 28 28 30 33 34 35 35 27.5 27.2	40 44 45 48 51 51 53 54 57 58 58 58 58 58 58 58 58 58 58 58 58	24 9 9 10 10 11 11 12 14 14 14 14 10 10	11 11 12 12 12 13 13 13 14 15 16 18 18 18 18 18 18 13.3 13.1
$ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ \end{array} $	Minimum10th Percentile Value20th Percentile Value30th Percentile Value40th Percentile Value50th Percentile Value60th Percentile Value70th Percentile Value80th Percentile Value90th Percentile Value90th Percentile Value95th Percentile Value98th Percentile	15 17 19 22 23 25 26 27 27 31 32 33 33 33 24.0 23.5 5.1	31 36 38 40 41 44 45 49 50 52 53 54 54 43.7 43.2 6.5	7 7 8 9 9 9 9 10 10 10 11 11 11 12 13 9.1 9.0 1.5	8 9 10 10 11 12 13 14 15 15 115 115 12 13	19 22 25 26 28 30 33 34 35 27.5 27.2 4.1	40 44 45 48 51 51 53 54 57 58 58 58 58 58 58 58 58 58 58 58 58 58	24 9 9 10 10 11 11 12 14 14 14 14 10.6 1.7	11 11 12 12 12 13 13 13 13 14 15 16 18 18 18 18 18 13.3 13.1 2.1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value 90th Percentile Value 90th Percentile Value 90th Percentile Value 98th Percentile Value 98th Percentile Value Maximum Arithmetic Mean Geometric Mean Standard Deviation NAAQ Norms*	15 17 19 22 23 25 26 27 27 27 31 32 33 33 33 24.0 23.5 5.1 60	31 36 38 40 41 44 45 49 50 52 53 54 54 54 43.2 6.5 100	7 7 8 9 9 9 9 10 10 10 11 11 11 12 13 9.1 9.0 1.5 80	8 9 10 10 11 12 12 12 13 14 15 15 15 15 15 11.0 2.1 80	19 22 25 26 28 30 33 34 35 27.5 27.2 4.1 60	40 44 45 48 51 51 53 54 57 58 58 58 58 58 58 58 58 58 58 58 58 58	24 9 9 10 10 11 12 14 14 14 14 14 14 14 10.6 1.7 80	24 11 12 12 12 13 13 14 15 16 18 18 18 13.1 2.1 80

Table : 3.16 Abstract of Ambient Air Quality Data

Legend : PM2.5-Particulate Matter size less than 2.5 um; PM10-Respirable Particulate Matter size less than 10 um; SO₂-Sulphur dioxide; NOx-Oxides of Nitrogen. ug-microgram. O₃-Ozone values are reported locationwise. NH₃-Ammonia; CO-Carbon monoxide; Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel; C₆H₆-Benzene and BaP-Benzo (a) pyrene in particulate phase levels were monitored below respective detectable limits.

* : NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

Pollutant Concentration, ug/m ³									
SI. No	Parameter	PM2.5	PM10	SO ₂	NOx	PM2.5	PM10	SO ₂	NOx
110.			A5-Pudu	palayam	1	Δ	6-Hastir	napuram	1
1	No. of Observations	24	24	24	24	24	24	24	24
2	Minimum	21	43	9	13	18	36	8	11
3	10 th Percentile Value	25	51	10	13	20	38	9	11
4	20 th Percentile Value	27	52	11	14	22	40	9	12
5	30 th Percentile Value	28	55	11	14	24	42	12	13
6	40 th Percentile Value	29	57	12	15	25	43	12	15
7	50th Percentile Value	31	57	12	15	26	44	13	15
8	60 th Percentile Value	33	59	12	15	27	45	13	15
9	70th Percentile Value	34	61	13	16	27	45	14	16
10	80th Percentile Value	35	63	13	17	31	46	14	17
11	90th Percentile Value	37	65	15	18	32	52	14	18
12	95 th Percentile Value	40	68	16	18	34	58	15	18
13	98th Percentile Value	42	70	16	19	35	60	15	18
14	Maximum	42	71	16	20	35	60	15	18
15	Arithmetic Mean	31.1	57.7	12.2	15.3	26.1	44.4	12.1	14.6
16	Geometric Mean	30.7	57.3	12.1	15.2	25.7	44.0	11.9	14.4
17	Standard Deviation	5.3	6.5	1.8	2.0	4.6	6.1	2.2	2.5
18	NAAQ Norms*	60	100	80	80	60	100	80	80
	.								-
19	% Values exceeding Norms*	0	0	0	0	0	0	0	0
19	% Values exceeding Norms*	0 A	0 7-Ariyalı	0 ur Bypas	0 SS	0	0 A8-Kallai	0 Nkurichi	0
19 1	% Values exceeding Norms*	0 A 24	0 7-Ariyal 24	0 ur Bypas 24	0 55 24	0 24	0 48-Kalla 24	0 nkurichi 24	0 24
19 1 2	% Values exceeding Norms* No. of Observations Minimum	0 A 24 22	0 7-Ariyal 24 45	0 ur Bypas 24 11	0 55 24 13	0 24 12	0 A8-Kalla 24 22	0 nkurichi 24 7	0 24 7
19 1 2 3	% Values exceeding Norms* No. of Observations Minimum 10 th Percentile Value	0 24 22 29	0 7-Ariyalı 24 45 54	0 ur Bypas 24 11 12	0 5 5 24 13 16	0 24 12 13	0 A8-Kallar 24 22 26	0 nkurichi 24 7 7	0 24 7 9
19 1 2 3 4	% Values exceeding Norms* No. of Observations Minimum 10 th Percentile Value 20 th Percentile Value	0 24 22 29 34	0 7-Ariyal 24 45 54 55	0 ur Bypas 24 11 12 14	0 55 24 13 16 18	0 24 12 13 15	0 A8-Kallar 24 22 26 28	0 nkurichi 24 7 7 8	0 24 7 9 9
19 1 2 3 4 5	% Values exceeding Norms* No. of Observations Minimum 10 th Percentile Value 20 th Percentile Value 30 th Percentile Value	0 24 22 29 34 35	0 7-Ariyal 24 45 54 55 57	0 ur Bypas 24 11 12 14 15	0 55 24 13 16 18 19	0 24 12 13 15 18	0 A8-Kalla 24 22 26 28 30	0 nkurichi 24 7 7 8 10	0 24 7 9 9 9 12
19 1 2 3 4 5 6	% Values exceeding Norms* No. of Observations Minimum 10 th Percentile Value 20 th Percentile Value 30 th Percentile Value 40 th Percentile Value	0 24 22 29 34 35 36	0 7-Ariyal 24 45 54 55 57 59	0 24 11 12 14 15 16	0 24 13 16 18 19 19	0 24 12 13 15 18 19	0 A8-Kalla 24 22 26 28 30 33	0 nkurichi 24 7 7 8 10 10	0 24 7 9 9 12 12
19 1 2 3 4 5 6 7	% Values exceeding Norms* No. of Observations Minimum 10 th Percentile Value 20 th Percentile Value 30 th Percentile Value 40 th Percentile Value 50 th Percentile Value	0 24 22 29 34 35 36 37	0 7-Ariyalı 24 45 54 55 57 59 62	0 24 11 12 14 15 16 17	0 24 13 16 18 19 19 20	0 24 12 13 15 18 19 20	0 A8-Kalla 24 22 26 28 30 33 36	0 nkurichi 24 7 7 8 10 10 10 11	0 24 7 9 9 12 12 12 13
19 1 2 3 4 5 6 7 8	% Values exceeding Norms* No. of Observations Minimum 10 th Percentile Value 20 th Percentile Value 30 th Percentile Value 40 th Percentile Value 50 th Percentile Value 60 th Percentile Value	0 24 22 29 34 35 36 37 38	0 7-Ariyal 24 45 54 55 57 59 62 64	0 24 11 12 14 15 16 17 18	0 24 13 16 18 19 19 20 21	0 24 12 13 15 18 19 20 21	0 A8-Kallau 24 22 26 28 30 33 36 37	0 nkurichi 24 7 7 8 10 10 10 11 11	0 24 7 9 9 12 12 12 13 13
19 1 2 3 4 5 6 7 8 9	% Values exceeding Norms* No. of Observations Minimum 10 th Percentile Value 20 th Percentile Value 30 th Percentile Value 40 th Percentile Value 50 th Percentile Value 60 th Percentile Value 70 th Percentile Value	0 24 22 29 34 35 36 37 38 39	0 7-Ariyal 24 45 54 55 57 59 62 64 64 65	0 24 11 12 14 15 16 17 18 18 18	0 24 13 16 18 19 19 20 21 23	0 24 12 13 15 18 19 20 21 22	0 A8-Kalla 24 22 26 28 30 33 36 37 38	0 nkurichi 24 7 7 8 10 10 11 11 11	0 24 7 9 9 12 12 13 13 13 13
19 1 2 3 4 5 6 7 8 9 10	% Values exceeding Norms* No. of Observations Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value	0 24 22 29 34 35 36 37 38 39 40	0 7-Ariyal 24 45 54 55 57 59 62 64 65 68	0 24 11 12 14 15 16 17 18 18 18 18	0 24 13 16 18 19 19 20 21 23 23	0 24 12 13 15 18 19 20 21 22 23	0 A8-Kalla 24 22 26 28 30 33 36 37 38 41	0 nkurichi 24 7 7 8 10 10 11 11 11 11 11	0 24 7 9 9 12 12 12 13 13 13 13 14
19 1 2 3 4 5 6 7 8 9 10 11	% Values exceeding Norms* No. of Observations Minimum 10 th Percentile Value 20 th Percentile Value 30 th Percentile Value 40 th Percentile Value 50 th Percentile Value 60 th Percentile Value 70 th Percentile Value 80 th Percentile Value 90 th Percentile Value	0 24 22 29 34 35 36 37 38 39 40 41	0 7-Ariyalı 24 45 54 55 57 59 62 64 65 68 71	0 24 11 12 14 15 16 17 18 18 18 18 20	0 24 13 16 18 19 19 20 21 23 23 24	0 24 12 13 15 18 19 20 21 22 23 23 26	0 A8-Kalla 24 22 26 28 30 33 36 37 38 41 43	0 nkurichi 24 7 7 8 10 10 10 11 11 11 11 12 13	0 24 7 9 9 9 12 12 12 13 13 13 13 14 15
19 1 2 3 4 5 6 7 8 9 10 11 12	% Values exceeding Norms* No. of Observations Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value 90th Percentile Value 90th Percentile Value	0 24 22 29 34 35 36 37 38 39 40 41 43	0 7-Ariyal 24 45 54 55 57 59 62 64 64 65 68 71 72	0 24 11 12 14 15 16 17 18 18 18 18 20 21	0 24 13 16 18 19 19 20 21 23 23 24 24 24	0 24 12 13 15 18 19 20 21 20 21 22 23 26 28	0 A8-Kallau 24 22 26 28 30 33 36 37 38 41 43 45	0 hkurichi 24 7 8 10 10 11 11 11 12 13 13	0 24 7 9 9 12 12 13 13 13 13 13 14 15 15
19 1 2 3 4 5 6 7 8 9 10 11 12 13	% Values exceeding Norms* No. of Observations Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value 90th Percentile Value 90th Percentile Value 90th Percentile Value 95th Percentile Value 98th Percentile Value	0 24 22 29 34 35 36 37 38 39 40 41 43 45	0 7-Ariyal 24 45 54 55 57 59 62 64 65 68 71 72 73	0 24 11 12 14 15 16 17 18 18 18 18 18 20 21 22	0 24 13 16 18 19 19 20 21 23 23 24 24 24 25	0 24 12 13 15 18 19 20 21 22 23 26 28 30	0 A8-Kalla 24 22 26 28 30 33 36 37 38 41 43 45 47	0 nkurichi 24 7 8 10 10 11 11 11 12 13 13 14	0 24 7 9 9 12 12 13 13 13 13 13 13 14 15 15 16
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14	% Values exceeding Norms* No. of Observations Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value 90th Percentile Value 95th Percentile Value 95th Percentile Value 98th Percentile Value Maximum	0 24 22 29 34 35 36 37 38 39 40 41 43 45 46	0 7-Ariyalı 24 45 54 55 57 59 62 64 65 68 71 72 73 74	0 24 11 12 14 15 16 17 18 18 18 18 20 21 22 22 22	0 24 13 16 18 19 20 21 23 24 25 26	0 24 12 13 15 18 19 20 21 22 23 26 28 30 32	0 A8-Kalla 24 22 26 28 30 33 36 37 38 41 43 45 47 48	0 nkurichi 24 7 7 8 10 10 10 11 11 11 11 11 12 13 13 13 14 14 14	0 24 7 9 9 12 12 13 13 13 13 13 13 14 15 15 16 16
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	% Values exceeding Norms* No. of Observations Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value 90th Percentile Value 90th Percentile Value 95th Percentile Value 98th Percentile Value 98th Percentile Value Maximum Arithmetic Mean	0 24 22 29 34 35 36 37 38 39 40 41 43 45 46 36.1	0 7-Ariyalı 24 45 54 55 57 59 62 64 65 68 71 72 73 74 61.3	0 ur Bypas 24 11 12 14 15 16 17 18 18 18 18 20 21 22 22 16.3	0 24 13 16 18 19 19 20 21 23 23 24 24 24 25 26 20.1	0 24 12 13 15 18 19 20 21 22 23 26 28 30 32 19.9	0 A8-Kalla 24 22 26 28 30 33 36 37 38 41 43 45 47 48 34.6	0 nkurichi 24 7 7 8 10 10 10 11 11 11 11 12 13 13 13 13 14 14 14 14 10.3	0 24 7 9 9 12 12 13 13 13 13 13 13 13 14 15 15 16 16 16 16 12.1
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	% Values exceeding Norms* No. of Observations Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value 90th Percentile Value 93th Percentile Value 98th Percentile Value Maximum Arithmetic Mean Geometric Mean	0 24 22 29 34 35 36 37 38 39 40 41 43 45 46 35.6	0 7-Ariyal 24 45 54 55 57 59 62 64 65 68 71 72 73 74 61.3 60.8	0 24 11 12 14 15 16 17 18 18 18 18 20 21 22 22 22 16.3 16.1	0 24 13 16 18 19 20 21 23 24 25 26 20.1 19.8	0 24 12 13 15 18 19 20 21 22 23 26 28 30 32 19.9 19.3	0 A8-Kallau 24 22 26 28 30 33 36 37 38 41 43 45 47 48 34.6 33.9	0 hkurichi 24 7 7 8 10 10 11 11 11 12 13 13 14 14 14 10.3 10.0	0 24 7 9 9 12 12 13 13 13 13 13 13 13 14 15 15 16 16 16 16 16 12.1 11.8
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	% Values exceeding Norms* No. of Observations Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 30th Percentile Value 50th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value 90th Percentile Value 93th Percentile Value 95th Percentile Value 98th Percentile Value 98th Percentile Value 98th Percentile Value 98th Percentile Value Standard Deviation	0 24 22 29 34 35 36 37 38 39 40 41 43 45 46 35.6 5.5	0 7-Ariyal 24 45 54 55 57 59 62 64 65 68 71 72 73 74 60.8 7.5	0 ur Bypas 24 11 12 14 15 16 17 18 18 18 18 20 21 22 22 16.3 16.1 3.0	0 24 13 16 18 19 20 21 23 24 25 26 20.1 19.8 3.3	0 24 12 13 15 18 19 20 21 22 23 26 28 30 32 19.9 19.3 5.1	0 A8-Kallau 24 22 26 28 30 33 36 37 38 41 43 45 47 48 34.6 33.9 7.2	0 hkurichi 24 7 8 10 10 11 11 11 11 12 13 13 14 14 10.0 2.1	0 24 7 9 9 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	% Values exceeding Norms* No. of Observations Minimum 10th Percentile Value 20th Percentile Value 30th Percentile Value 40th Percentile Value 50th Percentile Value 60th Percentile Value 70th Percentile Value 80th Percentile Value 90th Percentile Value 90th Percentile Value 90th Percentile Value 98th Percentile Value 98th Percentile Value Maximum Arithmetic Mean Geometric Mean Standard Deviation NAAQ Norms*	0 24 22 29 34 35 36 37 38 39 40 41 43 45 46 35.6 5.5 60	0 7-Ariyali 24 45 54 55 57 59 62 64 65 68 71 72 73 74 61.3 60.8 7.5 100	0 24 11 12 14 15 16 17 18 18 18 18 20 21 22 22 16.3 16.1 3.0 80	0 24 13 16 18 19 19 20 21 23 23 24 24 24 25 26 20.1 19.8 3.3 80	0 24 12 13 15 18 19 20 21 22 23 26 28 30 32 19.9 19.3 5.1 60	0 A8-Kallau 24 22 26 28 30 33 36 37 38 41 43 45 47 48 34.6 33.9 7.2 100	0 nkurichi 24 7 7 8 10 10 11 11 11 12 13 13 14 14 10.0 2.1 80	0 24 7 9 9 12 12 13 13 13 13 13 13 14 15 15 16 16 16 16 16 16 12.1 11.8 2.4 80

Table : 3.16 (Contn.) Abstract of Ambient Air Quality Data

Legend : PM2.5-Particulate Matter size less than 2.5 um; PM10-Respirable Particulate Matter size less than 10 um; SO₂-Sulphur dioxide; NOx-Oxides of Nitrogen. ug-microgram. O₃-Ozone values are reported locationwise. NH₃-Ammonia; CO-Carbon monoxide; Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel; C₆H₆-Benzene and BaP-Benzo (a) pyrene in particulate phase levels were monitored below respective detectable limits. * : NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

Table : 3.17 Ambient Air Quality Status

			allutant Cana	ontrotion	
SI. No.	Parameter	P		entration, ug/r	n°
		PM2.5	PM10	SO ₂	NOx
1	No. of Observations	192	192	192	192
2	Minimum	10	20	6	6
3	10 th Percentile Value	14	25	7	8
4	20th Percentile Value	18	33	8	9
5	30th Percentile Value	21	38	9	11
6	40th Percentile Value	23	42	10	12
7	50th Percentile Value	25	45	11	13
8	60th Percentile Value	27	48	11	14
9	70th Percentile Value	30	52	12	15
10	80th Percentile Value	32	56	13	16
11	90th Percentile Value	36	61	15	18
12	95 th Percentile Value	38	65	17	21
13	98th Percentile Value	41	70	18	23
14	Maximum	46	74	22	26
15	Arithmetic Mean	25.1	44.6	10.9	13.3
16	Geometric Mean	23.8	42.6	10.5	12.7
17	Standard Deviation	8.0	12.9	3.2	4.0
18	NAAQ Norms*	60	100	80	80
19	% Values exceeding NAAQ Norms	0	0	0	0

Season : Winter 2023-24 No. of Locations : 8 Sample Size : 24-Hourly

Legend : PM2.5-Particulate Matter size less than 2.5 um; PM10-Respirable Particulate Matter size less than 10 um; SO₂-Sulphur dioxide; NOx-Oxides of Nitrogen. ug-microgram. O₃-Ozone values are reported locationwise. NH₃-Ammonia; CO-Carbon monoxide; Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel; C₆H₆-

Benzene and BaP-Benzo (a) pyrene in particulate phase levels were monitored below respective detectable limits.

* : NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

National Ambient Air Quality Standard : The levels of air quality with an adequate margin of safety, to protect the public health, vegetation and property. Whenever and wherever two consecutive values exceed the limit specified above for the respective category, it would be considered adequate reason to institute regular/continuous monitoring and further investigations.

1. 24-hly./8-hly. values should be met 98% of the time in a year; however, 2% of the time it may exceed but not on two consecutive days.

2. Annual arithmetic mean of minimum 104 measurements in a year taken twice a week 24-hourly at uniform interval.

3.5.3 RSPM Analysis

With the samples of Respirable Suspended Particulate Matter (RSPM or PM₁₀) monitored, the main focus is on characterization and apportionment of PM₁₀ to have a better understanding and correlation between the RSPM fraction at source and receptor. The results are tabulated in **Table 3.18**. There was no significant variation in the characteristics of RSPM values in the upwind and downwind direction locations. Free Respirable Silica in RSPM was also monitored using Personal Sampler and FTIR Method of Analysis. The Silica Content was found to be 2.9% of RSPM that monitored in the Study Area.

Free Respirable Silica Content (FTIR Method) : 2.9%.

	Percentage in	RSPM Content
Parameter	Upwind Direction (Location A2)	Downwind Direction (Location A6)
Loss on Ignition	18.4	18.1
Iron oxides (Fe ₂ O ₃)	7.8	7.4
Calcium oxide (CaO)	19.6	20.8
Magnesium oxide (MgO)	14.4	14.6
Sodium oxide (Na ₂ O)	0.32	0.34
Potassium oxide (K ₂ O)	0.20	0.22
Aluminium oxide (Al ₂ O ₃)	17.7	18.2
Titanium oxide (TiO2)	0.04	0.05

Table : 3.18 RSPM Analytical Data

3.6 Noise Levels

3.6.1 Ambient Noise Levels

Study area represents Industrial, Commercial & Residential Areas to compare with the MoEF&CC Ambient Noise Norms. The abstract of monitored noise data are presented in **Table 3.19**. Ambient Noise Levels were ranging from 32.5 dB(A) to 101.2 dB(A) during day times and from 32.1 dB(A) to 102.4 dB(A) during night times on the monitoring days. Day Equivalent Noise (Leq-d) level was found to be 45.1 dB(A) and Night Equivalent Noise (Leq-n) level was 42.1 dB(A). While comparing with the MoEF&CC Leq Norms for day and night times, the monitored **ambient noise levels were well within the limit values** for their respective Category Area.

3.6.2 Workzone Noise Levels

Workzone Noise Levels (**Table 2.20**) within the Mines at a distance of 1.0-1.5 m from the source is maintained at **<85 db(A)** well within **OSHA Standard of 85 dB(A) for 8-hours exposure**. However, Leq Noise levels at the boundaries were <55 dB(A) during day times and <45 dB(A) during night times.

Table : 3.19 Ambient Noise Level Data (Abstract)

					Noise Lev	els, dB(A)		
SI. No.	Location	Area	(06:	Day Time 00-22:00 ł	nrs.)	l (22:	Night Time (22:00-06:00 h		
			Lmin.	Lmax.	Leq	Lmin.	Lmax.	Leq	
1	A1- PNR Mine Office	Industrial	34.9	93.5	44.8	33.6	92.1	42.3	
2	A2-Kovilankudikadu	Residential	32.5	85.9	40.4	32.1	78.7	38.2	
3	A3-Kattupirangiyam	Residential	34.3	98.4	42.8	33.4	96.7	36.2	
4	A4- Kaikatti near UT Cement Plant	Industrial	37.4	100.2	49.3	34.7	97.8	46.4	
5	A5-Pudupalayam	Residential	34.4	92.6	43.9	33.9	96.8	42.2	
6	A6-Hastinapuram	Residential	34.2	100.1	46.9	34.6	93.9	42.4	
7	A7-Ariyalur (Bypass)	Commercial	35.4	101.2	48.1	34.9	102.4	46.8	
8	A8-Kallankurichi	Residential	32.9	85.7	44.4	32.1	81.9	42.0	
	Study Area		32.5	101.2	45.1	32.1	102.4	42.1	
M	oEF&CC Norms* for Reside	ntial Areas		-	55		-	45	
M	oEF&CC Norms for Comme	rcial Areas	-		65	-		55	
I	IOEF&CC Norms for Indust		_	75		70			

Monitoring Dates : 19-20.01.2024

*: MoEF&CC Norms-Ministry of Environment, Forest & Climate Change Ambient Noise Norms (Leq).

Day time is reckoned in between 6 a.m and 10 p.m. and Night time is reckoned in between 10 p.m. and 6 a.m.

Table : 3.20 Work Noise Level Data

Monitoring Dates : 19-20.01.2024

Equipment	Location	Noise Level (Leq), dB(A)	DGMS/ OSHA Norm for 8-hours Exposure
Rippers/Rock Breakers, Operating	Operator's Position	82.6	
Dozer & Loader, both operating	1.0 m away	83.8	<85 dB(A)
Tipper, operating	1.0 m away	82.1	

3.6.3 Ground Vibration during Blasting

Vibration levels are monitored with Minimate instruments whenever blastings are done and records are maintained as per DGMS requirement. Vibration Parameters viz. Peak Particle Velocity (PPV) at 300 m distance and Noise Levels during Blastings were in compliance with DGMS Norms for Residential Areas.

An Event Report is appended.

3.7 Water Environment 3.7.1 Hydrogeology

RCL has engaged the Department of Remote Sensing, Bharathidasan University, Trichy for 'Integrated Hydrological Investigations-A Geospatial Approach' in and around their Mine Lease Areas in Ariyalur Region (Project 'Hydrolime') since May 2017 and submitted the periodical Reports to the Authorities. Also, the EIA Coordinator and Officials of M/s. Thrust Geo-consultants Private Limited, an Accreditated Ground Water Professionals for 'Hydrogeological Report for Mining Projects' by Central Ground Water Authority (CGWA) have carried out the Hydrogeological Survey including a Pumping Test during 18-19.12.2023 and submitted the Report (Plates VIII & IX).

Accreditution -	in Bones	OS CGWL
All Person	-	-
	370 M 1	
-		
10.00	1	11
Sec.	5	Ŀ

Ground Water Levels : As per TWAD Data, **70 year Normal Rainfall** of Ariyalur Rain Gauge Station is **1,096 mm** viz. Transitional Period (Jan.-May)-199 mm, SW Monsoon Period (Jun.-Sep.)-379 mm & NE Monsoon Period (Oct.-Dec.)-518 mm.

Based on the mine workings, the Ground water-table level in the mine vicinity is at **40 m BGL during Postmonsoon & 45 m BGL during Premonsoon periods**. RCL has installed a Piezometer in the Mine Area and monitoring the ground water level periodically (**Table 3.21**). Also, Periodical monitoring of ground water level is being carried out 3 locations on quarterly basis and the periodical data are submitted to IBM on quarterly basis and IRO, MoEFCC & SGWB on six monthly basis.

Month//cor	Piezo	ometer Wat	er Level Re	eadings, m	BGL
Month/Year	2019	2020	2021	2022	2023
January	20.76	14.87	14.94	8.35	16.81
February	22.32	15.64	15.31	9.83	15.32
March	24.90	16.35	14.96	11.57	16.40
April	26.45	17.51	16.13	13.23	17.16
Мау	27.32	18.47	17.25	16.08	17.54
June	26.70	19.07	17.16	15.10	18.22
July	25.79	20.08	17.63	15.42	18.81
August	23.89	20.32	18.40	15.95	19.31
September	22.24	20.60	18.80	15.75	19.00
October	19.25	19.16	17.13	15.46	18.50
November	16.30	17.21	11.43	15.29	16.55
December	18.94	14.81	8.73	13.72	16.32

Table : 3.21 Monitored Ground Water Level Data in PNR Mine

On the monitoring day, the water levels observed in the 6 Borewells in the PNR-A Mine vicinity (within 2 km) are given in **Table 3.22**. The levels were found to be 8.14 m BGL to 22.30 m BGL while it was 15.50 m BGL at PNR Mine.

SI. No.	Borewell at	Coordinates	Distance from the Mine, km	Water Level Readings, m BGL	
1	Periyanagalur	11° 8'8.20"N - 79° 9'19.94"E	1.06	18.84	
2	Chinnanagalur	11° 7'31.73"N- 79° 9'20.04"E	0.7	17.17	
3	PNR Mine	11° 7'27.85"N- 79° 8'33.59"E	-	15.50	
4	RCL Mine Office	11° 7'11.45"N- 79° 8'49.24"E	0.6	15.90	
5	Kattupiringiyam	11° 6'50.37"N- 79° 8'22.30"E	1.1	8.14	
6	Kattupiringiyam Mine	11° 6'53.80"N- 79° 8'1.08"E	1.2	22.30	
7	Hastinapuram	11° 7'3.97"N- 79° 7'19.98"E	2.1	18.93	

 Table : 3.22 Monitored Ground Water Level Data – 2 km from the Lease

The monitored water levels in the Study Area are brought to Reduced Levels (RLs) for comparison and 'Water Level Contours' are plotted in Google Earth Imagery and appended as **Plate X**.

Ground Water Levels from the **27 number of Observation Wells** of TWAD in Ariyalur District have been analysed for Post-Monsoon and Pre-Monsoon periods (**Table 3.23**). Ground Water-table in the District ranges from 23.0 m to 28.7 m with avearge level at **25.4 m BGL during Post-monsoon** and 25.6 m to 31.7 m with avearge level at **29.2 m BGL during Premonsoon** Period.

Table : 3.23	Ground	Water	Level	Data	(TWAD)
--------------	--------	-------	-------	------	--------

Monitored Month & Ground Water Level, m BGL													
Jan 2015	May 2015	Jan 2016	May 2016	Jan 2017	May 2017	Jan 2018	May 2018	Jan 2019	May 2019	Jan 2020	May 2020	Jan 2021	May 2021
23.6	25.6	23.0	28.7	28.7	31.7	25.0	31.3	26.9	30.0	26.1	29.1	24.6	27.9
Source : TWAD Data for Ariyalur District.													

3.7.2 Stage of Development

The ground water in Ariyalur region occurs in three different geological formations viz. River Alluvium, Marine Limestone and Tertiary Formations (Central Ground Water Board - CGWB District Brochure; March 2011). In the river alluvium, the ground water occurs under water table condition. The average thickness of the river alluvium varies from 12 m to 22 m. The ground water in these formations serves as irrigation and drinking water sources. In the Cretaceous limestone formations the ground water occurs in water table conditions. The depth of the wells in these formations ranges between 10-20 m and some area has high ground water potential due to the presence of limestone cavities. In the Tertiary formations, the ground water occurs predominantly in semi-confined and confined conditions which yield good quantity and quality of waters. The depth of bore wells in these formation ranges from 30 to 120 m BGL.

Aquifer Parameters	<u>Alluvium</u>	Sedimentary	Hard Rock
Well Yield, Ipm	300-950	300-550	80-210
Transmissivity (T), m²/day	225-1500	90-190	35-130
Permeability (K), m/day	20-50	15-30	5-20
Net Groundwater Availability	314.97		
Existing Gross Groundwater	161.52		
Stage of Groundwater Devel	51 %		
Categorization of the District	Safe		

The Stage of Development of Ariyalur Block is Safe (<70%) Category.

3.7.3 Water Quality

The Central Pollution Control Board (CPCB) has identified Five **Designated Best Use of Surface Waters** viz. **Class A** (Drinking Water Source without Conventional Treatment but after Disinfection), **B** (Out Door Bathing-Organised), **C** (Drinking Water Source after Conventional Treatment and Disinfection), **D** (Propagation of Wild life and Fisheries) & **E** (Irrigation, Industrial Cooling, Controlled Waste Disposal) and stipulated the Norms for the Classes; for few Parameters (**Table 3.24**). Further, Bureau of Indian Standards (**BIS**) had also recommended Tolerance Limits for Inland Surface Waters for the different uses (**IS 2296:1982**). Even though, IS 2296:1982 has been withdrawn, the analysed data are compared with this Standard to have better understanding about the Surface Water Quality in the Study Area.
Parameter	Designated Best Use Class & Required Criteria					
r arameter	A	В	С	D	E	
рН	6.5-8.5	6.5-8.5	6.5-9.0	6.5-8.5	6.5-8.5	
EC, umhos/cm (max.)	-	-	-	-	2,250	
DO, mg/l	6 or more	5 or more	4 or more	4 or more	6 or more	
BOD-3 days @ 27 °C	2 or less	3 or less	3 or less	-	2 or less	
Total Coliforms, MPN/100 ml	50 or less	500 or less	5000 or less	-	50 or less	
Free Ammonia (as N), mg/l	-	-	-	1.2 or less	-	
Boron, mg/l (max.)	-	-	-	-	2	
Sodium Absorption Ratio (max.)	-	-	-	-	26	

- : Not included/Not specified.

The Ground Water Quality Parameters are compared with **BIS 10500:2012 Standards** of Acceptable and Permissible Limits for Drinking purpose with Ground Water as source. The monitored water quality data are presented in **Tables 3.25-3.26** and the abstract of those data is given as **Table 3.27**.

The **Surface Water** samples were monitored with pH in the range 7.43-7.83 against the Limit value of 6.5-9.0. DO levels were in the range 4.8-5.6 mg/l against the minimum requirement value of 4.0 mg/l. TDS values were monitored in the range of 320-500 mg/l. Chloride values ranging from 82 mg/l to 148 mg/l. Iron content was found to be in the range 0.06-0.12 mg/l. Oil and grease, phenolic compounds, cyanides, sulphides and insecticides were found to be absent. Trace metals were found to be in traceable levels. BOD and COD values were found to be <2 mg/l and 4-18 mg/l respectively. The surface water quality were found to be within the prescribed CPCB Norms.

The pH of **Ground Water** samples were ranging from 7.61-7.82 against the BIS Norm of 6.5-8.5. TDS and Chloride values were found to be in the range 360-550 mg/l (Norm 500 mg/l or 2,000 mg/l in the absence of alternate source) and 93-156 mg/l (Norm 250/1000 mg/l) respectively. Iron content was found to be in the range 0.06-0.14 mg/l. Oil & Grease, Cyanides, Phenols, Pesticides, etc. were found to be absent. Most of the trace metals were monitored to be below their detectable limits. In general, the water quality of ground waters were found to be within the prescribed IS 10500:2012 Norms for Drinking in the absence of an alternative source.

The pH value of **Mine Pit water** was found to be 7.69. TDS value was 410 mg/l. Chloride value was 122 mg/l. Iron content was found to be 0.09 mg/l. BOD and COD values were monitored in lower levels. Oil & Grease value was found to be Nil. In general, mine pit water quality was found to be within the prescribed **TNPCB Norms** for Onland irrigation.

Exceedance Factor (EF) : All the monitored Water Quality Parameters were found to be well within the respective Limit Values and there was no Exceedance of the Norms.

Table : 3.25 Surface Water Quality Data

SI. No.	Parameter	W1 Nalla near Mine	W2 Uppu Odai	W3 Kallar River	W4 Marudaiyar River Up stream	CPCB Norms*
1	pН	7.83	7.47	7.43	7.61	6.5-8.5
2	Colour, Hazen units	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)	10-30
3	Temperature, °C	26.4	26.8	26.6	27.1	-
4	Turbidity, NTU	0.8	1.2	1.5	1.8	-
5	Residual Chlorine, mg/l	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	-
6	Dissolved Oxygen, mg/l	4.8	5.3	5.6	5.4	4.0-6.0
7	Total Suspended Solids, mg/l	13	24	29	36	-
8	Electrical Conductivity, umhos/cm	590	580	630	700	-
9	Total Dissolved Solids, mg/l	380	370	400	440	500-2100
10	Total Hardness (as CaCO ₃), mg/I	190	160	170	190	-
11	Calcium Hardness, mg/l	110	90	90	100	-
12	Magnesium Hardness, mg/l	80	70	80	90	-
13	Calcium (as Ca), mg/l	44	36	36	40	-
14	Magnesium (as Mg), mg/l	19	17	19	22	-
15	Sodium (as Na), mg/l	28	39	45	49	-
16	Potassium (as K), mg/l	2	3	5	6	-
17	Chlorides (as Cl), mg/l	88	110	119	127	250-600
18	Sulphates (as SO ₄), mg/l	26	23	27	32	400-1000
19	Total Alkalinity (as CaCO ₃), mg/l	90	70	80	100	-
20	BOD-3 days @ 27°C, mg/l	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	<3
21	COD, mg/l	6	8	11	13	-
22	Oil & Grease, mg/l	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	-
23	Iron (as Fe), mg/l	0.06	0.09	0.11	0.09	0.3-5.0
24	Fluorides (as F), mg/l	0.11	0.16	0.21	0.18	1.5
25	Nitrates (as NO ₃), mg/l	0.10	0.12	0.16	0.15	20-50
26	Phosphates (as PO ₄), mg/l	<0.01	<0.01	<0.01	<0.01	-
27	Cyanides (as CN), mg/l	<0.01	<0.01	<0.01	<0.01	-
28	Pesticides (as Malathion), mg/l	<0.01	<0.01	<0.01	<0.01	-
29	Phenols (as C ₆ H ₅ OH), mg/l	<0.01	<0.01	<0.01	<0.01	-
30	Manganese (as Mn), mg/l	<0.01	<0.01	<0.01	<0.01	-
31	Chromium (as Cr), mg/l	<0.01	<0.01	<0.01	<0.01	-
32	Copper (as Cu), mg/l	<0.01	<0.01	<0.01	<0.01	1.5
33	Selenium (as Se), mg/l	<0.01	<0.01	<0.01	<0.01	-
34	Aluminium (as Al), mg/l	<0.01	<0.01	<0.01	<0.01	-
35	Cadmium (as Cd), mg/l	<0.01	<0.01	<0.01	<0.01	-
36	Arsenic (as As), mg/l	<0.01	<0.01	<0.01	<0.01	0.05-0.2
37	Boron (as B), mg/l	<0.01	<0.01	<0.01	<0.01	2
38	Mercury (as Hg), mg/l	<0.01	<0.01	<0.01	<0.01	-
39	Lead (as Pb), mg/l	<0.01	<0.01	<0.01	<0.01	0.1
40	Zinc (as Zn), mg/l	<0.01	<0.01	<0.01	<0.01	1.5-15
41	Percent Sodium, %	24.0	34.1	35.7	35.0	-
42	Total Coliforms, MPN/100 ml	8	41	47	56	50-5000
43	Faecal Coliforms, MPN/100 ml	4	22	28	32	-
44	E. Coli, MPN/100 ml	2	17	20	23	-

Monitoring Dates : 09.01.2024 (Worst case & Mean values are reported)

* : CPCB Norms-Central Pollution Control Board Norms for Surface Waters-Class C.

- : Not included/Not available.

Table : 3.25 (Contn.) Surface Water Quality Data

SI. No.	Parameter	W5 Marudaiyar River Down stream	W6 Manakudi Tank	W7 Pond, Periyanagalur	W8 Pond, Pudupalayam	CPCB Norms*
1	pН	7.68	7.74	7.68	7.69	6.5-8.5
2	Colour, Hazen units	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)	10-30
3	Temperature, °C	27.2	27.0	26.8	26.4	-
4	Turbidity, NTU	1.6	2.1	1.7	1.9	-
5	Residual Chlorine, mg/l	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	-
6	Dissolved Oxygen, mg/l	5.5	5.1	5.3	4.8	4.0-6.0
7	Total Suspended Solids, mg/l	22	23	18	41	-
8	Electrical Conductivity, umhos/cm	700	560	500	790	-
9	Total Dissolved Solids, mg/l	450	350	320	500	500-2100
10	Total Hardness (as CaCO ₃), mg/l	210	140	130	220	-
11	Calcium Hardness, mg/l	110	80	70	120	-
12	Magnesium Hardness, mg/l	100	60	60	100	-
13	Calcium (as Ca), mg/l	44	32	28	48	-
14	Magnesium (as Mg), mg/l	24	14	14	24	-
15	Sodium (as Na), mg/l	44	32	24	54	-
16	Potassium (as K), mg/l	4	2	2	8	-
17	Chlorides (as Cl), mg/l	130	88	82	148	250-600
18	Sulphates (as SO ₄), mg/l	28	24	20	42	400-1000
19	Total Alkalinity (as CaCO ₃), mg/l	90	80	60	110	-
20	BOD-3 days @ 27°C, mg/l	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	<3
21	COD, mg/l	8	6	4	18	-
22	Oil & Grease, mg/l	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	-
23	Iron (as Fe), mg/l	0.08	0.12	0.06	0.11	0.3-5.0
24	Fluorides (as F), mg/l	0.21	0.21	0.13	0.26	1.5
25	Nitrates (as NO ₃), mg/l	0.18	0.18	0.11	0.21	20-50
26	Phosphates (as PO ₄), mg/l	<0.01	<0.01	<0.01	<0.01	-
27	Cyanides (as CN), mg/l	<0.01	<0.01	<0.01	<0.01	-
28	Pesticides (as Malathion), mg/l	<0.01	<0.01	<0.01	<0.01	-
29	Phenols (as C ₆ H ₅ OH), mg/l	<0.01	<0.01	<0.01	< 0.01	-
30	Manganese (as Mn), mg/l	<0.01	<0.01	<0.01	<0.01	-
31	Chromium (as Cr), mg/l	< 0.01	<0.01	< 0.01	<0.01	-
32	Copper (as Cu), mg/l	<0.01	<0.01	<0.01	<0.01	1.5
33	Selenium (as Se), mg/l	<0.01	<0.01	<0.01	<0.01	-
34	Aluminium (as Al), mg/l	<0.01	<0.01	<0.01	<0.01	-
35	Cadmium (as Cd), mg/l	<0.01	<0.01	<0.01	<0.01	-
36	Arsenic (as As), mg/l	<0.01	<0.01	<0.01	<0.01	0.05-0.2
37	Boron (as B), mg/l	<0.01	<0.01	<0.01	<0.01	2
38	Mercury (as Hg), mg/l	<0.01	<0.01	<0.01	<0.01	-
39	Lead (as Pb), mg/l	<0.01	<0.01	<0.01	<0.01	0.1
40	∠inc (as ∠n), mg/l	< 0.01	<0.01	< 0.01	< 0.01	1.5-15
41	Percent Sodium, %	30.8	32.8	28.2	33.8	-
42	I otal Coliforms, MPN/100 ml	47	26	12	72	50-5000
43	Faecal Coliforms, MPN/100 ml	26	17	8	35	-
_ 44	E. Coli, MPN/100 ml	17	11	4	25	-

Monitoring Dates : 09.01.2024 (Worst case & Mean values are reported)

* : CPCB Norms-Central Pollution Control Board Norms for Surface Waters-Class C.

- : Not included/Not available.

Table : 3.26 Ground Water Quality Data

SI. No.	Parameter	W9 PNR Mine Pit	W10 Borewell, Kallankurichi	W11 Borewell, Kattupirin- -giyam	W12 Borewell, Periya- -nagalur	IS:10500 Norms*
1	рН	7.69	7.67	7.78	7.68	6.5-8.5
2	Colour, Hazen units	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)	5/15#
3	Temperature, °C	27.8	27.2	26.9	27.0	-
4	Turbidity, NTU	1.6	0.7	0.9	0.9	1/5
5	Residual Chlorine, mg/l	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	0.2/1.0
6	Dissolved Oxygen, mg/l	4.1	3.8	4.4	4.7	-
7	Total Suspended Solids, mg/l	27	10	19	11	-
8	Electrical Conductivity, umhos/cm	660	670	840	730	-
9	Total Dissolved Solids, mg/l	410	440	530	460	500/2000
10	Total Hardness (as CaCO ₃), mg/l	250	210	250	220	200/600
11	Calcium Hardness, mg/l	120	110	140	120	-
12	Magnesium Hardness, mg/l	130	100	110	100	-
13	Calcium (as Ca), mg/l	48	44	56	48	75/200
14	Magnesium (as Mg), mg/l	31	24	26	24	30/100
15	Sodium (as Na), mg/l	47	36	46	39	-
16	Potassium (as K), mg/l	8	2	5	2	-
17	Chlorides (as Cl), mg/l	122	124	156	132	250/1000
18	Sulphates (as SO ₄), mg/l	38	36	52	41	200/400
19	Total Alkalinity (as CaCO ₃), mg/l	130	100	120	110	200/600
20	BOD-3 days @ 27°C, mg/l	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	-
21	COD, mg/l	2	4	5	8	-
22	Oil & Grease, mg/l	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	-
23	Iron (as Fe), mg/l	0.09	0.08	0.13	0.10	0.3
24	Fluorides (as F), mg/l	0.14	0.14	0.27	0.17	1.0/1.5
25	Nitrates (as NO ₃), mg/l	0.18	0.15	0.26	0.23	45
26	Phosphates (as PO ₄), mg/l	<0.01	<0.01	<0.01	<0.01	-
27	Cyanides (as CN), mg/l	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	0.05
28	Pesticides (as Malathion), mg/l	<0.01	<0.01	<0.01	<0.01	Abs./0.001
29	Phenols (as C ₆ H ₅ OH), mg/l	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	0.001/0.002
30	Manganese (as Mn), mg/l	<0.01	<0.01	<0.01	<0.01	0.1/0.3
31	Chromium (as Cr), mg/l	<0.01	<0.01	<0.01	<0.01	0.05
32	Copper (as Cu), mg/l	<0.01	<0.01	<0.01	<0.01	0.05/1.5
33	Selenium (as Se), mg/l	<0.01	<0.01	<0.01	<0.01	0.01
34	Aluminium (as Al), mg/l	<0.01	<0.01	<0.01	<0.01	0.03/0.2
35	Cadmium (as Cd), mg/l	<0.01	<0.01	<0.01	<0.01	0.003
36	Arsenic (as As), mg/l	<0.01	<0.01	<0.01	<0.01	0.01/0.05
37	Boron (as B), mg/l	<0.01	<0.01	<0.01	<0.01	0.5/1.0
38	Mercury (as Hg), mg/l	<0.001	<0.001	<0.001	<0.001	0.001
39	Lead (as Pb), mg/l	<0.01	<0.01	<0.01	<0.01	0.01
40	Zinc (as Zn), mg/l	<0.01	<0.01	<0.01	<0.01	5/15
41	Percent Sodium, %	28.2	26.9	28.1	27.6	-
42	Total Coliforms, MPN/100 ml	<2	<2	<2	<2	Absent
43	Faecal Coliforms, MPN/100 ml	<2	<2	<2	<2	Absent
44	E. Coli, MPN/100 ml	<2	<2	<2	<2	Absent

Monitoring Dates : 09.01.2024 (Worst case & Mean values are reported)

*: IS:10500:2012-Drinking Water Standards; #: Requirement/Permissible Limit in the absence of alternate source.

Table : 3.26 (Contn.) Ground Water Quality Data

SI. No.	Parameter	W13 Borewell, Reddipalayam	W14 Borewell, Pudupalayam	W15 Borewell, Hastinapuram	W16 Borewell, Kovilan- kudikadu	IS:10500 Norms*
1	pH	7.75	7.82	7.61	7.66	6.5-8.5
2	Colour, Hazen units	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5.0)	5/15#
3	Temperature, °C	27.3	27.1	27.0	27.3	-
4	Turbidity, NTU	1.0	1.1	0.9	1.0	1/5
5	Residual Chlorine, mg/l	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	0.2/1.0
6	Dissolved Oxygen, mg/l	4.5	4.4	4.9	4.4	-
7	Total Suspended Solids, mg/l	14	17	12	14	-
8	Electrical Conductivity, umhos/cm	820	870	650	570	-
9	Total Dissolved Solids, mg/l	520	550	410	360	500/2000
10	Total Hardness (as CaCO ₃), mg/l	260	270	200	170	200/600
11	Calcium Hardness, mg/l	140	150	110	90	-
12	Magnesium Hardness, mg/l	120	120	90	80	-
13	Calcium (as Ca), mg/l	56	60	44	36	75/200
14	Magnesium (as Mg), mg/l	29	29	22	19	30/100
15	Sodium (as Na), mg/l	47	54	42	35	-
16	Potassium (as K), mg/l	4	6	3	2	-
17	Chlorides (as Cl), mg/l	148	154	114	93	250/1000
18	Sulphates (as SO ₄), mg/l	49	49	29	21	200/400
19	Total Alkalinity (as CaCO ₃), mg/l	120	130	90	80	200/600
20	BOD-3 days @ 27°C, mg/l	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	-
21	COD, mg/l	6	5	2	3	-
22	Oil & Grease, mg/l	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	-
23	Iron (as Fe), mg/I	0.10	0.14	0.10	0.06	0.3
24	Fluorides (as F), mg/l	0.21	0.28	0.22	0.16	1.0/1.5
25	Nitrates (as NO ₃), mg/l	0.28	0.31	0.25	0.12	45
26	Phosphates (as PO ₄), mg/l	<0.01	<0.01	<0.01	<0.01	-
27	Cyanides (as CN), mg/l	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	0.05
28	Pesticides (as Malathion), mg/l	<0.01	<0.01	<0.01	<0.01	Abs./0.001
29		BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	0.001/0.002
30	Chromium (as Cr), mg/l	<0.01	<0.01	<0.01	<0.01	0.1/0.3
20	Copper (as Cu), mg/	<0.01	<0.01	<0.01	<0.01	0.05
32	Selenium (as Se) mg/l				<0.01	0.03/1.5
34	Aluminium (as Al) mg/l	<0.01	<0.01	<0.01	<0.01	0.01
34	Cadmium (as Cd), mg/l	<0.01	<0.01	<0.01	<0.01	0.03/0.2
36	Arsonic (as As), mg/l	<0.01	<0.01	<0.01	<0.01	0.003
30	Boron (as B) mg/l				<0.01	0.01/0.00
28	Mercury (as Hg) mg/l					0.0/1.0
30	Lead (as Pb) mc/l	<0.001	<0.001	<0.001	<0.001	0.001
40	Zinc (as The maximum data for the maximum data fo				<0.01	5/15
41	Percent Sodium %	27.8	20.01	30.9	30.6	
42	Total Coliforms MPN/100 ml	27.0	- 20.1	- 00.3 - 20	-00.0	- Absent
42	Faecal Coliforms MPN/100 ml	~2	~2	~2	~2	Absent
44	F Coli MPN/100 ml	~~	2	->	~2	
		~2	~~	~~	~2	Abacin

Monitoring Dates : 09.01.2024 (Worst case & Mean values are reported)

*: IS:10500 :2012-Drinking Water Standards; #: Requirement/Permissible Limit in the absence of alternate source.

		Concentration Range & Norms					
SI. No.	Parameter	Surface Waters	CPCB Norms* for Surface Waters	Ground Waters	IS:10500 Norms** for Drinking Waters		
1	рН	7.43-7.83	6.5-8.5	7.61- 7.82	6.5-8.5		
2	Total Dissolved Solids, mg/l	320-500	-	360-550	500-2000*		
3	Dissolved Oxygen, mg/l	4.8-5.6	4.0-6.0	3.8-4.9	-		
4	BOD (3 days @ 27 ºC), mg/l	BDL(DL:2.0)	<3	BDL(DL:2. 0)	-		
5	COD, mg/l	4-18	-	2-8	-		
6	Oil & Grease, mg/l	BDL(DL:1.0)	-	BDL(DL:1. 0)	-		
7	Chlorides (as Cl), mg/l	82-148	250-600	93-156	250-1000		
8	Iron (as Fe), mg/l	0.06-0.12	0.3-5.0	0.06- 0.14	0.3		
9	Trace Metals, mg/l	<0.01	-	<0.01	<0.001-<0.01		
10	Total Coliforms, MPN/100 ml	8-72	50-5000	<2	Absent		

 Table : 3.27
 Water Quality Status

Monitoring Dates : 09.01.2024

* : CPCB Norms-Central Pollution Control Board Norms for Surface Waters-**Class C**. - : Not included/Not available. ** : * : IS:10500 :2012-Drinking Water Standards; # : Requirement/Permissible Limit in the absence of alternate source.

3.8 Land Environment

3.8.1 Soil Status

The collected soil quality data are given as **Table 3.28**. Soils with medium compaction and silty loam texture were predominant in the study area. Soil pH values (7.59-7.81) were found to be in alkaline range and Electrical Conductivity values were in the range 1.50-1.79 mmhos/cm. There was low moisture at all the monitoring locations. Low levels of Nitrogen, Phosphorous and Potassium (NPK) values were monitored at all locations. Sodium Absorption Ratio was in the range 1.96-2.79 (desirable value being <5). There was **no heavy metals intrusion**/leaching into the ground strata. Wilting coefficient in significant levels would mean that these soils would support the vegetation, if amended suitably and will suit for salt tolerant & semisalt tolerant plants

3.8.2 Land Use Pattern

For Land use study of the Study Area, IRS P6 LISS-III **Satellite Imagery**/data (dated 14.03.2022) is used (**Fig. 3.5**). Visual interpretation technique has been adopted for the interpretation keys suggested in guidelines of NNRMS, Bangalore. Level-3 Classification with 1:50,000 scale was made for the preparation of land use mapping (**Fig. 3.6**). Land Use Pattern is given in **Table 3.29**. The Crop Land occupies about 40.11%. Fallow Land occupies about 24.28%. Water body occupies about 3.01%. Only 3.69% of the study area is covered by built-up land.

Table : 3.28 Soil Status

Monitoring Date : 09.01.2024

SI. No.	Parameter	S1 Green Belt	S2 Dump Area	S3 Dry Agri. Land, Periya- nagalur	S4 Forrest Land, Vilangudi	S5 Agri. Land, Pudu- palayam	Desirable Range*
i	Colour	Brown	Brown	Grey	Reddish Brown	Brown	-
ii	Compaction	Medium	Low	Medium	Medium	Medium	-
1	pH (10% Solution)	7.68	7.81	7.59	7.74	7.59	5.5-9.0
2	Electrical Conductivity, mmhos/cm	1.64	1.79	1.53	1.50	1.74	0.2-0.5
3	Natural Moisture Content, %	11.7	9.6	10.2	9.4	12.6	-
4	Organic Carbon, %	0.98	0.91	1.09	1.14	1.10	>0.75
5	Nitrogen (as N), %	0.010	0.007	0.013	0.016	0.012	0.01-0.02
6	Phosphorus (as P), %	0.006	0.003	0.009	0.010	0.009	0.002- 0.004
7	Potassium (as K), %	0.012	0.009	0.010	0.008	0.014	>0.01
8	Sodium (as Na), ppm	110	140	90	110	110	-
9	Calcium (as Ca), ppm	70	90	60	80	80	-
10	Magnesium (as Mg), ppm	60	60	60	70	60	-
11	Chlorides (as Cl), ppm	210	230	180	160	210	-
12	Sulphates (as SO ₄), ppm	120	150	110	90	130	-
13	Cation Exchange Capacity, meq/100 g	23.1	21.7	22.6	24.1	23.6	10-30
14	Grain Size Distribution :i. Sand, %	33.7	31.9	62.4	28.6	31.8	-
ii	Silt, %	60.9	63.4	31.5	63.4	60.4	-
iii	Clay, %	5.4	4.7	6.1	8.0	7.8	-
15	Textural Class	Silty Ioam	Silty loam	Sandy Ioam	Silty loam	Silty loam	Loam
16	Bulk Density, g/cc	1.35	1.33	1.32	1.35	1.37	-
17	Infiltration Rate, cm/hr	3.8	4.4	3.5	3.8	3.6	-
18	Field Capacity, %	21.7	20.3	19.4	25.1	21.4	-
19	Wilting Coefficient, %	0.4	0.6	0.4	0.8	0.4	>0.4
20	Available Water Storage Capacity, %	21.4	19.6	22.3	24.3	21.9	-
21	Sodium Absorbing Ratio	2.32	2.79	1.96	2.16	2.25	<5

* : Desirable Range for High Production Soil.

Table : 3.29 Land Use Pattern

Land Use	Area, sq.km	Coverage, %
Agricultural Crop Land	126.01	40.11
Agri. Plantations	34.73	11.06
Fallow Land	76.29	24.28
Forests	16.31	5.19
Barren/Scrub Land	29.71	9.46
Other Mines, Industries, Quarries, etc.	10.05	3.20
Built-up Land	11.59	3.69
Water Bodies	9.46	3.01
Total	314.15	100

3.9 Flora and Fauna 3.9.1 Flora

A general ecological survey was carried out in the study area of 10 km radius around the Mine area. Study Area is not part of any National Park, Sanctuary, Biosphere Reserve, Wildlife Corridors, Migratory Path, etc. The primary data was generated through preparing a general checklist of all plants encountered in the study area. The species of vegetation found were identified and listed according to their families. The list of plant species in the Reserved Forests Area are presented in Table 3.30. The list of plant species in the Core and Buffer Zones are presented in Table 3.22 respectively.

SI. No.	Botanical Name	Family	Common Name	Local Name
1	Acacia arabica (wild)	Mimosaceae	Karuvel	Black babool
2	Acaia catechu	Fabaceae	Karungali	-
3	Aegle marmelos	Rutaceae	Vilam	-
4	Albizia amara (Roxb).	Mimosaceae	Ushilai	SIris
5	Anacardium occidentale	Anacardiaceae	Mundiri	Cashew
6	Azadirachta indica	Meliaceae	Vembu, Veppa	Neem
7	Bambusa vulgaris	Bambusaceae	Mungil	Bamboo
8	Borassus flabelliformis	Arecaceae	Panai	Palm
9	Butea monosperma	Fabaceae	Purasu	Flame of the forest
10	Cassia siamea	Caesaipinaceae	Konnai	Kassod
11	Eucalyptus globulus	Myrtaceae	Araspadi, Thailam	Eucalyptus
12	Ficus benghalensis	Moraceae	Alamaram	Banyan
13	Lannea coromandelica	Anacardiaceae	Udhaiyam	Indian ash tree
14	Peltophorum peterocarpum	Fabaceae	Perunkonai	Pettophorum
15	Phoenix sylvestris	Arecaceae	Echcha	Indian date
16	Pongamia pinnata	Fabaceae	Pungai, Pungan	Indian Beech
17	Prosopis juliflora	Fabaceae	Velikathan, Velikaruvel	Babool
18	Senna occidentalis	Fabaceae	Ponnavarai	Coffe senna
19	Swietenia macrophylta	Meliaceae	Mahogany	-
20	Tectona garandis	Lamiaceae	Tekku	Teak
21	Ziziphus oenoplia	Rhamnacceae	Suraimul	-

Table : 3.30 List of Flora in the Reserve Forests

The nature of shrubs and trees in the study areas were of drought resistant types. Besides the natural vegetation, the agricultural and commercial crops were cultivated in and around the study area. Paddy, Maize, Green Gram, Black gram, Groundnut, Ragi, etc. were found to be cultivated among the agricultural crops whereas Sugarcane, Cotton, Turmeric, Cashew, etc. were commercially cultivated.

SI. No.	Botanical Name	Family	Common Name	Habit
1	Azadirachta indica	Meliaceae	Vembu, Veppa	Tree
2	Abutilon indicum	Malvaceae	Country Mallow, Tutti	Herb
3	Acalypha indica	Euphorbiaceae	Kuppaimeni	Herb
4	Albizia lebbek	Mimosaceae	Siris Tree, Vagai	Tree
5	Aristida adscensionis	Poaceae	Common Needle grass	Herb
6	Cassia auriculata	Fabaceae	Aavarampoo	Shrub
7	Cassia fistula	Fabaceae	Golden shower tree,	Tree
8	Cassia siamea	Caesalpiniaceae	Manja konnai	Tree
9	Datura metel	Solanaceae	Thorn apple, Oomathai	Shrub
10	Holoptelea integrifolia	Aavimaram, Indian elm	Ulmacaea	Tree
11	Leucaena leucocephala	Fabaceae	Periyatagarai, Horse	Tree
12	Morinda tinctoria	Rubiaceae	Nuna	Tree
13	Pongamia pinnata	Fabaceae	Pungai, Pungan	Tree
14	Samanea saman	Mimosodeae	Thoongumoonij maram	Tree
15	Tecoma stans	Majarali, Yellow Bells	Bignoniaceae	Shrub
16	Vitex negundo	Lamiaceae	Nochi	Shrub

Table : 3.31 List of Flora - Core Zone (including Green Belt)

Table : 3.32 List of Flora - Distribution of Vegetation in Buffer Zone

SI. No.	Scientific Name	Family Name	Common Name	Habit				
	Agricultural Crops							
1	Arachis hypogea	Fabaceae	Groundnut	Herb				
2	Oryza sativa	Poaceae	Rice	Herb				
3	Phaseolus mungo	Fabaceae	Black gram	Herb				
4	Sacharum officinarum	Poaceae	Sugarcane	Herb				
5	Zea mays	Poaceae	Maize	Herb				
	Comme	ercial Crops (includi	ng vegetables)					
1	Capsicum frutescens	Solanaceae	Milagaai	Herb				
2	Carica papaya	Caricaceae	Papaya	Tree				
3	Citrus limon	Rutaceae	Lemon	Tree				
4	Cocus nucifera	Arecaceae	Coconut, Thennai	Tree				
5	Cucurbita pepo	Cucurbitaceae	Pumpkin	Creeper				
6	Cyamopsis tetragonoloba	Fabaceae	Cluster bean	Shrub				
7	Gossypium arboreum	Malvaceae	Cotton, Paruthi	Shrub				
8	Hibiscus esculentus	Malvaceae	Lady's finger, Vendai	Herb				
9	Lagenaria vulgaris	Cucurbitaceae	Bottle gourd	Creeper				
10	Lycopersicum esculentum	Solanaceae	Tomato	Herb				
11	Mangifera indica	Anacardiaceae	Mango	Tree				
12	Momordica charantia	Cucurbitaceae	Bittergourd	Creeper				
13	Moringa oleifera	Moringaceae	Drumstick, Murungai	Tree				
14	Musa paradisiaca	Musaceae	Plantain, Vazhai	Tree				
15	Psidium gujava	Myrtaceae	Guava	Tree				
16	Ricinus communis	Euphorbiaceae	Castor Bean Plant	Shrub				
17	Sesamum indicum	Pedaliaceae	Seasame, Ellu	Herb				
18	Solanum melongena	Solanaceae	Brinjal	Herb				
19	Solanum torvum	Solanaceae	Turkey berry	Shrub				
20	Trichosanthes cucurmina	Cucurbitaceae	Snake gourd	Creeper				
21	Vicia faba	Fabaceae	Broad Bean	Creeper				
		Plantations						
1	Anacardium occidentale	Anacardiaceae	Cashew	Tree				
2	Cocus nucifera	Arecaceae	Coconut, Thennai	Tree				

SI. No.	Scientific Name	Family Name	Common Name	Habit
3	Casuarina equisetifolia	Casuarinaceae	Casuarina, Savukku	Tree
4	Eucalyptus sp.	Myrtaceae	Eucalyptus	Tree
5	Musa paradisiaca	Musaceae	Plantain, Vazhai	Tree
6	Tectona grandis	Lamiaceae	Teak	Tree
		Natural Vegetat	ion	1
1	Abrus precatorius	Fabaceae	Coral bead vine, Rosary pea,	Climber
2	Abutilon indicum	Malvaceae	Country Mallow, Tutti	Herb
3	Acacia leucophloea	Mimosaceae	Velvelam, White babool	Tree
4	Acacia nilotica	Mimosaceae	Babul, Karuvelam	Tree
5	Acalypha indica	Euphorbiaceae	Kuppaimeni	Herb
6	Acanthospermum hispidum	Asteraceae	Seruppadithazhai,	Herb
7	Achchyranthes aspera	Amaranthaceae	Prickly Chaff flower, Nayuruvi	Herb
8	Adathoda vasica	Acanthaceae	Vasaca, Adathodai	Shrub
9	Adina cordifolia	Rubiaceae	Manjakadambu	Tree
10	Aegle marmelos	Rutaceae	Wood Apple, Vilvam	Tree
11	Aerva lanata	Amaranthaceae	Sirupulai	Herb
12	Agave sisalana	Agavaceae	Kathalai, Sisal	Herb
13	Ageratum conyzoides	Asteraceae	Goat weed, Pumppillu	Herb
14	Ailanthua ayaalaa	Simoroubaaaaa	Indian Tree of Heaven,	Troo
14	Alianthus exceisa	Simaroupaceae	Perumaram	Tree
15	Alangium salviifolium	Cornaceae	Alingi	Tree
16	Albizia amara	Mimosaceae	Usilamaram	Tree
17	Albizia lebbek	Mimosaceae	Siris Tree, Vagai	Tree
18	Aloe vera	Liliaceae	Kathalai	Herb
19	Alternanthera sessilis	Amaranthaceae	Dwarf Copperleaf, Ponnanganni	Herb
20	Amaranthus spinosus	Amaranthaceae	Mullukkirai	Herb
21	Amaranthus viridis	Amaranthaceae	Kuppaikeerai	Herb
22	Ammannia baccifera	Lythraceae	Acrid weed, Kalluruvi	Herb
23	Anacardium occidentale	Anacardiaceae	Cashew	Tree
24	Anisomeles malabarica	Lamiaceae	Malabar Catmint/ Peimiratti	Shrub
25	Anona squamosa	Anonaceae	Custard apple	Tree
26	Apluda mutica	Poaceae	Mauritian Grass	Herb
27	Arachis hypogea	Faboideae	Ground nut	Herb
28	Argemone mexicana	Papaveraceae	Prickly poppy, Kudiyotti	Shrub
29	Aristida adscensionis	Poaceae	Coomon Needle grass	Herb
30	Artocarpus heterophyllus	Moraceae	Jackfruit	Tree
31	Azadirachta indica	Meliaceae	Neem, Vembu	Tree
32	Bambusa arundanacea	Poaceae	Bamboo	Tree
33	Barleria buxifolia L.	Acanthaceae	Box-leaved Barleria/ Rosemullipoondu	Herb
34	Barleria prionitis	Acanthaceae	Porcupine flower, Kundan	Herb
35	Bassia latifolia	Sapotaceae	Iluppai	Tree
36	Blumea lacera	Asteraceae	Kattumullangi, Narakkarandai	Herb
37	Boerheavia diffusa	Nyctaginaceae	Pig weed, Mukkarattai Keerai	Herb
38	Borassus flabellifer	Arecaceae	Palmyra Palm	Tree
39	Bougainvillea spectabilis	Nyctaginaceae	Kaakithapoo	Shrub
40	Bulbostylis barbatta	Cyperaceae	Mukkutikorei	Herb
41	Butea monosperma	Fabaceae	Flame of Forest	Tree
42	Caeselpinia pulcherrima	Caesalpiniacea	Peacock Flower, Mayurkondrai	Tree
43	Calendula officinalis	Asteraceae	Marigold	Herb
44	Calophyllum inophyllum	Clusiaceae	Punnai	Tree
45	Calotropis gigantea	Asclepiadaceae	Crown Flower, Erukku	Shrub

SI. No.	Scientific Name	Family Name	Common Name	Habit
46	Calotropis procera	Asclepiadaceae	Vellerukku	Shrub
47	Canna indica	Cannaceae	Indian shot, Kalvalai	Shrub
48	Capparis sepiaria	Capparaceae	Kattukkathiri	Shrub
49	Carica papaya	Caricaceae	Pappaali	Tree
50	Cassia auriculata	Fabaceae	Aavarampoo	Shrub
51	Cascabela thevetia	Apocynaceae	Yellow oleander/ Arali	Shrub
52	Cassia fistula	Fabaceae	Golden shower tree, Kondrai	Tree
53	Cassia occidentalis	Caesalpiniacea	Coffee weed, Payaverai	Herb
54	Cassia siamea	Caesalpiniacea	Manja konnai	Tree
55	Cassia tora	Caesalpiniacea	Sickle senna, Tagarai	Herb
56	Casuarina equisetifolia	Casuarinaceae	Whistling Pine, Savukku	Tree
57	Ceiba pentandra	Bombacaceae	Silk-Cotton Tree, Ilavampanchumaram	Tree
58	Cenchrus ciliaris	Poaceae	Buffel grass	Herb
59	Chloris barbata	Poaceae	Finger grass	Grass
60	Chloris dolichostachya	Poaceae	Finger grass, Kuruthupillu	Herb
61	Chloroxylon swietenia	Rutaceae	Porasu maram	Tree
62	Chrysanthemum sp.	Asteraceae	Chrysanthemum, Samanthi	Herb
63	Cissus quadrangularis	Vitaceae	Devil's Backbone, Pirandai	Climber
64	Citrus limon	Rutaceae	Lemon	Tree
65	Clausena anisate	Rutaceae	Horse wood/Kaatu Karuveppillai	Shrub
66	Cleome gynandra	Cleomaceae	Wild Spider flower, Nalvelai	Herb
67	Cleome viscosa	Cleomaceae	Tickweed, Naikkaduku	Herb
68	Clitoria ternatea	Fabaceae	Sankupushpam	Climber
69	Coccinia indica	Cucurbitaceae	Kovai	Climber
70	Cocculus hirsutus	Menispermacea	Broom Creeper, Kattukkodi	Climber
71	Cocos nucifera	Palmae	Coconut	Tree
72	Codiaeum variegatum	Euphorbiaceae	Croton	Shrub
73	Commelina benghalensis	Commelinacea	Dew Flower, Kanavachai	Herb
74	Corcorus olitorius	Tiliaceae	Perattikkirai	Shrub
75	Crotolaria retusa	Fabaceae	Rattlepod	Herb
76	Croton bonplandianus	Euphorbiaceae	Ban Tulsi/ Railpoondu	Herb
77	Cucumis melo	Cucurbitaceae	Musk melon, Thumattikai	Herb
78	Cucumis sativus	Cucurbitaceae	Cucumber	Climber
79	Cuscuta reflexa	Convolvulaceae	Verillakothan, Kodiyagundal	Climber
80	Cymbopogon sp.	Poaceae	Lemon grass	Herb
81	Cynodon dactylon	Poaceae	Bermuda grass, Arugampul	Herb
82	Cyperus difformis	Cyperaceae	Smallflower umbrella-sedge	Herb
83	Cyprus rotundus	Cyperaceae	Korai, Nut grass	Herb
84	Datura metel	Solanaceae	Thorn apple, Oomathai	Shrub
85	Delonix regia	Fabaceae	Gulmohar	Tree
86	Dendrophthoe falcata	Loranthaceae	Honey Suckle Mistletoe, Pulluruvi	Herb
87	Dentella repens	Rubiaceae	Creeping lickstoop	Herb
88	Desmostachya bipinnata	Poaceae	Tharpai grass/halfa grass	Grass
89	Dichanthium annulatum	Poaceae	Marvel grass	Herb
90	Digetaria adscendens	Poaceae	Crab grass	Herb
91	Digetaria bicornis	Poaceae	Finger grass	Herb
92	Dodonaea viscosa	Sapindaceae	Hopbush/Virali	Shrub
93	Dolichandrone falcata	Bignoniaceae	Medhshingi	Tree
94	Eclipta alba	Asteraceae	Bhringaraj, Karisalankanni	Herb
95	Eclipta prostrata	Asteraceae	False daisy, Karisalankanni	Herb

SI. No.	Scientific Name	Family Name	Common Name	Habit
96	Eichhornia crassipes	Pontederiaceae	Water hyacinth	Aquatic
97	Emblica officinalis	Phyllanthaceae	Indian gooseberry, Nelli	Tree
98	Enicostemma axillare	Gentianaceae	Vellarugu	Herb
99	Eragrostis spectabilis	Poaceae	Bunchgrass	Herb
100	Erythrina indica	Fabaceae	Mullu murungai	Tree
101	Erythrina variegata	Fabaceae	Indian coral tree, Kalyanamurungai	Tree
102	Eucalyptus globulus	Myrtaceae	Blue gum	Tree
103	Euphorbia antiquorum	Euphorbiaceae	Kalli, Triangular Spurge	Tree
104	Euphorbia heterophyla	Euphorbiaceae	Painted euphorbia	Herb
105	Euphorbia hirta	Euphorbiaceae	Asthma weed, Ammam	Herb
106	Euphorbia lactea	Euphorbiaceae	Indian spurge tree	Tree
107	Euphorbia prostrata	Euphorbiaceae	Prostrate sandmat	Herb
108	Euphorbia tirucalli	Euphorbiaceae	Pencil cactus, Thirukalli	Shrub
109	Evolvulus alsinoides	Convolvulaceae	Dwarf Morning Glory, Vishnukranthi	Herb
110	Ficus benghalensis	Moraceae	Banyan, Alamaram	Tree
111	Ficus religiosa	Moraceae	Peepal, Arasamaram	Tree
112	Fimbristylis cymose	Cyperaceae	Button sedge, grass	Herb
113	Fimbristylis dichotoma	Cyperaceae	Forked fimbry	Grass
114	Gardenia jasminoides	Rubiaceae	Cape jasmine, Kumbai	Shrub
115	Gisekia pharnaceoides	Aizoaceae	Manal keerai	Herb
116	Gloriosa superba	Colchicaceae	Flame lily, Kallappai kilangu	Herb
117	Gomphrena globosa	Amaranthaceae	Globe Amaranth, Vaadamalli	Herb
118	Heliotropium indicum	Boraginaceae	Indian heliotrope, Thel kodukku	Herb
119	Hemidesmus indicus	Apocynaceae	Indian sarasaparilla, Nannari	Herb
120	Heterostemma tanjorense	Asclepiadaceae	Palakeerai	Herb
121	Hibiscus canabinus	Malvaceae	Pulichakeerai	Shrub
122	Hibiscus esculentus	Malvaceae	Lady's finger, Vendai	Herb
123	Hibiscus micranthus	Malvaceae	Tiny Flower Hibiscus	Herb
124	Hibiscus rosasinensis	Malvaceae	Shoeflower, Sembaruthi	Shrub
125	Holoptelea integrifolia	Ulmaceae	Indian elm/Tambachi	Tree
126	Hygrophila auriculata	Acanthaceae	Marsh Barbel, Neermulli	Herb
127	Hyptis suaveolens	Lamiaceea	Pignut	Shrub
128	Impatiens balsamina	Balsaminaceae	Garden Balsam,	Herb
129	Indigofera linnaei	Fabaceae	Birdsville indigo	Herb
130	Indigofera tinctoria	Fabaceae	Cassia Indigo, Avuri	Shrub
131	Ipomea carnea	Convolvulaceae	Bush Morning Glory	Shrub
132	Ipomea hederfolia	Convolvulaceae	Kanavalikkodi	Herb
133	Ipomea obscura	Convolvulaceae	Obscure morning glory, Chirutali	Herb
134	Ixora coccinea	Rubiaceae	Ixora, Vedchi	Shrub
135	Ixora parviflora	Rubiaceae	Torch tree, Shulundu	Tree
136	Jasmimunofficinalae L.	Oleaceae	Jasmine	Shrub
137	Jasminum arborescens	Oleaceae	Shrubby Jasmine, Kattumalligai	Shrub
138	Jatropha gossypiifolia	Euphorbiaceae	Bellyache Bush/ Adalai	Shrub
139	Jatropha glandulifera	Euphorbiaceae	Kaatuamanakku	Shrub
140	Kyllinga triceps	Cyperaceae	Spikes edge, Velutta Nirbasi	Herb
141	Lannea coromandelica	Anacardiaceae	Indian Ash Tree, Othiyamaram	Tree
142	Lantana camara	Verbenaceae	Lantana, Unnichedi	Shrub
143	Lawsonia inermis	Lythraceae	Henna, Maruthondri	Shrub
144	Lemna minor	Arecaceae	Common Duckweed	Weed
145	Leucaena leucocephala	Fabaceae	Periyatagarai, Horse Tamarind	Shrub
146	Leucas aspera	Lamiaceae	Common Leucas, Thumbai	Herb

SI. No.	Scientific Name	Family Name	Common Name	Habit
147	Limonia acidissima	Rutaceae	Wood apple, Vilampazham	Tree
148	Lycopersicon esculentum	Solanaceae	Thakkali	Herb
149	Malvastrum	Malvaceae	False Mallow	Herb
150	Mangifera indica	Anacardiaceae	Mango	Tree
151	Marselia guadrifolia	Marsileaceae	Four Leaf Clover, Aaraikkeerai	Herb
152	Melia azadirachta	Meliaceae	Indian Liliac, Malaivembu	Tree
153	Merremia emarginata	Convolvulaceae	Kidney Leaf Morning Glory, Elikkadhukeerai	Herb
154	Millingtonia hortensis	Bignoniaceae	Tree Jasmine, Katmalli	Shrub
155	Mimosa hamata	Mimosaceae	Hooked Mimosa	Shrub
156	Mimosa pudica	Mimosaceae	Touch-me-not, Thottachurungi	Herb
157	Morinda coreia	Rubiaceae	Indian Mulberry/ Manjal athi	Tree
158	Morinda tinctoria	Rubiaceae	Nuna	Tree
159	Moringa oleifera	Moringaceae	Drumstick, Murungai	Tree
160	Murraya koengii	Rutaceae	Curry leaf, Karuveppilai	Shrub
161	Musa paradisiaca	Musaceae	Banana	Tree
162	Nelumbo nucifera	Nelumbonacea	Lotus	Aquatic
163	Nerium indicum	Apocynaceae	Sevvarali	Shrub
164	Nerium oleander	Apocynaceae	Oleander, Arali	Shrub
165	Nymphaea sp.	Nymphaeaceae	Water Lily	Aquatic
166	Ocimum americanum	Lamiaceae	Hoary Basil, Nai Thulasi	Herb
167	Ocimum basilicum	Lamiaceae	Sweet Basil, Thirunitruthulasi	Herb
168	Ocimum gratissimum	Lamiaceae	Wild Basil, Peruntulasi	Herb
169	Ocimum sanctum	Lamiaceae	Holy Basil, Thulasi	Herb
170	Oldenlandia umbellata	Rubiaceae	Choyroot, Chayaver	Herb
171	Opuntia dillenii	Cactaceae	Prickly Pear, Chappathikkalli	Shrub
172	Opuntia ficus-indica	Cactaceae	Fig opuntia/Kalli	Shrub
173	Opuntia vulgaris	Aizoaceae	Pricklypear	Shrub
174	Ouret lanata	Amaranthaceae	Mountain Knot grass	Herb
175	Oxalis corniculata	Oxalidaceae	Creeping Wood Sorrel, Paliakiri	Climber
176	Pandanus odoratissimus	Pandanaceae	Thazhai	Shrub
177	Parthenium hysterophorus	Asteraceae	Congress grass	Herb
178	Passiflora foetida	Passifloraceae	Stinking passionflower, Mosukkattan	Climber
179	Pavetta indica	Rubiaceae	Indian Pavetta,Kattukkaranai	Shrub
180	Pavonia zeylanica	Malvaceae	Sittamutti, Thengai poondu	Shrub
181	Peltophorum pterocarpum	Fabaceae	Copperpod, Perunkondrai	Tree
182	Pergularia daemia	Asclepiadaceae	Pergularia, Uttamani, Seendhal	Climber
183	Phoenix acaulis	Arecaceae	Stemless Date Palm	Shrub
184	Phoenix sylvestris	Arecaceae	Eecham	Tree
185	Phyla nodifolia	Verbanaceae	Poduthalai	Herb
186	Phyllanthus	Phyllanthaceae	Madras Leaf flower/Nila neli	Herb
187	Phyllanthus nirurii	Phyllanthaceae	Keelanelli, Seed under leaf	Herb
188	Phyllanthus reticulatus	Phyllanthaceae	Black-berried featherfoil,	Herb
189	Phyllanthus virgatus	Phyllanthaceae	Joint weed/Kaadu nelli	Herb
190	Physalis minima	Solanaceae	Ground Cherry, Kupanti	Herb
191	Pigea enneasperma	Violaceae	Spade Flower/ Oorithal thamarai	Herb
192	Pistia stratiotes	Arecaceae	Water lettuce, Agasatamarai	Aquatic
193	Pithecellobium dulce	Mimosaceae	Sweet tamarind, Kodukkappuli	Tree
194	Polygala erioptra	Polygalaceae	Wolly-winged	Shurb
195	Polypogon viridis	Poaceae	Rabbit foot grass.	Grass
196	Polyalthia longifolia	Annonaceae	Indian mast tree, Vansulam	Tree

SL No.	Scientific Name	Family Name	Common Name	Habit
197	Pongamia pinnata	Fabaceae	Indian Beech, Pungam	
198	Portulaça oleraçea	Portulacaceae	Common Purslane, Paruppu	Herb
199	Prempa tomentosa	Verbenaceae	Bastard Teak Malaithaekku	Tree
200	Prosonis glandulosa	Mimosodeae	Vaelikkaruvai	Tree
201	Prosopis juliflora	Fahaceae	Algaroba Seemaikaruvel	Tree
202	Psidium quiava	Myrtaceae	Guava	Tree
203	Punica granatum	Lythraceae	Pomegranate Mathulai	Shrub
204	Rosa indica	Bosaceae	Bose	Herb
205	Saccharum munia	Poaceae	Munia grass	Horb
200	Saccharum spontaneum	Poaceae	Kans grass Pekkarimpu	Horb
200	Sacchardin spontanedin	Mimosodopo		Troo
208	Samanea Saman	Plantaginacoao	Goat wood/Sarakkotthini	Horb
200	Scoparia duicis	Fidiliagiliaceae	Avoram	Shrub
209		Fabaceae	Avarani	
210		Fabaceae	lionwood/ Majai Konai	llark
211		Fabaceae	Sickle senna/ magarai	
212	Sesbania granditiora	Fabaceae		Iree
213		Malvaceae	Common Wireweed, Palambasi	Herb
214	Sida corditolia	Malvaceae	Country Mallow, Kurunthotti	Herb
215	Sida rhombitolia	Malvaceae	Wild mallow, Jelly Leaf	Herb
216	Solanum nigrum	Solanaceae	Black-berry night	Herb
217	Solanum surattense	Solanaceae	Kandan kattiri	Herb
218	Solanum torvum	Solanaceae	Turkey berry, Sundaikkai	Shrub
219	Solanum trilobatum	Solanaceae	Thoodhuvalai	Shrub
220	Solanum virginianum	Solanaceae	Yellow fruit night shade	Herb
221	Sorghum bicolor	Poaceae	Fox tail millet, Maize	Herb
222	Syzygium cumini	Myrtaceae	Jamun, Navalpazham	Tree
223	Tabernaemontana coronaria	Apocynaceae	Nandiyarvattam	Shrub
224	Tamarindus indica	Fabaceae	Tamarind, Puliyamaram	Tree
225	Tectona grandis	Lamiaceae	Teak	Tree
226	Tephrosia purpurea	Fabaceae	Fish poison, Kollukkai Velai	Herb
227	Thespesia lampas	Malvaceae	Common Mallow, Kattupparuthi	Herb
228	Thespesia populnea	Malvaceae	Indian Tulip Tree, Poovarasu	Tree
229	Thevetia peruviana	Apocynaceae	Yellow Oleander, Arali	Tree
230	Tinospora cordifolia	Menispermacea	Guduchi, Shindilakodi	Climber
231	Tribulus terrestris	Zygophyllaceae	Puncture Vine, Nerunji	Herb
232	Tridax procumbens	Asteraceae	Tridax daisy, Vettukkaayapoondu	Herb
233	Typha angustifolia	Typhaceae	Narrow Leaf Cat tail reed	Herb
234	Vachellia leucophloea	Fabaceae	White bark Acacia/ Velvelam	Tree
235	Vachellia nilotica	Fabaceae	Balck bark Acacia/ Karuvelam	Tree
236	Vernonia cinerea	Asteraceae	Purple Fleabane, Mookuthipoondu	Herb
237	Vicoa indica	Asteraceae	Mukkuthipoo	Herb
238	Vinca rosea	Apocynaceae	Nithyakalyani	Herb
239	Vitex negundo	Lamiaceae	Nochi	Shrub
240	Xanthium strumarium	Asteraceae	Common Cocklebur, Marulumattai	Shrub
241	Ziziphus jujube	Rhamnaceae	Jujube, Elandhai	Tree
242	Ziziphus mauritiana	Rhamnaceae	Jujube/Ezhanthai	Tree
243	Ziziphus nummularia	Rhamnaceae	Jhar Beri, Narielandai	Shrub
244	Ziziphus oenoplia	Rhamnaceae	Jackal Jujube, Suraimullu	Shrub
			-	

SI. No.	Scientific Name	Family Name	Common Name	Habit
	·	Medicinal spec	ies	
1	Abrus precatorius	Fabaceae	Coral bead vine, Rosary pea,	Creeper
2	Achchyranthes aspera	Amaranthaceae	Prickly Chaff flower, Nayuruvi	Herb
3	Adathoda vasica	Acanthaceae	Vasaca, Adathodai	Shrub
4	Aegle marmelos	Rutaceae	Wood Apple, vilvam	Tree
5	Aloe vera	Liliaceae	Kathalai	Herb
6	Alternanthera sessilis	Amaranthaceae	Dwarf Copperleaf, Ponnanganni	Herb
7	Amaranthus viridis	Amaranthaceae	Kuppaikeerai	Herb
8	Asparagaus racemosus	Asparagaceae	Satawari, Tannir muttan	Herb
9	Azadirachta indica	Meliaceae	Neem, Vembu	Tree
10	Calotropis gigantea	Asclepiadaceae	Crown Flower, Erukku	Shrub
11	Cassia auriculata	Fabaceae	Tanners cassia, Avaram	Shrub
12	Cissus quadrangularis	Vitaceae	Devil's Backbone, Pirandai	Climber
13	Cynodon dactylon	Poaceae	Bermuda grass, Arugampul	Herb
14	Eclipta alba	Asteraceae	Bhringaraj, Karisalankanni	Herb
15	Enicostemma axillare	Gentianaceae	Vellarugu	Herb
16	Euphorbia hirta	Euphorbiaceae	Asthma weed, Ammam	Herb
17	Ficus benghalensis	Moraceae	Banyan, Alamaram	Tree
18	Heterostemma tanjorense	Asclepiadaceae	Palakeerai	Herb
19	Jatropha glandulifera	Euphorbiaceae	Kaatuamanakku	Shrub
20	Leucas aspera	Lamiaceae	Common Leucas, Thumbai	Herb
21	Ocimum sanctum	Lamiaceae	Holy Basil, Thulasi	Herb
22	Solanum surattense	Solanaceae	Yellow-berried Nightshade,	Herb
23	Solanum trilobatum	Solanaceae	Thoodhuvalai	Shrub
24	Tridax procumbens	Asteraceae	Tridax daisy,	Herb
25	Vitex negundo	Lamiaceae	Nochi	Shrub

The Plant species recorded are as follows :

Agricultural Crops	:	5 species
Commercial Crops including Vegetables	:	21 species
Plantations	:	6 species
Natural Vegetations	:	244 species
Medicinal Plants	:	25 species
Endangered Species	:	Nil
Endemic Species	:	Nil

The vegetation of the study area was found to be predominantly occupied by dry deciduous species. The recorded plant species are largely herbaceous and grass species with some climbers and Trees. Tree species planted in social forestry, tree plantation program and along road side were recorded. Direct observation showed that *Pongamia pinnata, Delonix elata, Tamarindus indica* and *Delonix regia* are the common plant species planted along the road side. The other tree species recorded were part of the social forestry and in the home gardens.

The **air pollutant resistant plant species** such as Ficus, Borassus, Eucalyptus, Bambusa, Zizyphus, Acacia, Prosopis, Jatropha and Sorghum were found to be without any setback in their growth and development. The moderately resistant plant species such as Tamarindus, Azadirachta indica and sugarcane have shown moderate growth.

The sensitive plant species such as Morinda, Ipomoea, Moringa have shown minimum numbers in their population. Thick population of herbs was formed due to the moderate rainfall. The emergence of herbs in vacant places indicates the formation of **plant diversity**.

Besides the natural vegetation, the agricultural and commercial crops were cultivated in and around the study area. Paddy, Sorghum, Black gram, Groundnut, etc. were found to be cultivated among the agricultural crops. Sugarcane, Cotton, etc. were commercially cultivated.

Plants of Economic Importance : Cultivated plants like cereals, vegetables, pulses, fruits, fodder, timber and wood provide valuable resources to mankind for agricultural implements. The plant species of economic importance observed in the study area are:

Cereals : Oryza sativa (rice), Zea mays (Maize).

Pulses : Phaseolus sp. (beans), Phaseolus mungo (green gram), Phaseolus radiates (Black gram).

Vegetables (leafy) : Hibiscus cannabinus (Pulicha keerai), Amaranthus viridis (math) **Vegetables (Fruit) :** Solanum melongena (Brinjal), Momordica charantia (Bitter gourd), Lycopersium esculentum (Tomato), Hibiscus esculentus (Ladies finger), Carica papaya (Pappali)

Fruits : Carica papaya (Papaya), Cucurbita sp., Cucumis melo (Pumpkin), Feronia elephantum (Wood apple), Tamarindus indicus (tamarind), Musa paradisiaca spp.(Banana), Cocos nucifera (Coconut), Citrus limon (Lemon), Anacardium occidentale (Cashew), Psidium gujava (Koyya), Mangifera indica (Mango)

3.9.2 Fauna

Both direct and indirect observation methods were used to survey the fauna. Visual Encounter (search) Method was employed to record vertebrate species. Additionally, survey of relevant literature was also done to consolidate the list of vertebrate fauna distributed in the area. Since birds may be considered as indicators for monitoring and understanding human impacts on ecological systems, attempt was made to gather quantitative data on the group.

The list of Fauna is given with reference to the **Wild Life (Protection) Amendment Act, 2022** by clearly indicating the type and short-listed as Schedule II or I and considered as endangered species. The details of fauna recorded are given in **Tables 3.33-3.34**.

SI. No.	Scientific Name	Family	Common Name		
	Mammals				
1.	Felis chaus	Felidae	Cat		
2.	Funambulus palmarum	Sciuridae	Squirrel		
3.	Herpestes auropunctatus	Herpestidae	Mongoose		
4.	Oryctolagus cuniculus	Leporidae	Rabbit		
5.	Paradoxurus henmaphroditurs	Viverridae	Civit		
6.	Ratturs rattus	Muridae	Rat		

Table : 3.33	List of Fauna	in the	Reserve	Forests
--------------	---------------	--------	---------	---------

SI. No.	Scientific Name	Family	Common Name		
	Reptiles				
1.	Bungaruscaeruleus	Elapidae	Krait		
2.	Calotesversicolor	Agamidae	Common garden lizard		
3.	Lygosomapunctata	Scincidae	Spottted supple skink		
4.	Ptyasmuscosa	Colubridae	Indian rat snake		
5.	Xenochrophispiscator	Colubridae	Checkered keel back		
	Bire	ds			
1.	Ardea alba	Ardeidae	Large egret		
2.	Ardeola grayli	Ardeidae	Pond heron		
3.	Athene brama	Strigidae	Owl		
4.	Bubulcus ibis	Ardeidae	Cattle egret		
5.	Corvus macrorhynchos	Corvidae	Jungle crow		
6.	Corvus splendens	Corvidae	House crow		
7.	Dicrurus macrocercus	Dicruridae	Black drongo		
8.	Egretta garzetta	Ardeidae	Little egret		
9.	Haliaeetus albicilla	Accipitridae	Eagle		

Table : 3.34 List of Fauna in the Study Area

SI No	Scientific Name	Common Name	WPA	IUCN
01. 110.			Schedule	Status
		Insects		
1	Myrmarachne plateloides	Ant mimicking jumping spider	Unlisted	С
2	Camponotus compressus	Black Ant	Unlisted	С
3	Heterometrus sp.	Black scorpion	Unlisted	С
4	Apis florea	Flower Bee	Unlisted	С
5	Aiolopus thalassinus tumulus	Green grass hopper	Unlisted	С
6	Asemonea sp.	Green leaf spider	Unlisted	С
7	Musca domestica	Housefly	Unlisted	С
8	Episyrphus sp.	Hoverfly	Unlisted	С
9	Apis cerana indica	Indian Honey Bee	Unlisted	С
10	Attacus selene	Indian Lunar Moth	Unlisted	С
11	Carrhotus viduus	Jumping spider	Unlisted	С
12	Hyllus semicuperus	Jumping spider	Unlisted	С
13	Cheilomenes sexmaculata	Ladybird Beetle	Unlisted	С
14	Trigoniulus sp.	Millipede	Unlisted	С
15	Aedes sp.	Mosquito	Unlisted	С
16	Culex sp.	Mosquito	Unlisted	С
17	Creobroter sp.	Praying mantis	Unlisted	С
18	Dysdercus sp.	Red Silk Cotton Bug	Unlisted	С
19	Argiope pulchella	Signature spider	Unlisted	С
20	Chrysilla sp.	Spider	Unlisted	С
21	Acrida exaltata	Toothpick grasshopper	Unlisted	С
22	Gryllodes sigillatus	Tropical house cricket	Unlisted	С
23	Hippasa sp.	Tunnel sheet spider	Unlisted	С
24	Limnogonus nitidus	Water Strider	Unlisted	С
25	Pardosa sp.	Wolf Spider	Unlisted	С
		Butterflies		
1	Papilio polymnestor Cramer	Blue Mormon	Unlisted	
2	Tirumala limniace Cramer	Blue Tiger	Unlisted	LC

	Common Nome	WPA	IUCN	
SI. NO.	Scientific Name		Schedule	Status
3	Appias albina Boisduval	Common Albatross	II	
4	Hasora chromus Cramer	Common Banded Awl	Unlisted	
5	Jamides celeno Cramer	Common Cerulean	Unlisted	
6	Euploea core Cramer	Common Crow	Unlisted	LC
7	Catopsilia pomona	Common Emigrant	Unlisted	
8	Melanitis leda	Common Evening Brown	Unlisted	LC
9	Eurema hecabe	Common Grass Yellow	Unlisted	
10	Cepora nerissa	Common Gull	Unlisted	
11	Graphium doson	Common Jay	Unlisted	
12	Delias eucharis	Common Jezebel	Unlisted	
13	Papilio polytes	Common Mormon	Unlisted	
14	Pachliopta aristolochiae	Common Rose		
15	Pachliopta hector	Crimson Rose	1	
16	Hypolimnas misippus	Danaid Eggfly	Unlisted	LC
17	Tirumala septentrionis	Dark Blue Tiger	Unlisted	LC
18	Freveria trochvlus	Grass Jewel	Unlisted	
19	Hypolimnas bolina	Great Egg fly	Unlisted	
20	Chilades laius	Lime Blue	Unlisted	
21	Papilio demoleus	Lime Butterfly	Unlisted	
22	Catopsilia pyranthe	Mottled Emigrant	Unlisted	
23	Anaphaeis aurota	Pioneer	Unlisted	
24	Danaus chrysippus	Plain Tiger	Unlisted	
25	Eurema brigitta	Small Grass Yellow	Unlisted	
26	Danaus genutia	Striped Tiger	Unlisted	
27	Graphium agamempon	Tailed Jay	Unlisted	
28	Zizula hylax	Tiny Grass Blue	Unlisted	
		Mammals	•••••••	
1	Randicota indica	Large (Greater) Bandicoot rat	Unlisted	
2	Bos indicus		Unlisted	
3	Bubalus bubalis	Buffalo	Unlisted	LC
4	Canis familiaris	Dog	Unlisted	LC
5	Capra hircus	Goat	Unlisted	LC
6	Cynopterus sphinx	Short-nosed Fruit Bat	Unlisted	LC
7	Funambulus palmarum	Three-striped Palm Squirrel	Unlisted	LC
8	Hemiechinus micropus	Indian Hedgehog		LC
9	Lepus nigricollis	Indian Hare, Black-naped Hare	II	LC
10	Mus booduga	Indian Field Mouse	Unlisted	LC
11	Mus musculus	House Mouse	Unlisted	
12	Ovis aries	Sneep Indian Binistrollo	Unlisted	
13	Pipistrelius coromanora		Uniisted	
15	Rattus norvegicus	Field mouse	Unlisted	
16	Rattus rattus	House (Roof, Black) Rat	Unlisted	LC
17	Sauria lacertidae	Lizard	Unlisted	LC
18	Sorex caerulescens	Common mush shrew	Unlisted	LC
19	Suncus murinus	House (Grey Musk) Shrew	Unlisted	LC
20	Vulpus benghalensis	Indian Fox	II	LC
Birds				

		Oo man Nomo	WPA	IUCN
SI. NO.	Scientific Name	Common Name	Schedule	Status
1	Alcedo atthis	Common kingfisher	II	R
2	Accipiter badius	Shikra	Unlisted	R
3	Acridotheres tristis	Common myna	II	R
4	Actitis hypoleucos	Common sandpiper	II	М
5	Aegithina tiphia	Common iora	II	R
6	Anas porcilorhyncha	Spot billed duck	Unlisted	R
7	Anas querquedula	Garganey	II	R
8	Anastomus oscitans	Asian openbill	II	R
9	Anhinga melanogaster	Oriental Darter	II	R
10	Ardea cinerea	Grey heron	II	R
11	Ardea purpurea	Purple heron	II	R
12	Ardeola grayii	Indian pond heron	II	R
13	Athene brama	Spotted owlet	Unlisted	R
14	Bubulcus ibis	Cattle egret	II	R
15	Centropus sinensis	Southern coucal	Unlisted	R
16	Ceryle rudis	Pied kingfisher	II	R
17	Charadrius dubius	Little ringed plover		М
18	Cinnyris asiaticus	Purple sunbird	II	R
19	Clamator jacobinus	Pied cuckoo	II	R
20	Columba livia	Rock pigeon	Unlisted	R
21	Corvus macrorhynchos	Large-billed crow	II	R
22	Corvus splendens	House crow	Unlisted	R
23	Cypsiurus balasiensis	Asian palm swift	II	R
24	Dendrocitta vagabunda	Rufous treepie	II	R
25	Dicrurus macrocercus	Black drongo	II	R
26	Egretta garzetta	Little egret	II	R
27	Eudynamys scolopacea	Asian koel	II	R
28	Fulica atra	Common coot	Unlisted	R
29	Gallinula chloropus	Common moorhen	II	R
30	Haliastur indus	Brahminy kite	Unlisted	R
31	Halycon smyrensis	White-throated kingfisher	II	R
32	Hierococcyx varius	Common hawk cuckoo	II	R
33	Himantopus himantopus	Black-winged stilt	II	R
34	Hirundo rustica	Barn swallow	II	R
35	Lanchura punctulata	Scaly-breasted munia	II	R
36	Leptocoma zeylonica	Purple-rumped sunbird		R
37	Mesophoyx intermedia	Intermediate egret	II	R
38	Milvus migrans	Black kite	II	R
39	Mycteria leucocephala	Painted storks	II	R
40	Oriolus oriolus	Eurasian golden oriole	II	М
41	Passer domesticus	House sparrow	II	R
42	Pelecanus philippensis	Spot-billed pelican	II	R
43	Phalacrocorax carbo	Great cormorant	II	R
44	Phalacrocorax niger	Little cormorant	II	R
45	Plegadis falcinellus	Glossy ibis	II	R
46	Porphyrio porphyrio	Purple swamphen	Unlisted	R

<u>.</u>				IUCN
SI. NO.		Common Name	Schedule	Status
47	Psittacula krameri	Rose-ringed parakeet	Unlisted	R
48	Streptopelia chinensis	Spotted dove	II	R
49	Streptopelia decaocto	Eurasian collared dove	II	R
50	Streptopelia senegalensis	Laughing dove	II	R
51	Threskiornis melanocephalus	Black-headed ibis	II	R
52	Turdoides affinis	Yellow-billed babbler	II	R
53	Tyto alba	Barn owl	Unlisted	R
54	Vanellus indicus	Red-wattled lapwing	II	R
55	Vanellus malarbaricus	Yellow-wattled lapwing	II	R
		Reptiles	•	
1	Ahaetulla nasuta	Common vine snake	II	LC
2	Amphiesma stolatum	Striped keelback	II	LC
3	Boiga trigonata	Common cat snake	II	LC
4	Bungarus caeruleus	Common Indian Krait	II	LC
5	Calotes versicolor	Indian garden lizard	Unlisted	LC
6	Coelognathus helena	Common trinket snake	II	LC
7	Dendrelaphis tristis	Common bronzeback	II	LC
8	Dryocalamus nympha	Bridal snake	II	LC
9	Echis carinatus	Indian saw scaled viper	II	LC
10	Eyrx conicus	Common Sand boa	II	LC
11	Gongylophis conicus	Rough tailed Sand boa, Pudaiyan	II	LC
12	Hemidactylus flaviviridis	House gecko	II	LC
13	Indotyphlops braminus	Brahminy worm snake	II	LC
14	Lissemys punctata	Indian mud turtle	II	LC
15	Lycodon aulicus	Common wolf snake	II	LC
16	Mabuya carinata	Brahminy Skink	II	LC
17	Oligodon arnensis	Common kukri snake	II	LC
18	Passerita mycterizaris	Common Green Snake	II	LC
19	Sitana ponticeriana	Pondichery Fan throated lizard	Unlisted	LC

Legend : C- Common, M- Migratory, R- Resident, T- Threatened

Endangered Species: Among the fauna recorded, most of them are common resident population and no Schedule-I or endangered species encountered in the study area.

Planktons : The aquatic ecosystems present in the study area of 10 km radius include lentic and lotic water body. To assess the planktonic profile of Phytoplankton and Zooplankton, water samples from 5 locations were collected at sub-surface level using standard methods and analyzed for plankton diversity in the study area. The analysis of Phyto and Zoo-plankton was carried out as per the procedures of APHA (**Table 3.35**).

The **Fish fauna** of the area includes Major carps like Catla, Rohu, Mirgal, Exotic carps like Silver carp, Grass carp, Minor carps, etc.

SI. No.	Scientific Name	Group Name	Species	s Populat	tion in id	entified S	Stations
1	Acartia tonsa	Copepods	2	-	-	-	5
2	Alona quadria	Cladocera	11	-	-	21	22
3	Branchionus	Rotifers	9	-	5	5	8
4	Ceriodaphnia cornuta	Cladocera	3	7	-	1	-
5	Cypris sp.	Ostrocoda	6	-	1	-	18
6	Flatworm larvae	Trematods	-	-	3	-	-
7	Freshwater shrimp larvae	Small crustaceans	-	5	11	-	-
8	Hookworm larvae	Nematods	8	4	2	29	-
9	Keratella tropica	Rotifers	2	2	4	10	3
10	Nauplius sp.	Copepods	1	-	-	7	22
11	Shrimp larvae	Crustaceans	20	-	-	-	-

Table : 3.35 List of Planktons

Aquatic weeds are found to be growing everywhere in 10 km radius study area, in every water body, pond, etc. (**Table 3.36**). Typha angustata is found growing all along the drains of villages, small water-logged depressions, and agricultural fields lacking water but containing enough moisture to support its growth. And where water is present, Eichhornia crassipes has taken its roots and covers the entire water surface by its sprawl and invasion.

Table : 3.36 List of Aquatic Plants

SI. No.	Scientific Name	Common Name	Туре
1	Cyperus articulates	Jointed flats edge	Emergent Hydrophytes
2	Eichhornia crassipes	Common water hyacinth	Free floating hydrophytes
3	Hydrilla verticillata	Hydrilla	Submerged hydrophytes
4	Ipomea aquatica	Water Morning Glory	Marshy amphibious hydrophytes
5	Pistia stratiotes	Water lettuce	Free floating hydrophytes
6	Typha angustifolia	Lesser Bulrush	Emergent hydrophytes

Shanon Weaver Index (SWI) : The SWI is a measure of diversity and it may be considered as an overall index of diversity as it concedes a true picture of the information theory. The species diversity of such a community may be computed by employing the SWI of diversity by applying the Index.

H = $-\Sigma n/N \log n/N$ Or H = $-\Sigma pi \log pi$

where,

n = Number of individual species

N = Total number of individual species

Pi = Importance value for each species n/N

SWI can be interpreted based on the SWI-H values obtained by computing the values of quantitative plankton analysis. Based on the H-values of SWI, the quality of water can be classified into the following three categories.

SWI-H values	Quality of Water
X>3	Clear
1 <x<3< th=""><th>Moderately polluted</th></x<3<>	Moderately polluted
X<1	Heavily Polluted

SWI-H values were calculated and the results indicate that the water bodies in the study area are moderately polluted (**Table 3.37**).

SI. No.	Water body	Usage	SWI – H Value	Quality of Water
1	Pond, Periyanagalur	Bathing, Washing & irrigation	3.185	Clear
2	Pond, Chinnanagalur	Irrigation, Bathing & washing	3.652	Clear
3	Pond, Kattupiringiyam	Bathing, Washing & irrigation	3.295	Clear
4	Pond, Nagamangalam	Bathing, Washing & irrigation	3.465	Clear
5	Pond, Pudupalayam	Irrigation, Bathing & washing	3.842	Clear

Table : 3.37 Diversity Index

The SWI – H values were calculated and the results show that the water quality is clear in all the identified locations.

3.10 Socio-economic Environment

Ariyalur District consists of two Revenue Divisions viz., Ariyalur and Udayarpalayam, four Taluks viz., Ariyalur, Udayarpalayam, Sendurai and Andimadam comprising of 195 Revenue Villages. The District has six blocks viz. Ariyalur, Thirumanur, Sendurai, Jayankondam, Andimadam and T.Palur comprising 201 Village Panchayats. There are two Municipalities viz. Ariyalur & Jayankondam and two Town Panchayats viz. Udayarpalayam & Varadharajanpettai. Salient features of Census Data (2001 & 2011) (Ariyalur District Statistical Hand Book 2019-20) are given in **Table 3.38**.

District Population by Religion is as follows :

Hindu	:	93.44%
Muslim	:	2.73%
Christian	:	3.76%
Not Stated	:	0.07%

Description	<u>Census-2001</u>	<u>Census-2011</u>
Population :		
Male	346763	374703
Female	348761	380191
Total	695524	754894
Urban	78985	94362
Rural	616539	660532
Density per sq. km	358	390.33
Literacy Rate		71.45%
Male	64.10%	81.2%
Female		61.7%
Sex Ratio	1006	1015
Juvenile Sex Ratio (JSR)	949	930

Table : 3.38 Population – Decennial Growth

Workers Population in the District along with comparison of State Data is appended.

				VEAR 20	19-2020
900	100 game 552920 0000000	Distri	District		Natio
SI. No. (1).	Industnal Category (2)	Penuoris (3)	% to total workers (4)	Persons (5)	% to total workers (6)
	Total Workers (Main)	272241	75.7	27942181	65.0
	u) - Cutivators	94912	26.4	3855375	11.7
$\mathfrak{t}:$	b) Agricultural Labourers	106252	29.5	7234101	22.0
	 Household Industry Manufacturing, Discussion, Research and Dennish 	10756	3.0	1170458	3,4
d) Other Workers	60321	15.0	15733347	47,8	
_	Marginal Workers	87610	24.3	4947500	15.0
	a. CultiviMors	12400	3543	393062	12
	b. Agricultural Labourers	60585	16.8	2872446	72
ş;	а. HHI	2808	0.8	245415	0.8
25	d. Others	11817.	338	1931537	:5.9
	Total Workers	369851	100	32984681	100
	Non Workers	365043	-	39262349	
	Total Population	754894	1996	72147030	

POPULATION BY BROAD INDUSTRIAL CATEGORIES OF WORKERS

The available Health Infrastructures in the District are :

No. of PHCs	39
No. of Sub-Centres	118
No. of Nursing Colleges	2 (Private)
No. of Taluk Hospitals	3
No. of Non-Taluk Hospitals	1
No. of Private Hospitals	32
No. of Private Clinics	29
No. of Blood Storage units	5
No. of Scan Centres	8 (Govt.) & 9 (Private)
No. of ICTCs	8

Periyanagalur Village Profile: Periyanagalur is a large village with total population of 3538 (1762 males & 1776 females) in 1041 Households. Average Sex Ratio was 1008 which is higher than Tamil Nadu State average of 996. Literacy Rate was 61.56%. In the total population, 1805 were engaged in work activities. 87.53% of workers were Main workers and 12.47% were involved in Marginal activity. Of 1805 workers engaged in Main Works, 756 were cultivators (owner or co-owner) while 331 were Agricultural labourers (**Table 3.39**).

Particulars	Total	Male	Female
Total No. of Houses	1,041	-	-
Population	3,538	1,762	1,776
Child (0-6)	330	191	139
Schedule Caste	692	347	345
Schedule Tribe	0	0	0
Literacy	61.56%	74.79%	48.87%
Total Workers	1,805	1,021	784
Main Workers	1,580	936	644
Main Workers Cultivators	756	452	304
Agriculture Labourer	331	123	208
Household Industries	62	33	29
Other Workers	431	328	103
Marginal Workers	225	85	140
Non Working Persons	1,733	741	992

Table : 3.39 Pe	riyanagalur	Village	Profile
-----------------	-------------	---------	---------

There are 29 Revenue villages including Ariyalur Town Panchayat (TP) in the study area of 10 km radius. The relevant socio-economic data such as demographic features including population distribution, literacy rate, occupational status, educational facilities, medical facilities, etc. are reported in **Tables 3.40-3.46**.

ei	SI. Name of the No. of		Population			Scheduled Castes			Scheduled Tribes			Literates			Illiterates		
No.	Village	House- holds	Total	Male	Female	Total	Male	Female	Total	Male	Female	Total	Male	Female	Total	Male	Female
1	Ammbappur	824	3159	1594	1565	1103	556	547	48	25	23	2060	1168	892	1099	426	673
2	Ammenabath	170	654	315	339	122	59	63	0	0	0	349	218	131	305	97	208
3	Anandavadi	1087	4262	2108	2154	1436	731	705	132	61	71	2461	1437	1024	1801	671	1130
4	Ariyalur (TP)	7319	28902	14349	14553	3254	1620	1634	8	5	3	21977	1156	10413	6925	278	4140
5	Edayathankudi	604	2191	1135	1056	109	52	57	81	43	38	1261	778	483	930	357	573
6	Govindapuram	1242	4996	2502	2494	1347	674	673	0	0	0	3260	1871	1389	1736	631	1105
7	Kadugur	866	3217	1627	1590	493	253	240	1	1	0	1893	1172	721	1324	455	869
8	Kallankurichi	1380	5385	2663	2722	1383	699	684	1	1	0	3392	1957	1435	1993	706	1287
9	Karuppur	1239	4773	2385	2388	1031	530	501	120	53	67	2680	1516	1164	2093	869	1224
10	Kavanur	841	3242	1634	1608	594	307	287	11	7	4	1790	1092	698	1452	542	910
11	Kayarlabath	1349	5215	2602	2613	881	451	430	5	3	2	3937	2128	1809	1278	474	804
12	Kilimangalam	818	2926	1481	1445	640	326	314	0	0	0	1777	1077	700	1149	404	745
13	Mallur	734	2956	1500	1456	956	493	463	0	0	0	1662	979	683	1294	521	773
14	Managethi	1042	3916	1998	1918	1209	604	605	74	37	37	2423	1427	996	1493	571	922
15	Nagamangalam	868	3360	1716	1644	1295	652	643	90	40	50	1878	1143	735	1482	573	909
16	Ottakoil	1210	4703	2344	2359	1769	899	870	0	0	0	2748	1640	1108	1955	704	1251
17	Papanacheri	400	1492	736	756	342	171	171	0	0	0	1036	592	444	456	144	312
18	Periyanagalur	1041	3538	1762	1776	692	347	345	0	0	0	1975	1175	800	1563	587	976
19	Periyathirukonam	718	2708	1320	1388	593	291	302	0	0	0	1639	963	676	1069	357	712
20	Pudupalayam	922	3535	1750	1785	1072	536	536	3	2	1	2009	1187	822	1526	563	963
21	Rayampuram	947	3718	1846	1872	1456	726	730	0	0	0	2095	1229	866	1623	617	1006
22	Reddipalayam	1125	4126	2095	2031	516	260	256	5	3	2	2457	1432	1025	1669	663	1006
23	Sennivanam	474	1870	932	938	1179	586	593	0	0	0	1257	711	546	613	221	392
24	Siruvalur	594	2155	1043	1112	453	230	223	0	0	0	1261	743	518	894	300	594
25	Thelur	1094	4215	2136	2079	794	400	394	4	3	1	2407	1423	984	1808	713	1095
26	Valaikurichi	571	2210	1144	1066	912	471	441	0	0	0	1623	886	737	587	258	329
27	Valajanagaram	1945	7355	3702	3653	1550	805	745	0	0	0	5078	2873	2205	2277	829	1448
28	Varanavasi	1091	4087	1947	2140	1412	651	761	0	0	0	2521	1359	1162	1566	588	978
29	Vilangudi	683	2635	1312	1323	1058	533	525	128	64	64	1526	860	666	1109	452	657
	Total	33198	127501	63678	63823	29651	14913	14738	711	348	363	82432	46600	35832	45069	17078	27991
	Percentage	-	-	49.9	50.1	23.3	11.7	11.6	0.6	0.3	0.3	64.6	36.5	28.1	35.4	13.4	22.0

L

 Table : 3.40
 Demographic Profile- 2011 Census

SI	Name of the	Total		Workers		Non-Workers			Main Workers				Marginal Workers				
No.	Census Village	Population	Total	Male	Female	Total	Male	Female	Cultivators	Agricultural Labourers	Household Industrial Workers	Other Workers	Cultivators	Agricultural Labourers	Household Industrial Workers	Other Workers	
1	Ammbappur	3159	1447	980	467	1712	614	1098	232	572	8	272	5	330	1	27	
2	Ammenabath	654	243	167	76	411	148	263	32	0	0	19	0	15	1	176	
3	Anandavadi	4262	1931	1130	801	2331	978	1353	712	648	31	201	30	212	12	85	
4	Ariyalur (TP)	28902	10283	7815	2468	18619	6534	12085	315	670	298	7165	159	175	150	1351	
5	Edayathankudi	2191	1321	698	623	870	437	433	656	419	19	154	5	61	0	7	
6	Govindapuram	4996	2399	1486	913	2597	1318	1581	600	843	28	712	26	79	10	101	
7	Kadugur	3217	1977	1018	959	1240	609	631	862	570	33	79	74	329	9	21	
8	Kallankurichi	5385	2335	1480	855	3050	1183	1867	649	500	71	713	25	274	9	94	
9	Karuppur	4773	2716	1518	1198	2057	867	1190	853	1337	54	179	29	247	3	14	
10	Kavanur	3242	1808	970	838	1434	664	770	1080	299	13	133	39	165	9	70	
11	Kayarlabath	5215	1878	1414	464	3337	1188	2149	238	351	34	1059	17	108	5	66	
12	Kilimangalam	2926	1451	850	601	1475	631	844	251	1041	7	124	3	22	0	3	
13	Mallur	2956	1500	910	590	1456	590	866	829	423	22	184	8	13	6	15	
14	Managethi	3916	2225	1296	929	1691	702	989	529	834	12	153	306	353	14	24	
15	Nagamangalam	3360	1629	984	645	1731	732	999	743	570	1	128	3	167	1	16	
16	Ottakoil	4703	2543	1396	1147	2160	948	1212	704	541	40	425	215	553	18	47	
17	Papanacheri	1492	936	467	469	556	269	287	339	363	3	94	16	67	6	48	
18	Periyanagalur	3538	1805	1021	784	1733	741	992	756	331	62	431	4	195	1	25	
19	Periyathirukona	2708	1565	820	745	1143	500	643	899	86	28	169	5	342	2	34	
20	Pudupalayam	3535	1691	1015	676	1844	735	1109	143	261	2	303	153	691	9	129	
21	Rayampuram	3718	1969	1073	896	1749	773	976	678	260	36	210	50	502	14	219	
22	Reddipalayam	4126	1946	1210	736	2180	885	1295	362	569	33	577	28	321	8	48	
23	Sennivanam	1870	1144	590	554	726	342	384	225	336	9	135	22	388	9	20	
24	Siruvalur	2155	1125	629	496	1030	414	616	440	273	5	160	4	229	1	13	
25	Thelur	4215	2077	1278	799	2138	858	1280	736	586	48	380	5	313	1	8	
26	Valaikurichi	2210	1247	749	498	963	395	568	457	431	17	129	8	50	10	145	
27	Valajanagaram	7355	3033	2017	1016	4322	1685	2637	528	475	44	1089	108	563	11	215	
28	Varanavasi	4087	1802	1117	685	2285	830	1455	287	1010	17	447	4	14	0	23	
29	Vilangudi	2635	1297	783	514	1338	829	809	258	616	17	349	0	24	1	32	
	Total	127501	59323	36881	22442	68178	26797	41381	15393	15215	992	16173	1351	6802	321	3076	
	Percentage	-	46.5	28.9	17.6	53.5	21.0	32.5	12.1	11.9	0.8	12.7	1.1	5.3	0.3	2.4	

Note : Others category includes Constructions, Trade & Commerce, Transport Storage & Communications, Other Services, etc.

SI.	Name of the	DDC*	DC*	MC*	66*	666 *	DC*	EC*	MC*	N/11*	рт*	VTe*	66D*
No.	Village	PP3	P3	NIS	33	555	DC	EC	MC	IVII	PI	V15	550
1	Ammbappur	1	1	1	1	1	С	С	С	С	С	С	С
2	Ammenabath	1	1	а	а	b	b	С	С	b	С	а	С
3	Anandavadi	1	1	1	1	1	с	с	с	с	с	b	С
4	Ariyalur (TP	1	1	1	1	1	1	С	С	С	1	1	С
5	Edayathankudi	1	1	1	а	а	С	с	С	С	с	С	С
6	Govindapuram	1	1	1	1	b	b	С	С	С	С	С	С
7	Kadugur	1	1	а	а	b	С	b	С	С	С	С	С
8	Kallankurichi	1	1	1	1	b	b	b	С	С	С	а	b
9	Karuppur	1	1	1	1	1	С	С	С	С	С	С	b
10	Kavanur	1	1	1	1	b	b	1	С	b	b	С	b
11	Kayarlabath	1	1	1	1	1	а	С	С	а	С	а	b
12	Kilimangalam	1	1	1	b	b	С	С	С	С	С	С	С
13	Mallur	1	1	а	b	b	b	с	с	b	С	b	С
14	Managethi	1	1	1	1	0	а	а	С	а	а	С	С
15	Nagamangalam	1	1	1	1	а	с	b	с	b	b	с	b
16	Ottakoil	1	1	b	1	b	b	с	с	с	с	a	с
17	Papanacheri	1	1	1	1	b	b	с	с	b	с	b	b
18	Periyanagalur	1	1	1	1	b	b	b	С	С	С	b	1
19	Periyathirukonam	1	1	1	1	1	С	с	С	с	С	С	С
20	Pudupalayam	1	1	1	b	b	b	С	С	b	С	b	а
21	Rayampuram	1	1	1	1	b	С	с	С	с	с	С	С
22	Reddipalayam	1	1	1	1	а	С	С	С	С	С	С	b
23	Sennivanam	1	1	1	а	а	С	с	С	с	с	b	С
24	Siruvalur	1	1	1	1	b	b	С	С	b	С	b	b
25	Thelur	1	1	1	а	С	С	b	С	b	b	С	а
26	Valaikurichi	1	1	1	b	b	С	С	С	С	С	С	С
27	Valajanagaram	1	1	1	а	а	a	С	С	а	а	1	С
28	Varanavasi	1	1	1	b	b	b	с	С	b	С	b	С
29	Vilangudi	1	1	1	1	b	b	а	С	b	b	С	b

Table : 3.42 Educational Facilities in the Study Area

PPS-Pre-Primary PS-Primary School MS-Middle School SS-Secondary SSS-Senior Secondary

DC-Degree College EC-Engineering College MC-Medical College MI-Management College /

PT-Polytechnic VTS-Vocational School/ITI SSD-Special School for *-Numbers a-Facility available at <5 b-Facility available at 5-10 c-Facility available at >10

SI. No.	Name of the Village	CHC*	PHC*	PHSC*	MCW*	TBC*	HA*	HAM*	D*	VH*	MHC*	FWC*	NGM-I/O*
1	Ammbappur	с	1	1	1	1	с	с	1	1	0	1	0
2	Ammenabath	а	а	а	b	b	b	b	а	b	0	а	0
3	Anandavadi	b	1	1	1	1	b	b	1	b	0	1	0
4	Ariyalur (TP)	1	1	1	1	1	1	1	1	1	0	1	1
5	Edayathankudi	b	b	а	b	b	С	С	b	b	0	b	0
6	Govindapuram	b	1	1	1	1	b	b	1	b	0	1	0
7	Kadugur	1	1	1	1	1	С	с	1	b	0	1	0
8	Kallankurichi	b	b	1	b	b	b	b	b	b	0	b	0
9	Karuppur (Senapathy)	С	1	1	1	1	с	с	1	1	0	1	0
10	Kavanur	b	b	1	b	b	С	С	b	b	0	b	0
11	Kayarlabath	b	b	1	а	а	а	а	b	а	0	b	1
12	Kilimangalam	b	b	b	b	b	С	С	b	b	0	b	0
13	Mallur	С	а	а	а	b	b	b	а	а	0	а	0
14	Managethi	С	a	1	1	b	С	с	а	b	0	а	0
15	Nagamangalam	С	b	1	b	b	С	С	b	b	0	b	0
16	Ottakoil	b	а	1	а	b	b	b	а	b	0	а	0
17	Papanacheri	С	b	а	b	b	b	b	b	b	0	b	0
18	Periyanagalur	b	b	1	1	b	b	b	b	1	0	b	0
19	Periyathirukonam	С	b	1	b	С	С	с	b	С	0	b	0
20	Pudupalayam	b	b	1	b	b	b	b	b	b	0	b	0
21	Rayampuram	b	b	1	b	С	С	С	b	b	0	b	1
22	Reddipalayam	С	а	1	а	С	С	с	а	b	0	а	0
23	Sennivanam	b	b	а	b	b	С	с	b	b	0	b	0
24	Siruvalur	С	b	а	b	b	b	b	b	b	0	b	0
25	Thelur	b	а	1	а	b	С	С	а	а	0	а	1
26	Valaikurichi	b	b	1	b	b	С	с	b	b	0	b	0
27	Valajanagaram	b	b	1	а	а	а	а	b	а	0	b	0
28	Varanavasi	С	b	1	b	b	b	b	b	b	0	b	0
29	Vilangudi	С	1	1	1	1	С	С	1	1	0	1	1

Table : 3.43 Medical Facilities in the Study Area

CHC-Community Health Cenre PHC-Primary Health Centre PHSC-Primary Health Sub Centre MCW- Maternity and Child Welfare Centre TBC-TB Clinic

HA-Aallopathic Hospital HAM- Alternative Medicine D-Dispensary VH-Veterinary Hospital

FWC-Family Welfare Centre

MH-Mobile Health Clinic NGM-I/O-Non Government Medical facilities In & Out

*-Numbers a-Facility available at <5 b-Facility available at 5-10 c-Facility available at >10 174

SI.	Name of the																	
No.	Village	PO*	SPO*	P&T*	T*	PCO*	MP*	IC*	PCF*	BS*	PBS*	RS*	NH*	SH*	MDR*	BTR*	GR	AWR*
1	Ammbappur	1	b	1	1	1	1	С	b	1	1	С	b	b	1	1	1	1
2	Ammenabath	b	1	b	1	1	1	b	b	1	1	b	b	b	b	1	1	1
3	Anandavadi	а	1	а	1	b	1	b	b	1	1	b	С	С	b	1	1	1
4	Ariyalur (TP)	1	1	1	1	1	1	1	1	1	1	1	С	1	1	1	1	1
5	Edayathankudi	С	1	С	1	1	1	b	С	1	1	С	b	С	С	1	1	1
6	Govindapuram	b	1	b	1	1	1	b	b	1	1	b	b	b	b	1	1	1
7	Kadugur	b	1	b	1	1	1	а	С	1	1	С	С	С	a	1	1	1
8	Kallankurichi	1	1	1	1	1	1	1	b	1	1	b	b	b	1	1	1	1
9	Karuppur	b	1	С	1	b	1	b	b	1	1	С	1	1	1	1	1	1
10	Kavanur	С	1	С	1	1	1	С	С	1	1	С	С	b	b	1	1	1
11	Kayarlabath	а	1	а	1	1	1	1	1	1	1	а	1	а	С	1	1	1
12	Kilimangalam	С	1	С	1	1	1	С	С	1	b	С	С	С	b	1	1	1
13	Mallur	b	1	b	1	1	1	b	b	1	а	b	а	а	а	1	1	1
14	Managethi	b	1	b	1	1	1	а	b	1	1	С	1	1	1	1	1	1
15	Nagamangala	b	1	b	1	1	1	С	С	1	1	С	а	1	1	1	1	1
16	Ottakoil	b	1	b	1	1	1	1	1	1	1	1	b	b	b	1	1	1
17	Papanacheri	b	а	b	1	1	1	b	b	1	1	b	а	а	а	1	1	1
18	Periyanagalur	b	1	b	1	1	1	b	b	1	1	b	а	1	1	1	1	1
19	Periyathirukona	С	1	b	1	1	1	b	b	1	1	С	С	а	а	1	1	1
20	Pudupalayam	b	а	b	1	2	1	b	b	1	1	b	b	1	1	1	1	1
21	Rayampuram	1	1	1	1	1	1	b	1	1	1	b	С	b	b	1	1	1
22	Reddipalayam	С	1	С	1	1	1	1	1	1	1	С	С	1	1	1	1	1
23	Sennivanam	а	1	а	1	1	1	b	а	1	1	b	С	С	b	1	1	1
24	Siruvalur	b	1	b	1	1	1	b	1	1	b	b	а	1	1	1	1	1
25	Thelur	С	1	С	1	1	1	С	С	1	1	С	С	1	1	1	1	1
26	Valaikurichi	b	1	b	1	1	1	b	b	1	b	С	С	b	1	1	1	1
27	Valajanagaram	а	1	а	1	1	1	1	1	1	1	а	1	1	1	1	1	1
28	Varanavasi	b	1	b	1	1	1	b	b	b	b	b	1	1	1	1	1	1
29	Vilangudi	С	1	С	1	1	1	С	С	1	1	С	С	1	1	1	1	1

Table : 3.44 Communication & Transport Facilities in the Study Area

PO-Post Office	PCO- Public Call Office/Mobile PCO)	BS-Public Bus Service	GR-Gravel (kuchha) Roads	*-Status	a-Facility available at <5 Kms
SPO-Sub Post Office	MP- Mobile Phone Coverage	PBS-Private Bus Service	AWR-All Weather Road	1-Available	b-Facility available at 5-10 Kms
P&T-Post/Telegraph Office	IC-Internet Cafes / Common Service Centre (CSC)	RS-Railway Station NH – National Highways	MDR – Major District Road BTR-Black Topped (Pucca) Roads	2-Not Available	c-Facility available at >10 Kms
T-Telephones (landlines)	PCF-Private Courier Facility	SH- State Highways			

Table : 3.45	Water & Drainage Facilities in the Study Area

SI.	Name of the Village	TP	cw	UCW	HP	TW/BH	S	R/C	T/P/L	CD	OD	СТ
NO.												
1	Ammbappur	1	1	1	1	2	2	2	1	1	2	1
2	Ammenabath	1	2	2	1	2	2	2	1	1	2	1
3	Anandavadi	1	2	1	1	2	2	2	1	1	1	1
4	Ariyalur (TP)	1	1	1	1	1	2	2	1	1	1	1
5	Edayathankudi	1	1	1	2	2	2	2	2	1	2	1
6	Govindapuram	1	1	2	1	1	2	2	1	1	1	1
7	Kadugur	1	2	2	1	2	2	2	1	1	2	1
8	Kallankurichi	2	2	1	1	1	2	2	1	1	1	2
9	Karuppur	1	2	1	1	1	1	2	1	1	2	1
10	Kavanur	1	1	1	1	1	2	1	1	1	1	1
11	Kayarlabath	1	1	1	1	2	2	2	1	1	1	1
12	Kilimangalam	1	1	2	1	1	2	1	1	1	2	1
13	Mallur	1	2	1	1	2	2	2	2	1	2	1
14	Managethi	1	2	1	1	2	2	2	1	1	1	1
15	Nagamangalam	1	2	2	1	2	2	2	1	1	1	1
16	Ottakoil	1	1	1	1	2	2	2	1	1	2	1
17	Papanacheri	1	2	2	1	2	2	2	1	1	1	1
18	Periyanagalur	1	1	1	1	2	2	1	1	1	1	1
19	Periyathirukonam	1	1	1	1	1	2	2	1	1	2	1
20	Pudupalayam	1	1	1	1	2	2	1	1	1	2	1
21	Rayampuram	1	2	1	1	2	2	1	1	1	1	1
22	Reddipalayam	1	1	1	1	2	2	2	1	1	1	1
23	Sennivanam	1	2	2	2	2	2	1	1	1	2	1
24	Siruvalur	1	2	1	1	1	2	2	2	1	2	1
25	Thelur	1	2	1	1	1	1	2	1	1	2	1
26	Valaikurichi	2	2	1	2	2	2	2	2	1	1	2
27	Valajanagaram	1	1	1	1	2	2	2	1	1	1	1
28	Varanavasi	1	2	1	1	2	2	2	1	1	2	1
29	Vilangudi	1	1	1	1	2	2	2	1	1	2	1

T-Tap Water CW-Covered Well UCW-Uncovered Well HP-Hand Pump TW/BH-Tube Well/Bore Well S-Spring R/C- River/Canal T/P/L-Tank/Pond/Lake CD-Covered Drainage*-SOD-Open Drainage1-/CT-Community Toilet Complex for General Public2-I

*-Status 1-Available

2-Not Available

SI. No.	Name of the Village	АТМ	СВ	СОВ	ACS	SHG	PDS	RM	AMS	NC	NC- AC	сс	SF	PL	NP	APS	BDRO	PS
1	Ammbappur	b	b	с	1	1	1	c	С	1	1	1	b	1	1	1	1	1
2	Ammenabath	b	b	b	a	1	1	b	b	1	1	b	b	b	1	1	a	1
3	Anandavadi	b	1	b	1	1	1	С	С	1	1	b	1	b	а	1	1	1
4	Ariyalur (TP)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	Edayathankudi	b	b	а	а	1	1	С	С	1	1	b	1	1	1	1	1	1
6	Govindapuram	b	b	b	1	1	1	b	b	1	1	1	1	b	1	1	1	1
7	Kadugur	С	С	а	а	1	1	С	С	1	1	С	1	1	1	1	1	1
8	Kallankurichi	b	b	b	b	1	1	b	b	1	1	1	1	а	1	1	1	1
9	Karuppur	b	b	1	1	1	1	С	С	1	1	b	b	1	1	1	1	1
10	Kavanur	b	b	С	b	1	1	С	С	1	1	b	1	1	1	1	1	1
11	Kayarlabath	а	а	а	b	1	1	а	a	1	1	1	1	1	1	1	1	1
12	Kilimangalam	С	b	а	b	1	1	С	С	1	1	1	1	1	1	1	1	1
13	Mallur	b	b	b	b	1	1	b	b	1	1	1	а	а	1	1	1	1
14	Managethi	b	а	а	b	1	1	С	С	1	1	1	1	1	1	1	1	1
15	Nagamangalam	а	а	b	b	1	1	С	С	1	1	1	1	а	1	1	1	1
16	Ottakoil	b	b	b	b	1	1	b	b	1	1	1	1	b	1	1	1	1
17	Papanacheri	b	b	b	а	1	1	b	b	1	1	а	1	1	1	1	1	1
18	Periyanagalur	b	b	b	1	1	1	b	b	1	1	а	b	b	1	1	1	1
19	Periyathirukonam	b	С	1	1	1	1	С	С	1	1	b	b	1	1	1	1	1
20	Pudupalayam	b	b	1	1	1	1	b	b	1	1	b	а	а	1	1	1	1
21	Rayampuram	b	b	b	1	1	1	С	С	1	1	1	1	1	1	1	1	1
22	Reddipalayam	1	1	1	b	1	1	С	С	1	1	а	а	1	1	1	1	1
23	Sennivanam	b	b	b	а	1	1	С	С	1	1	а	а	а	1	1	1	1
24	Siruvalur	b	b	а	a	1	1	b	b	1	1	а	1	1	1	1	1	1
25	Thelur	а	С	С	а	1	1	С	С	1	1	b	а	а	1	1	1	1
26	Valaikurichi	b	b	b	b	1	1	b	С	1	1	b	b	b	1	1	1	1
27	Valajanagaram	а	а	а	b	1	1	а	а	1	1	1	1	1	1	1	1	1
28	Varanavasi	b	b	1	b	1	1	b	b	1	1	1	b	b	1	1	1	1
29	Vilangudi	а	а	С	1	1	1	С	С	1	1	а	1	1	1	1	1	1

Table : 3.46 Other Facilities in the Study Area

CB-Commercial Bank	PDS-Public Distribution System (Shop)	NC-AC-Nutritional Centres- Anganwadi Centre
COB-Co-operative Bank	RM-Regular Market	CC-Community Centre with/without TV
ACS-Agricultural Credit Societies	AMS-Agricultural Marketing Society	SF-Sports Field
SHG-Self Help Group	NC-Nutritional Centres-ICDS	PL-Public Library

APS-Assembly Polling Station BDRO-Birth and Death Registration Office

NP-Daily Newspaper Supply

PS-Power Supply

1-Available 2-Not Available

*-Status

ATM-Automatic Teller Machine

a-Facility available at <5 Kms

b-Facility available at 5-10 Kms

c-Facility available at >10 Kms

Population : In the study area of 10 km radius, there are 1,27,501 persons (63,678 males-49.9% and 63,823 females-50.1%) in 33198 Households (HHs) in the 28 villages and 1 Town Panchayat. As far as the population of Scheduled Castes and Scheduled Tribes are concerned, there were 29,651 (23.3%) Scheduled Castes Population and 711(0.6%) Scheduled Tribes. In the total population, the Literate population was 82,432 (64.7%) whereas the illiterate population was 45,069 (35.3)%.

Occupational Structure : According to the 2011 census, Total Workers in the total population were about 59,323 (46.5%). About 68,178 (53.5%) persons were non-workers. About 16.2% of the people were engaged in tertiary activities which included different services. The workers in the primary activities (Cultivators) and the secondary activities (Agricultural Labourers) were 13.2% and 17.2% respectively.

Educational, Medical & Infrastructural Facilities: Common diseases were only reported. Primary and Middle Schools are available in almost all villages whereas Senior secondary schools, are available in some of the villages. However, college education is available only at Ariyalur, Thathanur, Jayamkondam, etc. Almost all villages are having one or more Women Self Help Groups through which the people earn various sources of livelihood and are financially secured. There are community based organizations in some of the villages.

Public Health : Local people are frequently suffering from fever, diarrhea, etc. and no occupational related disease recorded. Primary Health Centres Maternity & Child Welfare Centre are available only in some of the villages. For major ailments villagers have to go to Ariyalur, Perambalur, Thanjavur and Trichy.

Other infrastructural Facilities : Drinking water facilities are available almost in all villages in the study area. Wells and hand pumps are the major source of drinking water. Villagers depend upon both rain water and also irrigation tanks for the agriculture needs. Public water supply and Power supply are available in most of the villages.

There are good approach roads in the form of panchayat roads and State Highways passing through the study area and bus transportation is there to almost all villages. The villages situated on the main road have marketing facilities for their day to day requirements and for major purchases they go to Ariyalur, Perambalur, Thanjavur and Trichy. Post and Telecommunications facilities are available in all villages. All the villages in the study area have the basic medical facilities, transport, phone connection, post and telegraph, Banking services and market facilities.

Need Based Assessment : Based on the details collected by Household Survey, the following assessments are made. In general, there have been the following demands/expectations from the public:

- Job opportunities.
- Training of local youths for suitable jobs.
- Training in computer typing, driving heavy vehicles, etc.

- Employment for older people and unskilled persons in gardening, cleaning, etc.
- Facilities like ambulance, health care, educational, community centres, etc.

Perception of the Project : Almost all villagers are aware about the Ramco Cement Plant & its Captive Mines in the region and supporting the Proposal.

3.11 Summary of Baseline Status

The copies of Laboratory Test Report (Extracts) are given as Document-5.

The findings of baseline environmental status of the study area are summarized below :

- The collected meteorological data during this season represented the local weather phenomena.
- The monitored ambient air quality in the study area was found to be in compliance with the Revised National Ambient Air Quality (NAAQ) 24-hourly Norms for Industrial, Residential, Rural and other areas.
- Ambient equivalent noise levels (Leq) during day and night times were found to be well within the MoEF&CC Norms.
- The water quality of surface waters was found to be in compliance with CPCB Norms.
- The ground water quality was found to be in compliance with the IS:10500-2012 Norms.
- The soil in the study area would very well support vegetation after amending it suitably.
- There is no eco sensitive area exists in the study area and only domesticated animals exist.
- The area is thinly populated and basic amenities are available almost in all villages.

Thus, there is **adequate buffer** for the proposed Project in the physical, biological and edaphic environments of the study area.

4.0 Anticipated Environmental Impact and Mitigation Measures

4.1 Identification of Impacts

Environmental Impacts are categorized as Primary and Secondary Impacts. **Primary Impacts** are those which are attributed directly to the project and **Secondary Impacts** are those which are indirectly induced by the Project. Any Project would create impact on the environment in two distinct phases viz. Construction Phase which may be regarded as temporary & short term and Operation Phase which would have long term effects. Identification of all potential environmental impacts due to the Proposal are critically examined and major impacts (both **Beneficial & Adverse**) are studied.

4.2 Construction Phase

Being an existing Mines with all required infrastructures, it **does not involve any major establishment or construction**. Thus, Construction Phase Impacts are not there for Impact Assessment and Environmental Management Plan (EMP).

4.3 Impacts during Operation Phase

The impacts have been divided into two categories, viz. Localised and Cumulative. Localised Impact is confined to the area of influence of the Project and is not transmitted beyond its area. On the other hand, Cumulative Impact is aggregate impact of a number of projects on any component. Cumulative impacts can result from individually minor but collectively significant over a period of time. There are Cement Plants and Limestone Mines in the Study Area. However, following industrial activities are considered for Cumulative Impact Assessment for assessing their contribution (Table 4.1). Cumulative Impact has been assessed for the identified Industries and assumed that the pollution due to other existing Industrial & Mining activities have already been covered under baseline environmental status and continue to remain same till the operation of the project. The following activities related to the Operational Phase of the Project are considered for the impact assessment :

- Safeguard to State Highway Traffic.
- Safeguard to nearby Habitations.
- Slope Stability.
- Blasting & Vibration.
- Land Environment.
- Traffic Volume.
- Water Environment Hydrogeological Impact.
- ✤ Air Quality.
- Noise Levels.
- Biological Environment.
- Socio-economics.
| SI.
No. | Industry / Mine | Extent &
Consented Production | Bearing & Contribution during
Study Period |
|------------|---|--|--|
| 1 | Ramco Amalgamated Mining Lease | 53.320 Ha
(3.00 MTPA) | Study Lease |
| 2 | UltraTech Periyanagalur
Limestone Mine (ML5) | 4.985 Ha
(0.15 MTPA) | Adjacent Lease in Upwind side & not in operation. |
| 3 | Dalmia Periyanagalur & AK
Limestone Mines | 167.605 Ha
(1.9 MTPA) | Adjacent Lease in operation.
Downwind side & not
contributing other than Traffic
Volume |
| 4 | TANCEM Periyanagalur & Khairulabad, Mines | 194.165 Ha
66.110 Ha | Adjacent Lease; Not in operation. Downwind side & not contributing |
| 5 | TANCEM Kallankurichi Mine | 240.610 Ha
(expansion 0.2 to 0.7
MTPA) | Downwind side & not
contributing |
| 6 | Ultratech Cement Plant,
Reddipalayam | 1.6 MTPA | Plant located near the Lease & not contributing other than Traffic Volume |

Table : 4.1	Industrial Activities	considered for	Cumulative	Impact
-------------	-----------------------	----------------	------------	--------

4.3.1 Safeguard to State Highway Traffic

State Highway (SH)-139 (Ariyalur-V.Kaikatti-Jayamkondam Section) is passing in east-west direction in southern boundary of the PNR-West Mine (Lease-II) and a Safety Distance of 50 m has already been provided as per GO, approved Mining Plan & Tamil Nadu Mineral Concession Rules 1959.

SEIAA-TN has requested to leave a safety distance of 150 m in the tail end of Lease-II (**Plate-XI**). Leaving 150 m of Lease Area from SH <u>will block about 2.40 Million Tonnes</u> of Limestone Reserves which will reduce about 20% of Mineable Reserves based on this Expansion is proposed. Also, it reduces the Royalty amount of <u>Rs.19.20 Crores</u> to the State exchequer. There are Limestone Mines being operated adjacent to the Highways & other MDRs in Ariyalur Region. With National Mineral Policy norms in place, the Ministry of Mines & IBM will not mandate the wasting of mineral resources beyond the statutory requirements.

RCL has entrusted the **Department of Mining Engineering**, **Anna University** to carry out a detailed Study on the safety aspect of Vehicular Traffic in SH-139 w.r.t mining in Lease-II and propose the suitable mitigating measures. The Team of Experts visited the Mines in Aug. 2023 and submitted the Report in October 2023 which is appended as **Document-6**.

The findings and recommendations of Anna University Study are :

- It is observed that the State Highway-139 road exists in the southern side of the mine. The road is measuring 15 m including the trench and shoulder. From road, trench and shoulder, the distance of boundary pillar 31 & 34, at 7 m in the southwest side and 6 m in the southwest side of the mine respectively. ECL has provided a safety barrier distance at 50 m from the SH in the western side. So, it is concluded that as per the MCR guidelines, 50 m safety distance with including the trench and shoulder from the SH road is more than sufficient for the safe working condition.
- It is observed that safety barrier distance at 50 m in the east side of the mine from the SH-139 roadway.
- Wire fencing is established in the south side of the mine from the SH-139 roadway at the distance of 5 m from the lease boundary Pillar No. 33.
- It is observed that the safety bund of about 2.5 m height is maintained in the southern side of the proposed mine from the SH-139 road in the lease boundary area.
- It is observed that trench is established in the south and east side of the mine which could damp the dynamic wave propagation from the mining operations.

Proposed EMP Measures : The following Safety/Preventive measures will be implemented :

- ✓ In addition to 50 m Green Belt developed in the safety barrier, a Galvanium sheet fencing will be erected for 150 m length & 3 m height along SH-139 at a cost of Rs.13.80 Lakhs.
- ✓ With the help of State Highway department, safety measures like cautionary signals, speed brakers, sign boards, etc. will be installed and monitored.
- ✓ The existing OB Dumps are being handled for backfilling and the tail end of Lease-II western parts will be backfilled upto 150 m and reclaimed at the end.

4.3.2 Safeguard to nearby Habitations due to Mining

RCL had engaged **NITK**, **Surathkal**, a **Govt. of India Institute**, for Study out the scientific investigation on "Blasting Parameters & Design of Safe Bench Geometry and Evaluation of Slope Stability of existing benches and also the proposed working benches for ensuring safety of men and machinery deployed in the Lease. The updated Report is annexed as **Document-7**.

There are houses existing in nearby Kattupringiyam Ayyanagar and Chinna Nagalur Villages at a minimum distance of about 175 m from the Mine. The houses are made up of mud with proper cement lining on the outer walls, completely mud construction with a hut type structure, mud construction with cement sheets and tiled house with mud walls. The **scientific study was taken up to assess the effect of mining & blasting operations in PNR Mines** on these habitations by studying 10 production scale blasts. Blastholes of 110 mm diameter with depth of blastholes varying from 5 m to 10 m were used for the studies. Number of blastholes per blast round varied from 10 to 25, covering different locations representing the entire mines. Slurry explosives available in the form of 83 mm diameter cartridges were used as primer and column charges. Shock tube system of initiation was used for achieving delay in blast rounds. Explosive charge per hole was varying from 16.02 kg to 40.03 kg. Total explosive charge per blast round varied from 225.18 kg to 800.64 kg in the studies. Initiation was done by Exel Dueldet system, which includes both down-the-hole and surface initiations, along with D-Cord. Four (4) Microprocessor based Blast Vibration Monitors, Minimate Plus, Instantel, Canada were used for the monitoring. Summary of ground vibrations recorded from all the blasts studied are given in **Table 4.2**.

Blast	No. of	Explosive Charge/Hole	Total Explosive/Blast	Distance	PPV
No.	Holes	(kg)	(kg)	(m)	(mm/s)
1	20	40.03	800.64	80	24.30
				94	16.80
				107	10.80
				120	9.40
2	21	27.40	575.46	155	4.44
				166	2.67
				177	2.29
				188	1.65
3	23	29.37	675.54	56	25.90
				122	8.00
				133	7.49
				144	7.24
4	20	22.52	450.36	300	2.29
				325	1.52
				335	0.76
				350	0.76
5	18	33.36	600.48	350	1.14
				360	0.89
				370	<0.51
				380	<0.51
6	13	19.25	250.2	250	1.78
				275	1.78
				285	1.27
				335	<0.51
7	24	25.02	600.48	140	3.81
				150	3.68
				160	3.43
				1/5	2.16
8	16	25.02	400.32	193	2.54
				230	1.52
				235	1.14
	10	00.50	005.10	306	0.76
9	10	22.52	225.18	216	1.2/
				254	0.89
				260	0.76
- 10		10.00	100.00	330	0.51
10	25	16.02	400.32	250	1.52
				253	2.16
				304	1.65
				310	1.52

 Table : 4.2 Ground Vibrations Recorded during different Blastings

The findings are :

- In general, the PPV levels reduced considerably from 100 m distance onwards from the blast site.
- The PPVs recorded from 5 blasts at structures of Kattupringiyam Ayyanagar and Chinna Nagalur villages are lesser than the suggested limits.
- Shock tube system of initiation was effective in containing the Fly Rock to a maximum distance of 30 m from blast site.
- Studies with given blast configurations having 10 to 25 holes of 5 m to 10 m average depth and each blasthole charged with 16.02 kg – 40.03 kg of explosive, indicated that there is no effect of ground vibrations and fly rock caused due to blasting operations carried out in the Mine, on the stability of village structures vis-à-vis the present distances.

The following Safety measures are be implemented :

- ✓ When the mine benches approach the village structures to about 100 m, the depth of blastholes should be restricted to 6 m.
- ✓ The blasthole should have two explosive decks, each being detonated separately, with different delays, i.e., implementation of down-the-hole delay system.
- ✓ The explosive charge per delay should be a maximum of 11kg.
- ✓ In case the MCD has to be increased beyond this, techniques like pre-splitting or line drilling are to be used.
- ✓ Periphery of the mine closer to villages may be line drilled, to arrest the propagation of ground vibrations. Depth of hole should be 5 m more than the depth of pit.
- ✓ Following recommendations are made based on the studies carried out, in order to improve the blasting operations further:
- Number of rows in blast round may be restricted to a maximum of two (2), when the distance between the mine and the villages is ≤ 150m.
- The maximum number of blastholes per round may be restricted to a maximum of 25.
- Burden x Spacing pattern of 3.5 m x 5 m may be used.
- Blastholes may be drilled vertically, as this would ensure equal burden along the entire bench and also will reduce unnecessary movement / throw of material, minimizing the fly rock.
- Sequential blasting with shock tube system should be continued.
- While blasting from distances of ≤ 100m from village structures, Depth of blastholes should be a maximum of 6 m. Double Decking of explosive column should be done, with each deck detonated at different timings like 450ms and 500ms or similar as per availability of downthe-hole delays. A maximum of 11kg per delay should be used for protecting the structures from ground vibrations.

For normal conditions, the Blasting parameters suggested are given in Table 4.3.

Blasthole Diameter	110 mm
Bench Height	5-8 m
Depth of blastholes	5-8 m (Maximum)
No. of Blastholes / Round	25 (Maximum)
No. of Rows	2 (Maximum)
Burden	3.5m
Spacing	5m
Pattern of Holes	Staggered
Initiation	Shock tube system
Explosive Charge / Hole	30 kg (Maximum)
Type of Explosive	Slurry explosives
Maximum Charge / Delay	40 kg (Maximum)
Total Charge / Blast	1000 kg (Maximum)

Table : 4.3	Recommended	Blasting	Parameters
-------------	-------------	----------	-------------------

Proposed EMP Measures : The following Safety/Preventive measures will be implemented :

- ✓ There is a level difference of 6-25 m between the Mine and the Habitations. All these houses may be assigned with a PPV of 2 mm/s due to their condition as per DGMS Standards. The public road passing through the Lease and other village structures may be assigned a PPV of 25 mm/s during Blastings.
- ✓ Blasting operations in the Periyanagalur Limestone Mine should, therefore, be carried out in such a way that the ground vibrations at different structures are always maintained below the assigned permissible PPV values. Fly rock should be controlled to within mine limits, without causing any problems to the structures around and the villagers.

4.3.3 Scientific Study on Slope Stability

This is an existing Mines of RCL in operation since 2005 onwards with proper benches in compliance with approved Mining Plans/Schemes. **NITK**, **Surathkal** carried out the Study on '**Slope Stability**' for the Mine and updated Report is annexed as **Document-8**. The stability analysis and determination of '**Factor of Safety (FOS)**' in the present investigation was carried out using Limit Equilibrium Method. For this purpose, GALENA software available in the Department of Mining Engineering was used. To analyze the "Stress Distribution" within the rock mass, Finite Element Modeling was carried out using ANSYS software.

The factor of safety for planned pit configuration (ideal and special conditions) is determined using GALENA software whereas ANSYS results show the distribution of stress in the slopes. Factor of safety higher than 1.3 shows the safe working conditions regarding stability of slopes.

ANSYS results confirm that the distribution of stress in the slopes is not critical, but requires regular monitoring at the toes of benches.

The results of FOS along Section ML-4 and Section ML-5 (except for 3 m width and 6 m height) of the pit for planned pit configurations are more than 1.3 which is the minimum recommended value required for stability of rock slopes. The FOS of slopes ignoring the lowest bench have been given for Cases I, II & III. This indicates that if the height of the lowest bench can be increased by adjusting with second lowest bench, the FOS for overall slopes can be increased above 1.3. This is because of the smaller bench height of the lowest bench which causes the tension crack angle for overall slope to decrease, thus increasing the sliding mass.

Proposed EMP Measures : The following Safety measures will be implemented :

- ✓ The pit should be provided with garland drain/ bund / barrier on the upper surface of pit to divert the run-off of rainwater away. It should be kept effective during the monsoon.
- ✓ The open tension cracks should be filled with permeable material. This filled material should be consolidated by dozer. At the top, any impermeable material has to be spread.

4.3.4 Land Environment

Anticipated Impacts : Industrial/Mining activities are being carried out in an extent of 766.965 Ha in the Impact Zone. There is no additional Land requirement for the Proposal. There is Drilling & Blasting proposed and thus, vibration impact due to mining will be there. Also, as the entire Top Soil & OB Dumps will be rehandled for Backfilling & Reclamation of mined out voids, there will be no Dump in the Lease. Area of excavation at the end of the life of the mine will be 39.17 Ha, out of which about 14.00 Ha will be Backfilled & Reclaimed and balance 25.17 Ha will be left out as water reservoir for recharging the ground water table in the vicinity.

Mitigating Measures :-

- No Blastings shall be carried out during night times and overcast conditions.
- Vibration Studies/Monitoring has to be carried out whenever Blastings are carried out.
- Vibration Parameters viz. Peak Particle Velocity (PPV) and Noise Levels during Blastings shall comply with DGMS Norms for Residential Areas.
- Earthen bunds & Garland drains are to be maintained around the Lease.
- Green Belt has to be developed and maintained along Lease boundary and Safety Barriers.
- No. of trees planted shall be numbered and referenced for review.
- The mined out Pits shall be converted into a Water Reservoirs to harvest Rain Water and to recharge the Ground Water-table in the vicinity.
- Backfilled area has to be reclaimed and afforested.
- Insitu bioremediation using natural microorganisms shall be carried out.

4.3.5 Traffic Impact

Anticipated Impacts: Limestone Transportation of Ramco Mines, TANCEM Mines and partly Dalmia Mines (meant for Ariyalur Plant) is through SH-139 towards Ariyalur Bypass (in western part). The traffic volume due to other Mines in the vicinity is covered in the Baseline Status. For assessing the baseline status, the Traffic Survey based on Indian Road Congress-IRC: 64/106 Norms were carried out at NH81-Underpass Road Junction on a week day (24.01.2024; Wednesday) and week end (28.01.2024; Sunday).

The existing traffic volume in the Project vicinity was found to be **5,445.1 Passenger Car Units** (PCUs)/day (Table 4.4). In the Post-Project Scenario, there will be an addition of 468 Vehicle (in 2 ways) due to the Project. Cumulatively, the traffic volume in the Project vicinity will be 6,410.7 PCU/day. The net increase (cumulative) will be 965.6 PCU/day (Table 4.5). The existing Roads/SH are adequate to handle the proposed traffic volume due to the Project.

Level of Service (LOS) : Capacity Standards of Roads are fixed in relation with the LOS which is commonly designated from 'A' (best operating condition) to 'F' (forced or breakdown flow). Normally LOS-C will be adopted for smooth traffic flow in Urban/Rural Areas (**Table 4.6**. At this Level, traffic volume will be 0.7 times of the maximum capacity. Capacity/Design Service Volume is the maximum hourly volume at which a vehicle can be expected to transfer a point/section of a road at a given time period. Ratio of existing Volume of PCU on road (V) and its Capacity (C) with corresponding LOS and their performance is given in **Table 4.7**.

	NH-81 Under Pass & SH 139 Road Junction						
	No	. of Vehicles/day					
Type of Vehicle	Week Day (24.01.2024; Wednesday)	Week End (28.01.2024; Sunday)	Avg. Traffic	PCU Factor	PCU/day		
2-wheelers	664	552	648.0	0.5	324.0		
Autos	58	66	59.1	1.2	71.0		
Vans/Tempos	74	57	71.6	1.4	100.2		
Cars	358	382	361.4	1	361.4		
Buses	168	112	160.0	2.2	352.0		
Trucks	2102	664	1896.6	2.2	4172.5		
Trailers	18	4	16.0	4.0	64.0		
Total	3442	1837	3212.7	-	5445.1		

 Table : 4.4
 Existing Traffic Volume - Baseline Status

Turne of	NH-81 Under Pass & SH 139 Road Junction		Cumulative	PCU	Cumulative
Vehicle	Avg. Traffic, Nos./day	Projected due to Mines, Nos./day	due to Mines, Nos./day	Factor as per IRC	due to Mines, PCU/day
2-wheelers	648.0	0	648.0	0.5	324.0
Autos	59.1	0	59.1	1.2	71.0
Vans/Tempos	71.6	0	71.6	1.4	100.2
Cars	361.4	0	361.4	1.0	361.4
Buses	160.0	0	160.0	2.2	352.0
Trucks	1896.6	468	2364.6	2.2	5202.1
Trailers	16.0	0	16.0	4.0	324.0
Total	3212.7	468	3678.7	-	6410.7

Table : 4.5 Projected Traffic Volume – Operation Phase

Table : 4.6 Level of Service & Performance of a Road (IRC:64-1990 Norms)

Volume/Capacity Ratio	Level of Service	Performance of the Road
0-0.2	A	Excellent
0.2-0.4	В	Very Good
0.4-0.6	С	Good/Average/Fair
0.6-0.8	D	Poor
0.8-1.0	E	Very Poor

Table : 4.7 Predicted Traffic Scenario at the Junction

Road	Volume, PCU/hr.	Capacity of the Road, PCU/hr.	V/C Ratio	Level of Service	Performance of the Road
Existing:-					
NH-81 Underpass	226.9	3600	0.06	A	Excellent
Proposed :-					
NH-81 Underpass	267.1	3600	0.07	А	Excellent

Thus, there will not be any impact on the existing baseline traffic volume due to the Proposal. Adequate parking area is provided in the Mine Area. Facilities for **drivers (rest room, toilet, etc.)** are also provided.

Mitigating Measures : The following Mitigating Measures are to be followed/adopted to mitigate the impacts due to Transportation of Ore from the Mine to the Cement Plant :

Compliance to 'Pollution under Control' Certification has to be ensured for the Tippers.

- Tippers are to be fully covered with Tarpaulin to avoid any spillage on transportation.
- No overloading of Tippers is allowed strictly.
- ✤ A strict Speed Limit of 30 km/hr. has to be enforced and monitored continuously.
- Regular wetting of haul roads has to be undertaken to arrest the fugitive emissions.
- Restriction of Truck parking in the Public Road has to be implemented.
- Regular and preventive maintenance of transport vehicles has to be ensured.
- Effective Green Belt with thick foliage has to be maintained along the haul roads.
- Security Guards are to be placed at the Public Road-Mine Haulage Road Junction to handle the inward and outward vehicles.

4.3.6 Carbon Emission & Climate Change

Greenhouse gases include carbon dioxide, methane, nitrous oxides, and water vapour. The proposed quarrying and transporting activities will utilise about 4,000 Litres HSD/year. By considering the Transport Emission Factors for Medium & Heavy Duty Trucks viz. 0.997 kg CO_2/km , 0.012 g CH₄/km and 0.008 g N₂O/km [as per US EPA 2014 emission factors for Green House Gases (GHGs) Inventories], the gaseous emissions will be as follows :

HSD consumption	:	4,000 LPA
Total CO ₂ Emissions	:	0.012 Tons/Annum
CO _{2-e} for CH ₄ Emissions	:	0.004 Tons/Annum
CO _{2-e} for N2O Emissions	:	0.029 Tons/Annum.

Thus, total CO₂ Emission due to the Proposal will be 0.045 Tons/Annum.

Mitigating Measures : -

Carbon sequestration is the long-term storage of carbon in oceans, soils, vegetation (especially forests) and geologic formations. Adequate Green Belt shall be developed around the project for carbon sequestration. As trees grow, they store carbon in woody tissues and soil organic matter. Through the process of photosynthesis, plants assimilate carbon and return some of it to the atmosphere through respiration. The carbon that remains as plant tissue is then consumed by animals or added to the soil as litter when plants die and decompose.

The primary way that carbon is stored in the soil is as *soil organic matter (SOM)*. SOM is a complex mixture of carbon compounds, consisting of decomposing plant and animal tissue, **microbes (protozoa, nematodes, fungi, and bacteria), and carbon associated with soil minerals**. It will be ensured that Plant operations do not result in loss of soil biological properties and nutrients. Soil amendments as required will be caried out to improve **soil heath**. **Bio remediation** using micro organisms will be carried out to restore the soil environment to enable carbon sequestration.

4.3.7 Water Environment & Scientific Study on Hydrogeology

There is no nalla crossing in the mine vicinity. Seasonal River Marudaiyar drains the region (flows at 4.9 km in the south). Seasonal Nallah Kallar River flows at 2.9 km in northwest. The entire mine pit water collected & pumped from Settling Tanks, after 20 KLD consumption for Mine use, is being utilised for Irrigation (Agricultural) activities in eastern side for about 46 Ha. There is no impact due to the Surface waters due to mining.

On the monitoring day, the water level was observed in 6 Borewells in the PNR-A Mine vicinity (within 2 km). The levels were found to be 8.14 m BGL to 22.30 m BGL while it was 15.50 m BGL at PNR Mine. The monitored water levels in the Study Area are brought to Reduced Levels (RLs) for comparison and 'Water Level Contours' are plotted in Google Earth Imagery and appended. Ground Water-table in the District ranges from 23.0 m to 28.7 m with avearge level at 25.4 m BGL during Post-monsoon and 25.6 m to 31.7 m with avearge level at 29.2 m BGL during Premonsoon Period. Thus, no impact on the ground waters of nearby Borewells due to mining on account of poor transmissivity.

RCL has engaged the **Department of Remote Sensing**, **Bharathidasan University**, **Trichy** for '**Integrated Hydrological Investigations-A Geospatial Approach**' in and around their Mine Lease Areas in Ariyalur Region (Project 'Hydrolime') since May 2017 and submitted the periodical Reports to the Authorities. Also, the EIA Coordinator and Officials of M/s. Thrust Geo-consultants Private Limited, an **Accreditated Ground Water Professionals** for 'Hydrogeological Report for Mining Projects' by Central Ground Water Authority (CGWA) have carried out the Hydrogeological Survey including a Pumping Test during 18.12.2023 and submitted the Report.

Aquifer Characteristics : In order to find the aquifer characteristics, **Pumping Test** has been conducted in the Borewell near the Mine. The depth of the borewell is 90 m and is pumped with a 5 HP submersible pump. The average discharge of the pump was set for 13.4 cu.m per hour. Pumping was done for a total duration of 66 minutes and the recovery was monitored for about 93 minutes. The water level in the pumping well was monitored at regular intervals along with discharge. The drawdown of water levels in the well was measured and given in the **Table 4.8**. The static water level was at 11.54 m before the starting of the test and went down upto 60.47m. The plot of Drawdown Vs Time and the plot of Residual Drawdown Vs t/t was done using the pump test data and the draw down per log cycle was estimated in each plot. The transmissivity value is estimated using the formula :

Where T is Transmissivity in m²/day Q is the pumping rate in m³/day Π is a 3.14 & \triangle S is drawdown per log cycle. The drawdown per log cycle estimated from drawdown data ie., \triangle S = 22m. the estimated transmissivity value is

T = 2.30×312 = $2.59 \text{ m}^2/\text{day}$ 4 x 3.14 x 22

The drawdown per log cycle estimated from recovery data ie., \triangle S = 26m. the estimated transmissivity value is

$$T = 2.30 \times 312 = 2.19 \text{ m}^2/\text{day}$$

4 x 3.14 x 22

Average "T" value of the Limestone aquifer is estimated to be 2.39 m²/ day

The limestone aquifer is observed to be very low in terms of transmissibility and hydraulic conductivity.

Table : 4.8 Pumping Test

Pumping Test - RCL Borewell	S.W.L = 11.54 m
10 Eocation - Near Mine Onice	

Time since Pump	Pumping Water Level in	Drawdown in meter	Discharge / Remarks
Start, minutes	meter		
0	11.54	0.00	SWL
1	11.67	0.13	Pump Started
2	21.59	10.05	
3	27.13	15.59	
4	31.24	19.70	Yield : 14000 LPH
5	35.50	23.96	
6	37.58	26.04	
7	38.97	27.43	
8	40.30	28.76	
9	41.02	29.48	
10	41.70	30.16	
11	42.29	30.75	
12	42.57	31.03	
13	42.94	31.40	
15	45.04	33.50	
17	46.52	34.98	
19	48.13	36.59	
21	48.65	37.11	
23	49.64	38.10	
25	50.67	39.13	
27	51.32	39.78	Yield : 13400 LPH
29	51.83	40.29	
31	52.63	41.09	
33	53.26	41.72	
35	53.47	41.93	
37	53.88	42.34	

Time since Pump Start, minutes	Pumping Water Level in meter	Drawdown in meter	Discharge / Remarks
39	54.19	42.65	
41	54.77	43.23	Yield : 13200 LPH
43	55.12	43.58	
45	55.47	43.93	
47	55.89	44.35	
49	56.18	44.64	
51	56.46	44.92	
53	56.78	45.24	
55	57.07	45.53	
57	57.39	45.85	
62	58.17	46.63	
67	58.65	47.11	
72	59.18	47.64	
77	59.86	48.32	Yield : 12980 LPH
82	60.34	48.80	
87	60.84	49.30	
92	61.31	49.77	
93	60.47	58.65	Pump Stopped

Recovery Test

Time Since Pumping Started (Minutes) "ť	Time Since Pumping Stopped (Minutes) ť	t/t '	Depth To Water Level (M)	Residual Draw Down (M)	Remarks
94	1	94.0	56.91	55.09	
95	2	47.5	51.56	49.74	
96	3	32.0	49.02	47.20	
97	4	24.3	46.46	44.64	
98	5	19.6	44.00	42.18	
99	6	16.5	41.09	39.27	
100	7	14.3	39.00	37.18	
101	8	12.6	37.79	35.97	
102	9	11.3	36.07	34.25	
104	11	9.5	33.81	31.99	
106	13	8.2	31.79	29.97	
108	15	7.2	28.74	26.92	
110	17	6.5	28.00	26.18	
112	19	5.9	27.00	25.18	
114	21	5.4	26.03	24.21	
116	23	5.0	25.36	23.54	
118	25	4.7	24.67	22.85	
123	30	4.1	23.49	21.67	
128	35	3.7	22.10	20.28	
133	40	3.3	21.72	19.9	
138	45	3.1	20.86	19.04	
143	50	2.9	20.30	18.48	
148	55	2.7	19.75	17.93	
153	60	2.6	19.23	17.41	
246	153	1.6	15.85	14.03	

Drawdown Curve of the Aquifer

Recovery Curve of the Aquifer

Mine Pits Dewatering – Existing Scenario : Mine Pits dewatering quantity Minimum was about 754 KLD during Apr. 2023-Mar. 2024 Period (**Table 4.9**).

Month 2022 24	Mine Pit Dewatering					
Wonth-2023-24	Monthly Pumped out Quantity, KL	Daily Discharge, KLD				
Apr.	27,027	901				
May	16,258	542				
Jun.	24,889	830				
Jul.	28,557	952				
Aug.	24,176	806				
Sep.	23,463	782				
Oct.	20,671	689				
Nov.	29,997	1,000				
Dec.	24,948	832				
Jan.	27,057	902				
Feb	14,152	472				
Mar.	10,374	346				
During the Year	2,71,568	754 (Avg.)				

Table : 4.9 Mine Pit Dewatering Data during Apr.2023-Mar. 2024

Non-monsoon Season Discharge-Avg.	:	725 KLD
Monsoon Season Discharge-Avg.	:	840 KLD

The pumped out water from Settling Tanks, after 20 KLD consumption for Mine use, is being utilised for Irrigation (Agricultural) activities in eastern side for about 46 Ha. About 26 Families are the beneficiaries (Table 4.10). Thus, Mine Pits water is gainfully utilized.

Utilisation of Mine Pit Water	Area, Ha	Crops Raised	Beneficiaries
Irrigation of nearby Fields	30 Ha	Paddy, Pulses, Vegetables, etc.	18 Families
Recharging GWT in the vicinity (8 Borewells-for Irrigation)	16 Ha	Paddy, Pulses, Vegetables, etc.	8 Families
Total	46 Ha		26 Families

Table : 4.10 Gainful Utilisation of Mine Pit Water

NOC from SGWB for Mine Pits Dewatering : RCL has applied to State Ground Water Department (SGWB), WRO, Taramani, Chennai for NOC for dewatering about 750 KLD from Periyanagalur Mine on 13.07.2015 and for NOC for Periyanagalur West Mine on 27.07.2016.

However, the Applications are still under the Department perusal for want of State Govt. Policy or direction. Letter copies are appended.

1 m		Georgeoup, Senture Real. Anyola: Talak - 621713 Anyola: Disbit, Taninasii, Ispa
I RANDO	THE RAMCO CEMENTS LIMITED	Phone: 04329 - 225001 to 225004 Fax: 04329-226008
	To The Chief Engineer PWD, WRO State Ground & Surface Water resources Data Centre	13/07/2015
	Taramani Chennai - 600 113	
	Sir,	*
	Sub: The Ramco Cernents Ltd. Periyana Periyanagatur village of Anyatur Tatuk & District of ground water Permission / NOC requested for m ² /day – Regarding.	galur Linnestone Mine ir Tamil Nadu - Abstraction mine pit dewatering for 750
	Ref: MoEF F, No. J-11015/556/2007-IA II (M) dat	ed 10 10 2007
	We wish to bring to your kind attention the above subj	ect and reference cited. We
	obtained Environmental Clearance from Miniatry of	Environmental and Fores
	(MOEF) for Periyalnagalur Mine. In this regard, one of	the conditions therein is to
	obtain Permission / NOC for abstraction of mine pit	water from the competen
	authority .	
	In this context, we are herewith submitting "Application	for Permission to abstrac
	ground water", as a part of mine pit seepage dewate	ting along with a detailed
	hydro-geological report and necessary enclosures.	
	Hence, we request you to accord permission / NOC for	abstraction of ground water
	from mine pit water pertaining to Periyanagatur Imestors	e mine:
	Thanking you	
	Yours sincernly.	
	For The Ramco Cements Limited.	
	en tent	
14.5.00	G.R.MAGESH	3
pan	DGM (Mines)	
	THE PROPERTY OF A DECISION OF A DECISIONO OF	

GOVERNMENT OF TAMILNADU WATER RESOURCES DEPARTMENT

From

Sir.

Er.S. Prabakaran, B.E., Chief Engineer, WRD, State Ground & Sontace Water Resources Data Centre, Tharamani, Chemiai-600 113. Phone 191-44-22547223 (Direct) 91-44-22547223 (Direct) 91-44-22541526/27 (Board) Email: ceswchemiai@cmail.com Web site: www.groundwatertnpwd.org To

M/s. The Ramon Cements Limited, Auras Corporate Centre, V Floor, 96-A, Dr. Radhakrishnan Salar, Mylapore, Chennal 600 004

Lr. No: DDG / OT9 / AG 6/ NOC - Mining/ 2024 / dt: 01.02.2024.

- Sub: Request to expedite issuing NOC for dewatering of mine pit water Earlier Applications 14 Nos submitted by The Ramoo coments Limited in the Districts of Ariyakir, Vinidhunogar and Thoethukodi – plus in addition Pudupalayam Limestone mine (45/285Ha), Adhanakurichi & Manakudayan Sendurai Tahuk, Anyalur (A Total of 15 mines of The Ramoo coments limited –Rep.
- Ref. 1 M/s. The Riemco comonts Limited letter. dt 00.01.2024 2. G O. (Ms). No. 142, Public Works (R2) Department, dt 23.07.2014.

It is informed that the Chief Engineer (SG&SWRDC) is the competent authority for issuing No Objection Certificate in Semi-Ontical and Safe Finkes as per G.O. No.142, Public Works (R2) department, dated 23.07.2014. As such them is no provision for issuing No Objection Certificate for dewatening of Mining Projects in the above mentioned Government Order.

If is informed that, the applications will be kept in live in this office until further directions from the Government regarding issuance of NOC for dewatering is Mines. Hence, the same status-co has been maintained by the department.

End: Application details enclosed in Annexure -1 -1 No

> Sdi- Er S. Prabakaran (01.02.2024. Chief Engineer, 5G&SWROC. WRD, Tharamani, Chennai-113

53.24

For Chief Engineer, SO&SWRDC, WRD, Tharamani, Chennai-113 **Mine Pits Dewatering – Proposed Scenario :** The limestone mining area, which falls receives a mean annual rainfall of 1096 mm as recorded in the nearest rain gauge station at Ariyalur. Pre monsoon water level inside the mine is 45 m below ground level and post monsoon water level is at 40 m below ground level. The depth of Mine will be 92 m BGL at Conceptual Stage. However, as simultaneous Backfilling is being continued in the Pit, the actual mined out voids will be reduced. Accordingly, the Mine Pit seepage quantity is assessed as given in **Table 4.11**.

Working Bench RL, m	Void, sq.m	Backfilled Area, sq.m	Effective Void, sq.m	Working Level (BGL), m	Seepage Quantity, KLD
73 - 64	3,81,733	0	0	9	0
64 - 58	3,56,169	7,719	3,48,450	15	0
58 - 52	3,31,077	7,719	3,23,358	21	0
52 - 46	3,06,456	13,010	2,93,446	27	0
46 - 40	2,82,305	13,010	2,69,295	33	0
40 - 34	2,21,240	35,354	1,85,886	39	0
34 - 28	1,60,813	36,534	1,24,279	45	298.270
28 - 22	1,31,081	40,913	90,168	51	216.403
22 - 16	1,01,087	14,022	87,065	57	208.956
16 - 10	88,534	14,018	74,516	63	178.838
10 - 04	59,029	15,268	43,761	69	105.026
04 - (-2)	50,138	13,078	37,060	75	88.944
(-2) - (-8)	36,664	11,978	24,686	81	59.246
(-8) - (-14)	30,079	8,978	21,101	87	50.642
(-14)-(-19)	24,044	4,978	19,066	92	38.132
	Total Se	epage Realisation	at 92 m BGL		1244.458

 Table : 4.11 Estimation of Ground Water Seepage Quantity in Mine Pits

On Amalgamation of the Mine, about 1245 KLD mine pit seepage water realization will be there. It is about 65.12% increase to the existing discharge of 754 KLD. As in current practice, the pumped out water from Settling Tanks, after 20 KLD consumption for Mine use, will be utilised for Irrigation (Agricultural) activities in eastern side.

Radius of Influence : The hydrogeological parameters arrived for the top water table limestone aquifer from pumping test is : Transmissivity "T" - 2.39 m²/day. Permeability 'K' value has been derived from T value and thickness of Limestone Aquifer. In order to estimate the mine Seepage quantity the Darcy's flow equation is applied. As per Darcy Law Flow through a porous media is a product of Hydraulic gradient, Area of cross section and Hydraulic conductivity and is given by the equation :

Q = KIA

where K is the Hydraulic conductivity in m/day i.e., 0.04 m/day

I is the hydraulic gradient estimated at 0.01 from earlier studies A is the area of cross section of the exposed aquifer ie., the perimeter of the mine pit x saturated water column

The estimated average seepages in the mine pit is around **1,245 KLD**. The zone of influence will be of the shape of an ellipsoidal or cylindrical shape unlike a circular shape in isotropic and homogeneous condition. Accordingly, Hudak's method suggest the following formule:

- i) $V_{C} = Q(t) / \eta_{e}$
- ii) $A_{\rm C} = V_{\rm C} / b$
- iii) $R = (\sqrt{A_c} / \pi) + r_c$

where,

 $\begin{aligned} & \mathsf{Q} = \mathsf{Rate of pumping from the mine in m^3/day} \\ & \mathsf{t} = \mathsf{time of continuous pumping in days} \\ & \eta_e = \mathsf{the effective fractured or secondary porosity,} \\ & \mathsf{b} = \mathsf{saturated thickness of aquifer around the mine} \\ & \mathsf{r_c} = \mathsf{the radius or equivalent radius of the mine pit in meters} \\ & \mathsf{V_c} = \mathsf{Volume of the water pumped from the mine pit in m^3} \\ & \mathsf{A_C} = \mathsf{Area of zone influence in the aquifer in sq meters.} \end{aligned}$

Based on these formulae the radius of influence for Periyanagalur mines is estimated.

In the case of Periyanagalur mine pumping the quantity of mine dewatering Q at peak is 1,245 KLD for about 300 days, 't' the effective porosity is assumed to be around 4.0% or 0.04; the saturated thickness (b) of the aquifer is 52 m. The mine dimensions of Periyanagalur of bottom bench with sump is 19066 sq.m. The equivalent radius of the mine, therefore,

$$\begin{split} r_c{}^2 &= (19066) \ / \ \pi, \ \text{or} \ r_c = 77.9 \ \text{m} \\ V_C &= (Q \ x \ t) \ / \ \eta_e = (1245 \ x \ 300) \ / \ 0.04 = 9337500 \ \text{m}^3 \\ A_C &= V_C \ / \ b = \ 9337500 \ / \ 52 = 179567 \ \text{sg.m} \end{split}$$

And therefore R = $(\sqrt{A_c}/\pi)+r_c$ = $\sqrt{(179567/3.14)} + 77.9 = \sqrt{57187} + 77.9$ = 239.1 + 77.9 = **317 m**.

Therefore, the radius of zone of influence is 317 m which falls within the mining lease area (Plate-XII).

When pumping is being done in mine pit, it is the actual quantity that is contributed from the aquifer surrounding the mine pit. Hence inflows into the mine equals the water pumped from the mine pit. As a result, the cone or zone of influence that is formed inside the pit within the saturated aquifer at the Conceptual Stage. Thus, mining even at the depth of 92 m BGL, there will not be having any influence on the nearby ground water structures in the vicinity.

The anticipated cone of depression in such aquifers with low T values will be highly localized, and does not spread beyond the Mine due to poor permeability of limestone aquifer.

Mitigating Measures Following Mitigating Measures are to be implemented :

- The increased Mine Pit Water has to be utilized gainfully by increasing the supply to nearby Villages for domestic consumption as well as to agricultural use as in the current practice.
- Mine Pit Water will be treated for TSS before discharging, in compliance with TNPCB Norms for On-land irrigation.
- Ground Water NOC for Dewatering has to be obtained from SGWB Authority.
- Effective Afforestation in Backfilled Areas is to be done.
- Garland drains and Settling Tanks are to be maintained and desilted periodically.
- The de-silted quantity from the Garland Drains has to be used for Green Belt/Afforestation.
- Periodical recording of Water Level from existing Piezometer at the Mine is to be continued.
- Ground Water Levels and Water Quality are to be periodically monitored at the identified Borewells & Dugwells in the Mine vicinity.
- The monitored data are to be periodically submitted to the IBM and with half-yearly Compliance Reports to the Regional Office, MoEF&CC, Chennai.

4.3.8 Ambient Air Quality

The Drilling & Blasting, Excavating, Loading, Unloading, Transporting and Rehandling activities would generate both fugitive dust emissions and smoke from Heavy Earth Moving (HEM) Machineries and Transporting Tippers. Fugitive emissions are predicted by using standard equations given in 'Indian Mine and Engineering Journal' and suggested by USEPA (Emission Factors as referred in AP-42) for Mining and Allied activities.

Quantification of particulate emissions from the Mine is computed by the Emission Factor Technique. Emission factor is a statistical average of the rate at which a pollutant is released during an activity. This factor when multiplied by the level of that activity in a given situation will give the overall effect.

The equations used for Inputs of various activities are as below :

Activity	Emission Factor
Drilling & Blastings = Excavation of Waste & Ore =	0.6 kg/hole 23.6 kg/hr particulate matter for every 1,000
	Tonnes per hour material handling
Ore & Waste transportation =	0.2 kg/vehicle/km.

Accordingly, the computed values for various activities are given in Table 4.12.

Activity	PM Emissions- On Amalgamation, g/sec
Excavation	0.00002368
Drilling	0.005881591
Loading	0.00002910
Waste-Haulage	3.54237E-05
Ore transportation	3.5515E-05
Total	0.000595781

Table : 4.12 Emission Levels-Inputs

As site specific mixing heights were not available, mixing heights based on CPCB publication, "Spatial Distribution of Hourly Mixing Depth over Indian Region", PROBES/88/2002-03 has been considered (**Table 4.13**).

Table : 4.13 Maximum Mixing Height (meter) with Standard Deviation over Indian Region

	Seasons							
Name of Station	Winter		Pre-mo	onsoon	Post-monsoon			
	Mixing Ht.	Std. Dev.	Mixing Ht.	Std. Dev.	Mixing Ht.	Std. Dev.		
Chennai	1063.75	153.92	1274.45	111.79	1010.5	109.39		

Prediction Modelling : **AERMOD View** Software is used for Predicting the maximum Ground Level Concentrations (**GLCs**) including **Transportation Impact**. Model Inputs and Outputs are appended. The predicted GLCs are given in **Table 4.14**. The predicted Ground Level Concentrations (GLCs) for PM10 are **superimposed on the baseline map** (**Fig. 4.1**) to arrive at the likely resultant concentrations due to the Proposal. Other pollutants SO₂ and NOx emissions due to mining activities and their Predicted values are found to be low and are not reported.

The predicted maximum GLC-PM10 for cumulative operation of Mining activities is 0.062 ug/m³ and found to be confined locally i.e. within 1.0 km radius from the boundaries. Also, **adequate Buffer Level available (55.34%)** in the Air Environment for the Proposal.

Model Input

Source Pathway - Source Inputs										
autoritation and and and and and and and and and an										
147	े स	38	1	Promo-	inger (H	30400	340	HTEN M	Analysis and	Yes 2-1
100	<u></u>	20148207	120006-00	680	444	0.0008	19.00	50.08	3.0	

Model Output

E Martheriter	D Meanstith	FEEL FEELEL	PHER Phr						
7970 Competitution Notice Group ALL									
dooraging . Particit	time	Put	1.666	-		2011X 04	TELNIX UNI	29411	Pour Dire.
24141	ाताः	0.00209	agres	29643.09	1200732-48	00.00	8,082	(m) (m)	19/05/2024.18
311467	-260	0.000102	apre/2.	28(4(3))4	120073145	19110	6.00	10110	20412694.2
18-19	160	0.00631	agine 3	29CAT3.99	1200000.05	00.00	0.06	10.00	17-01-2524, 21
2476	4714	0.00028	app/2.	29(41310)	1210712-10	69.00	0.02	#9.00	2542,253,25
24781	atu	24446	aper5	294(3)(8	1210732-04	444 553	p.oc	199.90	24.91 2004 34
24.442	1.678	(12620)	same?	290463.08	12:07:12:45	101III	0.00	(01:00	2041203.0
04449	PTH	b 20205	4943	296463.09	120071346	10110	0,00	010	2443-2124, 24
28419	ITT	- petrog	-aphrilip	295401/19	1710710-05	PA 01	0.00	10.00	48.62 2004, 25
11-15	atti	(Distance)	inpre2.	296463-01	6200130-45	mm	and a second	(H) (D)	22/01/2006.00
21,749	NETH	294442	aport	29445310	1210732-04	89.52	0.00	23.60	22 12 2022 20
FEBOO	in the second	0.00mac	ingh/7	296403.08	1230733.45	89.00	0.00	10.00	

Table : 4.14 Predicted GLCs

SI. No.	Pollutant	Background Concentration (24-hly. Avg.), ug/m³	Max. Predicted Ground Level Concentration, ug/m ³	Distance from the Plant (max.), km	Total Concentration, ug/m ³	Revised NAAQ Norms, ug/m³	Buffer Available in the Atmosphere
1	PM10	44.6	0.062	0.1	44.662	100	55.338

Mitigating Measures : Non-conventional method of Mining is to be adopted preferably. Controlled Drilling & Blasting is being practiced whenever required. The following Mitigating Measures are to be followed/adopted to control the Fugitive Emissions :

- Periodical Water sprinkling on the mining areas, loading point, haul roads, etc. has to be carried out.
- Controlled Blasting is to be carried out and during day times only.
- No Blasting is carried out during overcast conditions.
- Covering of trucks/tippers with tarpaulin is to be done during the transportation.
- Over loading of Tippers is to be avoided to control the spillages on transportation.
- Periodical maintenance of mine equipments has to be carried out and replacement of worn out accessories has to be made..
- Tippers are to be maintained periodically.
- Periodical check up of vehicles for 'Emission Under Control' measures is to be ensured.
- Effective Green Belt with thick foliage has to be developed and maintained.
- Backfilled areas are to be reclaimed at the earliest and afforested.

4.3.9 Noise Levels

The mining operations are being carried out by fully mechanized method with the help of Excavators and Tipping Taurus combination. Blasting is being done with slurry explosives and ANFO and Non-Electric shock tubes are used for controlling ground vibration and noise level. The noise level due to Mining Equipments during operation, is being maintained at <90 db(A) at a distance of 1.5 m from the sources. The blast induced ground vibration is controlled & maintained within permissible limits by using milli second delay detonators (MSDD) and NONEL shock tubes. In general, noise generated by these sources is within the limit of 90 dB(A) prescribed by Director General of Mines Safety (DGMS), Dhanbad. The work force is exposed to <85 dB(A) levels during the 8-hours Shift.

Mitigating Measures : The noise and vibration generated due to the blasting operations can be kept well within the limits by using milli-second delay electric detonators and by using Non-electric initiation system of blasting which completely eliminates air-blasts and thus reduces noise due to blasting. Noise level at the nearest Lease boundary will be <55 dB(A) during day times and <45 dB(A) during night times and which will be within the MoEF&CC Norms for Residential and Rural Areas.

The monitored peak particle velocity (PPV) and noise levels during the blasting is periodically monitored through 'Minimate' Instrument and found to be well within the DGMS norms for Residential Areas. Records are being maintained as per statutory requirements and submitted to the Authorities periodically.

The following Mitigating Measures are suggested :

- Controlled Blasting is to be carried out and during day times only.
- No Blastings shall be carried out during night times and overcast conditions.
- Vibration Studies/Monitoring are to be carried out whenever Blastings are carried out.
- Vibration Parameters viz. Peak Particle Velocity (PPV) and Noise Levels during Blastings shall comply with DGMS Norms for Residential Areas.
- Deploying HEM equipments will be with in-built acoustic mechanism for reducing noise.
- Provision of silencers is to made to control the noise generated by the machines.
- Provision of ear muffs/ear plugs are to be provided the Workers in higher noise zones.
- Effective Green Belt with thick foliage has to be developed and maintained along roads and around lease boundary to act as acoustic barriers.

4.3.10 Biological Environment

There is no habitat fragmentation or blocking of migratory corridors due to Project activities since there is no wild life movement or migratory birds movement in the study area. Thus, there will not be any significant impact on the existing flora-fauna of the area. ML area is surrounded by Mines & Mineral bearing areas, barren lands and dry agricultural lands within 1.0 km area. As the baseline AAQ are in lower levels as well as Predicted GLC is very low/insignificant, there will not be any impact on the surrounding dry agricultural lands due to the Project.

Mitigating Measures :

- Effective Green Belt developed is to be maintained with good Survival Rate till Conceptual Stage.
- Backfilled Areas are to be Afforested with native species and maintained well, as proposed.
- Total Green Belt & Afforested Area will be 27.45 Ha with coverage of 51.48 %.
- The desilted soil from Garland Drains maintenance may be used in Green Belt/Afforested Areas.

4.3.11 Socioeconomics

Action Plan for the Public Hearing (PH) conducted for PNRW Mine on 21.09.2016 has been completed in compliance with MoEF&CC OM F No 22-6512017-IA.III dated 30.09.2020 & 20.10.2020. A budget of Rs.10.00 Lakhs was spent in addressing the PH issues. Also, an amount of Rs.2,00,000/- was remitted to the Executive Director, Kalakad–Mundanthurai Tiger Conservation Fund (KMTCF) under CSR Budget for the Mine. The Project Cost is Rs.9.00 Crores. Now, about Rs.21.00 Lakhs has been allotted as Corporate Environmental Responsibility (CER) Budget in compliance with MoEF&CC OM dated 01.05.2018 for execution within 2 years period (Table 4.15).

Name of the Village	Particulars	CER Amount
Periyanagalur Village	 (i) Upliftment of surrounding Government schools - Rs. 10.00 Lakhs (ii) Construction of individual smart toilet - Rs. 9.00 Lakhs. (iii) Skill development, Training of village women for self employment - Rs. 2.00 lakhs 	Rs.21.00 Lakhs

Table : 4.15 CER Budget

RCL is undertaking various CSR activities, **@** Rs.1.00 Crore per annum, related to health, education, drinking water supply, sanitation, bio-toilets for individual household, infrastructure development activities, construction of bus shelters, road repair work, building class rooms, etc. for the nearby villages (Plates XIII & XIV). RCL is submitting the CSR measures carried out to IRO, MoEF&CC in the Six-monthly compliance status report. Allotted funds will not be diverted for any other purpose.

Mitigating Measures :

Based on the CSR Committee and declared CSR Policy of the Company, the following CSR activities will be covered now :

- Eradicating extreme hunger and poverty.
- Promotion of education & vocational skills.
- Ensuring environmental sustainability.
- Contribution to the Prime Minister's National Relief Fund or any other fund set up by the Central Government or the State Governments for socioeconomic development and relief.
- CSR activities shall be carried out by providing social and welfare measures for the local residents and nearby villages around the mine area.
- The prime focus will be on the creating and maintaining of drinking water facilities for the students at the nearby Government Schools, establishing toilets especially for girl students at the schools, setting up of computer centres, maintenance of village roads & ponds, providing solar street lights, conducting free medical camps, etc.
- As per MMDR Act 2015, 30% of Royalty Amount of Rs.38.04 Crores will be earmarked for District Mineral Foundation (DMF) and the amount will be spent for benefit of local villages.
- Project employs about 33 persons directly and 50 persons indirectly.

4.3.12 Occupational Health

Anticipated impacts : RCL is committed to provide a Safety & Healthy working conditions. RCL's objectives are : to achieve zero accident and safe work environment. The First Aid Box is made available for immediate treatment. First Aid Training is imparted to the selected employees regularly. Personal Protective Equipment (PPEs) are provided for all employees working in the Mines. Adequate training on safety and health aspect has been provided in RCL's Vocational Training Centre. RCL is also providing the ergonomic support in work comfortness with periodical review.

An Occupational Health Centre (OHC), headed by Occupational Health Physician, is run by the Company at Govindapuram Plant. Occupational Health Surveillance Programme is being conducted for the workers periodically and records are maintained. Adequate care is exercised to detect early incidences of Occupational diseases, if any, for prompt treatment and cure.

Mitigating Measures : The following Mitigating Measures are proposed :

Occupational Health Surveillance Programme is to be carried out for all the Mine Employees periodically with the following tests:

- Lung function test
- ECG
- Chest X-ray
- Blood analysis test
- Urine analysis test
- Audiometry
- Checking colour blindness
- Stool Analysis
- Sputum (Optional).
- All employees are to undergo Medical Check-up on recruitment and periodically during employment.
- Maintenance of Pre, during & Post Employment Records are to be kept for periodical review.
- Standard operating procedures for all operations w.r.t occupational safety are to be in place.
- Required Personal Protective Equipments for the Mine employees are to be provided.
- Provision of ergonomically designed seats for drivers/operators has to be ensured.
- Provision of illumination facilities are to be made at proper places of mines for ease of working during night times.
- Work comfort and its periodic review by a Committee is to be ensured.
- Provision of Rest Shelters at Mines has to be made.
- Provision of cool drinking water to employees has to be made.

5.0 Analysis of Alternatives (Technology & Site)

5.1 Technology

- The mining operation is carried out by adopting both conventional mining method involving deephole blasting techniques and non- conventional mining method using X-centric Rippers.
- The mining operations are being carried out by fully mechanized method with thehelp of Excavators and Tipping Taurus combination.
- Blasting is being done with slurry explosives and ANFO and Non-Electric shock tubes are used for controlling ground vibration and noise level.
- Mine development including mine planning is being practiced in the mines and will be continued in future also.
- The blast induced ground vibration is controlled & maintained within permissible limits by using milli second delay detonators (MSDD) and NONEL shock tubes.
- At Conceptual stage. it is proposed to utilise part of the Mine Pit to harvest the rain water so as to recharge the ground water-table.

5.2 Alternative Sites Considered

This is an existing Mineral bearing area and Mineral deposits are site specific. Thus, site selection criteria is not required.

6.0 Environmental Monitoring Programme

6.1 Environment Cell and Compliances

RCL has **EMP Monitoring Cell**. The quality of air, noise, water, soil, etc. are being monitored at the identified locations as per MoEF&CC, IBM &TNPCB Norms by appointing an accreditated external agency.

6.2 Post Project Monitoring

For the Lease, periodical monitoring of Ambient Air Quality (3 locations), Fugitive emissions/Workzone Air Quality (4 locations), Ambient & Workzone Noise Levels (4 locations), Water (4 Surface & 4 Ground waters along with Mine Pit water) and Soil Quality (3 Locations) shall be undertaken and reported to Authorities. The monitoring details are given in **Table 6.1**.

	Environmental Component					
Ambient Air Quality		Fugitive Emissions	Noise Levels & PPV	Water Quality	Soil Quality	
No. of Locations	3 (in & around Mine-Upwind & Downwind directions)	4 (Excavation area, Loading Area, Haul Road & Pit Edge)	Ambient-3 Workzones-4	Surface waters-4 Ground waters-4 Mine Pit water-1	3	
Frequency	24-hourly once in fortnight continuously for whole year	Two 8-hourly samples, once in a week for 2 weeks in a Season	Once in a month Vibration Survey during Blastings	Surface & Ground Waters-Once in a Season Mine Pit water- Monthly once	Once in a Season	
No. of Samples	72	64	84	32+ 12	12	
Parameters	All 12 Parameters	PM10, SPM, SO2, NOx & CO	Day & Night Leq Noise levels dB(A	Physico- chemical & Trace Metals	Physico- chemical & Nutrients	
Norms to be Complied	NAAQ Norms	IBM Norms for Limestone Mine	MoEF&CC and DGMS Norms	CPCB/ IS:10500 & TNPCB Norms	Soil Fertility	
Budget Allotted	Rs.3,60,000	Rs.3,20,000	Rs.42,000	Rs.1,14,000	Rs.36,000	

About **Rs.8.72 Lakhs/annum** will be allotted for the Monitoring Works. The periodical reports shall be submitted to TNPCB monthly, IBM Quarterly and MoEF&CC Monitoring Cell & SEIAA as Half Yearly Status Reports.

6.3 Current Post Project Monitoring Data

In consultation with PCB, Ambient air quality is periodically monitored through a NABL Lab at 3 locations in the Mine and 6 locations in the buffer zone, thus total 9 locations, as per the Land Use pattern and environmentally sensitive targets. Periodical reports are submitted to TNPCB on monthly basis, IBM on quarterly basis and IRO on six monthly basis.

Both Ambient & Work zone Noise levels are monitored periodically and submitting the status reports to the Authorities. Vibration levels are monitored with Minimate instruments whenever blastings are done and records are maintained as per DGMS requirement.

Both Surface & Ground water quality are monitored at each 3 locations on quarterly basis and submitting the Reports to the Authorities as Six monthly compliance.

Garland Drains are provided all along periphery of overburden dumps with dimension of 1500 (L) $x \ 2$ (W) $x \ 2$ m (D). **Recharge cum Settling Pond** of 100 (L) $x \ 50$ (W) $x \ 2$ m (D) is made in the eastern side of the Lease area to collect the surface runoffs through garland drains. Water collected in the settling pond is utilized for green belt and dust control measures. Excess water is drained to nearby irrigation pond for raising agricultural crops in nearby areas. Garland drains are also provided for working mine pit of size 700 (L) $x \ 2$ (W) $x \ 2$ (D). Garland drains are connected to the sedimentation tanks of 3 (L) $x \ 3$ (W) $x \ 2$ m (D) at the corners to settle the solids before final disposal. Periodical desilting of garland drains and sedimentation tanks is made.

There is no trade effluent generation from the mine. Mine Pit water quality from Recharge cum Settling Pond is periodically monitored and found to be in compliance with TNPCB Norms for Onland irrigation.

Periodical monitoring of ground water level is carried out 3 locations on quarterly basis in addition to the piezometer readings recorded in the Mine. Periodical water level data are submitted to IBM on quarterly basis and IRO & SGWB on six monthly basis.

Soil quality monitoring is carried out 2 locations and reports submitted to the Authorities on quarterly basis.

All the vehicles used in the mine are on contract basis and servicing is being done in their own places. 'Pollution Under Control' Certificates are checked periodically. It is ensured that transport vehicles are covered with tarpaulin and are not overloaded.

The recent survey Reports by third part accreditated Lab as well as TNPCB Lab are appended. TNPCB is not monitoring the WQ of the mine pit.

54100	A 10 10 4	10 1100	U ay B	107.0	tion the	200	(CANING)
Accessible)	In 1988, while the office have	17/100		1.000	(i)Hinia	rituria bi	and Malla
10-		CTE	ST KEPOR				
	The Ramco Gemen	clumited,		-			
	Periyanagalar Lini Adventor Thisteir	natorie Mirie	96.				
	suddrift evenue?						
T History			COURSE IN CO. OFFICE ADDRESS				
Report	Fumber Design ba	AIICTL	/anatroni/n	0799	Sec. Williams		
Sample	Denconplant	Noise	Levele - Qu	arter III.7	021		
Date of	Lampling	16.08	20231017	00.3023			
Date of	Reinielije	10.00	18.83.2023				
nepurt	And a second sec	111144096	1041	_		_	FameToFT
	11						TIME CONT.
1000	1000 0 000205		Rane Levels, (R(2)				
10.000	Lucicie:	- 000 13	Day Tube (06:00 22:00 tim) Night Tube (22:00-06:00 hm)				midd fam.3
	1201010	- ¢diin,	17554	-54%	1,005	1000	Leg
	Street Brillion	198	10.0	47.7	210	. 312	482
-	Training Note	30.0	- ma.	46.5		30.0	
- +	Phil Cristian	22.9	643	41.7	1 trs	81.0	40.0
timme	y form? for it loss Reposer		1	81			
Huffer 1	Constraint of Constraint States	_					
- 5	Proyemption	82.6	inter i	43.8	- 113	att.	36.9
	VXainetti	341	802	- 147	DI	(864)	10131
2.	Katupes sphile	101	61	41.5	307	76.5	383
L	Hady Harrison		Concerna la	-38-		A)	- 48
Sampli	ng & Test Method: 15: 99	99-1981(Baal	1.3834)	in section of	the second second	and the second second	
200.00	Min the Rame Confident of a dis-	est 19 p.m. and 5	and there is not	atoma in Katha	augu 12 2 16 1	iddam	-
and and the	at vight have wightened.	No ber de des des	Constant and and	and they a	a su provinsi		of a family of the second
		T)	ad of Repart				
			100				
	2.50	ÈN -		W .		100	1
e Dine	× 120	181	-	1		3.4	J.C.
in an	() (Cherry	8)3)		-		A	Ratiage Chines
distance.	121	23				10	rebuilded Manage
Contraction of the second s							

ABC Techno Lubs India Private Limited (as no. 2001, 80 (2002, 80 - 2003 & 80 - 2008 Content Company) AC TONES 4400, 530 Densi, 2002 industrial Dates - Nach Prise, Accurates, Chemist. 2002 industrial Dates - Nach Prise, Private - 40-305 Trate / 10, 341 March 2002 / 1988 (2007) Industrial Date - 40-305 (2007)

THOTA ATTOMT

- The Rumon Cement Limited,
- Persyamagalar Emerana Mines.
- Arryatur Datrict.

Report Number	ABCTL/2023/08/20138
Sample Draws by	1 ABC Techno Laby India Petsato Limited
Sample Description	Ground Water Levels - Quarter III, 2023
Date of Campling	18.06.2023
Date of Revelat	11,19,08,2023
Repairt thite	1 1209/2028

Page 1 of 1

10		Water to will Howitz will at (hgt*)						
1	Description-	Name and Antipition	Nervel, Phil Mar. Jose	Barreel, Kartualitetetrem				
T.	Neaturing Weil Duty	.591	£W2	10WCE				
Ш.	Well Cheprip, etc.	45	99	39				
E.	Quarter 1/2025 (06.02.2022)	93	14.0	19				
18.	Quarter 10/2003	(683	(63	92)				
30	(240/ter 10/2023) (Amail:2021)	(10.00)	1290	31K-				

VE ALS STORY POR

12	All in Long	_	\$7ml	(Heldhood	opiaa.cov/	tite erwahite	huhikari		32-319
	Colling and		ALC: N			Contraction of	Street Barry	Serec and	
						and the local division of the	and the second se	A Designation	
140/73	Th Pe Ar	e Ran ciyati tyalur	nca Crime agalar Mi Diatrict	ont K4perste ekanetsiene	dictory of, Mines	1941 - J			
Cont	No.	r=r	ABUTT CON	97-53-5440	or allow				
ingie	Provel by		ANC THEM	a Labs hut	a Private Lie	med			
ango	These applicants	2.1	Serface Web	udeno.	promise (M. 2022)	Deterationer	100.009.0010	41 (in 3/17)	
WHE WE	Similar .	11	18362023			Date at C	orplation.	: 01.09.202	
tate of	ANIDIS		11.001011	11		Fugnitia	-	1 1.07	
	CONTRACTOR DE LA CONTRACTÓRIA DE LA			-		- Libbarra			
2.80	14	-	-	autian two	746	Tipe Min	faire lines	Rindore Are:	CPC8 Rorbs*
1	- 5.	-		11	and some	741	7.44	157	8545
-1-	California California	-	_	-	Sansian .	177	113	202	28.58
+	Satisfy		_	12	0.01	113	16	5.8	
1	Ratificat Chie		_	- PI		8(6)26-18	23(0-11)	Martin Pr	145.00
	Transformer Harry	gra. Within		- 8	100	- 69	- 11		404.0
	Internet Call	1.1	1	- 14	ublation	111	- 415	718	
3.	Dia Diadea	4 5/10	6300	肝		481	458	400	100 Ft R
11	Dalchine Barth	ne consecu norma Esci	Carbo -	1:3-	100	1 318	128	108	-5
11	Mahmon Ka	the second	etate)	231	max.	100	10	184	
10	Cattaine fair G	1		44		- 64	44		
15	· Surface (ac.)	0.798.2	_	1.54	74.5				
26	Preparation (as	190		- 15	2.9%	1	1	1	
14	Oliandex (ee D)		32	1.8%	134	329	3.48	230-408	
38	Third American	50.0	e753	38	- 765	- 24	- 11	1	40-138
20	10036414	21-0		- 44		\$31(3),211	30,216,115	30418-101	- 63
13	(0¢				140		. 10	1	-
71	Statistics	0	_	- 59		140	214		\$314
24	According to a local design of the local desig	inia .		34	ept	412		1 1 1 1	
28	Phospholes ()	1904		. 78	1825	-4185	-02.84	1521	
lbura y Mar	्रिके म मन		S.F. S.))				3- Alla Techna	men Chlonadu al Manager

101-2827001

THAT REPORT

The Namco Connent Limited, Pertyanagation Lineatione Minea. Arigator District.

Beauft Nattitiet	AllCTL/	28.23/06/29816-09	019	
Sample Drawn hp	: A96.7m	chos Lubs India Pris	sie Limited	
Sumple: Desiription	1 David	Wine Quality Quarter	INCOMES - On complement with DDM Class	siar We NYO
Oute of Sampling	10.00.2	029	Oate of Completion	04.091.2023
Dale of Berryt	19.00.3	623	Report Date	1 12.09.2023
These of Aual pair:	1 23.08.2	123	Peartie	1. 1. 1. al.#

Cital.	humbi	11303 87414	2481	Sures). Philase	Pettos	Barreni) Autop	Anton Anton	States.
11	301	11		2.54	346	221	1.94	10561
4	Kilom?		Hance Dealer	101205-0.0	101205.5.0	896,72,7.81	million to the second	6/15*
	Tampetitute			10.01	38.7	24.8	:867	
.4	Tartiely .	10	of the	1.7	18.81	1.1	24	1/2
.3	Spectrum Philarian	38	C imp/C	30.00	Add (This All)	301-04-10	2010/14.4.4	ALC: N
18	Disastand Dayges	3.8	- P.4.5	8.0	- 82	8.9	6.7	1.00
T	Total Surgervided Solids	12	1990	11T*	198 -	17	13	
3	Meaning Online only	10	Langers.		7.600	817	265	
+	Tabal Dearlined Sallice	10	100	940.1		2.56	423	144/3890
10.0	Teta Parlanes (ar G(0))	23	(mm)	:00	248	308.	CEUE ·····	333,1839
11	Galorere Hartman (at 1.400.0	21	+g/	110	108	114	111	
м.	Amagence with Histophysics Disc Lances.	#1	ang/i	130 .	110	126	225	-
24	Colorent (No Cal)	40	1 4001	04.7	84	40	84	- Thyduu
24	Nogewoilant (Int Nati	46	ang 8	34	36		104	56/100
11	Sudice (ar Na)	#4	rat	- 31	- 26	- 46	(#h)	16
16.1	Proteinmen (av Fil	35	Ags.	1	1.	4	-2-	
47	Golamonto par alli	19	- august		1)m	418	101	304/1044
10.5	Nulphons Los 304)	22	Fm/1	111		. 64	14	221/182
39.7	Trise Alasinte De CANG	23	1.00		118	118		201/600
42	800-3 dat # 21 %	64	/ ingit	REAL PROPERTY.	80101.00	221.01.0.0	BURLDS.	1.4
10	gins	58	tend .	1.4		4		1811
31	hundo fai	- 53	(Ann)	0.10	0.16	0.18	1.0	.82
21	Millerinia GaiP3	- 88	- im/1	921	= \$21	823	- 411	10/58
24	Sillranes (se 52b)	34	ingt.	-5.19	448	#28	843	-45
25	Photofenia Con PDub	31	144.7		-0.81	1.48.85	-12.83	

S. Olimani

102180

Quality Manager

1711 and the same of 1.7 4.0

Stobase Chonadura

Yortmicul Manager - L

Automated Signatory

Print and Mar

Names and Adventions.

The Ramon Cemant Limited, Perivanajalar Limentone Mines. Ariyahur District.

Report Number	 ARCTL/0623/08/00105-0 	ibmi#	
Excepte Braves by	ADC Tischen Labs India Pr	went Kimited	
Samplin Description	: Ground Water Quality (Los)	WILLING - OF COMPENSES WITH THE CASE A	er (%e.3,/%i)
Dair of Sampling	 XIO0820028 	Date of Comparticui	01.09.2022
Dane of Bacelan	19.082813	Beport Date	- 17.09.20F3
Detwist Address	23.662623	Cage: Mil	1 146

11.00	- factorian	96-9625 - F4/10	- Theat	8.000-C.093. Finite	Kerrent, Petterseptur	Rational. Available paintpart	Roomed. Salar Salar	Anna Anna
10	Crevales (ac D)	- 27	100	NINCTEA.A.I.I.	Bill.(01.640)	AND AND	1 101, 14. A.P.C.	545
±±.	Bharanne See (CALd MI)	43		1.896.0012.0002	PROPERTY.	mariant		Nort Milds
300	Management Ling MAL	39	Ref	4931	- 496.011	4621	-20.0L	181/83
14	Christian Sep 271	58	m6A	-4223	<8.01	<231	=8.83	8.85
307	Copper En Citi	-62	nam.	100031	<8.8.1FL	0081	-60.05	54%/12
31	Selection (as Se)	54	-mg/K	102.81	-011010	-0001	<0.01	- 1000
31	Alpheinelasis (zn Al)	55	- itel	-400.01	-min	-98	<01.01	101/63
10	Getting (19711)	40		<0.01	-00.00	100.81	<0.01	6303
34	Arbeitic Sie Aub	32	100	-49.01	-11411	40-01	<0.01	ANNIN
35	Renner (as II)	57	200	49.91	40100	48.91	#11.001	=1/1=
.10	Herone Lin High	411	Jugar	48.001	<0.001	400.000	19801	9.801
12	Louis Star 244	47	-067	4331	《曲韵》	<2.21	<0.01	3.1.5
111	222(1022)		ma/i	40.03	-00.01	111	<0001	8/15
30	Tand public but	m14221	101112-005-04	12	42	42	43	(Marrow)
-00	President and the second	11.1422	1002131-0	a l	- 24		C D	Aburit
44.	15, 4940	15-1422	34F90/242 ad	<1	-42	0.01	10	Alment

1.12 DESERVED 12 Constituting Water Standards, # , bright constitutions field from the deserve of discussion from the Asian ACC in the following Allowed.

Contraction of the local distance of the loc

lano to lano to lano to lano to lano to	h tali olo	16-5770, NABET Tibi Ramesi G Pariyanagalu Artyalur Distr	ment Limbo Limetane) ict.	is 1522 Normalia TEST REPORT d. Mines	iseyeliktis]	CE DIN A	nta onk 1	les Bearriede
Sampi Seal If	e Name	The Rameo G Periyanagalu Artyafur Distr	nnent Limite Limestone 3 let.	TEST REPORT d. Mines.	l			
Sampi Seal II Report	e Name	The Rameo G Pertyanagslu Artyalur Distr	nnent Limito F Limestone) ict.	TEST REPORT U Mines				
ianip ieal if Iepor	ie Name	Pertyanagalu Ariyafur Distr	Umestone) ict.	Mines.				
Samp Seal II Repor	ie Name	Artyalur Distr	ic.					
Sampi Seal II Repor	ie Name							
Sampi Seal II Repor	ie Name							
Sampi Seal II Septe Smith	ie Name		Cuttoer	er Provideit Deta	ile .	-		
lepor Innin		Nona Pit Water	/Otseharge	Cuccomer Re	Ú.,		As per P0	
Герос Клагу	r Magr	1.194	1	ab Provided Data	iglii be		12481	
haahn	et Number	ABCTL/2010/	12 17/005	Date of	16.10	1002	Analasia	10.00033000
2011	Anthon		reporter.	Arcopt	1.10.10	49.4.5	Commenced	111102013
Complitted all widday				Candition	Good		Sample Qty	2 Litters
leptor	n Date	06.11.2023		Sample	Labora	itery	Oate of .	14.10.2023
ocati	ioo uf	PTP .		Sampling	Last basis	20400	sampling	INTRODUCTION INCOME.
a mpi	Ring	and a	_	Muthod	19:302	2+ Part	CREADE LEASE	*7M07001
						-	-	
51. Vel.	Test I	arameters.	1 3	Almit	Results	TNPCB		
1	HI at 35.40	_	HE WART IN	at the subscription of the	-			2444 505
	Total Leave	nder Salida	10:3025 Pa	(17-1504 (Real) 101() m			2.58	1549
1	Total Denoi	yed Solicits	15:3025 Pa	15:1025 Part 16:1984 (Beath 2021)			510	7108
4.11	Chinides (A	et (7)	15-3025 Par	rt-J2-1908 (Neaff	2016)	1102/1	170	1800
5	Sulpitutes (0.505	15-3025 Pa	153025 Part-24-1986 (Reath 2019)			49	2306
6.41	not) 2 days	@ 27 PC	15:3025 Pau	T-44-1993 CRUME	2019)	surg/1	#DL(~7)	
-	COD		12-31725 PW	3025 Pwit-56-2006 (Reaff: 2017)			74	258
	Til In tafit and		15 3025 Par	15 3025 Part-79 1991 (Reaff: 2007) pig/			BDLECA)	
0	Gunrides (a	a #1	15.302274	1-33-2003 (BASH	100M)	1948/1	0.13	4314
	· THICKS	innus Tamil Nad	1 Polydich Carr	trai Biarri Narma a	limitanet 5	will be	the of towated a	All and inclusion
	matchained (here's	miganing ALH B	Marw Detection	Limit, DI, Detecti	nn Limit.	0422211	MR/TANIERS A	and the second second
				End of Repo	1			
			-22					
	rate 3	1201	100	1000	B (1)		5.1	ib is
-	university.	21	(Elm	111			9-5	Sharen -
Dham	ann	S Can	(m)	Y			A Hab	Soors Chimada
iy: Mu	n-liger	12	15	100			Tethn	iral Manager-
		SA	1					

12	William Children	first 1	ing show here in a specific specific sector of the local sector of		da ann		10-6106
15	-		-1-001.002-00001 a llio	24 110	1	Charles and Long	
-			material and			(10) (10) (10) (10) (10) (10) (10) (10)	
NU YOU			THE HEROLET	8			
	Th Dy Ar	e Ramoo Genner riyaruugdar Lim taalar Districe	rt Limicort, wistome Minas,				
enutri	Sumber	ARCTL/202	1/01/09643-09844				
impli	Drawn by	1 MICTectes	Labsindia Private Limbodi				
ampte	Description.	Sel (pullity of	Non-HEARD CHURCHWAR	with 12H Genu	ial Net 3/VZ	-	
and of	Tally Deg	18.08.2903		Data of Carnys	etine ()	84.89200	3 .
	Automation .	14.05.39.19		Report Date	-	1249300	8
_	on approx			cage our	4.5	1191	
il Nec.	h	Carles .	Protocol (RL)	- tim-	Quest Hell	218.3 Lang	Security August
4	IN INCOME.		1720-809-24	24	140		3848
3	Envirant Con	ductorig	14767	100/646/01	148	3.94	5343
3	Fature Mult	are Georgeal	2728-2629-2	<u>h</u>	-25.6.	.6.1	1.0
-	Provide Cardia		1798-84543	- 19		245.	- 24.75
	tiregra		Lange - Long		8.81	6.611	3494.82
-	Pacipiantus	-	Alt Crapters			1,000	1000-000
1	Dealling Tax II	1. Contract (1. Co	Table borner 1		44	1.000	. 2411
1	Cantain Auril	0	Tab/General /	1111		110	
88.1	114	a Nuo	Jeff Logos L	carbo.	. 90		
.11	Chiertaine (ee	00	AND TAXABLE IN A REPORT OF LANSING MADE	7,810	186	12000	10
. 63	Automa las	NL(I)	2720 0	2,010	139.	470	1.0
13	Cirian Fachan	as Caulty	3720-Perr-34		384	25.6	16.3M
.14	Build Dentity		Emps/0.643	4748	1.18	1.39	1.1
15	Ashibile Wo	in Distage Laurence	MCCONTRACTOR RELIES.	4	09	144	1
15	Subset Aber	hig Role .	MUNICESSIA AND	1-14-1	1111	1.00	-13
	1. Description	ing to Bigh Period in					
70	Alfa de la	(all all			3	. O.J.X.	en Chiamhdu

化一即托

ABC Techno Labs India Private Limited

AND TOWER WARE, CARD REPORT, FOCUS Holdward Review - North Press, Arrhablut, Ormitel (60) 000, Tamili ana, 1903A. Ph 1 412-44-2625 1788 2 99, 485 16483 107803 / 1/4681 87713

Kala Philus Listing

Doill the gate is choused usin / Will: www.atatashreliat.com

USE AD TO

TIST REPORT

The Rainco Cement Limited, Periyanagalar West Limestone Mices. Ariyalur District.

Report Nonmer	ANCTL/2023/05/10388
Sample Drawn by	 ADC Technik Labs 2ndia Petrate United
Sample Description	AVAilabet AV Quality Manur during: First Holf Yearty - April September 2028
Sangdag Method	455U82 Part 5 & 14

	Weater Clear		and the December of	in normality	Pressured veves the ray 10:00 Mit (10:00 km)				
_	- Satuta	44	Unit	PHLS		30,	No	「研	Two P
(#C		Pressual		2008-80P	Aut 23	111歳	76.53G Patri	83182 Percit	- 355FE +u122
	Old Zee								
. 8	Monsi Office.	Lage	- 16/10	.17.01	. 89-27		9.12		THU.
_		imput.			44.3	-8.6	11.8	2617	#00
Ŧ	Quereroughies -	Narge .	- 32	40-64	34.78	241		#111."	- HIL
-	- semmer -	time 1		10.00	11.7	11.71	11.00		
T	Steel Hoats	Reg.		261	127.0	11-11	100	ATL	
		line	Landar -	100		3.10	11.10	840 F	1000
	Listing Wes	Birth .	- 10.0	251	10.0	14	11.5	800.*	304
_	Bully 2 and						1440		
		fine	and and	19.35	72-61	1.0	2.12	-	1 BOLL
- X	Kelmulikate -	Million	12.00	178	34.2	32	4.5	ALC: N	BDC*
	THE REPORT OF	tem	4470	11-23	10-47	5.8	831	851.+	SD.
	Noticestrum.	992-8	64.70	14.8	162	24	4.8	805.4	ant.
1911	WORKS STOR	Reage	10/101	19-80	:40.16	5.11	31.15	REL*	40.4
×	man/bowhut	Manar	rg/el	28.9	48.9	.61	313	HOLE	HDU*
100	Windowski (1)	Lour	10/01	33.39	1000	.912	17.15	HEAP	HIL!
	Appendiance Said.	Malate	10/07	108	1008	316	156	1113.*	821.*
181	Whitemannes	Kangn	16/97	100.50	15-49	3.8	10421	BES.*	801.*
-	woonagaran	These	14.44	1993	41.5	-84	38.0	HOC*	800*
4	Refugiered in	Xoran	34747	新日	35/44	24	- 手枯	100,*	8.84,*
-		Heat	10747	180	367	7#	81	HOCP	1104.*
	Range for the Vision?		100	33(4)	21.09	16.63	7.67	HELP	tunn."
	Andrea Ni Qually State	electricities 1	10/67	24.8	482	1.5	41.0	BER.*	HDU*
111.	HARD Room + 18,724 88/1		(anim)	60	. 300	80	80	2000	1.8
20 Marine		Channal a	Harris (2) Harrison Harrison	And And			1. 	Ration	Chinese Chinese
1.1.1.1.1	- 18	(same / 5/		Concession of					

where I farming the set of the set of the set of the ليتقاضا

The Ramoo Comment Limited. Pertynenapplic Went Limited. Anyohirr District. Sample Drovet by 1 400/T0_27823/un/199800 Date of Recepts 1 100/2021 to 12/00/2023 Date of Recepts 1 100/2021 to 12/00/2023 Date of Recepts 1 100/2020 to 12/00/2023 Date of Recepts 1 100/2020 box Ref Time (2200/2020 to 200/2020) Page 1 74 1 100/2020 box Ref Time (2200/2020) to 200/2020 Sample Drovet by 1 100/2020 box Ref Time (2200/2020) to 200/2020 Sample Drovet by 1 100/2020 box Ref Time (2200/2020) to 200/2020 Sample Drovet by 1 100/2020 box Ref Time (2200/2020) to 200/2020 Sample Drovet by 1 100/2020 box Ref Time (2200/2020) to 200/2020 Sample Drovet by 1 100/2020 box Ref Time (2200/2020) to 200/2020 Sample Drovet by 1 100/2020 box Ref Time (2200/2020) to 200/2020 <t< th=""><th></th><th>The Ramoo General A Duriyanagalar West Ariyahar District.</th><th>Limited.</th><th>STATES OF TAXABLE</th><th>18</th><th></th><th>ALC: Sanda</th><th>all of the second</th></t<>		The Ramoo General A Duriyanagalar West Ariyahar District.	Limited.	STATES OF TAXABLE	18		ALC: Sanda	all of the second	
Appart Namber 1 AMCTICZEDSYCK/WEME Simple Drawe by 1 AUC Techne Lake Indu Private Limited Simple Drawe by 1 Note Levels - Quarter III, ZDES Date of Simpling 1 Note Levels - Quarter III, ZDES Date of Simpling 1 Note Levels - Quarter III, ZDES Date of Simpling 1 Note Levels - Quarter III, ZDES Date of Simpling 1 1 Note Levels - Quarter III, ZDES Date of Simpling 1 1 Note Levels - Quarter III, ZDES Date of Simpling 1 1 Note Levels - Quarter III, ZDES Part of Simpling 1 1 Note Levels - Quarter III, ZDES Simple Drawe 1 Note Levels - Quarter III, ZDES Part of Simpling Simple Drawe 1 1 Note Levels - Quarter III, ZDES Part of Simpling Simple Drawe 1 1 Note Levels - Quarter III, ZDES Part of Simpling Part of Simpling Simple Drawe 1 1 1 Note Levels - Quarter Simpling Part of Simpling Simple Drawe 1 1 1 1 1 1 1				Mines,					
Sample Browsh by 1 ADC Tricking Laboration Limited Sample Browsh by 1 Summe Layels - Quarter HL 2013 Date of Sampling 1 1.0.08.2023 to 17.00.2023 Bate of Sampling 1 1.0.08.2023 Bate of Sampling 1 1.0.08.2023 Bate of Sampling 1 1.0.06.2033 Bate of Sampling 1 1.0.06.2033 Bate of Sampling 1 1.0.06.2033 Bate of Sampling 1.0.06.2033 Bate Sampling Could be sampling 1 Sampling Sampling 1.0.06.2033 Bate Sampling Could be sampling 1 Sampling Sampling 1.0.06.2033 Bate Sampling 1.0.06.2033 1 Sampling Sampling 1.0.06.2033 Bate Sampling 1.0.06.2033 1 Sampling Sampling 1.0.06.2033 Bate Sam	Report N	attiber	ANTL	1111/11/1	uum -				
Sample Beinggans Notes Levels - Quarter III, 2023 Sample Beinggans 1 10.08.2023 to 17.06.2023 Bare of Receipt 1 10.06.2023 to 17.06.2023 Bare of Receipt 1 10.06.2023 to 17.06.2023 Bare of Receipt 1 10.06.2023 to 17.06.2023 Figst 1 of 1 1 10.06.2023 to 17.06.2023 Figst 2 of 1 1 10.06.2023 to 17.06.2023 Figst 2 of 1 1 10.06.2023 to 17.06.2023 Figst 2 of 1 1 10.06.2023 to 17.06.2023 Sample Bare 1 10.06.2023 to 10.02.0020 to 10.0000 to 1	Sample 1	transit by	Alic De	chine Laber	hidia Phis	anti Lincia	101	1	
Date of Sampling 1 14.08.2021 to 17.00.2021 Date of Receipt 1 182.06.2023 Regrest Date 1 182.06.2023 Regrest Date 1 182.06.2023 Page 1 of 1 1 182.06.2023 State of Receipt 1 182.06.2023 Page 1 of 1 1 12.09.2023 Page 1 of 1 1 12.09.2023 10.0024 Page 1 of 1 1 12.09.2023 10.0024 Page 1 of 1 10.0124 10.012 10.012 Page 1 of 1 10.012 10.012 10.01 10.01 Page 1 of 10.0024 10.01 10.01 10.01 10.01 10.01 Page 1 of 10.0024 </td <td>Sample D</td> <td>Lini rigitani</td> <td>I Nume L</td> <td>evels - Qa</td> <td>arter SIL /</td> <td>NOTS .</td> <td></td> <td></td>	Sample D	Lini rigitani	I Nume L	evels - Qa	arter SIL /	NOTS .			
Date of Receipt 1 182.05.2573 Regrest Date 1 12.09.2623 Page 1 Date Page 1 Date Date of Receipt Sector Receipt <td colsp<="" td=""><td>Datents</td><td>HERE AND A</td><td>15.04.2</td><td>9231=17/</td><td>06(2023</td><td></td><td></td><td></td></td>	<td>Datents</td> <td>HERE AND A</td> <td>15.04.2</td> <td>9231=17/</td> <td>06(2023</td> <td></td> <td></td> <td></td>	Datents	HERE AND A	15.04.2	9231=17/	06(2023			
Page 2.042	Dute sit R	nongit.	18.06.2	023					
Number Number Number 1 Statution	Report D		+112.99.2	023	_			Parent 1 and 1	
Here Here Here Here 12. No. Lancalant Hary Time (Doldh).22.00 (ex.) High Time (Z2:00 Cabdo) (ex.) 1 Ourny Tingu 35.8 47.4 47.2 51.8 44.5 1 Ourny Tingu 35.8 47.4 52.8 62.3 62.7 42.5 3 Ourny Tingu 35.8 47.4 56.7 62.3 62.3 62.3 62.3 62.3 62.3 62.3 62.4 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.								CHERNEN	
SL. Nu Location: Tay Time (DidM-22 M/Lies.) Hight Time (Z2 00 20400)(es.) 1 Guarg Tripe 35.8 47.6 47.2 58.8 44.5 2 Location: Mill 40.8 48.2 38.1 44.5 2 Location: Mill 40.8 48.2 38.1 94.1 44.9 3 Fault Read 31.2 48.8 49.4 48.8 48.3 3 Fault Read 31.2 48.8 49.4 48.8 48.3 4 10.2 48.8 49.4 48.8 48.3 48.3 3 Fault Read 31.2 48.8 49.4 48.8 48.3 5 198.6 54.7 32.8 81.8 48.8 5 198.6 198.7 32.8 198.7 38.8 4 198.7 198.7 39.7 38.8 38.8 4 198.7 198.7 39.7 38.8 38.8 5		0.03.0.00	-		Surpe 1	ero. IF(I)			
Image: Control of the second of the	52.8u	Lacation	fuy Tie	u (bi at 22	Mikes)	Hight	line (22:011-0	16-00 lives.]	
1 Owner Traje 75.8 67.4 67.7			. Losie	Lease	1.05	Loss	1.7585	5.eg	
1 Linding Aces Hi / ALR HE / HE / <td>1.1.</td> <td>Quarty Targe</td> <td>358</td> <td>87.4</td> <td>42.2</td> <td>81.5</td> <td>812</td> <td>41.5</td>	1.1.	Quarty Targe	358	87.4	42.2	81.5	812	41.5	
3 Total Read 31.2 88.8 81.4 81.8	1	Lostling Arts	85.5	40.8	18.2	38.0	94.7	41.9	
6 768 Cruder 31.8 94.7 32.8 81.8 44.8 Balance Blance Are R best Engineurs 0.0 0.0 0.0 0.0 Fuller Total 10.8 10.9 10.9 10.8 10.8 10.8 Fuller Total 10.8 10.9 10.9 10.9 10.9 10.9 10.9 Suffic Total 10.8 10.9 1	3	Caul Book	35.3	354	154	141.8	10.2	41.0	
Bisturies 03 05 Suffer Tune 5 Pricessinguine 03 05 05 Suffer Tune 5 Pricessinguine 043 045 046 046 045 Suffer Tune 5 Pricessinguine 041 047 047 048	5	758 Craher	32.8	\$4.2	\$3.7	32.8	8.8	45.8	
Public Test 5 Primanageliar 318 63.7 82.8 91.6 81.8 28.8 6 V Samanti 34.1 29.7 32.2 35.4 56.4 44.8 7 Spin_Historypent 32.8 61.7 42.2 31.2 79.7 38.8 3 Mad3 Warrage ⁴⁴ 1 55 - 15 Sumpling & Test Mathed: 00 9000 (Maralli 2014) ***********************************	Districtives	Namer Aur II Beis Klapsburg	1		03		4	05	
5 Pressnagelier 32.8 83.9 82.4 91.6 82.8 38.8	Public For	wi :	<u> 2</u>			S			
b V Summitt 34.1 29.7 32.2 65.6 56.4 42.8 7 Springelaggenit 32.8 92.8 92.2 39.7 38.8 42.8 7 Springelaggenit 32.8 92.8 92.2 39.7 38.8 MadD Warwar ⁴⁴ - 58 - 95 Summpling & Trace Manuary of the enverse of the SPOID 10001 (ReadB1 20014) - 95 95 ** Undefinite Summer Manuary of the enverse of the SPOID 10001 (ReadB1 20014) - 95 95 ** A starting bad code of BL200(R) only for out at the first bade only Starting bad near the cognition of the Arm. -	5	Personapellar	328	107	42.4	9.6	#L#	38.8	
X Specify Surgeon SUP SUP 42.5 SUE 75.7 SUR Mod2 Warrang ¹⁰⁰ - 55 - 15 - 15 Sampling & Tool Mathod: UV 9905 1991(Acadl: 2014) - 55 - 15 - Heldelit: Survey information from second, Mathod: UV 9905 1991(Acadl: 2014) - - 15 - Heldelit: Survey information from second, Mathod: UV 9905 1991(Acadl: 2014) - - 15 - Heldelit: Survey information from second, Mathod: UV 9905 1991(Acadl: 2014) - - 15 - A survey from second information from second Mathod: UV 9905 1991 (Acad. Compton before the second in between Upped acad. A framework of the second second Hill per anal Nath time to restrict the component of an Africanting importance of second second Hill per anal Nath time for the second second from Africanting importance of second second from the second second from the second second second from the second second from the second second second from the second second from the second second from the second second from the second second second from the second second from the second second from the second second from the second second second from the second second second second second second from the second secon		V Suikate	- 241	297	32.7	10.4	-50.4	41.8	
Madd Wanneg ⁴⁴ Si Some plane Some	. <i>L</i> .	Notice Stationary and	20.5	.917	42.2	312	397:	38.5	
Sampling & Test Mathed: (D. 9905-1991)(Reaff: 2014) - Half MIZ Norte Materia of the evenesity Arrists & Cause Congregation Read Status (Leg) for based and heat Bay there is added to be seen to an over 10 per seen Wight there is no based to be been with the congregation of an ad anothing important - A base range task and to the 2004 per seen Wight there is no based to be been with the congregation of an ad anothing important - Read of Reports		Med2 Konky ^{an}			- 54	-		- 15	
state ? (i (incert) i)	Annual and Annual Annua	A Track Matchard: Ex 99895 South and in balance of a south a solution of the south and the south have expenses. 2 2 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	1981(theat)	2014) and Tange Area and Tange Area Seden which a of Report		Antiba (Long) - renes 17 p.m. m At las composition	te besteren ut en de na de nor 3. J		
A MALE THE REPORT OF A MALE AND A	anne -	1200	1				T	rchnicul Mana	
ani A Bulleton Ch Strepter	Stillinger:								

			1995					
	Tam As	il Nadu ubient A	Pollut ir Qua	ion Co lity Sur	ntrol Bo ex Repo	urd ti		
Rep	ort Not07/AAQS/20	23-2024 1	hited: 1	1.05.292	4			
	une and Address of ute of Survey autions of Survey autions	the India	ny M Pi A A I I R	Us The Ro riyanaga riyahar T riyahar T riyahar D 2.04.2023 ight Hom red Medu	ianșo Cen lur Linies far Volagi bido, fotrict i ri an	ents Liff. estorse M	live	
Ami	Sent perature (°C)	Ma	Max	Belative Humidity (75)			Min	May
27		27	36			32	68	
Weather Condition Cl Predominant Wind NE (Direction			o SW Kain Fall (mm) Mean Wind Speed (Km/hr)				SCH1-	
West Pred Dire	dher Cenditian Ionninant Wind Wind	NET	eir o SW	Kam Fi Mean V (Km/hr	Vind Spee)	d .	4.2	km/hr
West Peed Dire	iller Condition fominant Wind whot	NH1	ear o SW	Rain Fa Mean V (Km/hr	(in (utar) Vind Spee) aree	d Poilu	4.2 tauts in	kan/hr pa:/m
Wea Peed Dire Si No	ther Condition fominant Wind ction Location of Samp Stations	NH 1 Iong	eur o SW Dire.	Bain Es Mean V (Km/hi run Su Dist. (m)	Vind Spee) irree Ht. from gl (m)	d Pollu PM ₁₈	4.2 tauts in SO ₂	km/hr pg/m NO
West Pred Dire Si No 1.	Iber Condition fominant Wind ction Location of Samp Stations On the top of sent year View Point	Ing Telding	eur o SW Diee. NE	Rain Es Mean V (Km/hr Trom Soo Dist. (m) 325	Vind Spee) urce Ht. from gl (m) 2.0	d Pollu PM ₁₈	4.2 tants in 80 ₂ 12.0	km/hr pg/m NO
Wea Peed Dire \$1 No 1.	Iber Condition fominant Wind ction Location of Samp Stations On the top of sent tear View Point On the top of sent tear SI, beandary	Ing folding folding of Minco	epr o SW Dire. NE SE	Rain Es Mean V (Km/hr runn Soo Dist. (m) 325 150	Vind Spee) arce Hu. feam gl (m) 2.0	d Pollu PM _{il} 69 72	4.2 fants in SO ₂ 12.0 13.9	km/hr pg/m NO 14.3 (3.3
Wea Peed Dire SL No L 2 L	Iber Condition fominant Wind ction Location of Samp Stations On the top of sent tear View Point On the top of sent locar SI, beandary of Sear SI, beandary of On top of sentialdi Main Office	Ing Tolding Tolding of Mines ng near	ear o SW Dire. NE SE SW	Rain Es Mean V (Km/hr From Soc Dist. (m) 325 150 400	Vind Spee) urce Htt. from gl (m) 2.0 2.0 2.0 3.0	d Pollu PM _{in} 69 72 79	4.2 fants in 80; 12.0 13.9 [1.7]	km/hr pg/m NO 14.4 (3.3 (3.4

Environmental Sejectist,

Auditant Directory, AFL, TNPCII, Trichy-15.

Tamil Nadu Pollution Control Board

Ambient Noise Level Survey Report of Analysis

Report No: 07/AAOS/NL/2023-2024 Dated:11.05/2023

1 2,	Name of the line Address of the	Builty Industry	Mix The Ramoo Coments Ltd. Permanagalar Limes stenic Mine, Periyanagalar Village, Ariyalar TK, Ariyalar District.		
(#.).	Date of Sarvey	2	27.04.2023		
1	Category		Red/Medium		
Type	Type of Survey Ambient		Linic of Survey	Day	
Mataonike ical Conditions		Cal	#11		

Logging Parameters					
Instrument Undd	Ciracilu	Serial No.	0199485		
Logging Interval	10 Minutes in each Philai	Measuring Hange	55-110dB(A)		
Weighting	*A**	Time Weighting	Fitst		
Sound locidence	Random	Time of Survey in Hits.	19,00 to 11,30Hs		

104		(America)	Weiterself.		Sound Level		dB(A)
No	Location	(m)	(m)	Direction	1 ₉₆₃	(June)	1 sea.
i.,	Near View Point	30	328	SNE)	36.2	42.5	319
2.	New SE Boundary	10	350	51	31.9	49.8	56.7
90	Near Security Office	300	350	S	46.7	42.6	-57.8
4	Near Main Office	10	400	sw	46.8	42.2	343
3	New Mines Office.	3100	(260))	sw	-5435	-19.9	:59.6

1.7 101/25

Environmental Scientist,

-25 Assistant Director. AEL, TNPCB, Trichy-14.

7.0 Additional Studies

7.1 Hazards Identification & Risk Assessment

Hazards Identification & Risk Assessment (HIRA) is the Tool to identify the potential Hazards due to the proposed activities and assessment of the Risks to propose the Emergency Preparedness Plan (EPP). There is no storage of Hazardous Chemicals in the Quarry and thus, no Modelling is warranted. The Potential Hazards that could have impacts during Operation Phase are given in **Table 7.1**.

Potential Hazard	Probable Impact
Manmade :-	
Accident due to	Can occur at any time during the Mining.
Mining Activities	
Natural :-	
Natural Calamities	Can occur at any time.
Others :-	
Medical Emergency	Can occur at any time during the Operational Phase.

Table : 7.1	Potential	Hazards	due to	Proposal
-------------	-----------	---------	--------	----------

7.2 Emergency Preparedness Plan

The hazard scenarios were risk ranked using the Risk Matrix (R) are shown in Table 7.2.

	Risk				
Potential Severity	Low (1)	Medium (2)	High (3)	Continuous (4)	
Major (4)	2.5	3.0	3.5	4.0	
Moderate (3)	2.0	2.5	3.0	3.5	
Minor (2)	1.5	2.0	2.5	3.0	
Negligible (1)	1.0	1.5	2.0	2.5	

Table : 7.2 Risk Matrix (R)

The Mining operations are ranked in Low-Major Risks with Score of 1-4. It shall be ensured that engaged Personnel are aware of the Hazards involved and are trained in responding to the Disasters. **First Aid Kits and Medical Supplies** should be maintained at the Lease. All personnel shall use **Personal Protective Equipment (PPEs)** like Safety Shoes, Helmets, Safety glasses, etc. They should be trained in Safety Procedures to ensure that accidents and injuries are minimised. Government Hospitals in the vicinity will be used for any Medical Emergencies.

7.3 Disaster Management Plan

The proposed Disaster Management Plan (DMP) for the Risks involved in the Mining Operations are listed in **Table 7.3**.

SI. No.	Factors	Causes of risks	Control measures	
1	Removal of Top Soil & O.B	a) Top soil bench may slide due to its unconsolidated nature.b) Vibration due to movement of vehicles in the O.B benches	Bench height is 8 m and Width is also maintained at 8 m or more. Adequate Bench Slope will be maintained. OB Dump Slope will be maintained <28° without disturbing its own angle of repose.	
2	Drilling	a)Due to high pressure of compressed air hoses may burst b)Drill rod may broken due to improper maintenance of the rod	Preventive & Periodical maintenance as well as replacement of worn-out accessories are being carried out in the Compressor and Drill Equipment. The rods & bits are being replaced as per manufacturers recommendation.	
3	Blasting	a) Fly rock, ground vibration and noise etc.,b) Improper charging of explosives	Optimum Burden and Spacing are being kept. Explosive Charge per delay is being kept optimum.	
4	Excavation of Ore	a)Hauling and loading equipment are in such proximity while excavationb)Swinging of bucket over the body of tipperc) Driving of un authorized person	Operator will not operate the machine when person & vehicles are in close proximity Will not swing the bucket over the cabin and operator leaves the machine after ensuring the bucket is placed on ground Will not allow any unauthorized person to operate the machine by effective/strict supervision	
5	Transportatio n of Ore	 a)Operating the vehicle "nose to tail" b) Overloading of material c) While reversal & overtaking of vehicle d) Operator of Tipper leaving his cabin when it is loaded 	It is ensured that all these causes will be nullified by giving training to the operators No over loading is entertained. Audio visual reverse horn is provided.	
6	Fire due to electricity and Oil	 a)Due to the short circuit of cables & other electrical parts b) Due to the leakage of inflammable liquid like diesel, oil etc, 	All electrical parts are being cleaned frequently with the help of dry air blower All fastening parts and places will be tightening.	
7	Natural calamities: Water Inundation	 a) Inrush of storm water due to heavy rain. b) Unprecedented opening of dam in the upstream of the River. c) Unusual seepage of water from River side. d) Sudden collapse of peripheral bund due to torrential pour. 	Adequate pumping will be provided to handle the situation. Emergency Preparedness Plan is in force. Guard is kept for continuous watch on water level and it touches danger mark, warning siren will be there. Mine workers will be withdrawn from the Mine via the shortest route.	

 Table : 7.3 DMP Measures

			Work will be resumed only after all working places are thoroughly examined by a competent person and with prior permission of Mines Manager.
7	Natural	Unexpected happenings	The mine management is capable to
	calamities		deal with the situation

RCL management is able to deal with the situation efficiently to reduce confusion keeping in view of the likely sources of danger in the mine. In case of eventuality and sudden occurrence of abnormalities during mining activity leads to any danger for persons and machinery in the mines, the following person will be coordinating to restore the normalcy of the situation.

Mr. Madhusudhan Kulkarni Sr. Vice President (Mfg.) The Ramco Cements Limited, Govidapuram Works, Sendurai Road, Ariyalur District Ph.No. : 04329-294400.

Outline of Disaster Management Plan : The purpose of disaster management plan is to restore the normalcy for early resumption of mining operation due to an unexpected, sudden occurrence resulting to abnormalities in the course of mining activity leading to a serious danger to workers or any machinery or the environment

System of communication: RCL has an internal communication system for the department head and to their line of command with telephone. And also we are having the telephone Nos. and addresses of adjoining mines, rescue station, police station, Fire service station, local hospital, electricity supply agency and standing consultative committee members.

Consultative Committee: A standing consultative committee is formed under the head of Mines Manager. The members consists of safety officer / medical officer / Asst. manager/ public relation officer/ Foreman/ and environmental engineer.

Facilities & Accommodation: Accommodation and facilities for medical centre, rescue room and for various working groups will be provided.

First Aid & Medical facilities: The mine management is having first aid / medical centre for use in emergency situation. All casualties would be registered and will be given first aid. The centre will have facilities for first aid & minor treatment, resuscitation, ambulance and transport. It has proper telephone / wireless set for quick communication with hospitals where the complicated cases are to be sent.

Stores and equipment : A detailed list of equipment is available with its type & capacity and items reserved for emergency.

Transport services : A well defined transport control system is provided to deal with the situation.

Functions of public relations group: To make a cordial relation with government officials and other social service organization and working groups. To liaise with representatives of the mine to ameliorate the situation of panic , tension, sentiments , grievances and misgivings created by any disaster. To ameliorate the injured, survivors and family members of affected persons by providing material, moral support and establishing contact with relatives of victims.

Security :- Manning of security posts.

Catering & Refreshment:- Arrangement to be made for the victims, rescue teams and others.

Care and maintenance during temporary discontinuance: If the mine will be discontinued temporarily for more than 90 days, notice will be given 105 days before the date of such discontinuance to the concerned authorities. During discontinuance period safety arrangement and fencing will be provided to avoid the entry of unauthorized persons. The accessibility to the mine from the surface will be prevented by providing fencing arrangement.

Emergency Plan:

- On realizing anything serious will be happened anywhere in the mine, immediately inform the nearest mining official
- On being informed about the emergency, it will be verified for the correctness of information and telephone in particular to the Manager and other part of the mine and managers of adjoining mine so that persons may be withdrawn.
- On receiving information of emergency, intimation will be sent to the consultative committee which is already formed. Shift in-charge will ensure that all the materials and transport system to deal with emergency situation.
- First aid facilities to be ready to receive the cases.

Emergency Response Organization : Following Officers of the mines will be responsible for co ordination in case of emergency situated in any section of the mine.

PersonResponsibilityHead of the department/Mine AgentSite ControllerShift In charge/Section In chargeAccident Controller/ Communication officerEmployee who gives the first information about the Primary ControlleraccidentP & A Dept. (HOD)Liaison officer

Capability of Lessee: Following facilities are available at RCL Mine :

Public addressing system Telephones/ Mobile handsets Runners/messenger Emergency alarm Fire fighting equipments & accessories with trained manpower Full fledge dispensary at RCL Plant Training centre Fire tender, Ambulance.

Facilities available outside RCL : Government Hospital at Ariyalur.

The possibility of 'Offsite Emergency' situation are ruled out as RCL mine is not likely to pose any offsite emergency and hence does not call for any preparation of an off-site emergency plan.

8.0 **Project Benefits**

Environmental Benefits : The proposal ensures the continuous limestone supply to the Cement Plant. Effective utilization of the Mineral for Cement manufacturing is a Mineral Conservation Measure.

Financial Benefits : The Project Cost is **Rs.9.00 Crores**. As per MMDR Act 2015, 30% of Royalty Amount of **Rs.38.04 Crores will be earmarked for District Mineral Foundation (DMF)** and the amount will be spent for benefit of local villages in the Lease Area.

Social Benefits : Project employs about 33 persons directly and 50 persons indirectly. About **Rs.21.00 Lakhs** has been allotted as **Corporate Environmental Responsibility (CER) Budget** in compliance with MoEF&CC OM dated 01.05.2018. Also, DMF amount of Rs.38.04 Crores will be contributed.

The direct and indirect employment, CSR/CER activities, etc., will have a positive impact on the Socioeconomic Structure of the area. The Proposal will be beneficial and important to the Society and the Country by way of :

- Royalty to the Exchequer.
- Improved local and regional economy.
- Direct and indirect employments.
- Improvement in direct and indirect means of livelihoods of local population.

9.0 Environmental Cost Benefit Analysis

Cost Benefit Analysis is not applicable for the Proposal as there is no forest land is envisaged for the Project. Also, it was not awarded during the Scoping Process.

233

10.0 Environmental Management Plan

Environmental Management Plan (EMP) is suggested to mitigate the possible negative impacts that may be caused to the various attributes of environment due to the proposed mining operations.

10.1 EMP for Construction Phase

Being Existing Mine, there will be no Construction Phase for the Project.

10.2 EMP for Operation Phase

Mining operations will be carried out scientifically as per approved Mining Plan, stipulated EC & CTO Conditions, IBM Approvals, DGMS Norms, etc. EMP Measures for Operation Phase are proposed below :

10.2.1 Land Use

- No Blastings shall be carried out during night times and overcast conditions.
- Vibration Studies/Monitoring has to be carried out whenever Blastings are carried out.
- Vibration Parameters viz. Peak Particle Velocity (PPV) and Noise Levels during Blastings shall comply with DGMS Norms for Residential Areas.
- There will be no Solid Wastes Dump in the Lease at Conceptual Stage.
- OB in dumps may be gainfully utilized for reclaiming the mined out voids.
- Backfilled Mine Voids are to be Afforested with local Tree species and Reclaimed early.
- Maintenance of garland drains around the Lease boundaries has to be carried out periodically.

10.2.2 Traffic Impact

- Regular wetting of haul roads has to be undertaken to arrest the fugitive emissions.
- Tippers are to be fully covered with Tarpaulin to avoid any spillage on transportation.
- No overloading of Tippers is allowed strictly.
- A strict Speed Limit of 30 km/hr. has to be enforced and monitored continuously.
- Compliance to 'Pollution under Control' Certification has to be ensured for the Tippers which has to be checked periodically.
- Restriction of Truck parking in the Public Road has to be implemented.
- Regular and preventive maintenance of transport vehicles has to be ensured.
- Effective Green Belt with thick foliage has to be developed and maintained.
- Security Guards are to be placed at the Public Road-Mine Haulage Road Junction to handle the inward and outward vehicles.

10.2.3 Air Environment

- Controlled Blasting has to be carried out and during day times only.
- No Blasting is carried out during overcast conditions.
- Water sprinkling on the Mining areas, loading point, haul roads, etc. has to be carried out.
- Covering of Trucks/Tippers with tarpaulin shall be ensured during Mineral transportation.
- Over loading of Tippers has to be avoided to control the spillages during transportation.
- Periodical maintenance and replacement of worn out accessories in the mine equipments.
- Tippers are to be maintained periodically.
- Periodical check up of vehicles for 'Emission Under Control' Certificate is to be ensured.
- Effective Green Belt with thick foliage has to be developed along boundaries and haul roads.
- Periodical Air Quality Monitoring shall be carried out and Reports submitted to the Authorities.

10.2.4 Noise Levels

- The noise and vibration generated due to the blasting operations shall be kept well within the limits by using milli-second delay electric detonators and by using Non-electric initiation system of blasting which completely eliminates air-blasts and thus reduces noise due to blasting.
- Deploying mining equipments shall be with in-built mechanism for reducing noise.
- Provision of silencers to modulate the noise generated by the machines.
- Providing sound proof operator's cabin of equipments.
- Provision of ear muffs/ear plugs to the workers in higher noise zones.
- Green Belt with thick foliage along roads and around lease boundary will act as acoustic barriers.
- Periodical Noise Monitoring shall be carried out and Reports submitted to the Authorities.

10.2.5 Water Environment

- The increased Mine Pit Water has to be utilized gainfully by increasing the supply to nearby Villages for Domestic Consumption as well as to agricultural activities nearby as in the current practice.
- Mine Pit Water shall not be directly discharged without ensuring its quality.
- Ground Water NOC for Dewatering has to be obtained/renewed from SGWA/CGWA Authority.
- Periodical Monitoring of Water Level Data from existing Piezometer and nearby Wells in the vicinity has to be carried out along with the water quality.
- Effective Afforestation in Backfilled Areas, with native species, is to be done.
- Garland Drains and Settling Tanks are to be maintained and desilted periodically. The desilted quantity from the Garland Drains has to be used for Green Belt/Afforestation.
- Ground Water Levels and Water Quality are to be periodically monitored at the identified Borewells & Dugwells in the Mine vicinity.

The monitored Water Quality data are to be periodically submitted to the IBM and with halfyearly Compliance Reports to SEIAA-TN & Regional Office, MoEF&CC, Chennai.

10.2.6 Biological Environment

- Effective Green Belt has to be developed and maintained, with the guidance of DFO, with about 90% Survival Rate.
- Native species shall be preferred for Green Belt development.
- Fruit bearing trees may also be preferred.
- Afforestation in backfilled & reclaimed areas shall be undertaken.
- Through the process of photosynthesis, plants assimilate carbon and return some of it to the atmosphere through respiration. The carbon that remains as plant tissue is then consumed by animals or added to the soil as litter when plants die and decompose. The primary way that carbon is stored in the soil is as *soil organic matter (SOM)*. SOM is a complex mixture of carbon compounds, consisting of decomposing plant and animal tissue, microbes (protozoa, nematodes, fungi, and bacteria), and carbon associated with soil minerals. Carbon can remain stored in soils for millennia, or be quickly released back into the atmosphere. Climatic conditions, natural vegetation, soil texture, and drainage all affect the amount and length of time carbon is stored.

10.2.7 Social Measures

CSR activities shall be carried out by providing social and welfare measures for the local residents and nearby villages around the mine area. The prime focus will be on the creating and maintaining of drinking water facilities for the students at the nearby Government Schools, establishing toilets especially for girl students at the schools, setting up of computer centres, maintenance of village roads & ponds, providing solar street lights, conducting free medical camps, etc.

- Joining Hands with District Administration in implementing Govt. Schemes.
- Development of Infrastructure Facilities in the Region.
- Medical Camps and extending medical facilities.
- Contribution to Education.
- Drinking Water Supply.
- Budget for covering Public Hearing issues will be included in EMP Budget.
- As per MMDR Act 2015, 30% of Royalty Amount of Rs.38.04 Crores will be earmarked for District Mineral Foundation (DMF) and the amount will be spent for benefit of local villages.

10.2.8 Occupational Health Measures

- All employees are to undergo Medical Check-up on recruitment and periodically during employment. Maintenance of Pre, during & Post Employment Records are to be kept for periodical review.
- Standard operating procedures for all operations with respect to occupational safety and health are to be in place.
- Required Personal Protective Equipments for the Mine employees are to be provided.
- Provision of ergonomically designed seats for drivers/operators has to be ensured.
- Provision of illumination facilities are to be made at proper places of mines for ease of working during night times.
- Work comfort and its periodic review by a Committee is to be ensured.
- Provision of Rest Shelters at Mines has to be made.
- Provision of cool drinking water to employees has to be made.

10.3 Plastic Waste Management

There will be **ban on one-time use and throw away Plastic** usage in the Lease. Encourage the use of eco friendly alternatives such as banana leaf, areca nut palm plate, stainless steel glass, porcelain plates / cups, cloth bag, jute bag etc.

10.4 EMP Budget

The Project Cost is **Rs.9.00 Crores**. Proposed **EMP Capital Budget will be Rs.20,50,000/-** (excluding Budget for addressing PH issues) and **EMP Operating Cost will be Rs.11,27,750/- per Annum** (**Table 10.1**). As per SEAC Guidelines, Capital EMP Budget arrived is **Rs.6.70 Lakhs** and **Rs.11.27 Lakhs per Annum** as **EMP Operating Cost (Table 10.2)**. Galvanium sheet fencing will be erected for distance of 150 m with a height of 3 m along SH-139 at a cost of **Rs.13.80 Lakhs**. Also, an amount of Rs. 3.00 Lakhs per Annum has been earmarked for Occupational Health & Safety Measures.

Cost for	Capital Cost, Rs.	Recurring Cost, Rs.
EMP Budget as per SEAC Guidelines	6,70,000	11,27,750
Galvanium sheet fencing along SH-139	13,80,000	-
Total	20,50,000*	11,27,750

Table : 10.1 Proposed EMP Budget

* - Budget for addressing PH Issues will also be included in the EMP

	Provision for Implementation	Canital	Becurring	Total for Quarrying	
Mitigation Measure		Cost, Rs.	Cost, Rs.	Capital Cost, Rs.	Recurring Cost, Rs.
Compaction, gradation and drainage on both sides for Haulage Road	Rental Dozer & drainage construction on haul road @ Rs. 10,000/- per hectare; and yearly maintenance @ Rs. 10,000/- per hectare	10,000	10,000	22,500	22,500
Fixed Water Sprinkling Arrangements + Water sprinkling by own water tankers	Fixed Sprinkler Installation and New Water Tanker Cost for Capital; and Water Sprinkling (thrice a day) Cost for recurring	8,00,000	50,000	Own Tanker available	50,000
Air Quality will be regularly monitored as per norms within ML area & Ambient Area	Yearly Compliance as per CPCB norms	0	50,000	0	2,00,000
No overloading of trucks/tippers/tractors	Manual Monitoring through Security guard	0	5,000	0	60,000
Stone carrying trucks will be covered by tarpaulin	Monitoring if trucks will be covered by tarpaulin	0	10,000	0	1,20,000
Enforcing speed limits of 20 km/hr within ML area	Installation of Speed Governers @ Rs. 5000/- per Tipper/Dumper deployed	5,000	0	5,000	0
Regular monitoring of exhaust fumes as per RTO norms	Monitoring of Exhaust Fumes by Manual Labour	0	5,000	0	5,000
Regular sweeping and maintenance of approach roads for at least about 200 m from ML Area	Provision for 2 labours @ Rs.10,000/labour (Contractual) per Hectare	0	20,000	0	0
Installing wheel wash system near gate of quarry	Installation + Maintenance + Supervision	50,000	20,000	0	0
Source of noise will be during operation of transportation vehicles, HEMM for this proper maintenance will be done at regular intervals.	Provision made in Operating Cost	0	0	0	0
Oiling & greasing of Transport vehicles and HEMM at regular interval will be done	Provision made in Operating Cost	0	0	0	0
Adequate silencers will be provided in all the diesel engines of vehicles.	Provision made in Operating Cost	0	0	0	0

Table : 10.2 EMP Budget

	Provision for	Capital	Recurring	Total for Quarrying Area in a Year	
Mitigation Measure	Implementation	Cost, Rs.	Cost, Rs.	Capital Cost. Rs.	Recurring Cost. Rs.
It will be ensured that all transportation vehicles carry a fitness certificate.	Provision made in Operating Cost	0	0	0	0
Safety tools and implements that are required will be kept adequately near blasting site at the time of charging.	Provision made in OHS part	0	0	0	0
Water management	Provision for garland drain @ Rs. 10,000/- per Hectare with maintenance of Rs. 5,000/- per annum	10,000	5,000	22,500	11,250
Waste management (Spent Oil, Grease etc.,)	Provision for domestic waste collection and disposal through authorized agency	25,000	20,000	25,000	20,000
	Installation of dust bins	5,000	2,000	5,000	2,000
Bio toilets will be made available outside mine lease on the land of owner itself	Provision made in Operating Cost	10,000	1,000	0	0
Size 6' X 5' with blue background and white letters as mentioned in MoM Appendix II by the SEAC TN	Fixed Display Board at the Quarry Entrance as permanent structure mentioning Environmental Conditions	10,000	1,000	10,000	1,000
Workers will be provided with Personal Protective Equipment's	Provision of PPE @ Rs. 4000/- per employee with recurring based on wear and tear (say, @ Rs. 1000/- per employee)	40,000	10,000	4,00,000	1,00,000
Health check up for workers will be provisioned	IME & PME Health check up @ Rs. 1000/- per employee	0	10,000	0	1,00,000
First aid facility will be provided	Provision of 2 Kits per Hectare @ Rs. 2000/-	5,000	4,000	0	0
Mine will have safety precaution signages, boards.	Provision for signages and boards made	10,000	2,000	10,000	2,000
Barbed Wire Fencing to quarry area will be provisioned.	Per Hectare fencing Cost @ Rs. 2,00,000/- with Maintenance of Rs 10,000/- per annum	2,00,000	10,000	Fully fenced already	10,000
No parking will be provided on the transport routes. Separate provision on the south side of the hill will be made for vehicles /HEMMs.	Parking area with shelter and flags @ Rs. 50,000/- per hectare project and Rs.10,000/- as maintenance cost	50,000	10,000	50,000	10,000

Mitigation Massure	Provision for	Capital	Recurring	Total for Quarrying Area in a Year	
	Implementation	Cost, Rs.	Cost, Rs.	Capital Cost, Rs.	Recurring Cost, Rs.
Flaggers will be deployed for traffic management					
Installation of CCTV cameras in the mines and mine entrance	Camera 4 Nos, DVR, Monitor with internet facility	30,000	5,000	30,000	5,000
Implementation as per Mining Plan and ensure safe quarry working	Mines Manager (1 st Class / 2 nd Class / Mine Foreman) under regulation 34 / 34 (6) of MMR, 1961 and Mining Mate under regulation 116 of MMR,1961 @ 40,000/- for Manager & @ 25,000/- for Foreman / Mate	0	7,80,000	0	4,00,000
Green belt development - 500 trees per one hectare (200 Inside Lease Area & 300 Outside Lease Area)	Site clearance, preparation of land, digging of pits / trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area and @ 30 per plant maintenance (recurring)	40,000	6,000	0	0
	Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	90,000	9,000	90,000	9,000
	plantation outside the lease area and @ 30 per plant maintenance (recurring) Total	90,000	9,000	90,000 6,70,000	9,00 11,27 ,

Also, about **Rs.21.00 Lakhs** has been allotted as **Corporate Environmental Responsibility (CER) Budget** in compliance with MoEF&CC OM dated 01.05.2018 for execution (**Table 10.3**).

Table : 10.3 CER Budget

Name of the Village	Particulars	CER Amount
Periyanagalur Village	 (i) Upliftment of surrounding Government schools - Rs. 10.00 Lakhs (ii) Construction of individual smart toilets - Rs. 9.00 Lakhs. (iii) Skill development, Training of village women for self employment - Rs. 2.00 lakhs 	Rs.21.00 Lakhs

11.0 Summary Environmental Impact Assessment Report

The Ramco Cements Limited Amalgamated Periyanagalur Limestone Mine Extent - 53.32 Ha & Plan Production - 15 Million Tonnes @ 3.00 MTPA Limestone S.F. Nos. 51/2, 51/3, 51/4, 229/1, 267, 268/1, 269, 271, etc., Periyanagalur Village, Ariyalur Taluk, Ariyalur District, Tamil Nadu

1.0 Introduction

1.1 Project Proponent

Ramco Group is one of the leading, highly reputed and Second Largest Industrial Group in South India. It is well diversified in the fields of Cement, Ready Mix Concrete, Cement Fiber Products, Cotton and Synthetic Yarn, Software Systems, Wind Farms, Research & Development, Dry Mortar Plants, Cotton Textiles and Surgical. The total employees are about 15,700 and the Turnover of the Group is Rs.8,000 Crores. The main companies of RAMCO Group are:

- * M/s. The Ramco Cements Limited (formerly M/s. Madras Cements Limited).
- ✤ M/s. Rajapalayam Mills Limited.
- ✤ M/s. Ramco Industries Limited.
- ✤ M/s. Ramco Systems Limited.

The Ramco Cements Limited (RCL) is one of the reputed Cement Companies in India. The Company is the Second Largest cement producer in South India and sixth largest manufacturer of cement in the Country. The cement production of RCL is about 17.70 million tons per annum (MTPA) from their **Cement Plants** in India.

- Ramasamy Raja Nagar near Virudhunagar, Tamil Nadu (established in 1961) with 3 Lines -2.7 MTPA Cement.
- Kumarasamy Raja Nagar, near Jaggayyapeta, Andhra Pradesh (1986)-3.65 MTPA (3 Lines).
- Alathiyur near Vriddhachalam, Tamil Nadu (1997): 3.0 MTPA (2 Lines).
- Mathod near Chithradurga, Karnataka : 0.3 MTPA (2000; not in operation now).
- Govindapuram near Ariyalur, Tamil Nadu-5.5 MTPA (2009) (2 Lines).
- Kolimigundla, Andhra Pradesh (Cement 2.0 MTPA).

RCL is operating Cement Grinding Units at:

- Kolaghat (2.0 MTPA) in West Bengal.
- ✤ Kattuputtur (0.75 MTPA) near Chennai, Tamil Nadu.
- Valapadi (2.0 MTPA) near Salem, Tamil Nadu.
- Vizag (2.0 MTPA) near Anakapalli, Andhra Pradesh.
- Haridaspur (0.9 MTPA), Jajpur District, Odisha.

It is also operating a Packing Plant at Nagercoil.

RCL is producing Ordinary Portland Cement (**OPC**), Portland Pozzolana Cement (**PPC**), Slag Cement (PSC), Composite Cement (CC), etc. The cement produced by RCL is marketed in the brand name of 'RAMCO'. The market centers are mainly in Tamil Nadu, Andhra Pradesh, Telangana, Kerala, Karnataka, Odisha and West Bengal States.

The Contact information of RCL Corporate Office is :

Shri.M.Srinivasan, Executive Director (Operations), The Ramco Cements Limited, 5th Floor, Auras Corporate Centre, No. 98A, Dr.Radhakrishnan Road, Mylapore, Chennai-600 004. Tel. No. : 044-28478666/28478661/28478656 Fax No. : 044-28478676 e-Mail : ramcoenv@ramcocements.co.in

1.2 Project Profile

RC) is operating its Govindapuram Cement Plant near Ariyalur for 3.62 MTPA Clinker & 5.50 MTPA Cement production. The Plant requires about 6.5-7.0 MTPA of different grade Limestone and Kankar depending on the production. The existing Captive Mines viz. Periyanagalur, Periyanagalur-West, Kattupirangium, Reddipalayam, Pudupalayam-North & Usenabad-South Limestone Mines and Illupaiyur & Ottakovil Kankar Quarries in the Ariyalur Region supply the Raw Materials Limestone & Kankar to the Plant.

Periyanagalur Mine (Lease-I; PNR) over an extent of 36.29.5 Ha in Periyanagalur Village was granted to RCL (MCL-Madras Cements Limited at that time) vide GO (3D) No. 2 dated 13.01.2003 for a period of 20 years. Lease Deed was executed for actual worked out Lease Area of **35.960** Ha on 02.06.2003 with validity from 20.08.2003 to 19.08.2023. Subsequently, extension of mining lease validity upto 50 years has been granted vide GO (Ms) No. 77 dated 26.07.2018 over an extent of 35.96 Ha and is **valid till 19.08.2053**. The supplementary lease deed has been executed and registered on 03.07.2019. First EC dated 26.11.1999 was for 0.105 MTPA Limestone production. The mine was operated for 0.105 MTPA quantity from 2005-06 to 2007-08. Expansion EC dated 10.10.2007 is for 0.90 MTPA (Clean Limestone) production and the mine is operating for this quantity from 2008-09 to till date. Crusher established over an extent of 4.22 Ha in the non-lease area was shifted to RCL Govindapuram Cement Plant. Both Opencast Conventional Mining with controlled Blasting & Non-Conventional Mining Method with X-Centric Rippers are adopted.

Periyanagalur-West Mine (Lease-II; PNR-W) over an extent of 17.360 Ha in Periyanagalur Village was granted for Limestone & Marl vide GO (Ms) No. 153 dated 23.12.2016 for a period of 50 years. EC for the production of 0.3 MTPA Limestone & Marl over an extent of 17.36 Ha was

awarded by SEIAA-TN vide Letter No. SEIAA-TN/F.No.-462/2012/EC-45/1(a)/ARY/2016 dated 14.11.2016. Lease Deed is executed on 10.01.2017 with validity from 10.01.2017 to 09.01.2067. Both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Rippers are adopted. Existence of Mineral Marl is not proved.

Need for Amalgamation : The two existing Captive Mines in Ariyalur Region are in Conceptual Stage and will be completely exhausted in another 2 years period. Thus, other Limestone sources are being explored for sustained supply of Limestone to Govindapuram Cement Plant. PNR & PNR-W Leases are located adjacent to each other and are in compact & contiguous nature. With long barriers (550 m long & 35 m depth) between the two leases, about 1.50 Million Tonnes of Limestone reserves would be un-exploited. By amalgamation of both the leases, the Mineable Reserves will be enhanced. Also, 'Common Boundary Workings' with Dalmia PNR Mine is now proposed. Thus, it is proposed to amalgamate both these mining leases.

Amalgamated Periyanagalur Mining Lease over an extent of 53.32 Ha is falling in SF Nos. 51/2, 51/3, 51/4, 51/5A, 51/5 B, 51/5C, 51/5D, 51/5E, 51/5F, 51/5G, 51/5H, 224/1, 224/2, 226/1A, 226/1B, 226/2, 226/3, 226/4, 226/5, 226/6A, 226/6B, 226/6C, 226/6D, 226/6E, 226/7, 226/8A, 226/8B, 226/8C, 226/9A, 226/9B, 226//9C, 226/10A, 226/10B, 226/10C, 226/11A, 226/11B, 226/12, 226/13A, 226/13B, 226/13C, 226/14, 226/15A, 226/15B, 226/16, 228/1, 228/2, 228/3A, 228/3B. 228/3C, 228/3D, 228/5, 229/1, 229/2, 229/3, 229/4, 229/7, 229/8, 229/9, 229/11, 230/1A, 230/1B, 230/2A, 230/2B, 230/3, 230/4A, 230/4B, 230/5A, 230/5B, 230/5C, 230/5D, 230/6A, 230/6B, 230/6C, 230/6D, 230/6E, 230/6F, 230/6G, 230/6H, 230/6I, 230/7A, 230/7B, 230/7C, 230/8, 230/9, 230/10, 230/11A, 230/11B, 230/11C, 230/12, 230/13, 230/14, 230/15A, 230/15B, 230/15C, 230/15D, 230/16, 230/17, 230/18, 230/19, 230/20, 231/1A, 231/1B, 231/1C, 231/1D, 231/1E, 231/1F, 231/1G, 231/1H, 231/1I, 231/1J, 231/1K, 231/1L, 231/1M, 231/1N, 231/2A, 231/2B, 231/2C, 231/2D, 231/2E, 231/2F, 231/2G, 231/2H, 231/2I, 231/2J. 231/2K, 231/2L, 231/2M, 231/2N, 231/2O, 231/2P, 231/2Q, 231/2R, 231/2S, 231/2T, 231/2U, 231/2V, 231/2W, 231/2X, 231/3A, 231/3B, 231/3C, 231/4, 231/5A, 231/5B, 231/5C, 231/6A, 231/6B, 231/6C, 231/6D, 231/6E, 231/6F, 231/6G, 231/6H, 231/6I, 231/6J, 231/6K, 231/6L, 231/6M, 231/6N, 231/6O, 231/6P, 231/6Q, 231/6R, 231/7, 231/8, 231/9, 231/10A, 231/10B, 231/10C, 231/11A, 231/11B, 231/11C, 231/11D, 231/12A, 231/12B, 231/12C, 231/12D, 231/12E, 231/12F, 231/12G. 231/12H, 231/12I, 231/12J, 231/12K, 231/12L, 232/1A, 232/1B, 232/1C, 232/1D, 232/1E, 232/1F, 232/2, 232/3, 232/4, 232/5A, 232/5B, 232/5C, 232/5D, 232/5E, 232/5F, 232/5G, 232/5H, 232/6A, 232/6B, 232/6C, 232/6D, 232/7A, 232/7B, 232/8, 232/9A, 232/9B, 232/10A, 232/10B, 232/11, 232/12A, 232/12B, 232/12C, 232/13, 232/14, 232/15A, 232/15B, 232/16, 232/17A, 232/17B, 232/18, 232/19A, 232/19B, 232/19C, 232/19D, 232/20, 233/1, 233/2, 233/3, 233/4, 233/5, 233/6, 233/7A, 233/7B, 233/7C, 233/8A, 233/8B, 233/9, 233/10, 233/11A, 233/11B, 233/11C, 233/11D, 233/11E, 233/11F, 233/11G, 233/11H, 233/12A, 233/12B, 233/12C, 233/12D, 233/12E, 233/12F, 233/12G, 233/12H, 233/12I, 234, 234 Part, 235/1, 235/2, 235/3, 237/1, 267, 268/1, 268/2, 269 & 271 of Periyanagalur Village, Ariyalur Taluk & District of Tamil Nadu State (Fig. 1.1).

Out of 53.32 Ha, Patta Land is 33.28 Ha and Govt. Poramboke Land is 20.04 Ha. There is no Forest Land involved. There is no Rehabilitation & Resettlement issue. There is no litigation/pending case against the Proposal.

The State Government has granted **permission vide GO (Ms.)** No. 126 dated 26.02.2021 for amalgamating the two Periyanagalur mining leases totalling over an extent of **53.320 hectares** into a single lease for mining Limestone only, duly co-terminus with the Lease Period ending on 19.08.2053. IBM, Chennai has approved the Mining Plan for amalgamated Lease vide its Letter TN/ALR/LST/MP-2079.MDS dated 23.07.2021 for the Period 2020-21 to 2024-25 with its validity till 31.03.2025. With 'Common Boundary Workings' with Dalmia PNR Mine proposed now, the Review of Mining Plan (ROMP) for Plan Period of 2025-26 to 2029-30 is being submitted with updated data to IBM for its approval. Surface & Geological Plan along with Geological Sections is given as Fig. 2.1.

There was no production of 3.00 MTPA in the Amalgamated Lease as scheduled in the approved Mining Plan for want of prior EC. The **existing mining operations are continued** in the Leases (PNR & PNR-W) for respective **consented production quantities**. Subsequently, the **Mineable Reserves** has been reassessed as **15.85 Million Tonnes**, as on 01.04.2024. The Review of Mining Plan (ROMP) for Plan Period of **2025-26 to 2029-30** has been prepared and **submitted with updated data** to IBM for its approval.

The mining operation will be carried out by both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Rippers @ 3.00 MTPA. Limestone production during ROMP period will be 15 Million Tonnes. Balance Reserves will be mined out in subsequent Plan Period. The Life of the Mine is 10 years based on established Reserves now. Ultimate Pit Depth on proposed Plan Period will be 92 m BGL from 71 m arrived in the earlier Mining Plan. Mining will intersect the Ground water-table. Fragmented limestone will be loaded by Hydraulic Excavators into Tippers. The Tippers transport limestone to Govindapuram Cement Plant. Limestone transportation will be in all 3-Shifts as District Administration restricted Limestone transportation during peak hours of the day in Ariyalur. The proposed Production Schedule is given in Table 1.1.

After exhaustion of all limestone, part of the pit on the northern, eastern & southern sides will be **reclaimed and rehabilitated** and the remaining exhausted pit will be used as water Reservoir for harvesting the rain water.

SI. No.	Plan Period & Year	Top Soil, Tons	OB/SB/IB, Tons	Total Waste, Tons	ROM Limestone, Tonnes	Mineral Reject, Tonnes	Ore:OB Ratio
I	2020-21 to 2024-25 (Non operative period)	3,83,560	12,34,120	16,17,680	92,11,880	0	1:0.18
II	ROMP Period (Commenceme nt of operation)						
1	2025-26	1,42,960	9,24,336	10,67,296	30,00,000	0	1:0.36
2	2026-27	49,760	2,42,288	2,92,048	30,00,000	0	1:0.10
3	2027-28	0	0	0	30,00,000	0	1:0
4	2028-29	1,00,480	13,96,512	14,96,992	30,00,000	0	1:0.50
5	2029-30	31,578	9,71,693	10,03,271	30,00,000	0	1:0.33
	Total	3,24,778	35,34,829	38,59,607	1,50,00,000	0	1:0.26

 Table : 1.1
 Yearwise Development & Production

Out of 53.32 Ha, Area of excavation at the end of the life of the mine will be 39.17 Ha, out of which about 14.00 Ha will be Backfilled & Reclaimed and balance 25.17 Ha will be left out as water reservoir.

The Limestone to be mined out from this Amalgamated Lease is a Major Mineral over an extent of <250 Ha and falls in Category 'B' of Sl. No. 1(a) of EIA Notification 2006, as amended vide Notification SO 1886(E) dated 20.04.2022, for prior Environmental Clearance (EC) from the State Level Environmental Impact Assessment Authority, Tamil Nadu (SEIAA-TN). Accordingly, RCL has applied for prior EC to SEIAA-TN vide Online Proposal No. SIA/TN/MIN/76439/2022 on 02.05.2022. The Proposal under Sl. No. 1(a), Category B1 was deliberated in State Level Expert Appraisal Committee-Tamil Nadu (SEAC-TN) in its 287th Meeting held on 22.06.2022 and in 532nd SEIAA-TN Meeting held on 14.07.2022. Terms of Reference (TOR) for carrying out Environmental Impact Assessment (EIA) Study has been awarded vide Letter SEIAA-TN/F.No.9220/TOR-1215/2022 dated 14.07.2022 with Public Hearing.

EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including **Sector-1 (Mining Projects) for Category 'A'** by the National Accreditation Board for Education & Training (**NABET**) vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025 (SI. No. 4 of List dated 15.07.2024). ABC Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (**NABL**) vide Certificate No. TC-5770 dated 03.04.2022. EIA Report has been **prepared in compliance with awarded TORs** and submitted. Summary EIA Reports (both in **English and Tamil versions**) along with Draft EIA Report are submitted for Public Consultation & Public Hearing.

2.0 Description of the Environment

2.1 Environmental Setting

PNR-A Mining Lease Area falls in the Survey of India Topo Sheet No. 58 M/4 (Fig. 1.2). The ML is located inbetween the following geographical co-ordinates :

North Latitude	:	11º 07' 15.8"- 11º 07' 51.4"
East Longitude	:	79° 08' 26.9"- 79° 09' 01.0".

There is no Forest Land involved and no Reserved Forest (RF) exists within 1 km of the Mine. No grazing land exist in the study area. The area is having almost a gentle slope topography with an elevation of about 65-73 m above mean sea level (aMSL). The site is free from seismic effects (Seismic Zone-III). There are no eco sensitive areas like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Elephant Corridor, Mangroves, Archaeological/Historical Monuments, Heritage sites, etc. within 10 km from the Lease boundary. Parts of Managethi RF (6.6 km in east), Vannankurichi RF (7.0 km in NE), Kallankuthu RF (10.0 km ENE), Vilangudi Extn. RF (8.0 km in ESE), Vilangudi RF (8.2 km in ESE), Sundaresapuram RF (9.5 km in SE) and Ulliyakudi RF (10.0 km in SE) fall in the Study Area.

Seasonal **River Marudaiyar** drains the region (flows at 4.9 km in the south). Seasonal Nallah Kallar River flows at 2.9 km in northwest. A seasonal nalla flows in the eastern boundary of the Lease from north to south. High Flood Level recorded in the seasonal nalla is 63.9 m in the north to 62.2 m in the south. The Lease is located in an elevation of 66.8 m to 65.7 m and thus, **no flood hazard due to the nearby seasonal nalla**.

State Highway (SH)-139 (Ariyalur-V.Kaikatti-Jayamkondam Section) is passing in east-west direction in southern boundary of the Lease-II and a Safety Distance of 50 m has been provided as per GO, approved Mining Plan, Tamil Nadu Mineral Concession Rules 1959 & Anna University Recommendations and will be maintained till end of the mining.

National Highway (NH)- 81 connecting Trichy-Kilapaluvur-Chidambaram runs at @ 2.5 km (in SE), NH-136 connecting Tanjore-Ariyalur-Perambalur runs at 6.2 km (W). Southern Railway BG Line runs through Ariyalur at a distance of 8.5 km in the west. The nearest Airport Trichy is at 60 km in southwest. The nearest Ports are at Chennai (300 km) and Cuddalore (95 km). ML Area is about 1.0 km from nearby Kattupirangium village. Periyanagalur village is at 1.0-1.5 km in the east. RCL Govindapuram Cement Plant is located at a distance of 6.8 km aerial distance (14 km by road) in northwest. From the Lease, Ultratech Cement Plant-Reddipalayam is at 3.2 km (SE), TANCEM Cement Plant-Kallankurichi at 4.7 km (WNW), Dalmia Ariyalur Plant at 7.2 km (NW) and Chettinad Kilapaluvur Cement Plant at 10.6 km (SW). Captive Limestone Mines of these Cement Plants as well as others are located within 10 km radius area.

2.2 Baseline Environmental Status

The study area of 10 km radius (from boundary) (Fig. 3.1) has been considered for assessing the baseline environmental status. Project area does not fall in Critically Polluted Industrial Clusters listed by CPCB. As Bay of Bengal is at 100 km from the Lease, Coastal Regulation Zone (CRZ) applicability is not there. The nearest IMD Station is Trichy Airport. The monitoring stations were selected in such a way that the baseline environmental data reflects the Cumulative Impact of existing Mines and Industries in the Study area. The Environmental Attributes covered for the EIA Study is given in Table 2.1.

Attributes			Sampling	Remarks	
		No. of Locations	Frequency		
Air	Meteorological Parameters	1	For a Season	Wind speed, wind direction (wind rose), temperature, humidity, cloud cover, atmospheric pressure, rainfall, etc.	
	AAQ Parameters	8	24-hourly basis, continuously for 2 days in a week for 4 weeks in a month for a season	For the parameters as per Revised NAAQ Norms	
Noise		8	Once in the season	For Leq, Lday and L night values	
Weter	Vater Vater Quality 8 Parameters Once in the Ground Water Quality 8 Parameters 8		As per CPCB Norms (including existing Plant Raw Water)		
vvater			As per IS:10500 Norms		
Land	Soil Quality	8	Once in the Season	Season for Textural & Physical Parameters & Nutrients.	
	Land UseStudy AreaOnce during the Study Period		Based on recent available Satellite Imagery		
Piological	Aquatic	Study	Once during the	Flora & Fauna in Core &	
BIOIOGICAI	Terrestrial	Area	Study Period		
Socio economic Parameters		Study Area	Once during the Study Period	Based on 2011-Census and Need Based Assessment, once in the study period.	

Table : 2.1 Baseline Data Collection – Monitoring Locations

The summary of baseline status is given in Table 2.2.

Envl. Component	Main Parameters	Minimum	Maximum	Mean	Desirable Norms
	PM2.5	10	46	25.1	60
Ambient Air Quality,	PM10	20	74	44.6	100
ug/m ³	SO ₂	6	22	10.9	80
	NOx	6	26	13.3	80
Ambient Noise,	Leq-Day	40.4	49.3	45.1	55
dB(A)	Leq-Night	36.2	46.8	42.1	45
Surface Waters	TDS, mg/l	320	500	-	500/2100
Ground Waters	TDS, mg/l	360	550	-	500-2000
Soil Status	EC, mmhos/cm	1.50	1.79	-	0.2-0.5
	SAR	1.96	2.79	-	<5

Table : 2 .2	Environmental	Baseline Status
--------------	---------------	------------------------

Legend : PM2.5-Particulate Matter size less than 2.5 um; PM10- Particulate Matter size less than 10 um; SO₂-Sulphur dioxide; NOx-Oxides of Nitrogen; Leq-Day & Leq-Night - Equivalent Noise Levels during Day & Night Times; TDS-Total Dissolved Solids; EC-Electrical Conductivity & SAR-Sodium Absorption Ratio.

The findings of baseline environmental status of the study area are summarized below :

- The collected meteorological data during this season represented the local weather phenomena.
- The monitored ambient air quality in the study area was found to be in compliance with the Revised National Ambient Air Quality (NAAQ) 24-hourly Norms for Industrial, Residential, Rural and other areas.
- Ambient equivalent noise levels (Leq) during day and night times were found to be well within the MoEF&CC Norms.
- The water quality of surface waters was found to be in compliance with CPCB Norms.
- The ground water quality was found to be in compliance with the IS:10500-2012 Norms.
- The soil in the study area would very well support vegetation after amending it suitably.
- There is no eco sensitive area exists in the study area and only domesticated animals exist.
- The area is thinly populated and basic amenities are available almost in all villages.

Thus, there is **adequate buffer** for the proposed Project in the physical, biological and edaphic environments of the study area.
3.0 Anticipated Environmental Impacts

Being an existing Mine, it **does not involve any major establishment or construction**. Thus, Construction Phase Impacts are not there for Impact Assessment and Environmental Management Plan (EMP). The impacts during Operation Phase have been divided into two categories, viz. Localised and Cumulative. There are Cement Plants and Limestone Mines in the Study Area. Following industrial activities are considered for Cumulative Impact Assessment for assessing their contribution (Table 3.1). Cumulative Impact has been assessed for the identified Industries and assumed that the pollution due to other existing Industrial & Mining activities have already been covered under baseline environmental status and continue to remain same till the operation of the project.

SI. No.	Industry / Mine	Extent & Consented Production	Bearing & Contribution during Study Period
1	Ramco Amalgamated Mining Lease	Ramco Amalgamated Mining 53.320 Ha Lease (3.00 MTPA)	
2	UltraTech Periyanagalur Limestone Mine (ML5)	4.985 Ha (0.15 MTPA)	Adjacent Lease in Upwind side & not in operation.
3	Dalmia Periyanagalur & AK Limestone Mines	167.605 Ha (1.9 MTPA)	Adjacent Lease in operation. Downwind side & not contributing other than Traffic Volume
4	TANCEM Periyanagalur & Khairulabad, Mines	194.165 Ha 66.110 Ha	Adjacent Lease; Not in operation. Downwind side & not contributing
5	TANCEM Kallankurichi Mine	240.610 Ha (expansion 0.2 to 0.7 MTPA)	Downwind side & not contributing
6	Ultratech Cement Plant, Reddipalayam	1.6 MTPA	Plant located near the Lease & not contributing other than Traffic Volume

 Table : 3.1 Industrial Activities considered for Cumulative Impact

Safeguard to State Highway Traffic : State Highway (SH)-139 (Ariyalur-V.Kaikatti-Jayamkondam Section) is passing in east-west direction in southern boundary of the PNR-West Mine (Lease-II) and a Safety Distance of 50 m has already been provided as per GO, approved Mining Plan & Tamil Nadu Mineral Concession Rules 1959. The following Safety/Preventive measures will also be implemented :

- ✓ In addition to 50 m Green Belt developed in the safety barrier, a Galvanium sheet fencing will be erected for 150 m length & 3 m height along SH-139 at a cost of Rs.13.80 Lakhs.
- ✓ With the help of State Highway department, safety measures like cautionary signals, speed brakers, sign boards, etc. will be installed and monitored.

✓ The existing OB Dumps are being handled for backfilling and the tail end of Lease-II western parts will be backfilled upto 150 m and reclaimed at the end.

Safeguard to nearby Habitations due to Mining : There are houses existing in nearby Kattupringiyam Ayyanagar and Chinna Nagalur Villages at a minimum distance of about 175 m from the Mine. RCL had engaged NITK, Surathkal, a Govt. of India Institute, for Study out the scientific investigation on "Blasting Parameters & Design of Safe Bench Geometry and Evaluation of Slope Stability. The findings are : Studies with given blast configurations having 10 to 25 holes of 5 m to 10 m average depth and each blasthole charged with 16.02 kg – 40.03 kg of explosive, indicated that there is no effect of ground vibrations and fly rock caused due to blasting operations carried out in the Mine, on the stability of village structures vis-à-vis the present distances. The following Safety measures are be implemented :

- ✓ There is a level difference of 6-25 m between the Mine and the Habitations. All these houses may be assigned with a PPV of 2 mm/s due to their condition as per DGMS Standards. The public road passing through the Lease and other village structures may be assigned a PPV of 25 mm/s during Blastings.
- Blasting operations in the Periyanagalur Limestone Mine should, therefore, be carried out in such a way that the ground vibrations at different structures are always maintained below the assigned permissible PPV values. Fly rock should be controlled to within mine limits, without causing any problems to the structures around and the villagers.

Scientific Study on Slope Stability : This is an existing Mines of RCL in operation since 2005 onwards with proper benches in compliance with approved Mining Plans/Schemes. The stability analysis and determination of 'Factor of Safety (FOS)' in the present investigation was carried out using Limit Equilibrium Method which is more than 1.3 and is the minimum recommended value required for stability of rock slopes. The following Safety measures will be implemented :

- ✓ The pit should be provided with garland drain/ bund / barrier on the upper surface of pit to divert the run-off of rainwater away. It should be kept effective during the monsoon.
- ✓ The open tension cracks should be filled with permeable material. This filled material should be consolidated by dozer. At the top, any impermeable material has to be spread.

Land Environment : Industrial/Mining activities are being carried out in an extent of 766.965 Ha in the Impact Zone. There is no additional Land requirement for the Proposal. There is Drilling & Blasting proposed and thus, vibration impact due to mining will be there. Also, as the entire Top Soil & OB Dumps will be rehandled for Backfilling & Reclamation of mined out voids, there will be no Dump in the Lease. Area of excavation at the end of the life of the mine will be 39.17 Ha, out of which about 14.00 Ha will be Backfilled & Reclaimed and balance 25.17 Ha will be left out as water reservoir for recharging the ground water table in the vicinity.

Traffic Impact : Limestone Transportation of Ramco Mines, TANCEM Mines and partly Dalmia Mines (meant for Ariyalur Plant) is through SH-139 towards Ariyalur Bypass (in western part). The existing traffic volume in the Project vicinity was found to be **5**,445.1 Passenger Car Units

(PCUs)/day. In the Post-Project Scenario, there will be an addition of 468 Vehicle (in 2 ways) due to the Project. Cumulatively, the traffic volume in the Project vicinity will be 6,410.7 PCU/day. The net increase (cumulative) will be 965.6 PCU/day. The existing Roads/SH are adequate to handle the proposed traffic volume due to the Project. Adequate parking area is provided in the Mine Area. Facilities for drivers (rest room, toilet, etc.) are also provided.

Water - Scientific Study on Hydrogeology : On the monitoring day, the water level was observed in 6 Borewells in the PNR-A Mine vicinity (within 2 km). The levels were found to be 8.14 m BGL to 22.30 m BGL while it was 15.50 m BGL at PNR Mine. The monitored water levels in the Study Area are brought to Reduced Levels (RLs) for comparison and 'Water Level Contours' are plotted in Google Earth Imagery and appended. Ground Water-table in the District ranges from 23.0 m to 28.7 m with avearge level at 25.4 m BGL during Post-monsoon and 25.6 m to 31.7 m with avearge level at 29.2 m BGL during Premonsoon Period. Thus, no impact on the ground water levels of nearby Borewells due to mining on account of poor transmissivity.

There is no nalla crossing in the mine vicinity. Seasonal River Marudaiyar drains the region (flows at 4.9 km in the south). Seasonal Nallah Kallar River flows at 2.9 km in northwest. The entire mine pit water collected & pumped from Settling Tanks, after 20 KLD consumption for Mine use, is being utilised for Irrigation (Agricultural) activities in eastern side for about 46 Ha. There is no impact due to the Surface waters due to mining.

RCL has engaged the **Department of Remote Sensing, Bharathidasan University, Trichy** for '**Integrated Hydrological Investigations-A Geospatial Approach**' in and around their Mine Lease Areas in Ariyalur Region. Also, the EIA Coordinator and Officials of M/s. Thrust Geo-consultants Private Limited, an **Accreditated Ground Water Professionals** for 'Hydrogeological Report for Mining Projects' by Central Ground Water Authority (CGWA) have carried out the Hydrogeological Survey including a Pumping Test during 18.12.2023 and submitted the Report. The Transmissivity 'T' value of the Limestone Aquifer is estimated as 2.39 m²/day. The limestone aquifer is observed to be very low in terms of transmissibility and hydraulic conductivity. The **radius of zone of influence is 317 m which falls within the mining lease area. The anticipated cone of depression in such aquifers with low T values will be highly localized, and does not spread beyond the Mine due to poor permeability of limestone aquifer.**

Mine Pits dewatering quantity was about 754 KLD during Apr. 2023-Mar. 2024 Period. The pumped out water from Settling Tanks, after 20 KLD consumption for Mine use, is being utilised for Irrigation (Agricultural) activities in eastern side for about 46 Ha. About 26 Families are the beneficiaries. Thus, Mine Pits water is gainfully utilized. On Amalgamation of the Mine, about 1245 KLD mine pit seepage water realization will be there. It is about 65.12% increase to the existing discharge of 754 KLD. As in current practice, the pumped out water from Settling Tanks, after 20 KLD consumption for Mine use, will be utilised for Irrigation (Agricultural) activities in eastern side.

Ambient Air Quality : The Drilling & Blasting, Excavating, Loading, Unloading, Transporting and Rehandling activities would generate both fugitive dust emissions and smoke from Heavy Earth Moving (HEM) Machineries and Transporting Tippers. Fugitive emissions are predicted by using standard equations given in 'Indian Mine and Engineering Journal' and suggested by USEPA (Emission Factors as referred in AP-42) for Mining and Allied activities.

AERMOD View Software is used for Predicting the maximum Ground Level Concentrations (**GLCs**) including **Transportation Impact**. The predicted maximum GLC-PM10 for cumulative operation of Mining activities is 0.062 ug/m³ and found to be confined locally i.e. within 1.0 km radius from the boundaries. Also, **adequate Buffer Level available (55.34%)** in the Air Environment for the Proposal. Other pollutants SO₂ and NOx emissions due to mining activities and their Predicted values are found to be low and are not reported.

Noise Levels : The mining operations are being carried out by fully mechanized method with the help of Excavators and Tipping Taurus combination. The blast induced ground vibration is controlled & maintained within permissible limits by using milli second delay detonators (MSDD) and NONEL shock tubes. In general, the work force is exposed to <85 dB(A) levels during the 8-hours Shift. Noise level at the nearest Lease boundary will be <55 dB(A) during day times and <45 dB(A) during night times and which will be within the MoEF&CC Norms for Residential and Rural Areas.

Biological Environment : There is no habitat fragmentation or blocking of migratory corridors due to Project activities since there is no wild life movement or migratory birds movement in the study area. Thus, there will not be any significant impact on the existing flora-fauna of the area. ML area is surrounded by Mines & Mineral bearing areas, barren lands and dry agricultural lands within 1.0 km area. As the baseline AAQ are in lower levels as well as Predicted GLC is very low/insignificant, there will not be any impact on the surrounding dry agricultural lands due to the Project.

Socioeconomics : Project employs about 33 persons directly and 50 persons indirectly. The Project Cost is **Rs.9.00 Crores**. Now, about **Rs.21.00 Lakhs** has been allotted as **Corporate Environmental Responsibility (CER) Budget** in compliance with MoEF&CC OM dated 01.05.2018 for execution within 2 years period. Also, as per MMDR Act 2015, 30% of Royalty Amount of **Rs.38.04 Crores will be earmarked for District Mineral Foundation (DMF)** and the amount will be spent for benefit of local villages.

RCL is undertaking various CSR activities, **@ Rs.1.00** Crore per annum, related to health, education, drinking water supply, sanitation, bio-toilets for individual household, infrastructure development activities, construction of bus shelters, road repair work, building class rooms, etc. for the nearby villages which will be continued.

Occupational Health : RCL is committed to provide a Safety & Healthy working conditions. RCL's objectives are : to achieve zero accident and safe work environment. The First Aid Box is made available for immediate treatment. First Aid Training is imparted to the selected employees regularly. Personal Protective Equipment (PPEs) are provided for all employees working in the Mines. Adequate training on safety and health aspect has been provided in RCL's Vocational Training Centre. RCL is also providing the ergonomic support in work comfortness with periodical review.

An Occupational Health Centre (OHC), headed by Occupational Health Physician, is run by the Company at Govindapuram Plant. Occupational Health Surveillance Programme is being conducted for the workers periodically and records are maintained. Adequate care is exercised to detect early incidences of Occupational diseases, if any, for prompt treatment and cure.

4.0 Environmental Monitoring Programme

RCL has **EMP Monitoring Cell**. The quality of air, noise, water, soil, etc. are being monitored at the identified locations as per MoEF&CC, IBM &TNPCB Norms by appointing an accreditated external agency. For the Lease, periodical monitoring of Ambient Air Quality (3 locations), Fugitive emissions/Workzone Air Quality (4 locations), Ambient & Workzone Noise Levels (4 locations), Water (4 Surface & 4 Ground waters along with Mine Pit water) and Soil Quality (3 Locations) shall be undertaken and reported to Authorities.

5.0 Additional Studies

Detailed Risk Assessment and mitigative measures are delineated and an effective Disaster Management Plan, for natural and man-made disasters, is also submitted. RCL management is able to deal with the situation efficiently to reduce confusion keeping in view of the likely sources of danger in the mine. In case of eventuality and sudden occurrence of abnormalities during mining activity leads to any danger for persons and machinery in the mines, the following person will be coordinating to restore the normalcy of the situation.

Mr. Madhusudhan Kulkarni Sr. Vice President (Mfg.) The Ramco Cements Limited, Govidapuram Works, Sendurai Road, Ariyalur District Ph.No. : 04329-294400.

The possibility of 'Offsite Emergency' situation are ruled out as RCL mine is not likely to pose any offsite emergency and hence does not call for any preparation of an off-site emergency plan.

6.0 Project Benefits

Environmental Benefits : The proposal ensures the continuous limestone supply to the Cement Plant. Effective utilization of the Mineral for Cement manufacturing is a Mineral Conservation Measure.

Financial Benefits : The Project Cost is **Rs.9.00 Crores**. As per MMDR Act 2015, 30% of Royalty Amount of **Rs.38.04 Crores will be earmarked for District Mineral Foundation (DMF)** and the amount will be spent for benefit of local villages in the Lease Area.

Social Benefits : Project employs about 33 persons directly and 50 persons indirectly. About **Rs.21.00 Lakhs** has been allotted as **Corporate Environmental Responsibility (CER) Budget** in compliance with MoEF&CC OM dated 01.05.2018. Also, DMF amount will be contributed.

7.0 Environmental Management Plan

Environmental Management Plan (EMP) is suggested to mitigate the possible negative impacts that may be caused to various attributes of environment due to the proposed mining operations.

7.1 EMP for Construction Phase

Being existing Mine, there will be no Construction Phase for the Project.

7.2 EMP for Operation Phase

Land Use :-

- No Blastings shall be carried out during night times and overcast conditions.
- Vibration Studies/Monitoring has to be carried out whenever Blastings are carried out.
- Vibration Parameters viz. Peak Particle Velocity (PPV) and Noise Levels during Blastings shall comply with DGMS Norms for Residential Areas.
- There will be no Solid Wastes Dump in the Lease at Conceptual Stage.
- OB in dumps may be gainfully utilized for reclaiming the mined out voids.
- Backfilled Mine Voids are to be Afforested with local Tree species and Reclaimed early.
- Maintenance of garland drains around the Lease boundaries has to be carried out periodically.

Traffic Impact :-

- Regular wetting of haul roads has to be undertaken to arrest the fugitive emissions.
- Tippers are to be fully covered with Tarpaulin to avoid any spillage on transportation.
- No overloading of Tippers is allowed strictly.
- A strict Speed Limit of 30 km/hr. has to be enforced and monitored continuously.
- Compliance to 'Pollution under Control' Certification has to be ensured for the Tippers which has to be checked periodically.
- Restriction of Truck parking in the Public Road has to be implemented.
- Regular and preventive maintenance of transport vehicles has to be ensured.
- Effective Green Belt with thick foliage has to be developed and maintained.
- Security Guards are to be placed at the Public Road-Mine Haulage Road Junction to handle the inward and outward vehicles.

Air Environment :-

- Controlled Blasting has to be carried out and during day times only.
- No Blasting is carried out during overcast conditions.

- Water sprinkling on the Mining areas, loading point, haul roads, etc. has to be carried out.
- Covering of Trucks/Tippers with tarpaulin shall be ensured during Mineral transportation.
- Over loading of Tippers has to be avoided to control the spillages during transportation.
- Periodical maintenance and replacement of worn out accessories in the mine equipments.
- Tippers are to be maintained periodically.
- Periodical check up of vehicles for 'Emission Under Control' Certificate is to be ensured.
- Effective Green Belt with thick foliage has to be developed along boundaries and haul roads.
- Periodical Air Quality Monitoring shall be carried out and Reports submitted to the Authorities.

Noise Levels :-

- The noise and vibration generated due to the blasting operations shall be kept well within the limits by using milli-second delay electric detonators and by using Non-electric initiation system of blasting which completely eliminates air-blasts and thus reduces noise due to blasting.
- Deploying mining equipments shall be with in-built mechanism for reducing noise.
- Provision of silencers to modulate the noise generated by the machines.
- Providing sound proof operator's cabin of equipments.
- Provision of ear muffs/ear plugs to the workers in higher noise zones.
- Green Belt with thick foliage along roads and around lease boundary will act as acoustic barriers.
- Periodical Noise Monitoring shall be carried out and Reports submitted to the Authorities.

Water Environment :-

- The increased Mine Pit Water has to be utilized gainfully by increasing the supply to nearby Villages for Domestic Consumption as well as to agricultural activities nearby as in the current practice.
- Mine Pit Water shall not be directly discharged without ensuring its quality.
- Ground Water NOC for Dewatering has to be obtained/renewed from SGWA/CGWA Authority.
- Periodical Monitoring of Water Level Data from existing Piezometer and nearby Wells in the vicinity has to be carried out along with the water quality.
- Effective Afforestation in Backfilled Areas, with native species, is to be done.
- Garland Drains and Settling Tanks are to be maintained and desilted periodically. The desilted quantity from the Garland Drains has to be used for Green Belt/Afforestation.
- Ground Water Levels and Water Quality are to be periodically monitored at the identified Borewells & Dugwells in the Mine vicinity.
- The monitored Water Quality data are to be periodically submitted to the IBM and with halfyearly Compliance Reports to SEIAA-TN & Regional Office, MoEF&CC, Chennai.

Biological Environment :-

- Effective Green Belt has to be developed and maintained, with the guidance of DFO, with about 90% Survival Rate.
- Native species shall be preferred for Green Belt development.
- Fruit bearing trees may also be preferred.
- Afforestation in backfilled & reclaimed areas shall be undertaken.
- Through the process of photosynthesis, plants assimilate carbon and return some of it to the atmosphere through respiration. The carbon that remains as plant tissue is then consumed by animals or added to the soil as litter when plants die and decompose. The primary way that carbon is stored in the soil is as *soil organic matter (SOM)*. SOM is a complex mixture of carbon compounds, consisting of decomposing plant and animal tissue, microbes (protozoa, nematodes, fungi, and bacteria), and carbon associated with soil minerals. Carbon can remain stored in soils for millennia, or be quickly released back into the atmosphere. Climatic conditions, natural vegetation, soil texture, and drainage all affect the amount and length of time carbon is stored.

Social Measures :-

CSR activities shall be carried out by providing social and welfare measures for the local residents and nearby villages around the mine area. The prime focus will be on the creating and maintaining of drinking water facilities for the students at the nearby Government Schools, establishing toilets especially for girl students at the schools, setting up of computer centres, maintenance of village roads & ponds, providing solar street lights, conducting free medical camps, etc.

Occupational Health Measures :-

- All employees are to undergo Medical Check-up on recruitment and periodically during employment. Maintenance of Pre, during & Post Employment Records are to be kept for periodical review.
- Standard operating procedures for all operations with respect to occupational safety and health are to be in place.
- Required Personal Protective Equipments for the Mine employees are to be provided.
- Provision of ergonomically designed seats for drivers/operators has to be ensured.
- Provision of illumination facilities are to be made at proper places of mines for ease of working during night times.
- Work comfort and its periodic review by a Committee is to be ensured.
- Provision of Rest Shelters at Mines has to be made.
- Provision of cool drinking water to employees has to be made.

262

Plastic Waste Management : There will be **ban on one-time use and throw away Plastic** usage in the Lease. Encourage the use of eco friendly alternatives such as banana leaf, areca nut palm plate, stainless steel glass, porcelain plates / cups, cloth bag, jute bag etc.

EMP Budget :- The Project Cost is **Rs.9.00 Crores**. Proposed **EMP Capital Budget will be Rs.20,50,000/-** (excluding Budget for addressing PH issues) and **EMP Operating Cost will be Rs.11,27,750/- per Annum**. Also, about **Rs.21.00 Lakhs** has been allotted as **Corporate Environmental Responsibility (CER) Budget** in compliance with MoEF&CC OM dated 01.05.2018 for execution.

12.0 Disclosure of Consultants

EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including Sector-1 (Mining Projects) for Category 'A' by the National Accreditation Board for Education & Training (NABET) vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025 (SI. No. 4 of List dated 15.07.2024). ABC Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2022. The Lab is also recognised by the Ministry of Environment, Forest and Climate Change (MoEF&CC) vide Letter F. No. Q-15018/04/2019-CPW dated 14.10.2019 with validity of 5 years. RCL has utilized the services of M/s.Ensyscon, Chennai for the coordination of the Study.

ABC comprises a team of highly talented professionals, who work in sync with clients ensuring that the defined assessment and survey or reporting is executed with high level of efficiency. The proficient team consists of Environmentalists, Policy makers, Geologists, Chemists, Engineers, Industrial hygienists, Technicians, Research Associates, Sociologists and others with expertise in various key areas.

ABC has a proven successful track record of working with industry & institutions and in executing multi faceted projects funded by organizations like World Bank, UNDP, MoEF&CC, amongst others. ABC Techno labs India Private Ltd has laid down new benchmarks in all its areas of strategic operations by the dedicated team of outstanding professionals and client-centric approach, clearly evident by the accomplishments/ clients list.

The accrediated Sectors and approved Experts of ABC are appended.

R.	National Accreditation Board			
ñ			1.44	p
	for Education and Training		NART	Ť.
	Certificate of Accreditatio	'n		Ĩ.
The org	ABC Technol Labs Initia Private Limited, Chemi ABC Tower, 400, 13th Street, SDCO Industrial Estate, North Phase, Ander origonon & accudited or Cotogory 4 under the CO-WART Scheme for Accedition	ai tur, Oven n af tur ca	nai 600098 Nultari Orga	ritati
5. 190	Sector Description	Sector	(an per) MoEEC	Gr
- 1	Moung of minus as including approach/ underground moung	1	1 245 18	4
- 2	Offshore and on shore oil and gas exploration, development & production	2	-1-00	A
3	Huer Valley projects		181	- A
- 4	Thermal power grants	4	. 1 240	1
5	Alternal beneficiation industing pelimitation	7	2 (11)	A
. 6	Matalluigcal industries (ferrous & ren-ferrous)	1	3.00	
22	Conterns Plants		51bb	正
1	Fetoesen viewy watery	30	4 (4)	
· ·	Learther/Ukin/Nide proteining industry	- 45	上街	
45	chemical fertilizers	18	5(4)	- 4
11	Fatto-chemical (complexies)	18	\$96	3
117 -	Petrochemical based processing	30	- 3- (H)	
12	Synthetic organic chemicals induitity	25	5.6	- 8
14	OttoTienes	22	3(g)	
15	when stad paint indicitry	23	· 5\II	
1.0	Sugar Reductry	- 25	511	
17	Oil & gat transportation pipeline, peaking through national parts/ sanctuaries.constructeds.com/speaking cally sending a mean including this terminal	27	614	Å
18	Arporta	25	300	
28	inductrius' estates," parts," complexes," Anten, export processing indecERDL. Special economic cones (1924), flortech parts, seather complexes	3.1.	0.80	A
20	Ports, Techeurs, Secal waters and designing	33	.2.16	
- 21	Tughways .	24	· T (f)	
22	Common (15 and Treatment Plants (CCTPs)		2.00	- 8
23	Common Numcoal Solid Watte Management Facility (OVENANY)	52	(7.6)	8
28	Building and construction projects	58	(#14)	
25	Forwitahigs and avea development projects	29	#.(ht)	
18 19 20 21 23 23 23 23 24 25 94 40 54 40 54 54 54 54 54 54 54 54 54 54 54 54 54	Adapters Instructively establish parks," complement," Annue, expect processing instructively, special economics comes (SCOL), function, parks, part for complement Perty, furthered, treath waters, and developing mightways Common (Iffward, Treathingers Plants (OCTPA) Common (Iffward, Treathingers Plants (OCTPA) Common Municipal Sociel Waters Management Pacifies (OSEMMAP) Building and construction property Townships and avea development property of of upper and EM Coordinates and Plantshim Area Experise are nonstanted to BAAC on Factoria. Interim while persons in back object or contents complements for the terms and contents in terms of Advances in back object or contents complements to the terms and contents in terms of Advances (Strate). One can Jack some area and of examines.	23 11 33 34 50 52 53 54 55 54 55 55 54 55 55 54 55 55 55 55	2 (8) 3 (9) 7 (9) 7 (9) 7 (9) 7 (9) 8 (9) 3 (9) 8 (9) 3 (9) 3 (9) 1	

List of Experts

ech Đa	*)	QSeat	#V]		
ech Đà	*)	QSeat	ati]		
9a	*	o abo			
		o Lobo li			
Δ	ML, LACHN	12 1 201204	ndia Priva	te Limited (former)	vknown
n	a	s ABC E	nviron So	olutions Pvt. Ltd.)	y KIROWIT
27					
S Nei	Norte	Туре	Designation	Sector	FA.
î.	Ratnakumar V Mudilar	Empanielled	EC.FAE	2(A),21(A),32(A),37(B),38(B)	SHW(A), SC(A)
25	Abinik Satia	In House	ECJIAE	2(A), 9(A), 12(A), 21(B), 22(A)	WP(A),EB(A),A
	Dr. R. K Jayaseetan	In House	EC.FAE	1(8),31(8),39(8),21(A),37(8)	LU(A),WP(A),H
2					
3			DO DAT	(A),96(A)	WP(A), NG(A)
A:	Dr. R. Paramutiviam	In House	6-30,7 PM		

s No	Name	Тура	Designation	Sector	FA
6	Geetha S	In House	,fae		SE(0)
t:	Hanoosh Panikor	Emparialied	EC.FAE	94(D), 96(D), 97(D), 98(D), 99(D)	AP(B),WP(D),NV
9	K Sokar	Enganellad	EC	1(A),7(A),9(A),31(A),33(A)	
F	Kavma Zog	Enganating	EC.FAE	3(A),4(B),22(A),25(B),39(B)	SHW(B),WP(B).
10	M.S Bhaskar	Empanelled	ECJAE	1(A).2(A).7(8).21(A)	Gec(A),HG(A),L
n	Muthian Mariappan	Emperatied	es fae	4(A),10(A),15(A),16(A),28(A)	SHW(A),AP(A),V
12	P Swamica)	Empartalied	EC	34(A)	
13	R Rajondran	Emparialised	EGJFAE	#(E),36(E),36(E),29(A)	SHW(B),AP(B),J

S Na	Name	Туре	Designation	Sector	FA
ini (Bhankar N Gajahiya	Cinpenalieif	EC-	27(A),39(A)	
15	Syshi Matuum	In House	FAE		SE(A)
16	Valabraal Diimakanim	In Picule	.FAA		SHW,W#
17	Vijayatakahmi K	Empanalise	egjar	29(0),39(0),4(a),21(A)	NV(ALFIH(A) AG
19	Vinod Kumar Gisutam	Empane/led	EC,FAE	29(A).39(9),28(D).21(A).34(A)	SHW(A), AQ(A), J
10	Vivsk P Navare	Empanaliset	EC.FAE	1(A)	NV(A)

Website Competibility: Best viewed in FOOK768 or higher residues mode.

The documents are in PDP tomat. It case you are not able to view the documents, endly druk here (https://pat.adube.com/reide/) promot-BUGID(to downoidd and hatel PDP Viewe).

For any obunges, suggestion or complaint ingesting website (inexe mail at adminibing up (mailtonairen Biggargun).

OCI @ 2019 All Hight Reserved.

Terris and Donitions (Terris/AdDonition aspe) || Despited by (Terrise (http://www.?terrise.com)||

F, Sar Q. Distance.2019 CPW Out-presented at hidda Ministry of Economics C. Forest and Chinais Charge SCP Discount

Ages-211. Index Paryay over Hitsent for High Hand, New Option 110 0075 Damit die 12⁴ October 2019

1....

Mis ABC Techno Latis India Private Listing ABC Toxee No. 498, 12ⁿ Speec , SIDCO Industrial Estate North Phase, Andianae Chemnas, TamiPhada arbitrin.

Subject: Recognition of Max ABC Torhae Labo India Private Lamiter, ABC Torser No. 490, 15^a Street, SIDCO, Industrial Forare North Phase, Andustrier, Chemisi, TamitNatlar600090, as Easterneorizated Laboratory under the Environment (Protection) Adv. 1996 - regenition.

Cha.

I are desced to take to your application databased (C.S.P.) for receiver of the hyper C. Subtraction of the transmission of the second state of the second state of the second state of the second state of the transmission of the second state of th

 As sought in your advancement quite anime. 525, ABC Terrino Late, India Porcia: Longitud, Chemici may indeptide the following anim.

- Provided Textus is englished by Conservation A solution while a first while the destination of an englished by the solution of th
- Intergrate Conservable Non-mathematical Activity, Alkalitatis, Associated Divergen, Charine evolution, Disorder Conservable, Constant Society, Associate Conservable, Conserva
- ¹⁰ Disregular, CEPARE metable Borne, Calemon, Calemon, Chinaman, Youl, Common Hernerster, Copper Bon, Lund, Magnessert, Marsuey, Nuclid, Pransier, Wellers, Soldare adverption Mass, 256, Available Adversaries, Horizon, Parenes, Linhum, Mangaleon, Schullers, Mirror, Stevellars, Tis-Monte-on, Collisit and Variation.
- In Organity (General) and Trace Organize, the chemical energy descent (IICD). Chemical energy damant (CRD), Crit & gravie, Phased, Periods energy and Chemical Physics employing problems, Chemical energy and the second energy of the secon
- Microbiological Tastic Unit? (officers, Fascal Cold from, Fascal Supportant, F. and Total Plant core) and Enterplanta.
- 55 Technological Testic Discover instant for restances of body is using the Historicanialian for magnification and boots are restance traffics. Measurement of models, along Displatia or adust segments.
- Biological, Tester Brentin, registrate distribution and second, Illustrice Manufacture Journ, Structurement of Soliton distribution and State and Provide and Provide Information.
- and Harardons Washi. Propagation of Line Role (TCTP current basis) controls, Controls of Section (Print, Parathering, Trols on and Mean control of Paraty statistic perturbation for the statistic leader.
- Soll Molger Sellinger and Solid Wante Direct, Color Exchange Capacity (Chick Directed Companies), National analytic Degree certain matter transition methods (91, Despinore)

Linnikkis, Phosphata tomber, Phonemage rooms Phenorem, SAR in cert context, Soldons, Soldonoom, DKN, Kaleerine rushis, Ammonea, Interneting, Colorom, Colerine, Colorina, Chleride, Ecolori, Enchangemette function Precoming, Henory and Magnetinin, Million, Nating, 2001, Pasiloide, Polaritimatiathes, Solid-an, Solgebar, TEX, Trans warm policities with and Waget holding segments.

- Antidear Air: Engine Emissions, Sciences denote (ME), Suffrar Jacob (SOE), Surposted particular mater. Respirator sociected particular ender (PUL), Annual Cartan insociale, Othera Flattide, Land, Others, Bernere Tatione Ayters, Polycycle anomatic tydownion all Other Bernopyrice & others, Kim Pers, and Margo PMC, and Oranie Organics Compounds.
- Stark Garry Soutry Environment Consider manage Singhts directed Vetrally & these Control directed, Carbon Memoryan, Temperature, Origina, Orders of environme, Actal and Accounting, Original, Flooride Concession, Forderschuler, and Total Hydro Carbon, Hustinger, Souplade.
- 10. Noise Lands Noise Sevel measurement (20 to 12) shall be for their definition of Surregeneous Section 1
- ally Menotological: Authors remember. Word direction. West speed, Rentry Humidity and Parallel
- Further, the following sendy to have been approved for econgenism in Generalment Analysis-
 - (0) MC8.8461
 - (0) Mr. K.C. Singeringsthate
 - in Mr. A. Bitteen Chiminhous

4. The between static componently participate in the Analysical Quarter Countril (AQC) examine combined by the Countril Pollution Countril Bound (CPCH) at heart more a summarian the countriling of the Identity and maty are conserved out and shaft schedul quarterily programs reports to the Minimary.

 Parietics, were independent the tecographic distribution and adjusting will be substantial by this Missing-CW. It is most in project Southering, restantializ operation and adjusting of data generation for the secondary.

w. It is also considered for the fubremery to have required accordingtion of the Schlitz that boot and UPDAN and its removal in performabilities rules. Previously, it gets 2 shows is subject to such accordingtion and resocial as applicable.

2. The laterary should compared to taken the scenario if Conditions for cash of severa second laterary of the Darma and Conditions, the taken of the taken in the laterary of the Darma and Conditions, the taken of the taken in the taken of the second several and the taken of tak

Avversion faithfulli.

(De SCan George N.) Scientifi (De Scientifi (De Scientifi (De Scientifi (De Scientific))) Esta Scientification (De Scientification) Esta Scientification (De Scientification)

Corp. 10

- Marithur Secretary, Canotal Foliotion Control Board, Parriach Blassan, Cast 20 au Sugar, Sew Delhi – (1983).
- Monther Societies: Land Sodie Pollution Control Roand (1970) Th. Anna Salisi, Castudy, Chemin-600072
- Additional Principal Constraints of Correspondence (C), Modiley of Constraints Constraint Constraints Registered Office (SEA), Canada 27 (1999), Handhaon Expans Promotion Council, 74, Catholish Gamley Read, National Makano, Chevroli 34.
- 4 Dimmer, D. Dimmer, Mol.PAEC, New Delho (1990). for spinaling on Mel.PAEC website.

Doc1-CCCR PNR

भारतसरकार GOVERNMENT OF INDIA पर्यावरण, वनएवंजलवायुपरिवर्तनमंत्रालय MINISTRY OF ENVIRONMENT, FOREST & CLIMATE CHANGE Regional Office/ क्षेत्रीय कार्यालय, I" Floor, Additional Office Block for GPOA, Shastri Bhawan, Haddows Road, Nungambakkam, Chennai – 600006

EP/12.1/940/TN 542

18.04.2024

To

Shri Pankaj Varma Member Secretary IA- division, Non-Coal Mining Indira Paryavaran Bhawan Ministry of Environment, Forest & Climate Change Aliganj, Jor Bagh Road, New Delhi-110001

Subject I: Periyanagalur opencast limestone mine (capacity 1.05 lakh tonnes per annum) of M/s. Madras Cements Ltd. (now M/s. The Ramco Cements Limited) at village Periyanagalur. District Perambalur (now Ariyalur District), Tamil Nadu – Environmental Clearance reg.

Reference No 1, F. No. J-11015/10/99-IA, II(M) dated 26.11.1999

Subject 2: Expansion of Periyanagalur Limestone Mining Project (Project area 40.515 ha (ML area 36,29,5 ha, 4.22 ha of crusher area and increase in limestone production from 0.105 MTPA to 0.9 MTPA) of M/s. The Ramco Coments Limited (formerly M/s. Madras Coments Ltd.) at village Periyanagalur, Taluk Ariyalur in District Ariyalur (formerly Perambalur District), Tamil Nadu

Reference No 2, F. No. J-11015/556/2007-1A.II(M) dated 10.10.2007 Your letter dated: 01.02.2024

Sir.

With reference to the above-mentioned subject, please find enclosed herewith Certified Compliance Reports. This has the approval of the competent authority vide diary No. 236398 dated 18:04-2024.

Yours faithfully.

C- Dainana

(Dr. C. Palpandi) A Scientist 'D'

Dr. C. Palpandi

Scientist 'D' Government of India Recorum Othos, MoEPACC Shorte Sthawen, Hardveys Roed, Numperstaktam, Chermai - 600,006

Encl: As above.

GOVERNMENT OF INDIA Ministry of Environment, Forest & Climate Change (Regional Office, Chennai)

MONITORING REPORT

PART-1

DATA SHEET

a i	Project Type: River valley / Mining / Industry / Thermal / Nuclear / Other Specify	9	Mining
2	Name of the project	10	 Periyanagalur opencast limestone mine (capacity 1.05 lakh tonnes per annum) of M/s. Madras Cements Ltd. (now M/s. The Ramco Cements Limited) at village Periyanagalur, District Perumbalur (now Ariyalur District), Tamil Nadu – Environmental Clearance reg.
			 Expansion of Periyanagalur Limestone Mining Project (Project area 40.515 ha (ML area 36,29.5 ha, 4.22 ha of crusher area and increase in limestone production from 0.105 MTPA to 0.9 MTPA) of M/s. The Ramco Cements Limited (formerly M/s, Madras Cements Ltd.) at village Periyanagalur, Taluk Ariyalur in District Ariyalur (formerly Perambalur District), Tamil Nadu
3	Clearance letter(s) / OM No. and dated	2.0	 MoEF Letter F. No. J-11015/10/99- IA. II(M) dated 26.11.1999 for 0.105 MTPA. MoEF&CC Letter F. No. J- 11015/556/2007-IA.II(M) dated 10.10.2007 - Expansion from 0.105 MTPA to 0.9 MTPA
	Consent order for Establishment (CFE) No. & date	1à	CTE Orders 4223 (Air Act) & 4279 (Water Act) dated 25:01:2008 for the Expansion production quantity of 0.90 MTPA @ 3000 TPD.
	Consent Order for Operation (CFO) No., date and validity	3	CTO-Renew Orders 2308150516922 (Water) & 2308250516922 (Air) dated 28.12.2023 with validity till 31.03.2024 for the Expansion production quantity of 0.90 MTPA @ 3000 TPD

4	L.	ocations:		
	at .	Taluk(s)	12	Ariyalur Taluk,
	-	State (c)	-	Ariyalur District
	t-	Latitudes (Langles 4.2	12	Tamil Nadu
		Lachudes / Longitudes	8	11" 07' 27" - 11° 07' 44" N & 79° 08' 45" - 79° 08' 55" F
8	A	ddress of correspondence:		the man of the sterning to
	a	Address of concerned project Chief Engineer (with Pin Code & telephone/ telex / fax numbers	87	Shri Madhusudhan Kulkarni Sr. Vice President (Manufacturing) M/s The Ramco Cements Limited Govindapuram, Ariyalut - 621713 Phone No.: (04329) 226001 - 04 Fax No.: (04329) 226005 Email: madhusudan k/aramoscements on in
6	Su	lient features;		a south and a non-contents co.m
	ů.	of the project		The Mine is being operated over an Extent 35.96 Ha now (against EC Stage extent of 36.295 Ha) with EC dated 26.11.1999 for 0.105 MTPA from 2005-06 to 2007-08 and with Expansion EC dated 10.10.2007 for 0.90 MTPA (Clean Linnestone) from 2008- 09 to till date. Crusher established over an extent of 4.22 Ha was shifted to RCL Govindapuram Cement Plant. Opencast Conventional Mining method with Drilling & Blasting is adopted. Mined out limestone is loaded in tippers and transported to Govindapuram Cement Factory. The Project Authority (PA) is planning to go for amalgamation of this Periyanagalur Mine along with Periyanagalur West Mine over an extent of 17.360 Ha which is located adjacent in the western side of this mine. <i>The PA obtained TOR from SELAA-Tamil</i> <i>Nadu.</i> For this purpose, the PA has
	D	of the environmental management plans.		Air Pollution: Development of shelter belt. Development of avenue plantation. Regular water sprinkling for dust suppression. Regular maintenance of vehicles. Noise pollution: Limiting time exposure of workers to

				 The workers provided with protection equipment and earmuffs. Speed of the trucks entering or leaving-with moderate speed. Green belt developed act as noise buffer.
¥.	Br	eakup of the project area		
	а	Submergence area (forest & non- forests)	42	Not Applicable. No forest land is involved.
	ь	Others (Beneficiation Plant area)	b	No Beneficiation Plant.
8		Break up of project affected population with enumeration of those losing houses / dwelling units only, agricultural land only, both dwelling units and agricultural land and landless labourers / artisans	32	Not Applicable Own Patta land (32.835 Ha) & Government Poramboke land (3.125 Ha)
	a	SC,ST/Adivasis	8	Not Applicable
	b	Others	. Q.	Not Applicable
9	Fit	nancial Details	110-002	
	a	Project cost as originally planned and subsequent revised estimates and the years of price reference	8	Rs. 6.30 Crores
	ħ	Allocations made for environmental management plans, with item wise and year wise breakup	100	Capital – Rs.64.00 Lakhs Recurring Rs.25.00 Lakhs per annum
	2	Benefit cost ratio / internal rate of return and the years of assessment	100	Not Applicable; Captive Mine
	b	Whether (c) includes the cost of environmental management as shown in (b) above	Þ	Yes
	16	Total expenditure on the Project so far	122	Rs. 6.30 Crorus
	Ŧ	Actual expenditure incurred on the environmental management plans so far	15	Capital – Rs.64.00 Lakhs Recurring Rs.25.00 Lakhs per annum
10	Fo	rest land requirement:		
	-0	The status of approval for a diversion of forest land for non- forestry use	10	Not Applicable
	b	The status of compensatory afforestation, if any	124	Not Applicable
	¢	The status of clear felling	1	Not Applicable
	d	Comments on the viability and sustainability of compensatory afforestation programme in the light of actual field experience so far	1.22	Not Applicable

11		The status of clear felling in non- forest area (such as submergence area of reservoir, approach road), if any, with quantitative information.	200	Not Applicable
12	St	atus of construction:		
	Ш	Date of commencement	1	01.07.2005
	6	Date of completion (actual and / or planned)	1	Ongoing project
13		Reasons for the delay if the project is yet to start.	łż	Not Applicable
14				
	a	The dates on which the project was monitored by the Regional Office on previous occasions, if any	â	18.02.2022 & 19.02.2022
	b	Date of site visit for this monitoring report	¥.	22,02 2024

Dainan e. (Dr. C. Palpandi) Scientist 'D'

PART-II

Subject: Expansion of Periyanagalur Limestone Mining Project (Project area 40.515 ha (ML area 36,29.5 ha, 4.22 ha of crusher area and increase in limestone production from 0.105 MTPA to 0.9 MTPA) of M/s. The Ramco Cements Limited (formerly M/s. Madras Cements Ltd.) at village Periyanagalur, Taluk Ariyalur in District Ariyalur (formerly Perambalur District), Tamil Nadu - reg.

Reference No: MoEF&CC Letter F. No. J-11015/556/2007-1A.II(M) dated 10.10.2007.

Monitoring Date: 22.02.2024

Present Status of the Project:

The Mine is being operated now over an extent of 35.96 Ha with validated GO (Ms) No. 77 dated 26.07.2018 under MMDR Amendment Act, 2015 and is valid till 19.08.2053 (attached as **Document-1**). Supplementary Lease Deed has been executed and registered on 03.07.2019.

First EC dated 26.11.1999 was for 0.105 MTPA Limestone production over an extent of 36.295 Ha. The mine was operated for 0.105 MTPA quantity from 2005-06 to 2007-08. Expansion EC dated 10.10.2007 is for 0.90 MTPA (Clean Limestone) production and the mine is operating for this quantity from 2008-09 to till date. Crusher established over an extent of 4.22 Ha in the non-lease area was shifted to RCL Govindapurant Cement Plant.

TNPCB has issued CTO-Renew Orders 2308150516922 (Water) & 2308250516922 (Air) dated 28.12.2023 with validity till 31.03.2024 for the Expansion production quantity of 0.90 MTPA @ 3000 TPD and are attached as <u>Document-2</u>

Review of Mining Plan (ROMP) has been prepared and approved by IBM. Chennai for the Period 2023-24 to 2027-28 vide Letter No. TN/ALR/LST/ROMP-1704 MDS dated 14.12.2022 and is valid till 31.03.2028 which is attached as <u>Document-3</u>.

Proved/Mineable Reserves is 6,14,800 Tonnes Limestone us on 01.09,2022. Opencast Conventional Mining method with Drilling & Blasting is adopted. Mined out limestone is loaded in tippers and transported to Govindapuram Cement Factory.

The Project Authority (PA) is planning to go for amalgamation of this Periyanagalur Mine along with Periyanagalur West Mine over an extent of 17.360 Ha which is located adjacent in the western side of this mine. The PA obtained TOR from SEIAA-Tamil Nadu. For this purpose, the PA has requested the RO, MoEF&CC, Chennai for Certified Compliance Report. Accordingly, the Mine was inspected on 22.03.2024. The Mine is in operation on the day of monitoring.

Site visit Photographs are attached as Annexures I-II.

(paironde

PART-III

Specific Conditions:

11

S. No.	EC Conditions	Compliance status
£.	Top soil shall be stacked properly with proper slope with adequate safeguards and shall be backfilled for reclamation and rehabilitation of mined out area.	Topsoil of 332,600 Tons was removed and stacked at the carmarked site and 3,01,022 Tons was used for green bel development. There are 5 Nos. Of Dumps with 25,47,843 Tons OB Backfilling with OB materials is being carried out in northern side of the Pit and balance Topsoil is used for reclamation and rehabilitation of backfilled areas.
CHIL	Garland drains shall be constructed to arrest silt and sediment flows from soil, and mineral dumps. The water so collected shall be utilized for watering the mine area roads green belt development etc. The drains shall be regularly de-silted particularly after monsoon and maintained properly. Garland drain with appropriate (size, gradient and length) shall be constructed for both mine pit and for waste dump and sump capacity shall designed keeping 50% safety margin over and above peak sadden rain fall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity shall also provide adequate retention period to allow proper settling of site material. Sedimentation pits shall be constructed at the corner of the garland drains and desilted at regular intervals.	Complied. Garland Drains are provided all along periphery of overburden dumps with dimension of 1500 (L) x 2 (W) x 2 m (D). Recharge cum Settling Pond of 100 (L) x 50 (W) x 2 m (D) is made in the eastern side of the Lease area to collect the surface runoffs through garland drains. Water collected in the settling pond is utilized for green belt and dust control measures. Excess water is drained to nearby irrigation pond for raising agricultural crops to nearby areas. Garland drains are also provided for working mine pit of size 700 (L) x 2 (W) x 2 (D). Garland drains are connected to the sedimentation tanks of 3 (L) x 3 (W) x 2 m (D) at the corners to settle the solids before final disposal. Periodical desilting of garland drains and radiumentation tanks of 3 (L) x 3 (W)
θ£.	Conceptual mining plan for every 5 years for the mine shall be submitted to Ministry.	Complied. Periodical Mining Plan for 5 years Block period with conceptual stage closure plan in prepared and obtained approval by IBM. Approved plan is submitted to the Authorities. Present ROMP for the Period 2023-24 to 2027-28 is approved

276

		TN/ALR/LST/ROMP-1704.MDS dated 14.12.2022 and is valid till 31.03.2028
iv:	The company shall monitor cumulative impacts of the nearby mines and cement plants located in the area with regard to ambient air quality and maintain proper authentic record.	Complied. Ambient air quality is periodically monitored at 3 locations in the Mine and 6 locations in the buffer zone for monitoring the cumulative impacts of the nearby mines and cement plant. Periodical reports (<u>Document-4</u>) are submitted to TNPCB on monthly basis. IBM on quarterly basis and RO on six monthly basis.
¥.)	Drilling and blusting shall be by using dost extractors / wet drilling.	Complied. Both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Ripper is adopted. Wet drilling is adopted.
vi.	Plantation shall be raised in an area of 21,21 ha including a green belt of adequate width by planting the native species around the ML area. OB dump sites etc., in consultation with the local DFO/Agriculture Department. The density of the trees shall be around 2500 plants per ha. Selection of plant species shall be as per CPCB guidelines. Herbs & shrubs shall also form a part of afforestation programme besides tree plantation.	Complied. Green belt is developed around the ML areas, all along haulage road, dumps and mine office. Green belt is developed in a phased manner. About 18,70 Ha is brought under green belt with 43,660 trees @ 2,335 plants per ha and survival rate is about 90%. Herbs and shrubs are also made besides tree plantation.
VII	The project authority shall implement suitable conservation measures to augment ground water resources in the area in consultation with the Regional Director, Central Ground Water Board.	Complied. Recharge cum Settling Pond of T00 (L) is 50 (W) x 2 m (D) is made in the eastern side of the Lease area to collect the surface runoffs through garland drains Water collected in the settling pond is utilized for green belt and dust contro measures. Excess water is drained to nearby irrigation pond for raising agricultural crops in nearby areas. The PA is consulting SGWB for mine pi- dewatering and its gainful utilisation.
viii.	Regular monitoring of ground water level and quality shall be carried out by establishing a network of existing wells and constructing new piczometers	Complied. Periodical monitoring of ground wate level is carried out 3 locations of

	during the mining operation. T monitoring shall be carried out fo times in a year pre-monsoon (Apr May), Monsoon (August), por monsoon (November), winter (Januar and the data thus collected may be ser regularly to MoEF, central Groun water Authority and Regional Direct Central Ground Water Board.	the quarterly basis in addition to the piezometer readings recorded in the Mine. Periodical water level data (Document-5) are submitted to IBM on quarterly basis and RO, MoEF&CC, Chennai on ≰ix monthly basis. Ground water quality monitoring data is attached as Document-6.
ix	The existing water bodies and that to here at a during the course of mining multilized to develop pisciculture be organizing. Fisbermen cooperative society with the land losers if any an special the poorer section of the people as member of such society with initial financial assistance in the form of share money and managerial assistance so that the member themselves can run the affairs of the society in due course. The project proponent shall arrange marketing tie up so that the society gets fair price of their product and the profits are equitably shared by member of the society as regular source of income.	 Refer below. There is no existing water bodies around the mine pit. At conceptual stage, balance mine pit voids, after backfilling, will be left out as water reservoir. Pisciculture activities will commence after that.
×	Land use pattern of the nearby villages shall be studied and action plan for abutement and compensation for damage to agriculture land or common property land (if any) due to mining activity shall be submitted to ministry within six months.	Complied. Land Use pattern of the nearby villages are studies with Satellite imageries. The mine is surrounded by other leases in northern and western parts. OB dumps exist in eastern and southern parts. There is no agricultural activity near the mine. Hence, the PA has not prepared action plan
si	Soil samples for contamination of mercury, chromium and other traces metals shall be studied when mine is in operation and records maintained.	Complied. Soil quality monitoring is carried out 2 locations and reports submitted to the Authorities on quarterly basis (Document-7) As per monitored data, there was no trace metals recorded in the Soil gaudin
xii.	Erosion and silt control measures shall be prepared and ground vibration study shall be conducted.	Complied. Complied. Garland drains are provided around OB dumps to arrest the silt. Check dams are also made for this purpose. Vibration levels are monitored with Minimate instruments whenever blaction are d

		and records are maintained as per DGMS requirement.
xiii	Vehicular emissions shall be kept under control and regular monitored, Measures shall be taken for maintenance of vehicle used in mining operations and in transported of mineral. The vehicles shall be covered with a tarpoulin and shall not be overloaded.	Refer below. All the vehicles used in the mine are on contract basis and servicing is being done in their own places. 'Pollution Under Control' Certificates are checked periodically. The PA also informed that transport vehicles are covered with turpaulin and are not overloaded.
xîv	A final Mine Closure Plan, along with details of Corpus Fund, shall be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.	Refer below. The PA is planning to go for amalgamation of this Periyanagalur Mine along with Periyanagalur West Mine located adjacent in the western side of this mine. Thus, mine decommissioning plan will be delayed and will be submitted well in advance.
XV	Company shall periodically (every 6 month) monitor river water quality and also shall undertake mitigation measures in case contamination due to mining activity is observed. Periodic test result of the river water quality shall be submitted to the state government and the ministry for record every 6 months.	Complied. The PA is monitoring the Surface water quality at 3 locations through a NABL Lab on quarterly basis and submitting the Reports to the Authorities as Six- monthly compliance. The monitored data (Document-S) reveals that there was no contamination of surface waters due to the mining activities.
xvi	Transportation of ore shall be done by covering the trucks with tarpaulin or other suitable mechanism so that no spiilage of ore /dust take place. Transportation shall be done only during day time.	Complied. Ore is transported through Tippers covered with tarpaulin Transportation is done during permitted times by the District Administration.
xvii	Occupational health surveillance program of the workers shall be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures. If needed occupational health and safety measures for the workers including training on malaria eradication, HIV, and health effects on exposure to mineral dust etc., shall be carried out. The company shall engage a full time qualified doctor who is trained in occupational Health surveillance, health record of workers shall be maintained.	Complied. Occupational Health Surveillance Program is being conducted for the workers periodically. An Occupational Health Center is at the Cement Plant, A dedicated dispensary with qualified Doctor in OHS and pharmacy are provided for Occupational Health Surveillance and Monitoring. Personal Protective Equipment is provided for al employees working in the mines Adequate training on Safety and health aspect has been provided. Review o

Impact of various health measures is
beine undertaken

General Conditions: -

S. No.	EC Conditions	Compliance status
1	No change in mining technology and scope of working shall be made without prior approval of the Ministry of Environment & Forest.	Complied. There is no change in scope of working and technology. The PA is planning to ge for amalgamation of this Periyanagalu Mine along with Periyanagalur Wes Mine located adjacent to this mine. The PA obtained TOR from SEIAA-Tami Nadu. For this purpose, the PA has requested the IRO, MoEF&CC, Chennal for Copy of the Certified Compliance Report.
ni.:	No change in the calendar plan including excavation, quantum of limestone and waste should be made.	Complied. The PA is following the calendar plan as approved by IBM
m.	Conservation measures for protection of flora and fauna in the core & Buffer zone shall be drawn up in consultation with the local forest and wildlife department.	Refer below. The ML area is private land, there is no forest land involved. No wildlife also was observed in this area. No conservative plan is conservative.
W	Four ambient air quality — monitoring stations should be established in the core zone as well as the buffer zone for RPM. SPM, SO ₂ , NOx and CO monitoring Location of the stations should be decided based on the meteorological data topographical features and environmentally and ecologically sensitive targets in consultation with the State Pollution Control Board	Complied. In consultation with TNPCB, Ambient air quality is periodically monitored at 3 locations in the Mine and 6 locations in the buffer zone as per the Land Use pattern and environmentally sensitive targets. Periodical reports are submitted to TNPCB on monthly basis, IBM on quarterly basis and RO, MoEF&CC on six monthly basis.
V ₂	Data on ambient quality should be controlled regularly submitted to the Ministry including its Regional office at Bangalore and the State Pollution Control Board/ Central Pollution Control Board once in six months.	Complied. AAQ monitored data is being submitted o the Ministry once in six months and on nonthly basis to TNPCB regularly.

280

vi	Fugitive dust emissions from all the sources should be controlled regularly monitored and data recorded properly. Water spraying arrangement on haul roads, wagon loading, dump, trucks	Complied. Fugitive dust emission is controlled on mine haul road, internal roads by spraying water and maintained well.
vii.	(loading & unloading) should be provided and properly maintained. Measures shall be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM, etc., shall be provided with ear plug / muffs.	Complied. The PA is monitoring both Ambient & Work zone Noise levels periodically through a NABL Lab and submitting the status reports to the Authorities. The manifused data (Document-9) reveals that
		Leq Noise Levels were within the MoEF&CC Norms for Residential Area and within 85 dB(A) in working areas for 8-hours duration.
viii	Industrial waste water (workshop and waste from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19 th May, 1993 and 31 st December, 1993 or as amended from time to time. Oil and grease trap shall be installed before discharge of workshop offluents.	Refer below. There is no trade effluent generation from the mine.
ix.	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects.	Complied. Personnel Protective Equipment (PPE) including earplugs are provided to the workers and they are using them. Training on safety also are being given to them regularly.
X	A separate environmental management cell with suitable qualified personnel should be set-up under the control of a Senior Executive, who will report directly to the Head of the Organization.	Complied, Environment Management Cell (EMC) is made with qualified person including Horticulturist. The EMC person is directly reporting to the Head of the Unit.
NÎ.	The project authorities shall inform to the Regional Office located at Bangalore regarding date of Financial closures and final approval of the project by the concerned authorities and the date of start of land development work.	Refer below, It is an existing captive mine and thus, the financial closure was not required.
्रत्रो	The funds earmarked for environmental protection measures shall be kept in separate account and should not be	Complied.

C-Minorly

	diverted for other purpose. Year wise expenditure should be reported to the Ministry and its Regional office located at Bangalore.	The PA has allocated adequate amount for environment management and informed that it is not diverted for any other purpose. The amount is kept in a separate budget
xiii	The Regional Office of this Ministry located at Bangalore shall monitor compliance of the stipulated conditions. The project authorities extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data /information/monitoring reports.	Complied. The PA has extended full co-operation to the officers of RO, MoEF&CC, Chennai during the visit and provided requisite data / information.
xiv	A copy of clearance letter will be carmarked to concern Panchayat / local NGO, if any from whom suggestion / representation has been received while processing the proposal.	Not complied. No document of submission of Environmental Clearance letter to the local randomut has been needed.
XV.	State Pollution Control Board should display a copy of the clearance letter at the Regional office, District Industry center and Collectors office/ Tabsildars Office for 30 days.	Refer below. This condition pertains to TNPCB.
SNO.	The project authorities should advertise at least in two local newspapers widely circulated around the project, one of which shall be in the vernacular language of the locality concerned, within 7 days of the issue of the clearance letter informing that the project has been according environmental clearance and a copy of the clearance letter is available with the State Pollution Control Board and may also be seen at web site of the Ministry of Environment & Forests at http://envfor.nic.in_and a copy of the same shall be forwarded to the Regional Office of the Ministry located at Bangalore.	Complied. Advertisements were given in two local Newspapers namely, Indian Express (English) dated 15.10.2007 and Dinathanthi (Tamil) dated 15.10.2007 (Document-10).

Implementation of Conditions (i)

The PA has not complied following EC conditions:

No document of submission of Environmental Clearance letter to the local panchayat has been provided.

282

(ii) General observations:

During the site visit, it was observed that the PA has complied most of the EC conditions which are satisfied.

(iii) Court cases and show cause/closure notices

At present there are no court cases and show cause / closure notices issued by the Competent Authority.

(Dr. C. Palpandi) Scientist 'D'

Dr. C. Palpandi Scientist 'D' Government of India Regional Office, MoEF&CC Shoatri Snawan, Haddows Road, Nungumbaskam, Chennel - 600 006

J-11015/ 556/2007- IA.II(M) Government of India Ministry of Environment & Forests

Tel no. 24363973 E mail: <u>pla<u>hujarai@yahoo.com</u> Paryavaran Bhavan, C G O. Complex, Lodi Road, New Delhi-110003 Dated the October 10, 2007</u>

Тο

M/s Madras Cements, Ltd Auras Corporate Centre , V Floor, 98-A, Dr. Radhakrishnan Road Mylapore Chennai 600004

Sub: Expansion of Periyanagalur Limestone Mining Project (Project area 40.515 ha (ML area 38.29.5 ha, 4.22 ha of crusher area and increase in limestone production from 0.105 MTPA to 0.9 MTPA) of M/s Madras Cements Ltd. at village Periyanagalur, Taluk Ariyalur in District Perambalur, Tamil Nadu - regarding Environmental Clearance.

Sir,

The undersigned is directed to refer to you: letter no. MCL-CO/PNR/MOEF-2007/1 dated 11.06.2007 on the subject mentioned above. The Ministry of Environment and Forests has examined the application

It has been noted that proposal is for environmental clearance for expansion of 2. production capacity of mine from 0.105 million TPA to 0.90 Million TPA to supply limestone to the cement plant. The mine is located in district Perambalur in Tamilnadu. Total project area is 40.515 ha, of which ML area is 36.29 5 ha and 4.22 ha of crusher. area. The lease area of the mine comprises of 32.95 ha of agricultural land and 3.345 ha of Govt, revenue land. Out of 40.515 ha of area at the post mining stage, 10.23 ha will be left as void, 7 61 ha will be backfilled, 0.95 ha is for waste dump, 4.42 ha of built up area, 13.40 ha for green belt and 3.7015 ha of undisturbed area. Water body will be used as fish pond. Topography of the area is flat. Marudaiyar river which is seasonal is located at a distance of 4.0 Kms from the mine boundary. No ecologically sensitive area, such as National park/ Wildlife Sanctuary /Biosphere reserve etc is located within 10 Km radius of the core zone. Project does not involve forest land and displacement of the people, Life of the mine is 8.3 years. Method of mining will be opencast and mechanized. Drilling and blasting is involved, Water requirement of 46 m*/a will be met from the ground water source and mine pit water. The ultimate working depth will be 40m ogl and ground water lable is 16 m bgl, Mine workings will intersect the ground water table. Hydrogeological study of the area has been carried. As per the study, total recharge is 43.19 million m3 and net ground water draft is 16.15 million m3, whereas ground water availability is 27.04 million m3. Net annual ground water availability is 59 73 %. Total quantity of OB generated will be 0 86 Million im', which will be backfilled and stabilized with vegetation. It is noted that public hearing of the project was held on 22.08.05. Approval of Modifications in the approved mining plan including progressive mine closure plan from the IBM has obtained on 01 09.2006. Cost of the project is Rs.6.30 crores.

3. The Ministry of Environment and Foreste has examined the application in accordance with Section 12 of the Environmental Impact Assessment Notification, 2005, read with para {2.2.1(i) (a)} of interim operational guidelines vide Circular no. J-11013/41/2006-tA.II(i) dated 13th October, 2006 and hereby accords environmental clearance under the provisions thereof to the Perianagalur Limestone Mine of M/s Madras Cements. Ud for expansion of annual production capacity from 0.105 million TPA to 0.9 Million TPA of Limestone involving total project area of 40.515 he of which 36.2950 ha of ML area and 4.22 ha of crusher area subject to implementation of following conditions and safeguards:

-2-

A. Specific conditions

- Top soil shall be stacked properly with proper slope with adequate safeguards and shall be backfilted for reclamation and rehabilitation of mined out area.
- (ii) Garland drains shall be constructed to arrest silt and sediment flows from soil, and mineral dumps. The water so collected shall be utilized for watering the mine area, roads, green belt development etc. The drains shall be regularly desilted particularly after monsoon and maintained property.

Garland drain with appropriate (size, gradient and tength) shall be constructed for both mine pit and for waste dump and sump capacity shall be designed keeping 50% safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity shall also provide adequate retention period to allow proper settling of silt material. Sedimentation pits shall be constructed at the corners of the garland drains and desilted at regular intervals.

- (iii) Conceptual Mining Plan for every 5 years for the life of the mine shall be submitted to the Ministry.
- (iv) The company shall monitor cumulative impacts of the nearby mines and cement plants located in the area with regard to amblent air quality and maintain proper authentic records.
- (v) Drilling and blasting shall be by using dust extractors/wet drilling.
- (vi) P antation shall be raised in an area of 21.21 ha including a green belt of adequate width by planting the native species around the ML area, roads, OB dump sites etc. in consultation with the local DFO / Agriculture Department. The density of the trees shall be around 2500 plants per ha. Selection of plant species shall be as per CPCB guidelines. Herbs and shrubs shall also form a part of afforestation programme besides tree plantation.
- (vii) The project authority shall implement suitable conservation measures to augment ground water resources in the area in consultation with the Regional Director, Central Ground Water Board

.

- (viii) Regular monitoring of ground water level and quality shall be carried out by establishing a network of existing wells and constructing new piezometers during the mining operation. The monitoring shall be carried out four times in a year – pre-monsoon (April-May), monsoon (August), post-monsoon (November) and winter (January) and the data thus collected may be sent regularly to MOEF. Central Ground Water Authority and Regional Director, Central Ground Water Board
- Prior permission from the competent authority shall be obtained for drawl of oround water, if any
- (x) The existing water bodies and that to be created during the course of mining may be utilized to develop pisciculture by organizing fishermen cooperative society with the land tosers, if any and specially the poorer section of the people as members of such society with initial financial assistance in the form of share money and managenal assistance so that the members themselves can run the affairs of the society in due course. The project preponent shall arrange marketing tie up so that the society gets fair orice of their product and the profits are equitably shared by the members of the society as regular source of income
- (xi) Land-use pattern of the nearby villages shall be studied and action plan for abatement and compensation for damage to agricultural land or common property land (if any) due to mining activity shall be submitted to the Ministry within six months.
- (xii) Soil samples for contamination of mercury, chromium and other trace metals shall be studied when mine is in operation and records maintained.
- (xiii) Erosion and silt control measures shall be prepared and ground vibration study shall be conducted
- (xiv) Vehicular emissions shall be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportation of mineral. The vehicles shall be covered with a tarpaulin and shall not be overloaded.
- (xv) A Final Mine Closure Plan, along with details of Corpus Fund, shall be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.
- (xvi) Company shall periodically (every 6 months) monitor river water quality and also shall undertake mitigation measures in case contamination due to mining activity is observed. Periodic test results of the over water quality shall be submitted to the State Government and the Ministry for records every 6 months.
- (xvii) Transportation of one shall be done by covering the trucks with tarpaulin or other suitable mechanism so that no spillage of one *I* dust take place. Transportation shall be done only during day time.

(xviii) Occupational health surveillance program of the workers shall be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed Occupational health and safety measures for the workers including training on malaria eradication, HIV, and health effects on exposure to mineral dust etc. shall be carried out. The company shall engage a full time qualified doctor who is trained in occupational health surveillance. Health records of the workers shall be maintained.

B. General conditions

- No change in mining technology and scope of working shall be made without prior approval of the Ministry of Environment & Forests.
- ii No change in the calendar plan including excavation, quantum of mineral , limestone are and waste shall be made
- iii. Conservation measures for protection of flora and fauna in the core & buffer zone shall be drawn up in consultation with the local forest and wildlife department.
- iv. Four embient air quality-monitoring stations shall be established in the core zone as well as in the buffer zone for RPM. SPM, SO2, NOx monitoring. Location of the stations should be decided based on the meteorological data, topographical teatures and environmentally and ecologically sensitive targets and frequency of monitoring should be undertaken in consultation with the State Pollution Control Board.
- v. Data on ambient air quality (RPM, SPM, S0₂, NOx) should be regularly submitted to the Ministry including its Regional office located at Bangalore and the State Pollution Control Board / Central Pollution Control Board once in six months.
- vi Fugitive dust emissions from all the sources shall be controlled regularly. Water spraying arrangement on haul roads, loading and unloading and at transfer points shall be provided and properly maintained.
- vii. Measures shall be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM, etc. shall be provided with ear plugs / muffs.
- viii. Industrial waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May. 1993 and 31st December, 1993 or as amended from time to time. Oil and grease (rap shall be installed before discharge of workshop effluents.
- ix Personnel working in dusty areas shall wear protective respiratory devices and they shall also be provided with adequate training and information on safety and health aspects.

288

- x. A separate environmental management cell with suitable qualified personnel shall be sel-up under the control of a Senior Executive, who will report directly to the Head of the Organization.
- xi. The project authorities shall inform to the Regional Office located at Bangalore regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development work.
- xii. The funds earmarked for environmental protection measures shall be kept in separate account and should not be diverted for other purpose. Year wise expenditure shall be reported to the Ministry and its Regional Office located at Bangalore.
- xiii. The project authorities shall inform to the Regional Office located at Bangalore regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development work.
- xiv. The Regional Office of this Ministry located at Bangalore shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / information / monitoring reports.
- xv A copy of clearance letter will be marked to concerned Panchayat / local NGO, if any, from whom suggestion / representation has been received while processing the proposal
- xvi. State Pollution Control Board should display a copy of the clearance letter al the Regional office, District Industry Centre and Collector's office/ Tehsildar's Office for 30 days.
- xvii. The project authorities should advertise at least in two local newspapers widely circulated, one of which shall be in the vernacular language of the locality concerned, within 7 days of the issue of the clearance letter informing that the project has been accorded environmental clearance and a copy of the clearance letter is available with the State Pollution Control Board and also at web site of the Ministry of Environment and Forests at <u>http://envfor.nic.in</u> and a copy of the same shall be forwarded to the Regional Office of this Ministry located Bangalore.

4 The Ministry or any other competent authority may alter/modify the above conditions or stipulate any further condition in the interest of environment protection

5. Failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Environment (Protection) Act, 1986.
6. The above conditions will be enforced inter-alia, under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and the Public Liability Insurance Act, 1991 along with their amendments and rules.

Yours faithfully, ۲۰۰۰ (Dr. P.L. Ahujarai) Director

Copy to:

- Secretary, Ministry of Mines, Government of India Shastri Bhawan, New Delhi.
- 2. Secretary, Department of Environment, Government of Tamilnadu, Chennai.
- 3 Secretary, Department of Mines and Geology, Government of Taminadu, Chennai.
- 4. Secretary, Department of Forests, Government of Tamilnadu, Chennai
- 5. The Secretary (Environment) Govt. of Tamil Nadu, Fort. St. George, Chenna-600009.
- 6 The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD-cum-Office Complex, East Arjun Nagar, Delh-110032.
- The Chairman, Tamil Nadu Pollution Control Board, 76. Mount Road, Guindy, Chennai – 600032.
- B. The Chief Conservator of Forests (Central), Regional Office (SZ), Kendriya Sadan, IVth Floor, E&F Wings, 7th Main Road, 11^{ed} Block, Koramangala, Bangalore-560034.
- Member Secretary, Central Ground Water Authority. A2, W3 Curzon Road Barracks, K.G. Marg, New Delm-110001.
- 10. Controller General, Indian Bureau of Mines, Indira Bhavan, Civil Lines, Nagpur-440 001
- 11 District Collector, District Perambalur . Tamilnadu.
- 12. Monitoring File.
- 13. Guard File
- 14. Record File.

(Dr. P.L. Ahujaral) Director

٦,

Category of the Industry :

RED

CONSENT ORDER NO. 2308150516922 DATED: 28/12/2023.

PROCEEDINGS NO.T1/TNPCB/F.0144ARY/RM/ARY/W/2023 DATED: 28/12/2023

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT – M/s. THE RAMCO CEMENTS LIMITED, PERIYANAGALUR LIMESTONE MINES, S.F.No. 51/2,3,4 etc. 224/1 and 2, 226/1A, 1B etc, 226/12, 13A etc, 228/1,2 etc, 229/2,3 etc, 230/1A,1B etc, 231/1A, 1B etc, 232/1A,1B etc, 233/3, 4 etc, 234, 235/1,2 etc, 236/1,237/1 and 2, 267, 268/1 and 2, 269, 271, 226/16,228/2,234 Part,228/5, PERIYANAGALUR village, Ariyalur Taluk and Ariyalur District - Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) – Issued-Reg.

REF: 1. PROCEEDINGS NO.T2/TNPCB/F.0144ARY/RM/ARY/W&A/2021 DATED: 17/05/2021 2. IR.No : F.0144ARY/RM/DEE/ARY/2023 dated 05/12/2023

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Managing Director M/s . THE RAMCO CEMENTS LIMITED, PERIYANAGALUR LIMESTONE MINES S.F No. 51/2,3,4 etc. 224/1 and 2, 226/1A, 1B etc, 226/12, 13A etc, 228/1,2 etc, 229/2,3 etc, 230/1A,1B etc, 231/1A, 1B etc,232/1A,1B etc, 233/3, 4 etc, 234, 235/1,2 etc, 236/1,237/1 and 2, 267, 268/1 and 2, 269, 271, 226/16,228/2,234 Part,228/5 PERIYANAGALUR Village Ariyalur Taluk Ariyalur District.

Authorising the occupier to make discharge of sewage and /or trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2024

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai 290

SPECIAL CONDITIONS

1. This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Sl. No.	Description	Quantity	Unit	
	Product Details			
1.	Mining of Limestone over an Extent of 36.295 Hectares	0.9	Million Tonnes Per Annum	
	By-Product Details			
1.	No by product	0		
	Intermediate Product Details			
1.	No Intermediate product	0		

2. This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Description of Outlet	Maximum daily discharge in KLD	Point of disposal		
Effluent Type : Sewage				
Sewage	1.7	On Industrys own land		
Effluent Type : Trade Effluent				
Trade effluent	0.9	On land for gardening		
	Description of Outlet pe : Sewage Sewage pe : Trade Effluent Trade effluent	Description of OutletMaximum daily discharge in KLDpe : Sewage1.7Sewage1.7pe : Trade Effluent0.9		

Special Additional Conditions:

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

The industries shall take all efforts to use and popularize "Mission LiFE" logo and mascot which is available in TNPCB & MoEFCC website. They shall also request their employees to adopt "Mission LiFE" action points and document the same and furnish half yearly report to Board.

Additional Conditions:

1. The unit shall treat and dispose the sewage in septic tank and Dispersion trench arrangements.

2. The unit shall operate and maintain the Effluent Treatment Plant and ensure that the treated effluent shall be utilized for gardening after satisfying the standards prescribed by the Board.

3. The unit shall comply with all conditions mentioned in the EC issued by MoEF, New Delhi vide Lr. No, J11015/556/2007-IA.II(M) dt:10.10.2007.

4. The unit shall adhere to the depth of mining mentioned in the Environmental Clearance issued.

5. The unit shall adhere to the depth of mining mentioned in the Environmental Clearance issued.

6. The unit shall strictly adhere to the approved mine closure plan.

7. The unit shall comply with Mines and Minerals (Development and Regulation) Amendment Act 2015.

8. Safety precautionary measures for all the employees who are working in the mines should be practiced and strictly to be followed.

9. Medical check up of the all the employees shall be carried out periodically, specifically with respect to dust exposure levels and the possible control measures shall be taken for minimizing the dust exposure level on the worker and improving their health conditions to be furnished to the competent authority

10. The proponent shall provide more green-belt in the periphery of the mining area.

11. The mined out pits should be backfilled wherever warranted and area should be suitably landscaped to prevent environmental degradation. The mine closure plan as furnished in the proposal shall be strictly followed.

12. The mining lease holder shall, after ceasing mining operations, undertake re-grassing the mining area and any other area which may have been disturbed due to their mining activities and restore the land to a condition which is fit for growth of fodder, flora, fauna etc.

13. The unit shall not use "use and throwaway plastics' such as plastic sheets used for food wrapping, spreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumbler, water pouches and packets, plastic straw, plastic carry bags and plastic flags irrespective of thickness, within the industry premises. Instead unit shall encourage use of eco friendly alternative such as banana leaf, arecanut palm, stainless steel, glass, porcelain plates/cups/cloth bag, jute bag etc.,

14. The unit shall liable to pay the consent fee and shall remit the difference in amount in case of any revision of consent fee by the Government.

15. The unit shall submit Environmental Statement for every financial year ending the 31st March in Form -V as per the Rule 14 of the Environment (Protection) Rules, 1986.

16. This consent order does not absolve from obtaining necessary permission / clearance from other Authority or under other Statute as applicable.

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

То

The Managing Director, M/s.THE RAMCO CEMENTS LIMITED, PERIYANAGALUR LIMESTONE MINES, RAMAMANDIRAM, RAJAPALAYAM, VIRUDHUNAGAR DISTRICT. Pin: 626117

Copy to:

The Commissioner, ARIYALUR-Panchayat Union, Ariyalur Taluk, Ariyalur District .
 The District Environmental Engineer, Tamil Nadu Pollution Control Board, ARIYALUR.
 The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Triuchirappalli.
 File

Category of the Industry :

RED

CONSENT ORDER NO. 2308250516922 DATED: 28/12/2023.

PROCEEDINGS NO.T1/TNPCB/F.0144ARY/RM/ARY/A/2023 DATED: 28/12/2023

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT –M/s. THE RAMCO CEMENTS LIMITED, PERIYANAGALUR LIMESTONE MINES, S.F.No. 51/2,3,4 etc. 224/1 and 2, 226/1A, 1B etc, 226/12, 13A etc, 228/1,2 etc, 229/2,3 etc, 230/1A,1B etc, 231/1A, 1B etc,232/1A,1B etc, 233/3, 4 etc, 234, 235/1,2 etc, 236/1,237/1 and 2, 267, 268/1 and 2, 269, 271, 226/16,228/2,234 Part,228/5, PERIYANAGALUR village, Ariyalur Taluk and Ariyalur District - Renewal of Consent for the operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) –Issued- Reg.

REF: 1. PROCEEDINGS NO.T2/TNPCB/F.0144ARY/RM/ARY/W&A/2021 DATED: 17/05/2021 2. IR.No : F.0144ARY/RM/DEE/ARY/2023 dated 05/12/2023

RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Managing Director

M/s . THE RAMCO CEMENTS LIMITED, PERIYANAGALUR LIMESTONE MINES S.F No. 51/2,3,4 etc. 224/1 and 2, 226/1A, 1B etc, 226/12, 13A etc, 228/1,2 etc, 229/2,3 etc, 230/1A,1B etc, 231/1A, 1B etc,232/1A,1B etc, 233/3, 4 etc, 234, 235/1,2 etc, 236/1,237/1 and 2, 267, 268/1 and 2, 269, 271, 226/16,228/2,234 Part,228/5 PERIYANAGALUR Village Ariyalur Taluk Ariyalur District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2024

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai 293

SPECIAL CONDITIONS

1. This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Sl. No.	Description	Quantity	Unit	
	Product Details			
1.	Mining of Limestone over an Extent of 36.295 Hectares	0.9	Million Tonnes Per Annum	
	By-Product Details			
1.	No by product	0		
	Intermediate Product Details			
1.	No Intermediate product	0		

2. This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.

Ι	Point source emission with stack :			
Stack No.	Point Emission Source	Air pollution Control measures	Stack height from Ground Level in m	Gaseous Discharge in Nm3/hr
0	Drilling Dust extraction 0 system			
Π	Fugitive/Noise emission :			
SI. No.	Fugitive or Noise EmissionType of emissionControlsourcesmeasures			
1.	Mining area and haulage road	Fugitive	Water spraying through tanker	

Special Additional Conditions:

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

The industries shall take all efforts to use and popularize "Mission LiFE" logo and mascot which is available in TNPCB & MoEFCC website. They shall also request their employees to adopt "Mission LiFE" action points and document the same and furnish half yearly report to Board.

Additional Conditions:

1. The unit shall operate and maintain the Air Pollution Control measures efficiently and continuously so as to achieve the Ambient Air Quality / Emission standards prescribed by the Board.

2. The unit shall adhere to the AAQ/ambient Noise level standards prescribed by the Board.

3. The unit shall carry out ROA of AAQ/ANL survey once in a year through TNPCB and submit report to the Board.

4. The unit shall operate the water sprinklers effectively to suppress the dust emission during mining and vehicle movements.

5. The haul roads in the mines shall be adequately water sprayed using water tankers at regular intervals.

6. The unit shall continue to develop more green belt in and around the premises.

7. The unit shall comply with Mines and Minerals (Development and Regulation) Amendment Act 2015.

8. The unit shall ensure that transport vehicle shall be leak proof and properly covered with tarpaulin so as to prevent dust from being air borne.

9. The unit shall comply with all conditions mentioned in the EC issued by MoEF, New Delhi vide Lr. No, J11015/556/2007-IA.II(M) dt:10.10.2007.

10. The unit shall adhere to the depth of mining mentioned in the Environmental Clearance issued.

11. The unit shall liable to pay the consent fee and shall remit the difference in amount in case of any revision of consent fee by the Government.

12. The unit shall submit Environmental Statement for every financial year ending the 31st March in Form -V as per the Rule 14 of the Environment (Protection) Rules, 1986.

13. This consent order does not absolve from obtaining necessary permission / clearance from other Authority or under other Statute as applicable.

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

То

The Managing Director, M/s.THE RAMCO CEMENTS LIMITED, PERIYANAGALUR LIMESTONE MINES, RAMAMANDIRAM, RAJAPALAYAM, VIRUDHUNAGAR DISTRICT. Pin: 626117

Copy to:

1. The Commissioner, ARIYALUR-Panchayat Union, Ariyalur Taluk, Ariyalur District .

2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, ARIYALUR.

3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Triuchirappalli.

4. File

Doc 2 - CCR PNR-West Mine

10.001 (441)

EP/12.1/SEIAA/2016-17/30/TN /1057

15.07.2024

To.

Shri Pankaj Varma

Member Secretary IA- division, Mining Sector Indira Paryayaran Bhawan Minintry of Environment, Forest & Climate Change Aliganj, Jor Bagh Road, New Dethi-110001

Subject.

eet: SEIAA, TN - Environmental Clearance for Periyanagalur West limestone Mines - over an extent of 17.36 Ha situated in S.F. Nos. 267,2-68/1, 269, 271, etc., Periyanagalur village, Ariyalur Taluk, Ariyalur District for limestone and Mari Production of 0.3 MTPA by M/s. The Ramco Cements Limited -Issued - Regarding.

Reference No. Lr. No. SEIAA-TN/F. No-462/2012/EC-45/1 (a)/ARY/ 2016 dated 14.11.2016 CCR Request letter dated: 01.02.2024

Sir.

With reference to the above-mentioned subject, please find enclosed herewith Certified

Compliance Reports

This mans with the approval of the Competent Authority.

Yours faithfully,

mandy of there

(Dr. C. Palpandi) Scientist *D*

Encl: As above.

Copy 10:

- Dr. Shruti Rai Bhardwaj, Scientist 'F' Monitoring Cell, IA Division, Indira Paryavaran Bhawan, Mol F&CC, Jorbagh Road, Aliganj, New Delhi – 110 003. Email- direct militaria.
- The Member Secretary, Tamil Nada Pollution Control Board, 76, Moant Salai, Guindy, Chennai - 600 032. Email - memory administration.

Dr. C. Palpandi Scientint 'D' Government of India Regional Office, MoEFACC Shastri Bhawan, Hacdows Road, Mindambakkom, Chennal- 600 006

- The District Collector, District Collectorate, Jayankoridani Road, Ariyalur 621704; E-mail:
 authorization
- Shri Madhusudhan Kulkarni, Sr. Vice President (Manufacturing), M/s The Ramco Cements Limited, Govindapuram, Ariyalur – 621713: Email: multicondam.karramotorements.co.iii)

ibmilită D.50

Reg and the second seco

(Dr. C. Palpandi) Scientist 'D'

C- Marmindy Dr. C. Palpandi

Scientist 'B' Government of India Regional Office, MoEF&CC Shastn Shawan, Nactows Road, Nungambakkam, Chennal - 600 006

Certified Compliance Report

Subject: SEIAA, TN - Environmental Clearance for Periyanagalur West limestone Mines - over an extent of 17,36 Ha situated in S.F Nos. 267,2 68/1, 269, 271, etc., Periyanagalur village, Ariyalur Taluk, Ariyalur District for limestone and Mari Production of 0.3 MTPA by M/s. The Ramco Cements Limited -Issued - Regarding.

Reference No.: Lr. No. SEIAA-TN/F. No-462/2012/EC-45/1 (a)/ARY/ 2016 dated 14.11.2016.

Monitoring Date: 22.02.2024

Present Status of the Project: The PA got the grant of Periyanagalur West Mining Lease over an extent of 17.360 Ha in Periyanagalur Village for mining Limestone & Mari vide G.O (Ms) No. 153 dated 23.12.2016 for a period of 50 years (<u>Document-1</u>). The Lease Deed was executed on 10.01.2017 and the Lease is valid from 10.01.2017 to 09.01.2067.

EC for the production of 0.3 MTPA Limestone & Marl over an extent of 17.36 Ha was awarded by SEIAA-TN vide Letter No. SEIAA-TN/F.No.462/2012/EC-45/1(a)/ARY/2016 dated 14.11.2016 under EIA Notification 2006 with validity till Lease Period.

With awarded EC, the PA applied and obtained CTEs from TNPCB vide Orders 170128064428 (Air Act) and 170118064428 (Water Act) dated 23.07.2017 (Document-2). TNPCB has issued CTO-Renew Orders 2409157816355 (Water Act) & 2409257816355 (Air Act) dated 29.02.2024 with validity till 31.03.2026 for the production quantity of 0.3 MTPA ROM and are attached as Document-3.

Review of Mining Plan (ROMP) has been approved by IBM, Chennai vide Letter TN/ALR/LST/ROMP-1642 MDS, & 23.02.2021 for Plan Period 2021-22 to 2025-26 with validity till 31.03.2026 which is attached as <u>Document-4</u>.

Production is being carried out since 2018-19. Mineable reserves established upto a depth of 40 m BGL is 5.65 million tonnes ROM, as on 01.04.2024. Both Opencast Conventional Mining with controlled Drilling & Blasting and Non-Conventional Mining Method with X-Centric Rippers are adopted. Mined out limestone is loaded in tippers and transported to Govindapuram Cement Factory. Existing pit configuration is 490 (L) x 280 (W) x 15 m (D). The production achieved during last plan period is given below:

Year	ROM Quantity Dispatched, Tonnes
2019-20	2,99,888,700
2020-21	2,99,538.070
2021-22	2,99,289.650
2022-23	2,99,937.320
2023-24	2,99,888.660

The Project Authority is planning to go for amalgamation of this Periyanagalur-West Mine with Periyanagalur Mine (35.96 Ha) which is located adjacent in the eastern side. The PA obtained TOR from SEIAA-Tamil Nada. For this purpose, the PA has requested CCR from RO, MoEF&CC, Chennai. Accordingly, the Mine was inspected on 22.02.2024. The Mine was in operation on the day of monitoring.

Site visit Photographs are attached as Annexures I-VI.

Part-III

A. For Pre - Construction Phase:

S. No.	EC Conditions	Compliance status
36	Consent for Establishment shall be obtained from the Tamil Nadu Pollution Control Board and a copy shall be submitted to the SEIAA, Tamil Nadu before taking up any construction activity at the site.	Complied. The PA obtained the Consents for Establishment from TNPCB vide Orders 170128064428 (Air) and 170118064428 (Water) dated 23.07.2017. The PA submitted the copies to SEIAA also.
	In the case of any change(s) in the scope of the project, a fresh appraisal by the SEAC/SEIAA shall be obtained. No change in mining technology and scope of working should be made without prior approval of the State Environmental Impact Assessment Authority. No change in the calendar plan including excavation, quantum of mineral limestone and waste should be made.	Complied. There is no change in the mining methodology and scope of working. Both Opencast Conventional Mining with controlled Drilling & Blasting and Non- Conventional Mining Method with X- Centric Rippers are adopted. The annual production scheduled specified in the approved mining plans are complied and there was no deviation.
		Year ROM Quantity Dispatched, Tonnes
		2019-20 2,99,888,700
		2020-21 2,99,538,070
		2021-22 2.99,289,650
		2022-23 2,99,937,320
		2023-24 2,99,888.660
		Entire Top Soil of 62,912 Tons generated was utilized for green belt development. The PA is planning to go for

S. No.	EC Conditions	Compliance status
		amalgamation of this Periyanagalur-West Mine with Periyanagalur Mine (35.96 Ha) which is located adjacent in the eastern side. The PA obtained TOR from SEIAA-Tamil Nadu.
Ш.	Project proponent shall comply with all the guidelines and notifications issued by MoEF&CC, New Delhi regarding Mining of Minerals and comply with orders of Hon'ble National Green Tribunal from time to time regarding Mining of Minerals, under 1 (a).	Agreed to comply. The PA informed that the guidelines and notifications issued by MoEF&CC, for Mining of major minerals will be complied.
iv	A copy of the clearance letter shall be sent by the proponent to the Local Body, Ariyalur Taluk, Ariyalur District and the Local NGO, if any from whom suggestions' representations, if any, have been received while processing the proposal. The clearance letter shall also be put on the website of the Proponent,	Complied. The PA sent the copy of EC letter to the Local body. The EC letter is also uploaded on the company's website www.ramcocements.co.in.
30	All other statutory clearances such as the approvals for storage of dicsel from Chief Controller of Explosives, Fire and Rescue Services Department, Civil Aviation Department, Forest Conservation Act, 1980 and Wild Life (Protection) Act, 1972, State/Central Ground Water Authority, Coastal Regulatory Zone Authority, other statutory and other authorities as applicable to the project shall be obtained by project proponent from the concerned competent authorities.	Complied. The PA has obtained all applicable clearances. The CTOs are valid up to 31.03.2026. Other NOCs or approvals are not applicable to the mine project.
vi	The Construction of the structures should be undertaken as per the plans approved by the concerned local authorities / local administration.	Complied. This is a mining project being operated with approved mining plan by IBM. Current ROMP approved is valid till 31,03,2026.
vii	Any appeal against this environmental clearance shall lie with the Hon'ble National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.	Refer below. The PA informed that no appeal was made against the EC awarded.

S. No.	EC Conditions	Compliance status
viii	All required sanitary and hygienic measures should be in place before starting construction activities and they have to be maintained throughout the construction phase.	Complied. The PA provided all the required infrastructures at the Mine viz. Mines Office, First Aid Room, Rest Shelters, Drivers Rest Room, Toilet, potable water and other amenities.
ix	The company shall stress upon the preventive aspects of occupational health.	Complied. Occupational Health Surveillance Program is being conducted for the workers periodically. An Occupational Health Center is at the Cement Plant. A dedicated dispensary with qualified Doctor in OHS and pharmacy are provided.
x	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	Complied. This is a linestone mine with no major construction activities involved. The mine employees are staying in the colony at the Plant.
xi	The project authorities should advertise with basic details at least in two widely circulated local newspapers, one of which shall be in the vernacular language of the locality concerned, Within 7 days of the issue of clearance and a copy of the clearance letter is available with the State Pollution Control Board and also at website of SEIAA, TN and a copy of the same should be forwarded to the Regional Office of the Ministry of Environment and Forests located at Chennai.	Complied. The intimation on awarded EC for the Mine was informed to the Public by the PA vide advertisement in 'Dinamani' Tamil newspaper & 'The Indian Express' English newspaper dated 22.11.2016. The Notice copies were also submitted to IRO.
xii	A separate environment and safety management cell with qualified staff shall be set up before commissioning of construction activities and shall be retained throughout the lifetime of the industry, for implementation of the stipulated environmental safeguards.	Complied. The Environmental Management Cell (EMC) is functioning under the Unit Head. There is a Hierarchical System in the company to deal with the environmental issues and for ensuring compliance with the environmental

S. No.	EC Conditions	Compliance status
		clearance conditions. Any non- compliance/violations of environmental norms and corrective actions taken is reported by the Unit Head to EDO & CEO.
xiii	The State Pollution Control Board should display a copy of the Environmental Clearance issued to the project at the Regional office, District Industry Centre and the Collector's office/Tahsildar's office for 30 days.	Reportedly Complied. SEIAA-TN/SPCB had displayed the EC in their Website.

B. Conditions for Construction/Mining Phase

S. No.	EC Conditions	Compliance status
Ν.AC	Fully mechanized Opencast Conventional method of Mining method shall be adopted us reported for the mining of limestone.	Complied, Fully mechanized, both Opencast Conventional Mining with controlled Drilling & Blasting and Non- Conventional Mining Method with X- Centric Rippers are adopted.
h	 To furnish to the SEIAA for one year period:- Report on quality and quantity of ground water to be generated during mining operations and from adjoining areas. Comparative statement on normal ground water and mined out water with respect to qualities & suitability for agriculture etc., for one year period. 	Refer below. Ground water-table level in the mine vicinity is at 40m BGL. Mining is not yet intersected the ground water-table.
٤	Monitoring of well water levels and water quality of the wells in the locations furnished in the EIA report shall be done during pre-monsoon and post monsoon period and results submitted to the Regional Office of MoEF, Chennai and SEIAA.	Complied. Periodical monitoring of ground water level is carried out 3 locations on quarterly basis in addition to the piezometer readings recorded in the Mine. Periodical water level data (Document-5) are submitted to IBM on quarterly basis and IRO, SGWB & SELAA on six monthly basis.

S. No.	EC Conditions	Compliance status
D.	Monitoring of water quality and nir quality in and around the project site in the selected monitoring points as mentioned in the EIA report shall be continued regularly involving. Academic institutions.	Complied. Ground water quality monitored at 4 locations and monitoring data is attached as <u>Document-6</u> . The PA is monitoring the Surface water quality at 3 locations through a NABL Lab on quarterly basis and submitting the Reports to the Authorities (<u>Document-Th</u> Ambient air quality is periodically monitored at 3 locations in the Mine and 6 locations in the buffer zone on monthly busis. The periodical AAQM reports (<u>Document-8</u>) are submitted to TNPCB
£.	Regular monitoring of ground water level and quality shall be carried out in and around the mine lease by establishing a network of existing wells and constructing new piezometers during the mining operation. The periodic monitoring at least four times in a year pre-monsoon (April-May), Monsoon (August), Post- monsoon (November) and winter (January); once in each acason)) shall be carried out in consultation with the State Ground Water Board/Central Ground Water Authority and the data thus collected may be sent regularly to the Ministry of Environment and Forests and its Regional Office, Chennai, the Central Ground Water Authority and the Regional Director, Central Ground Water Board. If at any stage, it is observed that the ground water table is getting depleted due to the mining activity; necessary corrective measures shall be carried out.	Complied. Ground water-table level in the mine vicinity is at 40 m BGL. Mining is not yet intersected the ground water-table. Periodical monitoring of ground water level is carried out 3 locations on quarterly basis in addition to the piezometer readings recorded in the Mine. Periodical water level data are submitted to IBM on quarterly basis and IRO, SGWB & SEIAA on six monthly basis.
£	Hydro-Geological study including infiltration test shall be conducted by any reputed agency to estimate leachate quantity.	Complied. Hydro-Geology study was conducted by Bharathidasan University, Trichy and submitted to RO, MoEF&CC. As per the report there is no leachate observed due to mining activity.

÷

S. No.	EC Conditions	Compliance status
g:	The excess Over Burden (OB) shall not be disposed for any commercial purpose and shall be disposed within the mine lease area only.	Refer below. There is no OB generation in the Mine.
h.	The proponent shall conduct AAQ Monitoring survey once in 6 months in the locations furnished in the EIA report and furnish report to the Regional Office of MoEF, Chennai. It shall be ensured that one AAQ station shall be located in the nearby habitation of Periyanagalur village.	Complied. Ambient air quality is periodically monitored at 3 locations in the Mine and 6 locations in the buffer zone on monthly basis. One AAQ station is located in the nearby Periyanagalur village. The periodical reports are submitted to TNPCB on monthly basis, IBM on quarterly basis and RO, MoEF&CC on six monthly basis. The monitored data are found to be well within the prescribed limits.
	The critical parameters such as RSPM (PM _{2.5} , PM ₃₀) and NOx in the ambient air within the impact zone, peak particle velocity at 300 m distance or within the nearest habitation, whichever is closer shall be monitored periodically. Further, quality of discharged water shall also be monitored [(TDS, DO, PH and Total Suspended Solids (TSS)]. The monitored data shall be uploaded on the website of the company as well as displayed on a display board at the project site at a suitable location near the main gate of the company in public domain.	Complied. The PA established 9 AAQ Monitoring Stations, based on meteorological data, topographical features and environmentally and ecologically sensitive considerations in consultation with SPCB, in Core & Buffer Zones. Periodical AAQ Monitoring is being carried out at these locations in compliance with new NAAQ Norms and status reports are being submitted to RO, MoEF&CC once in six months. Vibration levels are monitored with Minimate instruments whenever blastings are done and records are maintained as per DGMS requirement. Vibration Parameters viz. Peak Particle Velocity (PPV) at 300 m distance and Noise Levels during Blastings were in compliance with DGMS Norms for Residential Areas (Document-9). There is no discharge of pit water from this mine. The monitored data as six-monthly compliance report is uploaded on the company website www.ramcocements.co.in for public

S. No.	EC Conditions	Compliance status
J₂.	Data on ambient air quality [RSPM and NOx] shall be regularly submitted to the Regional office of MoEF at Chennai and the SEIAA/SPCB/CPCB once in six months.	Complied. The PA is regularly submitting the AAQM reports to RO, MoEF&CC on six monthly basis.
	Fugitive dust emissions from all the sources should be controlled regularly. Water spraying arrangement on haul roads, loading and unloading and at transfer points should be provided and properly maintained.	Complied. Fugitive emissions at mining-cum- loading & hauling areas were controlled by periodical water sprinkling with high pressurized water tankers. The PA developed avenue plantations on both the sides of the haul roads to control the fugitive dust emissions.
劣	Pre-placement medical examination and periodical medical examination of the workers engaged in the project shall be carried out and records maintained. For the purpose, schedule of health examination of the workers should be drawn and followed accordingly.	Complied. Occupational Health Surveillance Program is being conducted for the workers periodically. An Occupational Health Center is at the Cement Plant. A dedicated dispensary with qualified Doctor in OHS and pharmacy are provided for Occupational Health Surveillance and Monitoring. Adequate training on Safety and health aspect has been provided. Review of Impact of various health measures is being undertaken.
m	Regular medical check-up for mine workers and nearby residents around the project site involving community medical centre/NIMH shall be conducted.	Complied. In addition to regular medical check-up for mine workers and nearby residents around the mine are being conducted by involving community medical center/NIMH during mining operations.
Û.	As per norms, health study should be conducted through competent / approved Health organizations and report submitted for one year.	Complied. A dedicated dispensary with qualified Doctor in OHS and pharmacy are provided for Occupational Health Surveillance and Monitoring. Review of Impact of various health measures is being undertaken. Yearly reports are submitted as per DGMS requirement/norm.
0.	To address noise level issues vibration tests shall be conducted and submitted to SEIAA.	Complied. Vibration levels are monitored with

õ

S. No.	EC Conditions	Compliance status
		Minimate instruments whenever blastings are done and records are maintained as per DGMS requirement. Vibration Parameters viz. Peak Particle Velocity (PPV) and Noise Levels during Blastings were in compliance with DGMS Norms for Residential Areas. Biannual status reports are reports are submitted to DGMS & SEIAA.
p.	Corpus fund created should be prioritization and utilized for health issues.	Complied. The CSR amount allocated is utilized towards health issues on priority basis.
(q .	Mineral handling area shall be provided with adequate number of high efficiency dust extraction system. Loading and unloading areas including all transfer points shall also have efficient dust control arrangements. These should be properly maintained and operated.	Complied. There is mineral beneficiation involved and the Crusher is at the Cement Plant. Fugitive emissions at mining-cum- loading & hauling areas were controlled by periodical water sprinkling with high pressurized water tankers.
240	Vehicular emissions shall be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportation of mineral within the lease area. The mineral transportation shall be carried out through the covered trucks only and the vehicles carrying the mineral shall not be overloaded.	Complied. All the vehicles used in the mine are on contract basis and servicing is being done in their own places. 'Pollution Under Control' Certificates are checked periodically. The PA also informed that transport vehicles are covered with tarpaulin and are not overloaded.
5	The effective safe guard measures shall be provided to control particulate dust level in critical areas, transfer points and haul road within the mine area.	Complied. Fugitive emissions at mining-cum- loading & hauling areas were controlled by periodical water sprinkling with high pressurized water tankers.
E) S	At least four ambient air quality- monitoring stations should be established in the core zone as well as in the buffer zone for monitoring of RSPM (PM _{2.5} , PM ₁₀) and NOx. Location of the stations should be decided in consultation with Tamil Nudu Pollution Control Board based on the meteorological data, topographical features and	Complied. The PA established 9 AAQ Monitoring Stations, based on meteorological data, topographical features and environmentally and ecologically sensitive considerations in consultation with SPCB, in Core & Buffer Zones. Periodical AAQ Monitoring is being carried out at these locations in

S. No.	EC Conditions	Compliance status
	environmentally and ecologically sensitive targets and frequency of monitoring etc.	compliance with new NAAQ Norms and status reports are being submitted to SPCB once in a month, IRO, MoEF&CC once in six months and IBM once in a quarter.
4	Mine working shall be restricted up to 40 BGL ultimate pit depth as per the present mine plan period. NOC from the State GWA for drawing ground water shall be furnished.	Complied. Ground water-table level in the mine vicinity is at 40 m BGL. Mining is not yet intersected the ground water-table. NOC will be obtained once ground water-table is intersected.
8	Garland drains and siltation ponds of appropriate size shall be constructed around the mine working, soil and mineral dumps to prevent run off of water and flow of sediments. The water so collected shall be utilized for watering the mine area, roads, green belt development etc. The drains shall be regularly desilted, particularly after the monsoon, and maintained properly.	Complied. Garland drains with 2 check dams are provided around the working pit. There is no OB dump and subgrade mineral dump. The collected water, after settling of silt materials within the retention period, is being utilized for dust suppression and green belt development. The PA is carrying out periodical de- silting of garland drains and ponds before the onset of monsoon.
2.WC	The rain water accumulation in the mine during rainy seasons shall be treated by providing settling tanks in the periphery of the mining lease area and the overflow clean water from the settling tanks shall be allowed to discharge through the first order streams to join nearby natural drains. The settling tanks shall be cleaned periodically for removal of sediments and such records of cleaning shall be maintained properly.	Complied. Recharge cum Settling Pond of 100 (L) x 50 (W) x 2 m (D) is made in the eastern side of PNR Lease area to collect the surface runoffs through garland drains. Water collected in the settling pond is utilized for green belt and dust control measures. Excess water is drained to nearby irrigation pond for raising agricultural crops in nearby areas. The PA is carrying out periodical de-silting of garland drains and ponds before the onset of propagon.
8.	Garland drains proposed on the non- moving sides of the Dump yards shall be connected to settling tanks to arrest any wash off sediments from the dumps and only overflowing clean water shall be allowed to discharge through the first order streams. The settling tanks shall be of sufficient dimensions to hold the wash offs in one rainy season and has to be cleaned before every rainy season.	Refer below. There is no OB generation in the mine, thus, no OB Dump,

S. No.	EC Conditions	Compliance status
े प्रस	Conservation plan furnished to protect the scheduled flora and fauna in the core and buffer zone of the project site shall be implemented. Scheduled species of fauna found in the study area shall be monitored closely.	Refer below. The entire ML area is private land and there is no forest land involved. The Lease is surrounded by other Mining Leases upto Ariyalur. There is no Schedule-I fauna noticed and thus, no Conservation plan is required.
Z,	Bio-diversity Management Plan for mine and buffer area shall be prepared in consultation with Local DFO and submitted to SEIAA.	Refer below. Green belt is developed around the ML area, along haulage road and mine office. The PA developed green belt in a phased manner in consultation of DFO, Ariyalur. About 2.65 Ha is brought under green belt with 4,640 trees @ 1750 Trees per Ha and survival rate of 85-90%. Herbs and shrubs are also made besides tree plantation. The Bio-diversity of the mine area will be enhanced due to the green belt maintained.
00	Greenbelt shall be raised including a 7.5m wide statutory barrier all around the mining lease, reclaimed and rehabilitated areas, around water body, roads etc., by planting the native species in consultation with the local DFO/Agriculture Department. The ultimate area to be planted/ afforested shall not be less than 0.4 ha. Greenbelt shall be developed all along the mine lease area in a plased manner as per the approved mining plan.	Complied. The PA developed green belt in a phased manner in consultation of DFO, Ariyalar. About 2.65 Ha is brought under green belt with 4,640 trees (a) 1750 Trees per Ha and survival rate of 85-90%. Herbs and shrubs are also made besides tree plantation. Green belt is developed around the ML area, along haulage road and mine office.
bb.	Green helt shall be provided as per norms of MoEF&CC & GOI in consultation with local DFO.	Complied. The PA developed green belt in a phased manner @ 1750 Trees per Ha as per MoEF&CC norms (>1600 Trees/Ha) in consultation of DFO, Ariyalur.
ec.	The project authority shall implement suitable water conservation measures including rain water harvesting system to augment ground water resources in the area in consultation with the Regional Director, State Ground Water Board.	Complied. Recharge cum Settling Pond of 100 (L) at 50 (W) x 2 m (D) is made in the eastern side of PNR Lease area to collect the surface runoffs through garland drains. Water collected in the settling pond is utilized for green belt and dust control measures. Excess water is drained to nearby irrigation pond for raising

(*)

÷

S. No.	EC Conditions	Compliance status
		agricultural crops in nearby areas.
đđ.	The Company shall submit within 3 months their policy towards Corporate Environment Responsibility which should inter-alia address (i) Standard operating process/procedure to bring into focus any infringement/ deviation/violation of environment or forest norms/conditions. Hierarchical system or Administrative order of the company to deal with environmental issues and ensuring compliance of EC conditions and (iii) System of reporting of non-compliance/violation of environmental norms to the Board of Directors of the company and/or stakeholders or shareholders.	Complied. The Unit is having an Integrated Management System (IMS) Policy. The Environmental Management Cell (EMC) is functioning under the Unit Head. There is a Hierarchical System in the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions. Any non- compliance/violations of environmental norms and corrective actions taken is reported by the Unit Head to EDO & CEO of the Company. CEO is reporting to the Board of Directors and shareholders.
¢¢.	CSR: Audited details pertaining to the mining shall be submitted to SELAA along with compliance report then and there.	Refer below. Need based assessment study for the nearby village is carried out. Under CSR Scheme, lot of welfare measures are carried out in the nearby villager based on the villagers' request. Audited details pertaining to CSR spent are submitted to SEIAA as well as published in the company website www.nancocements.co.in under CSR Head.
ſĔ	For CSR activities as per Ministry of corporate affairs notification dated 27.02.2014, amount shall be earmarked.	Complied, As per the Companies Act 2013, Companies should spend at least 2% of the Profit after Tax of the previous year for CSR activities but not lower than 2% of average of previous three years Profit after Tax. The PA is carrying out various social measures for the local as well as regional populations as per CSR Norms.
88	A Final Mine Closure Plan along with details of Corpus Fund shall be submitted to the Ministry of Environment & Forests, Government of India, New Delhi in advance of one year prior to the final mine closure for approval. Mine closure procedure shall be followed as per the approved	Agreed to comply. The PA informed that final closure plan will be prepared one year prior to the final closure with suitable financial provisions for mine closure, obtain the approval from IBM and the same will be informed to MoEF&CC.

۰.

S. No.	EC Conditions	Compliance status
	mining.plan.	
hh.	Depth of water table of the wells located inside the mining area and wells located around the monitoring area shall be monitored regularly.	Complied. Periodical monitoring of ground water level is carried out 3 locations on quarterly basis in addition to the piczometer readings recorded in the Mine.
ii,	CSR activity shall include providing social & welfare measures for the local residents & nearby villages around the mine area. It shall focus on providing water supply and sanitation facility to the nearby government schools around the mine area and maintenance of village roads, ponds, providing solar street lights etc. Funds carmarked for CSR activity shall be used for that purpose only and separate account shall be maintained and report on implementation shall be furnished regularly.	Complied. The PA is undertaking various CSR activities related to health, education, drinking water supply, sanitation, bio- toilets for individual household, infrastructure development activities, construction of bus shelters, road repair work, building class rooms, etc. for the nearby villages. The PA submitted the CSR measures carried out to IRO in the status report. Allotted funds are not diverted for any other purpose.
1.	The points raised in Public hearing and concerns shall be addressed without fail. As per action plan submitted to SEIAA.	Complied. Public Hearing (PH) for the Mine was held on 21,09,2016. PH issues in compliance with MoEF&CC OM F No 22-6512017-IA.III dated 30.09,2020 & 20.10,2020 are carried out. A budget of Rs.10,00 Lakhs was spent in addressing the PH issues. Also, an amount of Rs.2,00,000/- was remitted to the Executive Director, Kalakad- Mundanthurai Tiger Conservation Fund (KMTCF) under CSR Budget for the Mine.

....

C. Conditions for Post Construction / Operation Phase & Entire life of the project:

S. No.	EC Conditions	Compliance status
<u>E</u>	It is mandatory for the project proponent to furnish to the SEIAA, Half yearly compliance report in hard and soft copies on 1 st June and 1 st December of each clearance, and also	Complied. The PA is submitting the half yearly compliance status report to RO, MoEF&CC Chennai and a copy to

	before commencement of production,	SEIAA-TN.
20.4	No expansion or modernization in the project shall be carried out without prior approval of the SEIAA-TN. In case of any deviations or alterations in the project proposal from those submitted to this Authority for clearance, a fresh reference shall be made to the SEIAA-TN to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	Complied. No expansion or modernization is carried out in the mine. The PA is planning to go for amalgamation of this Periyanagalur-West Mine with Periyanagalur Mine (35.96 Ha) which is located adjacent in the castern side The PA obtained TOR from SEIAA- Tamil Nadu.
311	All the environmental protection measures and safeguards as recommended in the EIA report shall be complied with.	Complied. Pollution control measures with regard to environmental quality prescribed in the EIA-EMP Report are implemented by the PA.
β.	The implementation of the project vis- a-vis environmental action plans shall be monitored by the Regional office of MoEF at Chennai/ENPCB/CPCB. A six-monthly compliance report shall be submitted to monitoring agencies regularly.	Complied. The PA extended the full cooperation during the site visit and the six-monthly compliance reports submitted by the PA periodically.
190) (190)	Data on ambient air, stack and fugitive emissions shall be regularly submitted online to the Regional office of MoEF at Chennai, TNPCB and Central Pollution Control Board as well as hard copy once in six months and display data on RSPM, SO2 and NOs outside the premises at the appropriate place for the general public.	Complied. The PA is submitting the data on ambient air, fugitive emissions, noise levels, water quality & soil quality by email to RO, MoEF&CC as well as uploading in Parivesh Portal.
vi	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Mines Act.	Complied. An Occupational Health Center is at the Cement Plant, Occupational Health Surveillance Program is being conducted for the workers periodically and the medical records are maintained as verified during the inspection
NÜ	Proper house-keeping and cleanliness must be maintained within and outside the plant.	Complied. The PA maintained a good housekeeping in the Mine Office.

viii	The first aid facilities in the occupational health center shall be	Complied.
	strengthened and the medical records of each employee should be maintained separately.	First Aid Center is maintained in the mine pit and OHS is established with supporting staff and facilities at the Cement Plant. The medical records are maintained at the OHC.
13	The overall noise levels in and the mining area shall be kept well within the standards prescribed for by providing noise control measures on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz. 55 dBA (day time) and 45 dBA (night time).	Complied. The PA is monitoring both Ambient & Work zone Noise levels periodically through a NABI. Lab and submitting the status reports to the Authorities. The monitored data (<u>Document-10</u>) reveals that Log Noise Levels were within the MoEF&CC Norms for Residential Area of <55 dBA (day time) & <45 dBA (night time) and also within 85 dB(A) in working areas for 8-hours duration.
×	The project proponent shall regenerate/ preserve water body located at about 5.0 km from the propose site at its own expenses. The project proponent shall also develop village ponds in addition and shall ensure that the existing ponds in and around 5.0 Km radius are well maintained.	Complied. The PA is carrying out periodical desilting of water bodies, village ponds and irrigation tanks like Kattupiringiyam, Periya Eri near Reddipalayam, Periyanagalur, etc. within 5 km radius from the mine and maintain them.
Ν.	Hydro geological study of the area shall be reviewed annually and report submitted to the Authority. No water bodies including natural drainage system in the area shall be disturbed due to activities associated with the operation of the Mining activity.	Complied. The PA engaged the Department of Remote Sensing. Bharathidasan University, Trichy for 'Integrated Hydrological Investigations-A Geospatial Approach' in and around their Mine Lease Areas in Ariyalur Region (Project 'Hydrolime') since May 2017 and submitted the Report to the Authorities. Natural drainage system in the mine vicinity is maintained as such.
xii	CSR activity shall be implemented as committed by drawing a scheme for social up liftmen in the surrounding villages with reference to contribution in road construction, providing sanitation facilities, drinking water supply in the government schools nearby, community awareness, establishment of health centers, water	Complied. The PA developed the basic infrastructures for better living conditions of the villages. The PA is undertaking various CSR activities related to health, education, drinking water supply, sanitation, bio-

.

	supply to nearby villages and employment to local people whenever and wherever possible both for technical and non-technical jobs and protection of water sources around the project site etc. Funds earmarked for CSR activity shall be used for that purpose only and separate account shall be maintained and report on implementation shall be furnished regularly.	toilets for individual household, infrastructure development activities, construction of bus shelters, road repair work, building class rooms, etc. for the nearby villages. The PA submitted the CSR measures carried out to RO in the status report. Allotted funds are not diverted for any other purpose.
xiii	The requisite amount carmarked towards capital cost and recurring cost/annum for implementing pollution control measures shall be used judiciously to implement the Environment Management as furnished in the EIA report. The funds so provided shall not be diverted for any other purpose.	Complied. The funds earmarked for environmental protection measures is kept in a separate account book and is not diverted for other purpose. Year wise expenditure are reported to IRO in Six monthly Compliance Report.
XÎV.	The project proponent shall upload the status of compliance of the stipulated environmental clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of the MoEF at Chennai. The respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; RSPM, SO2, NOx (Ambient levels as well as stack emissions) or critical sector parameters, indicated for the projects shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.	Complied. The PA uploading the compliance report along with the monitored data on the company website www.ramcocements.co.in for public view. Six monthly Compliance Report is also mailed to IRO and uploaded in Parivesh Portal. IRO is monitoring the Data and environmental parameter levels periodically.
XV.	The project proponent shall also submit six monthly reports on the status of the compliance of the stipulated environmental conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The Regional Office of this Ministry at Bangalore/CPCB/SPCB shall monitor the stimulated conditions.	Complied. Six monthly Compliance Report is also muiled to RO, MoEF&CC, Chennai and uploaded in Parivesh Portal.
xyi.	The environmental statement for each financial year ending 31" March in Form-V as is mandated to be submitted	Complied. Form - V is being submitted to TNPCB

÷

*

	by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986 as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental conditions and shall also be sent to the respective Regional Offices of the MoEF by e-mail.	copy and by e-mail.
xvii.	Environmental Clearance is being issued without prejudice to the action initiated under Environment (Protection) Act, 1986 or any court case pending or any other court order shall prevail.	Agreed to comply. It was submitted that this condition is noted and assured to abide by this condition.
xviii.	The SEIAA, TN may alter/modify the above conditions or stipulate any further condition in the interest of environment protection.	Agreed to comply. It was submitted that this condition is noted and assured to abide by this condition.
xix.	The SELAA/SEAC reserves the right to add any further condition(s) on receiving reports from the project authority. The above condition shall be monitored by the Regional Office of MoEF located at Chennai.	Agreed to comply. It was submitted that this condition is noted and assured to abide by this condition.
XX	The SELAA, TN may revoke or suspend the Environmental Clearance, if implementation of any of the above conditions is not satisfactory.	Agreed to comply. It was submitted that this condition is noted and assured to abide by this condition.
xxi	The SEIAA, TN may cancel the environmental clearance granted to this project under the provisions of EIA Notification, 2006, if at any stage of the validity of this environmental clearance, if it is found or if it comes to the knowledge of this SEIAA. TN that the project proponent has deliberately concealed and/or submitted false or misleading information or inadequate data for obtaining the environmental clearance,	Agreed to comply, It was submitted that this condition is noted and assured to abide by this condition.
xxii.	Failure to Comply with any one of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of the Environment (Protection) Act, 1986.	Agreed to comply. It was submitted that this condition is noted and assured to abide by this condition.

Brannin Ofers Alter add Branni Brazile Herterage Braid North Brazile Commerced Alter

xxili	The above conditions will be enforced inter-alia, under the provisions of the Water (Prevention & Control of pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, the Public Liability Insurance Act, 1991, along with their amendments, MMDR amendment Act 2015, National Commission for protection of Child Right Rules, 2006 and rules made there under and also any other orders passed by the Hon'ble Supreme Court of India/Hon'ble High Court of Madras and any other Courts of Law relating to the subject matter.	Complied. CTO-Renew Orders 2409157816355 (Water Act) & 2409257816355 (Air Act) dated 29.02.2024 with validity till 31.03.2026. As no hazardous material handling in the mines. PLI is not applicable.
xxiv.	This clearance is issued with respect to only Environmental conditions and it does not imply that SEIAA approved the way by which lease is granted to the project. While granting lease, the concerned authority shall ensure compliance of relevant Rules, Regulations, Notifications, Government Resolutions, Circulars, Judgments/Orders of Hon'ble Courts and NGT, etc.	Agreed to comply. It was submitted that this condition is noted and assured to abide by this condition.
XXV.	Any appeal against this Environmental Clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.	Agreed to comply. There was no appeal lying with National Green Tribunal (NGT) against this EC as on date.

Summary Note:

(i) Implementation of Conditions

During the site visit, it was observed that the PA has complied most of the EC conditions which are satisfied.

(ii) Court Cases and Show Cause/Closure Notices

As informed, there are no court cases and show cause / closure notices issued by the Competent Authority.

 $\Gamma [\mathcal{D}]$ magi

(Dr. C. Palpandi) Scientist 'D' Dr. C. Palpandi Scientist 'D' Government of India Regional Office, MoEFACC Shastri Bhawan, Haddows Road, Nongambakkam, Gnennai-600 906

STATE ENVIRONMENT IMPACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

From.	To:
Dr. S. Kalyanasundaram, I.F.S. (Retd.)	The President/Mfg)
Chalimian	The Rampo Coments Ltd.,
3rd Flour, Panagal Maaligal,	Auras Corporate Centre, 5* floor,
No.1, Jeenii Road, Saldapet,	98A. Dr. Radhakrithnan Road,
Chennai-600 015.	Mylapore, Chennal – 600 004.

L/ No.SEIAA/TN /F.No-462/2012 /TC- 45 /110 /ARY/2016/dated /14 11 2016.

Sin

- Sub: SEIAA, TN Environmental Clearance for Perlyanagatur West Ilmentone Mines - over an extent of 17.36 He situated in S.F.Nos 267.268/1.269.271 etc Perlyanagatur village. Ariyatur Taluk, Ariyatur District for Ilmestone and Mart Production of 0.3 MTPA by M/s The Ramco Cements Limited -Issued - Regarding.
- This has reference to your application for Environmental Clearance to MoEF. GOI dated 14.05.2012 and along with sublequent documents & EIA report submitted for the aloresaid project to the State Level Environment Impact Assessment Authority. Tamil Nadu seeking Environmental Clearance under the Environment Impact Assessment Notification, 2006.
- 2. It is noted, interalls that the project proposal is for the Production separity of 0.3 MTPA (ROM) (Limistonia 5 Mari). In "applied mine lease area of 17.36.0 Ha (0.44.50 company owned Patta lands 6.16.91.50 ha Covernment Poramboke Land) at S.F.No. 267.268/1.269 & 271 of Terlysnagalut village. Anyalut Taluk, Anyalur District, so as to meet the captive need of the Cement Plant at Anyalur Unit in Tamil Nada. The co-ordinates of the mining lease area is furnished at Latitude (N) 11° 07° 12° 11° 07° 25°. Longitude (1) 79° 08° 28° 79° 08° 51° as per Topo sheet No. 58M/4. The entite Mine Lease area is reported to be washeland.

SUAA TH

emials characterial@yahoo.com

Ph.No.044-24359973; Page 3 of 19

STATE ENVIRONMENT IMPACT ASSESSMENT AUTHORITY ENVIRONMENTAL ELEARANCE

and there is no forest land is involved. There is no R&R. There is no water course crossing the Lexie area. It is reported that there is no litigation pending against this proposal.

- 3. The lime stora mining is a New Leste proposed one (<50 ha) over an area of 17.36 Ha. Mining operations is fully mechanized Operate Convertional method of Mining by utilizing Heavy Earth Moving Equipment (HEME). Pheumatically operated wagon onlis (Atlai Copico make) of 110min diameter holes are engaged for carrying out drilling operations. The drills will be operated using diese operated screw compressors. For the targeted production of 0.3MTPA ROM, it requires 3333 Holes of spacing X burden X depth (3X3X8m) which will yield roughly 90 Tomes.) Hole. For biaming 83 mm diameter holes will be drilled with spacing and burden of 3 m = 3 m to a depth of 8 m. A powder factor of around 5 is assumed for limestone. If is proposed to blast 70 Nos. of Holes in a week. PNR -West Mine block is located at a distance of 0.5Km in the south. Ramoo Cements Ltd. Govindapuram Cement Plant is located at a distance of 8 km aerial distance (14km by road) in nonthiset. Problem area issued use to No.3505.4MMA/2/2011/2 dated 1.3.2011. The approval from IBM was vide Lr.No.TN/ALR/MP/LST-1974-MDS/dated 23.05.2016.</p>
- No processing or beneficiation of the one or mineral mined is planned. The ultimate pit limit in Plan period is 20m bgl and Ultimate pit limit in conceptual stage skill be 40m bgl. Ground water table in the mining lease area generally fluctuates between 15m bgl to 20m bgl. Ground water Intersection is there in Mine working during the scheme period.
- The proposal was awarded TOR in reference SEAC/F.No.9/M-XXVI/TOR.92 / 2012/dated01.10.2012.TOR was extended vide Letter No. SEIAA /TN/F.462/TOR-EXT/2012-199 dated 25.11.2014, and again extended vide Letter No.

Hereinsteit CHAIRMAN R SEIAA-TN

email cmaninie as gyanac.com

Ph.No.044-243(39973) Fage 2 of 19

STATE ENVIRONMENT INFACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

SELAA/TN/F.462/TOR-EXT/2012/2015dated 05.11.2015. Public Hearing was conducted on 21.09.2016. The proposal was considered as per the EIA Notification, 2006, by the State Level Espert Appraisal Committee. Tamihadu in its 82⁻⁴ meeting held on 21.10.2016 and 80rd SEAC meeting held on 11.11.2016 and recommended to SEIAA-TN to consider Islue of EC.

6. The proposal was placed in the 200° SEIAA TN meeting held on 14.11.2016 and SEIAA after careful consideration decided to ince Environmental Clearance in its meeting and vide item No. 200 - 29, it was decided by SEIAA to ince prior EC based on the information submitted by you which are extracted below.-

AND STREET

F. No. 462/2012		Data of receipt at SEIAA 14.05.2012		
No.	Description	Details		
X	Name of the Project	M/L The Ransol Coments Limited Perivanatatur West Limistone Mine Extent - 17.36 Ha & Production - 0.3 MTPA (ROM) (NeW 12202 Feb Captive Circ)		
2 Location Co-ordinates-	5.F. Sp. 267/2681, 269, 271, etc., Paris of Periyanagalur Village, Ariyalur Tatuk, Ariyalur District.			
	Latitude (N) 1): 07: 24"- 11: 07: 46" Longitude(E): 79: 06: 27"- 79: 06: 59"			
3	Type of Project	Mining of Major Minersh. Schedule 1 (a): < 50 na: of Mining leave area in respect of non- coal mine leave.		
94	Life of mine	25 Years @ rate or 0.3MTPA production.		
5	Ground level Water table	15 m BGL (Post monsoon) 20 m (pre monsoot)		
ē.	Mirwahim reserve	7.46 Million Transat/WT) of Limestone/ROM having average quality of Cso:46.49%/SIO: 6.97%.		

Aug U CHAINTAN SELAA-TN

email- cmanthise as gryafloo.com

Ph.No-044-24355973; Page 2 of 19

7	Total Area (in	12,36 Hai				
	hictares]	Activities	Existing Land Lite, File	At the End of Plan Period, Ha		
		Mined out area	0	5 710		
		storage for top soil	0	0		
		Overburden Dump	a	8		
		Tofrastructures Bulletings, roads, etc.	0	0.203		
		R _{Cited} s	- O	0.500		
		Green Belt	0	1,000		
		Others to specify (undisturbed)	17.390	9,950		
		Treat: Among San	17.360	17,500		
8	Cost of Project	Rul St.Com	Rul 54 Crown			
	ine project.	Moving Environment 0-IEN drills of 110 mm diameter out the defiling operations help of densi operated so will be instaulifed with transported to the Cement	cally operated way o engaged for carry 11 be operated with 1 ors. The blasted RC sullc excavators a			
10	Occurrients enclosed	I. Final ElA Report as per TOR Minister of Public Hearing Copylof Precise Area Notification Modified Mining plan along with Progressive mine dosure plan sporoved by IRM.				
11	Typeduction capacity	Line sone & Man - 0.3 Million Tons Per Annum(MTPA) ROM				
12	a) Water	Total . 20 KID:				
	requirement b) Source	Domestic Usage - 5 KLD Green Balt - 10 KLD Dust Suppression - 5 KLD. Own Bore well and Mine Pi (NOC avails)	T Seepage Wat d from SC/WA	RT.		
190	Quantity of Domestic Hwage KLD	4.5 10.0				

Relevante CHAIRMAN SELAA-TN

PH.No-M4-24950078;

HITHIN CONTRACTOR AND ADDRESS OF ADDRESS OF

Page 4 of 15

STATE ENVIRONMENT INFACT ASSISSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

14	Details of STP	Septic Tank (2 x 12 x 0.5 m) followed by a Dispersion Trench (1 x 1 x 1.5 m)
35	Mode of Disposal of treated sewage with quantity	4.5 KLD: On land dispersion
16	Quantity of Solid Waite generated per day (in Kgs)	50947 Tannes (31842 cu.m)
u	Mode of Disposal of excevated earth/construc- tion debris (core)	Topsoil of 0.32 Law M ¹ (50,647 Tonnes) to be removed and dumped all along the periphery of the Mining Lease boundary for the afforestation programme. Thus, these is no Dump in the Project. No Reclamation.
18	Details of D.G. set with Capacity in KVA	No DC Set proposed.
19,	Air Pollution Control Meanures	 Breachilotion fine dust getting air borne by spraying water on the dust generation points Watting or fould masts periodically, Avoiding overloading of trailers / tippers. Covering of trailers/Upyers with tarpaulin during transportation. Periodic there - up of orthicles for Entisions - Avoiding blasting during high wind periods. Development of green belt along the periphery, haul roads, waste dumps, etc.
20	Details of grown belt (including lawed area bectares)	It is proposed to plant 1.250 saplings of local tree species in a area of 1.00 Ha . At the Conceptual mining stage, + 3.17 Ha area will be covered by green belt/ afforestation area (18.26% coverage) with about 4.000 trees.
21	Provision for rain water	The rainwater stalization in the mine oil area of 13:49 Ha will be 1.47.850 cum/year

Chalinman SELAA-TN

Ph:No-044-243579773;

email- communities (Prelice Com-

Page 5 (0.17)

STATE ENVIRONMENT INFACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

	halvesting	Th Sec Wi	e rainuator romit non-cuil be 1,211 d l be 243 ru mista	attion in the	mine pit d during Non-r	luring Monson teinioon Seein
32	Availability of epoteoch road & linkages	Âu	allable - 54-139			
21	Containment of Noise	 ent Deploying mining equipments shall be with in-5 for reducing noise. Provision of silences to modulate the realise gravities. Provision of silences to modulate the realise gravities. Provision of sile multicear plags to the Wo noise tonic. Bibiting shall be carried out using optimum and milli second delay detonators. Ground elbrations shall be cartinuously more statings safing a minimate. Green initiality thick follogs along roads are boundary to are as occurring barriers. 		sullt mechanist enerated by the apments, skers in higher burden, chatge initored, daring d around leare		
н	El4-Study Inseline studies Period	Zen 2015 to Munth 2016.				
8	Public Hearing & site	21.09 2020, Performance Crusher site				
28	CSR Activities	si. No	Focia Economic Works	2013-14 (Rz)	2014-15 (Rij)	2015-16
		T.	Iducetice)	650167	3120489	1000536
			Barthala and	and the second second		1 1 1 1 1 A 1 A
		2.	Development	24392602	2540922	4364193
		2. 3.	Development Medical	24392600 90000	2540922 244860	4344193
		2. 3. 4.	Medicate Sports	24382602 90000 10000	2540922 244860	4344193 762099 70620
		2. 3. 4. 5.	Medical Sporti Temple	24392602 90000 10000 287500	2540922 244860 - 495733	4344193 762099 70520 252501

Ph.No.064 (1415)(77); Phys 6 of 19

enal manhielas@yeñoo.com

321

STATE ENVIRONMENT IMPACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

27	ENd? Budget	Capital cost - RL9.75 Lakhi - Social measures - Will SO Lakhs per Annum
28	Whid, life Act	There are no eco rentitive areas like National Parks, Wildlife Sanctuaries, Rosphere Renewet, Elephant Consdor, Mangroven, Archaeological/Historical Monuments, Heritage etc., etc. within 10 km from the proposed she boundary. Parts of Monageth RF at a distance of 8.5 km in northeast and Sundarestationam RF at 9.5 km installing within the Study Area.

VALIDITY:-The SEIAA-TN hereby accords Environmental Clearance to this project under the provisions of the EIA Notification 2006 as amended, with Validity Co-Terminas with the mining lease period subject to the following conditions as below.

A Conditions for Pre - Construction Phase:

- (i) Consent for Establishment" shall be obtained from the Tamit Nadu Pollution. Control Board and a copy shall be submitted to the STAA, Tamit Nadu before taking up any construction activity at the site.
- In the case of any change(i) in the scope of the project, a fresh appraisal by the SEAC/SEIAA shall be obtained. No change in mining technology and scope of working should be made without prior approval of the State Environmental Impact Assessment Authority. No change in the calendar pith including

CHAIN SELAA-TN

Ph. No-448 24359973; Fage 7 st 53

email- unantrializa@ustaticzeni

STATE ENVIRONMENT INPACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

excavation, quantum of mineral limestone and waste should be made.

- III) Project Proponent shall comply with all the guidelines and notifications issued by MoEF & CC, New Delhi regarding Mining of Minerals and comply with orders of Humble National Green Tribunal from time to time regarding Mining of Minerals, under 1(a).
- iv) A copy of the viewance letter shall be sent by the proposent to the Local Body, Ariyatori Taluk, Ariyator District, and the Local NGCL if any, from whom suggestions / representations, if any, here been received while processing the proposal. The cleanance letter shall also be put on the website of the Proponent.
- v) All other statutory clearances such as the approvals for storage of clear from Chief Controllier or Explosives. First and Renoue Services Department, Civil Aviation Department, Farent Construction Act, 1960 and Wild Life (Protection) Act, 1972; State / Central Construction at Applicable and Regulatory Zone Authority, other matutory and other authorities as applicable to the protect shall be obtained by project proponent from the constructed epitipetent authorities.
- vi) The Commution of the influctured influid be undertaken as per the plans approved by the concerned logal authorities/local administration.
- (ii) Any appeal against this environmental clearance shall fir with the Hon'ble National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.
- viii) All required sanitary and hygienic measures should be in place before starting construction activities and they have to be maintained throughout the construction phase.
- 140 The company shall stress upon the preventive aspects of occupational health.
- *) Provision shall be made for the locating of construction labour within the site with all necessary infrastructure and facilities such as fast for cooking, mobile toilets, mobile STP, Safe drinking water, modical health rare, structure etc. The bouring way.

CHAIRMAN SEIAA-TN

Ph No-064-32359973; Page 8 of 28

I STATE TRIATED SHARE FRATERIA

STATE ENVIRONMENT IMPACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

be in the form of temporary structures to be removed after the completion of the project.

- si) The project authorities should advertise with balls details at least in two widely orculated local newspapers, one of which shall be in the vernacular language of the locality concerned, within 7 days of the inde of clearance and a cupy of the clearance letter is available with the State Pollution Control Roard and also at website of SELAA. TN and a copy of the same should be forwarded to the Regional Office of the Ministry of Environment and Foreits located at Chernal.
- (a) A separate environment and safety management cell with qualified staff shall be and up before commissioning of chestraction activities and shall be retained throughout the lifetime of the industry, for implementation of the dipulated environmental safeguards.
- The State Pollution Control Board should display a oney of the Environmental Clearance issued to the project at the Regional office. District Industry Centre and the Collector's office/Tabaldar's office for 30 days.

- 9. Conditions for Construction/Mining Phote
- a) Fully mechanized Opencad Conventional method of Mining method shall be adopted as reported for the mining of lime stone.
- b) To fumish to the SEIAA for one year period ---
 - (i) Report on quality and quantity of ground water to be generated during mining appreciate and form admining areas.
 - (ii). Comparative statement on scenal ground water and mined out water with respect to "gualities & substitity for agriculture etc for one year period."

SEIAA-TN

wolds, criticities and yallob corts

Phys. 9 4719

STATE ENVIRONMENT IMPACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

- d) Monitoring of well water levels and water quality of the wells in the locations furnished in the EA report shall be done during pre-montoon and post monitoon period and results submitted to the Regional Office of MoEF. Chennal and SEIAA.
- d) Menitoring of water quality and all quality or and around the project site in the selected monitoring points as menuloned in the EA report shall be continued regularly involving Academic mentioners.
- e) Regular monitoring of ground water level and quality shall be carried out in and around the mine toose by establishing a network of exhibiting wells and constructing new plezometers during the mining estention. The periodic monitoring (fat least four times in a year- premionioon (April-NSay), monitoring (fat least four filmes in a year- premionioon (April-NSay), monitoring (August), port monitorin (November) and winter (fanuary), order in each session)) shall be carried rev as complication with the State Ground Water Board Central Ground Water Authority and the data thus collected may be send regularly to the Ministry of Environment and Foreits and its Regional Office. Chemis), the Central Ground Water Authority and the Regional Director, Central Ground Water Board, if at any stage, it is observed that the groundwater rable is genore depicted due to the mining activity, necessary corrective measures shall be carried puty.
- Hydro-Geological endy beducing infilmation net shall be conducted by any reputed agency to estimate leachate quantity.
- g1 The event over bundles shall not be simplified for any commencial purposes and shall be disposed within the mine leave area mily.
- h) The proponent shall constant AAQ Mountaining Survey once in 6 months in the literations furnished in the EIA report and familih report to the Regional Office of MoEF. Chennal, it shall be ensured that one AAQ station shall be located in the hearby habitation of Pertyahagilar willage.

Ph.No.064.24359575

multi-smarthemestivation com

STATE ENVIRONMENT IMPACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

- (i) The critical parameters such as RSPM (PM_{e3} F.M_{e3}) and NOX in the ambient alrwithin the impact zone, peak particle velocity at 300m distance or within the nearest habitation, whichever is closer shall be monitored periodically. Further, quality of discharged water shall also be monitored ((TDS, DO, PH and Total Suspended Solida (TSS)). The monitored data shall be uploaded on the website of the company as well as displayed on a display board at the protect site at a suitable location near the main gets of the company in public domain.
- (j) Data on ambient air quality [(RSPM and NOX) shall be regularly submitted to the Regional office of MoEF at Chennal and the SEIAA/SPCR/CPCB once in six months.
- Fightive dust emissions from all the sources should be controlled regularly. Water spraying arrangement on haul roads, loading and unloading and at transfer points should be provided and properly methalized.
- 0 Pre-placement medical examination and periodical medical examination of the workers engaged in the project that be carried out and records maintained. For the purpose, schedule of health examination of the workers should be drawn and followed accordingly.
- Regular medical check-up for mine workers and nearby residents around the project site involving community medical centre/NIMH shall be conducted.
- n) As pre-memory health study should be conducted through compatent/approved Health organizations and report submitted for one year.
- To address noise level insuet vibration tails shall be conducted and submitted to SEIAA.
- p) Corpus fund created should be prioritized and utilized for health inues.
- (g) Mineral handling area shall be provided with adequate number of high efficiency start extraction system. Loading and unloading areas including all transfer points shall

amal- cauntilia abdivation com

Ph.Noi044-24359972; Rage: 33-07.39

ETATE ENVIRONMENT INFALL ASSESSMENT AUTOORITY. ENVIRONMENTAL CLEANANCE

also have efficient dost control assurgements. These should be properly maintained and operated.

- vivisitular emissions shall be kept under control and regillarly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportations of mining within size lease area. The mining apprations shall be carried out through the covered tricks only and the vehicles carrying the mineral shall not be overloaded.
- 4) The effective safe guard measures shall be provided to control particulate dust level in critical areas, transfer points and haut read within the mine area.
- D At least feer anialisis all quality-monitoring stations should be established in the core rone as well as in the buffer same fee reprinting of RSPM (PMu, P.Mu) and NO₄. Control of the stations should be decided in consultation with Tainel Nada Pollution Control Board based on the miteorological data: topographical features and environmentally and ecologically sensitive targets and frequency of monitoring etc.
- White working shall be restricted optio 40 591 vittimate per deprives per the period. Mine plan period. NOC from the State GWA for drawing ground water shall be furnished.
- v) Gerland drains and situation ponds of appropriate size shall be constructed around the mine working, soil and mineral dumps to prevent run off of water and flow of multiments. The syster to collected shall be utilized for watering the mine area, made, grown belt development etc. The dmins shall be regularly desited, particularly after the monipons, and exeivationed property.
- w) The value water accumulation in the mine during ratey seasons shall be treated by providing setting tanks on the periphery of the mining loase area and the overflow.

Mail, 124.00 CHARMAN SPIAA TH

70No-064-288599.73

error swartnielaad yetku.com

STATE ENVIRONMENT IMPACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

clean water from the settling tanks shall be allowed to discharge through the first order streams to join nearby natural drains. The settling tanks shall be cleaned periodically for removal of sediments and such records of cleaning shall be maintained property.

- x) Carland drains proposed on the non-moving sides of the Dump yards shall be connected to settling tanks to arrest any wash off sediments from the dumps and only overflowing dean water shall be allowed to discharge through the first order streams. The settling tanks shall be of sufficient dimensions to hold the wash offs in one reiny isation and that to be cleaned byten avery rainy settlin.
- (conservation plan turnished to profest the school of flore and fauna in the core and buffer zone of the project site shall be implemented. Scheduled species of fauna found in the study area shall be monitored closely.
- 2) Bio-diversity Management Plan for mine and buffer area shall be prepared in consultation with local DFO and submitted to SEAA.
- aa) Greenbelt shall be raised incoding a 7.5m wide statutory barrier all around the mining loans, restained and rehebilitates about around water body, roady etc. by planting the native species in combultation with the local DEO/Agriculture Department. The ultimate area to be plasted /afforested shall not be less than 0.4 ha. Greenbelt shall be developed all along the minic loase area in a phased manner as per the approved mining plan.
- bb) Green belt shall be provided as per norms of MoDP & CC & Got, in consultation with local DEO.
- cc) The project authority shall implement suitable water conservation measurer including rain water barvesting system to augment ground water resources in the area in consultation with the Regional Director. State Cround Water Board.

Addie Barrow CHAIRMAN

Ph No 054-34359973; Page 13 of 19 edual consciones on the

STATE INVIRUNCENT INVIACE ASSESSMENT AUTHORITY DISVIDUARI STAE CLEANANCE

- dd) The Company dual submit within 3 months their policy towards Corporate Environment Responsibility which should inter-alta address (i) Standard operating process/ procedure to bring into focus any infringement/deviation/violation of environmental or forest norma/conditions, (ii) Hierarchical system or Administrative order of the company to data with environmental usors and ensuring compliance of EC conditions and (iii) System of reporting of non-compliance Adolation of environmental norms to the Boant of Diroctors of the company and/or stakenoiders or diareholders.
- ee) CIR: Authorit details pertaining to the array shall be automated to SEIAA along with compliance report then and there.
- 10 For CSR adductive as per Ministry of concerning affairs notification stated 27.02.2014, amount shall be earmacked
- ag) A Final Mine Clorure Plan along with details of Corpus Fund shall be submitted to the Ministry of Environment & Powelly Countement of India, New Detro in advance of other year prior to the final mine closure for approval. Mine closure procedure shall be followed as per the approved mining plan.
- bh)Depth of water table of the world liveated inside the university area and wells located around the monitoring area shall be monitored regularly.
- 10 CSR activity shall include providing todal 6 welfare measures for the total residents 6 nearby stillages around the mine area. It shall focus on providing water supply and senitation facility to the nearby government schools around the mine area and maintenance of village roads, ponds, providing solar street lights etc. Funds earmarked for CSR activity shall be used for that purpose only and separate account shall be maintenance and report on implementation shall be furnished regularly.

Delande CHAIRMAN MIAA-IN

Phon 34 of 10

email cmantmenee@yehon.com

STATE ENVIRONMENT IMPACT ASSESSMENT AUTHORITY EDWIRONMENTAL CLEARANCE

ii) The points raised in Public hearing and ennorms shall be addressed without fail, as per action plan submitted to SEAA.

Conditions for Post Construction / Operation Phase & Entire life of the project:

- i. It is mandatory for the project proponent to turnish to the SEAA. Half yearly compliance report in hard and soft copies on 1° June and 1º December of each calendar year in respect of the conditions impulated in the prior Environmental clearatioe, and also before commencement of production.
- II. No expansion or modernization in the protect shall be carried our without prior approval of the SEIAA-TN. In care of any deviations or alterations in the project proposal from those submitted to this Automity for destance, a fresh reference shall be made to the SEIAA-TN to mean the adequacy of conditions imposed and to add additional environmental protection measures required, if any.
- All the environmental protection measures and safeguards as recommended in the EIA report shall be complian with
- Iv. The unolementation of the project vis-Svis environmental action plans shall be monitored by the Regional office of MoEF at Chennal/TNPCB/CPCB. A six monthly compliance status report shall be submitted to monitoring egendes regularly.
 - V. Data on ambient air, stack and fugitive aminions shall be regularly submitted unline to the Regional office of MoEF at Chennal, TNPGB and Central Pollution Control Board as well as hard copy once in siz months and duplicy data on RSPM, SD₂ and NOs outside the premises at the uppropriate place for the general poblic.
 - vi. Occupational health surveillance of the workers shall be done on a regular basis and seconds maintained as per the Mines Act.

email cmantheliaz@yuhoo.com

Ph.No 044-24359973. Fage 15 of 15

STATE ENVIRONMENT SUPACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

- viii Proper house keeping and deardiness must be maintained within and outside the plant.
- vill. The first aid facilities in the occurational health centre shall be strengthened and the medical records of each corporate thould be insinitalized separately.
 - 34. The overall noise levels in and scound the miolog area shall be kept well within the standards prescribed for by providing noise control measures on all sources of noise generation. The ambient neural levels should conform to the standards phesoribed under EPA Bules, 1989 viz, 55 dBA (day time) and 45 dBA (night time).
 - 5. The project proponent shall regimerate / preserve water body located at about 5.0 km from the propose site at its own expenses. The project proposent shall also develop village ponds in addition and shall ensure that the existing ponds is and around 5.0 km radius are well indictained.
- xi. Hydro geological mudy of the estal shall be reviewed annually and report submitted to the Authority. No water bodles including natural drainage system in the area shall be disturbed that to activities associated with the operation of the Mining activity.
- sol. CIR activity shall be implemented as committed by drawing a scheme for social up lithmen in the surrounding sillage, with reference to contribution in road construction, providing sentration facilities, drinking water supply in the government schools nearby, community assamenes, establishment of health centres, water supply to nearby willages and employment to local people whitnever and wherever possible both for technical and non-technical jobs and protection of water sources around the project site etc. Funds earmerked for CSR activity shall be used for that purpose only and reparate account shall be maintained and report on implementation shall be furnished regulary.
- ыЩ.

Ph.No 034-24357973

Page 16 of 19

The requisite amount earmanised nowards expital cost and recurring cost/annuml for implementing pollution costrol measures shall be used judicloudy to

ermail constituieiau@vahoo.com

T. Shawill CHAIRMAN aSEIAI-TN

STATE ENVIRONMENT RUPAL (ASSISSMENT AD HIDRITY ENVIRONMENTAL CLEARANCE

implement the Environment Management Plan as furnished in the EIA report. The funds to provided shall not be diverted for any other purposes.

380A)

The project proponent shall upload the status of compliance of the stipulated environmental clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be serve or the Regional Office of the MODF at Chennal, the respective Zonal Office of CRCR and the SPCB. The criteria pollutant levels namely: RSPM, SO,, NO, (Ambient levels as well as stack emissions) or critical sector parameters, indicated for the projects shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.

- xv. The project proponent shall also submit its monthly reports on the status of the compliance of the supulated environmental conditions including coulds of monitored data (both in band copies is used as by e-mail) to the respective Regional Office of MORF, the respective Zonal Office of CPCB and the SPCB. The Regional Office of this Ministry at Bangalore/CPCB/SPCB shall monitor the impulated conditions.
- xvi. The environmental statement for each financial year ending 31* March in Form-V as is mandated to be submitted by the provent proponent to the concerned State Poliution Control Board in pressibled under the Environment (Protection) Rules. 1986, as amended subrequently, shall shor he put on the website of the company along with the status of compliance of environmental conditions and shall also be sent to the impective Regional Offices of the MOEF by e-mail.
 - will. Environmental Clearance II being Issuelt without prejudice to the action initiated under Environment (Protection) Act, 1986 or any court one pending or any other court order shall prevail.
 - sty. The SELAA, TN may alter/modify the score conditions or alterulate any furthercondition in the interest of environment protection.

SELAA TH

smail chartman pattor.com

Capx 57 67 19

2n.No.044-24359973

STATE ENVIRONMENT INFACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

- xv. The 3EIAA/3EAC memory the right to add any further condition(i) on receiving reports from the project authority. The above condition shall be monitored by the Regional Office of MoEI located at Chemical.
- wet. The SEXA, TN may rounke or surpend the Environmental clearance, if Implementation of any of the spone conditions is not satisfactory.
- xx8. The SEIAA, TN may cancel the environmental clearance granteet to this project under the provisions of EIA Notification, 2006, if, at any stage of the validity of this environmental clearance. If it is found or if it comes to the knowledge of this SEIAA. TN that this project accoording has deliberately encoded and/or submitted false or misleading information or inadequate data for obtaining the environmental clearance.
- axis. Failure to comply with any of the conditions mentioned above may result in withdrawal of this dearance and effect action under the provisions of the Environment (Protection) Act, 1955.
- EXE The above conditions will be enforced inter-still, under the provisions of the Water (Prevention & Control of Pollution) Act. 1974, the Alx (Prevention & Control of Pollution) Act. 1981, the Environment (Protection) Act. 1986, the Public Liability Insurance Act. 1991, along with their amendments. MMDR, amendment Act 2015, National Commission for protection of Child Right Rules . 2006 and rules made there under and also acty other orders passed by the Hon ble Supreme Court of Indus / Hon ble High Court of Madres and any other Courts of Law relating to the sublicit methals.
 - (a) This detrance is insued with respect to only Environmental considerations and it does not imply that SCIAA approved the way by which lease is granted to the project, while granting least, the concerned authority shall ensure compliance of relevant Roles. Regulations: Notifications, Government Resolutions, Groulars, Judgments/Orders of Hon/ble Courts and NGT, etc.

Relignath CHAMINTAN SELAA-TN

Ph. No-014-24359973; P2(2+18 of 19

mittell, attlatititelisin@yahoo.com

STATE ENVIRONMENT IMPACT ASSESSMENT AUTHORITY ENVIRONMENTAL CLEARANCE

asi. Any appeal against this Environmental Clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

Copy to-

- 1. The Principal Secretary to Government, Environment & Forest Department, Govt. of Tamil Nadu, Fort St. George, Chermal - 600 009.
- 2. The Chairman, Central Pollution Confid Board, Parveut Bhavan, CBD Cum-Office Complex, East Arjun Nagar, New Delhi 110032.
- The Member Secretary, Tamil Nucl. Pollution Control Board.
 76, Mount Salai, Guindy, Chennal 1600 032.
- 4. The ACCE(C), Regional Office of MnEE.

34, hepc Building, 1 & 2 nd Floors, Cathedral Garden Road, Nungarybukkam, Chennal - 600 034

 Monitoring Cell, I A Division, Ministry of Environment & Forests, Panyawaran Bhavan, CGO Complex, New Delhi 110003.

email_cmail:rs=-ss@yahoe.com

- 6. The District Collector, Ariyalur district.
- 7. Stock file.

CHAUMMAN SELAA-TN

Ph.No 064-24399973; Page 19 of 19

TAMILNADU POLLUTION CONTROL BOARD

RENEWAL OF CONSENT ORDER NO:2409157816355 DATE:29/02/2024

PROCEEDINGS NO.F.0387ARY/RS/DEE/TNPCB/ARY/W/2024 DATED: 29/02/2024

Sub :	Tamil Nadu Pollution Control Board – AUTO RENEWAL OF CONSENT – M/s. PERIYANAGALUR WEST LIMESTONE MINES-THE RAMCO CEMENTS LIMITED S.F No. 229/1,267,268/1,269,271, PERIYANAGALUR Village, Ariyalur Taluk, Ariyalur District- Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) – Issued- Rcg.
Ref :	 CTO. Procs. No. T2/TNPCB/F.0387ARY/RS/ARY/W/2018 dated 19/02/2018. RCO.Procs.No.F.0387ARY/RS/DEE/TNPCB/ARY/W/2023 Dated: 19/06/2023 Unit's application for Auto renewal of consent through online no.57816355 Dated: 24.02.2024. Board Circular Memo No. TNPCB/OCMMS/06517/2019 Dated 08-06-2022

Renewal Of Consent is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

CHAIRMAN & MANAGING DIRECTOR, M/s . PERIYANAGALUR WEST LIMESTONE MINES-THE RAMCO CEMENTS LIMITED S.F No. 229/1,267,268/1,269,271, PERIYANAGALUR Village, Ariyalur Taluk, Ariyalur District.

Authorising the occupier to make discharge of sewage and /or trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending - March 31, 2026

M SENTHILKUMAR District Environmental Engineer, Tamil Nadu Pollution Control Board, ARIYALUR

SPECIAL CONDITIONS

 This renewal of consent is valid for operating the readility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh convert bas to be obtained and contract. pospp.

SLNo.	Description	Quantity	Unit	
a.	Product Details :-			
1.	Mining of Limestone over an Extent of 17.36.0 Hectares	0.3	Million Tonnes/Annum	
b.	By-Product Details :-			
1.	No By-Product	0		
c.	Intermediate Product Details :-			
1.	No Intermediate Product	0		

2 This renewal of consent is valid for operating the facility with the below mentioned permitted outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Outlet No.	Description of Outlet	Maximum daily discharge in KLD	Point of disposal
EFFLUENT TYPE :-	Effluent Type : Sewage		
1.	Sewage	4.5	On Industrys own Iand
EFFLUENT TYPE :-	Effluent Type : Trade Effluent		
OUTLET NUMBER	DESCRIPTION OF OUTLET	MAXIMUM DAILY DISCHARGE (IN KLD)	POINT OF DISPOSAL
1.	Nii	0.0	

Special Additional Conditions-

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

The industries shall take all efforts to use and popularize "Mission LiFE" logo and mascot which is available in TNPCB & MoEFCC website. They shall also request their employees to adopt "Mission LiFE" action points and document the same and furnish half yearly report to Board.

Additional Conditions-

1. The unit shall treat and dispose the sewage in septic tank and Dispersion trench arrangements.

2. The unit shall comply with all conditions mentioned in the EC issued by SEIAA vide Lr. Dated: 14.11.2016.

3. The unit shall adhere to the depth of mining mentioned in the EC.

4. The unit shall comply with Mines and Minerals (Development and Regulation) Amendment Act 2015.

5. The mining lease holder shall, after ceasing mining operations, undertake regrassing the mining area and any other area which may have been disturbed due to their mining activities and restore the land to a condition which is fit for growth of fodder, flora, fauna etc.

6. The unit shall not use 'use and throwaway plastics' such as plastic sheets used for food wrapping, spreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumbler, water pouches and packets, plastic straw, plastic carry bag and plastic flags irrespective of thickness, within the

industry premises. Instead it shall encourage use of eco friendly alternative such as banana leaf, arecanut palm plate, stainless steel, glass, porcelain plates/ cups, cloth bag, jute bag etc.

7. The unit shall comply with the E waste Management Rules 2016, E waste as listed in Schedule- I generated by them shall be channelized through collection centre or dealer of authorized producer or dismantlers or recycler or through the designated take back service provider of the producer to authorized dismantler or recycler. The unit shall maintain records of E- waste generated by them in Form- 2 and make such records available for serutiny by the TNPCB. The unit shall file annual returns in Form -3, to the TNPCB on or before the 30 th day of June following the financial year.

The unit shall not go for expansion activity without obtaining Environmental Clearance for expansion.
 This consent order does not absolve from obtaining necessary permission /clearance from other Authority or under other Statute as applicable.

Organity signed by MithEffelt MUNUM. DN 2019, e-TANE MADU POLIUTION CONTURING MARD, gen CHENNAL 21.4.20. School 105-411 Upun restord Hendre Utili2274937

2.1.4.20 - 2016ef 13:04 (F) UNKERNER FRANKER UNKER UNKER UNKER Bull UNKER UNKER UNKER UNKER UNKER UNKER UNKER BULK UNKER UNKER UNKER UNKER UNKER UNKER AND ECO DOLUMER UNKER UNKER UNKER UNKER UNKER Darb 2016 UNKER UNKER UNKER UNKER UNKER Darb 2016 UNKER UN

TAMILNADU POLLUTION CONTROL BOARD

To

CHAIRMAN & MANAGING DIRECTOR, M/s.PERIYANAGALUR WEST LIMESTONE MINES-THE RAMCO CEMENTS LIMITED, RAMAMANDIRAM, RAJAPALAYAM, VIRUDHUNAGAR DISTRICT Pin: 626117

Copy to:

 The Commissioner, ARIYALUR-Panchayat Union, Ariyalur Taluk, Ariyalur District.
 Copy submitted to the Member Secretary, Tamil Nadu Pollution Control Board, Chennai for favour of kind information.

3. Copy submitted to the JCEE-Monitoring, Tamil Nadu Pollution Control Board, Triuchirappalli for favour of kind information.

4. File

This is computer generated, Signature is not required.

POLLUTION PREVENTION PAYS

in the second seco

TAMILNADU POLLUTION CONTROL BOARD

RENEWAL OF CONSENT ORDER NO:2409257816355 DATE:29/02/2024

PROCEEDINGS NO.F.0387ARY/RS/DEE/TNPCB/ARY/A/2024 DATED: 29/02/2024

Sub :	Tamil Nadu Pollution Control Board – AUTO RENEWAL OF CONSENT –M/s. PERIYANAGALUR WEST LIMESTONE MINES-THE RAMCO CEMENTS LIMITED, S.F. No. 229/1,267,268/1,269,271, PERIYANAGALUR village, Ariyalur Taluk and AriyalurDistrict- Renewal of Consent for operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) – Issued – Reg.
Ref :	 CTO. Procs. No. T2/TNPCB/F.0387ARY/RS/ARY/A/2018 dated 19/02/2018. RCO.Proes.No.F.0387ARY/RS/DEE/TNPCB/ARY/A/2023 Dated: 19/06/2023 Unit's application for Auto renewal of consent through online no.57816355 Dated: 24,02.2024. Board Circular Memo No. TNPCB/OCMMS/06517/2019 Dated 08-06-2022

Renewal of Consent is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

CHAIRMAN & MANAGING DIRECTOR,

M/s . PERIYANAGALUR WEST LIMESTONE MINES-THE RAMCO CEMENTS LIMITED S.F No. 229/1,267,268/1,269,271, PERIYANAGALUR Village, Ariyalur Taluk, Ariyalur District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending - March 31, 2026

SENTHILKUMAR

М

Crightally agried by M SENTHUL KUMAN DN: care, nor-YAME MADE/ POLICITEAN CONTINUE MOARCE care OF INTRO SCA 1996 CONTINUES ALSO TRUE AT ANY DRAY 1995 THE SCA 1995 THE REMOTE AT YOUR AND ANY ANY DRAY 1996 THE SCA 1995 THE SC

District Environmental Engineer, Tamil Nadu Pollution Control Board, ARIYALUR

POLLUTION PREVENTION PAYS

SPECIAL CONDITIONS

1. This renewal of consent is valid for operating the rectify for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in **he pre**ducts and its quantity has to be brought to the notice of the Board and freshponser has to be brought to the notice.

SI.No.	Description	Quantity	Unit
Product	Details :-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.	Mining of Limestone over an Extent of 17.36.0 Hectares	0.3	Million Tonnes/Annum
By-Prod	luct Details :-		
1.	No By-Product	0	and the second second
Interme	diate Product Details :-		Party and the second second second
1.	No Intermediate Product	0	

2. This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained

I Point source emission with stack :			18 332 A 1102	
Stack No	Point Emission sources	Air pollution Control measures provided	Stack height from Ground Level in m	Gaseous Discharge in Nm3/hr
Nil	Nii	Not Applicable	0	
п	Fugitive/Noise emis	sion :		
SI.No.	Fugitive or Noise Emission sources	Type of Emission	Control measures provided	Quantity
1.	Drilling operation	Fugitive	Dust Controlled Using Wet Gunny Bags	
2.	Mining Activity	Fugitive	Water Spraying Arrangement using Water Tankers	
3.	Haulage Road	Fugitive	Water Spraying Arrangement using Water Tankers	

Special Additional Conditions-

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

The industries shall take all efforts to use and popularize "Mission LiFE" logo and mascot which is available in TNPCB & MoEFCC website. They shall also request their employees to adopt "Mission LiFE" action points and document the same and furnish half yearly report to Board.

Additional Conditions-

1. The unit shall operate and maintain the Air Pollution Control measures efficiently and continuously so as to achieve the Ambient Air Quality / Emission standards prescribed by the Board.

2. The unit shall adhere to the ambient Noise level standards prescribed by the Board.

3. The unit shall operate the water sprinklers effectively to suppress the dust emission during mining and vehicle movements.

4. The haul roads in the mines shall be adequately water sprayed using water tankers at regular intervals.

5. The unit shall continue to develop more green belt in and around the premises.

6. The unit shall comply with Mines and Minerals (Development and Regulation) Amendment Act 2015.

7. The unit shall ensure that transport vehicle shall be leak proof and properly covered with tarpaulin so as to prevent dust from being air borne.

8. The unit shall comply with all conditions mentioned in the EC issued by SEIAA vide Lr. Dated: 14.11.2016.

POLLUTION PREVENTION PAYS

340

TAMILNADU POLLUTION CONTROL Board,

M SELECTION AR

To

CHAIRMAN & MANAGING DIRECTOR. M/s.PERIYANAGALUR WEST LIMESTONE MINES-THE RAMCO CEMENTS LIMITED, RAMAMANDIRAM, RAJAPALAYAM, VIRUDHUNAGAR DISTRICT Pin: 626117

Copy to:

1. The Commissioner, ARIYALUR-Panchayat Union, Ariyalur Taluk, Ariyalur District .

2. Copy submitted to the Member Secretary, Tamil Nadu Pollution Control Board, Chennai for favour of kind information.

3. Copy submitted to the JCEE-Monitoring, Tamil Nadu Pollution Control Board, Triuchirappalli for favour of kind information.

4. File

This is computer generated, Signature is not required.

POLLUTION PREVENTION PAYS

Doc3-GO126 for Amalgamațion

ABSTRACT

Industries - Mines and Minerals - Major Mineral - Mining leases granted to The Ramco Cements Limited (formerly Madras Cements Limited) for Limestone - Over an extent of 35.96.0 hectares of Patta & Government lands in S.F.Nos.51/2, 51/3, 51/4 etc., and over an extent of 17.36.0 hectares of Patta & Government lands in S.F.Nos.267, 268/1 etc., - Periyanagalur Village - Ariyalur Taluk & District - Amalgamation of two mining leases under Rule 56 of the Minerals (other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016 - Orders -Issued.

Industries (MMA.2) Department

G.O.(Ms) No. 126

Dated 26.02.2021 சார்வரி வருடம், மாசி 14 திருவள்ளுவர் ஆண்டு–2052

Read:

- G.O.(3D)No.2, Industries (MMA.2) Department, dated 13.01.2003.
- G.O.(Ms)No.153, Industries (MMA.2) Department, dated 23.12.2016.
- G.O.(Ms) No.77, Industries (MMA.2) Department, dated 26.07.2018.
- From the District Collector, Ariyalur Letter Rc.No.381/ G&M/2017, dated 22.06.2020 and 20.12.2020.
- From The Ramco Cements Limited, Ariyalur, Letter dated. 02.02.2021.
- From the Director of Geology and Mining, Letter.Ref.2920/MM9/2020 dated 09.02.2021.

<u>ORDER</u>:

In the G.O. 1st read above, orders were issued granting a mining lease to Tvl.Madras Cements Limited over an extent of 36.29.5 hectares of patta and poramboke lands in S.F.Nos.51 etc., of Periyanagalur village, Ariyalur Taluk, Perambalur District for a period of 20 years by relaxing of Section 6(1)(c) of Mines and Minerals (Development and Regulation) Act, 1957. However the lease deed had been executed for an reduced actual extent of 35.96.0 Hectares only.

2. In the G.O. 2nd read above, orders were issued granting a mining lease in favour of The Ramco Cements Limited for mining limestone and marl over an extent of 17.36.0 hectares comprising of patta (0.44.5 hectares) lands in S.F.No.229/1 and Government land (16.91.5 hectares) in S.F.Nos.267, 268/1, 269, 271 of Periyanagalur village, Ariyalur Taluk and District for a period of 50 years under 8A(2) of the Mines and Minerals (Development & Regulation) Amendment Act, 2015.

3. In the G.O. 3rd read above, the said mining lease had been extended for a period of 50 years as per Section 8A(3) of the Mines and Minerals (Development and Regulation) Act, 2015 and the lease period is valid upto 19.08.2053. The supplementary mining lease deed was executed and registered on 03.07.2019.

4. The Ramco Cements Limited have requested for amalgamation of two mining leases granted to them vide G.O.Ms.No.77, Industries (MMA2) Department, dated 26.07.2018 and G.O.(Ms) No.153 Industries (MMA.2) Department, dated 23.12.2016 in Perlyanagalur Village, Ariyalur Taluk and District for the following reasons:

- Both the above mentioned mining leases are situated adjoining to each other and also forms compact & contiguous in nature.
- ii. Mining Operation is being carried out as per the conditions stipulated in the Mining Lease grant Order and also Mining Lease deed document of Form-K.
- iii. The open cast fully mechanised method of mining is being practiced in the existing mining lease granted area of 36.29.5 Hectares.
- iv. As per the approved mining plan, lease wise mining operation has to be carried out by observing the mining parameters as stipulated in the approved mining plan. Thereby, safety barrier and mining bench parameters to be kept all along the lease boundaries of both the leases to the approximate length of 550 metres. Thereby, substantial quantity of limestone reserves would be unexploited and it would result the formation of long barriers for a length of 550 metres with a depth of 35 metres between the two leases.
- In order to carry out systematic and scientific mining operation and also in the mineral conservation point of view, it is proposed to amalgamate both the mining leases.
- vi. By amalgamation of both the leases, they would get additional reserves of about 1.50 Million tonnes of limestone and resultant exchequer to the State Government by means of royalty, DMF and NMET is about Rs.15.84 Crores.
- vii. They have given an hereby undertaking to accept the terms and conditions of amalgamated leases shall be co-terminus with the lease whose period will expire first, considering the extension of lease period for G.O. (3D)No.2, Industries (MMA.2) Department, dated 13.01.2003 over an extent of 36.29.5 Hectares which is eligible to be extended upto a period ending 19.08.2053.

5. In the letters 4th read above, the District Collector, Ariyalur has recommended and forwarded the proposal to the Government for amalgamating the two mining leases held by The Ramco Cements Limited, totalling over an extent of 53.32.0 hectares as per Rule 56 of the Minerals (Other than Atomic and Hydrocarbons Energy Minerals)

Concession Rules, 2016 subject to the provisions of Acts & Rules and that the lease period of amalgamation of two mining leases shall expire on 19.08.2053.

6. In the letter 6th read above, the Commissioner of Geology and Mining has stated that the representation of The Ramco Cements Limited and the recommendations of the District Collector, Arlyalur along with the connected documents have been examined in accordance with the connected Act and Rules and observed that,

- i. The two mining leases to be amalgamated had been granted by the Government in G.O.Ms.No.77, Industries (MMA2) Department, dated 26.07.2018 and G.O.(Ms)No.153, Industries (MMA.2) Department, dated 23.12.2016.
- The period of the mining lease granted in G.O.Ms.No.77, Industries (MMA2) Department, dated 26.07.2018 is valid upto 19.08.2053 and the period of mining lease granted in G.O.(Ms) No.153, Industries (MMA.2) Department, dated 23.12.2016 is valid upto 09.01.2067.
- Rule 56 of the Minerals (Other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016 stipulates that,

"The State Government may, in the interest of mineral development and with reasons to be recorded in writing, permit amalgamation of two or more adjoining leases held by a lessee:

Provided that the period of amalgamated leases shall be co-terminus with the lease whose period will expire first".

- iv. As per the sketch enclosed by the lessee company, mining operations have been carried out in both the mining leases. The pit and the dump site have been earmarked in the sketches.
- v. The Deputy Director (G&M), Ariyalur has inspected the area on 21.03.2020 and stated that the lessee company is operating the mine as per the approved mining plan for both the leases and a safety barrier have been maintained all along the lease boundaries. Further, the Deputy Director has reported that substantial quantity of limestone reserves remains unexploited between the two leases due to the safety distance being maintained for a length of 550 metres and width of 15 metres. By way of amalgamating the two leases the lessee company could get additional reserves of about 1.5 million tonnes of limestone (for a depth of 35 metres) resulting payment of royalty, DMF and NMET to the State Government.
- vi. The lessee company is carrying out mining operations as per the approved mining plan and necessary safety barrier have been maintained in the two mining leases.
- vii. The District Collector, Ariyalur has reported that, as stated by the Revenue Divisional Officer, both the mining leases granted vide G.O.Ms.No.77, Industries (MMA2) Department, dated 26.07.2018 and G.O.(Ms) No. 153, Industries (MMA.2) Department, dated 23.12.2016 are contiguous to each other and as the surface rights

vests with the lessee company, the said mining leases covering an total extent of 53.32.0 hectares of patta and poromboke lands may be amalgamated.

- viii. The District Collector, Ariyalur in the letter Rc.No.381/G&M/2017, dated 20.12.2020 has further stated that the Assistant Geologist (G&M), Ariyalur inspected the above said mining lease hold areas and submitted an inspection report stating that the lessee company have complied with all the terms and conditions granted in the mining lease in G.O.(3D)No.2, Industries (MMA.2) Department, dated 13.01.2003 and G.O.(Ms)No.153, Industries (MMA.2) Department, dated 23.12.2016.
- ix. As envisaged in the proviso clause of Rule 56 of the Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rules, 2016, the period of amalgamated leases shall be co-terminus with the lease whose period will expire first and accordingly, the period of one of the mining leases granted vide G.O.(Ms).No.77, Industries (MMA2) Department, dated 26.07.2018 which is expiring first i.e., on 19.08.2053, which shall be taken into consideration for the amalgamation of mining leases.
- The lessee company is having valid approved mining plan/scheme of mining for the two mining leases.
- xi. The lessee company is having valid Consent to Operate for both the mining leases obtained from the Tamil Nadu Pollution Control Board.
- The lessee company has remitted the Annual compensation for the two mining leases upto 2020-2021.
- xiii. The lessee company has furnished the Mining Due clearance certificate which is valid upto the year 31.03.2020 for the limestone mining leases held by them in the State.
- xiv. The lessee company has given an undertaking for accepting the terms and conditions of the amalgamated cases that the period of lease shall be co-terminus with the leases whose lease shall expire first.
- The lessee company has obtained Environmental clearance (or both the mining leases.
- xvi. The lessee company has obtained permission from the Director of Mines Safety as per Regulation 111(3) of the Metalliferrous Mines Regulations, 1961, for carrying out mining operations within the safety distance maintained between the two proposed amalgamation of leases.
- xvii. In order to carry out systematic and scientific mining operation and also in the mineral conservation point and the lessee company would get additional reserves of about 1.50 million tonnes, if the mining leases get amalgamated.
- xviii. The District Collector, Ariyalur has recommended for amalgamation of two mining leases as single lease totalling an extent of 53.32.0 hectares (17.36.0 hectares + 35.96.0 hectares) and the lease period shall expire on 19.08.2053.

- The Ramco Cements Limited has stated that they have got a mining lease for mining limestone over an extent of 35.96.0 hectares vide G.O.(3D)No.2, Industries (MMA.2) Department, dated 13.01.2003 and another mining lease over an extent of
- dated 13.01.2003 and another mining lease over an extent of 17.36.0 hectares for mining limestone and Marl vide G.O.(Ms).No. 153, Industries(MMA.2) Department, dated 23.12.2016. Further, they have stated that the existence of mineral marl has not been proved in the detailed exploration conducted by the Department of Geology and Mining. Since both the said mining leases are situated adjacent to each other and form a compact and contiguous block, requested to consider the application for grant of amalgamation of both the mining leases for mining limestone only.
- xx. Therefore, as per the request of The Ramco Cements Limited, the amalgamation of both mining leases may be considered restricting for mining the mineral limestone only.
- xxi. The amalgamation of leases can be considered as per Rule 56 of the Minerals (Other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016 as it enables the utilization of the additional reserve which is being unexploited between the two leases due to safety distance of 7.5 metres each being maintained between the two leases.
- xxii. The additional reserves of 1.5 million tonnes of limestone are to be considered for excavation due to amalgamation of leases. Therefore, the lessee company has to obtain approved modified mining plan for amalgamated leases including the additional reserves and indicating the revised safety distances, to be maintained for the amalgamated lease from IBM.
- xxiii. Further, based on the modified mining plan for the amalgamated mining leases, the lessee company has to obtain revised Environment Clearance for amalgamated lease.

The Director of Geology and Mining has, therefore, recommended for amalgamation of the two mining leases, granted for mining limestone, over an extent of 35.96.0 hectares of Patta and Poromboke lands in S.F.Nos.51/2, 51/3 etc. of Perlyanagalur Village, Ariyalur Taluk and District vide G.O.Ms.No.77, Industries (MMA2) Department, dated 26.07.2018; and another mining lease granted for mining Limestone and Marl, over an extent of 17.36.0 hectares of Patta and Poromboke lands in S.F.Nos.267, 268/1 etc. of Perlyanagalur Village, Ariyalur Taluk and District vide G.O.(Ms)No.153, Industries (MMA.2) Department, dated 23.12.2016 totalling over an extent of 53.32.0 hectares (35.96.0 hectares + 17.36.0 hectares) as per Rule 56 of the Minerals (Other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016 for mining Limestone only with the period of such lease expire on 19.08.2053, subject to the following conditions:-

i. The lessee company has to execute supplementary lease deed for the amalgamated mining lease with the District Collector, Ariyalur.

XİX.

- ii. The lessee company has to submit the approved modified mining plan/scheme from the IBM before executing Supplementary lease deed for amalgamation of the mining leases including additional reserves and indicating the safety distances to be maintained.
- iii. The lessee company has to get Environmental Clearance for the amalgamated mining lease totalling over an extent of 53.32.0 hectares from the competent authority before executing Supplementary lease deed for amalgamation of the mining leases.
- Lessee company has to comply the conditions imposed in G.O.(3D)No.2, Industries (MMA2) Department, dated 13.01.2003, G.O.Ms.No.77, Industries (MMA2) Department, dated 26.07.2018 and G.O.(Ms).No.153, Industries (MMA.2) Department, dated 23.12.2016.
- v. As per Hon'ble Supreme Court order dated 08.01.2020 in W.P.(C) No.144/2014 and subsequent instructions received from Ministry of Mines order dated 14.01.2020 and State Government letter No. 1666/MMD.1/2020-1, dated 03.03.2020 "the mining lease holders shall, after mining operations undertake re-grassing the mining area and any other area which may have been disturbed due to their mining activities and restore the land to a condition which is fit for growth of fodder, flora, fauna, etc.,"

7. The Government have examined the proposal of District Collector, Ariyalur as recommended by Director of Geology and Mining carefully, Accordingly, the Government hereby grant permission under Rule 56 of the Minerals (Other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016, for amalgamating the two mining leases granted to The Ramco Cements Limited, viz., (i) for mining limestone over an extent of 35.96.0 hectares of Patta and Poromboke lands in S.F.Nos.51/2, 51/3 etc. of Periyanagalur Village, Ariyalur Taluk and District, granted G.O.(3D)No.2, Industries originally iп (MMA.2) Department, dated 13.01.2003 and subsequently validity extended in G.O.Ms.No.77, Industries (MMA2) Department, dated 26.07.2018, and (ii) another mining lease granted for mining Limestone and Marl, over an extent of 17.36.0 hectares of Patta and Poromboke lands in S.F.Nos.267, 268/1 etc. of Perlyanagalur Village, Ariyalur Taluk and District, in G.O. (Ms). No. 153, Industries (MMA.2) Department, dated 23.12.2016, totalling over an extent of 53.32.0 hectares (35.96.0 hectares + 17.36.0 hectares) into a single lease for mining limestone only, duly coterminous with the lease period ending on 19.08.2053 subject to the following conditions and the conditions mentioned in the lease deed executed and other general / special conditions if any to be imposed by the competent authority and orders accordingly:-

 i. The lessee company has to execute supplementary lease deed for the amalgamated mining lease with the District Collector, Ariyalur.

- ii. The lessee company has to submit the approved modified mining plan/scheme from the IBM before executing supplementary lease deed for amalgamation of the mining leases including additional reserves and indicating the safety distances to be maintained.
- iii. The lessee company has to get Environmental Clearance for the amalgamated mining lease totalling over an extent of 53.32.0 hectares from the competent authority before executing supplementary lease deed.
- iv. Lessee company has to comply the conditions imposed in G.O.(3D)No.2, Industries (MMA2) Department, dated 13.01.2003, G.O.Ms.No.77, Industries (MMA2) Department, dated 26.07.2018 and G.O.(Ms)No.153, Industries (MMA.2) Department, dated 23.12.2016.

The District Collector, Ariyalur is directed to pursue necessary further action.

(BY ORDER OF THE GOVERNOR)

N. MURUGANANDAM PRINCIPAL SECRETARY TO GOVERNMENT

Τo

The Ramco Cements Limited, Auras Corporate Centre, V-Floor, No.98 A, Dr.Radhakrishnan Road, Mylapore, Chennai – 600 004.

The Commissioner of Geology and Mining, Guindy, Chennai - 600 032.

The District Collector, Ariyalur,

Regional Controller of Mines, Indian Bureau of Mines, Chennai - 600 090.

Copy to PA to Hon'ble Minister(Law, Courts and Prisons), Industries (OP.II) Department, Sf/Sc.

// FORWARDED / BY ORDER //

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES OFFICE OF THE REGIONAL CONTROLLER OF MINES

Telephone No.044-24914451/1570 Fax No.044-24911295 Email ID: ro.chennai@ibnr.gov.in

C-4-A, Rajaji Bhavan CGO comple, Besant Nagar Chennai - 600 090.

Dated : 2307/2021

No.TN/ALR/LST/MP-2079.MDS

To:

The Ramco Cements Llinited V Floor, Auras Corporate Centre 98-A Dr. Radhakrishnan Road Mylapore: Chennai - 600 004.

Sub. : Approval of Mining Plan with Progressive Mine Closure Plan for Amalgamated Periyanagalur Limestone Mine over 53.32.0 hectares in Periyanagalur Village, Ariyalur Taluk & District of M/s. The Ramco Cements Limited submitted under Rule 13 of MCR, 2016.

Ref.: Your letter no. nil dated 12.07.2021.

Sir.

In exercise of the powers conferred by under Rule 16 of Minerals (Other than Atomic & Hydro Carbon Energy Minerals) Concession Rules, 2016 vide Gazette Notification No. S.O. 1857(E) dated 18.5.2016 issued by the Controller General, Indian Bureau of Mines under F.No. T-43004/CGBM/MM(DR)/2015, I hereby approve the above said M ning Plan for Limestone mineral. This approval is subject to the following conditions.

That the Mining Plan with Progressive Mine Closure Plan is approved without prejudice to any other law applicable to the mine/area from time to time whether made by the Central Government, State Government or any other authority.

That this approval of the Mining Plan with Progressive Mine Closure Plan does not in any way imply the approval of the Government in terms of any other provision of the Mines & Mineral (Development & Regulation) Act, 2015 or the M neral Concession Rules, 2016 or any other law including Forest (Conservation) Act, 1980, Environment Protection Act, 1986 and the rules made there under.

That this approved Mining Plan with Progressive Mine Closure Plan is approved without prejudice to any 3) other order or direction from any court of competent jurisdiction.

Provisions of the Mines Act, 1952 and Rules & Regulations made thereunder including submission of notice of opening, appointment of manager and other statutory officials as required by the Mines Act, 1952 shall 4) be complied with.

The Provisions made under MM(D&R) Act, 2015 (Amended) and Rules made thereunder shall be 5) complied with.

The contents of circular No. 2/2010 issued by the Chief Controller of Mines, IBM, Nagrur vide his letter 6) No. 11013/3/MP/90-CCOM Vol. VII dated 06.04.2010 shall be complied with.

The execution of Mining Plan / Modifications to the Approved Mining Plan shall be subjected to vacation 7)of prohibitory orders / notices, if any.

This approval of Mining operations and associated activities is restricted to the Mining lease area only. The Mining lease area is as shown on the statutory plans under rule 32 of Mineral Conservation and Development Rules, 2017, by the lessee. Indian Bureau of Mines does not take any responsibility regarding correctness of the boundaries of the lease shown on the ground with reference to the lease map and other plans furnished by the lessee.

The Environmental Monitoring Cell of the Company shall continue monitoring ambient air quality, dust fall 91 rate, water quality, soil sample analysis and noise level measurements on various stations established for the purpose both in the core zone and buffer zone, as per Department of Environment guidelines and keeping in view IBM's Circular No.3/92, season-wise every year or by engaging preferably the services of an Environmental laboratory approved by MOEF/CPCB. The data so generated shall be maintained in a bound paged register kept for the purpose and the same shall be made available to the inspecting officer on demand.

10) If anything is found to be concealed as required by the Mines Act in the contents of approved Mining Plan and proposal for rectification has not been made, the approval shall be deemed to have been withdrawn with immediate effect.

11) Yearly report as required under Rule 26(2) of MCDR,2017 setting for the extent of protection and rehabilitation works carried out as envisaged in the approved progressive mine closure plan and if there is any deviations, reasons thereof shall be submitted before 1" July of every year to the regional office, IBM , Chennai, 12) The Mining Plan is approved for the proposals contained therein and as applicable from 1.4.2021 for the

mining activities to be carried out within the mining leasehold. The earlier instances of irregular mining/illegal. mining, if any, shall not be regularized through the approval of this document.

13) The financial assurance submitted should be renewed before expiry of the same.

14) In case Mining lease falls within a radius of 10 kms, of National Park/Sanctuary, recommendations of NBWL have to be obtained as per the orders of the Hon'ble Supreme Court in I.A. No. 460/2004.

15) This approval is subject to the mining operations as per the proposals shall be carried out only after obtaining necessary clearances from MOEF, Pollution Control Board, Forest Department, etc.

16) This approval is subject to the conditions as per the directions given in WP(c) No. 114/2014 given by the Hon'ble Supreme Court of India should be taken care while implementing the proposals given in the PMCP part

17) This approval is subject to submission of DGPS Plan duly authenticated by the State Government and submission of Mining Plan if, consequent to the authentication of DGPS Survey Plan, any change in mining lease area is accepted by the State Government.

Encl : Copy of approved Mining Plan with Progressive Mine Closure Plan

Yours faithfully.

Regional Controller of Mines

Copy for information to:-

1. Shri V. Mohan, Qualified Person, The Ramco Cements Ltd., Clovindepuram (PO), Sendural Road, Ariyalur Taluk & District, PIN 621 713.

2. The Commissioner of Geology & Mining, Government of Tamilnadu, Guindy, Chennai - 600 032 along with copy of the approved Manager and Approved Mining Plan.

Enci : As above,

(G.C. Sethi) Regional Controller of Mines

Chapter 1 : General Information

1.1 : Lease Details

1.1. Lease Details	
IBM Registration Number :	IBM/638/2011
Lease Code :	63646308
Mine Code :	38TMN610002
Name of Lessee :	THE RAMCO CEMENTS LIMITED
Address of Lessee :	5th Floor, Auras Corporate Centre 98A, Dr Radhakrishanan Salai , Mylapore Chennai
Type of Lessee :	Private
Name of Mining Lease :	Amalgamated Periyanagalur Limestone Mine 53dot32 Ha
State :	TAMIL NADU
District :	Ariyalur
Tehsil/ Taluk/ Mandal :	Ariyalur
Village :	Periyanagalur
Lease Area (Ha) :	53.32
Forest Area (Ha) :	0.0000
Name of Minerals :	LIMESTONE
Name of associated minerals :	

Type :	Existing Lease
Period of the proposal (FY) from :	2025 - 26
Period of the proposal (FY) to :	2029 - 30
Type of working :	Opencast
Nature of Use :	Captive
Category of Mine :	Category A

1.1.1 : Initial/subsequent Lease grant details

Grant	From	То	Lease deed execution date	Lease registration date
Initial Grant	20/08/2023	19/08/2053	03/07/2019	20/08/2023

1.1.2 : Mining Plan Submission Criteria Details

Type of Document :	Review Of Mining Plan Under Rule 17(2) Of MCR, 2016
Reason/s For Modification :	Existing Plan Is Due To Expire On 31.03.2025, Hence Review Of Mining Plan Is Submitted For The Period 2025-26 To 2029-30.
Period for which modification is proposed :	2025-2026 to 2029-2030

1.2 : Land Ownership Details

View Land Ownership Details Excel	Land Ownership Details.xlsx
-----------------------------------	-----------------------------

1.3 : Existing Lease

Date of Execution :	Nil

Doc5-Lab Test Reports

ABC Techno Lubs" Infin Person London Chailty Monthernesiand

ABC Techno Labs India Private Limited

ABC TOWER #400, 13th Street, SIDCO Industrial Estate - North Phase, Ambettur, Channai - 600 098, Temilnadu, INDIA. Ph = +91-44-2635-7788 / 99, +91 94442 60000 / 95661 87777 Ermil: lob@abctechnolab.com / Web: www.abctechholab.com

LAN IST? 9001, 150 14001, 150 45001 & ISO 22000 Cemfied Company

Accredited by NABL vide TC-5770, NABET by FSSAI, Recognised by MoEF&CC, BIS, AFEDA, ICIFEPC, Teo Board India **GCI**, Approve

ISSUED TO:

TEST REPORT

The Ramco Cement Limited. Periyanagalur Limestone Mines, Ariyalur District.

Report Number	1.5	ABCTL/2312/0088/041-049	SCTL/2312/0088/041-049							
Sample Drawn by	- E	ABC Techno Labs India Privati	IBC Techno Labs India Private Limited							
Sample Description	10	Ambient Air Quality Monitoring -	tient Air Quality Monitoring - December 2023; Fortnight-1							
Date of Sampling	1213	01.12.2023 to 03.12.2023	1.12.2023 to 03.12.2023 Date of Completion : 09.12.2023							
Date of Receipt	1.25	05.12.2023	Report Date	E	11.01.2024					
Date of Analysis	12	06.12.2023	Page No	1.3	1 of 1					
Sampling Method	101	15 5182 Part 5 & 14								

2	Predominant Wind Direction : NE Weather : Gloudy		1	Monitored	Values durt	ng 10:00 hrs	-10:00 brs.	
1	Location	Unit	PM2.5	PMIO	50	NOx	00	Part Ph
1	Prenocal	Ð	40CFR Appendia L (Part 50)	IS-S180 Part 23	16/51112 Part 2	ES-53.82 Part 6	15 51 62 Part 11	15:5110 Part 22
	Care Zone :-							-
$\mathbf{I}(\cdot)$	Mines Office	hig/m/t.	14	30	7	9	BOL*	BDL**
2	Naul Read	og/m ¹	18	38	9	11	RDL*	BDL**
3	Loading Area	ug/m ³	13	23.	6	7	806*	BDL**
	Buffer Zone >-							
1	Kopilankodikkadu	UE/INT	10	21	8	2	BBL*	BDL++
2	Persyanagalar	ug/atiT	19	28	7	7	80L*	DDL++
3	Reddippalaiyam	ug/m ³	10	40	9	11	BDL*	BDL**
4	Puduppatalyzm	ug/m ^a	21	43	9	13	BDL*	BDL **
5	Valajanegaram	ng/m [*]	15	33	ž	9	BDS*	BD6.**
6	Kallanlurichi	ng/m*	12	26	7	7	HDL*	8DL**
11	Arabient Air Quality Status in the Vacinity	ug/m ³	15.0	31.4	7.4	9.0	BDL+	BDL**
-U	NAAQ Norms* (8/24-hty.)	ug/m ¹	60	100	90	80	2000	1.0

Legend : PM2.5-Particulate Matter (size was than 2.5 urs): PM10-Particulate Matter (size less than 10 um); 502-Solphur dioxide (as 502); NOr-Oxides nt Natrogen (as NO.); CO-Carbon monovide (as CO) and Part, Fb-Particulate Lead (as P5); other Parameter values were found to be in Below Detectable Limits and not Reported. -: DL-3.0mg/m³; **- DL-9.1mg/m³ BDL- Below Detection Limit, OL-Detection Limit.

* (NAAQ Norma-National Ambient Air Quality Norms-Newwed as per GSR 826(4) dated 16.11.2009 for Unitedrated. Residential Floral and other Aroun. -Emi af Report-

miny 0

5. Dharani Quality Manager

Robson Chinnadurai Α. Technical Manager - Las

And

Authoritised Signatory

Territa stid conditions :

Verified by

The last results into size last in the boot boot.
 The base spectra will be been boot.
 The base spectra boot boot.
 The base spe

ABC Techno Lahs" Judio Privat Landed

ABC Techno Labs India Private Limited

ABC TOWER #400, 13th Street, \$4000 industrial Estate - North Phase, Ambettur, Chennel - 600 098, Tamitnadu, INDEA, Phi : 491-44-3525-7788 / 99, -491 94442 60000 / 95661 67177 Email: lab@abctechnolab.com / Wabi www.abctechnolab.com

353

Contractor -

TELEVISION OF

BC ARC ARC ARC ARC ARC ARC ARC ARC ARC

1

(A# ISO 9001, ISO 14001, ISO 45001 & ISO 22000 Certified Company)

Accredited by NASI, vide TC-5770, NASET / QCL Approved by FSSAI, Recognised by McEPACC, DIS, APEDA, IOPEPC, Tes Board India

ISSUED TO

TEST REPORT

The Ramco Coment Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	1	ABCTL/2312/0201/041-049	BCTL/2312/0201/041-049							
Sample Drawn by	- P	ABC Techno Lahs India Privan	BC Techno Labs India Private Limited							
Sample Description	110	Amblent Air Quality Monitoring -	dent Air Quality Monitoring - December 2023; Fortnight-2							
Date of Sampling	TIS:	19,12,2023 to 21.12,2023	9.12.2023 to 21.12.2023 Date of Completion 28.12.2023							
Date of Receipt	1.4	23.12.2023	Report Date		07.01.2024					
Date of Analysis	1.20	25.12.2023	Page No		Lof1					
Sampling Method	19	IS 5182 Part 5 & 14								

	Predominant Wind Direction NNE/NE Weather - Partly Doudy		10	fonitored	Values duri	ng 10:00 turs	-10:00 hrs.	
0	Location	Unit	PM2.5	PM10	\$0i	NOu	00	Part Pb
-11	Protocal	±1	40CFS Appendis L (Part 50)	15:54)12 June 22	18.3182 Part 2	15.5102 Part 6	15:5182 Part 19	15-5182 Part 22
	Core Zone :-							
1 ,	Mines Office	ull/m3	39	34	8	9	BDL*	BDL**
2	Haul Read	14g/m ²	21	45	9	11	BDL*	BDL**
3	Loading Area	いま/ホキ	16	28	7	7	HDL*	BDL**
	Buffer Zone :-						0.0010.0	
10	Kngstanicodikiudu	. ug/m!*	12	25	8	7	800.*	BOL++
2	Penyanagalar	ug/m3	15	32	1	8	800*	BDL**
2	Réddippalayam	ug/m ⁴	21	44	9	11	BOL*	BDL**
4	Puduppalaiyam	ug/m1	23	48	10	13	BDL*	BDL**
5	Valajanagaram	ug/m ³	17	38	8	9	80L*	8DL**
6	Kallankurichi	ug/m ⁴	14	30	7	9	HD3,*	HDL-*
1	Ambient Air Quality Status in the Vicinity	ug/m ²	17,6	35.6	7.9	9.3	BDL*	BDL**
#	NAAQ Norms* (8/24-hly.)	undraft:	60	100	86.0	90	2000	10

* (NAAQ Norme-National Andrina Air Quality North-Revised as per GSR 026(R) dated 16.11.2009 for Industrial, Residential, Rarul and other Areas.

S Dharani Quality Manager

A. Robson Chinnadural Technical Manager - Lab

Authorised Signatory

Varified by

Terms and konditions :

The field works with the work server, and the server is a field to represent a field of part estimate the vertext supervises of AdL, 1.
 The field terms will be interview on the server is the server is the part of the server is the

ABC Techno Labs*

ABC Techno Labs India Private Limited

ABC TOWER #400, 13th Street, SIDCO Industrial Estate – North Phase, Amhathur, Chennai - 600 098, Tamilhadu, INC/A. Phi : +51-44-2625 7788 / 99, +51 84442 60000 / 95661 87777 Email: lab@ahctechnolab.com / Web: www.abctechnolab.com TI-SH

(An ISO . 9001; ISO : 14001; ISO . 45001 & ISO . 22000 Centled Company)

Accretited by NABL vide TC-5770, NABET / QCL Approved by FESAI, Recognized by MoEF&CC, BIS, APEDA, IC/PEPC, Teo Board India.

ISSUED TO:

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	13	ABCTL/2401/0026/001-009	BCTL/2401/0026/001-009						
Sample Drawn by	13	ABC Techno Labs India Private	C Techno Labs India Private Limited						
Sample Description	1.12	Amblent Air Quality Monitoring -	ent Air Quality Monitoring – January 2024; Fortnight-1						
Date of Sampling	1	01.01.2024 to 03.01.2024	01.01.2024 to 03.01.2024 Date of Completion 09.01.2024						
Date of Receipt	121	05.01.2024	Report Date	1.81	05.02.2024				
Date of Analysis	1	06.01.2024	Page No.	181	1 of 1				
Sampling Method	1.1	IS 5182 Part 5 & 14							

	Predominant Wind Direction : NE/NNE - Weather : Clear			Monitored	Values duri	ng 10:00 hr:	-10:00 hrs	
	Location	Unit	PM2.5	PM10	.02	NOx	CO.	Part Pb
34	Protocol	1	40CFR Appendia L (Part 90)	1553102 Pate 23	(S:5192 Part 2	15:5192 Part 6	(5:5182 Part 10	15.5192 Part 22
	Core Zone :-							
4	Mines Office	ug/m*	22	147	.9	12	BDL+	8DL**
2	Haul Road	ug/m ³	28	61	12	15	EDL*	10.**
3	Louding Aces	ug/m ^a	24	35	9	13	1001.*	BDL**
	Buffer Zoon ::-	1.000					101.0	
1	Kopilankudihkadu	.ug/mª	17	32	7	7	BDL*	BDL**
- 2	Periyanagalur	ug/cu)	19	37		- 9	BOL*	HDL**
3	Reddippilatyam	101/102	(22)	45		12	BDL*	BDL**
- (H	Puduppalaiyam	ug/m ²	125	57	11	11	BDL*	801**
5	Valaianagaram	ug/m ³	3172	35	7	8	BDL*	801**
6	8 Satlankurichi	441/m ²	20	39	7	9	BOL*	BDL**
Ť	Amblent Air Quality Status in the Vicinity	ug/ms	21.6	44.8	8.7	10.9	BDL*	801.**
11	NAAQ Norms* (8/24-hly.)	ug/m ^a	60	100	00	80	2000	1.0

Legend - PM2.5 Particulate Marter Grite less than 2.5 unit: PM10. Porticulate Marter (anni less than 10 unit): \$0, Sulphur dioxide (as 50.); NOs-Orides of Nitrogen (as NG): CD-Carbon minimode (as CO) and Part. Pb-Particulate Least (as Pb): other Parameter values wire found to be in Below Detectable Limits and not Reported *- DL: LOng/m²: ** DL: 0.1mg/m³ BDL: Below Detection Limit.

* | NAAQ Norms-National Amburnt Air Quality Norms-Revised as per 650 826(E) datest 16.11.2000 for Industrial, Residential, Rural and other Areas.

-End of Report

S. Dharani Quality Manager

3- QQL

A. Robson Chinnadurai Technical Manager - Lab

Authorised Signatory

Varified by

Terms and comtilians

• The fact that the part of the transmister of the transmister of the term period of the part when the web extending provided to the second or the part of the term of ter

ABC

ABC Techno Labs*

ABC Techno Labs India Private Limited

ABC TOWER, #400, 13th Street, SIDCO Industrial Estate - North Phate, Ambattur, Channai - 600 098, Yaminadu, INDIA. Ph : +91-44-2625 7788 / 99, +91 94442 60000 / 95661 87777 Email: lab@abctechnolab.com / Web: www.abctechnolab.com 10-570

355

ABC ABC ABC ABC ABC

ABC ABC

ARC

ABC ABC ABC ABC ABC ABC ABC

(An ISO 9001 ISO 14001, ISO 45501 J. ISO 22000 Carrillud Compony)

Accredited by NABL vide 1C-5770, NABET / QCI, Approved by FSSAI, Recognised by MoEF&CC, BIS, APEDA, 10/PEPC, Teo Board India

ISSUED TO

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	13	ABCTL/2401/0171/001-009	BCTL/2401/0171/001-009						
Sample Drawn by	11	ABC Techno Labs India Private	3C Techno Labs India Private Limited						
Sample Description	Ŧ	Ambient Air Quality Monitoring -	nt Alr Quality Mohitoring – January 2024; Fortnight-2						
Date of Sampling	1.3	15.01.2024 to 17.01.2024	5.01.2024 to 17.01.2024 Date of Completion 23.01.2024						
Date of Receipt	123	19.01.2024	Report Date	1.1	05.02.2024				
Date of Analysis	(±)	20.01.2024	Page No	1.2	1 of 1				
Sampling Method	11	S 5182 Part 5 & 14							

	Predominant Wind Direction : NNE/E Weather / Clear		Monitured Values during 10:00 hrs-10:00 hrs								
_	Location	Unit	PMZS	PM10	\$0;	NOx	CO.	Part Ph			
J.	Protocol	3	ADCER: Appendis L (Part 50)	15-3192 Part 23	(6:5):02 Fart 2	ISS182 Part 6	USIS 182 Part 19	15:5182 Part 22			
	Core Zonn I:										
1	Mines Office	ug/m ^z	25	47	ų.	-11	BDL*	1101.**			
12	Haul Road	ug/iti≊	29	56	11	14	BDL*	EBL++			
3	Loading Area	ug/m ³	31	64	9	13	BDL*	801.**			
	Huffer Zone -										
<u>(1</u>	Kopilankudtkkadu	ug/m ²	15	34	Ŧ	8	BOL*	11DL++			
2	Periyanagalur	ng/m ²	21	41	8	10	BDL*	8DL++			
3	Reddippataiyam	ug/m ^a	29	48	10	13	BDL*	BDL+*			
	Puduppalaiyam	Ng/m ³	28	52	12	15	BOL*	BDL**			
5	Valajanogaram	ng/m*	317	37	7	(9)	HOL*	SDL**			
ń	Kallankurishi	ug/m+	23	- 44	. 8	9	BDI.	BDL*			
1	Amblent Ale Quality Status in the Vicinity	Mg/m ²	23.8	47.0	9.0	11.1	BOL*	BUL			
11	NAAQ Norms* (0/24-hly.)	Ug/m ³	60	100	80	80	2000	1.0			

Legend - PM2.5 Particulan Matter (size best than 2.5 um); PME0-Particulate Matter (size less than 10 um); S0:-Solphur dinside (as 50.); NO:-Budder of Nitrogen (as NO:)) CO-Carbon monocide (as CO) and Part Po-Particulate Level (as Pb); other Parameter values were bound to be in Below Detectable Limits and out Reported. *- DL:1.0rmg/m?; **- DL:0.1mg/m? BDL-Below Correction Lamit, OL-Detection Limit.

*: NAAQ Norms-Vational Amineut Air Quality Norms-Revised as per GSR 826(E) stated 16 11-2009 for Industrial Residential Paral and other Acast.

S. Dharani Quality Manager

-End of Report-

A. Robson Chinnadural Technical Manager - Lab

Authorised Signatory

Tarms and conditions :

Vortfied by

Description of a section o

ABC Techno Lubs*

ABC Techno Labs India Private Limited

ABC TOWER 8400, 13th Street, SIDCO Industrial Estate - North Phase, Ambettur, Chennal - 600 098, Tamilhadu, INDIA, Ph.: 491-44-2525 7788 / 99, 491 94442 60000 / 95561 87777 Email: (abi@sbctechnolab.com / Web: www.abctechnolab.com)

(An ISO 9001, ISO : 14001, ISO : 45001 & ISO : 22000 Cartilled Company)

Accredited by NABL vide TC-5770, NABET / DCI, Approved by FSSAI, Recognised by MoEFRCC, BIS, AFEDA, IOPEPC, Tee Baard India.

ISSUED TO:

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	1.8	ABCTL/2402/0104/001-009	BCTL/2402/0104/001-009							
Sample Drawn by	11年	ABC Techno Labs India Private	BC Techno Labs India Private Limited							
Sample Description	*	Ambient Air Quality Monitoring -	ent Air Quality Monitoring - February 2024; Fortnight-1							
Date of Sampling	1	05.02.2024 to 07.02.2024	Date of Completion	13	13,02.2024					
Date of Receipt	- 3	09.02.2024	Report Date	14	08.03.2024					
Date of Analysis	12	10.02/2024	Page No	TH.	1 of 1					
Sampling Method	TT.	IS 5182 Part 5 & 14								

	Predominant Wind Direction : ENE/NNE Weather :: Clear			Monitored	Values duri	ng 10:00 hrs	10:00 hrs.	t
	Location	Unit	PM25	PNILO	502	NOC	60	Part Pb
ŧ	Protocol	=	40CFII Appendix L (Part 50)	15-5102 Part 22	15:5182 Part 2	15:5182 Pars 6	13:0161 Payt 10	10.0102 Part 22
	Core Zone :-							
101	Mines Office	ug/m ¹	19	(40)	÷.	0.9	BDL*	BDL**
2	Haul Road	ug/m ³	/24	:52	9	13	BDL*	80L**
3	Loading Area	ug/m ³	27	58	4	12	BDL*	BDL**
	Buffur Zonet :-			110				
1	Kopilankodilikadu	ug/m1	[集集]	28	6:	7	BDL*	8DL++
違	Periyanagalur	ug/m [§]	17	35	7	1.90	DDL*	DD1. **
3	Reddippalatyam	ug/m ³	31	48	92	13	BDL*	BDL+*
- 14	Poduppalatyan	ug/m	27	55	12	15	BDL*	BDL**
Ŧ	Valajanagarani	ug/mi	19	40	8	10	BDL+	BDL++
10	Kallankuriehr	ug/mit	19:	32%	22	B	BDL*	BDC++
	(A	10 - C						
18	Amblent Air Quality Stabia in the Vicenity	UE/m?	20.8	43.7	8.2	10.7	BDL*	DDL**
#	NAAQ Norms* (8/24-hly.)	朔/加7	60	100	80	80	2000	1.0

Legend - PM2.5-Particulate Matter (size loss than 2.5 um): PM10- Particulate Matter (size less than 10 um); 50:-Solphus dioxide (as 50-); NOn-Oxides of Nitrogen (as NO₁); CO-Euclosi interacide (as CO) and Part, Pp-Particulate Lead (as Pb); other Parameter values seem found to be in Below Detectable Lands and not Reported. *-OL:1.0mg/m²; *** DL:0.1mg/m³ BDL: Below Detection Lands, DL: Ottection Lands.

* NAAQ Norms-Nanonal Amblem Air Quality Morms Sevued as per GSR 926(k) dated 16.11.2009 for Industrial, Rendential, Rural and other Areas. -End of Report-

5. Üharani Quality Manager

A. Robson Chinnadurai Technical Manager - Lab

Authorizad Signatory

Verified by

Torms and conditions :

47 (a start visible velocities) to the forest ballput + The half report shall not be represented of fall or part where the weater start 400000, + The part has not been the next the terms the start where the been the start where the start of the terms the start of the start o

356

ABC ABC ABC

ABC ABC ABC ABC ABC ABC

ABC

ABC Techno Lubs"

ABC Techno Labs India Private Limited

ABC TOWER #400, 13th Street, SIDCO Industrial Estato - North Phase, Ambattur, Orennai - 600.098, Tamilnadu, UkDIA, Ph.: +91-44-3625 7788 / 99, +91 94447 60000 / 95661 87777 Email: lab@abctechnolab.com / Web: www.abctachnolab.com

(An ISO 9001, ISO 14001, ISO 45001 8450, 22000 Certified Company)

Accredited by NABL vide TC-5770, NABET / QCI, Approved by FSSAI, Recognised by MoEFBCC, BIS, APEDA, IDPEPC, Teo Board India

ISSUED TO

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	- 5	ABCTL/2402/0206/001-009	BCTL/2402/0206/001-009							
Sample Drawn by	132	ABC Techno Labs India Privat	BC Techno Labs India Private Limited							
Sample Description	1.1	Ambient Air Quality Monitoring -	iont Air Quality Monitoring - February 2024; Fortnight-2							
Date of Sampling	3	17.02.2024 to 19.02.2024	Date of Completion	11	24.02.2024					
Date of Receipt	1	21.02.2024	Report Date	1.1	08.03.2024					
Date of Analysis	13:	22.02.2024	Page No		1 of 1					
Sampling Method	1.	15 5182 Part 5 & 14								

1	Predominant Wind Direction - NNE/NE Weather : Thear		Monitored Values during 10:00 hrs10:00 hrs							
	Location	Unit	FM2.5	PM10	SD)	NOs	C0	Fart, Fb		
ùł.	Protocol	3	40CFR Appendix L (Twit 50)	15:5102 Part 23	855102 Part 2	15:5192 Part 6	15:5182 Part 16	15:5182 Part 22		
	Core Zone :-									
1	Mines Office	uģ/m#	24	44	8	11	BDL*	BDL		
3	Hani Rodd	ug/m ³	26	49	10	13	801.*	HDL**		
3	Loading Area	ug/m*	34	67	.9	13	BDL*	BDL**		
	Buffer Zone :-					· · · · · · · · · · · · · · · · · · ·	1			
13	Kepilanioodiideadu	ug/m ³	13	31	7	2	BDL*	BUL		
2	Periyanagalur	ug/m ¹	19	41	-18	9	5DL*	HOL**		
0	Roddippalatyam	ug/m ⁻¹	-22	54	10	13	BDL*	BDL**		
14	Pedappalatyan	wal/m ^a	29	59	12	16	BDL*	BDL**		
5	Valajanagaram	ug/m ¹	22	46	#	- 11	BDL*	TIDL **		
- 6	Kallankuricht	ug/m ³¹	21	- 44	Ű	99	BDL*	BDL++		
n a	Ambient Air Quality Status in the Victory	ug/m≥	23.8	47.2	8.9	.113	801.*	801.**		

0. NAAQ Norms* (8/24-hiy.) ug/m^a 60 100 80 2000 80 1.0

Logend: PM2.5 Particulate Matter (mee fees than 2.5 om); PM10: Particulate Matter (size fees than 10 ion); 50; Solphur dioxofe (as 50;)) NOs-Oxodes of Nitrogen (as NO;); CO-Carbon monoulde (as CO) and Part Pb-Particulate Lead (as Pb); other Parameter values were found to be in Bolow Detectable Linets and not Reported. *- DL-LOng/m³; **- DL-0.1mg/m³ BDL-Below Detection Linet; BL- Desertion Linet. * (NAAQ Norme-National Archient Ar Quality Norms Revised as per GSR #26(4) dated 16.11.2009 for Industrial Sendential Jural and other Areas.

S. Dharani Quality Manager

J- Dire

A. Robson Chinnadurai **Technical Manager - Lat**

Authonised Signatory

Verified by

Terra and conditions :

The out-secure under way to the finance terms : The new superior and both is represented in the case of the c

357

ABC Techno Labs"

Initia Private Limited

ABC Techno Labs India Private Limited

(An ISO 19001, ISO 114001, ISO 145001 & ISO 122000 Certified Company) ABC TOWER #400, 13th Streett, SIDCO Industrial Estate - North Phase, Ambattur, Chennel - 600 098, Tamilnadu, INDIA, Ph 1491-44-2625 7788 / 99, 491 94442 60000 / 95661 87727 Email: bb@abctechnolab.com / Web: www.abctechnolab.com

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District

Date of Sampling	32	01.01.2024 to 30.01.2024	Date of Completion	[IE	03.02.2024	
Date of Receipt	35	31:01:2024	Report Date	18.	05.02.2024	
Date of Analysis	1	01.02.2024	Page No	1.5	1 of 1	
Sampling Method	111	15 5182 Part 1				

Si, No.	Parumeter	Mines Madager Office
1	Retained Water, I	4.2
深	Reguired Water, I	803
3	pH	05.54
19	Total Undinsplyed Matter, ang	3407.0
5	Total Dissolved Marter, mg	74
6	Total Solids, mg	483
7	Aith, eng	-92
8	Lead (as Pb), ppm	<0.005
9	Mercury (as Hg), ppu	<0.005
10	Cadmium (as Cd), ppm	<0.005
11	Dustfall Rate, g/m²/day	0.2124
12	Dustfall Race, WT/icrs7/month	6,37

-End of Report-

S. Dharani

Quality Manager

A. Robson Chinnadura Technical Manager - Lan

addrictionality com

Terms and conditions :

• The rest is taken provide and write the latent is the rest balance or provide and or part without the support of ADCTs, + The rest threshold of a part is the second of ADCTs, + The rest threshold of a part is the second of the support of a part of a part of a part of the support of ADCTs, + The rest threshold of a part is the support of a part of a part of a part of the support of ADCTs, + The rest threshold of a part

ABC Techno Lubs* Inite Pream Limited

ABC Techno Labs India Private Limited

ABC TOWER #400, 13th Street, SIOCO industrial Estate - North Plase, Ambattur, Chemial - 600 998; Tansinado, INDIA Ph : +91-44-2625 7788 / 99, +91 94442 00000 / 95661 87777 Email: We@abctechnolab.com / Web: www.ubctechnolab.com

And the state white white state

, **6**86

3

(An ISO - 9091, ISO - 14001, ISO - 45001 & ISO - 22000 Certified Company)

According by NABL vide TC-5770, NABET / QCI, Recognized by MIEFRCC, BIS, APEDA, IGPEPC, Too Board India.

ISSUED TO

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District,

Report Number	: ABCTL/2401/0167/012
Sample Drawn by	: ABC Techno Labs India Private Limited
Sample Description	 Noise Levels Quarter I, 2024
Date of Sampling	: 16.01.2024 to 17.01.2024
Date of Receipt	± 18.01.2024
Report Date	: 05.02.2024

Page 1 of 1

		Noise Levels, dB(A)							
SL No.	Location	Day Tin	ne (D6:00-22	00 hrs.]	Night Time (22:00-06:00 hrs.)				
		Lmin.	Lmax.	Leq	Lenen.	tmax.	Leq		
1	Quarry Edge	33.5	95.9	45.9	32,8	83.5	42.1		
2	Loading Area	35.2	(:田鉄花()	(51.6))	#3:2	312,4	40.9		
3	Haul Road	33.8	388.2	48,9	:\$2.5	11239	42.6		
140	PNR Crumer	332.5	834N	45.2	313	10664	38.0		
Statutory Norm* for 8 hrs. Exposure		1		1115			85		
Buffer Zo	de t								
5	Periyanagalur	32.7	85.5	43.1	3izla	77.0	36.9		
- A	V Kaikatti	34.4	192	49.3	33.7	64.A	42.4		
17	Kattaphangjam	32.3	10.1	42.8	30,4	76.7	362		
MoEF Norms**		-		55	262		45		

Sampling & Test Method: IS: 9989-1981(Reaff: 2014)

* - ModiF&CC Norms Minustry of Environment, Focests & Clonate Cheage Anthiem Noise Norms (Leg) for Residential Arman.

Day time is ruckowed in between 6 a.m and 16 p.m. and Night time is reclosued in hetween 10 p.m. and 6 a.m.

* A warning limit value of 85 dB(A) may be set as the level below which very limite risk to unprotected nar of narring impairment, as into for an eight bour exposure.

......End of Report......

S. Dharani

Quality Manager

 A. Robson Chinnadural Technical Manager - Lab

Authorised Signatory

Verified by

Terms and datalitors -

The instruments of the two instruments and all a Constant world shall not be experiment of the unit of the operation of the entrum and the second and the entrum of t

ABC Techno Labs*

ABC Techno Labs India Private Limited

ABC TOWER, #400, 13th Street, SIO(II) industrial Estate - North Phase, Ambettur, Chennial - 600 098, Taménado, INDIA. Phi: +91-44 2625 7768 / 99, +91 94442 60000 / 95661 87777 Email: tab@iabctechnolab.com / Web: www.abctechnolab.com

VeniSO (4001, ISO 14001, ISO 45001 & ISO 22000 Comfinet Company)

Accredited by NABL vide TC-5770, NABET / QCI, Recognitual by MoEFECC, BIS, AFEDA, IDREFC, Teo Board India

ISSUED TO:

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	130	ABCTL/2401/0044/001-003							
Sample Drawn by	12	ABC Techno Labs India 5	ABC Techno Labs India Private Limited						
Sample Description	100	Surface Water Quality -Qua	face Water Quality -Quarter 1, 2024 - (In compliance with IBM Circular No. 3/92)						
Date of Sampling	12	09.01.2024	Date of Completion	125	24.01.2024				
Date of Receipt		10.01.2024	Report Date	:10	05.02.2024				
Date of Analysis	18	11.01.2024	Page No	1.2.	1.0[2				

SL No.	Parameters	15:3825 Parts	tinit	Uppus Ottai	Kallar River	Marudaiyar River	CPCB Norces*
1	pH	11	-	7,47	7,43	7,61	6,5-8.5
2	Colaur	6	Hains Units	intor.com.intoy	BDL(DLSB)	BDCCDL-SUT	10-30
1	Tomperature	9	90	36.8	26.6	27.1	1.00
进	Turbidity	10	NTU	1.2	15	1.0	1 9
5	Residual Chiorine	26	mg/I	0EL(0L.L.0)	HDL(DL:10)	#DU(06:1:0)	
6	Dissolved Oxygen	35	788/1	5.3	5.0	3.4	4.6-6.0
17	Total Suspended Solida	17	ing/l	24	29	.010.	-
8	Electrical Constactivity	244	umhos/em	580	630	790	
. 9	Total Ossolved Solids	16	mg/l	370	400	440	500-2100
10	Total Hardness (as CaCO ₃)	24	mg/1	160	179	190	:-:
-13	Calcium Hardness (as CaCO1)	24	mg/l	90	00	100	÷.
12	Magnessum Huntness (as CaCO ₄)	-21	mg/l	10/	10	90	(m)
13	Calcium (as Ca)	40	mg/l	(10)	16	100	+
14	Magneslum (as Mg)	46	mg/1	17	19	22	12
15	Sodium (an Na)	45	mg/l	39	45	286	18
16	Potasoium (as K)	45	mg/2	-3-	1	6	-
17	Chlorides (as Cl)	37	mg/l	110	119	122	356-600
18	Sulpinatas (as SDa)	24	108/1	23	- 27	72	400-1005
19	Total Alkalinity (as CaCO ₃)	23	mg/1	70	00	100	
20	BDD-3 days @ 27 %	-44	mg/1	HDL(DL/2,0)	105.000.001	SOLIDINED	0
51	COD	58	mg/1	8	11	11	
22	Iron (as fe)	53	.ma/1	0.09	0.11	0.09	0.3-5.0
23	Flucerides (as F)	50	mg/1	0.16	021	0.18	1.5
24	Nitrates (as NO ₃)	34	mg/1	0,12	0.16	0.15	20-50
25	Phosphates (as POi)	31	mg/1	<0.01	<0.01	<0.01	-

S. A312124 S. Dharani Quality Manager

Robsen Chinnadura A Technical Manager - Lab

Comp...

Authorised Signatory

Terms and conditions :

Verified by

History production of the formal second second state and the income second
The second
Alter dis

R.

ABC Techno Lubs'

ABC Techno Labs India Private Limited

ABC TOWER #400, 12th Street, SIOCO Industrial Estate - North Phase, Ambattur, Chennel - 600 098, Tamilnadu, INDIA. Phy: +91-44-2625 7788 / 99, +91 94442 60000 / 95661 87777 Email: lab@abctechnolab.com / Web: www.abctechnolab.com

2010 - 2010 - 2010 - 2010 - 2010 - 2010

ABC 485 485

(An ISO 19001, ISO 14001, ISO 45001 & ISO 72000 Cemiled Company)

Accredited by NABL vide TC-5770, NABET / QCI. Recognised by MoEP&CC, BIS, APEDA, IDPEPC, Teo Board India

ISSUED TO:

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	17	ABCTL/2401/0044/001	-003			
Sample Drawn by	1	ABC Techno Labs India P	ABC Techno Labs India Private Limited			
Sample Description	1181	Surface Water Quality - Qua	rier 1, 2024 - Hit compliance with IBM Cir-	cothr.N	0.3/92)	
Date of Sampling	12	09.01.2024	Date of Completion	10	24.01.2024	
Date of Receipt	1.2	10.01.2024	Report Date.	1.1	05.02.2024	
Date of Analysis		11.01.2024	Page No	12	2 of 2	

S. No.	Parameters	IS-1025 Parts	Unit	Uppu Ödai	Kallar Atver	Maradaiyar River	CPC8 Norms*
26	Cyanides (as CN)	-27	mg/i	<0.01	<0.01	<0.01	141
27	Phenols (in Gets011)	43	mg/S	<0.01	<0.01	<0.01	241
38	Manganese (as Mn)	59	cng/1	<0.01	<0.01	<0.01	
29	Chromium (as Erj	52	mg/1	<0.01	<0.01	<0.01	1.1
30	Copper (as Co)	42	1/1 (mg	<0.01	<0.01	<0.01	1.5
31	Selenium (as Se)	56	img/l	<0.01	<0.01	<0.01	
彩	Aluminium (au Al)	55	mg/l	<0.01	< 9.01	< 0.01) + (
33	Cadmium (as Cd).	41	mg/l	<0.01	<0.01	<0.01	
34	Actentic (as As)	37	(mg/)	< 0.01	<0.01	<0.01	0.05-0.2
35	Borna (as B)	57	mg/l	<0.01	<0.51	<0.01	2
36	Moccury (as Hg)	48	(Trigg/)	<0.01	<0.01	<0.01	- (4)
37	Lead (as Pb)	47	mg/l	<0.01	<0.01	<0.01	0.1
38	Zinc (as Zn)	49	- mg/1	<8.01	<0.01	< 9.01	1.5-15
39	Total colforms	15:1622	MPN/100 mi	41	42	50	50-5000
40	Fracal coliforms	15:1622	MPN/100 mil	22	38	32	- GO
41	E coli	19:1622	MPN/100 mt	12	20	21	1.12

*) CPCB Norms/Central Pollation Control Board Norms for Sorface Waters/(5.2295:1982 Tolerance Limits for Infand Surface Waters, for different uses --> Not included/Not available.

.....End of Report.....

ABS

HENNA

000 058

S. Dharani Quality Manager

A. Robson Chinnadurai Technical Manager - Lab

Authorised Signatory

Verified by

Terms and conditions ;

• Operative masker relation on the first second at the second and the second and the second secon

ABC Techno Labs"

India Private Limited

Mineted Station

ABC Techno Labs India Private Limited

[An ISO : 9001, ISO : 14001, ISO : 45001 & ISO : 22000 Certified Company) ABC 7DWER #400, 13th Street, SIDCO Industrial Estate - North Phase, Ambattur, Chennal - 600 098, Taminadu, INDIA. Phi : +91.44.2625 7788 / 99, +91.94442 60000 / 95661 #7777 Email: lab@abctechnolab.com / Web: www.abctechnolab.com

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	ΙΞ.	ABCTL/2401/0044/001-003				_
Sample Drawn by	1.1	ABC Techno Labs India Private L	imited			=
Sample Description	1.2	Surface Water Quality - Quarter I, 202	4 - (In compliance with IBM Circ	dar N	2. 1/92)	
Date of Sampling	苔	09.01.2024	Date of Completion	(I)	24.01.2024	
Date of Receipt	14	10.01.2024	Report Date	10	05.02.2024	
Date of Analysis	12	11.01.2024	Page No	12	1 of 1	-

S.No.	Parameters	IS: 3025 Parts	Unix	Uppo Odai	Kallar Kiver	Marudaiyar River	CPC8 Norms*
1	Od & Greate	39	mgZI	PDL(DL:(0)	BOL(DGr.0)	(0.0100)2005	
课	Pesticides (an Malathion)	ABCTL/INS/ SOP-0.19	mg/1	<0.01	<001	<0.01	- 5
3	Percent Sodium	IS:2488:P5	000	34.1	35.7	6.21	24

* CPC0 Norms Courts Pollution Courts Board Norms for Sorface Waters/6 1296 1982 Volerance Limits for Inland Sorface Waters for difference uses — Not included/Not available.

......End of Report......

S. Dharani Quality Manager

Robson Chinnadura A. Technical Manager - Lab

www.hbdmchinihi.com | abcSalictechnetabicies

Terren and constituons :

The sector and a conjugation of a conjugation and an international and an international and an international and and a sector and sector and a

ABC Techno Labs* India Privace Limited

ABC Techno Labs India Private Limited

ABC TOWER #400, 13th Street, SIDCO Industrial Estate - North Phase, Ambattur, Chennal - 600 098, Tamilnadu, INDIA. Ph : +91-44-1625 7788 / 99, +91 94442 60000 / 95661 87777 Emoil: tab@abctechnolab.com / Web: www.abctechitolati.com

(An ISO 19001, ISO 14001, ISO: 43001 & ISO 122000 Centilies Company)

Accredited by NABL vide TC-5770, NABET / QCI, Reception by MeEF&CC, BIS, APEDA, IOPEPC, Tes Board India

ISSUED TO

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines. Ariyalur District.

Report Number	128	ABCTL/2401/0044/004	-007		
Sample Drawn by	17	ABC Techno Labs India I	Private Limited		
Sample Description	13	Ground Water Quality - Qua	atter 1, 2024 - [In compliance with IBM Circ	ufar N	a 3/921
Date of Sampling	CT.	09.01.2024	Date of Completion	1-1	24.01.2024
Date of Receipt	1.7	10.01.2024	Report Date	1.2	05.02 2024
Date of Analysis	E.	11.01.2024	Page No	14	Torg

SL No.	Parametors	15:302 5 Parts	(Dhie)	Boreweil, PNR Mines	Rocewell, Pertya- r-agaiur	Reddap- palaceam	Bonewall Kallan- kurista	IS:10500* Norma
1	pti	11	+	3.71	7.68	N75	7.50	65-85
2:	Colour	. ¥ 1	Hann Units	目立に(なし主主)	001.0120	SUIJ0LBUS	upt musor	5/15*
3	Temperature	.4	- °C	27,1	17.0	22:3	27.0	-
(#E	Turbidity	10	NTU	- 14	0,9	1.01.	0.7	1/5
5	Residual Chlorine	26	mg/T	HDL(OL:10)	0.011063.00	100.(DL-1.0)	800/86-10)	0.2/1.0
《梅	Dissolved Oxygen	38	mad	43	47	45	4.5	
7	Total Superided Solids	17	mg/i	(-12)	21	34	22	12
÷B	Electrical Conductivity	14	umbos/cm	760	730	#25	680	+
9	Total Dissolved Solida	16	mg/1	400	460	\$20	430	500/2008
10	Total Hardness (as CaCO ₂)	23	titg/1	230	239	260	220	200/680
11	Calcium Hardness (as CaCOs)	23	mg/f	120	120	140	find.	and their
12	Magnesium Hardwess (as CaCO ₂)	23	mg/l	110	100	120	1/10	
13	Calcium (as Ca)	40	mg/1	48.	40	56)	48	75/200
144	Magnesium (ns Mg)	46	rtt#/1	26	24	94	24	30/100
15	Sodium (as Na)	45	018/1	42	10	47	14	307100
16	Potassium (as K)	45	me/L	3.	2	4		
17	Chilorides (as Cl)	32	mg/l	130	132	1.00	114	250 (1000)
18	Sulphates (as SO4)	24	mg/l	44	41	49	36.	200.000
19	Total Alicemety (as CaCOs)	23	mar/l.	110	110	120	100	200 (400
20	6003-3 days an 22 -C	44	mg/1	BULIDIDE	ROLDUZO:	BBKDLZ-01	-001	2007000
:21	COD	- 58	rreg/1		1	6	1	
22	from (as Fe)	- 53	dig/l	0.12	0.10	0.10	0.08	10.2
23	Fluoridea (an F)	60	(Nam)	0.25	0.17	11.71	D.L.	10/25
24	Witrates (as NO ₂)	34	me/l	0.29	0.23	0.20	0.20	45
25	Phosphutes (as PO4)	31	mg/l	<0.01	<0.01	<0.01	0101	. 49

5/2/24 S. Dharani Quality Manager

Robson Chinnadurai

17

Contd ...

A. Technical Manager - Lab

Authorised Signatory

Turns and conditions."

Verified by

An other and compared with the terms frequent. • The terms regard and and be represented as have not written for written for which and and the representence of the terms of t

Taxable Contraction of the second sec

ALC: NOT A

AREA ARE SURE SURE ARE

1212

ABC ABC ABC ARC ARC ABC ABC ABC ABC

ABC Techno Lubs"

ABC Techno Labs India Private Limited

ABC TOWER 6400, 13th Street, SIDCO industrial Estate - North Phase, Ambattur, Chennik - 600 098; Tamilnadu, WDIA, Phi: +91-44,2625 7788 / 99, +91 94442 60000 / 95651 87777 Email: Tab@abctecturclab.com / Web: www.abctochnolab.com

AH 50 9001, ISO 14601, ISO 43061 & ISO 22000 Cemilled Company)

Accredited by MABL ride TC-5770, NASET / DCL Recognitized by MoEFSCC, BIS, APEDA, (DPEPC, Teo Board India)

ISSUED TO

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	14	ABCTL/2401/0044/004	-007	_		
Sample Drawn by		ABC Techno Labs India P	BC Techno Labs India Private Limited			
Sample Description	141	Ground Water Quality - Qua	ner 1, 2024 - (in compliance with IBM Car	cular N	0.3/92]	
Date of Sampling	181	09.01.2024	Date of Completion	100	24.01.2024	
Date of Receipt	2	10.01.2024	Report Date	1	05.02.2024	
Date of Analysis	1.1	11.01.2024	Page No	11	2012	
	the second se					

si No	Parameters	IS:3025 Parts	Unit	Borswell, PNR Miner	Borewell, Pertys-regular	Hurowill, Baddig- pelstyam	Sorpwell Kallen hurichi	US-16500* Norms
26	Cyanides (as GN)	27	(Ngm)	1056(36)0(92)	HUL(0L002)	BDLIDL0001	WHA(DG1042)	0.05
- 27	Phenesis (as CaHpOH)	43	mg/l	HDL/DS.0.0001	RIN, COLORIDA	TOTAL BURG	1010200-010001	8.801/0.002
18	Manganese (#2 Mis)	非 線合	mg/)	<0.01	<0.01	<0.01	< 0.01	0.1/0.3
19	Chromium (as Cr)	52	mg/1	<0.01	<0.01	< 0.01	< 0.01	0.05
310	Copper (as Cu)	42	mg/1	<0.01	<0.01	<0.01	<0.01	0.0571.5
-241	Selenium (as Se)	56	106/1	< 0.01	< 0.01	<0.01	<0.01	0.01
32	Aluminium (as Al)	95	mg/L	< 0.01	<0.01	<0.01	<0.01	0.03/0.2
33	Cadmium (as Cd)	41	mg/1	<0.01	<0.01	<0.01	<0.01	0.003
-34	Arsenic (as As)	37	m#/1	<0.01	<0.01	<0.01	<0.01	BIDI/DUIE
35	Boron (as B)	57	mg/l	<0.01	<0.01	<0.01	<0.01	0.5/1.0
36	Mercory (as Hg)	40	mg/l	<2.001	<0.001	<0.001	<0.001	0.001
1971	Lined (as Ph)	47	maj/1	<0.01	<0.01	<0.01	<0.01	0.01
38.	Zinc (as Zn)	49	mg/l	<0.01	< 0.01	<0.01	<0.01	5/19
39	Total coliforms	15:1622	54P5/100 ml	<2	<2	<2	<2	Absent
40	Fescal coliforms	(\$ 1522	14PN/100 ml	<3	<2	<2	<2	Alivert
41	E-coli	15:1622	MPN/100 ml	<2	<2	<2	22	Absent

* 15-10500-2012-Demining Water Standards, # : Beguirement/Percinalitie Limit in the absence of alternate source. Note: <2 can be taken as Absent

.....End of Report.....

S. Dharani

S. Dharani Quality Manager

Microbiology

A. Robson Chinnadurai

Technical Manager - Lab

Authorised Signatory

Votified by

Dennis and constituens :

• The hast varied refers only to be been around . • The best report and references and of the varied reference provide the second reference of the best provided of the best provided by the second reference of the best provided by the best p

ABC Techno Labs"

Issilia Prinate Lonisted

alam No. 4 mercer weeking

ABC Techno Labs India Private Limited

(An ISO : 5001, ISO : 14001, ISO : 45001 & ISO : 22000 Certified Company) ABC TOWER #400, 13th Street, SIDCO Industrial Estate - North Phase. Ambattur, Chennai - 600 098, Tamilnadu, INDIA. Ph + +91-44-2625 7788 / 99, +91 94442 60000 / 95661 87777 Email: lab@abstechnolab.com / Web: www.abstechnolab.com

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines. Ariyalur District

Report Number	24	ABCTL/2401/0044/004-007				
Sample Drawn by	1.5	ABC Techno Labs India Private Limited		_		
Sample Description	12	Ground Water Quality - Quarter I, 2024 - (In c	emphance with IBM Circl	ifar Ni	1.3/92)	
Date of Sampling	128	09.01.2024	Date of Completion	1141	24.01.2024	
Date of Receipt	禄	10.01.2024	Report Date	141	05.02.2024	_
Date of Analysis	1.5	11.01.2024	Page No.	4	1 of 1	

SL No.	Parameters	IS:3025 Parta	Unit	Buruwell, Phil Mines	Barswell, Pertyanagatar	Rornwell, Reddkp palaijam	Berrewoll Kallato- hurnebi	15:10500* Norms
1	Off & Greater	39	mm;/1	#DL(DL.LO)	800(D()10)	BDL(0U1.0)	800(01-10)	
2	Pesticides (as Malathina)	ABCTL/INS /502-019	mg/i	<0.01	<0.01	<0.01	<0.01	Abs./0.001
3	Percent Sodium	IS:2488:P5	- 54	28.3	27.6	22.8	24.55	

*13 10500 2012 Omning Water Standards: # : Requirement/Permissible Limit in the ubsence of abernate searces. Note: <2 can be taken as Abaimt.

.....End of Report

S. Dharani Quality Manager

A. Robson Chinnadural Technical Manager - Len A: Robson Chinnadura

Terms and conditions.:

• The last value vehicums (if the down taxed). • The last specific balance is reported to the reflect of the other sectors in the last specific balance is a first specific balance in the last specific balance is a first spe

ABC Techno Lubs"

Initia Private Limited

-144

ABC Techno Labs India Private Limited

 IAn ISO : 9001, ISO : 14001, ISO : 45001 & ISO : 22000 Cartified Conspany)
 ABC TOWER I4400, 13th Street, SIOCO Industrial Estate - North Phase, Ambattur, Chennal - 600 098, Taminadu, IND/A.
 PN : 491-44-2625 7788 / 99, 491 94442 50000 / 956E1 87777 Email: lab@abctechnolab.com / Web: www.abctechnolab.com

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	11	ABCTL/2401/0044/008
Sample Drawn by	3	ABC Techno Labs India Private Limited
Sample Description	1.A. 1.#	Ground Water Levels - Quarter I, 2024
Date of Sampling	1	09.01.2024
Date of Receipt	1.2	10.01.2024
Report Date	2	05.02.2024

Page 1 of 1

SL			Water Level Monitored at (bgt*)							
No.	Description	Sorewell, Periyanagalur	Horewell, PNH Mine Area	Bocewell, Kattupirangiyem						
Ť.	Monitoring Well Code	.GW1	QW2	GW3						
Ū,	Well Deptham	65	90	70						
1	Quarter 1/2023 (08.02.2023)	93	14.8	7,9						
22	Quarter 11/2023 (09.86.2023)	510.2	163	9.2						
3	Quarter 10/3023 (18:08:2023)	11.9	17:4	9,8						
ÿ.	Quarter W/2023 (06.11.2023)	9,4	15.3	7.7						
5	Quarter 1/2024 (09.01.2024)	7.9	17.8	6.4						

* digl : below ground level.

.....End of Report.....

S. Dharani

S. Dharani Quality Manager

Robson Chinnadura Α.

Technical Manager - Lab

www.absteetingtet.com | abs@sbitechentell.com

The last involvement with the derive entrol
 The test input state of the termination of the termination of the entrol termination of the termination of the entrol termination of the termination of termination of the termination of terminatis of termination of terminatis of termination of termination of ter

ABC Techno Lubs*

ABC Techno Labs India Private Limited

ABC TOWER #400, 13th Street, StDCO industrial Estate - North Phase, Ambattur, Chennal - 600 098, Temilnadu, INOIA. Ph : =91-44-2625 7288 / 99, +91-94442 62000 / 95661 87777 Email: lab@labcrechnolab.com / Web: www.abctechnolab.com

Mn ISO 9001, ISO : 14001, ISO : 45001 & ISO : 22000 Cermined Company/

Accredited by NABL vide TC-5770, NABET / DCI, Approved by PSSAI, Recognized by MeEF&CC, BIS, APEDA, IOPEPC, Teo Board India.

ISSUED TO-

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

47	Custom	er Provided Deta	ils			
Sample Name	Mine Pit Water/Discharge	Customer Re	£	As per PO		
Seal if Any	NII	Marks on Sample		NI		
	1.7	b Provided Detai	ls			
Report Number	ABCTL/2401/0035/010	Date of Receipt	13.01.2024	Analysis Commenced	15.01.2024	
Analysis Completed	19,01,2024	Sample Condition	Good	Sample Qty.	2 Liters	
Report Date	05.02.2024	Sample Drawn by	Laboratory	Date of Sampling	12:01:2024	
Location of Sampling	ETP	Sampling Method	15:3025 - Par	t 1& ABCTL/SOP/MB/001		

SL No.	Test Parameters	Test Procedure	Unit	Results	TNPCB Norms*
1	pH at 25 °C	IS:3025 Part 11-1983 (Reaff:2017)		7.69	6540
2	Total Suspended Solids	IS:3025 Part 17-1984 (Reaff: 2021)	mg/l	27	30
-3	Total Dissolved Solids	IS:3025 Part-16-1984 (Reaff: 2017)	mg/l	410	2100
- 4	Chlorides (as Cl)	IS:3025 Part-32-1968 (Reaff: 2019)	mg/l	118	1000
5	Sulphates (as SD4)	IS:3025 Part-24-1986 (Reaff: 2019)	mg/l	28	1000
6	BOD-3 days @ 27 °C	IS:3025 Part 44-1993 (Reaff: 2019)	mg/l	BOL(<2)	20
7	COD	IS:3025 Part-58-2006 (Reaff: 2017)	mg/l	2	250
8	Oil & Grease	IS:3025 Part-39-1991 (Reaff: 2003)	mg/I	BDL(<4)	10
9	Iron (as Fe)	1S:3025 Part-53-2003 (Reaff: 2009)	mg/I	0.09	0.3-5.0
10	Fluorides (as F)	IS:3025 Part-60-2008 (Reaff: 2013)	mg/l	0.14	2.0

*: TNPCB Norms-Tamil Nadu Pollution Control Board Norms stipulated for discharge of treated effluent into onland for irrigation. BDL- Below Detection Limit, DL- Detection Limit.

.....End of Report.....

s total

S. Dharani Quality Manager

A. Robson Chinnadurai Technical Manager - Lati

Authorised Signatory

Verified by

Tarres and conditions :

•The last relate relate styles the determinant of the control shall not be reported and in the sector of the vertex of a last of the control state with the sector of a last of the control state of t

ABC

5

ABC Techno Labs* Indu Driv= Lionusi

ABC Techno Labs India Private Limited

ABC TOWER #400, 13th Street, SIDCO Industrial Estate - North Phase, Ambattur, Chennal - 600 098, Tamilnadu, INDIA. Ph: +21-44-1615 7788 / 99, +91 94442 60000 / 95661 87777 Email: lab@abctechnolab.com / Web: www.abctechnolab.com

E

ISSUED TO:

Report Number	13.	ABCTL/2401/0044/009	ABCTL/2401/0044/009-010				
Sample Drawn by	1.4	ABC Techno Labs India P	ABC Techno Labs India Private Limited				
Sample Description	122	Soil Quality - Quarter 1, 2024	off Quality - Quarter L2024 - []n compliance with IBM Circular No. 3/92]				
Date of Sampling	-1	09.01.2024	Date of Completion	1111	24.01.2024		
Date of Receipt	1.5	10.01.2024	Report Date	1.00	05.02.2024		
Date of Analysis	ΙQ.	11.01.2024	Page No	T.	1 al'1		

and the second sec	Number	1.4	ABCTL/240	1/0044/009-010					
Sample	Drawn by	131	ABCTechno	Labs India Private Limited		_	_		
Sample	Description	24	Soil Quality -	Quarter 1 2024 - [10 comoliance	with HSM Cleanly	r No. 179	2)	_	
Date of	Sampling	-3	09.01.2024		Date of Cornel	etion	i GE	23.01/202	4
Date of	Receipt	112	10.01.2024		Report Date		100	05.02.202	4
Date of	Anulysis	RY.	11.01.2024		Page No	_	12	1 al 1	
CI No.	0.	Same		BOLD (ALL ALLSA)	46365	Green	lelt,	1022 601010	Dectrable
30.140	Fa	ante	ers	Protocol (15:)	Anna	PNR OF	fice	OR Drimb	Range*
4	pH @29/C		2720-Part-26	time to the second	7.68		7.61	5.5-9.0	
-4	2 Electrical Conductivity		14757	mmbos/em	1.04	1	2,78	0.2-0.5	
- 6-	Natural Moisture Content		aotent:	2720-Part+2	-30)	1117	8	9.6	<u> </u>
- 19	Organic Carbon		2720-Part-12	30	0.95		0.61	>9.75	
- 22	Nitrogen			14684	- 911	0.010	1	8.807	0,01-0.02
7	Protocolorus Potocolorus (m	Mi -		PAO Chapter 3	- 10	0.005		0,003	0.002-0.004
	Sortison (as N	<u>eu</u>		FAO Chapter 3	200	0,012		0.009	>0.01
	Calcium (an D	17. 17.		FAO Chapter 3	ppm	-110		140	
10	Magnesium fa	n Meil		Eag Chapter 3	ppm .	-70	-	- 90	-
11	Chlorides (on)	CDU		ABCTUROPOLICE Income database database database	ppm	210	-	ou	
12	Sulphates (in	50.1		2720-Part 22	artici .	+30		2.10	
13	Cation Exchan	ge Co	nacity	2720 Part-24	meg/100 #	73.1	-	2012	10.30
14	Hall Density			PAO Chapter 3	eler-	1.15	-	1.375	10.00
15	Available Was	er Sto	rage Capacity	AUCTL/1007/1/22 Incentional 2011 2021		23.4	=3	196	
	Available water storage capacity		Late	CANADA STRATEGY AND STRATEGY AN		Walt	_		1170.0

.....End of Report.....

S. Dharani Quality Manager

Vertfield by

Terms and contribute 1

a The balance of a value of the fact that is a second allocated of regardless of a fact or any without the value of the fact of the balance of the fact of the balance of b

Authonised Signatory

ABC Techno Labs"

India Private Limited

Marth Fields

ABC Techno Labs India Private Limited

(An ISO 19001, ISO 114001, ISO 145001 & ISO 122000 Certified Company) ABC TOWER #400, 13th Street, SIDCO Industrial Estate - North Phase, Ambattur, Chennai - 600 099, Tamilnadu, INDIA. Ph 1491-44 2605 7788 / 99, 1491 94442 60000 / 95661 87777 Email: Jab@abctechnolab.com / Web: www.abctechnolab.com

TEST REPORT

The Ramco Cement Limited, Periyanagalur Limestone Mines, Ariyalur District.

Report Number	120	ABCTL/2403/0044/009-010				
Sample Drawn by	1	ABC Techno Labs India Private Limited				
Sample Description	12	500 Quality - Quarter L 2024 - (In compliance with IBM Circular No. 3/92)				
Date of Sampling	12	09.01.2024	Datir of Completio	1). E	24.01.2024	Ţ
Date of Receipt		10.01.2024	Report Date	1	05.02.2024	
Date of Analysis	1	11 01 2024	Page No	14	1 of 1	

S. No.	Parameters	Protocol (IS:)	Unit	Green Belt, PNR Office	OB Dump	Destrable Range*
1	Grain Size Distribution : 1. Sand	2720-Part-4	146	12.7	21,9	1.191
	Sitt	2720-Patt-4		60.9	63.4	- N
1	Clag	2720-Part-4	196	3.4	42	14
4	Textural Close	2720-Part-4		Sitty toam	Silty Inam	Loam.
3	Field Capacity	14765	- 36	21.7	20.5	
- 6	Willing Coefficient	14765	.56	0.4	0.0	>0.4

* Destruble Range for High Production Soll.

S Agia 24 S Dharani Quality Manager

1. QAL

 A. Robson Chinnadural Technical Manager - Lan

facets and conditions

The fact results on the owner of the target based.
 The fact result of all the results of the owner of the case of the target based on the part of the section approach of 240011.
 The fact result of the result of the case of the case of the case of the case of the target based on the part of the case of the target based of the case of the case of the case of the target based of the case of the target based on the target based of target based of the target based of target based of target based of target based of the target based of the target based of target based of the target based of target based

REPORT SUBMITTED By

Dr. T. Subramani, Professor and Head Mr. D. Edwin David Raj, Assistant Professor Dr. E. Kumar, Teaching Fellow

DEPARTMENT OF MINING ENGINEERING COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY, CHENNAI 600025

October 2023

REPORT SUBMITTED By

Dr. T. Subramani, Professor and Head Mr. D. Edwin David Raj, Assistant Professor Dr. E. Kumar, Teaching Fellow

DEPARTMENT OF MINING ENGINEERING COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY, CHENNAI 600025

October 2023

CERTIFICATION

Certified that this project report titled "Design of safety barrier at Amalgamated Periyanagalur Limestone Mines of M/s. Ramco Cements Limited for an extent of Amalgamated Periyanagalur Limestone Mine over an extent of 53.32.0 Hectares In Periyanagalur Village, Ariyalur Taluk & District, Tamilnadu" is the bonafide work of Department of Mining Engineering, Anna University carried out under my supervision. I hereby affirm, to the best of knowledge and belief, based on the inspections, observations, field testing and upon the model developed, that this Design of safety barrier at Amalgamated Periyanagalur Limestone Mines of M/s. Ramco Cements Limited for an extent of Amalgamated Periyanagalur Limestone Mine over an extent of 53.32.0 Hectares In Periyanagalur Village, Ariyalur Taluk & District, Tamilnadu is completed and operable. The project was completed in accordance with the statutory requirements of act, regulations made thereunder and other provisions as recommended by the regulatory body (DGMS).

(E. Kumar)

(T. Subramani)

Co-Consultant

Co-Consultant

(D. Edwin David Raj) Consultant

SI. NO		NAME OF THE CONTENT	PAGE NO
1.0	INTF	RODUCTION	1
2.0	SCO	PE AND OBJECTIVES	2
3.0	COM	IPANY DETAILS	3
	3.1	Mine Location	4
	3.2	General Geology	10
	3.3	Local Geology	13
		3.3.1 Climatic Conditions	13
		3.3.2 Rainfall	14
	3.4	Method of Mining	14
	3.5	Deployed Mining Equipment	15
4.0	STA	TUTORY PROVISIONS FOR SAFETY BARRIER	15
	4.1	General restrictions in respect of quarrying operations	15
5.0	ROA	DWAYS AND HABITANTS	18
6.0	CON	ICLUSIONS	18

LIST OF FIGURES

FIGURE	NAME OF THE FIGURE	PAGE
NO		NO
1	Lease boundary of Amalgamated Periyanagalur Mine	4
2	Overview of Amalgamated Periyanagalur Mine	5
3	Measurement of SH-139 road width of 7m in the south side	5
4	Measurement of road width including shoulder and drainage of SH	5
	139 road	
5	Safety distance of 7.5m is maintained in the Northwest side of the	6
	proposed mine with adjacent working mine	
6	Safety distance of 7.5m is maintained in the North side of the	6
	proposed mine in common boundary with adjacent working mine	
7	Boundary pillar No. 49 is established in the common boundary with	6
	adjacent working mine	
8	Safety bund of 2.5m height is maintained in the South side of the	7
	proposed mine from the SH-139 road in the lease boundary area	
9	Measurement of boundary pillar at the distance of 7m in the	7
	Southeast side of the proposed mine from the SH-139 roadway	
10	Trench is established in the South and East side of the proposed mine	8
	which could damp the dynamic wave propagation from the mining	
	operations	

11	Demarcation of safety barrier distance at 50m in the East side of the	8
	proposed mine from the SH-139 roadway	
12	Measurement of safety barrier distance in the West side of the	9
	proposed mine	
13	Wire fencing is established in the South side of the proposed mine	9
	from the SH-139 roadway at the distance of 5m from the lease	
	boundary pillar (No.33)	
14	Electrical sub-station is installed in the West side of the proposed	10
	mine	
15	Measurement of wire fencing distance from the lease boundary	10
	pillar	
16	Surface plan of Amalgamated Periyanagalur Limestone Mines	11
17	Method of working	14

LIST OF TABLES

TABLE	NAME OF THE TADLE			
NO	NAME OF THE TABLE	NO		
1.0	The stratigraphic succession for the cretaceous basin of Tiruchirapalli	12		
2.0	Average Thickness of the lithounits	13		
3.0.	List of earth-moving equipment in Periyanagalur Limestone mine	15		

1.0 INTRODUCTION

The mining industry has long been recognized as an essential contributor to economic growth and development, providing valuable resources critical to various sectors. Amidst its undeniable importance, it is equally essential to acknowledge the inherent risks and safety concerns that accompany mining operations. Ensuring the safety of both mining personnel and the surrounding community is paramount, and it necessitates meticulous planning, design, and implementation of safety measures. Amalgamated Periyanagalur Limestone Mines, situated in proximity to State Highway 139 and village roads, is emblematic of the industry's safety challenges.

Safety barriers are a fundamental component of mitigating hazards associated with mining activities. They serve as a protective shield, demarcating the boundaries of mining operations and restricting unauthorized access. Beyond merely delineating areas of potential danger, safety barriers are essential for safeguarding against accidents, falls, and unintended entry into high-risk zones. In the context of Amalgamated Periyanagalur Limestone Mines, where Heavy Earth Moving Machinery (HEMM) operates alongside critical transportation routes, a meticulously designed safety barrier holds the key to averting catastrophic incidents and ensuring the well-being of all stakeholders. The determination of a suitable safety distance from the mining site to the adjacent State Highway 139 is equally pivotal. This distance encompasses a zone of safety that acts as a buffer, shielding the highway from potential hazards emanating from mining operations. It is not merely a numerical value but rather a critical parameter that encompasses geological considerations, safety measures, and regulatory compliance. An accurate assessment of this safety distance is imperative to prevent accidents, road damage, and disruptions to traffic flow.

The management of **M/s. Ramco Cements, Ariyalur** has requested the Department of Mining Engineering, Anna University, Chennai to carryout scientific study on Design of safety barrier at Amalgamated Periyanagalur Limestone Mines of M/s. Ramco Cements Limited, Ariyalur District, Tamil Nadu.

The scope of this work is multifaceted and comprehensive, encompassing a range of critical aspects related to the design of safety measures for Amalgamated Periyanagalur Limestone Mines,

specifically concerning its proximity to State Highway 139. The primary objectives include conducting site investigations to assess geological conditions, analyzing the mining methodology and proposed production rates, and evaluating the level of mechanization, including the types of Heavy Earth Moving Machinery (HEMM) employed. Furthermore, this study will scrutinize the condition of village roads and State Highway 139 in the vicinity of the mining site. It aims to determine the appropriate safety measures and design parameters for a safety barrier that will ensure the protection of both roadways and the environment. An integral part of the scope involves calculating the requisite safety barrier distance from State Highway 139, employing a method that takes into account geological factors and safety measures.

2.0 SCOPE AND OBJECTIVES

Based on the guidelines of regulations of MMR, DGMS technical procedure, the following scope and objectives for the proposed scientific study adopted in order to design the safety barrier. The main focuses of the study are:

- To enhance safety for mining personnel, nearby habitants, and commuters on State Highway 139.
- To prevent unauthorized access to hazardous mining areas and reduce the risk of accidents, falls, and entry into high-risk zones.
- To ensure regulatory compliance with all relevant safety and environmental standards and statutory provisions.
- To safeguard the integrity of nearby village roads and State Highway 139 from potential mining-related hazards.
- To design a structurally stable safety barrier that can withstand various geological conditions.
- To calculate the optimal safety barrier distance, considering geological factors, safety measures, and regulatory requirements.

- To provide cost estimates for the implementation of the safety barrier and associated safety enhancements.
- To present recommendations for the safe and efficient operation of Amalgamated Periyanagalur Limestone Mines while prioritizing the welfare of all stakeholders.

3.0 COMPANY DETAILS

The Ramco Cements Limited (formerly Madras Cements Ltd) is the flagship company of the Ramco Group, a business group based in Chennai, South India. M/s. The Ramco Cements Limited (RCL) is one of the reputed Cement Companies in India. The cement production of RCL is about 16.50 million tons per annum (MTPA) from their cement plants in South India

The Ramco Cements Limited (RCL)is producing Ordinary Portland Cement (OPC), Portland Pozzolana Cement (PPC) and Slag Cement (PSC). The cement produced by RCL is marketed in the brand name of 'RAMCO'. The brand name RAMCO SUPER GRADE is very popular PPC and RAMCO SUPER STEEL is the slag cement brand. The market centres are mainly in Tamil Nadu, Andhra Pradesh, Kerala, Karnataka, Odisha and West Bengal States. RCL, which has always been striving for Total Quality, possesses International Certificate ISO:9001, ISO:14001, ISO:18001and IS/ISO:50001. The company has achieved various awards for 'Best Performance' in the Cement Industry and also Green Rating Project Awards 4 Leaves from Centre for Science and Environment for the year 2005.

The Ramco Cements Limited is managed by a Board of Directors comprising of eminent personalities as its members. Under the dynamic leadership of Late Shri. P. R. Ramasubrahmaneya Rajha, the company has grown into a massive organization. Shri. P. R. Venketrama Raja is the Chairman & Managing Director of the Board. Shri. A.V. Dharmakrishnan, Chief Executive Officer (CEO) is heading the Cement Division. RCL has the well laid down Safety, Health and Environmental Policy approved by its Board of Directors. Each Unit of RCL is having the Unit Head under whom the Environmental Management Plan (EMP) Cell and Corporate Social Responsibility (CSR) Committee are functioning. The Units are having their Integrated Management System (IMS) Policy.

3.1 MINE LOCATION

Amalgamated Periyanagalur Mine of M/s. The Ramco Cements Limited is located in Periyanagalur Village, Ariyalur Taluk & District, Tamilnadu for an extent of 35.96.0Ha under the G.0.(3D)No2. & 13.1.03 & G.0 (Ms) No.77 & 26.07.2018 and 17.36.0.0Ha under the G.0.(Ms) No. 153 & 23.12.2016. The latitude and longitude of the mine are lying between 11°07'30.3" N and 79°08'46.1" E to 11°07'29.4" N to 79°08'44.9" E. A state Highway No.139 running Ariyalur - Muttuvancheri situated on the southern side of the mining lease Area. Amalgamated Periyanagalur limestone mine is located 9 km from District Head Quarter Ariyalur by road and the mine falls in Survey of India (Restricted) Topo sheet No 58 M/4. Figure 1 and 2 shows the lease boundary and overview of Periyanagalur Limestone Mine. Figure 3-15 shows the field investigations of the proposed mine.

Figure 1. Lease boundary of Amalgamated Periyanagalur Mine

Figure 2. Overview of Amalgamated Periyanagalur Mine

Figure 3.Measurement of SH-139 road width of 7m in the south side

Figure 4. Measurement of road width including shoulder and drainage of SH 139 road

Figure 5. Safety distance of 7.5m is maintained in the Northwest side of the proposed mine with adjacent working mine

Figure 6. Safety distance of 7.5m is maintained in the North side of the proposed mine in common boundary with adjacent working mine

Figure 7. Boundary pillar No. 49 is established in the common boundary with adjacent working mine

Figure 8. Safety bund of 2.5m height is maintained in the South side of the proposed mine from the SH-139 road in the lease boundary area

Figure 9. Measurement of boundary pillar at the distance of 7m in the Southeast side of the proposed mine from the SH-139 roadway

Figure 10. Trench is established in the South and East side of the proposed mine which could damp the dynamic wave propagation from the mining operations

Figure 11. Demarcation of safety barrier distance at 50m in the East side of the proposed mine from the SH-139 roadway

Figure 12. Measurement of safety barrier distance in the West side of the proposed mine

Figure 13. Wire fencing is established in the South side of the proposed mine from the SH-139 roadway at the distance of 5m from the lease boundary pillar (No.33)

Figure 14. Electrical sub-station is installed in the West side of the proposed mine

Figure 15. Measurement of wire fencing distance from the lease boundary pillar

3.2 GENERAL GEOLOGY

The limestone deposit of the study area forms a part of Kallankurichi limestone formations of Middle Ariyalur stage of Cretaceous beds in South India. In the Cauvery basin carbonate rock form a sizable part of the stratigraphic column from the Lower Cretaceous to Recent. These deposits are geologically called the Maestrichian Limestones. This limestone bed is sandwiched between two sandstone/Marl beds. It can be traced continuously for more than 9km in the North

- South direction starting from Srinivasapuram inthe north through Kairulabad , Ameenabad , Periyanagalur , Hasthinapuram , Kattupiringium Pudupaalyam, Nerunchikorai , Vilipiringium, and further South up to Idaiyathankudi on the banks of Marudaiyar river. Limestone of Cretaceous and early Tertiary are also exposed in the three principal outcrop areas viz. Trichirapalli, Virudhachalam, and Pondicherry along the western margin of the basin. The western margin of these sediments have NE- SW trend. The formation in the east trends NE-SW in the north and changes to NW-SE in the Southern part. The dip direction also changes accordingly. Limestone is exposed on the surface in the nearby TANCEM mines of Kallankurichi and Dalmia Mines of Periaynagalur. Limestone is yellowish brown in colour with prominent and well preserved shells. From the core drilling it is found that top red soil thickness ranges between 1.5 to 2 m, followed by alternate bands of Sandstone / Marl and limestone. Limestone thickness is 7 to 9 m with various grades. The strike direction of the formation is limestone deposit is NNE-SSW & NNW- SSE and dips towards south east with dip angle varying from 3 to 5°. Local variation in dip amount and direction. Figure 16 shows Surface plan of Amalgamated Periyanagalur Limestone Mines.

Figure 16. Surface plan of Amalgamated Periyanagalur Limestone Mines

The stratigraphic succession for the cretaceous basin of Tiruchirapalli is given below table.

Age	Group	Formation	Litho Stratigraphy
Miopliocene		Cuddalore	Ferruginous sand stone laterite and clay
	U	Inconformity	
		Niniyur	Predominantly limestone with sandstone and marl parting
Palaeocene	Ariyalur	Kallamedu	White sandstone and Fossilliferous Limestone
		Kallankurichi	calcareous shale marl and sandstone
			Unconformity
Upper Cretaceous		Sillakudi	Uppermember-sandstone dominant Lower member - limestone / calc. Sandstone dominant
	U	Inconformity	
Upper Cretaceous	Tiruchirapalli	Anaipadi	Upper-Standstone Lower-Shale
		Kulakkantham	
	U	Inconformity	
Upper Cretaceous	Uttattur	Karai Maruvattur	Coral limestone, Shaly limestone, sandstone & marl
	U	Inconformity	
Upper Jurassic to Lower Cretaceous	Upper Gondwana	Thappai	Brownish, micaceous & silty ferrugenous sandstone
	U	Inconformity	
Archaean		Crystalline	Charnockite & Gneisses

Table 1. The stratigraphic succession for the cretaceous basin of Tiruchirapalli

3.3 LOCAL GEOLOGY

The general trend of the limestone deposit in this study area is N-S direction, with dipping Easterly with 3 to 5°. The deposit covers about 630 m in strike length and has a width of 560m. The limestone is Brown to Yellow, reddish brown medium grained and well preserved shells of Gryphea, Exogyra, Alectronia and shells of Ammonites and Echinoid group. The Average Thickness of the lithounits such as Topsoil, Micaceous Sandstone, Shell Limestone and Sandstone are detailed in Table 2.

 Table 2. Average Thickness of the lithounits

Average Top soil Thickness	0.5 to 2.00 m
Average Micaceous Sandstone Thickness	2.00 to 36.00 m
Average Shell limestone Thickness	35.00 - 48.00 m
Average Bottom sandstone	4.00 - 6.00 m below

Topsoil with sandstone

Underlying the top red soil cover is the whitish weathered friable sandstone. This horizon has to be rejected as waste at the time of mining. The thickness varies between 0.5 to 2.0m.

Shell Limestone

Brown to Yellow, reddish brown medium grained and well preserved shells. They do not exhibit any other feature except bedding.

Sandstone

Calcareous in nature with quartz grains and this litho unit is considered as a marker horizon.

3.3.1 Climatic Conditions

The climate of this region is semi -arid with moderate rainfall averaging about 800mm per year. The mean monthly temperature ranges between 22.5°C and 41° C and it is maximum during the months of May and June. The relative humidity varies between 33 and 94% and it is highest during the months of December and January and is lowest during the month of June. There is only one rain gauge station in the Ariyalur town.

3.3.2 Rainfall

The region receives rainfall from both the monsoons with annual rainfall spread over a period of 6 months. The South west monsoon precipitation occurring from June to September accounts for 30 % of the annual rainfall and the northeast monsoon rainfall occurring during October to December constitutes 70 % of the annual. The rainfall increases from west to east during the northeast monsoon period.

3.4 METHOD OF MINING

Limestone mining operations are being carried out through the development of a series of 6m high benches with the Excavator-Tipper combination. The minimum bench width is being maintained at 10m. Controlled Blasting adopted with combination of Slurry Explosive and Nonel for Overburden removal and Limestone production. Open cast mechanized mining is being done using drilling and blasting, which comprises of the following activities (Figure 16).

- Removal of top soil by excavator and preparing the face for Mining operation.
- Drilling and Blasting
- Loading by XCMG XE230C– 1.1 m³ Capacity Excavator
- Hauling by using 25 T Tipper to the crusher hopper located at Govindapuram factory.

3.5 DEPLOYED MINING EQUIPMENT

The detailed list mining equipment deployed at Amalgamated Periyanagalur Limestone Mine in M/s. Ramco Cements Limited is depicted in Table 3.

Table 3. List of earth-moving equipment in Periyanagalur Limestone mine

S. No	Type of Machinery	Number in use	H.P(Each)
1	Rock Drills		
	(i) Compressor – ELGI –XA 450 CFM Capacity	1	150
	(ii) Wagon Drill	1	
2	Heavy Earth Moving Machinery		
	(i) Excavator XCMG – XE230C– 1.1 M ³ Capacity	1	174.7
	(ii) Tippers – 10 M ³ Capacity	7	180
	(iii) Water Tanker-10000 litres	1	128

4.0 STATUTORY PROVISIONS FOR SAFETY BARRIER

4.1 General restrictions in respect of quarrying operations

• The quarrying permit holder or the lessee or their men shall not work or carry on or allow to be worked or carried on any mining operations at or to any point within a distance of 50 metres from any railway line except with the previous written permission of the Railway administration concerned or under or beneath any ropeway or any ropeway trestle or station except under and in accordance with the written permission of the authority owning the ropeway or from any reservoir, canal or other public works such as public roads and buildings except with the previous written permission of the Collector of the district or any other officer authorised by

the State Government in this behalf and otherwise than in accordance with such instructions, restrictions and conditions, either general or special, which may be attached to such permission. The said distance of **50 metres** shall be measured in the case of railway, reservoir or canal horizontally from the outer toe of the bank or the outer edge of the cutting, as the case may be, and in case of building horizontally from the plinth thereof. In the case of village roads no working shall be carried out within a distance of 10 metres and except with the previous permission of the Collector of the District or any other officer duly authorised by the State Government in this behalf and otherwise than in accordance with such directions, restrictions and additions, either general or special, which may be attached to such permission.

- Provided that notwithstanding anything contained in any law for the time being in force or any provision in any lease deed or agreement already executed under these Rules, there shall be no quarrying of sand in any river bed or adjoining are or any other area which is located within **500 metres** radial distances from the location of any bridge, water supply system, infiltration well or pumping installation of any of the local bodies or Central or State Government Department or the Tamil Nadu Water Supply and Drainage Board head works or any area identified for locating water supply schemes by any of the above-mentioned Government Departments or other bodies.
- a) No lease shall be granted for quarrying stone within **300 metres (three hundred metres)** from any inhabited site: Provided that the exiting quarries which are subsisting under current leases shall be entitled for continuance till the expiry of the lease period. The lessees whose quarries lie within a radius of 300 metres from the inhabited site shall undertake blasting operations only after getting permission of the Director of Mines Safety, Gorgaum.
- b) The permit to be granted under clause (a) shall be subject to the following conditions, namely:-
 - the permit holder shall intimate to the District Collector about the details of patta lands from which the earth for manufacture of brick is proposed to be quarried fifteen days before commencement of quarry of earth. Whenever there

is a change of location (survey field) of quarrying it shall be intimated in the manner indicated above.

- quarrying shall be done only for an optimum depth to be specified by the District Collector so that the land shall be restored to a state fit for cultivation.
- iii) quarrying shall be carried out without affecting the interest of the adjoining land owners.
- iv) a safety distance of 10m from the village road, cart track and stream courses shall be left and maintained, and also a safety distance of 50 Mts. from the highways and railway lines should be left and maintained.

As per, the Tamil Nadu Minor Mineral Concession Rules, 1959 The permit holder shall not carryout quarrying operations within a distance of **50 metres from any public roads**, public building, temples, reservoirs, burial ground and railway track etc and cause any damage to any public or private properties.

Working near mine boundaries as per MMR

2[(1) The owner, agent or manager of every mine shall fixed boundaries of the mine. Notwithstanding anything contained in sub-regulation (2), the shall not be changed except with the permission of the Chief Inspector in writing and subject to such conditions as he may specify therein].

3[(2)] No working shall be made within a distance of **7.5 metres** of the boundary of any mine and, in case of a disputed boundary, no working shall be made within a distance of 7.5 metres of the boundary claimed by the owner of an adjacent mine until such time as a binding agreement has been reached as to the correct boundary or the question has been finally determined by a court of law:

1[Provided further that, where the workings of any 2[mine], for any reason, are extended or get extended within any shorter distance than what is laid down herein above, the Chief Inspector may, by an order in writing, require the owner to construct such protective works within such time as he may specify in the order].

3[(3)] Notwithstanding anything contained in sub-regulation (1), the Chief Inspector may, by an order in writing and subject to such conditions as he may specify therein, permit the workings of any mine or part thereof to extend within any shorter distance than 7.5 metres aforesaid, or may require that the said working shall not extend further than a specified distance, not exceeding 60 metres, of such boundary.

5.0. ROADWAYS AND HABITANTS

- A state Highway No.139 running Ariyalur Muttuvancheri situated on the southern side of the mining lease Area. Amalgamated Periyanagalur limestone mine is located 9 km from District Head Quarter Ariyalur by road and the mine falls in Survey of India (Restricted) Topo sheet No 58 M/4.
- A High Tension Power line located within the Mining Lease area on the Eastern Side passing North East - South West direction is proposed to be rerouted away from the Mining lease area. Five Low Tension power lines are proposed to be rerouted/shifted away from the Mining lease boundary.
- A road approaching to Chinnanagalur Village is located on the south western side of the Mining Lease Boundary is proposed to be rerouted in consultation with the District Authorities.

6.0 CONCLUSIONS

Amalgamated Periyanagalur Limestone Mines of M/s. Ramco Cements Limited requested the Department of Mining Engineering, Anna University, Chennai to carryout scientific study on design of safety barrier at Amalgamated Periyanagalur Limestone Mines of M/s. Ramco Cements Limited in Periyanagalur Village, Ariyalur Taluk & District, Tamilnadu. The present scientific study in the proposed Amalgamated Periyanagalur Limestone Mine for an area of over an extent of 35.96.0Ha under the G.0.(3D)No2. & 13.1.03 & G.0 (Ms) No.77 & 26.07.2018 and 17.36.0.0Ha under the G.0.(Ms) No. 153 & 23.12.2016for Amalgamated Periyanagalur Limestone Mines, Periyanagalur Village, Ariyalur Taluk & District, Tamilnadu to design the safety barrier. The study suggests the lessee to maintain the safety barrier as per MCR, MMDR, MMR norms. Based on the field investigation of Anna University Research team, the following observations are made as follows,

- It is observed that in the northwestern and northern side, safety distance of 7.5m is maintained in the proposed amalgamated mine wit adjacent working mine.
- ii. It is observed that the State Highway road is exist in the southern side of the proposed mine. The road is measuring 15m including the trench and shoulder. From road, trench and shoulder, the distance of boundary pillar 31 and 34, at 7m in the southwest side and 6m in the southwest side of the proposed mine respectively. So, it is concluded that as per the MCR guidelines, 50m safety distance with including the trench and shoulder from the SH road is more than sufficient for the safe working condition.
- iii. It is observed that safety barrier distance at 50m in the East side of the proposed mine from the SH-139 roadway.
- Wire fencing is established in the South side of the proposed mine from the SH-139 roadway at the distance of 5m from the lease boundary pillar (No.33).
- v. Electrical sub-station is installed in the west side of the proposed mine.
- vi. It is observed that, boundary 49 is at common boundary with adjacent M/s. Dalmia Mines (PNR).
- vii. It is observed that the safety bund of about 2.5m height is maintained in the southern side of the proposed mine from the SH-139 road in the lease boundary area.
- viii. It is observed that boundary pillar at the distance of 7m in the Southeast side of the proposed mine from the SH-139 roadway.
 - ix. It is observed that trench is established in the South and East side of the proposed mine which could damp the dynamic wave propagation from the mining operations.

REPORT (No.C/MN/67)

Blasting Study Report for

Periyanagalur Limestone Mines of

M/s. The Ramco Cements Ltd., Ariyalur

INVESTIGATORS

Dr. M. Aruna and Dr. Harsha Vardhan Faculty, Department of Mining Engineering

National Institute of Technology Karnataka, Surathkal Mangalore – 575 025 (D.K) Karnataka State

Updated in November - 2023

<u>ABSTRACT</u>

M/S The Ramco Cements Limited is operating the Periyanagalur Limestone Mines in Periyanagalur Village of Ariyalur Taluk in Ariyalur District, Tamilnadu. Explosive energy is being used for fragmenting and displacing the limestone deposit from in-situ. The village structures of Kattupringiyam Ayyanagar are existing at a minimum distance of 175m from the limestone mine towards south side. Also there are structures of Chinna Nagalur Village at about 250m (minimum) from the limestone mine. Problems of concern in the present case are ground vibrations and fly rock that may have effect on nearby houses and other surrounding structures. It is proposed by the management of M/S The Ramco Cements Limited to get scientific study done on the effect of blasting operations on the surrounding village structures, by the Principal Investigator from NITK – Surathkal (Govt. of India).

In view of the above, a scientific study was taken up to assess the effect of blasting operations carried out in Periyanagalur Limestone Mines on the surroundings, by studying 10 production scale blasts. Blastholes of 110 mm diameter with depth of blastholes varying from 5m to 10m were used for the studies. Number of blastholes per blast round varied from 10 to 25, covering different locations representing the entire mine. Slurry explosives available in the form of 83mm diameter cartridges were used as primer and column charges. Shock tube system of initiation was used for achieving delay in blast rounds. Explosive charge per hole was varying from 16.02kg to 40.03kg. Total explosive charge per blast round varied from 225.18kg to 800.64kg in the studies.

Ground vibration levels produced from different blast rounds were 25.90mm/s at 56m, 24.30mm/s at 80m, 16.80mm/s at 94m, 10.80mm/s at 107m, 9.40mm/s at 120m, 8mm/s at 122m, 7.49mm/s at 133m, 3.81mm/s at 140m, 7.24mm/s at 144m, 3.68mm/s at 150m, 4.44mm/s at 155m, 3.43mm/s at 160m, 2.67mm/s at 166m, 2.29mm/s at 177m, 1.65mm/s at 188m, 1.78mm/s at 250m, 1.78mm/s at 275m, 1.27mm/s at 285m, 2.29mm/s at 300m, 1.52mm/s at 325m, 0.762mm/s at 335m, 0.762mm/s at 350m, 1.14mm/s at 350m, 0.889mm/s at 360m, <0.51mm/s at 370m and 380m distances. PPV levels recorded at houses of Kattupringiyam Ayyanagar Village were 2.16mm/s at 175m, 2.54mm/s at 193m,
1.27mm/s at 216m, 1.52mm/s at 230m, 1.14mm/s at 235m, 2.16mm/s at 253m, 0.889mm/s at 254m, 0.762mm/s at 260m, 1.65mm/s at 304m, 0.762mm/s at 306m, 1.52mm/s at 310m, 0.51mm/s at 330m and <0.51mm/s at 335m from five (05) blasts studied near to the village structures. At Chinna Nagalur Village structures, the PPV was 1.52mm/s (from 10th blast) which is extremely safe. Studies have shown an insignificant effect of blasting operations carried out in Periyanagalur Limestone Mine on the village structures of Kattupringiyam Ayyanagar and Chinna Nagalur Villages. Ground vibrations were found to decay considerably from 100m distance from blast site. There is no effect of blasting operations on the stability of Kattupringiyam Ayyanagar and Chinna Nagalur Village Structures. Fly rock was observed to a maximum distance of 30m in all blasts studied, due to shock tube system of initiation.

ACKNOWLEDGEMENTS

The Principal Investigator is thankful to the Sri Madhusudhan Kulkarni, Sr.Vice President (Mfg.) and Unit Head, Periyanagalur Limestone Mine, M/s The Ramco Cements Limited, for sanctioning the scientific study.

The Principal Investigator is grateful to the Director, National Institute of Technology Karnataka, Surathkal (Govt. of India) for permitting to take up the project.

Heartfelt thanks are due to Sri V.S. Samba Sivam, Deputy General Manager (Mines), Sri G.R. Magesh, Deputy General Manager (Mines), Sri K. Nagendran, Assistant General Manager (Mines), Sri K. Abraham, Manager (Mines), Sri R. Jayaker, Dy. Manager (Mines) and Blasting In-Charge, Sri M. Ramsankar, Surveyor, and the team members, for the excellent cooperation extended during the studies.

Help rendered by Mr. G. Raghu Chandra and Mr. K.V. Nagesha, Research Scholars, Mr.T. Murali Naik, PG Student, Department of Mining Engineering, NITK-Surathkal, in carrying out field studies and preparation of report is acknowledged.

INVESTIGATIONS

To assess the impact of blasting operations, 10 production scale blasts conducted at different locations in Periyanagalur Limestone Mine were studied. Blastholes of 110mm diameter were drilled with wagon drills. Depth of blastholes was varying from 5m to 10m in different blast rounds.

Slurry explosives were used as Column Charge and Primer charge, with cartridges of 2.78kg each. Explosive charge per hole was varying between 16.02kg and 40.03kg. Exel Dueldet shock tube system of initiation was used, simultaneously providing the in-hole initiation and surface delay. Detonating cord along with shock tube was used for initiating decked charges in the blastholes, simultaneously. The pattern of explosive column and stemming in blasthole was changed from blast to blast. The blasthole charging pattern adopted in various blasts is shown in Fig. 9.

FIG. 9A Blast - 1

FIG. 9B Blast - 2

FIG. 9E Blast – 5

 $FIG. \ 9H \ Blast-8$

FIG. 9 TYPICAL CHARGING PATTERN OF BLASTHOLES

The muck piles generated from 10 different production scale blasts studied are shown in Fig. 10. Details of all 10 production blasts studied are given in Table-3.

BLAST - 1 (N11°07'42.7" E79°08'52.2")

BLAST - 2 (N11°07'37.0" E79°08'49.1")

AFTER BLAST

BEFORE BLAST

AFTER BLAST

BLAST - 3 (N11°07′34.1″ E79°08′47.3″)

BLAST - 4 (N11°07'36.9" E79°08'40.6")

AFTER BLAST

BLAST - 5 (N11°07'34.0" E79°08'45.0")

BEFORE BLAST

AFTER BLAST

BLAST - 6 (N11°07'37.1" E79°08'49.9")

BLAST - 7 (N11°07'34.1" E79°08'45.2")

AFTER BLAST

BLAST - 8 (N11°07′34.3″ E79°08′46.0″)

BEFORE BLAST

AFTER BLAST

BLAST - 9 (N11°07'34.8" E79°08'46.7")

AFTER BLAST

BLAST - 10 (N11°07'33.1" E79°08'49.8")

AFTER BLAST FIG. 10 MUCKPILES GENERATED FROM DIFFERENT BLASTS

Locations of different blasts studied in the Periyanagalur Limestone Mine are shown in Fig. 11. Layouts of all the blasts studied are given in Appendix-1.

Sl. No.	Parameters	Blast No. 1	Blast No. 2	
1	Date of Blast	28/09/2023	29/09/2023	
2	Time of Blast (hrs)	15:33:44	15:25:59	
3	Location of Blast	N11°07'42.7" E79°08'52.2"	N11°07′37.0″ E79°08′49.1″	
4	Diameter of Blasthole (mm)	100	100	
5	Burden (m)	2.5	2.5	
6	Spacing (m)	3.0	3.0	
7	Drilling Pattern	Rectangular	Staggered	
8	Depth of Blasthole (m)	10	6.5	
9	Stemming (m)	1.0	1.5	
10	No. of Rows	04	02	
11	No. of Blastholes	20	21	
12	Explosive Charge/Hole (kg)	40.03	27.40	
13	Maximum Charge/Delay (kg)	44.48	30.58	
14	Total Charge/Blast (kg)	800.64	575.46	
15	Initiation System	Shocktube	Shocktube	
16	Location of Instrument – 1	N11°07'40.1" E79°08'52.8"	N11°07′34.5″ E79°08′44.7″	
17	Distance $(m) - 1$	80	155	
18	PPV (mm/s) – 1	24.3	4.44	
19	Frequency (Hz) – 1	47	20	
20	Elevation Difference $(m) - 1$	1	3	
21	Location of Instrument -2	N11°07′39.6″ E79°08′52.8″	N11°07'34.6" E79°08'44.2"	
22	Distance $(m) - 2$	94	166	
23	PPV (mm/s) – 2	16.80	2.67	
24	Frequency (Hz) – 2	43	9.70	
25	Elevation Difference $(m) - 2$	0	3	
26	Location of Instrument – 3	N11°07'39.5" E79°08'52.6"	N11°07'34.7" E79°08'44.4"	
27	Distance $(m) - 3$	107	177	
28	PPV $(mm/s) - 3$	10.80	2.29	
29	Frequency (Hz) – 3	39	17	
30	Elevation Difference $(m) - 3$	1	3	
31	Location of Instrument – 4	N11°07'38.8" E79°08'52.4"	N11°07'35.1" E79°08'43.5"	
32	Distance (m) – 4	120	188	
33	PPV (mm/s) – 4	9.40	1.65	
34	Frequency (Hz) – 4	43	14	
35	Elevation Difference $(m) - 4$	2	4	

TABLE – 3 DETAILS OF THE BLASTS STUDIED

Sl. No	Parameters	Blast No. 3	Blast No. 4	
1	Date of Blast	30/09/2023	03/10/2023	
2	Time of Blast (hrs)	16:11:23	13:14:07	
3	Location of Blast	N11°07′34.1″ E79°08′47.3″	N11°07'36.9" E79°08'40.6"	
4	Diameter of Blasthole (mm)	100	100	
5	Burden (m)	2.5	2.5	
6	Spacing (m)	3.0	3.0	
7	Drilling Pattern	Rectangular	Rectangular	
8	Depth of Blasthole (m)	7.0	5.5	
9	Stemming (m)	1.5	1.7	
10	No. of Rows	03	02	
11	No. of Blastholes	23	20	
12	Explosive Charge/Hole (kg)	29.37	22.52	
13	Maximum Charge/Delay (kg)	30.58	66.72	
14	Total Charge/Blast (kg)	675.54	450.36	
15	Initiation System	Shocktube	Shocktube	
16	Location of Instrument – 1	Mine Premises	Mine Premises	
		(N11°07′34.5″E79°08′44.1″)	(N11°07'36.6"E79°08'42.7")	
17	Distance $(m) - 1$	56	300	
18	PPV (mm/s) – 1	25.90	2.29	
19	Frequency (Hz) – 1	28	20	
20	Elevation Difference (m) - 1	2	2	
21	Location of Instrument – 2	Mine Premises	Mine Premises	
		(N11°07′32.9″E79°08′43.7″)	(N11°07′36.6″E79°08′41.5″)	
22	Distance $(m) - 2$	122	325	
23	PPV (mm/s) – 2	8.00	1.52	
24	Frequency (Hz) – 2	32	24	
25	Elevation Difference (m) - 2	6	5	
26	Location of Instrument – 3	Mine Premises	Mine Premises	
		(N11°07'32.7"E79°08'43.7")	(N11°07'36.6"E79°08'39.5")	
27	Distance (m) – 3	133	335	
28	PPV (mm/s) – 3	7.49	0.762	
29	Frequency (Hz) – 3	32	22	
30	Elevation Difference (m) - 3	6	6	
31	Location of Instrument – 4	Mine Premises	Mine Premises	
		(N11°07′32.5″E79°08′43.7″)	(N11°07'36.6"E79°08'37.5")	
32	Distance (m) – 4	144	350	
33	PPV (mm/s) – 4	7.24	0.762	
34	Frequency (Hz) – 4	30	21	
35	Elevation Difference (m) – 4	8	7	

1 Date of Blast 04/10/2023 05/10/20 2 Time of Blast (hrs) 13:28:08 12:43:2	23 5	
1 Date of Blast 03/10/20 2 Time of Blast (hrs) 13:28:08 12:43:2	5	
2 The of Diast (his) 15.20.00 12.45.2	5	
3 Location of Blast N11007/24 0" E70008/45 0" N11007/27 1" E7	0000110 0"	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 08 49.9	
4 Diameter of Diastifice (fiffit) 100 100 5 Durder (m) 2.5 2.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
0 Spacing (m) 3.0 3.0 7 Drilling Detterm Steasoned Desterm	.1	
/ Drilling Pattern Staggered Rectangu	llar	
$\begin{array}{c cccc} 8 & \text{Depth of Blasthole (m)} & 7.5 & 5.0 \\ \hline 0 & \text{Stemming (m)} & 1.4 & 1.5 \\ \hline \end{array}$		
9 Stemming (m) 1.4 1.5 10 N 02 02 02	1.5	
10 No. of Rows 02 02 11 No. OF Rows 10 12		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
13 Maximum Charge/Delay (kg) 36.14 19.46		
14Total Charge/Blast (kg)600.48250.20)	
15 Initiation System Shocktube Shocktu	be	
16Location of Instrument – 1Mine PremisesMine Premises	nises	
(N11°07′36.6″ E79°08′41.5″) (N11°07′30.4″ E7	9°08′45.3″)	
17 Distance (m) – 1 350 250		
18 PPV (mm/s) - 1 1.14 1.78		
19 Frequency (Hz) – 1 34 28		
$20 \text{Elevation Difference (m)} - 1 \qquad \qquad 6 \qquad \qquad 25$		
21Location of Instrument – 2Mine PremisesMine Bound	ndary	
(N11°07′36.6″ E79°08′40.5″) (N11°07′30.1″ E7	'9°08'44.5")	
22 Distance (m) - 2 360 275		
23 PPV (mm/s) – 2 0.889 1.78		
24 Frequency (Hz) – 2 22 26		
25 Elevation Difference (m) -2 6 26		
26Location of Instrument – 3Mine PremisesOn Road	d,	
(N11°07′36.6″ E79°08′39.6″) Kattupringiyam	Ayyanagar	
(N11°07′30.1″ E7	9°08′44.7″)	
27 Distance (m) – 3 370 285	,	
28 PPV (mm/s) – 3 <0.51 1.27		
29 Frequency (Hz) – 3 –- 23		
30 Elevation Difference $(m) - 3$ 7 26		
31 Location of Instrument – 4 Mine Premises House of Adi M	Moolam,	
(N11°07′36.6″ E79°08′38.8″) Kattupringiyam	Ayyanagar	
(N11°07′29.0″ E7	/9°08′42.6″)	
32 Distance (m) – 4 380 335	-)	
33 PPV (mm/s) – 4 <0.51 <0.51		
34 Frequency (Hz) – 4		
35 Elevation Difference (m) – 4 8 27		

Sl. No.	Parameters	Blast No. 7	Blast No. 8	
1	Date of Blast	06/10/2023	07/10/2023	
2	Time of Blast (hrs)	13:07:17	13:17:23	
3	Location of Blast	N11°07′34.1″ E79°08′45.2″	N11°07′34.3″ E79°08′46.0″	
4	Diameter of Blasthole (mm)	100	100	
5	Burden (m)	2.5	2.5	
6	Spacing (m)	3.0	3.0	
7	Drilling Pattern	Staggered	Staggered	
8	Depth of Blasthole (m)	6.0	6.0	
9	Stemming (m)	1.4	1.5	
10	No. of Rows	03	02	
11	No. of Blastholes	24	16	
12	Explosive Charge/Hole (kg)	25.02	25.02	
13	Maximum Charge/Delay (kg)	25.02	25.02	
14	Total Charge/Blast (kg)	600.48	400.32	
15	Initiation System	Shocktube	Shocktube	
16	Location of Instrument – 1	On Road,	House of Adi Moolam,	
		Kattupringiyam Ayyanagar	Kattupringiyam Ayyanagar	
		(N11°07′29.7″ E79°08′44.6″)	(N11°07'29.6" E79°08'42.6")	
17	Distance $(m) - 1$	140	193	
18	PPV $(mm/s) - 1$	3.81	2.54	
19	Frequency (Hz) – 1	32	26	
20	Elevation Difference (m) – 1	23	22	
21	Location of Instrument – 2	On Road,	Near House of Velu Samy,	
		Kattupringiyam Ayyanagar	Kattupringiyam Ayyanagar	
		(N11°07′29.7″ E79°08′43.6″)	(N11°07′28.9″ E79°08′40.8″)	
22	Distance (m) – 2	150	230	
23	PPV $(mm/s) - 2$	3.68	1.52	
24	Frequency (Hz) – 2	23	27	
25	Elevation Difference $(m) - 2$	24	18	
26	Location of Instrument – 3	On Road,	House of Velu Samy,	
		Kattupringiyam Ayyanagar	Kattupringiyam Ayyanagar	
		(N11°07′29.6″ E79°08′42.6″)	(N11°07'29.4" E79°08'40.8")	
27	Distance (m) – 3	160	235	
28	PPV (mm/s) – 3	3.43	1.14	
29	Frequency (Hz) – 3	20	47	
30	Elevation Difference $(m) - 3$	24	18	
31	Location of Instrument – 4	House of Adi Moolam,	House of Periya Samy,	
		Kattupringiyam Ayyanagar	Kattupringiyam Ayyanagar	
		(N11°07′29.0″ E79°08′42.6″)	(N11°07′28.8″ E79°08′37.9″)	
32	Distance (m) – 4	175	306	
33	PPV (mm/s) – 4	2.16	0.762	
34	Frequency (Hz) – 4	28	32	
35	Elevation Difference (m) – 4	25	23	

Sl. No.	Parameters	Blast No. 9	Blast No. 10	
1	Date of Blast	09/10/2023	10/10/2023	
2	Time of Blast (hrs)	13:31:22	13:21:24	
3	Location of Blast	N11°07′34.8″ E79°08′46.7″	N11°07′33.1″ E79°08′49.8″	
4	Diameter of Blasthole (mm)	100	100	
5	Burden (m)	2.5	4.0	
6	Spacing (m)	3.0	4.0	
7	Drilling Pattern	Staggered	Staggered	
8	Depth of Blasthole (m)	5.0	5.0	
9	Stemming (m)	1.50	2.25	
10	No. of Rows	03	02	
11	No. of Blastholes	10	25	
12	Explosive Charge/Hole (kg)	22.52	16.02	
13	Maximum Charge/Delay (kg)	25.02	19.46	
14	Total Charge/Blast (kg)	225.18	400.32	
15	Initiation System	Shocktube	Shocktube	
16	Location of Instrument – 1	House of Adi Moolam,	House of Tanga Velu,	
		Kattupringiyam Ayyanagar	Chinna Nagalur	
		(N11°07′29.6″ E79°08′42.6″)	(N11°07'31.9" E79°08'58.1")	
17	Distance $(m) - 1$	216	250	
18	PPV (mm/s) – 1	1.27	1.52	
19	Frequency (Hz) – 1	30	16	
20	Elevation Difference $(m) - 1$	22	06	
21	Location of Instrument -2	Near House of Velu Samy,	House of Adi Moolam,	
		Kattupringiyam Ayyanagar	Kattupringiyam Ayyanagar	
		(N11°07′28.9″ E79°08′40.8″)	(N11°07′29.6″ E79°08′42.6″)	
22	Distance (m) – 2	254	253	
23	PPV (mm/s) – 2	0.889	2.16	
24	Frequency (Hz) – 2	13	15	
25	Elevation Difference $(m) - 2$	18	09	
26	Location of Instrument – 3	House of Velu Samy,	Near House of Velu Samy,	
		Kattupringiyam Ayyanagar	Kattupringiyam Ayyanagar	
		(N11°07′28.9″ E79°08′40.8″)	(N11°07′28.9″ E79°08′40.8″)	
27	Distance $(m) - 3$	260	304	
28	PPV (mm/s) – 3	0.762	1.65	
29	Frequency (Hz) – 3	23	12	
30	Elevation Difference $(m) - 3$	18	07	
31	Location of Instrument – 4	House of Periya Samy	House of Velu Samy,	
		Kattupringiyam Ayyanagar	Kattupringiyam Ayyanagar	
		(N11°07′28.8″ E79°08′37.9″)	(N11°07′28.9″ E79°08′40.8″)	
32	Distance (m) – 4	330	310	
33	PPV (mm/s) – 4	0.51	1.52	
34	Frequency (Hz) – 4	39	27	
35	Elevation Difference (m) – 4	23	08	

Ground vibrations were monitored using four (4) units of Minimate Plus, Instantel, Canada, simultaneously at four different locations for all 10 production blasts. Geophones of these blast vibration monitors record the ground vibrations in three mutually orthogonal directions – Longitudinal, Transverse and Vertical. Geophone of the instrument was glued to the ground effectively, using Plaster of Paris, after digging 6 inches ground if it is soft. In hard ground like rocky area or RCC, the geophone was glued directly to the ground using Plaster of Paris. Trigger level of geophones was set to a minimum PPV of 0.51mm/s. Details of all blasts studied are given in Table–3. All the ground vibration event charts are given in Appendix–2. Ground vibrations monitoring at different locations is shown in Fig. 14.

FIG. 14A (Monitoring at the house of Sri Adi Moolya, Kattupringiyam Ayyanagar Village)

FIG. 14B (Monitoring at the house of Sri Velu Sami, Kattupringiyam Ayyanagar Village)

FIG. 14C (Monitoring at the house of Sri Tanga Velu, Chinna Nagalur Village)

FIG. 14D (Monitoring at the house of Sri Periya Sami, Kattupringiyam Ayyanagar Village)

FIG. 14E (Monitoring on road existing between mine boundary and houses, Kattupringiyam Ayyanagar Village)

FIG. 14F (Monitoring at Mine Boundary)

FIG. 14G (Monitoring at Mine Premises)

FIG. 14I (Monitoring at Mine Premises)

FIG. 14J (Monitoring at Mine Premises)

FIG. 14K (Monitoring at Mine Premises) FIG. 14 MONITORING OF GROUND VIBRATIONS AT DIFFERENT **LOCATIONS**

In summary, the intensity of ground vibrations recorded at different distances is given in

Table-5.

Distance	Peak Particle Velocity
(m)	(mm/s)
56	25.90 (Blast No. 3)
80	24.30 (Blast No. 1)
94	16.80 (Blast No. 1)
107	10.80 (Blast No. 1)
120	9.40 (Blast No. 1)
122	8.00 (Blast No. 3)
133	7.49 (Blast No. 3)

140	3.81 (Blast No. 7)
144	7.24 (Blast No. 3)
150	3.68 (Blast No. 7)
155	4.44 (Blast No. 2)
160	3.43 (Blast No. 7)
166	2.67 (Blast No. 2)
175	2.16 (Blast No. 7)
177	2.29 (Blast No. 2)
188	1.65 (Blast No. 2)
193	2.54 (Blast No. 1)
216	1.27 (Blast No. 8)
230	1.52 (Blast No. 9)
235	1.14 (Blast No. 8)
250	1.78 (Blast No. 8)
250	1.52 (Blast No. 6)
253	2.16 (Blast No. 10)
254	0.89 (Blast No. 9)
260	0.76 (Blast No. 9)
275	1.78 (Blast No. 6)
285	1.27 (Blast No. 6)
300	2.29 (Blast No. 4)
304	1.65 (Blast No. 10)
306	0.76 (Blast No. 8)
310	1.52 (Blast No. 10)
325	1.52 (Blast No. 4)
330	0.51 (Blast No. 9)
335	0.76 (Blast No. 4)
335	<0.51 (Blast No. 6)
350	0.76 (Blast No. 4)
350	1.14 (Blast No. 5)
360	0.89 (Blast No. 5)
370	<0.51 (Blast No. 5)
380	<0.51 (Blast No. 5)

From the data generated, the Ground Vibrations Propagation equation for Periyanagalur

Limestone Mining Project site has been established as (Fig. 15):

 $V = 1010.9 (D/\sqrt{W})^{-1.636}$

where,

- V = Peak particle velocity (mm/s)
- D = Distance between blast site and location of instrument / structure (m)
- W = Maximum explosive charge / Delay (kg)

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The scientific study carried out in the *Periyanagalur Limestone Mine of M/S The Ramco Cements Limited operating in Periyanagalur Village, Ariyalur Taluk, Ariyalur District, Tamilnadu*, led to draw the following conclusions:

- In total, 10 production scale blasts were studied.
- All the blasts were having 110mm diameter blastholes. Depth of blastholes in the study varied from 5m to 10m, as per the bench height.
- Number of blastholes in the study varied from 10 to 25.
- Slurry explosives of 83mm diameter cartridges were used as primer and column charges.
- Each blasthole was charged with 16.02kg to 40.03kg of explosive.
- Maximum explosive charge per delay varied as 19.46kg, 25.02kg, 30.58kg, 36.14kg, 44.48kg, and 66.78kg, in 10 different production blast rounds studied.
- Total Explosive charge per blast varied from 225kg to 800kg in various production blasts.
- Initiation was done by Exel Dueldet system, which includes both down-the-hole and surface initiations, along with D-Cord.
- Peak Particle Velocities of 2-5mm/s were assigned as threshold ground vibration limit to the houses located in Kattupringiyam Ayyanagar and Chinna Nagalur villages. The Public road existing in between mine boundary and village structures may be assigned a PPV of 25mm/s.
- Other village structures of Kattupringiyam Ayyanagar and Chinna Nagalur are 500m away from existing Periyanagalur Limestone Mine. Mud houses with improper foundation may be assigned with safe ground vibration level of 2mm/s, as per DGMS

norms. Tiled houses with cement lining and proper foundation may be assigned with safe ground vibration level of 5mm/s and other RCC structures may be given a threshold PPV value of 10-25mm/s as per DGMS standards. Temples, Schools, Hospitals/Dispensaries, and other sensitive structures may be assigned with the least Threshold ground vibration limit (PPV) of 2mm/s as per DGMS norms.

 Ground vibrations levels were monitored simultaneously at different distances from blast site around the premises of Mine area, near mine boundary, on public existing between boundary and villages structures, houses located in Kattupringiyam Ayyanagar and Chinna Nagalur villages and other locations using four (4) Microprocessor based Blast Vibration Monitors, Minimate Plus, Instantel, Canada.

Blast	No. of	Explosive	Total	Distance	PPV
No.	Holes	Charge/Hole	Explosive/Blast		
		(kg)	(kg)	(m)	(mm/s)
1	20	40.03	800.64	80	24.30
				94	16.80
				107	10.80
				120	9.40
2	21	27.40	575.46	155	4.44
				166	2.67
				177	2.29
				188	1.65
3	23	29.37	675.54	56	25.90
				122	8.00
				133	7.49
				144	7.24
4	20	22.52	450.36	300	2.29
				325	1.52
				335	0.76
				350	0.76
5	18	33.36	600.48	350	1.14
				360	0.89
				370	< 0.51
				380	< 0.51
6	13	19.25	250.2	250	1.78
				275	1.78
				285	1.27
				335	<0.51

• Summary of ground vibrations recorded from all the blasts studied are given below:

7	24	25.02	600.48	140 150 160 175	3.81 3.68 3.43 2.16
8	16	25.02	400.32	193 230 235 306	2.54 1.52 1.14 0.76
9	10	22.52	225.18	216 254 260 330	1.27 0.89 0.76 0.51
10	25	16.02	400.32	250 253 304 310	1.52 2.16 1.65 1.52

- In general, the PPV levels reduced considerably from 100m distance onwards from the blast site.
- The PPVs recorded from 5 blasts at structures of Kattupringiyam Ayyanagar and Chinna Nagalur villages are lesser than the suggested limits.
- Shock tube system of initiation was effective in containing the Fly Rock to a maximum distance of 30m from blast site.
- Studies with given blast configurations having 10 to 25 holes of 5m to 10m average depth and each blasthole charged with 16.02kg 40.03kg of explosive, indicated that there is no effect of ground vibrations and fly rock caused due to blasting operations carried out in the Periyanagalur Limestone Mine, on the stability of Kattupringiyam Ayyanagar and Chinna Nagalur village structures vis-à-vis the present dtsnaces.
- However, when the mine benches approach the village structures to about 100m, the depth of blastholes should be restricted to 6m.

The blasthole should have two explosive decks, each being detonated separately, with different delays, i.e., implementation of down-the-hole delay system.

The explosive charge per delay should be a maximum of 11kg.

In case the MCD has to be increased beyond this, techniques like pre-splitting or line drilling are to be used. In this strata, pre-splitting may not work as the rock mass is weaker relatively. Line drilling will be more useful. Periphery of the mine closer to villages may be line drilled, to arrest the propagation of ground vibrations. Depth of hole should be 5m more than the depth of pit.

Recommendations

Following recommendations are made based on the studies carried out, in order to improve the blasting operations further:

- Number of rows in blast round may be restricted to a maximum of two (2), when the distance between the mine and the Kattupringiyam Ayyanagar and the Chinna Nagalur villages is ≤ 150m.
- The maximum number of blastholes per round may be restricted to a maximum of 25.
- Burden x Spacing pattern of 3.5m x 5m may be used.
- Blastholes may be drilled vertically, as this would ensure equal burden along the entire bench and also will reduce unnecessary movement / throw of material, minimizing the fly rock.
- Sequential blasting with shock tube system should be continued.
- While blasting from distances of ≤ 100m from village structures, Depth of blastholes should be a maximum of 6m. Double Decking of explosive column should be done, with each deck detonated at different timings like 450ms and 500ms or similar as per availability of down-the-hole delays. A maximum of 11kg per delay should be used for protecting the structures from ground vibrations.

- The following Blast Pattern is suggested:
 - A. For normal conditions:

Blasthole Diameter	110 mm
Bench Height	5-8m
Depth of blastholes	5-8m (Maximum)
No. of Blastholes / Round	25 (Maximum)
No. of Rows	2 (Maximum)
Burden	3.5m
Spacing	5m
Pattern of Holes	Staggered
Initiation	Shock tube system
Explosive Charge / Hole	30kg (Maximum)
Type of Explosive	Slurry explosives
Maximum Charge / Delay	40kg (Maximum)
Total Charge / Blast	1000kg (Maximum)
Initiation Pattern	As per Layouts shown in Appendix-1

B. For blasting at ≤ 100 m from village structures, especially mud houses:

Blasthole Diameter	110 mm
Bench Height	5m
Depth of blastholes	6m (Maximum)
No. of Blastholes / Round	20 (Maximum)
No. of Rows	2 (Maximum)
Burden	3.5m
Spacing	5m
Pattern of Holes	Staggered
Initiation	Shock tube system
Explosive Charge / Hole	22kg (Maximum)
Type of Explosive	Slurry explosives
Maximum Charge / Delay	11kg (Maximum)
Total Charge / Blast	440kg (Maximum)
Initiation Pattern	As per Layouts shown in Appendix-1

REFERENCES

Anon, 1997.DGMS (Tech) / S&T Circular No. 7, dated 29-08-1997.

- **Dowding, C.H.**, 1985. Blast Vibration Monitoring and Control, Prentice Hall. Inc., NJ, USA.
- **Duvall, W.I. and Fogelson, D.E.,** 1962. Review of criteria for estimating damage of residence from blasting operations, USBM: 5968.
- Holloway, R., Lundborg, N. and Runquist, G., 1983. Ground vibrations and damage criteria, SWEDEFO Report R85:1981.
- Holmberg, R., Lundborg, N. and Runquist, G., 1981. Ground vibrations and damage criteria, SWEDEFO Report R85:1981.
- Nicholls, H.R., Johnson, C.F. and Duvall, W.I., 1971. Blasting vibrations and their effects on structures, USBM Bull: 656.
- Ricker, N.N., 1997. Transient Waves in Visco-elastic Media, Elsavier, New York.
- Sastry, V.R., 1995. Study into the effect of blasts in OCP-I Project on GDK 10-Incline U/G workings, Singareni Collieries Company Limited, An Unpublished Report.
- Sastry, V.R., 2001. Study of the effect of ground vibrations and fly rock caused due to blasting operations in Kallakudi limestone mine, Dalmia Cements Limited, Tamilnadu (An Unpublished Technical Report submitted to Dalmia Cement (Bharat) Limited.
- Sastry, V.R., 2001a. Control of ground vibrations and fly rock caused due to blasting operations at Vishnupuram Limestone Mine, India Cements Limited, An unpublished report.
- Sastry, V.R., 2001b. Investigation into ground vibrations and fly rock problems caused due to blasting operations in Kallakudi Limestone Mine, Dalmia Cement (Bharat) Limited, An Unpublished Report.
- Sastry, V.R., 2002. Design of controlled blasting methodology for controlling ground vibrations and fly rock problems, Grasim Industries Limited, Ariyalur, Tamilnadu (An Unpublished Technical Report submitted to Grasim Industries Ltd.).
- Sastry, V.R. 2006. Design of blasting operations for the protection of existing CNG pipeline from ground vibrations generated due to lasting for trenching for laying a new CNG pipeline at 5m distance, Panvel-Dhabol Pipeline Project, GAIL (An Unpublished Technical Report).
- Sastry, 2008. Design of underwater blasting operations for rock dredging and protection of marine structures, especially Berth No. 9 at 5m distance from blast site at Tuticorin Port (An unpublished Technical Report).

- Siskind, D.E., Stagg, M.S., Kopp, I.W. and Dowding, C.H., 1981. Structures response and damage produced by ground vibrations from surface mine blasting, USBMRI: 8507.
- **Taquieddin, S.A.**, 1982. The role of borehole containment on surface ground vibration levels at closed scaled distances
- Wei Wu, 1984. The effect of simulated detonator scatter on rock fragmentation and ground vibrations in single row bench blasting, MS Thesis, Univ. Missouri, Rolla.
- Wiss, J.F. and Linehan, P.W., 1978. Control of Vibration and blast noise from surface coal mining, USBM OPR: 103-79.
- Wiss, J.F. and Nicholls, H.R., 1974. A study of damage to residential structure from blast vibrations, Special Publication, American Society of Civil Engineers, NY,73.

REPORT (No.C/MN/67)

Study of the Stability of Slopes at

Periyanagalur Limestone Mine of

M/s. The Ramco Cements Ltd., Ariyalur

INVESTIGATORS

Dr. M. Aruna and Dr. Harsha Vardhan *Faculty, Department of Mining Engineering*

National Institute of Technology Karnataka, Surathkal Mangalore – 575 025 (D.K) Karnataka State

Updated in November - 2023

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

ACKNOWLEDGEMENTS

At the outset, the investigators would like to express their thanks to the management of Periyanagalur Limestone Mine belonging to M/s. The Ramco Cements Ltd. for extending all the necessary help during their visits to the mines. All the executives, supervisors and other personnel's working in the mine have helped either directly or indirectly in successful completion of this report.

The investigators thank the Head of the Department Dr. M Aruna for extending all the necessary facilities like computing, use of Rock Mechanics Lab and other essential requirements. All the testing for rock samples was carried out in the Rock Mechanics Laboratory.

The investigators also thank the technical staff of the Department Mr. Chandrahasa Rai and his team for carrying out all the laboratory tests of the rock specimens collected from the field in time without which it would have not been possible to complete the report in time.

Our sincere thanks go to Head of the Civil Engineering Department for permitting us to use their laboratory facilities in spite of their busy schedule.

Thanks are also due to the Head of Mechanical Engineering Department for permitting to use the AUTOCAD Lab for Finite Element Modeling.

Dr. M. ARUNA

Dr. HARSHA VARDHAN

1.0 INTRODUCTION

The importance of safe and properly designed slope is well known in the surface mining industry. The surface mining industry gets benefit in its operation mainly on the use of steepest possible slopes. However, such slopes should not fail during the life of the mine. Therefore, a mining engineer is faced with the two opposing requirements, i.e., stability of the slopes as well as its steepness in designing deep surface mines. Maintaining steeper slopes can reduce the amount of material to be excavated. This can result in lots of saving to a mining firm. However, extra steep slopes may result in slope failure leading to loss of production, extra stripping costs to remove failed material, reforming of benches, rerouting of haul roads and production delays. Therefore, proper balance between economics and safety should be achieved in working of surface mines.

The stability of the slope primarily depends on the strength properties of the slope materials and groundwater condition within the slope. The orientation of the discontinuity planes with respect to slope face determines the types of failure possible within that slope. Generally plane, wedge and toppling types of failure occur in rock slopes (Fig. 1), while in soil slopes and highly weathered rock slopes, circular failure is possible.

1.1 Plane failure: Plane failure occurs when a discontinuity striking parallel or approximately parallel (within 20°) to the slope face and dipping at a lower angle intersects the slope face making it possible to slide the material above discontinuity.

1.2 Wedge failure: Wedge failure occurs along the line of intersection of the two discontinuity planes, dipping inside the excavation.

1.3 Toppling failure: Toppling failure occurs where blocks are formed by a closely spaced and steeply inclined discontinuity system dipping into the excavation face. The centre of gravity of each block must fall outside its outer lower corner for toppling to occur, which may then set the block falling freely. Hence toppling can be dangerous in high slopes at the locations below which working is going on. Soil slopes that are approximately homogeneous, usually fail along a surface approaching a circular arc of finite length.

Plane Failure

Multiple Bench Wedge failure

Flexural Toppling in Hard Rock Slopes

Fig. 1 Different types of failure of rock slopes

2.0 DETAILS OF THE MINE

2.1 Details of the Mine Lease Area

The Periyanagalur Limestone Mines are located at Periyanagalur village in Ariyalur Taluka, & District of Tamilnadu State. It extends over an area of 53.52 Ha. The topography of the area is almost a gentle slope with a maximum elevation of 65 m and minimum elevation of 61 m from MSL. All lands in the local supports only seasonal dry crops and there is no forest in the nearby area.

The mine lease is located at a distance of 8.0 km by road from Ariyalur on Chidambaram-Jayamkondam -Trichy road. Southern Railway line passes at a distance of 8.0 km from the west of the mining block.

2.2 Physiography (Topography and Drainage)

2.2.1 Regional Physiography

The area experiences semi-arid climate receiving rainfall of about 800 mm on average in a year. Seasonal Marudaiyar river flows during monsoon. The river is situated at about 4.0 km from the mining block. The limestone bearing areas stand out as fallow lands in an undulating terrain. At places fair amount of soil cover is found over limestone formation.

2.2.2 Local Physiography

The topography of the area is almost a gentle slope with a maximum elevation of 66 m and minimum elevation of 61 m from MSL. All lands in the local supports only seasonal dry crops and there is no forest in the nearby area

2.3 Geology

2.3.1 Regional Geology

In the Cauvery basin, carbonate rock form a sizable part of the stratigraphic column from the Lower Cretaceous to Recent. Limestone of Cretaceous and early Tertiary formations are exposed in three principal outcrop area viz. Trichirapalli, Virudhachalam and Pondicherry along the western margin of the basin. The western margin of the sediments have NE-SW trend. The limestone bed is sandwiched between two sandstone beds. It can be traced for more than 9 km in North-South direction. The strike of the deposit is NE-SW and dips towards east varying from 3° to 6° .

2.3.2 Local Geology

The area granted under M.L. comprises of the Ariyalur Groups of rocks. The dip of the Ariyalur formation is 3° to 6°. The strike of the limestone is NW-SE and dips towards east. The limestone is overlain by chert, marl, friable sandstone and underlain by sandstone beds. The order of succession of lithology of the mine lease area is given in Table 1.

2.4 Reserves & Quantity of Limestone

The limestone reserves of the Periyanagalur Block (based on exploration) are estimated as 7.50 Million tones. The average grade of limestone in the mining lease area is around 86 % of CaCO_{3.}

Sl. No.	Rock/ Soil	Average Depth from the
		Surface (m)

Table 1: Order of succession

1	Top Soil (black in colour, occurs over micaceous	0.00 - 1.00
	sandstone layer)	
2	Arenaceous Sandstone (wheathered and friable,	1.00 -15.00
	has to be rejected as waste during mining)	
3	Shell Limestone Band No. 1	15.00 -55.00
	Ferrugenous Limestone	
	Limestone Band No. 2 (irregularly mixed in	
	various proportions)	
4	Sandstone (Arenaceous in nature with more of	Below 55.00 m
	quartz and considerd a marker horizon)	

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

3.0 Method of Working

The mine is being operated with both Conventional & Non-conventional, Opencast Mechanized method of mining. The topsoil has been removed and dumped all around the periphery of the mining lease boundary. Overburden has also been removed. The present operating bench parameters are 6.0 m height and 6.0 m width with bench slope of 63°.

4.0 SLOPE STABILITY ANALYSIS

4.1 Collection of Baseline Data

Slope stability studies were taken up at Periyanagalur Limestone Mine belonging to M/s Ramco Cements Limited, upon their request to the Department of Mining Engineering of National Institute of Technology Karnataka, Surathkal. Investigation was carried out by the team from March, 2014 onwards till March 2023. During this investigation, the team met the mine officials, visited the mines and identified areas for rock sample collection in consultation with the mine officials. Further, some other baseline data were collected from the mine plan and survey section taking the help of the geologists and surveyors working in the mine. The rock samples identified during field visits were sent to the Department of Mining Engineering, NITK Surathkal for testing.

4.2 Objectives

This study was taken up with the following objectives.

- Assessment of stability of highwall
- To recommend effective steps to be taken to improve stability of slopes of highwall, in order to avoid slope failures for the safety of the men and the machinery.

4.3 Laboratory Investigations

Laboratory studies were carried out on the rock samples collected from the field to determine the Density, Cohesion, Angle of Internal Friction, Young's Modulus and Poisson's Ratio. All these tests were carried out in the Mining and Civil Engineering Departments of the Institute. The results of the laboratory investigations for different rock properties are given in Table 2.

SI.	Strength Parameters							
No.	Rock sample	Density (gm/cm ³)	Cohesion (Kpa)	Angle of internal friction (deg)	Young's modulus (Mpa)	Poisson's Ratio (µ)		
1	Black cotton soil	1.59	31	22	12.5	0.24		
2	Micaceous Sandstone	2.43	40	26	6200.0	0.24		
3	Limestone	2.22	44	27	11323.0	0.23		
4	Ferrugenous Limestone	2.10	42	22	11408.0	0.21		

Table 2: Results of laboratory investigations for rock properties

4.4 Analysis of Slopes

There are several methods and techniques for the stability analysis of slopes. However, all these methods have their own limitations and short comings. The stability analysis and determination of Factor of Safety (FOS) in the present investigation was carried out using Limit Equilibrium Method. For this purpose, GALENA software available in the Department of Mining Engineering was used. To analyze the "Stress Distribution" within the rock mass, Finite Element Modeling was carried out using ANSYS software.

4.4.1 Limit Equilibrium Method

For the stability of a block in an inclined plane, the condition at which the force tend to induce sliding in the block is exactly balanced by those resisting sliding. This is called "Condition of Limiting Equilibrium". In order to compare the stability of the slopes under the conditions other than those of "Limiting Equilibrium", some form of index is required. The most commonly used index is the Factor of Safety (FOS). This can be defined as the ratio of the total force available to resist sliding to the total force tending to induce sliding. When the slope is on the point of failure, a condition of limiting equilibrium exists in which the resisting and disturbing forces are equal. When the slope is stable, the resisting forces are greater than the disturbing forces and the value of Factor of Safety is greater than unity.

Using GALENA slope stability software the analysis was carried out for the Sections ML -5 (East & West) and ML -4 (East & West)

Following input parameters were used in the model:

- Height of bench
- Width of bench
- Depth of tension crack (if applicable)
- Failure plane angle
- Face angle
- Angle of internal friction
- Cohesion of the rock mass
- Density of rock
- Depth of mining
- Width of the pit
- Depth of water table (if applicable)

The results of the laboratory studies, given in Table 2, were used in the analysis. To suit the compatibility of the Galena software with the given sections, each section has been divided into two parts: left part of the planned pit configuration shows the Western part of the property and right part shows the Eastern part of the property. Thus, the left side of the planned pit configuration for a section is the West and right part is East. Readers are, thus, requested to refer sections while going through the report.

A) Analysis for Section ML-4 a) Analysis for Section ML-4 West for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-4 West are given in Table 3

The result of slope stability analysis of Section ML-4 West for the planned pit configuration is shown in Figure 2. In this section, the bench slope angle is kept at 62°. The width of benches are 6 m each and height of benches are also 6 m each, except the lowest one which is 1.05m. This has been designed keeping in mind that the ultimate pit slope angle is 35°. As per the section, the slope starts at 66.5 m RL and ends at 16 m RL. The ultimate pit slope indicated in the section is 35°. For this pit configuration the tension crack angle with horizontal is 33.2°. The analysis indicates a FOS of 2.34 which is above the safe limit. Hence this planned pit configuration is safe.

b) Analysis for Section ML-4 East for Planned Pit Configuration

In this section the bench slope angle is 65°. The height of each bench being 6 m except the lowest bench which is 3.46 m high. The width of the benches have been kept 6 m each. (Table 3). The result of analysis for this section is shown in Figure 3. The analysis indicates a FOS of 1.74 which is above the safe limit. As per the section, the slope starts at 63.86 m RL and ends at 12.40 m RL with ultimate pit slope angle of 36°. As per slope stability analysis the tension crack angle with horizontal is 19.8°.

Name of the mine	Sections under investigation	Height (m)	Width (m)	Slope angle (in deg)
		8.00	8.00	62
		8.00	8.00	62
		8.00	8.00	62
	Section: ML-4	8.00	8.00	62
Periyanagalur	West Planned	8.00	8.00	62
Limestone		8.00	8.00	62
Mine		1.05	-	62
		8.00	8.00	65
		8.00	8.00	65
		8.00	8.00	65
	Section- ML-4	8.00	8.00	65
	East	8.00	8.00	65
	Planned	8.00	8.00	65

 Table 3: Bench design parameter from top to bottom for Section-ML-4 for planed pit configuration

Fig. 2 Analysis of slope along Section: ML-4 West for planned pit configuration

Fig. 3 Analysis of slope along Section: ML-4 East for planned pit configuration

B) Analysis for Section ML -5

a). Analysis for Section ML -5 West for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for Section ML-5 West are given in Table 4.

In this section, the bench slope angle is kept at 65°. The width of benches has been kept 8.0 m each. The height of benches has also been kept 6 m each except the lowest one which is 0.33 m (Table 3). The result of analysis for this section is shown in Figure 4. The analysis indicates a FOS of 2.19 which is above the safe limit. As per the section, the slope starts at 65.2 m RL and ends at 16.87 m RL with ultimate pit slope angle of 35°. As per slope stability analysis the tension crack angle with horizontal is 34.2°.

Table 4: Bench design parameters from top to bottom for Section : ML -5 for planned pit configurations

Name of the mine	Sections under investigation	Height (m)	Width (m)	Slope angle (in deg)
Periyanagalur	Section : ML-5	8.00	8.00	65
Limestone	West	8.00	8.00	65
Mine	Planned	8.00	8.00	65
		8.00	8.00	65
		8.00	8.00	65
		8.00	8.00	65
		0.33	-	65
	Section : ML-5	8.00	8.00	65
	East	8.00	8.00	65
	Planned	8.00	8.00	65
		8.00	8.00	65
		8.00	8.00	65
		8.00	8.00	65
		4.56	-	65

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

Fig. 4 Analysis of slope along Section : ML-5 West for planned pit configuration

Fig. 5 Analysis of slope along Section: ML-5 East for planned pit configuration b) Analysis for Section ML-5 East for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for Section - ML-5 East are given in Table 4.

In this Section the bench slope angle is 65° . The height of each bench being 6 m except the lowest one which is 4.56 m high. The width of the benches have been kept 6 m each (Table 4). The result of analysis for this section is shown in Figure 5. The analysis indicates a FOS of 1.66 which is above the safe limit. As per the mine section, the slope starts at 64.12 m RL and ends at 11.56 m RL with ultimate pit slope angle of 36° . As per slope stability analysis the tension crack angle with the horizontal is 24.2° .

The summary of ultimate pit slope angle and factor of safety for different sections under consideration are given in Table 5.

Sl. No.	Sections	Factor of Safety	Ultimate Pit Slope (in deg)
1	Section: ML-4 West Planned	2.34	35
	Section: ML-4 East Planned	1.74	36
2	Section: ML-5 West Planned	2.19	35
	Section :ML-5 East Planned	1.66	36

Table 5: Summary of ultimate pit slope angle and factor of safety for different sections (ideal condition) under consideration

4.4.2 Analysis of Pit Stability by- Finite Element Method - "ANSYS"

Finite Element Modeling (FEM) was carried out to know the stress distribution within the slopes. For this purpose ANSYS package available in the CAD Lab of the Department of Mechanical Engineering of the Institute was used. The whole block was modeled considering 2-D 6-Node Triangular Structural Solid (Plane 2) nodes for static plain strain conditions. The block will automatically take care of global inertia. Degree of freedom at each node is u_x and u_y . The element has quadratic displacement behavior, and it is well suited to model irregular mesh. Table 2 gives the input parameters for the FEM analysis.

A) Analysis of Section ML-4

(a) Analysis of Section ML-4 West for Planned pit configuration

Figure 6 and Figure 7 show the vertical displacement and stress distribution analysis respectively along Section ML-4 West for the planned pit configuration.

(i) Displacement profile:
 Maximum vertical displacement – 5.059 mm
 Minimum vertical displacement – nil

(ii) Vertical Stress Distribution Profile:
 Maximum Stress – 0.996 N/mm² along lowest bench
 Minimum Stress – 0.222N/mm² along most of the slopes

According to Figure 7, stress is in the range 0.001 to 0.222 N/mm² near the face. However, stress concentration of the order 0.222 to 0.444 N/mm² is observed near toe of all the benches and thus require regular monitoring.

(b) Analysis of Section ML-4 East for Planned pit configuration

Figure 8 and Figure 9 show the vertical displacement and stress distribution analysis respectively along Section ML-4 East for the planned pit configuration.

(i) Displacement profile:Maximum vertical displacement – 4.01mmMinimum vertical displacement – nil

(ii) Vertical Stress Distribution Profile:
 Maximum Stress – 1.029N/mm² along lowest bench
 Minimum Stress – 0.114N/mm² along most of the slopes

According to Figure 9, stress is in the range 0.25×10^{-3} to 0.114 N/mm^2 near the face. However, stress concentration of the order 0.114 to 0.457 N/mm² is observed near toe of all the benches and thus require regular monitoring.

B) Analysis of Section ML-5

(a) Analysis of Section ML-5 West for Planned Pit Configuration

Figure 10 and Figure 11 show the vertical displacement and stress distribution analysis respectively along Section ML-5 West for the planned pit configuration.

(i) Displacement profile:Maximum vertical displacement – 3.8 mmMinimum vertical displacement – nil

(ii) Vertical Stress Distribution Profile:
 Maximum Stress – 1.12 N/mm² along lowest bench
 Minimum Stress – 0.12-0.24 N/mm² along most of the slopes

According to Figure 11, stress is in the range 0.12×10^{-4} to 0.24 N/mm^2 near the face. However, stress concentration of the order 0.24 to 0.49 N/mm² is observed near toe of all the benches and thus require regular monitoring.

(b) Analysis of Section ML-5 East for Planned Pit Configuration

Figure 12 and Figure 13 show the vertical displacement and stress distribution analysis respectively along Section ML-5 East for the planned pit configuration.

(i) Displacement profile:
 Maximum vertical displacement – 3.143 mm
 Minimum vertical displacement – nil

(ii) Vertical Stress Distribution Profile:
 Maximum Stress – 0.941 N/mm² along lowest bench
 Minimum Stress – 0.104 N/mm² along most of the slopes

According to the Figure 13, stress is in the range 0.46×10^{-4} to 0.104 N/mm^2 near the face. However, stress concentration of the order 0.2 to 0.4 N/mm² is observed near toe of all the benches and thus require regular monitoring.

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

Fig.6 : The vertical displacement along Section : ML -4 West for the planned pit configuration

Fig. 7 : The stress distribution analysis along Section : ML-4 West for the planned pit configuration

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

Fig. 8 : The vertical displacement along Section : ML -4 East for the planned pit configuration

ternel mirrort ITTRA-16-24-11 1116 THE INC +, COSTS 1.257 254T+03 - 131039 415381 90401 -114125 571 114 .mcare 3411 1.025

Fig. 9: The stress distribution analysis along Section : ML-4 East for the planned pit configuration

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

Fig.10 : The vertical displacement along Section : ML -5 West for the planned pit configuration

Fig. 11: The stress distribution analysis along Section : ML-5 West for the planned pit configuration

Fig. 12: The vertical displacement along Section : ML -5 East for the planned pit configuration

Fig. 13: The stress distribution analysis along Section : ML -5 East for the planned pit configuration

4.4.3 Analysis of Pit Stability for Some Special Cases By Limit Equilibrium Method"

CASE I (Height of bench 6 m, Width of Bench 3 m)

Note : The height of the lowest bench may not be as specified as can be seen from Table 6. It may be noted that the bench width and height is the same as per the Sections given by M/s Ramco Cements Ltd. They have not been modified/altered.

A) Analysis for Section ML-4

a) Analysis for Section ML-4 East (3 m width) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-4 for 3 m width and 6 m height are given in Table 6.

The result of slope stability analysis of Section ML-4 East (3 m width) for the planned pit configuration is shown in Figure 14. In this section, the bench slope angle is kept at 63.4° . The width of benches are 3 m each and height of benches are 6 m each, except the lowest one which is 4.0 m high. This has been designed keeping in mind that the ultimate pit slope angle is 50°. As per the section, the slope starts at 63.86 m RL and ends at 11.86 m RL. For this pit configuration the tension crack angle with horizontal is 38.2°. The analysis indicates a FOS of 1.10 which is below the safe limit. The factor of safety for individual bench slope lie between 2.1 - 2.8. Hence, this planned pit configuration is not safe as the overall FOS is below 1.3.

b) Analysis for Section ML-4 West (3 m width) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-4 for 3 m width and 6 m height are given in Table 6.

The result of slope stability analysis of Section ML-4 West (3 m width) for the planned pit configuration is shown in Figure 15. In this section, the bench slope angle is kept at 63.4° . The width of benches are 3 m each and height of benches are 6 m each. This has been designed keeping in mind that the ultimate pit slope angle is 51° . As per the section, the slope starts at 66.50 m RL and ends at 18.50 m RL. For this pit configuration the tension crack angle with horizontal is 48.1° . The analysis indicates a FOS of 2.27 which is above the safe limit. The factor of safety for individual bench slope lie between 2.1 - 2.6. Hence, this planned pit configuration is safe.

B) Analysis for Section ML-5

a) Analysis for Section ML-5 East (3 m width) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-5 for 3 m width and 6 m height are given in Table 6.

The result of slope stability analysis of Section ML-5 East (3 m width) for the planned pit configuration is shown in Figure 16. In this section, the bench slope angle is kept at 64°. The width of benches are 3 m each and height of benches are 6 m each, except the lowest one which is 3.1 m high. This has been designed keeping in mind that the ultimate pit slope angle is 50°. As per the section, the slope starts at 64.10 m RL and ends at 13.00 m RL. For this pit configuration, the tension crack angle with the horizontal is 38.1°. The analysis indicates a FOS of 1.2, which is below the safe limit. The factor of safety for individual bench slope lie between 1.8 -2.8. Hence, this planned pit configuration is not safe. However, this can be made safe if the height of the lowest two benches is adjusted to 6 m each.

b) Analysis for Section ML-5 West (3 m width) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-5 for 3 m width and 6 m height are given in Table 6.

The result of slope stability analysis of Section ML-5 West (3 m width) for the planned pit configuration is shown in Figure 17. In this section, the bench slope angle is kept at 64°. The width of benches are 3 m each and height of benches are 6 m each. This has been designed keeping in mind that the ultimate pit slope angle is 51°. As per the section, the slope starts at 65.20 m RL and ends at 17.20 m RL. For this pit configuration the tension crack angle with horizontal is 44.4°. The analysis indicates a FOS of 2.20, which is above the safe limit. The factor of safety for individual bench slope lie between 1.8–2.6. Hence this planned pit configuration is safe.

Table 6: Bench design parameters from top to bottom for Section ML-4 and ML-5 forplanned pit configurations with 3 m width and 6 m height

Name of the	Sections under	Height	Width	Slope angle
mine	investigation	(m)	(m)	(in deg)
	Section : ML-4	8	3	64
	(3 m) East	8	3	64
	Planned	8	3	64
		8	3	64
		8	3	64
		8	3	64
Periyanagalur		4	-	64
Limestone	Section : ML-4	8	3	64
Mine	(3 m) West	8	3	64
	Planned	8	3	64
		8	3	64
		8	3	64
		8	-	64
	Section : ML-5	8	3	64
	(3 m) West	8	3	64
	Planned	8	3	64
		8	3	64
		8	3	64
		8	3	64
		3.1	-	64
	Section : ML-5	8	3	64
	(3 m) West	8	3	64
	Planned	8	3	64
		8	3	64
		8	3	64
		8	-	64

Department of Mining Engineering, National Institute of Technology Karnataka, Surathkal

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

Fig. 14: Analysis of slope along Section –ML-4 East for planned pit configuration (3 m width)

Fig. 15: Analysis of slope along Section –ML-4 West for planned pit configuration (3 m width)

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

Fig. 16: Analysis of slope along Section –ML-5 East for planned pit configuration (3 m width)

Fig. 17: Analysis of slope along Section –ML-5 West for planned pit configuration (3 m width)

CASE II: (Height of bench 6 m, Width of Bench 4 m)

Note : The height of the lowest bench may not be as specified as can be seen from Table 7. It may be noted that the bench width and height is the same as per the Sections given by M/s Ramco Cements Ltd. They have not been modified/altered.

A) Analysis for Section ML-4

a) Analysis for Section ML-4 East (4 m width) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-4 for 4 m width and 6 m height are given in Table 7.

The result of slope stability analysis of Section ML-4 East (4 m width) for the planned pit configuration is shown in Figure 18. In this section, the bench slope angle is kept at 64°. The width of benches are 4 m each and height of benches are 6 m each, except the lower two benches which are 6.0 m high. This has been designed keeping in mind that the ultimate pit slope angle is 46°. As per the section, the slope starts at 63.86 m RL and ends at 11.86 m RL. For this pit configuration the tension crack angle with horizontal is 40.5°. The analysis indicates a FOS of 1.58 which is above the safe limit. The factor of safety for individual bench slope lie between 2.0 - 2.6. Hence this planned pit configuration is safe.

b) Analysis for Section ML-4 West (4 m) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-4 for 4 m width and 6 m height are given in Table 7.

The result of slope stability analysis of Section ML-4 West (4 m width) for the planned pit configuration is shown in Figure 19. In this section, the bench slope angle is kept at 64°. The width of benches are 4 m each and height of benches are 6 m each, except the lower two benches which are 6.0 m and 2.0 m high. This has been designed keeping in mind that the ultimate pit slope angle is 45°. As per the section, the slope starts at 66.50 m RL and ends at 18.50 m RL. For this pit configuration the tension crack angle with horizontal is 21.8°. The analysis indicates a FOS of 1.7 which is above the safe limit. The factor of safety for individual bench slope lie between 2.0 - 2.6. Hence this planned pit configuration is safe.

B) Analysis for Section ML-5

a) Analysis for Section ML-5 East (4 m width) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-5 for 4 m width and 6 m height are given in Table 7.

The result of slope stability analysis of Section ML-5 East (4 m width) for the planned pit configuration is shown in Figure 20. In this section, the bench slope angle is kept at 64° . The width of benches are 4 m each and height of benches are 6 m each, except the lowest one which is 3.1 m high. This has been designed keeping in mind that the ultimate pit slope angle is 46° . As per the section, the slope starts at 64.10 m RL and ends at 13.00 m RL. For this pit configuration the tension crack angle with horizontal is 23.7° . The analysis indicates a FOS of 1.53 which is above the safe limit. The factor of safety for individual bench slope lie between 2.1 -2.8. Hence this planned pit configuration is safe.

b) Analysis for Section ML-5 West (4 m width) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-5 for 4 m width and 6 m height are given in Table 7.

The result of slope stability analysis of Section ML-5 West (4 m width) for the planned pit configuration is shown in Figure 21. In this section, the bench slope angle is kept at 64°. The width of benches are 4 m each and height of benches are 6 m each, except the lower two benches which are 6.0 m and 2.0 high. This has been designed keeping in mind that the ultimate pit slope angle is 45°. As per the section, the slope starts at 65.20 m RL and ends at 17.20 m RL. For this pit configuration the tension crack angle with horizontal is 21.5°. The analysis indicates a FOS of 1.71 which is above the safe limit. The factor of safety for individual bench slope lie between 2.1 - 2.7. Hence this planned pit configuration is safe.

Table 7: Bench design parameters from top to bottom for Section : ML -4 and ML-5 for planned pit configurations with 4 m width and 6 m height

Name of the	Sections under	Height	Width	Slope angle
mine	investigation	(m)	(m)	(in deg)
	Section: ML-4	8	4	64
	(4 m) East	8	4	64
	Planned	8	4	64
		8	4	64
		8	4	64
		6	4	64
Periyanagalur		6	-	64
Limestone	Section: ML-4	8	4	64
Mine	(4 m) West	8	4	64
	Planned	8	4	64
		8	4	64
		8	4	64
		6	4	64
		2	-	64
	Section: ML-5	8	4	64
	(4 m) West	8	4	64
	Planned	8	4	64
		8	4	64
		8	4	64
		8	4	64
		3.1	-	64
	Section: ML-5	8	4	64
	(4 m) West	8	4	64
	Planned	8	4	64
		8	4	64
		8	4	64
		6	4	64
		2	-	64

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

456

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

Fig. 18: Analysis of slope along Section –ML-4 East for planned pit configuration (4 m width)

Fig. 19: Analysis of slope along Section –ML-4 West for planned pit configuration (4 m width)

457

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

Fig. 20: Analysis of slope along Section –ML-5 East for planned pit configuration (4 m width)

Fig. 21: Analysis of slope along Section –ML-5 West for planned pit configuration (4 m width)

CASE III: (Height of bench 6 m, Width of Bench 4 m, 6 m)

Note : The height of the lowest bench may not be as specified as can be seen from Table 8. It may be noted that the bench width and height is the same as per the Sections given by M/s Ramco Cements Ltd. They have not been modified/altered.

A) Analysis for Section ML-4

a) Analysis for Section ML-4 East (4 m, 6 m width) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-4 for 4 m and 6 m width and 6 m height are given in Table 8.

The result of slope stability analysis of Section ML-4 East (4 m, 6 m width) for the planned pit configuration is shown in Figure 22. In this section, the bench slope angle is kept at 64°. The width of benches are 4 m and between every two benches of width 4.0 m, a bench of 8.0 has been designed. The height of benches are 6 m each, except the lowest bench which **is** 4.0 m high. As per the section, the slope starts at 63.86 m RL and ends at 11.86 m RL. The ultimate pit slope indicated in the section is 41°. For this pit configuration the tension crack angle with horizontal is 18.3°. The analysis indicates a FOS of 1.87 which is above the safe limit. The factor of safety for individual bench slope lie between 1.8-2.5. Hence this planned pit configuration is safe.

b) Analysis for Section ML-4 West (4 m, 6 m) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-4 for 4 m, 6 m width and 6 m height are given in Table 8.

The result of slope stability analysis of Section ML-4 West (4 m, 6 m width) for the planned pit configuration is shown in Figure 23. In this section, the bench slope angle is kept at 64° . The width of benches are 4 m and between every two benches of width 4.0 m, a bench of 8.0 has been designed. The height of benches are 6 m each. This has been designed keeping in mind that the ultimate pit slope angle is 44° . As per the section, the slope starts at 66.50 m RL and ends at 18.50 m RL. For this pit configuration the tension crack angle with horizontal is 40.1° . The analysis indicates a FOS of 1.68, which is above the safe limit. The factor of safety for individual bench slope lie between 1.8 - 2.5. Hence this planned pit configuration is safe.

B) Analysis for Section ML-5

a) Analysis for Section ML-5 East (4 m, 6 m width) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-5 for 4 m and 6 m width and 6 m height are given in Table 8.

The result of slope stability analysis of Section ML-5 East (4 m, 6 m width) for the planned pit configuration is shown in Figure 24. In this section, the bench slope angle is kept at 64°. The width of benches are 4 m and between every two benches of width 4.0 m, a bench of 8.0 has been designed. The height of benches are 6 m each, except the lowest one which is 3.1 m high. This has been designed keeping in mind that the ultimate pit slope angle is 41°. As per the section, the slope starts at 64.10 m RL and ends at 13.00 m RL. For this pit configuration the tension crack angle with the horizontal is 15.7°. The analysis indicates a FOS of 2.28, which is above the safe limit. The factor of safety for individual bench slope lie between 1.8 - 2.6. Hence this planned pit configuration is safe.

b) Analysis for Section ML-5 West (4 m, 6 m) for Planned Pit Configuration

The bench design parameters from top to bottom for the planned pit configurations for the Section ML-5 for 4 m and 6m width and 6 m height are given in Table 8.

The result of slope stability analysis of Section ML-5 West (4 m, 6 m width) for the planned pit configuration is shown in Figure 25. In this section, the bench slope angle is kept at 64°. The width of benches are 4 m and between every two benches of width 4.0 m, a bench of 8.0 m has been designed. The height of benches are 6 m each. This has been designed keeping in mind that the ultimate pit slope angle is 44°. As per the section, the slope starts at 65.20 m RL and ends at 17.20 m RL. For this pit configuration, the tension crack angle with horizontal is 40.6°. The analysis indicates a FOS of 1.73, which is above the safe limit. The factor of safety for individual bench slope lie between 1.8 -2.6. Hence this planned pit configuration is safe.

Table 8: Bench design parameters from top to bottom for Section - ML -4 and ML-5for planned pit configurations with 4 m, 6 m width and 6 m height

Name of the mine	Sections under investigation	Height (m)	Width (m)	Slope angle (in deg)
	Section : ML-4	8	4	64
	(4 m, 6 m) East	8	4	64

	Planned	8	8	64
		8	4	64
		8	4	64
		8	8	64
		4	-	64
	Section : ML-4	8	4	64
	(4 m, 6 m) West	8	4	64
	Planned	8	8	64
		8	4	64
Periyanagalur		8	4	64
Limestone		8	-	64
Mine	Section : ML-5	8	4	64
	(4 m, 6 m) West	8	4	64
	Planned	8	8	64
		8	4	64
		8	4	64
		8	8	64
		3.1	-	64
	Section : ML-5	8	4	64
	(4 m, 6 m) West	8	4	64
	Planned	8	8	64
		8	4	64
		8	4	64
		8	-	64

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

Fig. 22: Analysis of slope along Section:ML-4 East for planned pit configuration (4 m, 6 m width)

Fig. 23: Analysis of slope along Section :ML-4 West for planned pit configuration (4 m, 6 m width)

Report on the Stability of Slopes of Periyanagalur Limestone Mined of M/s. The Ramco Cements Ltd., Ariyalur

Fig. 24: Analysis of slope along Section :ML-5 East for planned pit configuration (4 m, 6 m width)

Fig. 25: Analysis of slope along Section –ML-5 West for planned pit configuration (4 m, 6 m Width)

	Case	I:3 m width and	d 6 m height	
Section	Overall FOS	Range of FOS	FOS overall	Comments /
		for individual	except lowest	Recommendations
		benches	bench	
ML-4 EAST	1.10	2.1 - 2.8	NA	
ML-4 WEST	2.27	2.1 - 2.6	NA	
ML - 5 EAST	1.20	1.8 - 2.8	1.87	Adjust lowest bench
				height with
				neighboring benches
ML –5 WEST	2.20	1.8 - 2.6	NA	
	Case	II : 4 m width an	d 6 m height	
Section	Overall FOS	Range of FOS	FOS overall	Comments /
		for individual	except lowest	Recommendations
		benches	bench	
ML-4 EAST	1.58	2.0 - 2.6	NA	
ML- 4 WEST	1.70	2.0 - 2.6	1.52	
ML - 5 EAST	1.53	2.1 - 2.8	2.23	Adjust lowest bench
				height with
				neighboring benches
ML –5 WEST	1.71	2.1 - 2.7	1.51	
	Case III	:4 m ,6 m width	and 6 m height	
Section	Overall FOS	Range of FOS	S FOS overal	ll Comments /
		for individua	l except lowe	st Recommendations
		benches	bench	
ML-4 EAST	1.87	1.8 - 2.5	1.51	
ML- 4 WEST	1.68	1.8 -2.5	NA	FOS less than
				compared to Case
				I, because sliding
				mass is more.
ML - 5 EAST	2.28	1.8 -2.5	1.70	
ML –5 WEST	1.73	1.8 - 2.6	NA	

Table 9: Summary of all special cases i.e., Case Study I, II & III

5.0 CONCLUSIONS AND RECOMMENDATIONS 5.1 CONCLUSIONS

The slope stability studies have been carried out along Section ML-4 (West & East) and ML-5 (West & East) for planned pit configurations using GALENA and ANSYS softwares. The factor of safety for planned pit configuration (ideal and special conditions) is determined using GALENA software whereas ANSYS results show the distribution of stress in the slopes. Factor

of safety higher than 1.3 shows the safe working conditions upto limestone horizon (92 mts) regarding stability of slopes. ANSYS results confirm that the distribution of stress in the slopes is not critical, but requires regular monitoring at the toes of benches. The following conclusions are drawn after analyzing the stability of slopes for their 'condition of limiting equilibrium' and 'stress distribution' respectively. The results of FOS along Section ML-4 (except for 3 m width and 6 m height) and Section ML-5 (except for 3 m width and 6 m height) of the pit for planned pit configurations are more than 1.3 which is the minimum recommended value required for stability of rock slopes. The FOS of slopes ignoring the lowest bench have been given for Cases I, II & III (Table 9). This indicates that if the height of the lowest bench can be increased by adjusting with second lowest bench, the FOS for overall slopes can be increased above 1.3. This is because of the smaller bench height of the lowest most bench which causes the tension crack angle for overall slope to decrease, thus increasing the sliding mass.

The results indicated in this report are based on the laboratory results of rock samples collected from the mine under study and is valid only with well developed drainage and slope monitoring systems.

5.2 RECOMMENDATIONS

As a precautionary measure, the pit should be provided with garland drain/ bund / barrier on the upper surface of pit to divert the run-off of rainwater away from the pit. It should be kept effective during the monsoon. The discontinuance of the pre-monsoon preparation at any location will jeopardize the whole effort of maintaining the designed slopes. The open tension cracks should be filled with permeable material. This filled material should be consolidated by dozer. At the top, any impermeable material may be spread to avoid entry of water to lower level.

Project "HYDROLIME"

INTEGRATED HYDROGEOLOGICAL STUDY FOR AMALGAMATED *PERIYANAGALUR LIMESTONE MINE* OF M/s. THE RAMCO CEMENTS LIMITED, ARIYALUR (A GEOSPATIAL APPROACH)

Submitted to

THE RAMCO CEMENTS LIMITED

Submitted by

Department of Remote Sensing Bharathidasan University, Khajamalai Campus Tiruchirappalli – 620 023, Tamil Nadu

PROJECT TEAM

Dr. D. RAMESH

Principal Investigator

Mr.U.KUMARA GANESH

Mr. S. SATHIYASEELAN

Project Associates

Department of Remote Sensing Bharathidasan University Khajamalai Campus Tiruchirappalli 620023

INTEGRATED HYDROGEOLOGICAL STUDY FOR AMALGAMATED PERIYANAGALUR LIMESTONE MINE OF M/s. THE RAMCO CEMENTS LIMITED, ARIYALUR

1.0 INTRODUCTION

M/s. The Ramco Cements Ltd., - formerly known as Madras Cements Limited, is involved in the production of cement. One of its manufacturing plant is located at Govindapuram Ariyalur District of Tamil Nadu with an annual production capacity of 5.5 million tons. The major raw material "limestone" for this unit is sourced from the Ariyalur mines The present study has been taken up to conduct hydrogeological studies in and around the mining area of Periyanagalur. In order to conduct the hydrogeological study, the company has entrusted the work to the Department of Remote Sensing, Bharathidasan University, Tiruchirappalli vide work order no TRCL –WO/ BU/ Hydrolime. Accordingly, the project team from the Department of Remote Sensing visited the mine area, conducted field surveys, pumping tests, collected water samples and other necessary secondary data from the authorities. This interim report presents the data and findings.

2.0 STUDY AREA

The Periyanagalur mines (PNR) is confined within 11^{0} 07' 15.8''- 11^{0} 07' 51.4''latitude and 79⁰ 08' 26.9''- 79⁰ 09' 01.0''' E Longitude (Fig. 1). It is covered in the Survey of India (SoI) topographic sheet no. 58 M/4. It was agreed that all the thematic maps, groundwater quality, hydrogeology and other related investigations pertaining to the PNR Mines will be carried out for the area confined within this 10 km radius circle.

2.1 Climate and rainfall

The study area generally experiences tropical climate with hot summers and warm winters. April and May are the hottest months when the average daytime temperature exceeds above 35° C whereas November to January months are comparatively cooler with the average temperature being around 27° C. The wind speed in the study area can exceed above 25 km / hour during June - August and there after it gradually decreases and reaches the lowest value of 7.7 km/hour. The study area receives rainfall from both the northeast (September to December) and southwest (June to August) monsoon seasons. However, the amount of rainfall received during the northeast monsoon is higher (485 mm) than that of southwest monsoon (357 mm).

2.2 Slope

Slope can be expressed in two ways: it can be expressed either as degree or as percentage. Currently, several algorithms are developed in GIS that facilitate to prepare slope maps easily and accurately. One of the commonly used methods for slope map preparation in GIS is neighborhood method. The neighborhood method calculates the slope at one grid point by comparing the elevations of the grid points that surround it. In the present study, slope map (in percentage) was prepared using the 30 m resolution of Shuttle Radar Topographic Mission (SRTM) data which was processed in the ArcGIS software by utilizing neighborhood method. The prepared map has indicated that the study area has four different categories of slope (Fig. 2) and it was noticed that the gently sloping (2-5 %) is the dominant slope category in the study area.

Fig.1 Study Area

Fig.2 Slope

2.3 Relief

Relief is the difference between the highest and lowest elevations in an area. The study area does not display any drastic change in elevation along the northern and western parts where it ranges between 75-150 m above msl. However, the elevation is increasing from south to north gradually due to the presence of uplands and the maximum elevation of the study area (150 m) is noticed in the North.

2.4 Geology

Geology generally describes the rocks present in an area. It plays a key role in any mining industry not just for finding out promising mineral deposits but it can also be tremendously useful for various hydrogeological investigations, environmental impact assessment etc. In addition, it can also help the mine managers / administrators in the reclamation part of the cycle when the mine is closing. The geology map has indicated that the study area consists of sediments belonging to Cretaceous to Quaternary periods that are represented by sandstone, limestone, clay etc. Most of the study area having Tertiary sediments trending towards SW direction. Sandstone with clay intercalation is dominant sediments deposited in the study area.

2.5 Soil

Soil is an important element of the ecosystem and acts as a medium that links air, water and life and plays a significant role in food production and environment conservation. It greatly influences the welfare of the humankind and acts as the base for economic development. In addition, for any mining industry knowledge about the soil types present in the area is critical as to adopt suitable soil conservation practices. The soil map of the study area was prepared using the National Bureau of Soil Survey and Land Use Planning report (NBSS & LUP, 1996). The prepared soil map has shown that the study area consists of four types of soils of which soil type "*Typic Chromusters*" (dark greyish brown to dark brown, very deep, fine, clayey, montmorillonitic- imperfectly drained, moderately to strongly alkaline, hyper thermic) cover major part of the study area.

2.6 Drainages

As the study area is made up of sedimentary rocks, it does not display the development of fine network of drainages owing to pervious nature of the sediments. There are several ephemeral streams flowing in the study area of which the Marudaiyar river flowing in the SE is the prominent one (Fig. 3). Though the streams in the study area are ephemeral, they act as an important source for irrigation and also happen to be a major source for groundwater recharge in the study area.

2.7 Drainage density

The drainage map of the study area (shape file) was used to prepare the drainage density map in GIS. The same has indicated that the study predominantly consists of drainage density classes "very low" and "low" as study area is made up of sedimentary rocks.

2.8 Lineaments / faults

Lineaments / faults help to identify the structural fabric of an area and also to infer the ongoing dynamic movements. In addition, lineaments / faults also act as conduits for groundwater recharge in an impervious terrain. In the present study, lineament / fault map was prepared through the visual interpretation of high resolution satellite images.

Fig. 3 Drainage

For identifying the lineaments / faults, the standard image interpretation keys like drainage pattern, tones etc. were used. Further, using the shaded relief map prepared for the study area, additional lineaments / faults were brought out. The prepared map has shown that the lineaments / faults in the study area generally trend in four azimuthal frequencies viz.

1. NE-SW, 2. NW-SE, 3. ENE-WSW and 4. NNE-SSW.

2.9 Lineament density

Lineament density map for the study area was prepared using the lineaments / faults map of the study area in GIS. The prepared map has indicated that the lineament density maxima zones are located close to Kadugur, Vilangudi, Ariyalur and Vellipiringam. The eastern half of the study area generally possesses low to moderate lineament density.

2.10 Geomorphology

Geomorphology or the study of landforms can provide vital information needed for assessing the resource potential, resource constraints and environmental vulnerability of an area. Hence, for a large number of studies, geomorphology acts as the foundation. In the present study, a detailed geomorphology map was prepared using high resolution satellite images which was subsequently verified and updated in the field (Table 1). The prepared map has indicated that the study area consists of different types of landforms (denudational, fluvial etc.) which stand as an evidence for the dynamic evolution of the area. The already mentioned Tertiary sandstone upland found to cover (38.86sq.km) in the eastern part of the study area. The upland is lateralized and noticed to be deeply eroded at places by the running water (Fig.10). Most of the study area covered by buried pediment geomorphic landform with deep, moderate and shallow conditions. Buried pediment shallow landform has covered major part of the study area around 103.76sq.km.

S.No	LANDEODM	AREA		
	LANDFORM	(in sq.km)	%	
1	Upland	38.86	12.37	
2	Buried Pediment Shallow	103.76	33.03	
3	Buried Pediment Moderate	90.45	28.79	
4	Buried Pediment Deep	64.54	20.54	
5	Tanks& River	16.55	5.27	
	Total	314.16	100.00	

Table. 1 AREAL EXTENTS OF VARIOUS GEOMORPHOLOGICAL LANDFORMS

2.11 Land use / Land cover

Land use refers to the human induced changes / modifications on the land surface like agriculture, settlements, mining etc. whereas land cover refers to the land surface that is unmodified by human activities or human induced changes. The landuse / landcover features of the study area were interpreted from the high resolution (0.45 m) Geoeye satellite image. The land use / land cover types were identified through using visual interpretation techniques following the Level-II classification system of the National Remote Sensing Centre (NRSC) (Fig.4; Table no.2).

Fig.4 Land use / Land cover

S.No	Land Use and Land cover	AREA		
		(in sq.km)	%	
1	Villages	15.43	4.91	
2	Fallow	198.83	63.29	
3	Plantation	46.70	14.87	
4	Reserve Forest	14.37	4.57	
5	Land with Scrub	0.51	0.16	
6	Mining / Industrial	11.13	3.54	
7	Gully erosion	7.64	2.43	
8	River	4.73	1.51	
9	Tanks	11.83	3.77	
10	Industry	2.99	0.95	
	Total	314.16	314.16	

 Table.2 LAND USE AND LAND COVER

The prepared map has indicated that the study area is predominantly covered by fallow land (198.83sq.km) and followed by plantation. The reserve forest occupied around 14.37sq.km in the study area.

3.0 Groundwater level

The groundwater levels in the study area were measured in the bore wells and dug wells (Fig. 5) during the field survey using water level indicator equipment. The recorded values were used to generate a groundwater level contour map in GIS (Fig. 6). Accordingly, groundwater level contour maps were generated for two different periods.

3.1 Groundwater level (May 2023)

The groundwater level map prepared for April has indicated that the ground water level in the study area ranges from 10 - 50 m bgl (below ground level). It was noticed that the groundwater level near the mine ranges from 40-45 m bgl and the zones with deepest groundwater level were noticed along the NW margins of the study area. It was also observed that a shallow groundwater level zone occurs within the 5 km radius boundary drawn around the mine area and is located just 2 km from the mine

3.2 Groundwater level (January, 2024)

During the winter season due to the lack of less rain fall the water table is increase then the post monsoon period. The water level was ranged from 7-40 m bgl. It was observed the water level is increasing from NE and SW region of the study area. Hydrogeologically, the alluvial formation exhibits shallow water table, whereas the Limestone and Sandstone formations exhibit deeper water table.

Prepar - THE Dates Anth' Special by No. Additional States and the Context Annual States Annual Transport - Land

Fig. 5 Sample Location

Fig. 6 Water level with reference to RL

4.0 Pumping Test & Aquifer Characteristics

RCL has engaged the **Department of Remote Sensing, Bharathidasan University, Trichy** for **'Integrated Hydrological Investigations-A Geospatial Approach'** in and around their Mine Lease Areas in Ariyalur Region (Project 'Hydrolime') since May 2017 and submitted the periodical Reports to the Authorities. Also, the EIA Coordinator and Officials of M/s. Thrust Geo-consultants Private Limited, an Accreditated Ground Water **Professionals** for 'Hydrogeological Report for Mining Projects' by Central Ground Water Authority (CGWA) have carried out the Hydrogeological Survey including a Pumping Test during 09.01.2024 and submitted the Report.

In order to find the aquifer characteristics, **Pumping Test** has been conducted in the Borewell near the Mine. The depth of the borewell is 90 m and is pumped with a 5 HP submersible pump. The average discharge of the pump was set for 13.4 cu.m per hour. Pumping was done for a total duration of 66 minutes and the recovery was monitored for about 93 minutes. The water level in the pumping well was monitored at regular intervals along with discharge. The drawdown of water levels in the well was measured and given in the table. The static water level was at 11.54 m before the starting of the test and went down upto 60.47m. The plot of Drawdown Vs Time and the plot of Residual Drawdown Vs t/t' was done using the pump test data and the draw down per log cycle was estimated in each plot. The transmissivity value is estimated using the formula :

$$\Gamma = \frac{2.30 \text{ x Q}}{4\text{X} \Pi * \Delta} \text{ S}$$

Where T is Transmissivity in m²/day Q is the pumping rate in m³/day Π is a 3.14 & Δ S is drawdown per log cycle.

The drawdown per log cycle estimated from drawdown data ie., $\triangle S = 22m$. the estimated transmissivity value is

 $T = \frac{2.30 \times 312}{4 \times 3.14 \times 22} = 2.59 \text{ m}^2/\text{day}$

The drawdown per log cycle estimated from recovery data ie., $\triangle S = 26m$. the estimated transmissivity value is

$$T = \frac{2.30 \times 312}{4 \times 3.14 \times 22} = 2.19 \text{ m}^2/\text{day}$$

Average "T" value of the Limestone aquifer is estimated to be 2.39 m²/ day

Table : 2 Pumping Test

Pumping Test - RCL Borewell	S.W.L = 11.54 m
ID Location - Near Mine Office	Q= 20 cum/hr.

Time since	Pumping Water	Drawdown in	Discharge / Remarks
Pump Start,	Level in meter	meter	
minutes			
0	11.54	0.00	SWL
1	11.67	0.13	Pump Started
2	21.59	10.05	
3	27.13	15.59	
4	31.24	19.70	Yield : 14000 LPH
5	35.50	23.96	
6	37.58	26.04	
7	38.97	27.43	
8	40.30	28.76	
9	41.02	29.48	
10	41.70	30.16	
11	42.29	30.75	
12	42.57	31.03	
13	42.94	31.40	
15	45.04	33.50	
17	46.52	34.98	
19	48.13	36.59	
21	48.65	37.11	
23	49.64	38.10	
25	50.67	39.13	
27	51.32	39.78	Yield : 13400 LPH
29	51.83	40.29	
31	52.63	41.09	
33	53.26	41.72	
35	53.47	41.93	
37	53.88	42.34	
39	54.19	42.65	
41	54.77	43.23	Yield : 13200 LPH
43	55.12	43.58	
45	55.47	43.93	
47	55.89	44.35	
49	56.18	44.64	

Time since	Pumping Water	Drawdown in	Discharge / Remarks
Pump Start,	Level in meter	meter	
minutes			
51	56.46	44.92	
53	56.78	45.24	
55	57.07	45.53	
57	57.39	45.85	
62	58.17	46.63	
67	58.65	47.11	
72	59.18	47.64	
77	59.86	48.32	Yield : 12980 LPH
82	60.34	48.80	
87	60.84	49.30	
92	61.31	49.77	
93	60.47	58.65	Pump Stopped

Recovery Test

Time Since	Time Since				
Pumping	Pumping		Depth To	Residual	
Started	Stopped	. /. •	Water Level	Draw Down	
(Minutes)	(Minutes)	t/t '	(M)	(M)	Remarks
't'	t'		, í		
94	1	94.0	56.91	55.09	
95	2	47.5	51.56	49.74	
96	3	32.0	49.02	47.20	
97	4	24.3	46.46	44.64	
98	5	19.6	44.00	42.18	
99	6	16.5	41.09	39.27	
100	7	14.3	39.00	37.18	
101	8	12.6	37.79	35.97	
102	9	11.3	36.07	34.25	
104	11	9.5	33.81	31.99	
106	13	8.2	31.79	29.97	
108	15	7.2	28.74	26.92	
110	17	6.5	28.00	26.18	
112	19	5.9	27.00	25.18	
114	21	5.4	26.03	24.21	
116	23	5.0	25.36	23.54	
118	25	4.7	24.67	22.85	
123	30	4.1	23.49	21.67	
128	35	3.7	22.10	20.28	
133	40	3.3	21.72	19.9	
138	45	3.1	20.86	19.04	
143	50	2.9	20.30	18.48	
148	55	2.7	19.75	17.93	
153	60	2.6	19.23	17.41	
246	153	1.6	15.85	14.03	

Drawdown Curve of the Aquifer

Recovery Curve of the Aquifer

The limestone aquifer is observed to be very low in terms of transmissibility and hydraulic conductivity.

The limestone mining area, which falls receives a mean annual rainfall of 1096 mm as recorded in the nearest rain gauge station at Ariyalur. Pre monsoon water level inside the mine is 45 m below ground level and post monsoon water level is at 40 m below ground level. The depth of Mine will be 92 m BGL at Conceptual Stage. However, as simultaneous Backfilling is being continued in the Pit, the actual mined out voids will be reduced. Accordingly, the Mine Pit seepage quantity is assessed as given in Table-3.

Working Bench RL, m	Void, sq.m	Backfilled Area, sq.m	Effective Void, sq.m	Working Level (BGL), m	Seepage Quantity, KLD
73 - 64	3,81,733	0	0	9	0
64 - 58	3,56,169	7,719	3,48,450	15	0
58 - 52	3,31,077	7,719	3,23,358	21	0
52 - 46	3,06,456	13,010	2,93,446	27	0
46 - 40	2,82,305	13,010	2,69,295	33	0
40 - 34	2,21,240	35,354	1,85,886	39	0
34 - 28	1,60,813	36,534	1,24,279	45	298.270
28 - 22	1,31,081	40,913	90,168	51	216.403
22 - 16	1,01,087	14,022	87,065	57	208.956
16 - 10	88,534	14,018	74,516	63	178.838
10 - 04	59,029	15,268	43,761	69	105.026
04 - (-2)	50,138	13,078	37,060	75	88.944
(-2) - (-8)	36,664	11,978	24,686	81	59.246
(-8) - (-14)	30,079	8,978	21,101	87	50.642
(-14)-(-19)	24,044	4,978	19,066	92	38.132
Total Seepage Realisation at 92 m BGL					1244.458

 Table : 3 Mine Pit Seepage Quantity

The hydrogeological parameters arrived for the top water table limestone aquifer from pumping test is : Transmissivity "T" - 2.39 m²/day. Permeability 'K' value has been derived from T value and thickness of Limestone Aquifer.

In order to estimate the mine Seepage quantity the Darcy's flow equation is applied. As per Darcy Law Flow through a porous media is a product of Hydraulic gradient, Area of cross section and Hydraulic conductivity and is given by the equation :

Q = KIA

where K is the Hydraulic conductivity in m/day i.e., 0.04 m/day

I is the hydraulic gradient estimated at 0.01 from earlier studies

483

A is the area of cross section of the exposed aquifer ie., the perimeter of the mine pit x saturated water column

Radius of Influence for PNR mine pumping

The estimated average seepages in the mine pit is around **1,245 KLD**. The zone of influence will be of the shape of an ellipsoidal or cylindrical shape unlike a circular shape in isotropic and homogeneous condition. Accordingly, Hudak's method suggest the following formula:

i) $V_{C} = Q(t) / \eta_{e}$

ii) $A_C = V_C / b$

iii) $\mathbf{R} = (\sqrt{A_{\rm C}} / \pi) + r_{\rm c}$

Where,

Q = Rate of pumping from the mine in m³/day

t = time of continuous pumping in days

 η_e = the effective fractured or secondary porosity,

b = saturated thickness of aquifer around the mine

 r_c = the radius or equivalent radius of the mine pit in meters

 V_c = Volume of the water pumped from the mine pit in m³

 A_C = Area of zone influence in the aquifer in sq meters.

Based on these formulae the radius of influence for Periyanagalur mines is estimated. In the case of Periyanagalur mine pumping the quantity of mine dewatering Q at peak is 1,245 KLD for about 300 days, 't' the effective porosity is assumed to be around 4.0% or 0.04; the saturated thickness (b) of the aquifer is 52 m. The mine dimensions of Periyanagalur of bottom bench with sump is 19066 sq.m. The equivalent radius of the mine, therefore,

 $r_{c}^{2} = (19066) / \pi, \text{ or } r_{c} = 77.9 \text{ m}$ V_C = (Q x t) / η_{e} = (1245 x 300) / 0.04= 9337500 m³ A_C = V_C / b = 9337500 / 52 = 179567 sq.m

And therefore $R = (\sqrt{A_c}/\pi) + r_c$ = $\sqrt{(179567/3.14)} + 77.9$ = $\sqrt{57187} + 77.9$ = 239.1 + 77.9 = 317 m.

Therefore, the radius of zone of influence is 317 m which falls within the mining lease area. When pumping is being done in mine pit, it is the actual quantity that is contributed from the aquifer surrounding the mine pit. Hence inflows into the mine equals the water pumped from the mine pit. As a result, the cone or zone of influence that is formed inside the pit within the saturated aquifer at the Conceptual Stage (Fig. 7). Thus, mining even at the depth of 92 m BGL, there will not be any influence on the nearby ground water structures in the vicinity. **The anticipated cone of depression in such aquifers with low T values will be highly localized, and does not spread beyond the Mine due to poor permeability of limestone aquifer.**

The seepage water is collected in the mine pit and allowed to settle down in the sump to remove the turbid solids and finally clear water is only pumped and utilised for gainful usage for agriculture activity in the surrounding village as in current practice.
