

#### **The Ramco Cements Limited**

Proposed Expansion of Ramasamy Raja Nagar Cement Plant by Inclusion of Revamped Old Line-II operations to existing Lines I & III (Operation of all 3 Existing Lines-as Upgraded) and Increasing Operational Days from 320 days to 345 days

Production Enhancement of Clinker from 1.44 MTPA to 2.76 MTPA & Cement from 2.70 MTPA to 4.00 MTPA along with associated Waste Heat Recovery System (WHRS) of 13 MW

SF Nos. Parts of 1-14, 16, 22, 24, 30-32, 34-39, 49-52, 56-60, 65-66, 210, 212, 214, 221, 222, 225-230 of Tulukkappatti, 192, 194-212, 215, 216 & 287 of Thammanayakkanpatti and 100-103, 108, 109, 112 & 113 Vachchakkarappatti Villages,

Taluk & District Virudhunagar, Tamil Nadu

Environmental Clearance under EIA Notification 2006 Schedule SI. No. 3(b) - Category 'A'

Draft Environmental Impact Assessment Report
(after TOR for Public Hearing)

Awarded TOR Identification No. TO24A1102TN5995426N dated 12.11.2024
Baseline Data Collection Period : Jul.-Sep. 2024 (Premonsoon Season)

December 2024

#### **EIA Consultant**

ABC Techno Labs India Private Limited, Chennai
Accreditation Certificate: NABET/EIA/2225/RA0290 dated 11.06.2023
with Validity till 16.11.2025

(SI. No. 4 of QCI/NABET List dated 29.10.2024)

Lab Accreditation: NABL Certificate No. TC-5770 dated 03.04.2024-valid till 02.04.2026

# Content

| SI. No.     | <u>Description</u>                                            | <u>Page No.</u> |
|-------------|---------------------------------------------------------------|-----------------|
| ı           | Content                                                       |                 |
| П           | Disclaimer                                                    | 8               |
| Ш           | Certificate of Plagiarism Check                               | 9               |
| IV          | Disclosure of Experts                                         | 10              |
| V           | Project Proponent Declaration                                 | 12              |
| VI          | EIA Consultant Undertaking                                    | 13              |
| VII         | Awarded TORs                                                  | 14              |
| VIII        | Awarded TORs & their Incorporation in the EIA Report          | 35              |
|             | Executive Summary                                             | 51-77           |
| 1.0         | Introduction                                                  | 78              |
| 1.1         | Purpose of the Report                                         | 78              |
| 1.2         | Identification of Project Proponent                           | 80              |
| 1.3         | Identification of the Project                                 | 81              |
| 1.4         | Regulatory Approvals for the Plant                            | 94              |
| 1.5         | Compliance to Statutory Approvals                             | 95              |
| 1.6         | Importance to the Country & Region                            | 106             |
| 1.7         | Need for the Proposal                                         | 106             |
| 1.8         | The Proposal                                                  | 109             |
| 1.9         | Scope                                                         | 110             |
| 2.0         | Project Profile                                               | 111             |
| 2.1         | Description of the Proposal                                   | 111             |
| 2.2         | Magnitude of Operation                                        | 111             |
| 2.3         | Environmental Setting                                         | 112             |
| 2.4         | Plant Layout & Land Use                                       | 119             |
| 2.5         | Stability Certificate                                         | 119             |
| 2.6         | Green Belt Development                                        | 134             |
| 2.7         | Plant Contour Levels & Drainage Pattern                       | 142             |
| 2.8<br>2.9  | Raw Materials Demand, Source & Mode of Transportation         | 145<br>145      |
| 2.9<br>2.10 | Sustainable Limestone & Kankar Supply  Machineries & Storages | 145             |
| 2.10        | Action Plan for Stock Piles                                   | 148             |
| 2.11        | Process                                                       | 148             |
| 2.12        | Raw Materials Characteristics & Fuel Linkages                 | 153             |
| 2.14        | Waste Heat Recovery Boilers                                   | 154             |
| 2.15        | Power Demand & Source                                         | 157             |
| 2.16        | Solar Power Harnessing                                        | 158             |
| 2.17        | Fuel Storages                                                 | 158             |
| 2.18        | Electrical Energy and Heat Energy Consumption                 | 158             |
| 2.19        | Water Demand & Source                                         | 159             |
| 2.20        | APC Measures                                                  | 161             |
| 2.21        | Solid Wastes                                                  | 161             |
| 2.22        | Hazardous Wastes                                              | 161             |
| 2.23        | Employment Generation                                         | 162             |
| 2.24        | Project Cost                                                  | 162             |
| 2.25        | Project Completion Schedule                                   | 162             |
|             |                                                               |                 |

3

| SI. No. | No. <u>Description</u>                                   |     |  |  |  |
|---------|----------------------------------------------------------|-----|--|--|--|
| 3.0     | Description of the Environment                           | 163 |  |  |  |
| 3.1     | Study Area                                               | 163 |  |  |  |
| 3.2     | Environmental Components                                 | 173 |  |  |  |
| 3.3     | Methodology Adopted                                      | 174 |  |  |  |
| 3.4     | Micrometeorological Status                               | 178 |  |  |  |
| 3.5     | Ambient Air Quality                                      | 184 |  |  |  |
| 3.6     | Noise Levels                                             | 202 |  |  |  |
| 3.7     | Water Environment                                        | 203 |  |  |  |
| 3.8     | Land Environment                                         | 211 |  |  |  |
| 3.9     | Flora & Fauna                                            | 215 |  |  |  |
| 3.10    | Socioeconomic Environment                                | 227 |  |  |  |
| 3.11    | Interpretations of Baseline Data                         | 244 |  |  |  |
| 3.12    | Summary of Baseline Status                               | 247 |  |  |  |
| 4.0     | Anticipated Environmental Impact and Mitigation Measures | 248 |  |  |  |
| 4.1     | Identification of Impacts                                | 248 |  |  |  |
| 4.2     | Construction Phase                                       | 248 |  |  |  |
| 4.3     | Impacts during Operation Phase                           | 251 |  |  |  |
| 4.4     | Impact Quantification                                    | 269 |  |  |  |
| 5.0     | Analysis of Alternatives (Technology & Site)             | 271 |  |  |  |
| 5.1     | Technology                                               | 271 |  |  |  |
| 5.2     | Alternative Sites Considered                             | 271 |  |  |  |
| 5.3     | Co-Processing of Hazardous Waste                         | 271 |  |  |  |
| 5.4     | Alternative Fuel System & Plastic Wsate Utilisation      | 273 |  |  |  |
| 5.5     | Solid Wastes Utilisation                                 | 275 |  |  |  |
| 6.0     | Environmental Monitoring Programme                       | 277 |  |  |  |
| 6.1     | Environment Cell and Compliances                         | 277 |  |  |  |
| 6.2     | Ambient Air, Noise, Water & Soil Quality                 | 277 |  |  |  |
| 6.3     | Noise Quality Management Plan                            | 277 |  |  |  |
| 6.4     | Emission &b Discharge from the Plant                     | 278 |  |  |  |
| 6.5     | Green Belt                                               | 278 |  |  |  |
| 6.6     | Social Parameters                                        | 278 |  |  |  |
| 6.7     | Performance Monitoring Schedule of APC Equipment         | 278 |  |  |  |
| 6.8     | Post Project Environmental Monitoring                    | 281 |  |  |  |
| 7.0     | Additional Studies                                       | 283 |  |  |  |
| 7.1     | Hazards Identification & Risk Assessment                 | 283 |  |  |  |
| 7.2     | Disaster Management Plan                                 | 297 |  |  |  |
| 8.0     | Project Benefits                                         | 312 |  |  |  |
| 8.1     | Environmental Benefits                                   | 312 |  |  |  |
| 8.2     | Social Benefits                                          | 312 |  |  |  |
| 8.3     | Financial Benefits                                       | 312 |  |  |  |
| 8.4     | Tangible Benefits                                        | 312 |  |  |  |
| 8.5     | Decarbonisation Programme                                | 312 |  |  |  |
| 9.0     | Environmental Cost Benefit Analysis                      | 315 |  |  |  |

| SI. No.      | <u>Description</u>                        | Page No. |
|--------------|-------------------------------------------|----------|
| 10.0         | Environmental Management Plan             | 316      |
| 10.1         | Construction Phase                        | 316      |
| 10.2         | Operation Phase                           | 316      |
| 10.3         | EMP Budget                                | 319      |
| 10.4         | Authenticated Peafowl Conservation Plan   | 320      |
| 11.0         | Summary & Conclusion                      | 322      |
| 12.0         | Disclosure of Consultants                 | 326      |
|              | Documents                                 |          |
| Document I   | EDS Raised and Reply Submitted            | 332      |
|              | Doc-1 : RR Nagar Cement Plant ECs         | 342      |
|              | Doc-2 : Consent Orders                    | 358      |
|              | Annex. Doc-2: Land Ownership Certificates | 424      |
|              | Annex. Doc-3 : Factory License            | 433      |
|              | Annex. Doc-4: Water Permission            | 436      |
| Document II  | CCR Issued                                | 447      |
| Document III | Monitoring Reports                        | 467      |
| Document IV  | Linkage Documents                         | 499      |

\*\*\*

# **List of Figures**

| SI. No.     | <u>Description</u>                                           | Page No. |
|-------------|--------------------------------------------------------------|----------|
| Fig. 1.1    | Index Map                                                    | 82       |
| Fig. 1.2    | Plant Site in Google Earth Imagery                           | 83       |
| Fig. 1.3    | Plant Overall Layout                                         | 85       |
| Plate I     | RR Nagar Cement Plant & its Captive Mines – Regional Setting | 87       |
| Plate II    | Geotagged Plant Photographs                                  | 90       |
| Plate III   | Plant & its Environs                                         | 91       |
| Plate IV    | Other Infrastructures                                        | 92       |
| Plate V     | Green Belt towards Settlements                               | 93       |
| Plate VI    | Established Kilns in RR Nagar Plant                          | 107      |
| Plate VII   | (Old) Kiln-II Revamping Measures Proposed                    | 108      |
| Fig. 2.1    | Topo Map - 10 km Radius                                      | 113      |
| Fig. 2.2    | Environmental Setting - 10 km Radius                         | 114      |
| Fig. 2.3    | Proposed Plant Layout - All                                  | 120      |
| Fig. 2.4    | Layout - Internal Roads                                      | 121      |
| Fig. 2.5    | Layout - Green Belt                                          | 135      |
| Plate VIII  | Green Belt Photographs (Geotagged-26.10.2024)                | 136      |
| Plate IX    | Green Belt Photographs (Geotagged-26.10.2024)                | 137      |
| Plate X     | Green Belt on Expansion - New Plantations (Geotagged)        | 138      |
| Plate XI    | Green Belt on Expansion - New Plantations (Geotagged)        | 139      |
| Fig. 2.6    | Plant Contour Levels & Drainage Pattern                      | 143      |
| Plate XII   | Hydraulic Design of Rectangular Drains                       | 144      |
| Plate XIII  | Dimension of Rain Water Harvesting Structures                | 144      |
| Fig. 2.7    | General Process Flow Chart                                   | 149      |
| Fig. 2.8    | Material Balance for 2.76 MTPA Clinker Production            | 149      |
| Fig. 2.9    | Material Balance for OPC Manufacturing                       | 151      |
| Fig. 2.10   | Material Balance for PPC Manufacturing                       | 151      |
| Fig. 2.11   | Material Balance for PSC Manufacturing                       | 152      |
| Fig. 2.12   | Material Balance for PCC Manufacturing                       | 152      |
| Plate XIV   | General Process Flow Chart of WHR System                     | 155      |
| Fig. 2.13   | Water Balance Diagram                                        | 160      |
| Fig. 3.1    | Environmental Quality Monitoring Stations                    | 164      |
| Plate XV    | Ambient Air Quality Monitoring - Photographs                 | 165      |
| Plate XVI   | Ambient Air Quality & Noise Monitoring - Photographs         | 166      |
| Plate XVII  | Ambient Air Quality & Noise Monitoring - Photographs         | 167      |
| Plate XVIII | Water Quality Monitoring - Photographs                       | 168      |
| Plate XIX   | Water Quality Monitoring - Photographs                       | 169      |
| Plate XX    | Soil Quality Monitoring - Photographs                        | 170      |
| Fig. 3.2    | Study Area Physiography & DEM                                | 171      |
| Fig. 3.3    | Drainage Pattern                                             | 172      |
| Fig. 3.4    | Seasonal Wind Rose                                           | 183      |
| Fig. 3.5    | Satellite Imagery                                            | 213      |
| Fig. 3.6    | Land Use Pattern                                             | 214      |
| Fig. 4.1    | Predicted GLCs                                               | 265      |

\*\*\*

# **List of Tables**

| SI. No.                  | <u>Description</u>                                                 | Page No.   |
|--------------------------|--------------------------------------------------------------------|------------|
| Table 1.1                | Salient Features of Expansion Proposal                             | 79         |
| Table 1.2                | Existing Production in Compliance with awarded EC-2021             | 84         |
| Table 1.3                | Captive Power Generation of RR Nagar Plant                         | 84         |
| Table 1.4                | Captive Limestone Mines and their Existing Production              | 88         |
| Table 1.5                | Captive Lime Kankar Quarries and their Existing Production         | 89         |
| Table 1.6                | RR Nagar Cement Plant – Existing ECs                               | 94         |
| Table 1.7                | CTE / CTO & HWA Details                                            | 94         |
| Table 1.8                | Implementation of CER/EMP Activities to address PH Issues          | 96         |
| Table 1.9                | Implementation of CSR Activities at Expansion Stage                | 97         |
| Table 1.10               | Compliance to CTO Conditions (dated 13.09.2024)                    | 98         |
| Table 1.11               | Compliance to CREP Guidelines                                      | 102        |
| Table 1.12               | Proposed Clinker Production with Operation of all 3 Existing Lines | 109        |
| Table 2.1                | Details of Products & By-Products on Expansion                     | 111        |
| Table 2.2                | Plant Site Coordinates                                             | 112        |
| Table 2.3                | Environmental Setting - 15 km Radius                               | 115        |
| Table 2.4                | Vulnerable Groups within 10 km Radius - Schools                    | 116        |
| Table 2.5                | Vulnerable Groups within 10 km Radius – Health Centers             | 117        |
| Table 2.6                | Land Use at the Plant                                              | 119        |
| Table 2.7                | Green Belt Development                                             | 134        |
| Table 2.8                | Areawise Green Belt Development                                    | 140        |
| Table 2.9                | Estimation of Quantum of Runoff available through RWH              | 142        |
| Table 2.10               | Surface Drains Design Data                                         | 142        |
| Table 2.11               | Raw Materials Demand - Existing & Proposed                         | 146<br>147 |
| Table 2.12               | Plant Machineries                                                  |            |
| Table 2.13               | Cement Plant Storage Facilities                                    | 147<br>148 |
| Table 2.14<br>Table 2.15 | Various Cements & their Composition Raw Materials Characteristics  | 153        |
| Table 2.15               | Fuel Characteristics                                               | 153        |
| Table 2.10               | WHRB Power Plant - Specifications                                  | 155        |
| Table 2.17               | Power Demand – Existing & Proposed                                 | 157        |
| Table 2.19               | Consented HSC & HFO Storages                                       | 158        |
| Table 2.20               | Electrical Energy and Heat Energy Consumption                      | 159        |
| Table 2.21               | Project Schedule                                                   | 162        |
| Table 3.1                | Baseline Data Collection - Monitoring Locations                    | 173        |
| Table 3.2                | AAQ Parameters-Detectable Range                                    | 176        |
| Table 3.3                | Methodology Adopted for Water Analysis                             | 177        |
| Table 3.4                | Micrometeorological Data – Jul. 24                                 | 180        |
| Table 3.5                | Micrometeorological Data – Aug. 24                                 | 181        |
| Table 3.6                | Micrometeorological Data – Sep. 24                                 | 182        |
| Table 3.7                | Ambient Air Quality Monitoring Stations – Location & Bearing       | 184        |
| Table 3.8-<br>3.17       | Ambient Air Quality Data                                           | 186-195    |
| Table 3.18               | Abstract of Ambient Air Quality Data                               | 196-198    |
| Table 3.19               | Ambient Air Quality Status                                         | 199        |
| Table 3.20               | RSPM Analytical Data                                               | 200        |
| Table 3.21               | Fugitive Emissions                                                 | 200        |
| Table 3.22               | Stack Emissions - Cement Plant (Existing)                          | 201        |
| Table 3.23               | Stack Emissions – CPP                                              | 202        |
|                          |                                                                    |            |

| Sl. No.                  | <u>Description</u>                                                                      | Page No.   |
|--------------------------|-----------------------------------------------------------------------------------------|------------|
| Table 3.24               | Ambient Noise Level Data (Abstract)                                                     | 202        |
| Table 3.25               | Ground Water Level Data                                                                 | 204        |
| Table 3.26               | CPCB Criteria for Designated Best Use of Water                                          | 205        |
| Table 3.27               | Surface Water Quality Data                                                              | 206        |
| Table 3.28               | Ground Water Quality Data                                                               | 208        |
| Table 3.29               | Water Quality Status                                                                    | 210        |
| Table 3.30               | Soil Status                                                                             | 211        |
| Table 3.31               | Land Use Pattern                                                                        | 212        |
| Table 3.32               | List of Flora in the Study Area                                                         | 215        |
| Table 3.33               | List of Fauna                                                                           | 223        |
| Table 3.34               | Other Fauna found in the Study Area                                                     | 225        |
| Table 3.35               | Diversity Index                                                                         | 227        |
| Table 3.36               | Demographic Profile – 2011 Census                                                       | 228        |
| Table 3.37               | Occupation of Population and Work Forces                                                | 230        |
| Table 3.38               | Educational Facilities in the Study Area                                                | 232        |
| Table 3.39               | Medical Facilities in the Study Area                                                    | 234        |
| Table 3.40               | Communication & Transport Facilities in the Study Area                                  | 236        |
| Table 3.41               | Water & Drainage Facilities in the Study Area                                           | 238        |
| Table 3.42               | Other Facilities in the Study Area                                                      | 240        |
| Table 4.1                | Impact Matrix – Construction Phase                                                      | 248        |
| Table 4.2                | Impact Matrix – Operation Phase                                                         | 252        |
| Table 4.3                | Traffic Volume – Existing & Proposed                                                    | 253        |
| Table 4.4                | Existing Traffic Volume – Baseline Status                                               | 254        |
| Table 4.5                | Projected Traffic Volume in the Vicinity                                                | 254        |
| Table 4.6                | Level of Service & Performance of a Road (IRC:64-1990 Norms)                            | 255        |
| Table 4.7                | Predicted Traffic Scenario at the Junction                                              | 255        |
| Table 4.8                | Stack-Particulate Matter                                                                | 256        |
| Table 4.9                | Stack-Gaseous Emissions                                                                 | 256        |
| Table 4.10               | Particulate Matter Emission (Cumulative)                                                | 257        |
| Table 4.11               | Gaseous Emission (Cumulative)                                                           | 258        |
| Table 4.12               | Emission Levels from the Complex (Cumulative)                                           | 258        |
| Table 4.13               | Predicted GLCs                                                                          | 264        |
| Table 4.14               | Co efficient Values                                                                     | 270        |
| Table 4.15               | Impact Quantification – Operation Phase                                                 | 270        |
| Table 6.1                | Bag Filters Maintenance – Check List                                                    | 279        |
| Table 6.2                | ESP Maintenance – Check List                                                            | 280        |
| Table 6.3                | Post Project Monitoring                                                                 | 281        |
| Table 7.1                | Plant Configuration                                                                     | 284        |
| Table 7.2                | Consented Storages of HSD & HFO                                                         | 284        |
| Table 7.3                | Effect of Heat Radiation                                                                | 287        |
| Table 7.4                | Radiation Exposure and Lethality                                                        | 288        |
| Table 7.5                | Fire Hydrants Location in RR Nagar Plant                                                | 292        |
| Table 7.6                | Fire Extinguishers Location in RR Nagar Plant                                           | 293        |
| Table 7.7                | Hazard Mitigating Measures - CPP Hazard Areas & Preventive Measures in the Cement Plant | 294<br>205 |
| Table 7.8<br>Table 10.1  | EMP Budget                                                                              | 295<br>319 |
| Table 10.1<br>Table 10.2 | EMP Recurring Cost – Break up                                                           | 320        |
| 1 auit 10.2              | LIVIE DECUMEN OUS - DIESK UP                                                            | ა∠∪        |

\*\*\*



#### Disclaimer

This ESA-EMP Report for "Expansion of RR Nagar Cement Plant with inclusion of revamped Old Line-It operations to existing Lines I & III Le. operations of all 3 existing Lines as Upgraded and also by increasing operational days from 320 to 345 days - production enhancement of Clinker from 1.44 MTPA to 2.76 MTPA and Cement from 2.70 MTPA to 4.00 MTPA along with associated Waste Heist Recovery System (WHRS) of 13 MW at Totakappets. Tharmmanayakkanpets & Vachchakkurappets Villages, Taluk & District Virudhunager, Tamil Nada by M/s. The Ramco Cements Limited has been prepared by M/s. ABC Techno Labs India Phaste Limited. Chemia for obtaining Environmental Clearance.

This EIA Report has been prepared using information received from Project Proponent, Site visits, collecting Primary Data and compilation of Secondary Data from available resources. This Report has been prepared with all cares and vetted and finalised with the Project Proponent Mrs. The Ramco Cements Limited:

This Discurrent, as a part or whole, cannot be used for any other purpose other than stated purpose.

Date : 27.12.2024

Yours faithfully

For ABC Techno Labs India Private Limited.











ABCITECIONO LARS INDIA PRIVATE LIMITED

(Rosredinal by NEBE, NEBET, Approved by PSCAT, APRIL & Agreety, Recognised by RelificCL, 812

participation of the second contraction

"ABC NOWNE", PARK 1 3th Street, SECCO Solvant of South Street, Artifaction, Character - ASS STATE Street, SACHA, Phys. s 401 44 Sect. (Freet, Sect.) 27592. desirable front and asset to the second according to t



#### Certificate of Plagiarism Check

| Title of EIA Report                | Expansion of RR Nagar Cament Plant with inclusion of revamped Old Line-III operations to existing Lines I & III i.e. operations of all 3 existing Lines-us Upgraded and also by increasing operational days from 320 to 345 days - production enhancement of Clinker from 1.44 MTPA to 2,76 MTPA and Carrent from 2,76 MTPA to 4.60 MTPA along with associated Waite Heat Recovery System (WHRS) of 13 MW all Tutuskappetts, Thammanayakkanpatti & Vachchakkarappatti Vitages, Taluk & District Virushuragar, Tamil Nadu by Wis, The Ramoo Carrents Limited. |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name of Accredited<br>Organization | ABC Techno Lishs India Private Limited, Chennai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Unique Identification Number       | NABET/EIA/2225/RA0290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Name of EIA Coordinator (EC)       | K Sekac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Name of the Software               | Plagisnam Software - Orline Plagisnam Checker<br>https://plagisnamchecker.co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Date of check                      | Completed on 27,12,2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

I hereby cartify that this EIA report has been evaluated using online software Online Plagianten Checker (https://glagiarisnotecker.co). The report has been analysed by the system and based on it, I certify that the EIA Report produced in accordance with good scientific practice.



Signature of EIA Coonfinator

Name: K.Seiar Dusignation: EC Date: 27,12,2024











Remarked by NASC, NASET, Approved by FEAAI, APRIL & Agency's, Brongered by ModFECC, RIS

with the said on the last continued

NAC TOWNS, 4 Str. 198 Street SCCO Solvent Street Street House Schools Chance, 201 DN Street SCCO Solvent Street Street House Schools Chance, 201 DN Street Street, 1450s. The case of the page 5100 (\$450 ) Their

www.elevenbooksb.com Section 1 was need whome capetr study.



#### DISCLOSURE OF EXPERTS

Details as per Schedule of EIA Notification 2006, as amended till date

Name of the Project

Expansion of RR Nagar Cement Plant with inclusion of recompose Old Line-II operations to existing Lines I & III (i.e. operations of all 3 existing Lines-as Upgraded and also by norwasing operational days from 320 to 345 days – production enhancement of Clinker from 1,44 MTPA to 2,76 MTPA and Cement from 2,70 MTPA to 4,60 MTPA along with associated Waste Heat Recovery System (WHRS) of 13 MW at Tulukappatt, Themmanayekkanpatt & Vachobaskanappatt Villages, Taluk & District Virudhumager, Tamil Nadu by Mis. The Ramos Cements Limited

Schedule as per EIA 3 (h)

notification 2006

Category NABET Sector No.

#### DECLARATION

Declaration by experts contributing to the Environmental Impact Assessment Report for Expansion of RR Nagar Cement Plant with inclusion of revamped Old Line-II operations to existing Lines I & III Le. operations of all 3 existing Lines-es Upgraded and also by increasing operational days from 320 to 345 days - production enhancement of Clinian from 1,44 MTPA to 2,76 MTPA and Cement from 2,70 MTPA to 4,00 MTPA along with associated Waste Heat Recovery System (WHRS) of 13 MW by Mis, The Rango Cements Lineted.

Lineraby, certify that I was a part of the EIA team in the following capacity that developed the above EIA/EIAP.

EIA Coordinator Signature:

Name

: K\_Sakar

Period of involvement Contact information Feb. 2974 to 18 date exa@abctechnolab.com

#### FUNCTIONAL AREA EXPERTS:

| No. | Functional<br>Areas | Name of the Expert's | involvement (Period)   | Signature & Date |
|-----|---------------------|----------------------|------------------------|------------------|
| 4   | на                  | Dr.S.Veezhinathan    | Feb, 2024 to till date | Transpir.        |
| z   | .s-w                | Or Mutmian Manappan  | Feb. 2024 to fill care | *                |
| λ   | AP                  | Dr Mutthish Manappan | Feb., 2024 to 18 care  | *                |
| 4,  | GED                 | Or 5 Venateratrae    | Feb, 2024 to 18 sale   | Dywyra_          |







ABC TROPOS LABS INDIA PRIVATE LIMITED

(Accordingly by MADI, MATER), Approved by PICAL, APICA & Springs, Samproad by Matifact, SIII

ASC TOWNS . FOR . I th hose, MICH I towned I may have from

Servator Disease - MEDIS Savernado (MDS), Fo. - 491-46, SERS FIRM INCOMPANY People 411 64405 (00007 / 9/640 877.7)



|      |      |                    |                         | Walks Provide School |
|------|------|--------------------|-------------------------|----------------------|
| 6    | AQ   | Mr Vinod Gautem    | Feb. 2024 to till date  | Siderates            |
| 6.   | RH   | Mr Viriod Cautani  | Feb. 2024 to till done  | AS ALLES             |
| 7.   | NV   | Mr Hanesah K R     | Feb, 2024 to till date  | - in select          |
| e.   | SHW  | Mr. Hanesah K.R.   | Fep. 2024 to till date  | -1                   |
| 9.   | (100 | Mr Abhik Saha      | Fen. 2024 to 19 none    | ALLA Cata            |
| 10,  | ŁU   | Dr N Rame Krishnen | Feb. 2024 to till date  | (10)                 |
| ii); | SC   | Dr III Hemamoika   | Feb, 2024 to 18 date    | TE Home              |
| 12.  | SE   | Dr Geetha          | Fest, 2024 to till date | hi Sim               |
| 130  | WP   | Mr Abhik Saha      | Feb, 2024 to till date  | A44.4 C.1-           |
|      |      |                    |                         |                      |

#### Declaration by the head of the Accredited Consultant Organization

I. G. Murugeth, hereby confirm that the above mentioned experts prepared the EIA/EMP Report for Expansion of RR Nagar Cernett Plant with inclusion of reveniped Old Line-II operations to existing Lines I & III i.e. operations of all 3 existing Lines-es Upgraded and also by increasing aperational days from 120 to 345 days - production enhancement of Clinker from 1,44 MTPA to 2,76 MTPA and Cernett from 2,70 MTPA to 4,00 MTPA along with associated Wester Heat Recovery System (WHRS) of 13 MW by Mis, The Ramoo Cernetts Limited, Later confirm that ABC Techno Later India Pvt. Ltd. shall be fully accountable for any misleading information mentioned in this statement.

Signature

Name

Mr. G. Murugesh

Designation

Chairman & Managing Director

Name of the EIA Consultant Organization

ABC Techno Labs India Private

Limited

NABET Certificate No. & Issue Date:

NABET/EIA/2225/RA0290 dated 11,06,2023 - valid till 16,11,2025







ABIC YECHNO LABS INDIA PRIVATE LIMITED

(According by MARI, MARIT, Seprenced by FISA), APITA & Agreem, Recognised by NoDIACE, BS

more was not reprint that and the comment

Sec 100-01 (101 how, 2000) vision had been been from the Automotive Section (101 how) and the Se

TAN SPECIAL

THIS IN THE PARTY WIND I WAS A RECEDED.



#### THE RAMCO CEMENTS LIMITED

Committee Office:
Augus Committee Committee V Prints:
SEFA, Dr. Foodmalmateur Sullin, Managore.
Charman - 1905-564, vinits
Ent - 477-491 (SEE) 1666 - Fau - 477-44 (SEE) 1879.
Wednetic word committee in
Committee Service Committee in
Committee Service Committee in Committee Service Committee in Committee Service Committee Inc.
Committee Inc.
Committee Service Committee Inc.
Committee I

(Stormey Marries Common LNL)

#### Project Proponent Declaration

[in compliance with MUEF Office Memorandum No. J-11013/41/2008-IA.II (I) dated 04.08.2009]

We, M's. The Ramoo Cenents Limited (ROL), have applied for prior Environmental Glearance for Expansion of RR Nogar Cement Plant with inclusion of revaniped Old Line-II operations to existing Lines Lis III i.e. operations of all 3 existing Lines as Upgraded and also by increasing operational days from 320 to 345 days - production enhancement of Clinicer from 1.44 MTPA to 2.76 MTPA and Gement from 2.70 MTPA to 4.00 MTPA along with associated Waste Heat Recovery System (WHRS) of 13 MW at Tulukkappath. Thanimanayakkarapath & Vechobakkarappath Villages. Taluk & District Virudhunagar, Tamil Nacu. The proposed Expansion of Cement Plant (≥1.0 MTPA) fails under 31 No. 3(b) - Category 'A' of EIA Notification 2006 and requires prior EC from MoEF&CC. Thus, RCL filled TOR Application vide Parivesh Online Proposal No. IA/TN/IND1/498318/2024 on 26.09 2024 with a request for Standard TOR for this existing Plant. MoEF&CC granted Standard Terms of Reference (TOR) for the Proposit with TOR Identification No. TO24A1102TN5995426N dated 12.11.2024 under File No. J-11011/119/2009 (A.III).

EIA Gonsultant, Mrs. ABC Techno Labs India Private Limited, Chennal has been accredited for various Sectors including Sector-1 (Mining Projects) for Category 'A' by the National Accreditation Board for Education & Training vide Certificate NABET/EIA/3225/FA0290 dated 11.06.2023 with validity till 16.11.2025 (St. No. 4 of List dated 29.10.2024). ABC Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TG-5770 dated 03.04.2024 with validity till 02.04.2026.

The EIA Report and Summary Environmental Impact Assessment Reports (both in English and Tamil versions) have been prepared in compliance with the awarded TORs and as per the generic structure proposed in EIA Notification 2006 and submitted. The data submitted in the EIA Report are factually correct.

For The Ramoo Cements Limited

Sr. Vice President (ESG) Authorised Signatory

Date 27.12.2024 Place Chennal



#### EIA Consultant Undertaking

Jin compliance with MoCF Office Monorandure No. 3-01013/41/2006-3A.E.(), const 04.08.2000[.

M's. The Ramco Cements Limited (RCL), have applied for prior Environmental Clearance for Expansion of RR Nagar Cement Plant with inclusion of revamped Cld Line-II operations to existing Lines I & III i.e. operations of all 3 existing Lines-as Upgraded and also by increasing operational days from 320 to 345 days - production unhancement of Clinker from 1.44 MTPA to 2.76 MTPA and Cement from 2.70 MTPA to 4.00 MTPA along with associated Waste Heat Recovery System (WHRS) of 13 MW at Tubekappatti, Thammanayakkanpatti & Vachchakkarappatti Villages, Taluk & District Virudhunagar, Tamil Nadu. The proposed Expansion of Cement Plant (>1.0 MTPA) falls under St. No. 3(b) - Category 'A' of EIA Notification 2006 and requires prior EC from McEF&CC. Thus, RCL filed TOR Application vide Parivesh Online Proposal No. IA/TN/IND1/498318/2024 on 26.09.2024 with a request for Standard TCR for this unisting Plant, McEF&CC granted Standard Tenns of Reference (TOR) for the Project with TOR Identification No. T024A1102TN5995436N dated 12.11.2024 under File No. J-11011/119/2009 IA.II(I).

ElA Consultant, Mis. ABC Teptime Late Initia Private Limited. Cherroll has been accredited for various Sectors including Sector-1 (Mining Projects) for Category & by the National Accreditation Board for Education & Training vide Certificate NABET/EIA/2225/RA0290 dated 11.06,2023 with validity 68 16.11.2025 (St. No. 4 of List dated 29.10.2024). ABC Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificals No. TC-5770 dated 03,04,2024 with validity till 02.04,2026,

The EIA Report and Summary Environmental Impact Assessment Reports (both in English and Tamil versions) have been prepared in compliance with the awarded TORs and as per the generic structure proposed in EIA Notification 2006 and submitted. The data submitted in the EIA Report are factually correct.

Date: :27,12,2024 Place | Cherrini

Yours faithfully,

For ABC Techno Labs India Private Limited.













ABC TECHNO LABB INDIA PRIVATE LIMITED

Secondlised by MASH, MASHE, Approved by FREAS, APRILA & Agencyl. Sungelised by MudfaCC, Bill

MAC 10MMS, 4 MID. 134 Seven SDCO Industrial Engine House Plants or Chemical Statement Services, Publish, Ph.: 491-44 2603 7788, 3003-3194

www.abetecheralish.com

Petitive : 101 94442 salotte / Yeset 80777



## File No.: J-11011/119/2009-IA-II(I) Government of India

# Ministry of Environment, Forest and Climate Change IA Division

\*\*\*



#### Dated 12/11/2024



To,

M Srinivasan

THE RAMCO CEMENTS LIMITED

The Ramco Cements Limited 5th Floor, Auras Corporate Centre No. 98A, Dr.Radhakrishnan Road,

Mylapore, Chennai, Mylapore, CHENNAI, TAMIL NADU, , 600004

ramcoenv@ramcocements.co.in

**Subject:** 

Grant of Standard Terms of Reference (ToR) to the proposed Project under the EIA Notification 2006and as amended thereof-regarding.

Sir/Madam,

This is in reference to your application submitted to MoEF&CC vide proposal number IA/TN/IND1/498318/2024 dated 05/11/2024 for grant of Terms of Reference (ToR) to the project under the provision of the EIA Notification 2006-and as amended thereof.

2. The particulars of the proposal are as below:

(i) **ToR Identification No.** TO24A1102TN5995426N (ii) **File No.** J-11011/119/2009-IA-II(I)

(iii) Clearance Type Fresh ToR

(iv) Category A

(v) Project/Activity Included Schedule No.(vi) Sector3(b) Cement plantsIndustrial Projects - 1

Expansion of Ramasamy Raja Nagar Cement Plant by inclusion of Revamped Old Line-II operations to existing Lines I & III (operations of all 3 existing Lines, as Upgraded) & and Increasing the Operational Days from 320 days to 345 days -

(vii) Name of Project Production Enhancement of Clinker from 1.44

MTPA to 2.76 MTPA & Cement from 2.70 MTPA to 4.00 MTPA at Villages Tulukkappatti, Thammanayakkanpatti & Vachchakarapatti, Taluk & District-Virudhunagar, Tamil Nadu by M/s.The

Ramco Cement Limited

(viii) Name of Company/Organization THE RAMCO CEMENTS LIMITED

(ix) Location of Project (District, State)VIRUDHUNAGAR, TAMIL NADU(x) Issuing AuthorityMoEF&CC(xii) Applicability of General ConditionsNO

- 3. The MoEF&CC has examined the proposal in accordance with the Environment Impact Assessment (EIA) Notification, 2006 & further amendments thereto and after detailed examination hereby decided to grant Standard Terms of Reference to the instant proposal of M/s.THE RAMCO CEMENTS LIMITED under the provisions of the aforementioned Notification.
- 4. The brief about products and by products as submitted by the Project proponent in Form-1 (Part A, B) and Standard Terms of Reference are annexed to this letter as Annexure (1).
- 5. PP shall ensure that the points raised in EDS are suitably incorporated in the final EIA/ EMP Report.
- 6. The Ministry reserves the right to stipulate additional TORs, if found necessary.
- 7. The Standard Terms of Reference (ToR) to the aforementioned project is under provisions of EIA Notification, 2006 and as amended thereof. It does not tantamount to approvals/consent/permissions etc required to be obtained under any other Act/Rule/regulation. The Project Proponent is under obligation to obtain approvals /clearances under any other Acts/ Regulations or Statutes, as applicable, to the project.
- 8. The granted letter, all the documents submitted as a part of application viz. Form-1 Part A and Part B are available on PARIVESH portal which can be accessed by scanning the QR Code above.

#### Copy To

N/A

Annexure 1

#### Standard Terms of Reference

#### 1. Preliminary requirements

| S. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1   | EIA/EMP report cover page shall consists of project title with location, applicable schedule of the EIA Notification, 2006, ToR letter No. with date, study period along with EIA consultant & laboratory details with QCI/NABET/NABL accreditation certificate detail.                                                                                                                                                                                                                                                                                  |
| 1.2   | Besides, following points shall be compiled as per QCI/NABET norms: a. Disclaimer by the EIA consultant. b. Declaration by the Functional Area Experts contributed to the EIA study and declaration by the head of the accredited consultant organization/authorized person. c. Undertaking by the project proponent owning the contents (information and data) of the EIA/EMP report. d. Undertaking by the EIA consultant regarding compliance of ToR issued by MoEF&CC. e. Consultant shall submit the Plagiarism Certificate for the EIA/EMP Report. |

#### 2. Executive Summary

| S. No |                     |                |                             |                 | Terms o           | f Referenc     | e      |           |      |    |
|-------|---------------------|----------------|-----------------------------|-----------------|-------------------|----------------|--------|-----------|------|----|
| 2.1   | Table<br>tables/fig | of<br>ures/ann | Contents<br>exures/abbrevia | of<br>tions/syr | the<br>mbols/nota | EIA<br>ations. | report | including | list | of |

| S. No | Terms of Reference                                  |
|-------|-----------------------------------------------------|
| 2.2   | Point wise compliance to the ToR issued by MoEF&CC. |

## 3. Executive Summary

#### 3.1. Introduction

| S. No | Terms of Reference                                                                |
|-------|-----------------------------------------------------------------------------------|
| 3.1.1 | Name of the project along with applicable schedule and category as per EIA, 2006. |
| 3.1.2 | Location and accessibility                                                        |

#### **4.** Executive Summary

## 4.1. Project description

| S. No | Terms of Reference                                  |
|-------|-----------------------------------------------------|
| 4.1.1 | Resource requirements (Land; water; fuel; manpower) |
| 4.1.2 | Operational activity                                |
| 4.1.3 | Key pollution concerns                              |

## **5. Executive Summary**

## 5.1. Baseline Environment Studies

| S. No | Terms of Reference         |
|-------|----------------------------|
| 5.1.1 | Ambient air quality        |
| 5.1.2 | Ambient Noise quality      |
| 5.1.3 | Traffic study              |
| 5.1.4 | Surface water quality      |
| 5.1.5 | Ground water quality       |
| 5.1.6 | Soil quality               |
| 5.1.7 | Biological Environment     |
| 5.1.8 | Land use                   |
| 5.1.9 | Socio-economic environment |

## **6. Executive Summary**

## **6.1.** Anticipated impacts

| S. No | Terms of Reference                           |
|-------|----------------------------------------------|
| 6.1.1 | Impact on ambient air quality                |
| 6.1.2 | Impact on ambient noise quality              |
| 6.1.3 | Impact on road and traffic                   |
| 6.1.4 | Impact on surface water resource and quality |
| 6.1.5 | Impact on ground water resource and quality  |
| 6.1.6 | Impact on terrestrial and aquatic habitat    |
| 6.1.7 | Impact on socio-economic environment         |

## 7. Executive Summary

## 7.1. Alternative analysis

| S. No | Terms of Reference |
|-------|--------------------|
| 7.1.1 |                    |

## **8. Executive Summary**

#### **8.1.** Environmental Monitoring program

| S. No | Terms of Reference                         |
|-------|--------------------------------------------|
| 8.1.1 | Ambient air, noise, water and soil quality |
| 8.1.2 | Noise quality management plan              |
| 8.1.3 | Emission and discharge from the plant      |
| 8.1.4 | Green Belt                                 |
| 8.1.5 | Social Parameters                          |

# **9. Executive Summary**

#### 9.1. Additional Studies

| S. No | Terms of Reference  |
|-------|---------------------|
| 9.1.1 | Risk assessment     |
| 9.1.2 | Public consultation |

| S. No | Terms of Reference                                                                                       |
|-------|----------------------------------------------------------------------------------------------------------|
| 9.1.3 | Action plan to address the issues raised during public consultation as per MoEF&CC O.M. dated 30/09/2020 |

## 10. Executive Summary

## 10.1. Environment management plan

| S. No  | Terms of Reference                             |
|--------|------------------------------------------------|
| 10.1.1 | Air quality management plan                    |
| 10.1.2 | Solid and hazardous waste management plan      |
| 10.1.3 | Effluent management plan                       |
| 10.1.4 | Storm water management plan                    |
| 10.1.5 | Occupational health and safety management plan |
| 10.1.6 | Green belt development plan                    |
| 10.1.7 | Socio-economic management plan                 |
| 10.1.8 | Project cost and EMP implementation budget.    |

#### 11. Introduction

| S. No | Terms of Reference           |
|-------|------------------------------|
| 11.1  | Background about the project |
| 11.2  | Need of the project          |
| 11.3  | Purpose of the EIA study     |
| 11.4  | Scope of the EIA study       |

# 12. Project description

#### 12.1. Site Details

| S. No  | Terms of Reference                                                                                                                                                                                                       |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.1.1 | Location of the project site covering village, Taluka/Tehsil, District and State.                                                                                                                                        |
| 12.1.2 | Site accessibility                                                                                                                                                                                                       |
| 12.1.3 | A digital toposheet in pdf or shape file compatible to google earth of the study area of radius of 10km and site location preferably on 1:50,000 scale. (including all eco-sensitive areas and environmentally sensitive |

| S. No   | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | places).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12.1.4  | Latest High-resolution satellite image data having 1 m - 5 m spatial resolution like quickbird, Ikonos, IRS P-6 pan sharpened etc., along with delineation of plant boundary co-ordinates. Area must include at least 100 m all around the project location.                                                                                                                                                                                                                                                                                                                                 |
| 12.1.5  | Environment settings of the site and its surrounding along with map.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12.1.6  | A list of major industries with name, products and distance from plant site within study area (10km radius) and the location of the industries shall be depicted in the study area map.                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12.1.7  | In case if the project site is in vicinity of the water body, 50 meters from the edge of the water body towards the site shall be treated as no development/construction zone. If it's near the wetland, Guidelines for implementing Wetlands (Conservation and Management) Rules, 2017 may be followed.                                                                                                                                                                                                                                                                                     |
| 12.1.8  | In case if the project site is in vicinity of the river, the industry shall not be located within the river flood plain corresponding to one in 25 years flood, as certified by concerned District Magistrate/Executive Engineer from State Water Resources Department (or) any other officer authorized by the State Government for this purpose as per the provisions contained in the MoEF&CC Office Memorandum dated 14/02/2022.                                                                                                                                                         |
| 12.1.9  | In case of canal/ nala/ seasonal drain and any other water body passing through project site, the PP shall submit the suitable steps /conservation plan/mitigation measures along with contouring, Run -off calculations, disposal etc. A robust and full proof Drainage Conservation scheme to protect the natural drainage/water bodies and its flow parameters; along with Soil conservation scheme and multiple Erosion control measures shall be provided in the report.                                                                                                                |
| 12.1.10 | Type of land, land use of the project site needs to be submitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12.1.11 | Status of acquisition of land. If acquisition is not complete, stage of the acquisition process as per the MoEF&CC O.M. dated 7/10/2014 shall be furnished.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.1.12 | Project proponent shall prepare Engineering layout plan showing all internal roads minimum 6 m width and 9 m turning radius for smooth traffic flow inside including fire tender as per NBC. Road network shall connect all service areas in layout. This drawing shall include area statement showing plot area, area under roads, parking, green belt with calculations and % with respect to plot area of project site and proper indexing. If located within an Industrial area/Estate/Complex, layout of Industrial Area indicating location of unit within the Industrial area/Estate. |
| 12.1.13 | Project proponent shall submit contour map of project site along with drainage disposal system with calculations and drawings supported with proper indexing including Rain Water Harvesting details with calculations mentioning about GW recharge along with relevant drawing.                                                                                                                                                                                                                                                                                                             |
| 12.1.14 | A detailed report covering all aspects of Fire Safety Management and Fire Emergency Plan shall be submitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12.1.15 | Details of drone survey for the site, needs to be included in report and presented before the EAC during appraisal of the project.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# 13. Project description

## 13.1. Forest and wildlife related issues (if applicable)

| S. No  | Terms of Reference                                                                                                                                                                                                                                                                                                                                          |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 13.1.1 | Status of Forest Clearance for the use of forest land shall be submitted.                                                                                                                                                                                                                                                                                   |  |
| 13.1.2 | Copy of application submitted for clearance under the Wildlife (Protection) Act, 1972, to the Standing Committee of the National Board for Wildlife if the project site located within notified Eco-Sensitive Zone, 10 km radius of national park/sanctuary wherein final ESZ notification is not in place as per MoEF&CC Office Memorandum dated 8/8/2019. |  |
| 13.1.3 | The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, Eco-sensitive Zone and Eco-sensitive areas, the project proponent shall submit the map duly authenticated by Divisional Forest Officer showing the distance between the project site and the said areas.               |  |
| 13.1.4 | Wildlife Conservation Plan duly authenticated by the Competent Authority of the State Government for conservation of Schedule I fauna along with budget and action plan, if any exists in the study area.                                                                                                                                                   |  |

## 14. Project description

# 14.1. Salient features of the project

| S. No   | Terms of Reference                                                                                                                                      |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 14.1.1  | Products with capacities in Tons per Annum for the proposed project.                                                                                    |  |  |
| 14.1.2  | If expansion project, status of implementation of existing project, details of existing/proposed products with production capacities in Tons per Annum. |  |  |
| 14.1.3  | Site preparatory activities.                                                                                                                            |  |  |
| 14.1.4  | List of raw materials required and their source along with mode of transportation.                                                                      |  |  |
| 14.1.5  | Other than raw materials, other chemicals and materials required with quantities and storage capacities.                                                |  |  |
| 14.1.6  | Manufacturing process details along with process flow diagram of proposed units.                                                                        |  |  |
| 14.1.7  | Consolidated materials and energy balance for the project.                                                                                              |  |  |
| 14.1.8  | Total requirement of surface/ ground water and power with their respective sources, status of approval.                                                 |  |  |
| 14.1.9  | Water balance diagram                                                                                                                                   |  |  |
| 14.1.10 | Details of Emission, effluents, hazardous waste generation and mode of disposal during construction as well as operation phase.                         |  |  |
| 14.1.11 | Man-power requirement.                                                                                                                                  |  |  |
| 14.1.12 | Cost of project and scheduled time of completion.                                                                                                       |  |  |

| S. No   | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 14.1.13 | In case of expansion projects, project proponent shall submit structural stability certificate showing whether existing structure withstand for proposed expansion activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 14.1.14 | Brief on present status of compliance (Expansion/modernization proposals) a. Cumulative Environment Impact Assessment for the existing as well as the proposed expansion/modernization shall be carried out. b. Cumulative Impact Assessment need to be carried out by greenfield projects considering the nearby industries. c. In case of ground water drawl for the existing unit, action plan for phasing out of ground water abstraction in next two years except for domestic purposes and shall switch over to 100 % use of surface water from nearby source. d. Copy of all the Environment Clearance(s) including Amendments/validity of extension/transfer of EC, there to obtained for the project from MoEF&CC/SEIAA shall be attached as Annexures. A Certified Compliance Report (CCR) of the Integrated Regional Office of the Ministry of Environment, Forest and Climate Change/ or concerned authority as per OM No. IA3-22/10/2022-IA.III [E 1772581], dated 8th June, 2022 on the status of compliance of conditions stipulated in all the existing environment clearances including amendments shall be provided. A Certified Compliance Report (CCR) issued by the concerned Authority shall be valid for a period of one year from the date of inspection. e. In case the existing project has not obtained Environment Clearance, reasons for not taking EC under the provisions of the EIA Notification 1994 and/or EIA Notification 2006 shall be provided. A proper justification needs to be submitted along with documentary proof. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 1994 or 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted. Further, compliance report to the conditions of CTO from the Regional Office of the SPCB shall be submitted, as per OM No. IA3-22/10/2022-IA.III [E 1772581], dated 8th June, 2022. CCR on CTO conditions issued by the concerned SPCBs/PCCs shall be valid for a period of one year from the date of inspection of the project. |  |  |

# 15. Description of the Environment

| S. No | 2                                                                                                                                                                                                                                         | Terms of Reference                                                                                                         |                                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.1  | Study period                                                                                                                                                                                                                              | Protects of Sive + Sive                                                                                                    |                                                                                                                                                  |
| 15.2  | Approach and methodology for Attributes  Air Environment Micro-Meteorological  • Wind speed (Hourly)  • Wind direction  • Dry bulb temperature  • Wet bulb temperature  • Relative humidity  • Rainfall  • Solar radiation  • Cloud cover | data collection as furnished below Sampling Network Frequency  Minimum 1 site in the project impact hourly continuous area | Remarks  IS 5182 Part 1-20  • Site specific primary data is essential  • Secondary data from IMD, New Delhi  • CPCB guidelines to be considered. |

| S. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| S. No | Environmental     Lapse Rate      Sampling as per CPCB guidelines     Collection of AAQ data (except in monsoon season)     Locations of various stations for different parameters should be related to the characteristic properties of the parameters.  PM10     SO2     NOX     At least locations     CO     At least locations     CO     At least locations     Other parameters relevant to the project and topography of the area  As per National be based on the NAAQM standards as per GSR 826(E) dated 16/11/2009 and take into account the predominant wind direction, population zone and sensitive receptors including reserved forests,  Raw data of all AAQ measurement for 12 weeks of all stations as per frequency |  |
|       | Notification of 16/11/2009 along with min., max., average and 98% values for each of the AAQ parameters from data of all AAQ stations should be provided as an annexure to the EIA Report.  Noise  Hourly equivalent noise levels  At least 8-12 s per CPCB norms                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|       | Water Parameters for water quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|       | <ul> <li>pH, temp, turbidity, magnesium hardness, total alkalinity, chloride, sulphate, nitrate, fluoride, sodium, potassium, salinity</li> <li>Total nitrogen, total phosphorus, DO, BOD,</li> <li>Samples for water quality should be collected and analyzed as per:         <ul> <li>IS: 2488 (Part 1-5) methods for sampling and testing of Industrial effluents</li> </ul> </li> <li>Standard methods for examination of water and wastewater analysis published by American Public Health Association</li> </ul>                                                                                                                                                                                                                 |  |

| S. No  | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. 140 | COD, Phenol  Heavy metals  Total coliforms, faecal coliforms  Phyto plankton  Zoo plankton  For River Bodies  Total Carbon  pH Surface water  Dissolved Oxygen quality of the nearest River  Biological Oxygen Demand (60m upstream) and downstream) and other surface  Boron water bodies  Yield of water sources to be measured during critical season  Standard methodology for collection of surface water (BIS standards) |
|        | Sodium Absorption Ratio     ElectricalConductivity                                                                                                                                                                                                                                                                                                                                                                             |
|        | For Ground Water Ground Water wells/existing current records) from the study area and shall be included.                                                                                                                                                                                                                                                                                                                       |
|        | Traffic Study Type of vehicles  • Frequency of vehicles for transportation of materials Land Environment  • Additional traffic due to proposed project  Soil                                                                                                                                                                                                                                                                   |
|        | <ul> <li>Particle size distribution</li> <li>Texture</li> <li>pH</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |
|        | <ul> <li>Electrical conductivity         <ul> <li>Soil samples be collected as per BIS specifications</li> </ul> </li> <li>Cation exchange capacity</li> <li>Alkali metals</li> <li>Sodium Absorption Ratio</li> </ul>                                                                                                                                                                                                         |
|        | (SAR  • Permeability                                                                                                                                                                                                                                                                                                                                                                                                           |

| S. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       | Water holding capacity • Porosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|       | Land use/Landscape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|       | Location code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|       | Total project area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|       | • Topography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|       | Drainage (natural)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|       | Cultivated, forest,plantations, water bodies, roads and settlements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|       | Biological Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|       | Aquatic     Primary productivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|       | Aquatic weeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|       | Enumeration of phyto plankton, zoo plankton and benthos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|       | <ul> <li>Fisheries         <ul> <li>Diversity indices</li> <li>Trophic levels</li> <li>Rare and endangered species</li> </ul> </li> <li>Rare and endangered species</li> <li>Marine Parks/ Sanctuaries/ closed areas /coastal regulation zone</li> <li>Detailed description of flora and fauna (terrestrial and aquatic) existing in the study area shall be given with special reference to rare, endemic and endangered species. Indicator species which indicate ecological and environment degradation should be identified and included to clearly state whether the proposed project would result in to any adverse effect on any species.</li> </ul> <li>Samples to collect from upstream and downstream of discharge point, nearby tributaries at downstream, and also from dug wells close to entirity eite.</li> |  |  |
|       | <ul> <li>(CRZ)</li> <li>2. Terrestrial</li> <li>Vegetation-species list, economic importance, forest produce,medicinal value</li> <li>For forest studies, direction of wind should be considered while selecting forests.</li> <li>Secondary data to collect from Government offices, NGOs, published literature.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|       | <ul> <li>Importance value index (IVI) of trees</li> <li>Fauna</li> <li>Avi fauna</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|       | Rare and endangered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

| S. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       | species  • Sanctuaries / National park / Biosphere reserve  • Migratory routes  socio-economic  Demographic structure  • Infrastructure resource base Socio-economic survey is based on proportionate, stratified and random sampling method.  • Economic resource base  • Health status:Morbidity  • Primary data collection through questionnaire  pattern  • Secondary data from census records, statistical hard books, topo sheets, health records and relevant official records available with Govt. agencies |  |  |
|       | • Education                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|       | Approach and methodology for data collection as furnished below  Attributes  Sampling  Remarks  Network  Frequency  Air Environment  Micro-Meteorological                                                                                                                                                                                                                                                                                                                                                           |  |  |
|       | <ul> <li>Wind speed (Hourly)</li> <li>Wind direction</li> <li>Dry bulb temperature</li> <li>Wet bulb temperature</li> <li>Relative humidity</li> <li>Rainfall</li> <li>Solar radiation</li> <li>Cloud cover</li> <li>Environmental</li> <li>Wind speed (Hourly)</li> <li>Site specific primary data is essential</li> <li>Secondary data from IMD, New Delhi</li> <li>CPCB guidelines to be considered.</li> </ul>                                                                                                  |  |  |
|       | <ul> <li>Lapse Rate</li> <li>Pollutants</li> <li>PM10</li> <li>SO2</li> <li>At least locations</li> <li>NOx</li> <li>CO</li> <li>As per National guidelines</li> <li>Collection of AAQ data (except in monsoon season)</li> <li>Locations of various stations for different parameters</li> </ul>                                                                                                                                                                                                                   |  |  |

| Terms of Reference                                                                                                                                                 |                                |                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>HC</li> <li>Other parameters relevant to<br/>the project and topograph;</li> </ul>                                                                        |                                | should be related to the characteristic properties of the parameters.                                                                                                                                                                                                                       |
| of the area                                                                                                                                                        |                                | The monitoring stations shall<br>be based on the NAAQM<br>standards as per GSR 826(E)<br>dated 16/11/2009 and take<br>into account the predominant<br>wind direction, population<br>zone and sensitive receptors<br>including reserved forests,                                             |
|                                                                                                                                                                    | P. IVE                         | Raw data of all AAQ measurement for 12 weeks of all stations as per frequency given in the NAAQM Notification of 16/11/2009 along with min., max., average and 98% values for each of the AAQ parameters from data of all AAQ stations should be provided as an annexure to the EIA Report. |
| Noise                                                                                                                                                              | At least 8-12 s per CPCB norms |                                                                                                                                                                                                                                                                                             |
| Water Parameters for water quality  • pH, temp, turbidity magnesium hardness, tota alkalinity, chloride sulphate, nitrate, fluoride sodium, potassium, salinity    | locations 2                    | cted and analyzed as per:                                                                                                                                                                                                                                                                   |
| • Total nitrogen, total • IS: 2488 (Part 1-5) methods for sampling and testing phosphorus, DO, BOD, effluents COD, Phenol                                          |                                |                                                                                                                                                                                                                                                                                             |
| <ul> <li>Standard methods for examination of water and wastewater analys</li> <li>Heavy metals</li> <li>published by American Public Health Association</li> </ul> |                                |                                                                                                                                                                                                                                                                                             |
| Total coliforms, faeca<br>coliforms                                                                                                                                | ıl                             |                                                                                                                                                                                                                                                                                             |
| • Phyto plankton                                                                                                                                                   |                                |                                                                                                                                                                                                                                                                                             |
| • Zoo plankton                                                                                                                                                     |                                |                                                                                                                                                                                                                                                                                             |
| For River Bodies                                                                                                                                                   | quality of the                 | ources to be measured during                                                                                                                                                                                                                                                                |
| Total Carbon                                                                                                                                                       | nearest River critical season  |                                                                                                                                                                                                                                                                                             |

| S. No | Terms of Reference                                                                                                                                                                                |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | <ul> <li>pH</li></ul>                                                                                                                                                                             |  |
|       | • Boron                                                                                                                                                                                           |  |
|       | Sodium Absorption Ratio                                                                                                                                                                           |  |
|       | ElectricalConductivity                                                                                                                                                                            |  |
|       | For Ground Water Ground Water Monitoring data should be collected at minimum of 8 locations (from existing wells /tube wells/existing current records) from the study area and shall be included. |  |
|       | Traffic Study Type of vehicles                                                                                                                                                                    |  |
|       | Type of vehicles  • Frequency of vehicles for transportation of materials Land Environment                                                                                                        |  |
|       | Additional traffic due to proposed project                                                                                                                                                        |  |
|       | Soil                                                                                                                                                                                              |  |
|       | Particle size distribution                                                                                                                                                                        |  |
|       | • Texture                                                                                                                                                                                         |  |
|       | • pH                                                                                                                                                                                              |  |
|       | Electrical conductivity                                                                                                                                                                           |  |
|       | <ul> <li>Cation exchange capacity</li> <li>Soil samples be collected as per BIS specifications</li> <li>Alkali metals</li> </ul>                                                                  |  |
|       | Sodium Absorption Ratio (SAR)                                                                                                                                                                     |  |
|       | <ul> <li>Permeability</li> <li>Water holding capacity</li> <li>Porosity</li> </ul>                                                                                                                |  |
|       | Land use/Landscape                                                                                                                                                                                |  |
|       | Location code                                                                                                                                                                                     |  |
|       | Total project area                                                                                                                                                                                |  |
|       | • Topography                                                                                                                                                                                      |  |
|       | Drainage (natural)                                                                                                                                                                                |  |
|       | Cultivated,                                                                                                                                                                                       |  |
|       |                                                                                                                                                                                                   |  |

| S. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       | forest, plantations, water bodies, roads and settlements  Biological Environment  1. Aquatic  Primary productivity  Aquatic weeds  Enumeration of phyto plankton, zoo plankton and benthos  Fisheries  Diversity indices  Trophic levels  Rare and endangered species  Marine  Parks/ Sanctuaries/ closed areas /coastal regulation zone (CRZ)  (CRZ)  Terrestrial  Vegetation-species list, economic importance, forest produce, medicinal value  Importance value index (IVI) of trees  Fauna  Avi fauna  Rare and endangered species  Sanctuaries / National park / Biosphere reserve  Migratory routes |  |  |
|       | socio-economic  Demographic structure  • Infrastructure resource base  • Economic resource base  • Secondary data from census records, statistical hard books, topo                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

| S. No | Terms of Reference                                                                                                                                                                                                                                                                                                        |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | <ul> <li>Health status: Morbidity pattern sheets, health records and relevant official records available with Govt. agencies</li> <li>Cultural and aesthetic attributes.</li> <li>Education</li> </ul>                                                                                                                    |  |
| 15.3  | Interpretation of each environment attribute shall be enumerated and summarized as given below:   Ambient air quality • Ambient Noise quality • Surface water quality • Ground water quality • Soil quality • Biological Environment • Land use • Socio-economic environment                                              |  |
| 15.4  | The PP should submit the photograph of monitoring stations & sampling locations. The photograph should bear the date, time, latitude & longitude of the monitoring station/sampling location. In addition to this PP should submit the original test reports and certificates of the labs which will analyze the samples. |  |

# 16. Anticipated Environment Impacts and mitigation measures (In case of expansion, cumulative impact assessment shall be carried out)

| S. No | 3 / 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Terms of Refe                            | erence                             |                                             |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------|---------------------------------------------|
| 16.1  | Identification of potential impact the environment components  Activity  Construction phase  Operation phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ets in the form of a matrix  Environment | x for the construction  Ecological | and operation phase for all  Socio-economic |
| 16.2  | Impact on ambient air quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase • Details of stack emissions from the existing as well as proposed activity. • Assessment of ground level concentration of pollutants from the stack emission based on AQIP Modelling The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any along with wind rose map for respective period • Impact on ground level concentration, under normal, abnormal and emergency conditions. Measures to handle emergency situations in the event of uncontrolled release of emissions. |                                          |                                    |                                             |
| 16.3  | Impact on ambient noise quality<br>Residual impact) a. Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                    | sment; Mitigation measures;                 |
| 16.4  | Impact on traffic (Sources; Enimpact) a. Construction phase by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | es; Assessment; Mit                | igation measures; Residual                  |
| 16.5  | Impact on soil quality (Sources impact) a. Construction phase b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | ures; Assessment; Mi               | itigation measures; Residual                |
| 16.6  | Impact on land use (Sources; limpact) a. Construction phase be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | res; Assessment; Mi                | tigation measures; Residual                 |

| S. No | Terms of Reference                                                                                                                                                           |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16.7  | Impact on surface water resource and quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase |
| 16.8  | Impact on ground water resource and quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase  |
| 16.9  | Impact on terrestrial and aquatic habitat (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase    |
| 16.10 | Impact on socio-economic environment (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase         |
| 16.11 | Impact on occupational health and safety (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase     |

## 17. Analysis of Alternatives (Technology & Site)

| S. No | Terms of Reference            |
|-------|-------------------------------|
| 17.1  | No project scenario           |
| 17.2  | Site alternative              |
| 17.3  | Technical and social concerns |
| 17.4  | Conclusion                    |

## 18. Environmental Monitoring Program

| S. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 18.1  | Details of the Environment Management Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 18.2  | Performance monitoring schedule for all pollution control devices shall be furnished.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 18.3  | <ul> <li>a. Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report.</li> <li>b. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environment or forest norms / conditions? If so, it may be detailed in the EIA.</li> <li>c. What is the hierarchical system or Administrative order of the company to deal with the environment issues and for ensuring compliance with the environment clearance conditions? Details of this system may be given.Page 9 of 10</li> <li>d. Does the company have system of reporting of non compliances / violations of environment norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting</li> </ul> |  |

| S. No | Terms of Reference                                                                                                                                                       |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       | mechanism shall be detailed in the EIA report                                                                                                                            |  |  |
| 18.4  | Action plan for post-project environment monitoring matrix:  Activity Aspect Monitoring Parameter Location Frequency Responsibility  Construction phase  Operation phase |  |  |

## 19. Additional Studies

| S. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 19.1  | Project proponent shall submit a study report on Decarbonisation program, which would essentially consist of company's carbon emissions, carbon budgeting/ balancing, carbon sequestration activities and carbon capture, use and storage after offsetting strategies. Further, the report shall also contain time bound action plan to reduce its carbon intensity of its operations and supply chains, energy transition pathway from fossil fuels to Renewable energy etc. All these activities/ assessments should be measurable and monitorable with defined time frames. |  |
| 19.2  | Details of adoption/ implementation status/plan to achieve the goal of Glasgow COP26 Climate Submit with regard to enhance the non-fossil energy, use of renewable energy, minimization of net carbon emission and carbon intensity with long-term target of "net Zero" emission.                                                                                                                                                                                                                                                                                              |  |
| 19.3  | Implementation status/measures adopted for avoiding the generation of single used plastic waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 19.4  | In cases the project is located in Critically and Severely Polluted Areas, additional mitigation measures adopted and detailed action plan to be submitted in the EIA/EMP Report as per MoEF&CC O.M. No. 22-23/2028-IA.III dated 31/10/2019 and MoEF&CC O.M. No. 22-23/2028-IA.III dated 5/07/2022 has to be submitted.                                                                                                                                                                                                                                                        |  |
| 19.5  | Public consultation details (Entire proceedings as separate annexure along with authenticated English Translation of Public Consultation proceedings).                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 19.6  | As part of Corporate Environment Responsibility (CER) activity, company shall adopt nearby villages based on the socio-economic survey and undertake community developmental activities in consultation with the village Panchayat and the District Administration. In this regard, time bound action plan as per the MoEF&CC Office Memorandum dated 30/09/2020 shall be submitted.                                                                                                                                                                                           |  |
| 19.7  | Summary of issues raised during public consultation along with action plan to address the same as per MoEF&CC O.M. dated 30/09/2020  Physical activity and action Year of implementation (Budget in INR)  S.No Name of the Physical Activity Targets  1st 2nd 3rd  Crores)                                                                                                                                                                                                                                                                                                     |  |
| 19.8  | Risk assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| S. No | Terms of Reference                                                                                                                                        |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | <ul> <li>Methodology</li> <li>Hazard identification</li> <li>Frequency analysis</li> <li>Consequence analysis</li> <li>Risk assessment outcome</li> </ul> |  |
| 19.9  | Emergency response and preparedness plan                                                                                                                  |  |

## 20. Project Benefits

| S. No | Terms of Reference                  |
|-------|-------------------------------------|
| 20.1  | Environment benefits                |
| 20.2  | Social infrastructure               |
| 20.3  | Employment and business opportunity |
| 20.4  | Other tangible benefits             |

# 21. Environment Cost Benefit Analysis

| S. No | Terms of Reference          |
|-------|-----------------------------|
| 21.1  | Net present value           |
| 21.2  | Internal rate of return     |
| 21.3  | Benefit cost ratio          |
| 21.4  | Cost effectiveness analysis |

# 22. Environment Management Plan (Construction and Operation phase)

| S. No | Terms of Reference                                                                             |
|-------|------------------------------------------------------------------------------------------------|
| 22.1  | Action plan for hazardous waste management                                                     |
| 22.2  | Action plan for solid waste management                                                         |
| 22.3  | Action plan for e-waste management.                                                            |
| 22.4  | Action plan for plastic waste management, considering the Plastic Waste Management Rules 2016. |
| 22.5  | Action plan for construction and demolition waste management.                                  |

| S. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 22.6  | Rain water harvesting plan                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 22.7  | Plan for maximum usage of waste water/treated water in the Unit                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 22.8  | Green belt development plan: An action plan for Green Belt development consisting of 3 tiers of plantations of native species all along the periphery of the project of adequate width shall be raised in 33% of total area with a tree density shall not less than 2500 per ha within a time frame of one year shall be submitted. Survival rate of green belt shall be monitored on periodic basis to ensure that survival rate not be less than 80%. |  |
| 22.9  | Wildlife conservation plan (In case of presence of schedule I species)                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 22.10 | Total capital cost and recurring cost/annum for environment pollution control measures shall be included.                                                                                                                                                                                                                                                                                                                                               |  |
| 22.11 | Explore possibilities for recycling and reusing of treated water in the unit to reduce the freshwater demand and waste disposal.                                                                                                                                                                                                                                                                                                                        |  |
| 22.12 | An Action Plan for improving the house-keeping activities in the raw material handling area need to be submitted                                                                                                                                                                                                                                                                                                                                        |  |
| 22.13 | Action plan for the stock piles with impervious floor, provision of garland drains and catch pits to trap run off material shall be submitted.                                                                                                                                                                                                                                                                                                          |  |
| 22.14 | Action plan to limit the dust emission from all the stacks below 30 mg/Nm3 shall be furnished.                                                                                                                                                                                                                                                                                                                                                          |  |
| 22.15 | Action plan for fugitive emission control in the plant premises shall be provided.                                                                                                                                                                                                                                                                                                                                                                      |  |

# Standard Terms of Reference for conducting Environment Impact Assessment Study for Cement plants and information to be included in EIA/EMP report

#### 1.

| Sr. No. | Terms of Reference                                                                                                                                                                                                                                                                                        |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1     | Limestone and coal linkage documents along with the status of environment clearance of limestone and coal mines.                                                                                                                                                                                          |
| 1.2     | Quantum of production of coal and limestone from coal & limestone mines and the projects they cater to;                                                                                                                                                                                                   |
| 1.3     | Present land use shall be prepared based on satellite imagery. High-resolution satellite image data having 1m-5m spatial resolution like quickbird, Ikonos, IRS P-6 pan sharpened etc. for the 10 Km radius area from proposed site. The same shall be used for land used/land-cover mapping of the area. |
| 1.4     | If the raw materials used have trace elements, an environment management plan shall also be                                                                                                                                                                                                               |

| Sr. No. | Terms of Reference                                                                                                                                                                  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | included.                                                                                                                                                                           |  |  |  |
| 1.5     | Plan for the implementation of the recommendations made for the cement plants in the Corporate Responsibility for Environmental Protection (CREP) guidelines shall be prepared.     |  |  |  |
| 1.6     | Energy consumption per ton of clinker and cement grinding                                                                                                                           |  |  |  |
| 1.7     | Provision of waste heat recovery boiler                                                                                                                                             |  |  |  |
| 1.8     | Arrangement for co-processing of hazardous waste in cement plant.                                                                                                                   |  |  |  |
| 1.9     | Provision of Alternate fuels.                                                                                                                                                       |  |  |  |
| 1.10    | Details of Implementation of Fly Ash Management Rules                                                                                                                               |  |  |  |
| 1.11    | Emission/Effluent norms as per GSR 496 (E) dated 9/5/2016 [EPA Rules 1986].                                                                                                         |  |  |  |
| 1.12    | Action plan to limit the particulate matter emission from all the stacks below 30 mg/Nm3 shall be furnished.                                                                        |  |  |  |
| 1.13    | PP shall explore the possibility of plastic waste utilization in the Plant/Unit process.                                                                                            |  |  |  |
| 1.14    | Action plan for 100 % solid waste utilization shall be submitted.                                                                                                                   |  |  |  |
| 1.15    | PM (PM10 and P2.5) present in the ambient air must be analysed for source analysis – natural dust/RSPM generated from plant operations (trace elements) of PM10 to be carried over. |  |  |  |

# **Additional Terms of Reference**

N/A

**Annexure 2** 

# **Details of Products & By-products**

| Name of the product /By-<br>product       | Product /<br>By-<br>product | Existing | Proposed | Total | Unit | Mode of<br>Transport /<br>Transmission | Remarks<br>(eg. CAS<br>number) |
|-------------------------------------------|-----------------------------|----------|----------|-------|------|----------------------------------------|--------------------------------|
| Clinker                                   | By-<br>Product              | 1.44     | 1.32     | 2.76  | МТРА | Conveyor Belt                          | NA                             |
| Imported Clinker from RCL<br>Sister Units | By-<br>Product              | 0.5      | 0        | 0.5   | МТРА | Rail                                   | NA                             |
| Cement (OPC/RHPC/PPC/MC/CC)               | Product                     | 2.7      | 1.3      | 4     | МТРА | lRoad                                  | Both Rail &<br>Road Modes      |

# Awarded TORs & their incorporation in EIA Report

| SI. No. | Awarded TOR                                                                                                                                                                                                                                                                                                                                                                               | Incorporation in EIA Report Page No.                                                                                                                                                                                                                         |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I       | Standard Terms of Reference                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                              |
| 1       | Preliminary Requirements                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              |
| 1.1     | EIA/EMP report cover page shall consists of project title with location, applicable schedule of the EIA Notification, 2006, ToR letter No. with date, study period along with EIA consultant & laboratory details with QCI/NABET/NABL accreditation certificate detail.                                                                                                                   | Complied. Cover Page consists of project title with location, applicable schedule of the EIA Notification, 2006, ToR letter No. with date, study period along with EIA consultant & laboratory details with QCI/NABET/NABL accreditation certificate detail. |
| 1.2     | Besides, following points shall be compiled as per QCI/NABET norms:  a. Disclaimer by the EIA consultant.  b. Declaration by the Functional Area Experts contributed to the EIA study and declaration by the head of the accredited consultant organization/authorized person.  c. Undertaking by the project proponent owning the contents (information and data) of the EIA/EMP report. | 8<br>10-11<br>12                                                                                                                                                                                                                                             |
|         | <ul> <li>d. Undertaking by the EIA consultant regarding compliance of ToR issued by MoEF&amp;CC.</li> <li>e. Consultant shall submit the Plagiarism Certificate for the EIA/EMP Report.</li> </ul>                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                            |
| 2       | Compliance                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                              |
| 2.1     | Table of Contents of the EIA report including list of tables/figures/ annexures/ abbreviations/symbols/notations.                                                                                                                                                                                                                                                                         | 2-7                                                                                                                                                                                                                                                          |
| 2.2     | Point wise compliance to the ToR issued by MoEF&CC.                                                                                                                                                                                                                                                                                                                                       | 35-50                                                                                                                                                                                                                                                        |
| 3       | Executive Summary                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |
| 3.1     | Introduction                                                                                                                                                                                                                                                                                                                                                                              | 51                                                                                                                                                                                                                                                           |
| 3.1.1   | Name of the project along with applicable schedule and category as per EIA, 2006.                                                                                                                                                                                                                                                                                                         | 51                                                                                                                                                                                                                                                           |
| 3.1.2   | Location and accessibility                                                                                                                                                                                                                                                                                                                                                                | 55                                                                                                                                                                                                                                                           |
| 4.1     | Project description                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                              |
| 4.1.1   | Resource requirements (Land; water; fuel; manpower)                                                                                                                                                                                                                                                                                                                                       | 57                                                                                                                                                                                                                                                           |
| 4.1.2   | Operational activity                                                                                                                                                                                                                                                                                                                                                                      | 59                                                                                                                                                                                                                                                           |
| 4.1.3   | Key pollution concerns                                                                                                                                                                                                                                                                                                                                                                    | 61                                                                                                                                                                                                                                                           |
| 5.1     | Baseline Environment Studies                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                              |
| 5.1.1   | Ambient air quality                                                                                                                                                                                                                                                                                                                                                                       | 64                                                                                                                                                                                                                                                           |
| 5.1.2   | Ambient Noise quality                                                                                                                                                                                                                                                                                                                                                                     | 65                                                                                                                                                                                                                                                           |
| 5.1.3   | Traffic study                                                                                                                                                                                                                                                                                                                                                                             | 65                                                                                                                                                                                                                                                           |
| 5.1.4   | Surface water quality                                                                                                                                                                                                                                                                                                                                                                     | 65                                                                                                                                                                                                                                                           |
| 5.1.5   | Ground water quality                                                                                                                                                                                                                                                                                                                                                                      | 66                                                                                                                                                                                                                                                           |
| 5.1.6   | Soil quality                                                                                                                                                                                                                                                                                                                                                                              | 66                                                                                                                                                                                                                                                           |
| 5.1.7   | Biological Environment                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                           |

| SI. No.        | Awarded TOR                                                                      | Incorporation in EIA Report Page No. |  |  |
|----------------|----------------------------------------------------------------------------------|--------------------------------------|--|--|
| 5.1.8          | Land use                                                                         | 66                                   |  |  |
| 5.1.9          | Socio-economic environment                                                       | 66                                   |  |  |
| 6.1            |                                                                                  | 00                                   |  |  |
| 6.1.1          | Anticipated impacts                                                              | 68                                   |  |  |
| 6.1.2          | Impact on ambient air quality Impact on ambient noise quality                    | 68-69                                |  |  |
|                | <u> </u>                                                                         | 67 & 69                              |  |  |
| 6.1.3<br>6.1.4 | Impact on road and traffic Impact on surface water resource and                  | 68 & 70                              |  |  |
| 0.1.4          | quality                                                                          | 00 & 70                              |  |  |
| 6.1.5          | Impact on ground water resource and                                              | 68 & 70                              |  |  |
| 0.1.5          | quality                                                                          | 00 & 70                              |  |  |
| 6.1.6          | Impact on terrestrial and aquatic habitat                                        | 68 & 71                              |  |  |
| 6.1.7          | Impact on socio-economic environment                                             | 68 & 71                              |  |  |
| 7.1            | Alternative analysis                                                             | 72                                   |  |  |
| 8.1            | Environmental Monitoring program                                                 | _ · <u>-</u>                         |  |  |
| 8.1.1          | Ambient air, noise, water and soil quality                                       | 72                                   |  |  |
| 8.1.2          | Noise quality management plan                                                    | 72                                   |  |  |
| 8.1.3          | Emission and discharge from the plant                                            | 72                                   |  |  |
| 8.1.4          | Green Belt                                                                       | 72                                   |  |  |
| 8.1.5          | Social Parameters                                                                | 73                                   |  |  |
| 9.1            | Additional Studies                                                               |                                      |  |  |
| 9.1.1          | Risk assessment                                                                  | 73                                   |  |  |
| 9.1.2          | Public consultation                                                              | 73                                   |  |  |
| 9.1.3          | Action plan to address the issues raised                                         | 73                                   |  |  |
|                | during public consultation as per                                                |                                      |  |  |
|                | MoEF&CC O.M. dated 30/09/2020                                                    |                                      |  |  |
| 10.1           | Environment Management Plan                                                      |                                      |  |  |
| 10.1.1         | Air quality management plan                                                      | 74                                   |  |  |
| 10.1.2         | Solid and hazardous waste management                                             | 75                                   |  |  |
|                | plan                                                                             |                                      |  |  |
| 10.1.3         | Effluent management plan                                                         | 76                                   |  |  |
| 10.1.4         | Storm water management plan                                                      | 76                                   |  |  |
| 10.1.5         | Occupational health and safety                                                   | 77                                   |  |  |
|                | management plan                                                                  |                                      |  |  |
| 10.1.6         | Green belt development plan                                                      | 76                                   |  |  |
| 10.1.7         | Socio-economic management plan                                                   | 77                                   |  |  |
| 10.1.8         | Project cost and EMP implementation                                              | 77                                   |  |  |
|                | budget                                                                           |                                      |  |  |
| ll<br>44       | EIA Report                                                                       | 70                                   |  |  |
| 11             | Introduction                                                                     | 78                                   |  |  |
| 11.1           | Background about the project                                                     | 78                                   |  |  |
| 11.2           | Need of the project                                                              | 106                                  |  |  |
| 11.3           | Purpose of the EIA study                                                         | 78                                   |  |  |
| 11.4           | Scope of the EIA study                                                           | 110                                  |  |  |
| 12             | Project Description                                                              | 111                                  |  |  |
| 12.1.1         | Location of the project site covering village,                                   | 111                                  |  |  |
| 1010           | Taluka/Tehsil, District and State.                                               | 116                                  |  |  |
| 12.1.2         | Site accessibility                                                               | 113-114                              |  |  |
| 12.1.3         | A digital toposheet in pdf or shape file                                         | 110-114                              |  |  |
|                | compatible to google earth of the study area of radius of 10km and site location |                                      |  |  |
|                | oi radius di fuktii and site iocation                                            |                                      |  |  |

| SI. No. | Awarded TOR                                                                         | Incorporation in EIA Report Page No. |
|---------|-------------------------------------------------------------------------------------|--------------------------------------|
|         | preferably on 1:50,000 scale. (including all                                        |                                      |
|         | eco-sensitive areas and environmentally                                             |                                      |
|         | sensitive places).                                                                  |                                      |
| 12.1.4  | Latest High-resolution satellite image data                                         | 88                                   |
|         | having 1 m - 5 m spatial resolution like                                            |                                      |
|         | quickbird, Ikonos, IRS P-6 pan sharpened                                            |                                      |
|         | etc., along with delineation of plant                                               |                                      |
|         | boundary co-ordinates. Area must include                                            |                                      |
|         | at least 100 m all around the project                                               |                                      |
|         | location.                                                                           |                                      |
| 12.1.5  | Environment settings of the site and its                                            | 112-116                              |
|         | surrounding along with map.                                                         |                                      |
| 12.1.6  | A list of major industries with name,                                               | 116                                  |
|         | products and distance from plant site within                                        |                                      |
|         | study area (10km radius) and the location                                           |                                      |
|         | of the industries shall be depicted in the                                          |                                      |
|         | study area map.                                                                     |                                      |
| 12.1.7  | In case if the project site is in vicinity of the                                   | 119                                  |
|         | water body, 50 meters from the edge of the                                          |                                      |
|         | water body towards the site shall be treated                                        |                                      |
|         | as no development/construction zone. If it's                                        |                                      |
|         | near the wetland, Guidelines for                                                    |                                      |
|         | implementing Wetlands (Conservation and                                             |                                      |
|         | Management) Rules, 2017 may be                                                      |                                      |
|         | followed.                                                                           |                                      |
| 12.1.8  | In case if the project site is in vicinity of the                                   | Not Applicable                       |
|         | river, the industry shall not be located within                                     |                                      |
|         | the river flood plain corresponding to one in                                       |                                      |
|         | 25 years flood, as certified by concerned                                           |                                      |
|         | District Magistrate/Executive Engineer from                                         |                                      |
|         | State Water Resources Department (or)                                               |                                      |
|         | any other officer authorized by the State                                           |                                      |
|         | Government for this purpose as per the                                              |                                      |
|         | provisions contained in the MoEF&CC                                                 |                                      |
| 10.1.0  | Office Memorandum dated 14/02/2022.                                                 | Not Applicable                       |
| 12.1.9  | In case of canal/ nala/ seasonal drain and                                          | Not Applicable                       |
|         | any other water body passing through                                                |                                      |
|         | project site, the PP shall submit the suitable steps /conservation plan/mitigation  |                                      |
|         |                                                                                     |                                      |
|         | measures along with contouring, Run -off                                            |                                      |
|         | calculations, disposal etc. A robust and full proof Drainage Conservation scheme to |                                      |
|         | protect the natural drainage/water bodies                                           |                                      |
|         | and its flow parameters; along with Soil                                            |                                      |
|         | conservation scheme and multiple Erosion                                            |                                      |
|         | control measures shall be provided in the                                           |                                      |
|         | report.                                                                             |                                      |
| 12.1.10 | Type of land, land use of the project site                                          | 81                                   |
| 12.1.10 | needs to be submitted.                                                              |                                      |
| 12.1.11 | Status of acquisition of land. If acquisition is                                    | 81                                   |
| 12.1.11 | not complete, stage of the acquisition                                              |                                      |
|         | process as per the MoEF&CC O.M. dated                                               |                                      |
|         | process as per the MOLI ACC C.M. dated                                              |                                      |

| SI. No. | Awarded TOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Incorporation in EIA Report Page No.          |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|         | 7/10/2014 shall be furnished.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| 12.1.12 | Project proponent shall prepare Engineering layout plan showing all internal roads minimum 6 m width and 9 m turning radius for smooth traffic flow inside including fire tender as per NBC. Road network shall connect all service areas in layout. This drawing shall include area statement showing plot area, area under roads, parking, green belt with calculations and % with respect to plot area of project site and proper indexing. If located within an Industrial area/Estate/Complex, layout of | 119 & 121                                     |
|         | Industrial Area indicating location of unit within the Industrial area/Estate.                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| 12.1.13 | Project proponent shall submit contour map of project site along with drainage disposal system with calculations and drawings supported with proper indexing including Rain Water Harvesting details with calculations mentioning about GW recharge along with relevant drawing.                                                                                                                                                                                                                              | 142-144                                       |
| 12.1.14 | A detailed report covering all aspects of Fire Safety Management and Fire Emergency Plan shall be submitted.                                                                                                                                                                                                                                                                                                                                                                                                  | 291-293                                       |
| 12.1.15 | Details of drone survey for the site, needs to be included in report and presented before the EAC during appraisal of the project.                                                                                                                                                                                                                                                                                                                                                                            | Will be submitted at the time of EAC Meeting. |
| 13      | Forest and Wildlife                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
| 13.1    | Forest and wildlife related issues (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Applicable                                |
| 13.1.1  | Status of Forest Clearance for the use of forest land shall be submitted.                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Applicable                                |
| 13.1.2  | Copy of application submitted for clearance under the Wildlife (Protection) Act, 1972, to the Standing Committee of the National Board for Wildlife if the project site located within notified Eco-Sensitive Zone, 10 km radius of national park/sanctuary wherein final ESZ notification is not in place as per MoEF&CC Office Memorandum dated 8/8/2019.                                                                                                                                                   | Not Applicable                                |
| 13.1.3  | The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, Eco-sensitive Zone and Ecosensitive areas, the project proponent shall submit the map duly authenticated by Divisional Forest Officer showing the distance between the project site and the said areas.                                                                                                                                                                  | Not Applicable                                |

| SI. No. | Awarded TOR                                     | Incorporation in EIA Report Page No.   |
|---------|-------------------------------------------------|----------------------------------------|
| 13.1.4  | Wildlife Conservation Plan duly                 | 321                                    |
| 15.1.4  | authenticated by the Competent Authority        | 021                                    |
|         | of the State Government for conservation of     |                                        |
|         | Schedule I fauna along with budget and          |                                        |
|         | action plan, if any exists in the study area.   |                                        |
| 14      | Salient features                                |                                        |
| 14.1    | Salient features of the project                 |                                        |
| 14.1.1  | Products with capacities in Tons per Annum      | 111                                    |
|         | for the proposed project.                       |                                        |
| 14.1.2  | If expansion project, status of                 | 94-97                                  |
|         | implementation of existing project, details     |                                        |
|         | of existing/proposed products with              |                                        |
|         | production capacities in Tons per Annum.        |                                        |
| 14.1.3  | Site preparatory activities.                    | Not Applicable - 250                   |
| 14.1.4  | List of raw materials required and their        | 145-146                                |
|         | source along with mode of transportation.       |                                        |
| 14.1.5  | Other than raw materials, other chemicals       | 146                                    |
|         | and materials required with quantities and      |                                        |
|         | storage capacities.                             |                                        |
| 14.1.6  | Manufacturing process details along with        | 148-152                                |
|         | process flow diagram of proposed units.         |                                        |
| 14.1.7  | Consolidated materials and energy balance       | 151-152 & 157-158                      |
|         | for the project.                                | 150 100                                |
| 14.1.8  | Total requirement of surface/ ground water      | 159-160                                |
|         | and power with their respective sources,        |                                        |
| 4440    | status of approval.                             | 160                                    |
| 14.1.9  | Water balance diagram                           |                                        |
| 14.1.10 | Details of Emission, effluents, hazardous       | 248-251, 269                           |
|         | waste generation and mode of disposal           |                                        |
|         | during construction as well as operation phase. |                                        |
| 14.1.11 | Man-power requirement.                          | 162                                    |
| 14.1.12 | Cost of project and scheduled time of           | 162                                    |
| 17.1.12 | completion.                                     | 102                                    |
| 14.1.13 | In case of expansion projects, project          | 119 123 & 133                          |
| 14.1.10 | proponent shall submit structural stability     | 110, 120 & 100                         |
|         | certificate showing whether existing            |                                        |
|         | structure withstand for proposed expansion      |                                        |
|         | activity.                                       |                                        |
| 14.1.14 | Brief on present status of compliance           |                                        |
|         | (Expansion/modernization proposals)             |                                        |
|         | a. Cumulative Environment Impact                | 248                                    |
|         | Assessment for the existing as well as the      |                                        |
|         | proposed expansion/modernization shall          |                                        |
|         | be carried out.                                 |                                        |
|         | b. Cumulative Impact Assessment need to         | Not Applicable                         |
|         | be carried out by greenfield projects           |                                        |
|         | considering the nearby industries.              |                                        |
|         | c. In case of ground water drawl for the        | Not Applicable – No ground water drawl |
|         | existing unit, action plan for phasing out of   |                                        |
|         | ground water abstraction in next two years      |                                        |
|         | except for domestic purposes and shall          |                                        |

| SI. No. | Awarded TOR                                                                          | Incorporation in EIA Report Page No. |
|---------|--------------------------------------------------------------------------------------|--------------------------------------|
|         | switch over to 100 % use of surface water                                            |                                      |
|         | from nearby source.                                                                  | Doc-I ECs - Pages 342-357            |
|         | d. Copy of all the Environment Clearance(s)                                          | Doc-1 Los - Fages 342-337            |
|         | including Amendments/validity of                                                     | Doc-2 CTOs - Pages 358-421           |
|         | extension/transfer of EC, there to obtained for the project from MoEF&CC/SEIAA shall | Ĭ                                    |
|         | be attached as Annexures. A Certified                                                | HWA – Pages 422-424                  |
|         | Compliance Report (CCR) of the Integrated                                            | Day II 00D Day as 447 400            |
|         | Regional Office of the Ministry of                                                   | Doc-II CCR – Pages 447-466           |
|         | Environment, Forest and Climate Change/                                              |                                      |
|         | or concerned authority as per OM No. IA3-                                            |                                      |
|         | 22/10/2022-IA.III [E 1772581], dated 8th                                             |                                      |
|         | June, 2022 on the status of compliance of                                            |                                      |
|         | conditions stipulated in all the existing                                            |                                      |
|         | environment clearances including                                                     |                                      |
|         | amendments shall be provided. A Certified                                            |                                      |
|         | Compliance Report (CCR) issued by the                                                |                                      |
|         | concerned Authority shall be valid for a                                             |                                      |
|         | period of one year from the date of inspection.                                      |                                      |
|         | e. In case the existing project has not                                              |                                      |
|         | obtained Environment Clearance, reasons                                              | Not Applicable                       |
|         | for not taking EC under the provisions of the                                        |                                      |
|         | EIA Notification 1994 and/or EIA                                                     |                                      |
|         | Notification 2006 shall be provided. A                                               |                                      |
|         | proper justification needs to be submitted                                           |                                      |
|         | along with documentary proof. Copies of                                              |                                      |
|         | Consent to Establish/No Objection                                                    |                                      |
|         | Certificate and Consent to Operate (in case                                          |                                      |
|         | of units operating prior to EIA Notification                                         |                                      |
|         | 1994 or 2006, CTE and CTO of FY 2005-                                                |                                      |
|         | 2006) obtained from the SPCB shall be submitted. Further, compliance report to       |                                      |
|         | the conditions of CTO from the Regional                                              |                                      |
|         | Office of the SPCB shall be submitted, as                                            |                                      |
|         | per OM No. IA3-22/10/2022-IA.III [E                                                  |                                      |
|         | 1772581], dated 8th June, 2022. CCR on                                               |                                      |
|         | CTO conditions issued by the concerned                                               |                                      |
|         | SPCBs/PCCs shall be valid for a period of                                            |                                      |
|         | one year from the date of inspection of the                                          |                                      |
|         | project.                                                                             |                                      |

| 15   | Description of the Envi                                                           | ronment                                            |                                              |                                                                                                                                                                                 |            |
|------|-----------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 15.1 | Study period                                                                      | Premonsoon (JulSep. 2024) - 163                    |                                              |                                                                                                                                                                                 |            |
| 15.2 | Approach and methodo                                                              | ology for data                                     | collection as                                | furnished below                                                                                                                                                                 |            |
|      | Attributes                                                                        | Sam<br>Network                                     | pling<br>Frequency                           | Remarks                                                                                                                                                                         | Compliance |
|      | Air Environment Micro-Meteorological • Wind speed (Hourly) • Wind direction       | Minimum 1<br>site in<br>the project<br>impact Area | hourly<br>continuous                         | IS 5182 Part 1-20 • Site specific primary data is Essential.                                                                                                                    | 173        |
|      | Dry bulb temperature     Wet bulb temperature     Relative humidity               | impact Area                                        |                                              | Secondary data from IMD, New Delhi                                                                                                                                              | 178        |
|      | Rainfall     Solar radiation     Cloud cover     Environmental     Lapse Rate     |                                                    |                                              | CPCB guidelines to be considered.                                                                                                                                               | 183        |
|      | Pollutants • PM10 • SO2 • NOx                                                     | At least 8-12 locations                            | As per<br>National<br>Ambient Air<br>Quality | Collection of AAQ data (except in monsoon season)     Locations of                                                                                                              | 163<br>173 |
|      | CO     HC     Other parameters relevant to the project and topography of the area |                                                    | Standards,<br>CPCB<br>Notification.          | various stations for different parameters should be related to the characteristic properties of the parameters  • The monitoring                                                | 184        |
|      |                                                                                   |                                                    |                                              | stations shall be based on the NAAQM standards as per GSR 826(E) dated 16/11/2009 and take into account the predominant wind direction, population zone and sensitive receptors | 163        |
|      |                                                                                   |                                                    |                                              | including reserved forests, • Raw data of all AAQ                                                                                                                               | 186-191    |
|      |                                                                                   |                                                    |                                              | measurement or 12 weeks of all stations as per frequency given in the NAAQM Notification of                                                                                     | 100 101    |
|      |                                                                                   |                                                    |                                              | 16/11/2009 along with min., max., average and 98% values for each of the AAQ parameters                                                                                         |            |
|      |                                                                                   |                                                    |                                              | from data of all AAQ stations should be provided as an                                                                                                                          |            |

|                                                                                                                                                                                                                                                           |                                                                                                         |                                                                                                       | annexure to the EIA Report.                                                                                                                                                                        |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Noise<br>Hourly equivalent noise<br>levels                                                                                                                                                                                                                | At least 8-12 locations                                                                                 |                                                                                                       | As per CPCB norms                                                                                                                                                                                  | 202-203 |
| Water Parameters for water quality  • pH, temp, turbidity,                                                                                                                                                                                                |                                                                                                         |                                                                                                       | Samples for water quality should be collected and analyzed as per:                                                                                                                                 | Complie |
| magnesium hardness, total alkalinity, chloride, sulphate, nitrate, fluoride, sodium, potassium, salinity  • Total nitrogen, total phosphorus, DO, BOD, COD, Phenol  • Heavy metals  • Total coliforms, faecal coliforms  • Phyto plankton  • Zoo plankton |                                                                                                         |                                                                                                       | IS: 2488 (Part 1-5) methods for sampling and testing of Industrial effluents     Standard methods for examination of water and wastewater analysis published by American Public Health Association | 205-209 |
| For River Bodies  • Total Carbon  • pH  • Dissolved Oxygen  • Biological Oxygen Demand  • Free NH4  • Boron  • Sodium Absorption Ratio  • Electrical Conductivity                                                                                         | Surface water quality of the nearest River (60m upstream and downstream) and other surface water bodies |                                                                                                       | Yield of water sources to be measured during critical season     Standard methodology for collection of surface water (BIS standards)                                                              | 206-207 |
| For Ground Water                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                       | Ground water monitoring data should be collected at minimum of 8 locations (from existing wells / tube wells/ existing current records) from the study area and shall be included.                 | 208-209 |
| Traffic Study                                                                                                                                                                                                                                             | Type of vehicles                                                                                        | Frequency of vehicles for transportati on of materials     Additional traffic due to proposed project |                                                                                                                                                                                                    | 253-255 |
| Land Environment Soil Particle size distribution Texture pH Electrical conductivity Cation exchange capacity                                                                                                                                              |                                                                                                         | F7                                                                                                    | Soil samples be collected as per BIS specifications                                                                                                                                                | 211-212 |

| Alkali metals Sodium Absorption Ratio(SAR) Permeability Water holding capacity Porosity  Land use/Landscape Location code Total project area Topography Drainage (natural) Cultivated, forest plantation, water bodies, roads and |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Ratio(SAR)  • Permeability  • Water holding capacity  • Porosity  Land use/Landscape  • Location code  • Total project area  • Topography  • Drainage (natural)  • Cultivated, forest plantation, water                           |      |
| Ratio(SAR)  • Permeability  • Water holding capacity  • Porosity  Land use/Landscape  • Location code  • Total project area  • Topography  • Drainage (natural)  • Cultivated, forest plantation, water                           |      |
| Permeability Water holding capacity Porosity  Land use/Landscape Location code Total project area Topography Drainage (natural) Cultivated, forest plantation, water                                                              |      |
| Water holding capacity     Porosity  Land use/Landscape     Location code     Total project area     Topography     Drainage (natural)     Cultivated, forest plantation, water                                                   |      |
| Porosity  Land use/Landscape     Location code     Total project area     Topography     Drainage (natural)     Cultivated, forest plantation, water  Porosity  211-213                                                           |      |
| Land use/Landscape  • Location code  • Total project area  • Topography  • Drainage (natural)  • Cultivated, forest plantation, water                                                                                             |      |
| Location code     Total project area     Topography     Drainage (natural)     Cultivated, forest plantation, water                                                                                                               |      |
| Location code     Total project area     Topography     Drainage (natural)     Cultivated, forest plantation, water                                                                                                               |      |
| • Total project area • Topography • Drainage (natural) • Cultivated, forest plantation, water                                                                                                                                     |      |
| • Total project area     • Topography     • Drainage (natural)     • Cultivated, forest plantation, water                                                                                                                         |      |
| Topography Drainage (natural) Cultivated, forest plantation, water                                                                                                                                                                |      |
| Drainage (natural)     Cultivated, forest plantation, water                                                                                                                                                                       |      |
| Cultivated, forest plantation, water                                                                                                                                                                                              |      |
| plantation, water                                                                                                                                                                                                                 |      |
|                                                                                                                                                                                                                                   |      |
|                                                                                                                                                                                                                                   |      |
|                                                                                                                                                                                                                                   |      |
| settlements  District Francisco                                                                                                                                                                                                   |      |
| Biological Environment • Detailed 215-226                                                                                                                                                                                         |      |
| 1. Aquatic description of flora                                                                                                                                                                                                   |      |
| Primary productivity     and fauna                                                                                                                                                                                                |      |
| Aquatic weeds (terrestrial and                                                                                                                                                                                                    |      |
| • Enumeration of aquatic) existing in                                                                                                                                                                                             |      |
| phytoplankton, zoo the study area                                                                                                                                                                                                 |      |
| plankton and benthos shall be given with                                                                                                                                                                                          |      |
| • Fisheries Diversity special reference                                                                                                                                                                                           |      |
| indices to rare, endemic                                                                                                                                                                                                          |      |
| • Trophic levels and endangered                                                                                                                                                                                                   |      |
|                                                                                                                                                                                                                                   |      |
| Thate and endangered                                                                                                                                                                                                              |      |
| species indicate coological                                                                                                                                                                                                       |      |
| and environment                                                                                                                                                                                                                   |      |
| 11 Sancidanes/ Closed 1                                                                                                                                                                                                           |      |
| areas /coastal degradation                                                                                                                                                                                                        |      |
| regulation zone (CRZ) should be                                                                                                                                                                                                   |      |
| Identified and                                                                                                                                                                                                                    |      |
| 2. Terrestrial included to clearly                                                                                                                                                                                                |      |
| state whether the                                                                                                                                                                                                                 |      |
| Vegetation-species list,     proposed project     proposed project                                                                                                                                                                |      |
| economic importance, would result in to                                                                                                                                                                                           |      |
| forest produce, any adverse effect                                                                                                                                                                                                |      |
| on any energies                                                                                                                                                                                                                   |      |
| inedicinal value                                                                                                                                                                                                                  |      |
| • Importance value index   • Samples to collect   226-227                                                                                                                                                                         |      |
| (IVI) Of frees from unstream and                                                                                                                                                                                                  |      |
| • Fauna downstream of                                                                                                                                                                                                             |      |
| │ ● Avi tauna │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │                                                                                                                                                                               |      |
|                                                                                                                                                                                                                                   |      |
| anadica Canatuarica /                                                                                                                                                                                                             |      |
| Notional park /                                                                                                                                                                                                                   |      |
| Picophere receive                                                                                                                                                                                                                 |      |
| Wells close to                                                                                                                                                                                                                    |      |
| activity site.                                                                                                                                                                                                                    | [    |
| Migratory routes     For forest studies, Not Application                                                                                                                                                                          | ible |
| direction of wind                                                                                                                                                                                                                 |      |
| should be                                                                                                                                                                                                                         |      |
| considered while                                                                                                                                                                                                                  |      |
| selecting forests.                                                                                                                                                                                                                |      |
| • Secondary data to                                                                                                                                                                                                               |      |
| collect from                                                                                                                                                                                                                      |      |
|                                                                                                                                                                                                                                   |      |
| Government                                                                                                                                                                                                                        |      |
| offices, NGOs,                                                                                                                                                                                                                    |      |
| published                                                                                                                                                                                                                         |      |
| literature.                                                                                                                                                                                                                       |      |
| Socio-economic Socio-economic 227-244                                                                                                                                                                                             |      |
| Demographic structure survey is based on                                                                                                                                                                                          |      |
| proportionate,                                                                                                                                                                                                                    |      |
| • Infrastructure resource stratified and                                                                                                                                                                                          |      |
| random sampling                                                                                                                                                                                                                   |      |

|      | base                                                                                                                                                                                                                                                                                                                      | method.  • Primary data collection through questionnaire  • Secondary data from census records, statistical hard books, toposheets, health records and relevant official records available with Govt. agencies |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.3 | Interpretation of each environment attribute shall be enumerated and summarized as given below:  •Ambient air quality • Ambient Noise quality • Surface water quality • Ground water quality • Soil quality •Biological Environment • Land use • Socio-economic environment                                               | 244-247                                                                                                                                                                                                        |
| 15.4 | The PP should submit the photograph of monitoring stations & sampling locations. The photograph should bear the date, time, latitude & longitude of the monitoring station/sampling location. In addition to this PP should submit the original test reports and certificates of the labs which will analyze the samples. | Complied.<br>164-170<br>467-498                                                                                                                                                                                |

| SI. No. | Awarded TOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                      | Incorporation in EIA Report Page No. |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|--------------------------------------|
| 16      | Anticipated Environmental Envi | asures (In c<br>cumulative                       | ase of impact        |                                      |
| 16.1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 249-252              |                                      |
|         | Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Environment                                      | Ecolog               |                                      |
|         | Construction phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                      |                                      |
|         | Operation phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                      |
| 16.2    | Impact on ambi<br>Embedded<br>Assessment;<br>Residual impact<br>a. Construction<br>b. Operation pha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | control me<br>Mitigation me<br>)<br>phase<br>ase | easures;<br>easures; | 248-251<br>251-257                   |
|         | <ul><li>Details of sta</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ck emissions f                                   | rom the              | 257-258                              |

|      | existing as well as proposed activity.  •Assessment of ground level concentration of pollutants from the stack emission based on AQIP Modelling The air quality contours shall                                            | 258-265        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|      | be plotted on a location map showing<br>the location of project site, habitation<br>nearby, sensitive receptors, if any along<br>with wind rose map for respective<br>period                                              |                |
|      | <ul> <li>Impact on ground level concentration,<br/>under normal, abnormal and<br/>emergency conditions. Measures to<br/>handle emergency situations in the<br/>event of uncontrolled release of<br/>emissions.</li> </ul> | 264-266        |
| 16.3 | Impact on ambient noise quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase                                                           | 250 & 266      |
| 16.4 | Impact on traffic (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase                                                                         | 250, 253 - 255 |
| 16.5 | Impact on soil quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase                                                                    | 250, 267 – 268 |
| 16.6 | Impact on land use (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase                                                                        | 250, 251       |
| 16.7 | Impact on surface water resource and quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase                                              | 250<br>267     |
| 16.8 | Impact on ground water resource and quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation phase                                               | 250<br>267     |
| 16.9 | Impact on terrestrial and aquatic habitat (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact) a. Construction phase b. Operation                                                       | 250<br>268     |

|       | phase                                                                   |         |
|-------|-------------------------------------------------------------------------|---------|
| 16.10 | Impact on socio-economic environment                                    | 250     |
| 10110 | (Sources; Embedded control measures;                                    | 268     |
|       | Assessment; Mitigation measures;                                        |         |
|       | Residual impact) a. Construction phase                                  |         |
|       | b. Operation phase                                                      |         |
| 16.11 | Impact on occupational health and                                       | 250     |
|       | safety (Sources; Embedded control                                       | 269     |
|       | measures; Assessment; Mitigation                                        |         |
|       | measures; Residual impact) a.                                           |         |
|       | Construction phase b. Operation phase                                   |         |
| 17    | Analysis of Alternatives (Technology &                                  |         |
|       | Site)                                                                   | 074     |
| 17.1  | No project scenario                                                     | 271     |
| 17.2  | Site alternative                                                        | 271     |
| 17.3  | Technical and social concerns                                           | 271-276 |
| 17.4  | Conclusion                                                              | 276     |
| 18    | Environmental Monitoring Program                                        | 077     |
| 18.1  | Details of the Environment Management Cell                              | 277     |
| 18.2  | Performance monitoring schedule for all                                 | 278-281 |
|       | pollution control devices shall be                                      |         |
|       | furnished.                                                              |         |
| 18.3  | Corporate Environment Policy                                            | 277     |
|       | Does the company have a well laid down                                  |         |
|       | Environment Policy approved by its                                      |         |
|       | Board of Directors? If so, it may be                                    |         |
|       | detailed in the EIA report.                                             |         |
|       | a. Does the Environment Policy                                          | 81      |
|       | prescribe for standard operating                                        |         |
|       | process / procedures to bring into                                      |         |
|       | focus any infringement / deviation /                                    |         |
|       | violation of the environment or forest                                  |         |
|       | norms / conditions? If so, it may be detailed in the EIA.               |         |
|       | b. What is the hierarchical system or                                   | 81 & 86 |
|       |                                                                         |         |
|       | Administrative order of the company to deal with the environment issues |         |
|       |                                                                         |         |
|       | and for ensuring compliance with the environment clearance conditions?  |         |
|       | Details of this system may be given.                                    |         |
|       |                                                                         | 04      |
|       | c. Does the company have system of reporting of non compliances /       | 81      |
|       | violations of environment norms to                                      |         |
|       | the Board of Directors of the                                           |         |
|       | company and / or shareholders or                                        |         |
|       | stakeholders at large? This reporting                                   |         |
|       | mechanism shall be detailed in the                                      |         |
|       | EIA report                                                              |         |
| 18.4  | Action plan for post-project environment                                | 281     |
|       | monitoring matrix:                                                      |         |
|       |                                                                         |         |
|       | Activity Aspect Monitoring Parameter Location                           |         |
|       | Farameter                                                               |         |

|      | Constru                                       |                                       |
|------|-----------------------------------------------|---------------------------------------|
|      | ction                                         |                                       |
|      | phase                                         |                                       |
|      | Operati                                       |                                       |
|      |                                               |                                       |
|      | on                                            |                                       |
|      | phase                                         |                                       |
|      |                                               |                                       |
|      |                                               |                                       |
| 19   | Additional Studies                            |                                       |
| 19.1 | Project proponent shall submit a study        | 312-314                               |
| 19.1 |                                               | 012-014                               |
|      | report on Decarbonisation program,            |                                       |
|      | which would essentially consist of            |                                       |
|      | company's carbon emissions, carbon            |                                       |
|      | budgeting/ balancing, carbon                  |                                       |
|      | sequestration activities and carbon           |                                       |
|      | capture, use and storage after offsetting     |                                       |
|      | strategies. Further, the report shall also    |                                       |
|      |                                               |                                       |
|      | contain time bound action plan to reduce      |                                       |
|      | its carbon intensity of its operations and    |                                       |
|      | supply chains, energy transition pathway      |                                       |
|      | from fossil fuels to Renewable energy         |                                       |
|      | etc. All these activities/ assessments        |                                       |
|      | should be measurable and monitorable          |                                       |
|      | with defined time frames.                     |                                       |
| 10.0 |                                               | 312-314                               |
| 19.2 | Details of adoption/ implementation           | 312-314                               |
|      | status/plan to achieve the goal of            |                                       |
|      | Glasgow COP26 Climate Submit with             |                                       |
|      | regard to enhance the non-fossil energy,      |                                       |
|      | use of renewable energy, minimization         |                                       |
|      | of net carbon emission and carbon             |                                       |
|      | intensity with long-term target of "net       |                                       |
|      | Zero" emission.                               |                                       |
| 19.3 |                                               | 318                                   |
| 19.3 | Implementation status/measures                | 310                                   |
|      | adopted for avoiding the generation of        |                                       |
|      | single used plastic waste.                    |                                       |
| 19.4 | In cases the project is located in Critically | Not Applicable                        |
|      | and Severely Polluted Areas, additional       |                                       |
|      | mitigation measures adopted and               |                                       |
|      | detailed action plan to be submitted in       |                                       |
|      | · •                                           |                                       |
|      | the EIA/EMP Report as per MoEF&CC             |                                       |
|      | O.M. No. 22- 23/2028-IA.III dated             |                                       |
|      | 31/10/2019 and MoEF&CC O.M. No. 22-           |                                       |
|      | 23/2028-IA.III dated 5/07/2022 has to be      |                                       |
|      | submitted.                                    |                                       |
| 19.5 | Public consultation details (Entire           | To be complied after Public Hearing.  |
| 19.5 | ·                                             | To be complied after I ublic Hearing. |
|      | proceedings as separate annexure              |                                       |
|      | along with authenticated English              |                                       |
|      | Translation of Public Consultation            |                                       |
|      | proceedings).                                 |                                       |
| 19.6 | As part of Corporate Environment              | To be complied after Public Hearing.  |
|      | Responsibility (CER) activity, company        |                                       |
|      | shall adopt nearby villages based on the      |                                       |
|      |                                               |                                       |
|      | socio-economic survey and undertake           |                                       |

|      | community                                                                     | y deve                                           | lopmental    | activiti | es in  |                                      |
|------|-------------------------------------------------------------------------------|--------------------------------------------------|--------------|----------|--------|--------------------------------------|
|      |                                                                               |                                                  | the village  |          |        |                                      |
|      | and the D                                                                     | District                                         | Administra   | tion. Ir |        |                                      |
|      | regard, tim                                                                   | ne boun                                          | d action pla | an as pe |        |                                      |
|      |                                                                               |                                                  | e Memorar    |          |        |                                      |
|      | 30/09/2020 shall be submitted.                                                |                                                  |              |          |        |                                      |
| 19.7 | Summary of issues raised during public consultation along with action plan to |                                                  |              |          |        | To be complied after Public Hearing. |
| -    |                                                                               |                                                  |              |          |        | ,                                    |
|      |                                                                               |                                                  |              |          |        |                                      |
|      | address the same as per MoEF&CC O.M. dated 30/09/2020                         |                                                  |              |          |        |                                      |
|      |                                                                               |                                                  |              |          |        |                                      |
|      |                                                                               |                                                  |              |          |        |                                      |
|      | SI. No.                                                                       | Physical activity and action plan (Budge in INR) |              |          |        |                                      |
|      |                                                                               | Name of the                                      | Physical     | 1st      | 2nd    |                                      |
|      |                                                                               | Activity                                         | Targets      |          |        |                                      |
|      |                                                                               |                                                  |              |          |        |                                      |
|      |                                                                               |                                                  |              |          |        |                                      |
|      |                                                                               |                                                  |              |          |        |                                      |
|      |                                                                               |                                                  |              |          |        |                                      |
| 19.8 | Risk asses                                                                    | ssment                                           |              |          |        |                                      |
|      | <ul> <li>Methodol</li> </ul>                                                  | logy                                             |              |          |        | 283-311                              |
|      | <ul> <li>Hazard ic</li> </ul>                                                 | dentifica                                        | ation        |          |        | 286                                  |
|      | •Frequence                                                                    | cy analy                                         | /sis         |          |        | 286                                  |
|      | •Consequ                                                                      |                                                  |              |          |        | 286                                  |
|      |                                                                               |                                                  | nt outcome   |          |        | 288-291                              |
| 19.9 |                                                                               |                                                  | onse and pi  | epared   | ness   | 297-311                              |
|      | plan                                                                          | ,                                                |              |          |        |                                      |
| 20   | Project Be                                                                    | nefits                                           |              |          |        |                                      |
| 20.1 | Environme                                                                     |                                                  | efits        |          |        | 312                                  |
| 20.2 | Social infrastructure                                                         |                                                  |              |          | 312    |                                      |
| 20.3 | Employment and business opportunity                                           |                                                  |              |          | 312    |                                      |
| 20.4 | Other tangible benefits                                                       |                                                  |              |          | 312    |                                      |
| 21   | Environment Cost Benefit Analysis                                             |                                                  |              |          |        |                                      |
| 21.1 | Net present value                                                             |                                                  |              |          | 315    |                                      |
| 21.2 | Internal ra                                                                   |                                                  |              |          |        | 315                                  |
| 21.3 | Benefit cos                                                                   |                                                  |              |          |        | 315                                  |
| 21.4 | Cost effectiveness analysis                                                   |                                                  |              |          | 315    |                                      |
| 22   | Environme                                                                     |                                                  | Manageme     | ent      | Plan   |                                      |
|      | (Construct                                                                    | tion and                                         | l Operation  |          |        |                                      |
| 22.1 | -                                                                             | lan fo                                           |              |          | waste  | 317                                  |
|      | managem                                                                       |                                                  |              |          |        |                                      |
| 22.2 |                                                                               |                                                  | lid waste m  | nanage   | ment   | 317                                  |
| 22.3 | Action plan for e-waste management                                            |                                                  |              |          | 317    |                                      |
| 22.4 |                                                                               | plan                                             | for plas     |          | vaste  | 318                                  |
|      |                                                                               |                                                  | onsidering   |          | I      |                                      |
|      |                                                                               |                                                  | ent Rules 2  |          | -      |                                      |
| 22.5 |                                                                               |                                                  | or constru   |          | and    | Not Applicable                       |
|      | demolition waste management.                                                  |                                                  |              |          | • •    |                                      |
| 22.6 | Rain water harvesting plan                                                    |                                                  |              |          | 318    |                                      |
| 22.7 | Plan for maximum usage of waste                                               |                                                  |              |          | vaste  | 318                                  |
| ,    | water/treated water in the Unit                                               |                                                  |              |          |        |                                      |
| 22.8 |                                                                               |                                                  | opment pla   |          | action | 318                                  |
|      | <u> </u>                                                                      |                                                  | -pom pia     | , C      |        |                                      |

| -     |                                                                                  |         |
|-------|----------------------------------------------------------------------------------|---------|
|       | plan for Green Belt development                                                  |         |
|       | consisting of 3 tiers of plantations of                                          |         |
|       | native species all along the periphery of the project of adequate width shall be |         |
|       | raised in 33% of total area with a tree                                          |         |
|       |                                                                                  |         |
|       | density shall not less than 2500 per ha within a time frame of one year shall be |         |
|       | submitted. Survival rate of green belt                                           |         |
|       | shall be monitored on periodic basis to                                          |         |
|       | ensure that survival rate not be less than                                       |         |
|       | 80 %.                                                                            |         |
| 22.9  | Wildlife conservation plan (In case of                                           | 320-321 |
|       | presence of schedule I species)                                                  |         |
| 22.10 | Total capital cost and recurring                                                 | 319-320 |
|       | cost/annum for environment pollution                                             |         |
|       | control measures shall be included.                                              |         |
| 22.11 | Explore possibilities for recycling and                                          | 159     |
|       | reusing of treated water in the unit to                                          |         |
|       | reduce the freshwater demand                                                     |         |
|       | and waste disposal.                                                              |         |
| 22.12 | An Action Plan for improving the house-                                          | 102-105 |
|       | keeping activities in the raw material                                           |         |
|       | handling area need to be submitted                                               |         |
| 22.13 | Action plan for the stock piles with                                             | 148     |
|       | impervious floor, provision of garland                                           |         |
|       | drains and catch pits to trap run off                                            |         |
| 00.44 | material shall be submitted.                                                     | 101     |
| 22.14 | Action plan to limit the dust emission                                           | 161     |
|       | from all the stacks below 30 mg/Nm3                                              |         |
| 00.45 | shall be furnished.                                                              | 102-105 |
| 22.15 | Action plan for fugitive emission control                                        | 102-105 |
|       | in the plant premises shall be provided.                                         |         |

# Standard Terms of Reference for conducting Environment Impact Assessment Study for Cement plants and information to be included in EIA/EMP report

| SI.<br>No. | Awarded TOR                                                                      | Incorporation in EIA Report Page No. |
|------------|----------------------------------------------------------------------------------|--------------------------------------|
| INO.       | Limestone and coal linkage documents                                             | Doc-IV Page 499-506                  |
| 1.1        | along with the status of environment                                             | 200 11 1 ago 100 000                 |
|            | clearance of limestone and coal mines.                                           |                                      |
| 1.2        | Quantum of production of coal and                                                | 145                                  |
|            | limestone from coal & limestone mines and                                        |                                      |
|            | the projects they cater to;                                                      |                                      |
| 1.3        | Present land use shall be prepared based                                         | 213                                  |
|            | on satellite imagery. High-resolution                                            | 214                                  |
|            | satellite image data having 1m-5m spatial                                        |                                      |
|            | resolution like quickbird, Ikonos, IRS P-6                                       |                                      |
|            | pan sharpened etc. for the 10 Km radius                                          |                                      |
|            | area from proposed site. The same shall be                                       |                                      |
|            | used for land used/land-cover mapping of the area.                               |                                      |
| 1.4        | If the raw materials used have trace                                             | 153                                  |
| 1.4        | elements, an environment management                                              | 100                                  |
|            | plan shall also be included.                                                     |                                      |
| 1.5        | Plan for the implementation of the                                               | 102                                  |
|            | recommendations made for the cement                                              |                                      |
|            | plants in the Corporate Responsibility for                                       |                                      |
|            | Environmental Protection (CREP)                                                  |                                      |
|            | guidelines shall be prepared.                                                    |                                      |
| 1.6        | Energy consumption per ton of clinker and                                        | 159                                  |
| 4 7        | cement grinding                                                                  | 154-156                              |
| 1.7<br>1.8 | Provision of waste heat recovery boiler  Arrangement for co-processing of        | 271-273                              |
| 1.0        | Arrangement for co-processing of hazardous waste in cement plant.                | 271-273                              |
| 1.9        | Provision of Alternate fuels.                                                    | 273                                  |
| 1.10       | Details of Implementation of Fly Ash                                             | Complied                             |
|            | Management Rules                                                                 |                                      |
| 1.11       | Emission/Effluent norms as per GSR 496                                           | 161                                  |
|            | (E) dated 9/5/2016 [EPA Rules 1986].                                             |                                      |
| 1.12       | Action plan to limit the particulate matter                                      | 161                                  |
|            | emission from all the stacks below 30                                            |                                      |
|            | mg/Nm³ shall be furnished.                                                       |                                      |
| 1.13       | PP shall explore the possibility of plastic                                      | 273                                  |
|            | waste utilization in the Plant/Unit process.                                     | 075                                  |
| 1.14       | Action plan for 100 % solid waste utilization                                    | 275                                  |
| 4 4 -      | shall be submitted.                                                              | 000                                  |
| 1.15       | PM (PM10 and P2.5) present in the                                                | 200                                  |
|            | ambient air must be analysed for source                                          |                                      |
|            | analysis – natural dust/RSPM generated from plant operations (trace elements) of |                                      |
|            | PM10 to be carried over.                                                         |                                      |
|            | I WITO TO DE CATHEA OVEI.                                                        |                                      |

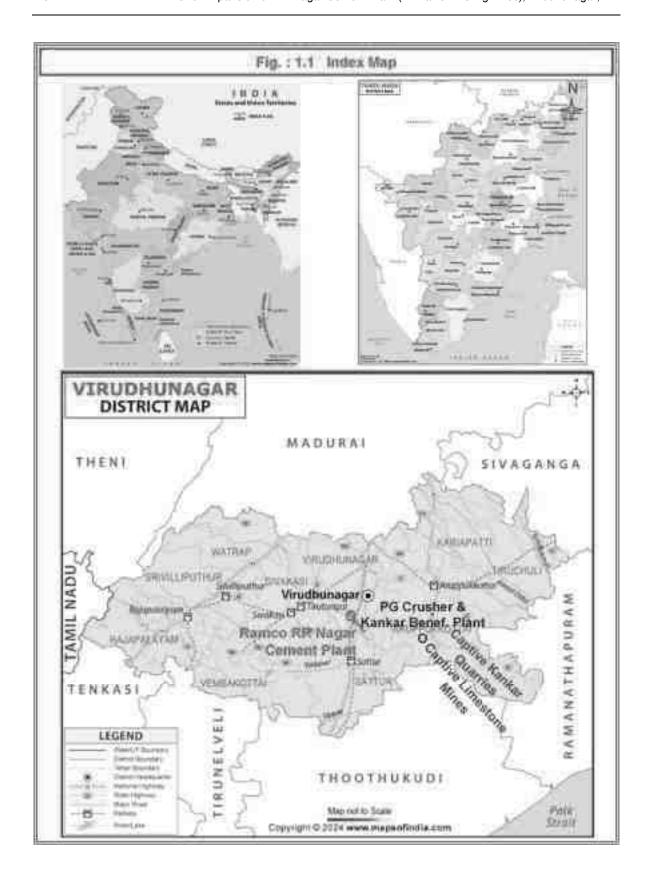
\*\*\*

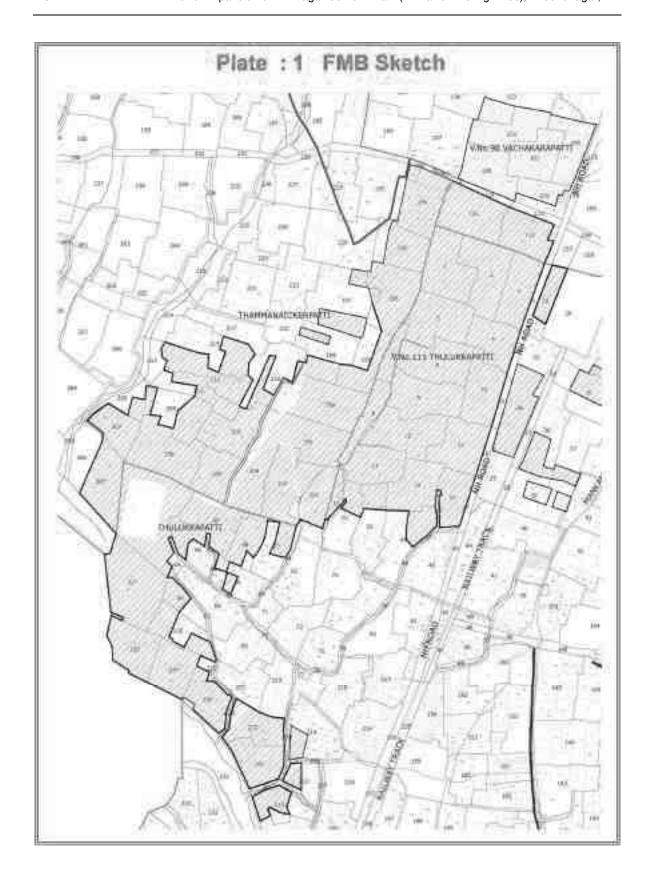
# **Executive Summary**

#### 1.0 Introduction

# 1.1 Name of the Project, Applicable Schedule & Category as per EIA, 2006

M/s. The Ramco Cements Limited (RCL) of Ramco Group is operating their Ramasamy Raja Nagar (RR Nagar) Cement Plant with CPP & Township over an extent of 191.434 Ha own patta lands in SF Nos. Parts of 1-14, 16, 22, 24, 30-32, 34-39, 49-52, 56-60, 65-66, 210, 212, 214, 221, 222, 225-230 of Tulukkappatti, 192, 194-212, 215, 216 & 287 of Thammanayakkanpatti and 100-103, 108, 109, 112 & 113 Vachchakkarappatti Villages, Taluk & District Virudhunagar, Tamil Nadu State (Fig. 1.1). FMB Sketch is given as Plate-1. The Plant is in operation since 1961-62.


RCL had established the recent expansion activities with New Kiln Line of 3000 TPD in compliance with Environmental Clearance (EC) from MoEF&CC awarded vide EC Identification No. EC21A009TN169325 dated **25.10.2021**. After obtaining CTEs & CTOs from TNPCB, the Plant is now being operated for production of 1.44 MTPA Clinker & 2.70 MTPA Cement from **1**<sup>st</sup> **March 2023**. Present **CTO-Renew Orders** are obtained from TNPCB vide 2408157290712 (Water Act) & 2408257290712 (Air Act) dated 13.09.2024 with **validity till 31.03.2025**. Certified Compliance Report (**CCR**) for earlier EC has been issued by Integrated Regional Office (IRO), MoEF&CC, Chennai on 18.03.2024 and there is **no Non-Compliance** / no Partial Compliance reported.


With revamping measures proposed by Engineering Consultant FLSmidth, RCL intends to expand RR Nagar Cement Plant with inclusion of revamped Old Line-II operations to existing Lines I & III i.e. operations of all 3 existing Lines-as Upgraded and also by increasing operational days from 320 to 345 days.

**Proposal :** 'Expansion of RR Nagar Cement Plant with inclusion of revamped Old Line-II operations to existing Lines I & III i.e. operations of all 3 existing Lines-as Upgraded and also by increasing operational days from 320 to 345 days - production enhancement of Clinker from 1.44 MTPA to 2.76 MTPA and Cement from 2.70 MTPA to 4.00 MTPA along with associated Waste Heat Recovery System of 13 MW' at Tulukkappatti, Thammanayakkanpatti & Vachchakkarappatti Villages, Taluk & District Virudhunagar, Tamil Nadu. The additional Project Cost is Rs.103.38 Crores. On proposed Expansion, the details of Products & By-products are given in **Table 1.1**.

Table: 1.1 Details of Products & By-Products on Expansion

| Production of                                    | Product /  | Pro      | duction, MTP | Mode of |                  |
|--------------------------------------------------|------------|----------|--------------|---------|------------------|
| Production of                                    | By-product | Existing | Proposed     | Total   | Transportation   |
| Clinker                                          | By-product | 1.44     | 1.32         | 2.76    | By Conveyor      |
| Imported Clinker from RCL Sister Units           | -          | 0.50     | 0            | 0.50    | Rail             |
| Cement                                           | Product    | 2.70     | 1.30         | 4.00    | Both Road & Rail |
| WHRB Power Generation from all 3 Lines @ 13.0 MW |            |          |              |         |                  |





Salient features of Proposal are given in Table 1.2.

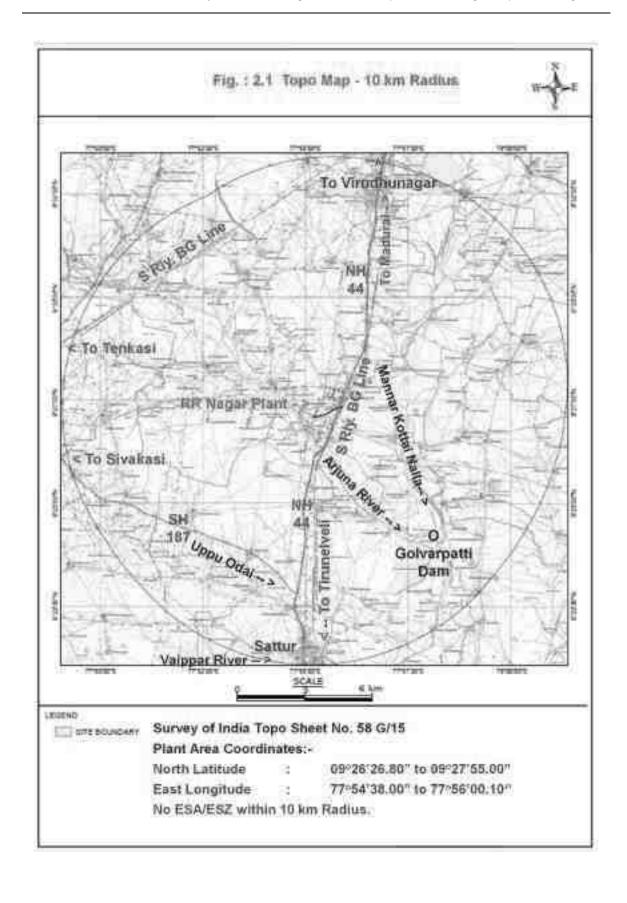
Table: 1.2 Salient features of Expansion Proposal

| S. No. | Details                                | Project Details a                            | as per Latest EC          | Project Details on Expansion now                                                                          |                     |  |
|--------|----------------------------------------|----------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------|---------------------|--|
| 1      | Plant Extent in Ha                     | 191                                          | .434                      | 191.434                                                                                                   |                     |  |
| 2      | Clinker Production,                    | Line                                         | Capacity,                 | Line                                                                                                      | Capacity            |  |
|        | MTPA                                   | I                                            | 0.48                      | I                                                                                                         | 0.69                |  |
|        |                                        | II                                           | -                         | II                                                                                                        | 0.69                |  |
|        |                                        | III                                          | 0.96                      | III                                                                                                       | 1.38                |  |
|        |                                        | Total                                        | 1.44                      | Total                                                                                                     | 2.76                |  |
| 3      | Import Clinker from Sister Units, MTPA | -                                            | 0.50                      | -                                                                                                         | 0.50                |  |
| 4      | Cement Production, MTPA                | Total                                        | 2.70                      | Total                                                                                                     | 4.00                |  |
| 5      | WHRS                                   | Line-I                                       | PH&AQC Boiler             | Lines I, II & III                                                                                         | 13 MW               |  |
| 6      | Raw Materials<br>Demand, TPA           | Limestone (&<br>Kankar)                      | 2.16<br>@ 6740 TPD        | Limestone                                                                                                 | 1.794<br>@ 5200 TPD |  |
|        |                                        | -                                            | -                         | Lime Kankar                                                                                               | 2.085<br>@ 6050 TPD |  |
|        |                                        | -                                            | -                         | Clay, Chips,<br>Roughstone                                                                                | 0.209<br>@ 605 TPD  |  |
|        |                                        | Copper Slag /<br>Laterite / Iron<br>Ore      | 0.022<br>@ 63 TPD         | Copper Slag /<br>Laterite / Iron<br>Ore                                                                   | 0.083<br>@ 242 TPD  |  |
|        |                                        | Fuel : Petcoke                               | 0.128<br>@ 423 TPD        | Fuel : Petcoke                                                                                            | 0.246 @ 715<br>TPD  |  |
|        |                                        | Gypsum                                       | 0.108 Gypsum<br>@ 290 TPD |                                                                                                           | 0.136<br>@ 395 TPD  |  |
|        |                                        | Fly Ash                                      | 0.677<br>@ 2050 TPD       | Dry Fly Ash                                                                                               | 1.120<br>@ 3246 TPD |  |
|        |                                        | -                                            | -                         | Wet Fly Ash                                                                                               | 0.080<br>@ 232 TPD  |  |
|        |                                        | Slag                                         | 63 TPD                    | Slag                                                                                                      | 2.200<br>@ 6377 TPD |  |
|        |                                        | -                                            | -                         | Limestone<br>Powder as PI                                                                                 | 0.040<br>@ 115 TPD  |  |
| 7      | Power, MW                              |                                              | .85                       | 40.50                                                                                                     |                     |  |
| 8      | Water requirement in KLD & Source      | 1000<br>Ground & Surface Water               |                           | 1265<br>Surface Water only                                                                                |                     |  |
| 9(i)   | Sewage generation in KLD               |                                              | 30                        | 280<br>(No Change)                                                                                        |                     |  |
| 9(ii)  | Trade Effluent generation in KLD       | 20                                           |                           | (20+60=) 80                                                                                               |                     |  |
| 10     | Air Pollution Control<br>Limits        |                                              |                           | PM - <30 mg/Nm <sup>3</sup><br>SO <sub>2 -</sub> <100 mg/Nm <sup>3</sup><br>NOx - <600 mg/Nm <sup>3</sup> |                     |  |
| 11     | Hazardous waste generation             | Used/Spent Oil (Category 5.1) -<br>94.62 TPA |                           | Used/Spent Oil<br>(Category 5.1) - 94.62 TPA                                                              |                     |  |
| 12     | Project Cost                           | CP & CPP                                     | Rs.894 Cr.                | Addition                                                                                                  | Rs.103.38 Cr.       |  |
|        | EMP-Capital                            |                                              | 20 Cr.                    | Rs.1.00 Cr.                                                                                               |                     |  |
|        | EMP-Operation                          | Rs.3.90 C                                    | Cr./annum                 | Rs.0.25 Crores/annum                                                                                      |                     |  |

All activities are proposed within the Industry premises and no additional land is required. Also, there is no Rehabilitation & Resettlement (R&R) involved. There is no Litigation or Pending Case against the Project.

The proposed Expansion of Cement Plant (>1.0 MTPA) falls under Sl. No. 3(b) - Category 'A' of EIA Notification 2006 and requires prior EC from MoEF&CC. As per Notification SO 1599 (E) dated 25.06.2014 and OM F. No. 22-24/2018-IA.III dated 22.01.2019, prior EC for installation of WHRB is exempt and is excluded for prior EC under Sl. No. 1(d). Accordingly, RCL filed TOR Application vide Parivesh Online Proposal No. IA/TN/IND1/498318/2024 on 26.09.2024. MoEF&CC granted Standard Terms of Reference (Standard TOR) for the Project with TOR Identification TO24A1102TN5995426N dated 12.11.2024 File No. under 11011/119/2009.IA.II(I). As permitted, Baseline Data was collected during Jul.-Sep. 2024 in Premonsoon Season for this Region in compliance with MoEF&CC Office Memorandum No. J-11013/41/2006-IA-II(I)(Part) dated 29.08.2017.

Draft Environmental Impact Assessment (EIA) Report and Summary EIA Reports in English & Tamil languages, prepared in compliance with awarded TORs by accreditated EIA Consultant - M/s. ABC Techno Labs India Private Limited (Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025), has been submitted now for Public Consultation & Public Hearing.


# 1.2 Location & Accessibility

The Cement Plant is located at a distance of 15 km in south from District Head Quarters Virudhunagar. Sattur Town is at a distance of 7.5 km (south) and Sivakasi Town is at 11 km (west). NH-44 (earlier NH-7) (4-Lane Madurai-Kanniyakumari Section) and Southern Railway BG Line (Chennai-Madurai-Kanniyakumari Section) run parallel to the Plant. Madurai is the nearest Airport (50 km in north). Thoothukudi VOC Port is the nearest Port (80 km-southeast). State Headquarters Chennai is at 450 km in northeast from the Plant.

Plant area falls in Survey of India Topo Sheet No. **58 G/15** (Open Series Map-C43R15). Topo Sheet is given as **Fig. 2.1.** Plant Coordinates are:

North Latitude : 09°26'26.80" to 09°27'55.00" East Longitude : 77°54'38.00" to 77°56'00.10".

There are **no Eco Sensitive Areas** like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar Sites, Tiger/Elephant Reserves, Reserved Forests, Archaeological / Historical Monuments etc. (existing as well as proposed), within 10 km Study Area. There is **no perennial River** in the Region. **Seasonal Arjuna River** (0.3 km in south) and Mannarkottai Nalla (2.0 km-east) are flowing near the Plant. There is **no major Industry** in the Study Area other than RR Nagar Cement Plant & CPP and Fire Cracker Units.



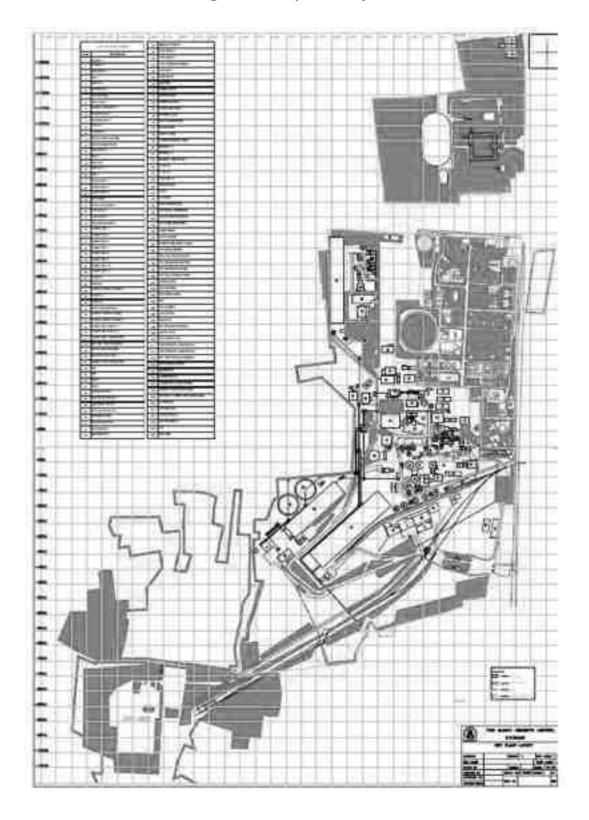
# 2.0 Project Description

## 2.1 Resource Requirements

**Land**: All Expansion activities i.e. **Line-II inclusion**, are proposed within the existing Premises and **no additional land** is required. **No establishment** is required for the Proposal. Proposed Layout is given as **Fig. 2.1**.

Total Builtup Area of the Complex is **61.266 Ha** (with Roof Top Area of 27.570 Ha) and Paved Area of **17.012 Ha**. The total Green Belt Area is **64.50 Ha** in the total extent of 191.434 Ha with **33.69% coverage**. No additional Green Belt is required. All internal roads are designed for minimum **6 m width and 9 m turning radius** for smooth traffic flow inside the Unit including fire tender, as per NBC Norms.

Captive Mines Limestone Supply: For 2.76 MTPA Clinker production, Raw Meal requirement is 4.17 MTPA. Lime Kankar is blended with Limestone for Raw Meal preparation. Accordingly, Limestone requirement is 1.794 MTPA @ 5,200 TPD & Lime Kankar requirement is 2.085 MTPA @ 6,050 TPD. Existing Captive Limestone Mines in Pandalgudi Region have consented production quantity of 2.691 MTPA Limestone of various grades. Likely, existing Captive Lime Kankar Quarries have consented production quantity of 3.914 MTPA ROM Kankar. Thus, existing supply/consented quantity of Mines & Quarries are adequate for the proposed Expansion.


Water: Presently, the fresh water demand of the Cement Plant, CPP & Township is 1,000 KLD. On Expansion, fresh water to the tune of 265 KLD is required for WHRB Power Plant. Thus, total water demand will be 1,265 KLD which is well within the permitted drawl quantity of 1,500 KLD from Arjuna River.

**Fuel :** Petcoke or Imported Coal is used as Fuel in the Kilns and the demand will be (i) 100% Petcoke-0.246 MTPA @ 715 TPD or 100% Imported Coal - 0.358@ 1040 TPD. There will be no change to existing demand of other fuels.

**Power:** The power demand of existing Plant operations and Township is 32.85 MW. Proposed Kiln-II operations will require additional Power Demand will be 7.65 MW and the total Power Demand will be 40.50 MW. In addition to 24.0 MW from CPP, 13.0 MW from WHRB Power Plant, 34.5 MW from TANGEDCO Grid ) & wind power generated through RCL windmills (by wheeling within the State), total 71.50 MW, are available for the Plant operations.

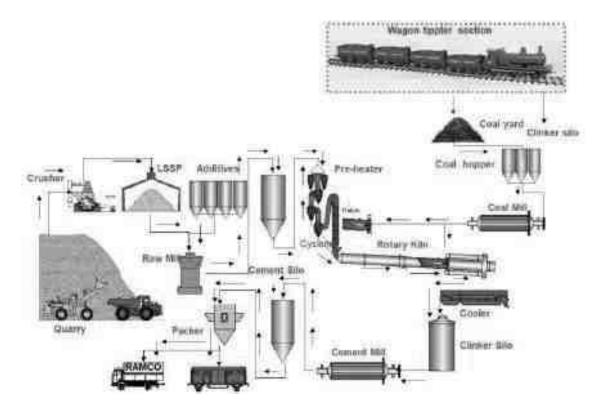
**Manpower**: Presently, there are 465 Direct Employees working in the Cement Complex. Indirect Employment to about 600 persons has been provided. Due to the Expansion Proposal, **another 35 Direct Employees & 50 Indirect Employees will be added**.

Fig.: 2.1 Proposed Layout



# 2.2 Operational Activity

Well established **Dry Process** utilising the Precalciner technology along with the technological advances in the area of grinding and homogenisation has been incorporated. General **Dry Process** Flow Chart is given as **Fig. 2.2.** The proportions for Raw Mix (average) are given below:


# Raw Mix:

Limestone : 43%
Lime Kankar : 50%
Clay Chips & Roughstone : 5%
Slag, Laterite, Iron Ore : 2%

Clinkerisation Factor : 1.512 (Raw meal to Clinker)
Fuel Consumption : 9.28 % (100% Pet coke)

13.62% (100% Imported coal)





Limestone & Lime Kankar along with other additives is metered in suitable proportions and sent to Raw Mill where the raw material is ground to the required size. The powdered Raw Meal is stored in the Raw Meal Silo. Belt bucket elevator is used to feed the raw material to Preheater Cyclones / Precalciner. The calcined material from the Preheater enters the Kiln and is subjected to physical and chemical changes to form Clinker. The hot molten Clinker is allowed to pass through a modern high efficient Clinker Cooler to cool it down to 150 °C. Cooled Clinker is then stored in Clinker Silos.

Clinker is then ground along with Gypsum, Slag, Fly Ash, Wet Fly Ash, PI, etc. to produce various grades of Cement. To pre grind the mill feed Clinker, Roller Press exists in the circuit. The Cement is then conveyed to the Silos through elevators. There are Electronic Packers with two discharges for automatic weighing and packing the cement in HDPE, Paper Bags and BOPP Bags. Facilities are available to dispatch Cement through Trucks as well as Rail Wagons to the Marketing Centres. Adequate **storage facilities** will be provided for the storage of raw materials & finished products. Material Balance for 2.76 MTPA Clinkerisation is given as **Fig. 2.3**.\_Material Balance for 4.00 MTPA PPC is given as **Fig. 2.4**.

Ches & Poughtiere

2 to US TPA

2 to US TPA

Source Service Conservable and Level

SS TPA

Aut Address

Service TPA for 1995 Per Code

SACIATPA

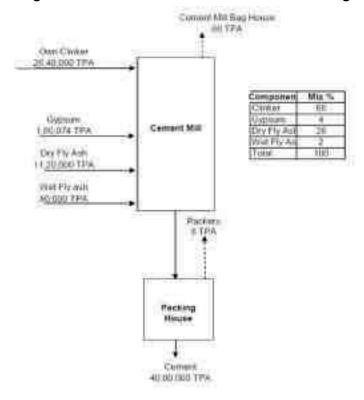
Own Circles

Own Circles

Saciation

Sacia

Fig.: 2.3 Material Balance for 2.76 MTPA Clinker Production


Fig. : 2.4 Material Balance for PPC Manufacturing

27 86 500 TP4

Lane Property

3H 85,500 TPU

17.515,8327 TRIA.



WHR System: The waste heat recovery (WHR) system effectively utilizes the available waste heat from exit gases of pre-heater and clinker cooler. WHR system consists of Suspension pre-heater (SP) boiler, Air Quenching Chamber (AQC) boiler, steam turbine generator, distributed control system (DCS), water-circulation system and dust-removal system, etc. In Line-I, WHR Circuit installed in Year 2019 and generated steam is utilized in the CPP for power generation. Now, PH Boilers & AQC Boilers are proposed for Lines-II & III Kiln. Existing WHR Boilers of Line-I and proposed WHRBs for Lines II & III will be combined for producing about 13 MW by a dedicated Turbine Generator.

On obtaining all Statutory approvals, the Plant can be operated for expansion quantity from 01.04.2025.

# 2.3 Key Pollution Concerns

**Air Pollution**: The (old) Line-II Kiln is already provided with Reverse Air Bag House, Cooler with ESP, Coal Mill with Bag Filters so as to control the **Particulate Emissions from the Line-II** <30 mg/Nm³. All the Material conveyors are fully covered and provided with Bagfilters at Transfer Points. The Plant operations will be in compliance with new Emission Standards issued by MoEF&CC for Cement Industry vide Notifications dated 25.08.2014 and amended on 09.05.2016 & 10.05.2016 as below:

PM Emissions from all Major Stacks: <30 mg/Nm<sup>3</sup>.

SO<sub>2</sub> Emissions from all Major Stacks: <100 mg/Nm<sup>3</sup> (pyritic Sulphur is <0.25%).

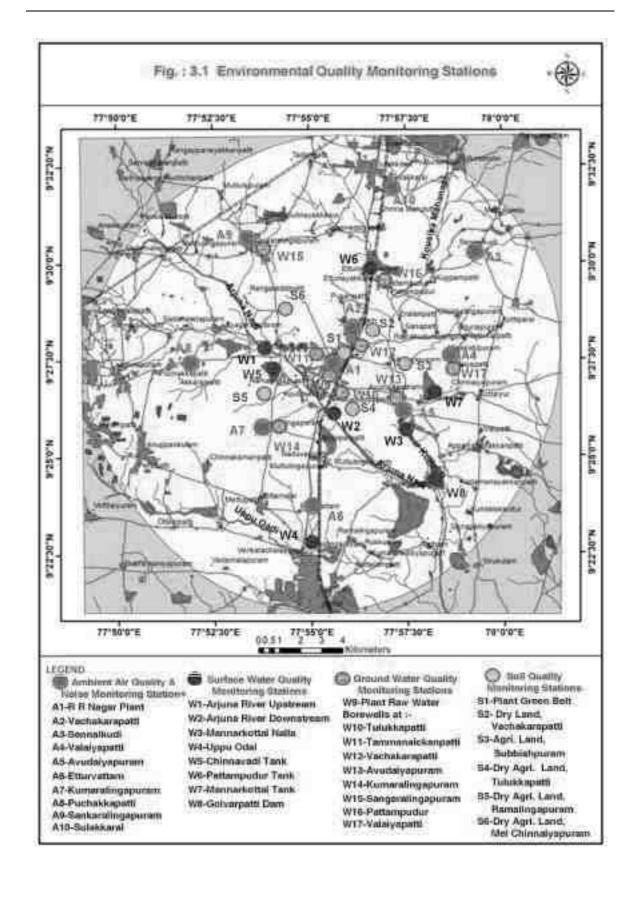
NOx Emissions from New Kiln-II: <600 mg/Nm<sup>3</sup>.

All Main Stacks of Line-II are provided with **Online Monitors** and the **Real Time Emission Levels are connected** to TNPCB Care Air Centre & CPCB **Servers**.

Water Pollution: There is no trade effluent from the Cement Plant. Workshop washings of 4 KLD and 16 KLD Rejects from CPP are individually neutralized and the Treated Effluent of 20 KLD is taken to the Cement Plant for equipment cooling (where it is evaporated fully). On Expansion, DM/RO Rejects of 40 KLD, Boiler Bleed-offs of 8 KLD and Colling Tower Rejects of 12 KLD, total 60 KLD effluent will be generated additionally which will be treated for pH Correction in a 100 KLD Neutralisation Pit separately and Treated Effluent of 60 KLD will be utilized for Equipment Cooling of (old) Line-II machineries where it will be evaporated fully.

Domestic Sewage & Canteen wastewaters of 25 KLD from the Cement Plant, 9 KLD Domestic Sewage from CPP, 160 KLD Domestic Sewage from the Township and another 86 KLD Domestic Sewage from Labour Qtrs., thus, a total of 280 KLD is generated. All the Domestic Sewage is treated in a 400 KLD Sewage Treatment Plants (350+50 KLD STPs). The Treated Sewage of 250 KLD is fully used for the Green Belt development. There will be no change to existing status on Expansion. Thus, it will be a 'Zero Effluent Discharge' Plant.

**Solid/Hazardous Wastes**: The solid waste generated from the process and dust collected from various air pollution control equipment is being recycled in the process. Solid waste from the Sewage treatment plant 0.8 @ TPD is vermi-composted and used as manure for Green belt development. Fly ash (29.3 TPD) produced from CPP and Bottom ash (5.2 TPD) are transported pneumatically with the help of dense phase pneumatic pumps to the RCC storage silos. The ash is evacuated from silo and transported to Cement Plant for PPC manufacturing. The Plant has obtained **Hazardous Wastes Authorisation** from TNPCB vide No. 23HPC42009117 dated 07.06.2023 with validity till 31.03.2028 to handle 94.62 TPA used/Spent Oil (Category 5.1) from the Plant. There **will not be any change to the existing Status** of Solid Waste Generation, Treatment and Disposal from the Complex on Expansion.


#### 3.0 Baseline Environmental Studies

Project Area dose not fall in Critically Polluted Industrial Clusters listed by CPCB or CRZ Area. The study area of 10 km radius from boundary has been considered (Fig. 3.1) for assessing the baseline environmental status-Cumulatively. Considering the Environmental setting of the project, project activities and their interaction, environmental regulations and Standards, following Environmental Attributes have been included in EIA Study:

- Site specific Micro-meteorological Data from Plant Area for the Season, on hourly basis continuously, on wind speed, wind direction (wind roses), temperature, humidity, cloud cover, atmospheric pressure and rainfall.
- Ambient Air Quality Monitoring at 10 locations on 24-hourly basis, continuously for 2 days in a week for 4 weeks in a month for 3 months in the season for all 12 parameters as per Revised NAAQ Norms.
- Noise Level Measurements at **10 locations** (air quality monitoring stations) for Leq, Lday and Lnight values once in the season.
- ❖ Water Quality Monitoring grab sampling of Surface Water (8 locations) and Ground Water including Plant Raw Water (9 Locations) once in the Season.
- Soil Quality Monitoring at 6 locations once in the Season for Textural & Physical Parameters, Nutrients, etc.
- **❖ Land Use Pattern** based on recent available Satellite Imagery.
- ❖ Biotic Attributes for : Flora & Fauna in Core & Buffer Zones.
- ❖ Socio-Economic Profile, based on 2011-Census and Need Based Assessment, once in the study period for: Total Population / Household Size, Gender Composition, SC / ST Population, Literacy Levels, Occupational Structure, etc.

The summary of baseline status is given in **Table 3.1**.

There is adequate buffer for the proposed Project in the physical, biological and edaphic environments of the study area.



| Envl. Component      | Main Parameters | Minimum | Maximum | Mean | Desirable<br>Norms |
|----------------------|-----------------|---------|---------|------|--------------------|
|                      | PM2.5           | 10      | 38      | 21.7 | 60                 |
| Ambient Air Quality, | PM10            | 13      | 65      | 39.0 | 100                |
| ug/m³                | SO <sub>2</sub> | 6       | 24      | 12.0 | 80                 |
|                      | NOx             | 7       | 27      | 14.5 | 80                 |
| Ambient Noise,       | Leq-Day         | 41.5    | 48.1    | 43.5 | 55                 |
| dB(A)                | Leq-Night       | 40.1    | 44.7    | 41.4 | 45                 |
| Surface Waters       | TDS, mg/l       | 310     | 560     | -    | 500/2100           |
| Ground Waters        | TDS, mg/l       | 360     | 520     | -    | 500-2000           |
| Cail Ctatus          | EC, mmhos/cm    | 0.92    | 1.45    | -    | 0.2-0.5            |
| Soil Status          | SAR             | 2.16    | 5.51    | -    | <5                 |

Table: 3.1 Environmental Baseline Status

Legend: PM2.5-Particulate Matter size less than 2.5 um; PM10- Particulate Matter size less than 10 um; SO<sub>2</sub>-Sulphur dioxide; NOx-Oxides of Nitrogen; Leq-Day & Leq-Night - Equivalent Noise Levels during Day & Night Times; TDS-Total Dissolved Solids; EC-Electrical Conductivity & SAR-Sodium Absorption Ratio.

# 3.1 Ambient Air Quality

**Micrometeorology**: During the **Premonsoon Season (Jul.-Sep. 2024)**, predominant winds were from W/WSW/WNW directions and mean Wind velocity was 6.4 kmph. Temperature values were ranging from 24.0 °C to 40.0 °C with mean value of 30.8 °C. Mean maximum relative humidity value was 62.7%. Mean atmospheric pressure value was computed as 757.0 mm of mercury. There were 11 rainy days with total rainfall of 14.5 mm on this Premonsoon Period. The monitored meteorological data were found to be in compliance with local weather phenomena.

Ambient Air Quality: All 12 AAQ parameters (24/8/1 hourly basis) were monitored in compliance with NAAQ Norms. During the study, each 240 samples were collected, analysed and reported.

Particulate Matter size less than 2.5 um-**PM2.5** values (24 hours Time Weighted) were monitored in the range between 10-38 **microgram/cu.m (ug/m³)** in the Study Area with a **mean value of 21.7 ug/m³** against NAAQ Norm value of **60 ug/m³** (24 hours Time Weighted).

Particulate Matter size less than 10 um-PM10 values were monitored in the range between 13-65 ug/m³ with a mean value of 39.0 ug/m³ against NAAQ Norm value of 100 ug/m³ (24 hours Time Weighted).

**SO<sub>2</sub>** values were monitored in the range between 6-24 ug/m<sup>3</sup> with a **mean value of 11.4 ug/m<sup>3</sup>** against NAAQ limit value of **80 ug/m<sup>3</sup>** (24 hours Time Weighted).

**NOx** values were monitored in the range between 7-27 ug/m³ with a **mean value of 13.9 ug/m³** against NAAQ limit value of **80 ug/m³** (24 hours Time Weighted).

**O**<sub>3</sub> concentrations (hourly samples reported for 8-hour average) were monitored in the range between 10-35.4 ug/m³ with a mean value of 15.1 ug/m³ against NAAQ limit value of 100 ug/m³ (8 hours Time Weighted).

 $NH_3$ -Ammonia; CO-Carbon monoxide; Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel;  $C_6H_6$ -Benzene and BaP-Benzo (a) pyrene in particulate phase levels were monitored below respective detectable limits.

While comparing with the National Ambient Air Quality (NAAQ) Standards revised as per GSR 826(E) dated 16.11.2009, all monitored values were found to be well within the respective limit values for 24-hourly periods for Industrial, Residential, Rural and other Areas.

#### 3.2 Ambient Noise Levels

Ambient Noise Levels were ranging from 32.6 dB(A) to 97.3 dB(A) during day times and from 32.0 dB(A) to 98.6 dB(A) during night times on the monitoring days. Day Equivalent Noise (Leq-d) level was found to be 43.5 dB(A) and Night Equivalent Noise (Leq-n) level was 41.4 dB(A). While comparing with the MoEF&CC Leq Norms for day and night times, the monitored **ambient noise levels were well within the limit values** for their respective Category Area.

#### 3.3 Traffic Study

For assessing the baseline status, the Traffic Survey based on Indian Road Congress-IRC: 64/106 Norms were carried out at Mukku Road Junction on NH-44 during a Week Day (Wednesday; 28.08.2024) and also during the Week end (Sunday; 01.09.2024). Based on the Survey, existing Traffic Volumes at the Junction is computed in Passenger Car Units (PCUs). The existing traffic volume in the Project vicinity was found to be 16,510.3 PCU/day.

#### 3.4 Surface Water Quality

The **surface water** samples were monitored with pH in the range 7.58-7.88 against the Limit value of 6.5-8.5. DO levels were in the range 4.0-4.8 mg/l against the minimum requirement value of 4.0-6.0 mg/l for Surface Waters. While EC values were in the range 470-880, TDS values were monitored in the range of 310-560 mg/l against the Limit values of 500/2100 mg/l. Chloride values ranging from 82 mg/l to 116 mg/l. Iron content was found to be in the range 0.06-0.14 mg/l. Oil and grease, phenolic compounds, cyanides, sulphides and insecticides were found to be absent. Trace metals were found to be in traceable levels. BOD and COD values were found to be <2 mg/l and 2-10 mg/l respectively. The surface water quality was found to be within the prescribed CPCB Criteria for Surface Waters **Class-C** (Drinking Water Source after Conventional Treatment and Disinfection) Norms.

# 3.5 Ground Water Quality

The pH of the **ground water** samples were ranging from 7.51-7.81 against the BIS Norm of 6.5-8.5. While EC values were in the range 560-760, TDS values were monitored in the range 360-520 mg/l (Norm 500 mg/l or 2,000 mg/l in the absence of alternate source). Chloride values were found to be in the range 68-126 mg/l (Norm 250/1000 mg/l). Iron content was found to be in the range 0.06-0.11 mg/l. Oil & Grease, Cyanides, Phenols, Pesticides, etc. were found to be absent. Most of the trace metals were monitored to be below their detectable limits. In general, the water quality of ground waters were found to be within the prescribed IS:10500-2012 Norms for Drinking in the absence of an alternative source.

# 3.6 Soil Quality

Soils with medium compaction and Silty loam texture are dominant in the study area. Soil pH values were found to be in alkaline range (7.53-7.86) and Electrical Conductivity values were in the range 0.92-1.45 mmhos/cm. There was significant moisture content at all the monitoring locations. Significant levels of Nitrogen, Phosphorous and Potassium (NPK) values were monitored at all locations. Sodium Absorption Ratio was in the range 2.16-5.51 (desirable value being <5). There was **no heavy metals intrusion**/leaching into the ground strata. Wilting coefficient in significant levels would mean that these soils would support vegetation, if amended suitably.

#### 3.7 Land Use

Fallow Land occupies the majority of the Study Area which is about 34.01%. Crop Lands occupy 17.41% of the study area Built-up lands occupy 5.05%. Water body occupies about 4.26% of the study area.

## 3.8 Biological Environment

There is **no Reserved Forests** within 10 km radius area. The Study Area is not part of any National Park, Sanctuary, Biosphere Reserve, Wildlife Corridors, Migratory Path, etc. The study area does not record the presence of any critically threatened species. Among the fauna recorded, most of them are common resident population and **no endangered species encountered** in the study area. **Peafowl placed under Schedule-I** as per Wild Life (Protection) Amendment Act, 2022 is found in the study area and its surroundings.

#### 3.9 Socio-economic Environment

There are 39 Census villages and 5Census Towns in the study area of 10 km radius. In the study area of 10 km radius, there are 1,34,419 persons (66,910 Males-49.8% and 67,509 Females-50.2%) in 37,349 Households (HHs). As far as the population of Scheduled Castes and

Scheduled Tribes are concerned, there were 34,424 (23.4%) Scheduled Castes Population and 45 Scheduled Tribes (0.03%). In the total population, the Literate population was 92,914 (69.1%) whereas the illiterate population was 41,505 (30.9%).

Total Workers in the total population were about 77,044 (52.1%). About 64,375 (47.9%) persons were non-workers. About 41.7% of the people were engaged in tertiary activities which included different services. The workers in the primary activities (Cultivators) and the secondary activities (Agricultural Labourers) were 2.6% and 7.9% respectively.

Local people are frequently suffering from fever, asthma, diarrhea, etc. and no occupational related disease recorded.

Almost all villagers are aware about the Ramco Cement Plant & its Captive Mines in the region.

# 4.0 Anticipated Environmental Impacts

Any Project would create impact on the environment in two distinct phases viz. Construction Phase which may be regarded as temporary & short term and Operation Phase which would have long term effects. The impacts have been assessed for the Project by assuming that the existing industrial activities has already been covered under baseline environmental status and continue to remain same till the operation of the Project.

#### 4.1 Construction Phase

Expansion activities are proposed within the Industry premises with no additional land & infrastructures. No. of Working days will be increased to 345 days to achieve the production enhancement with existing machineries. Thus, no major establishment is required for the Proposal. Structural Works for proposed WHR System will be main works during Construction Phase.

#### 4.1.1 Impact on Land Use

All Expansion activities i.e. **Line-II inclusion**, are proposed within the existing Premises and **no additional land** is required. There will be no excavation or cut & fill during Construction Phase.

# 4.1.2 Impact on Road & Traffic

On an average, 2-3 Truck loads/day will be visiting the site and will not have any adverse impact to the existing traffic volume of NH-44.

#### 4.1.3 Impact on Ambient Air Quality

The main sources of emission during the construction period are the movement of materials & equipments at site and dust emitted during the installation related activities. However, the impact will be for short duration and confined locally.

#### 4.1.4 Impact on Noise Levels

There will be very less impact on the existing noise levels due to construction, traffic for loading and unloading, fabrication and handling of equipments & materials, etc. The likely increase of about 1-2 dB(A) in Leq Noise Levels will be confined locally.

#### 4.1.5 Impact on Surface & Ground Water Quality

There is no ground water drawl for the Plant. The construction water requirement is nil. Impact on water quality during construction phase may be due to non-point discharge of sewage generated from construction workforce. Existing STPs are adequate to treat additional sewage.

#### 4.1.6 Impact on Biological Environment

Project does not warrant any cutting or transplantation of trees. Existing Green Belt will control the Air Pollution & Noise Levels, if any, generated during Construction Phase. Thus, there will not be any significant impact on existing flora-fauna of the study area.

#### 4.1.7 Impact on Socioeconomic Environment

There is no rehabilitation and resettlement involved in the project. Presently, there are 465 Direct Employees working in the Cement Complex. Indirect Employment to about 600 persons has been provided. Due to the Expansion Proposal, another 35 Direct Employees & 50 Indirect Employees will be added. This is a positive impact due to the Proposal.

Thus, the Construction Phase activities will not cause any significant adverse impact on the surrounding areas.

#### 4.2 Operation Phase

## 4.2.1 Impact on Air Quality

The (old) Line-II Kiln is already provided with Reverse Air Bag House, Cooler with ESP, Coal Mill with Bag Filters so as to control the **Particulate Emissions** from **Line-II <30 mg/Nm³**. SO<sub>2</sub> Emissions from Kiln-II will be <100 mg/Nm³ and NOx Emissions will be <600 mg/Nm³. All material conveyors are fully covered and provided with Bagfilters at Transfer Points. The Plant operations will be in

compliance with new Emission Standards issued by MoEF&CC for Cement Industry vide Notifications dated 25.08.2014 and amended on 09.05.2016 & 10.05.2016.

**SO<sub>2</sub> Control**: The fuel sulfur will contribute for SO<sub>2</sub> generation. However, Pyro-process itself acts as an effective SO<sub>2</sub> scrubber and SO<sub>2</sub> emission will be reduced from the Kilns.

**NOx Control**: RCL is taking adequate measures to keep NOx at the minimum level. These measures include installation of low NOx Calciner, Low NOx Burner and usage of Alternate Fuel (AF). RCL is considering the use of AF including plastics and proposes to install upgraded processing and feeding system. Usage of AF would help to control NOx level further.

**Prediction Modelling**: **AERMOD View** (9.6.5 **Version**) is used for Prediction Modelling for applicable Parameters **PM2.5**, **PM10**, **SO<sub>2</sub> & NOx** (**CO levels were below BDL**). The **maximum incremental GLC** for PM2.5 is  $0.42 \text{ ug/m}^3$ , PM10 -  $0.93 \text{ ug/m}^3$ , SO<sub>2</sub> -  $5.39 \text{ ug/m}^3$  & NOx 37.68 ug/m³. There will be **adequate Buffer** (34.78%-78.26%) in the Air Environment for proposed Expansion activities. The cumulative impacts were found to be confined locally i.e. within 1.0 km radius from the Plant boundaries.

## 4.2.2 Impact on Ambient Noise Quality

The noise level within the plant at a distance of one meter from the source will be maintained at <85 db(A) level for 8-hours exposure. Noise level at nearest plant boundary will be <55 dB(A) during day times and <45 dB(A) during night times. Thus, the noise levels will be well within the permissible MoEF&CC Norms for Residential Areas.

#### 4.2.3 Impact on Traffic Volume

Raw and Finished Materials are being transported by **both Rail and Road Modes**. Limestone from Captive Mines & Primary Crusher at Pandalgudi is transported by 30 Tons Tippers through RCL's dedicated transportation road. There are 525 Truck movements in one way i.e. 1,050 Trucks/day now. On Expansion, 1,166 Truck movements in one way i.e. **2,332 Trucks/day** will be there. Thus, there will be **1,282 Trucks/day** additional traffic volume due to the Proposal.

The existing traffic volume in the Project vicinity was found to be 16,510.3 PCU/day. In the Post-Project Scenario, there will be an addition of 2,332 Vehicles (in 2 ways) to the existing traffic. Cumulatively, the traffic volume in the Project vicinity on Expansion will be 19,764 PCU/day. The net increase (cumulative) will be 3,254 PCU/day only. The existing Roads/NHs are adequate to handle the proposed traffic volume due to the Project.

## 4.2.4 Impact on Surface Waters Resource and Quality

Presently, the fresh water demand of the Cement Plant, CPP & Township is 1,000 KLD. The Unit has been **permitted for the drawl of 1,500 KLD** from the nearby Seasonal Arjuna River. There is an Intake Well in the River Basin for tapping the required water. **On Expansion, fresh water to the tune of 265 KLD is required** for WHRB Power Plant. Thus, total water demand will be **1,265 KLD which is well within the permitted drawl quantity of 1,500 KLD** from Arjuna River.

Also, treated sewage of 250 KLD, treated Effluent of 20 KLD from CPP and harvested Rainwater of 230 KLD, in total 500 KLD, are supplementing the raw water demand of the Complex.

#### 4.2.5 Impact on Ground Waters Resource and Quality

There is **no ground water drawl for the Plant**. There is no trade effluent from the Cement Plant. Workshop washings of 4 KLD and 16 KLD Rejects from CPP are individually neutralized and the Treated Effluent of 20 KLD is taken to the Cement Plant for equipment cooling (where it is evaporated fully). **On Expansion**, DM/RO Rejects of 40 KLD, Boiler Bleed-offs of 8 KLD and Colling Tower Rejects of 12 KLD, total **60 KLD effluent will be generated** additionally which will be treated for pH Correction in a **100 KLD Neutralisation Pit separately** and **Treated Effluent of 60 KLD** will be utilized for Equipment Cooling of (old) Line-II machineries where it will be evaporated fully.

Domestic Sewage & Canteen wastewaters of 25 KLD from the Cement Plant, 9 KLD Domestic Sewage from CPP, 160 KLD Domestic Sewage from the Township and another 86 KLD Domestic Sewage from Labour Qtrs., thus, a total of 280 KLD is generated. All the Domestic Sewage is treated in a 400 KLD Sewage Treatment Plants (350+50 KLD STPs). The Treated Sewage of 250 KLD is fully used for the Green Belt development. There will be no change to existing status on Expansion. Thus, it will be a 'Zero Effluent Discharge' Plant.

#### 4.2.6 Impact on Solid Wastes

The solid waste generated from the process and dust collected from various air pollution control equipment is being recycled in the process. Solid waste from the Sewage treatment plant 0.8 @ TPD is vermi-composted and used as manure for Green belt development. Fly ash (29.3 TPD) produced from CPP and Bottom ash (5.2 TPD) are transported pneumatically with the help of dense phase pneumatic pumps to the RCC storage silos. The ash is evacuated from silo and transported to Cement Plant for Portland Pozzolana Cement (PPC) manufacturing. There will not be any change to the existing Status of Solid Waste Generation, Treatment and Disposal from the Complex on Expansion.

## 4.2.7 Impact on Terrestrial and Aquatic Habitat

The plant will not have any significant impact on surrounding ecology and biodiversity. About 33% green belt has been developed and maintained in the Complex. The approved **budget for Peafowl Conservation Plan @ Rs.1.00 Lakhs/annum** is being spent for Habitat improvement, Community participation in Conservation, etc. No waste water will be discharged outside Plant boundary as well as no natural water course will be disturbed. Therefore, impact on aquatic habitat is not envisaged.

RCL has contributed Rs.75.00 Lakhs to the Director, Srivilliputtur-Megamalai Tiger Reserve, Srivilliputtur vide (i) Indian Bank, RR Nagar Brach DD bearing No. 560840 dated 05.09.2023 for Rs.25,00,000/-, (ii) DD bearing No. 560847 dated 12.09.2023 for Rs.30,00,000/- & (iii) DD bearing No. No. 560848 dated 12.09.2023 for Rs.20,00,000/- and all their receipts were acknowledged by its Dy. Director, Srivilliputtur-Megamalai Tiger Reserve Letters dated 20.10.2023.

#### 4.2.8 Impact on Socio-economic Environment

The plant is significantly contributing revenue to the State & Central Govt. exchequers. As per the Companies Act 2013, Companies should spend at least 2% of the Profit after Tax of the previous year for the CSR activities but not lower than 2% of average of previous three years Profit after Tax. RCL is presently carrying out various Socio Measures for the local as well as regional populations. RCL has implemented CER proposed for addressing PH issues during 2021-22 to 2023-24 (I Half) at a cost of Rs.24.00 Crores. In addition, during the II Half of 2023-24, RCL has carried out various CSR activities to the tune of Rs.2.18 Crores.

As a CSR initiative, RCL contributed Rs.66,40,000/- vide Indian Bank, RR Nagar Brach DD bearing No. 560710 dated 03.05.2023 to the District Collector / Chairman, District Rural Development Agency for providing 1500 'Nutrition Kit' under 'Irumbu Penmani (Iron Lady) Scheme' for Govt. School Girl Students in Virudhunagar District.

# 4.2.9 Impact on Occupational Health

The Upgraded Occupational Health Centre (OHC) for In & Out Patients Treatment with Emergency Care, Ambulance, etc. (Medical Officer with MBBS, DIH qualification) has all the Facilities to take care any emergency. Periodic medical checkups are carried out to determine the employee's current health status. Any deviations are investigated and appropriate preventive and remedial measures are suggested. Records of these examinations are maintained at the OHC. Tie-ups with Tertiary Health Care Referral Centres ensure that the best possible care is provided in case of any emergency.

# 5.0 Alternative Analysis

The proposal is proposed within the Industrial Complex. Therefore, alternative site selection is not required. Various cleaner production practices are initiated to control air emissions as well as fugitive emissions from various sources. Alternative Fuels are being utilised in the Kilns. Combustible wastes such as plastics, paper and cloths are segregated separately and sent to kiln for co-processing.

# 6.0 Environmental Monitoring Programme

# 6.1 Ambient Air, Noise, Water & Soil Quality

Periodical monitoring of the ambient air quality as per Revised NAAQ Norms, fugitive emissions, stack emissions, noise levels (at boundaries), water (once in a season) and soil quality (once in a season) shall be undertaken. The periodical status reports shall be submitted to TNPCB monthly, and Integrated Regional Office, MoEF&CC-Chennai as Half Yearly Status Reports.

# 6.2 Noise Quality Management Plan

The noise level within the plant at a distance of one meter from the source will be maintained at <85 db(A) level for 8-hours exposure. Noise level at nearest plant boundary will be <55 dB(A) during day times and <45 dB(A) during night times. Thus, the noise levels will be well within the permissible MoEF&CC Norms for Residential Areas.

# 6.3 Emission & Discharge from the Plant

Continuous online stack monitoring equipment/systems for PM, SO<sub>2</sub> and NOx are installed at all main stacks and the online real time monitoring data are being transmitted to SPCB & CPCB servers continuously. Four (4 Nos.) Continuous Ambient Air Quality Monitoring Stations are installed in the Plant for transmission of real time monitoring data to CPCB & SPCB Servers round-the-clock. Data on Stack Emissions and Ambient Levels of PM2.5, PM10, SO<sub>2</sub> & NO<sub>X</sub> are also displayed at the Main Gate for general public view.

Further Online Continuous Effluent Monitoring (CEM) System is installed in the STP and it is connected to the TNPCB Water Watch Centre.

#### 6.4 Green Belt

Green Belt has been developed with 33% coverage @2500 Trees/Ha. Survival rate of green belt developed shall be monitored on periodic basis to ensure that damaged plants are replaced with new plants in the subsequent years.

### 6.5 Social Parameters

RCL has estimated the demand of infrastructure (Physical & Social) in the nearby area of the plant site and appropriate developmental activities will be undertaken under for various rural developmental programmes and initiatives for the up-liftment of the nearby communities from time to time.

#### 7.0 Additional Studies

**Risk Assessment**: Detailed risk assessment and mitigative measures are delineated and an effective Disaster Management Plan, for natural and man-made disasters, is in place.

**Public Consultation & Hearing**: Adequate Budget will be allotted in **EMP Budget** for addressing Public Hearing issues for execution in 2 years period, in compliance with MoEF&CC OM F. No. 22-65/2017.IA.III dated 01.05.2018.

## 8.0 Project Benefits

**Environmental Benefits**: Plant Modernization & Expansion is necessary to increase the plant efficiency by adopting the state-of the-art technologies, machineries and operation of the Plant for optimum standards. WHRS will convert waste heat into productive use. Waste including Hazardous waste of industries, can be used as AFR in sustainable manner by co-processing in kiln. The numerous potential benefits possible through the use of hazardous and other wastes in cement manufacturing processes as AFR include: the recovery of the energy content of waste, conservation of non-renewable fossil fuels and natural resources, reduction of CO<sub>2</sub> emissions, and reduce the problem of disposal of HW and thus reduce contamination.

**Social Benefits**: There are 465 Direct Employees working in the Cement Complex. Indirect Employment to about 600 persons has been provided. Due to the Proposal, another 35 Direct Employees & 50 Indirect Employees will be added. Adequate Corporate Environmental Responsibility (**CER**) **Budget** will be allotted in compliance with MoEF&CC OM F. No. 22-65/2017.IA.III dated 01.05.2018.

**Financial Benefits**: The Project will bring **Rs.103.38 Crores** additional investment to the Region, improve the local and regional economy. Incremental GST of Rs. 117 Crores to the Government on this expansion of Cement production from 2.70 MTPA to 4.00 MTPA. Rs.20.25 Crores will be paid additionally to the Government for Minerals consumption on this expansion. This project will boost the economy of the area as well as generate direct & indirect employment opportunities resulting in overall development of the region.

# 9.0 Environmental Management Plan

An Environmental Management Plant (EMP) is formulated for mitigation of adverse impacts and is based on present environmental status and impact appraisal. It is mandatory to comply with the various regulatory Norms for Prevention and Control of Pollution. The following environmental management plans are proposed for mitigation of impacts on the environment:

#### 9.1 Construction Phase

The following EMP measures shall be undertaken during the Expansion :

- PPE shall be provided to the workers.
- Construction employees shall have access to safe drinking water and to existing Toilet facilities.
- Protection devices viz. ear plugs/ear muffs shall be provided to the workers during welding works
- All the debris resulting from the site shall be disposed off effective as per existing Norms.
- ❖ EMP Cell ensure the periodical Monitoring of Environmental Parameters during the Construction Period and ensure its compliance with Norms.

# 9.2 Operation Phase

#### 9.2.1 Traffic Volume

Adequate parkings are provided in the Plant. Facilities for **drivers** (rest room, toilet, etc.) are also provided. Other Measures are :

- Green Belt with thick foliage along the Plant/Ore Haulage/Transportation roads.
- Security Guards at the Road Junction to handle the inward and outward vehicles from the Plant to the Highway.
- All Trucks are to be fully covered with Tarpaulin to avoid any spillage on transportation.
- Restriction of over loading of Trucks/Tippers.
- Speed restrictions
- Restriction of Truck parking in the Highway and Public Roads.
- Regular and preventive maintenance of transport vehicles has to be ensured.
- Compliance to 'Pollution under Control' Certification has to be checked periodically.

#### 9.2.2 Air Quality Management Plan

RCL has installed adequate air pollution control systems viz. Electro statistic precipitators, Bag house, bag filters, etc. are installed in the stacks to control the emissions. Also, adequate dust collection and extraction systems are installed at various transfer points raw mill handling (unloading, conveying, transporting, stacking), vehicle movement, bagging and packing areas, etc.

- ❖ All efforts shall be undertaken to maintain the PM emission levels from the main stacks of Old Line-II New Kiln as <30 mg/Nm³.</p>
- ❖ NOx emission levels from Line-II with New Kiln shall be <600 mg/Nm³.
- The periodical evaluation for the efficiency performance of ESPs and Bag Filters shall be carried out.
- ❖ Fugitive emissions due to storage, transportation, etc. and the leakages and spillages shall be continuously monitored and controlled.
- ❖ Thermal insulation is provided wherever necessary to minimize heat radiation from the equipment, piping etc, to ensure protection of personnel.
- Periodical Ambient Air Quality and Stack Emissions shall be undertaken and the Status Reports shall be submitted to the Authorities as required.

#### 9.2.3 Noise Quality Management Plan

- All rotating items are well lubricated and provided with enclosures as far as possible to reduce noise termination.
- Extensive vibration monitoring systems are provided to check and reduce vibrations.
- For all fans, compressors etc. vibration isolators are provided to reduce noise.
- Provision of silencers are made wherever possible.
- Proper lubrication and housekeeping are maintained.
- The operator provided with necessary safety and protection equipment like ear plugs, ear muffs etc.

#### 9.2.4 Solid & Hazardous Waste Management Plan

- ❖ It should be ensured that there is no industrial solid waste from the Plants.
- The dust collected from APC Measures will be consumed in the Cement Plant fully.
- Solid wastes from STP Plant shall be vermi composted and used as manure for Green Belt.
- Waste Oil shall be collected and sold to the CPCB/TNPCB Authorised Agency for further treatment & disposal.
- ❖ The municipal wastes shall be collected, transported, treated in a landfill (composting) within the Plant vicinity to make use of it as manure for Green Belt.
- Redundant machinery or equipment scraps (1500 Tons/Annum) as and when generated, will be segregated, stored and sold to the authorised recyclers.
- Municipal solid waste generated from plant and will be disposed off after segregating into bio
   degradable and non- biodegradable waste.
- Bio –degradable waste will be composted & will be used as manure in greenbelt development. Non-biodegradable waste will be disposed off suitably.
- Used Lead acid batteries will be generated which will be stored in the designated storage area and will be disposed off / sold to registered vendors as per prevalent rules.

## 9.2.5 Effluent Management Plan

- No ground water tapping for industrial use.
- Water consumption shall not be more than the consented quantity.
- No trade effluent shall be discharged from the Plant.
- Cooling water is put into closed circuit to minimize the evaporation losses.
- The domestic sewages from the Cement Plant, Power Plant and Township shall be treated effectively in the Sewage Treatment Plant so to meet the TNPCB Discharge Norms and the treated sewage shall be used for Green Belt.
- 'Zero Effluent Discharge' shall be practiced.
- No percolation of treated water to the deep ground water table is done.
- Periodical monitoring for specific parameters shall be done regularly.

## 9.2.6 Storm Water Management Plan

- ❖ Surface Drainage Network has been developed in the Complex. Surface Drains created are connected to Rain Water Harvesting Ponds in the Plant.
- \* RCL is harvesting Rain Water through Roof Tops, RWH Ponds with Recharge Mechanism. Roof Top Collections shall be directly stored and used as Raw Water for the Plant.
- Harvested water by surface drain shall also be utilized for the industrial needs so as to conserve the fresh water demand.

### 9.2.7 Biodiversity Plan

- Green Belt shall be maintained effectively.
- Local species and fruit bearing trees may also be developed to have a thick canopy cover.
- The treated sewage shall be used fully for the Green Belt development.
- ❖ There will be ban on one time use and throw away Plastic usage in the Plant in compliance with Tamil Nadu, Environment and Forests (EC-2) Department, G.O.(D) No. 84 dated 25.06.2018. RCL will encourage the use of eco friendly alternative such as banana leaf, areca nut palm plate, stainless steel glass, porcelain plates / cups, cloth bag, jute bag etc.

#### 9.2.8 Green Belt Development Plan

Total Green Belt extent is 64.50 Ha (33.69% Coverage) with 1,61,250 Trees @ 2,500 Trees/Ha with Survival Rate @ 90% average. Predominantly, native plant species are preferred for Green Belt like Azadirachta indigo (Neem), Cassia Siamea (Manjakondrai), Pongamia pinnata (Pungan), Albizia lebeck (Vagai), Samanea saman (Thoongumoonji), Holoptelia integrifolia (Arali), Tecoma stans (Thangarali), Cassia fistula (Sarakondrai), etc. Local women are engaged for the maintenance of Green Belt.

## 9.2.9 Occupational Health

- RCL shall provide a safety & healthy working conditions and continually improve the occupational health and safety performance.
- Its objectives shall be to achieve zero accident and safe work environment, to improve moral and health of all employees and to maintain the emission levels below the norms.
- RCL shall provide ergonomic support in work comfortness with periodical review.

### 9.2.10 Socio-economic Management Plan

- As per the Companies Act 2013, Companies should spend at least 2% of the Profit after Tax of the previous year for the CSR activities but not lower than 2% of average of previous three years Profit after Tax.
- \* RCL is presently carrying out various Socio Measures for the local as well as regional populations which shall be continued as per existing CSR Norms.

# 9.3 Project Cost & EMP Implementation Budget

The Project Cost of the existing Cement Plant Complex is Rs.894.00 Crores. A budget Rs.14.20 Crores is presently the EMP Capital Cost and Rs.3.90 Crores/annum is the EMP Recurring Cost. For proposed Expansion, with existing Line-II infrastructures and facilities, the Project Cost will be additional Rs.103.38 Crores. Thus, total Project Cost on this Expansion will be Rs.997.38 Crores.

A budget **Rs.1.00** Crores as EMP Capital Cost and Rs.0.25 Crores/annum as EMP Recurring Cost are proposed additionally for the Expansion. Thus, total EMP Capital Budget will be Rs.15.20 Crores and EMP Operating Budget will be Rs.4.20 Crores per Annum.

The Conservation Plan for Peafowl duly approved with the Budget Provision of Rs.1.00 Lakh/Annum by the Wildlife Warden, Srivilliputhur is being implemented and continued.

Adequate Budget will be allotted in **EMP Budget** for addressing Public Hearing issues for execution in 2 years period, in compliance with MoEF&CC OM F. No. 22-65/2017.IA.III dated 01.05.2018.

\*\*\*

# 1.0 Introduction

## 1.1 Purpose of the Report

M/s. The Ramco Cements Limited (RCL) are operating their Ramasamy Raja Nagar (RR Nagar) Cement Plant over an extent of 191.434 Ha own Patta Lands in SF Nos. Parts of 1-14, 16, 22, 24, 30-32, 34-39, 49-52, 56-60, 65-66, 210, 212, 214, 221, 222, 225-230 of Tulukkappatti, 192, 194-212, 215, 216 & 287 of Thammanayakkanpatti and 100-103, 108, 109, 112 & 113 Vachchakkarappatti Village, Taluk & District Virudhunagar, Tamil Nadu which is in operation since 1961-62.

RCL had established the recent expansion activities with New Kiln Line of 3000 TPD (upto Clinkerisation) in compliance with Environmental Clearance (EC) from the Ministry of Environment, Forest & Climate Change (MoEF&CC) awarded vide EC Identification No. EC21A009TN169325 dated 25.10.2021. After obtaining Consents to Establish (CTEs) & Consents to Operate (CTOs) Orders from Tamil Nadu Pollution Control Board (TNPCB), the Plant is now being operated for production of 1.44 MTPA Clinker & 2.70 MTPA Cement from 1st March 2023. Present CTO-Renew Orders are obtained from TNPCB vide 2408157290712 (Water Act) & 2408257290712 (Air Act) dated 13.09.2024 with validity till 31.03.2025. Certified Compliance Report (CCR) for earlier EC has been issued by Integrated Regional Office (IRO), MoEF&CC, Chennai on 18.03.2024 and there is no Non-Compliance / Partial Compliance reported.

With revamping measures proposed by Engineering Consultant FLSmidth, RCL intends to expand RR Nagar Cement Plant with inclusion of revamped Old Line-II operations to existing Lines I & III i.e. operations of all 3 existing Lines-as Upgraded and also by increasing operational days from 320 to 345 days. Due to the Proposal, production of the Plant will be enhanced viz. Clinker from 1.44 MTPA to 2.76 MTPA and Cement from 2.70 MTPA to 4.00 MTPA along with associated Waste Heat Recovery System (WHRS) of 13 MW. The additional Project Cost is Rs.103.38 Crores. Salient features of Proposal are given in Table 1.1.

The proposed Expansion of Cement Plant (≥1.0 MTPA) falls under SI. No. 3(b) - Category 'A' of EIA Notification 2006 and requires prior EC from MoEF&CC. Thus, RCL filed TOR Application vide Parivesh Online Proposal No. IA/TN/IND1/498318/2024 on 26.09.2024 with a request for Standard TOR for this existing Plant. On scrutiny of the Application, the Ministry raised 'Essential Details Sought-EDS' on 07.10.2024. RCL submitted Reply to EDS on 05.11.2024 (Document-I). MoEF&CC granted Standard Terms of Reference (TOR) for the Project with TOR Identification No. TO24A1102TN5995426N dated 12.11.2024 under File No. J-11011/119/2009.IA.II(I). As permitted, Baseline Data was collected during Jul.-Sep. 2024 in Premonsoon Season Period for this Region. Draft Environmental Impact Assessment (EIA) Report, prepared in compliance with awarded TORs by accreditated EIA Consultant - M/s. ABC Techno Labs India Private Limited, Chennai (Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 - valid till 16.11.2025) - has been submitted now for Public Consultation & Public Hearing.

Table: 1.1 Salient features of Expansion Proposal

| SI.<br>No. | Details                                       | Project I<br>as per L                                                                                     |                     |                                         | Details –<br>Ision now            |
|------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|-----------------------------------|
| 1          | Plant Extent in Ha                            |                                                                                                           | 434                 |                                         | .434                              |
| 2          | Clinker Production,                           | Line                                                                                                      | Capacity,           | Line                                    | Capacity                          |
|            | MTPA                                          | I                                                                                                         | 0.48                | I                                       | 0.69                              |
|            |                                               | II                                                                                                        | -                   | II                                      | 0.69                              |
|            |                                               | III                                                                                                       | 0.96                | III                                     | 1.38                              |
|            |                                               | Total                                                                                                     | 1.44                | Total                                   | 2.76                              |
| 3          | Import Clinker from Sister Units, MTPA        | -                                                                                                         | 0.50                | -                                       | 0.50                              |
| 4          | Cement<br>Production, MTPA                    | Total                                                                                                     | 2.70                | Total                                   | 4.00                              |
| 5          | WHRS                                          | Line-I                                                                                                    | PH&AQC Boiler       | Lines I, II & III                       | 13 MW                             |
| 6          | Raw Materials<br>Demand, TPA                  | Limestone (&<br>Kankar)                                                                                   | 2.16<br>@ 6740 TPD  | Limestone                               | 1.794<br>@ 5200 TPD               |
|            |                                               | -                                                                                                         | -                   | Lime Kankar                             | 2.085<br>@ 6050 TPD               |
|            |                                               | -                                                                                                         | -                   | Clay, Chips,<br>Roughstone              | 0.209<br>@ 605 TPD                |
|            |                                               | Copper Slag /<br>Laterite /<br>Iron Ore                                                                   | 0.022<br>@ 63 TPD   | Copper Slag /<br>Laterite /<br>Iron Ore | 0.083<br>@ 242 TPD                |
|            |                                               | Fuel : Petcoke                                                                                            | 0.128<br>@ 423 TPD  | Fuel : Petcoke                          | 0.246 @ 715<br>TPD                |
|            |                                               | Gypsum                                                                                                    | 0.108<br>@ 290 TPD  | Gypsum                                  | 0.136<br>@ 395 TPD                |
|            |                                               | Fly Ash                                                                                                   | 0.677<br>@ 2050 TPD | Dry Fly Ash                             | 1.120<br>@ 3246 TPD               |
|            |                                               | -                                                                                                         | -                   | Wet Fly Ash                             | 0.080<br>@ 232 TPD                |
|            |                                               | Slag                                                                                                      | 63 TPD              | Slag                                    | 2.200<br>@ 6377 TPD               |
|            |                                               | -                                                                                                         | -                   | Limestone<br>Powder as Pl               | 0.040<br>@ 115 TPD                |
| 7          | Power, MW                                     | 32.                                                                                                       | .85                 | 40.                                     | .50                               |
| 8          | Water requirement in KLD & Source             | 10<br><b>Ground &amp; S</b> ı                                                                             |                     |                                         | 65<br>Vater only                  |
| 9(i)       | Sewage generation in KLD                      | 28                                                                                                        | 30                  |                                         | 30<br>hange)                      |
| 9(ii)      | Trade Effluent generation in KLD              | 2                                                                                                         | 0                   | (20+60=) 80                             |                                   |
| 10         | Air emission :<br>Pollution control<br>Limits | PM - <20 mg/Nm <sup>3</sup><br>SO <sub>2 -</sub> <100 mg/Nm <sup>3</sup><br>NOx - <600 mg/Nm <sup>3</sup> |                     | SO <sub>2 -</sub> <100<br>NOx - <60     | 0 mg/Nm³<br>0 mg/Nm³<br>00 mg/Nm³ |
| 11         | Hazardous waste generation                    | Used/Spent Oil<br>94.62                                                                                   | P TPA               | (Category 5.1                           | pent Oil<br>) - 94.62 TPA         |
| 12         | Project Cost                                  | CP & CPP                                                                                                  | Rs.894 Cr.          | Addition                                | Rs.103.38 Cr.                     |
|            | EMP-Capital                                   | Rs.14.                                                                                                    | 20 Cr.              | Rs.1.0                                  | 00 Cr.                            |
|            | EMP-Operation                                 | Rs.3.90 C                                                                                                 | r./annum            | Rs.0.25 Cro                             | ores/annum                        |

# 1.2 Identification of Project Proponent

Ramco Group is one of the leading, highly reputed and Second Largest Industrial Group in South India. It is well diversified in the fields of Cement, Ready Mix Concrete, Cement Fiber Products, Cotton and Synthetic Yarn, Software Systems, Wind Farms, Research & Development, Dry Mortar Plants, Cotton Textiles and Surgical. The total employees are about 15,700 and the Turnover of the Group is Rs.8,000 Crores. The main companies of RAMCO Group are:

- ❖ M/s. The Ramco Cements Limited (formerly M/s. Madras Cements Limited).
- M/s. Rajapalayam Mills Limited.
- M/s. Ramco Industries Limited.
- M/s. Ramco Systems Limited.

The Ramco Cements Limited (RCL) is one of the reputed Cement Companies in India. The Company is the Second Largest cement producer in South India and sixth largest manufacturer of cement in the Country. The cement production of RCL is about 16.85 million tons per annum (MTPA) from their Cement Plants in India.

- Ramasamy Raja Nagar near Virudhunagar, Tamil Nadu (established in 1961) with 2 Lines 2.7 MTPA Cement (being expanded for 4.0 MTPA Clinker with all 3 existing Kilns).
- Kumarasamy Raja Nagar, near Jaggayyapeta, Andhra Pradesh (1986)-3.65 MTPA (3 Lines).
- Alathiyur near Vriddhachalam, Tamil Nadu (1997): 3.0 MTPA (2 Lines).
- ❖ Govindapuram near Ariyalur, Tamil Nadu-5.5 MTPA (2009) (2 Lines).
- Kolimigundla, Andhra Pradesh (Cement 2.0 MTPA).

### RCL is operating Cement Grinding Units at:

- Kolaghat (2.0 MTPA) in West Bengal.
- ❖ Kattuputtur (0.75 MTPA) near Chennai, Tamil Nadu.
- ❖ Valapadi (2.0 MTPA) near Salem, Tamil Nadu.
- Mathod near Chithradurga, Karnataka (0.3 MTPA; being expanded to 0.5 MTPA).
- ❖ Vizag (2.0 MTPA) near Anakapalli, Andhra Pradesh.
- ❖ Haridaspur (1.8 MTPA), Jajpur District, Odisha.

It is also operating a Packing Plant at Nagercoil.

RCL is producing Ordinary Portland Cement (OPC), Portland Pozzolana Cement (PPC), Slag Cement (PSC), Composite Cement (CC), etc. The cement produced by RCL is marketed in the brand name of 'RAMCO'. The market centers are mainly in Tamil Nadu, Andhra Pradesh, Telangana, Kerala, Karnataka, Odisha and West Bengal States. RCL which has always been striving for Total Quality, possesses International Certificate ISO:9001, ISO:14001, ISO:45001 and ISO:50001. The company has achieved various awards for 'Best Performance' in Cement Industry.

The Ramco Cements Limited is managed by a Board of Directors comprising of eminent personalities as its members. Under the dynamic leadership of Late Shri.P.R.Ramasubrahmaneya Rajha, the company has grown into a massive organization. Shri.P.R.Venketrama Raja is the Managing Director (MD) of the Board. Shri.A.V.Dharmakrishnan, Chief Executive Officer (CEO) is heading the Cement Division. Each Unit is headed by a Unit Head in the President Level.

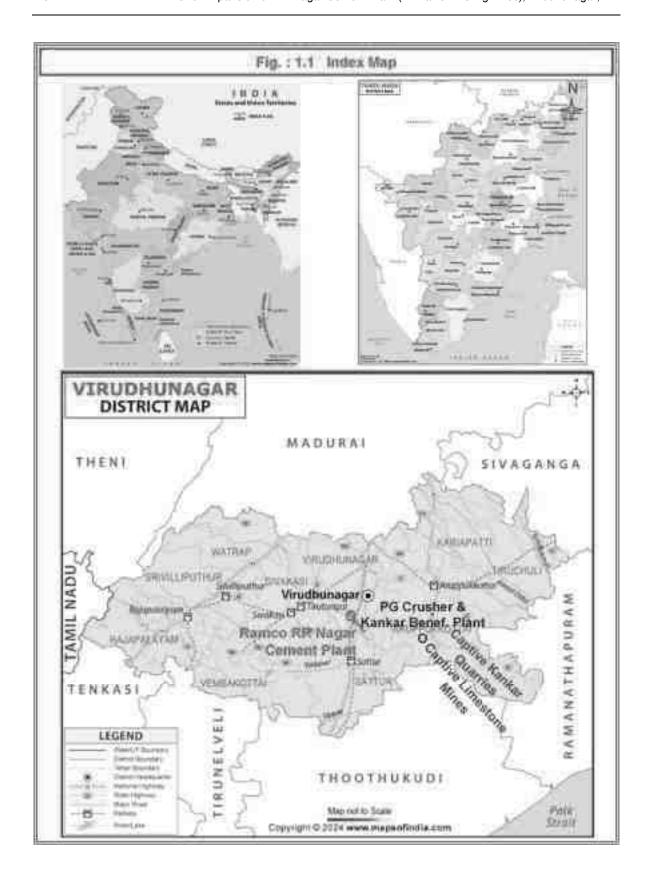
RCL has the well laid down Safety, Health and Environmental (SHE) Policy approved by the CMD. The units are having their Integrated Management System (IMS) Policy. The Environmental Management Plan (EMP) Cell is functioning under the Unit Head and Corporate Social Responsibility (CSR) Committee is functioning under the Corporate Office. There is a Hierarchical System in the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions. Any non-compliance/violations of environmental norms and corrective actions taken will be reported by the Unit Heads to EDO & CEO and by CEO to the Chairman, Board and Shareholders. The Contact information of RCL Corporate Office is:

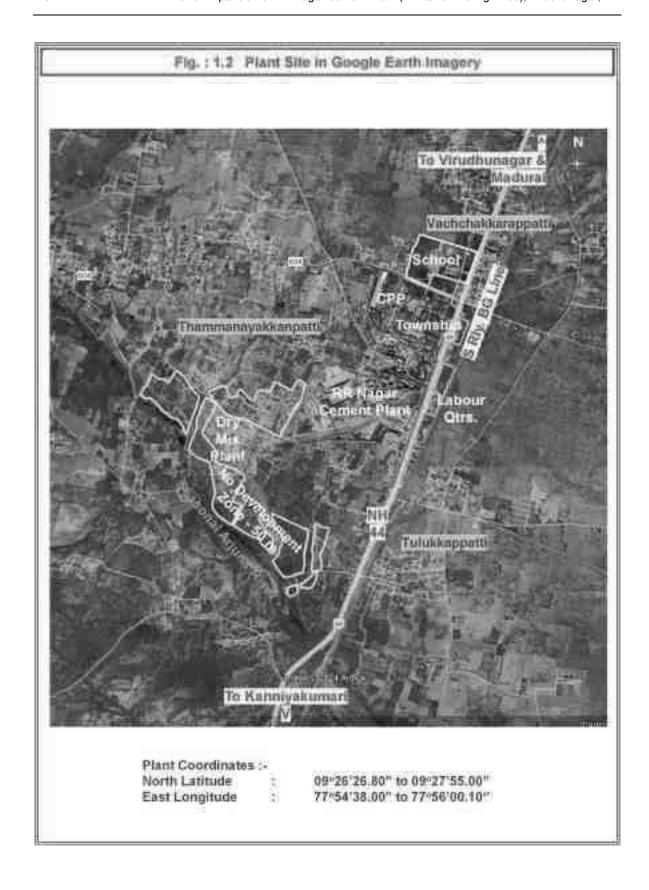
Shri.M.Srinivasan, Executive Director (Operations),

The Ramco Cements Limited, 5<sup>th</sup> Floor, Auras Corporate Centre, No. 98A, Dr.Radhakrishnan Road, Mylapore, Chennai-600 004.

Tel. No.: 044-28478666 & Fax No.: 044-28478676

e-Mail: ramcoenv@ramcocements.co.in


## 1.3 Identification of the Project


### 1.3.1 Ramasamy Raja Nagar Cement Plant

Location: RCL is operating their Ramasamy Raja Nagar (RR Nagar) Cement Plant with CPP & Township over an extent of 191.434 Ha own patta lands in SF Nos. Parts of 1-14, 16, 22, 24, 30-32, 34-39, 49-52, 56-60, 65-66, 210, 212, 214, 221, 222, 225-230 of Tulukkappatti, 192, 194-212, 215, 216 & 287 of Thammanayakkanpatti and 100-103, 108, 109, 112 & 113 Vachchakkarappatti Villages, Taluk & District Virudhunagar, Tamil Nadu State. Location/Index Map is given as Fig. 1.1). No Forest/Govt. Land is involved.

<u>Land Use</u>: Entire lands is under 'Industrial Use' Category (Google Earth Imagery as Fig. 1.2). Recent Industry License issued by the State Government is annexed as <u>Annex. Document-2</u>. The Village Administrative Officers of Tulukkappatti, Thammanayakkanpatti & Vachchakkarappatti villages under TN Revenue Department have issued the Certificates for Possession of the Lands in the name of RCL with Survey Nos. & Land extent (attached as Annex. Document--3).

<u>Accessibility</u>: The plant @ 15 km south of Virudhunagar is well connected by Madurai-Kanniyakumari Section of National Highway-44 (4-Lane) & Southern Railway BG Line which run parallel to the Plant. Madurai is the nearest Airport @ 50 km in the north.

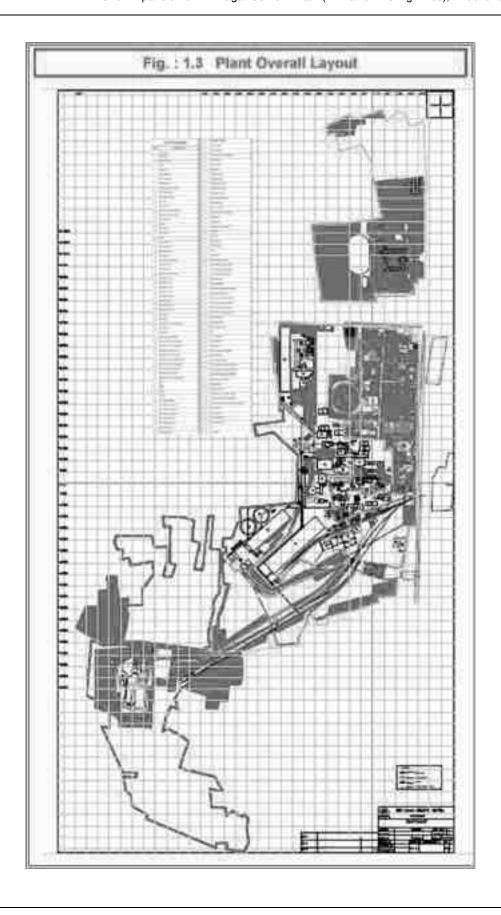




<u>Site/Plant History</u>: The Plant was established in the Year 1959-60 and commenced production from the Year 1961-62. Wet Process to Dry Process conversion (Line-I) was carried out in the Year 1977 (India's First Dry Process Kiln of 1,200 TPD capacity). An additional Line-II of 650 TPD Kiln was commissioned in the Year 1994 and upgraded to 1,000 TPD Kiln in the Year 2001. After obtaining EC from MoEF&CC, Replacement & Upgradation of old Line-I Kiln (1,200 TPD Kiln with a new 1,800 TPD Kiln) and Modernization of Line-II (1,400 TPD Kiln) were undertaken in the Year 2011.

RCL has established the recent expansion activities with New Kiln Line of 3000 TPD (upto Clinkerisation as Line-II in-lieu of old Line-II Kiln) in compliance with EC awarded by MoEF&CC vide EC Identification No. EC21A009TN169325 dated 25.10.2021 (<u>Document-1</u>). After the CTE, RCL obtained CTO-Expansion from TNPCB vide Orders 2307149733843 (Water Act) & 2307249733843 (Air Act) dated 27.02.2023 with validity till 31.03.2024. The Plant is now being operated for Clinker production of 1.44 MTPA and Cement production of 2.70 MTPA of various grades from 1st March 2023. The production Line-I & Line-III (new Kiln) are in operation (Table 1.2). CTO-Renew Orders are obtained from TNPCB vide 2408157290712 (Water Act) & 2408257290712 (Air Act) dated 13.09.2024 with validity till 31.03.2025 (<u>Document-2</u>).

Table: 1.2 Existing Production in Compliance with awarded EC-2021


| Production                                        |             | EC-2021 St                                                   | Total   |               |
|---------------------------------------------------|-------------|--------------------------------------------------------------|---------|---------------|
|                                                   |             | Line-III (now) Line-I (New Kiln in lieu of old Line-II Kiln) |         | Lines I & III |
| Clinker Mfg., MTPA                                |             | 0.48                                                         | 0.96    | 1.44          |
| Clinker from other Sister<br>Units/Imported, MTPA |             | 0.50                                                         | 0.50    |               |
| Cement                                            | Own Clinker | 0.80                                                         | 1.50    | 0.70          |
| Mfg., MTPA Import Clinker                         |             | 0.40                                                         |         | 2.70          |
| Cement Waste Heat Recovery (CWHR) Boilers         |             | 1 PH Boiler (11 TPH) &<br>1 AQC Boiler (6.55 TPH)            | No WHRB | -             |

The Plant has 25 MW Captive Thermal Power Plant (CPP) since 2012 in the Capus with all statutory approvals (Table 1.3).

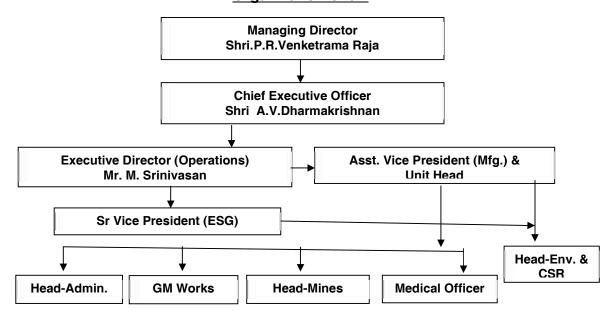
**Table 1.3 Captive Power Generation of RR Nagar Plant** 

| Power Source                                      | Capacity        | Total |
|---------------------------------------------------|-----------------|-------|
| Captive Thermal Power Generation (CPP)-Coal based | 1x25 MW         | 25 MW |
| Standby Power Generation - Standby DG Sets        | 1x7 MW & 2x4 MW | 15 MW |

**Township** with about 476 Quarters exists in the Complex to accommodate the Employees & Officials of the Unit. Also, Guest Houses and Bachelor Quarters for temporary stay of employees and Guests are provided. **Occupational Health Centre** (OHC) is located in the Township. **Existing Layout is shown as Fig. 1.3**.



Captive Limestone Mines & Quarries: Cement Plant Limestone requirements are met from Captive Limestone Mines and Lime Kankar Quarries in Pandalgudi Region (Plate-I). Captive Limestone Mines are in operation since 1976 and Kankar Quarries from 2021-22. EC/Consent Quantity of production from these Limestone Mines is about 2.691 MTPA of Low to High Grade Limestone & Lime Kankar production is 3.914 MTPA (Tables 1.4 & 1.5).


The common **Centralised Crushing Plant** with Optical Ore Sorting Facility (2.0 MTPA Throughput/1.88 MTPA Clean Ore) is located at Pandalgudi at about 18 km (aerially) in SE from RR Nagar Cement Plant. Also, a **Lime Kankar Beneficiation Plant** (Throughput Capacity 2.0 MTPA- EC vide EC22B007TN152869 dated 20.12.2022 & CTO 2304151092191 (Water Act) & 2304251092191 (Air Act) dated 10.08.2024 with validity till 31.03.2028 - has been established at Pandalgudi which is now proposed to be expanded.

These Captive Mines and Pandalgudi Crusher & Beneficiation Plants are connected with RCL's own Tar Road (40+10 km) for transportation of the Ore. There is a Road-over-Bridge on the NH-38 at Pandalgudi and an Underpass in the NH-44 at RR Nagar to fully avoid the impact on Public Transport System.

There are **465 Direct Employees & about 600 Contract Workers** are working in the Cement Complex. In the Direct Employees, 273 Employees (58.70%) are from Virudhunagar District.

The Unit has the well laid down Integrated Management System (IMS) Policy. The Environmental Management Plan (EMP) Cell is functioning under the Unit Head and Corporate Social Responsibility (CSR) Committee is functioning under the Corporate Office. The **Organisation Chart of RR Nagar Cement Plant** is appended.

## **Organization Chart**



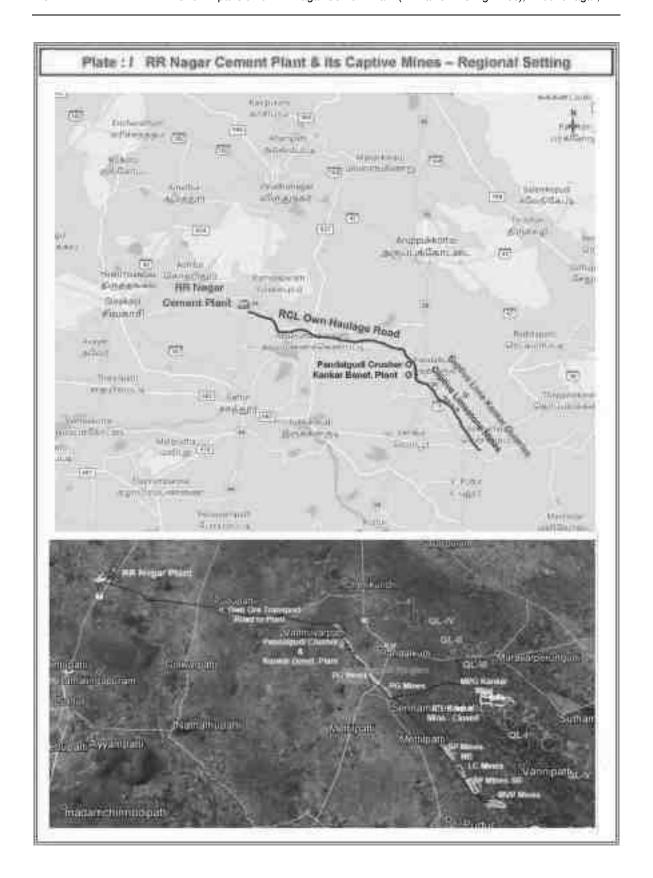



Table: 1.4 Captive Limestone Mines and their Existing Production

| SI.<br>No. | RCL Mines<br>& (Mineral)                         | GO No. &<br>Validity                                                | Extent,<br>Ha | Mineable<br>Reserves<br>as on<br>01.04.2024,<br>Million<br>Tonnes | Produ-<br>ction<br>Qty.,<br>MTPA | EC<br>Reference                                                                | TNPCB CTOs<br>Order Reference                                                |
|------------|--------------------------------------------------|---------------------------------------------------------------------|---------------|-------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1          | Pandalgudi<br>Lease<br>(Limestone)               | GO (Ms) No.<br>26 dated<br>26.03.2018 -<br>valid till<br>31.03.2030 | 186.680       | 0.32                                                              | 0.305                            | J.11015/544/2<br>007-IA-II(M) dt:<br>26.03.2009,<br>12.02.2014 &<br>01.01.2015 | 2405156797042 (W) & 2405256797042 (A) dt. 07.05.2024 - valid till 31.03.2026 |
| 2          | Pandalgudi<br>Lease<br>(Limestone)               | GO 28 dated<br>26.03.2018 -<br>valid till<br>17.03.2032             | 9.460         | 0                                                                 | (0.028)                          | SEIAA-<br>TN/F.No.631/1<br>(a)/EC-<br>Amdnt/2014 dt.<br>01.04.2015             | -                                                                            |
| 3          | Pandalgudi<br>Lease<br>(Limestone)               | GO 33<br>dated<br>02.04.2018 -<br>valid till<br>31.03.2030          | 4.745         | 0                                                                 | (0.056)                          | SEIAA-<br>TN/F.3262/VR<br>D/1(a)/EC-<br>2084/2015 dt.<br>01.04.2015            | 2008131388051 (W) & 2008231388051 (A) dt. 11.05.2020 - valid till 31.03.2025 |
| 4          | Sivalarpatti<br>Lease-I<br>(Limestone)           | GO 34 dated<br>02.04.2018 -<br>valid till<br>22.05.2045             | 150.110       | 1.88                                                              | 0.690                            | J.11015/192/2<br>005-IA-II(M) dt.<br>02.02.2006                                | 2008131231706 (W) & 2008231231706 (A) dt. 14.05.2020 - valid till 31.03.2025 |
| 5          | Sivalarpatti<br>Lease-II<br>(Limestone)          | GO 5 dated<br>06.01.2017 -<br>valid till<br>10.01.2067              | 129.720       | 2.05                                                              | 0.210                            | J.11015/126/2<br>016.IA.II(M) dt.<br>23.06.2021                                | 2204141859876 (W) & 2204241859876 (A) dt. 07.01.2022 - valid till 31.03.2026 |
| 6          | Sivalarpatti<br>Lease-III<br>(Limestone)         | GO No. 247<br>dated<br>23.11.2020 -<br>valid till<br>21.08.2033     | 7.665         | 0.13                                                              | 0.063                            | SEIAA-<br>TN/F.No.407/<br>1(a)/EC-<br>1061/2014 dt.<br>18.02.2014              | 2008131213981 (W) & 2008231213981 (A) dt. 14.05.2020 - valid till 31.03.2025 |
| 7          | Sivalarpatti<br>Lease-IV<br>(Limestone)          | GO No. 145<br>dated<br>19.07.2019 -<br>valid till<br>06.02.2044     | 7.340         | 0.07                                                              | 0.063                            | SEIAA-<br>TN/F.No.408/<br>1(a)/EC-<br>1062/2014 dt.<br>18.02.2014              | 2008131216272 (W) & 2008231216272 (A) dt. 14.05.2020 - valid till 31.03.2025 |
| 8          | Melvenkates-<br>warapuram<br>(Limestone)         | GO 98 dated<br>07.09.2018 -<br>valid till<br>28.07.2033             | 98.620        | 8.35                                                              | 0.720                            | J.11015/136/2<br>013-IA-II(M) dt.<br>11.01.2019                                | 2408157359048 (W) & 2408257359048 (A) dt. 01.04.2024 - valid till 31.03.2029 |
| 9          | Maravar-<br>perungudi<br>(Lime Kankar<br>& Clay) | Rc. No.<br>15823 dt.<br>24.11.2010 -<br>valid till<br>10.03.2041    | 198.515       | 1.02                                                              | 0.640                            | J.11015/69/20<br>08-IA-II(M) dt.<br>26.03.2009                                 | 2008131389823 (W) & 2008231389823 (A) dt. 11.05.2020 - valid till 31.03.2025 |
|            | -                                                | Total                                                               |               | 13.82                                                             | 2.691                            | -                                                                              | -                                                                            |

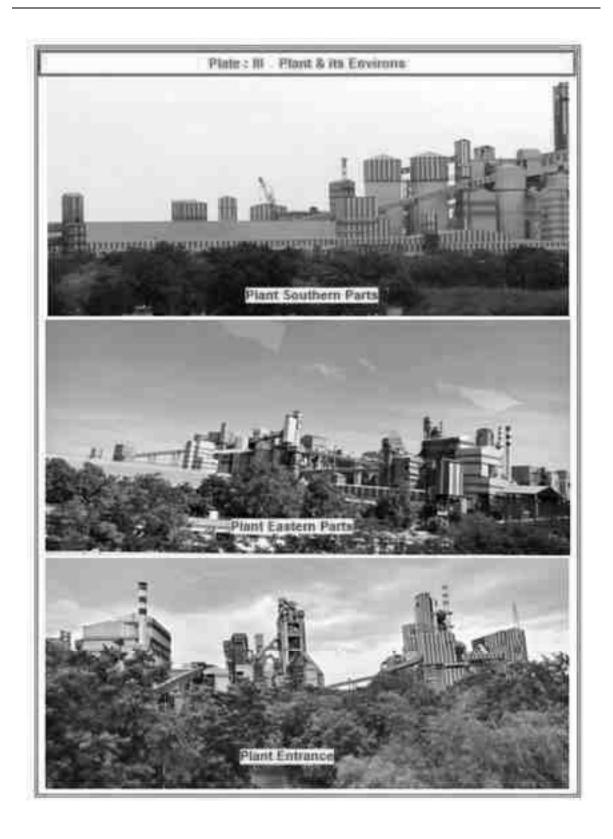
Table: 1.5 Captive Lime Kankar Quarries and their Existing Production

| SI.<br>No. | RCL<br>Quarry                   | GO No. &<br>Validity                                                   | Extent,<br>Ha | Mineable<br>Reserves as<br>on 01.04.2024,<br>Million<br>Tonnes | Prodn.<br>Qty.,<br>MTPA | EC<br>Reference                                         | TNPCB CTOs<br>Order Reference                                                               |
|------------|---------------------------------|------------------------------------------------------------------------|---------------|----------------------------------------------------------------|-------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1          | Maravar-<br>perungudi<br>QL-I   | GO (2D)<br>No. 4 dated<br>28.07.2023<br>- valid till<br>24.08.2033     | 498.870       | 10.020                                                         | 1.333                   | SEIAA-TN<br>EC23B001T<br>N141972<br>dated<br>12.07.2023 | 2405154370379 (W)<br>& 2405254370379 (A)<br>dt. 22.01.2024 with<br>validity till 31.03.2028 |
| 2          | Maravar-<br>perungudi<br>QL-II  | GO (2D)<br>No. 32<br>dated<br>19.12.2022<br>- valid till<br>11.01.2028 | 23.290        | 0.240                                                          | 0.254                   | SEIAA<br>EC22B001T<br>N177835<br>dated<br>24.11.2022    | 2304151031895 (W)<br>& 2304251031895 (A)<br>dt. 04.05.2023 with<br>validity till 31.03.2027 |
| 3          | Maravar-<br>perungudi<br>QL-III | -                                                                      | 158.865       | 3.071                                                          | 0.600                   | TOR<br>Application<br>being filed                       | -                                                                                           |
| 4          | Koppuchi-<br>thampatti<br>QL-IV | GO(2D)No.<br>6 dated<br>16.08.2023<br>- valid till<br>29.08.2033       | 294.185       | 6.150                                                          | 1.227                   | SEIAA<br>EC23B001T<br>N120186<br>dated<br>06.07.2023    | 2305154456639 (W)<br>& 2305254456639 (A)<br>dt. 22.12.2023 with<br>validity till 31.03.2028 |
| 5          | Vadakku-<br>natham<br>QL-V      | GO (2D)<br>No. 5 dated<br>09.08.2023<br>- valid till<br>28.08.2033     | 123.265       | 2.427                                                          | 0.500                   | SEIAA<br>EC23B001T<br>N169842<br>dated<br>12.07.2023    | 2305154221589 (W)<br>& 2305254221589 (A)<br>dt. 22.12.2023 with<br>validity till 31.03.2028 |
|            |                                 | Total                                                                  |               | 21.908                                                         | 3.914                   | -                                                       | -                                                                                           |

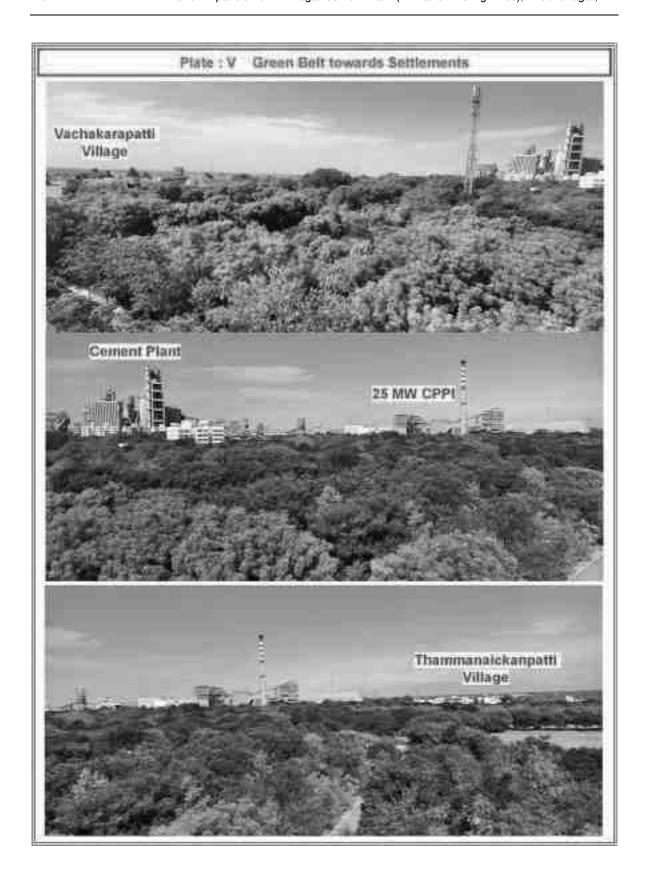


The Contact Information of RR Nagar Cement Plant is as follows:

Mr.S.Lakshmanan, Asst. Vice President (Mfg.),


The Ramco Cements Limited, Ramasamy Raja Nagar Post, Virudhunagar District, Tamil Nadu-626 204.

Tel. Nos. : 04562-256201 to 256203


Fax: 04562-256268.

The Photographs of RR Nagar Plant & its Environs, along with Geotagged Green Belt, are appended as Plates II-IX.









# 1.4 Regulatory Approvals for the Plant

#### 1.4.1 Environmental Clearances

RR Nagar Plant's **establishment and operations were carried out Pre-EIA Notification 1994 period**. The first EC for the Plant was obtained for Replacement of Line-I Kiln & Modernization of both Lines vide MoEF&CC Letter dated 06.07.2009. MoEF&CC awarded the EC for 25 MW CPP vide F. No. J-13012/112/2011 IA.II(T) dated 06.02.2012. Again, EC was obtained for the addition of 3<sup>rd</sup> Packer vide MoEF&CC Letter dated 29.11.2017. Expansion with New Kiln Line of 3000 TPD (Line-III upto Clinkerisation) - Clinker 1.44 MTPA & Cement 2.70 MTPA EC has been awarded by MoEF&CC on 25.10.2021. Cement Plant EC details are given in **Table 1.6** and annexed to the Report.

Table: 1.6 RR Nagar Cement Plant - Existing ECs

| SI. No. | Cement Plant Project Activity            | EC Reference                            |  |  |
|---------|------------------------------------------|-----------------------------------------|--|--|
| 1       | RR Nagar Plant Modernisation &           | F. No. J-11011/119/2009 IA.II (I) dated |  |  |
|         | Upgradation for Cement production from   | 06.07.2009                              |  |  |
|         | 1.0 MTPA to 2.0 MTPA                     |                                         |  |  |
| 2       | Addition of 3 <sup>rd</sup> Packer       | F. No. J-11011/119/2009 IA.II (I) dated |  |  |
|         |                                          | 29.11.2017                              |  |  |
| 3       | Expansion with New Kiln Line of 3000     |                                         |  |  |
|         | TPD (upto Clinkerisation) - Clinker 1.44 | EC21A009TN169325 dated 25.10.2021       |  |  |
|         | MTPA & Cement 2.70 MTPA                  |                                         |  |  |

#### 1.4.2 Consents from TNPCB

The Consents to Establish (CTEs) and Consents to Operate (CTOs) from TNPCB were obtained and are being renewed periodically. The Consent Orders, including Hazard Waste Authorisation, list is given in Table 1.7 and annexed to the Report.

Table: 1.7 CTE / CTO & HWA Details

| ı  | Consents to Establish                                                                      | Order Reference                                                                            | Validity                                     |
|----|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|
| 1  | CTE-Cement production of 6,200 T/day (or) 2.0 MTPA (with addition of 0.3 MTPA Cement Mill) | CTE Order No. 5145 (Expansion) (Air Act) and 5204 (Expansion) (Water Act) dated 03.12.2009 | For 2 years<br>CTO obtained on<br>03.01.2011 |
| 2  | CTE for Expansion (Cement)                                                                 | Consent Order No. 2206141656739 (Water Act) & 2206241656739 (Air Act) dated 17.02.2022     | -<br>CTO obtained on<br>27.02.2023           |
| II | Consents to Operate                                                                        | Order Reference                                                                            | Validity                                     |
| 1  | CTO-Cement production of 6,200 T/day (or) 2.0 MTPA (with addition of 0.3 MTPA Cement Mill) | CTO Order No. 18354 (Air Act)<br>and 22318 (Water Act) dated<br>03.01.2011                 | Valid till 31.03.2011                        |
| 2  | CTO (Cement)-Renewal                                                                       | Consent Order No. 16831 (Air) and 20796 (Water) dated 09.05.2011                           | Valid till 31.03.2012                        |

| <u> </u> |                                                    | r                                                                                                          | · · · · · · · · · · · · · · · · · · ·          |
|----------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 3        | CTO (Cement)-Renewal                               | Consent Order No. 16831 (Air) and 20796 (Water) dated 29.01.2013                                           |                                                |
| 4        | CTO (Cement)-Renewal                               | Consent Order No. 16831 (Air) and 20796 (Water) dated 21.06.2013                                           | Valid till 31.03.2014                          |
| 5        | CTO (Cement)-Renewal                               | Consent Order No. 18354 (Air) and 22318 (Water) dated 11.09.2014                                           | Valid till 31.03.2015                          |
| 6        | CTO (Cement)-Renewal                               | Consent Order No. 15082294874<br>(Air) and 15081294874 (Water)<br>dated 10.08.2015                         | Valid till 31.03.2016                          |
| 7        | Renewed CTO (Cement)                               | Consent Order No.<br>160824725855 (Air) and<br>160814725855 (Water) dated<br>02.08.2016                    | Valid till 31.03.2017                          |
| 8        | Renewed CTO (Cement)                               | Order No. 180828260593 (Air) and 180818260593 (Water) dated 28.02.2018-for 01.04.2017 to 31.03.2019 period | Valid till 31.03.2019                          |
| 9        | Renewed CTO (Cement)                               | Consent Order No.<br>1908221827195 (Air) and<br>1908121827195 (Water) dated<br>18.09.2019                  | Valid till 31.03.2022                          |
| 10       | CTO for Expansion (Cement)                         | Consent Order No. 2307249733843 (Air Act) and 2307149733843 (Water Act) dated 27.02.2023                   | Valid till 31.03.2024                          |
| 11       | Renewed CTO (Cement)                               | Consent Order No. 2408157290712 (Water Act) & 2408257290712 (Air Act) dated 13.09.2024                     | Valid till 31.03.2025                          |
| III      | Hazardous Wastes<br>Authorisations ( <b>HWA</b> ): | (i) No. 16HFC5144632 dated<br>01.12.2016<br>(ii) No. 23HPC42009117<br>dated 07.06.2023                     | Valid till 01.12.2021<br>Valid till 31.03.2028 |
| IV       | Existing CTOs for Captive Power Plant              | Consent Order No. 2208143536794 (Water) & 2208243536794 (Air) dated 30.06.2022                             | Validity till 31.03.2027                       |

# 1.5 Compliance to Statutory Approvals

# 1.5.1 Certified EC Compliance Report

**Certified Compliance Report (CCR)** for earlier EC has been issued by Integrated Regional Office (IRO), MoEF&CC, Chennai vide Letter EP 12.1/867/TN/353 **dated 18.03.2024** and annexed to the Report (**Document-3**). **There is no Non-Compliance** / **Partial Compliance** reported. Self Compliance Report for the Period Apr.-Sep. 2023 is attached as <u>Annex. Doc-1</u>.

**Production**: During the FY 2023-24, Clinker production of RR Nagar Plant was 1.425 MTPA and Cement production was 2.514 MTPA.

CER Budget: A budget of Rs.12.78 Crores was earmarked for addressing the issues raised in the Public Hearing and issue based on Need based Assessment. RCL has implemented CER/EMP proposed for addressing PH issues during 2021-22 to 2023-24 (I Half) at a cost of Rs.24.00 Crores (Table 1.8). In addition, during the II Half of 2023-24, RCL has carried out various CSR activities to the tune of Rs.2.18 Crores as detailed in Table 1.9.

Table: 1.8 Implementation of CER/EMP Activities to address PH Issues

| SI.    | Concerns<br>Raised during                                       | Major Activity Heads                                                                                                                                                                 | CER<br>Budget<br>Allotted | CER An<br>Spe<br>(Rs. in C | nt          | Total<br>Amount,<br>Rs. in |
|--------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|-------------|----------------------------|
| NO.    | Public Hearing                                                  |                                                                                                                                                                                      | (Rs. in<br>Crores)        | Till<br>2022-23            | 2023-<br>24 | Crores                     |
| 1      | Pollution (Dust)<br>Control<br>Measures                         | Provision of Pulse Jet Bagfilters with Woven Fibre Glass with PTFE Membrane & acid resistance to Kiln RABH, Coal Mill & Cement Mill Bag Filters and ESPs for Cooler Stack – Line-III | 9.00                      | 10.97                      | 8.67        | 19.64                      |
| 2      | Pollution<br>Monitoring                                         | Provision of Continuous Ambient<br>Air Quality Monitoring Stations<br>(CAAQMs) 3 Nos. for Cement<br>Plant & 1 No. for CPP, total 4<br>Nos.                                           | 2.00                      | 1.83                       | 0.58        | 2.41                       |
| 3      | Generation of local employment and skill development programmes | Computer based Skill Development Center at Thammanickenpatti for the benefits of local youths- As instructed by the District Collector, Science Park for Students was developed      | 0.75                      | -                          | 0.75        | 0.75                       |
| 4      | Eco<br>Development<br>Measures                                  | Desiltiing & Clearing of Water bodies at:-                                                                                                                                           |                           |                            |             |                            |
| i      |                                                                 | River water course from NH road to Vadiyur (6 km length an 120 m width)                                                                                                              | 0.0960                    | 0.10                       |             | 0.10                       |
| ii     |                                                                 | Aranmanaiurani Area of 1.5 acre<br>& plantation of 2000 trees                                                                                                                        | 0.0800                    | 0.09                       |             | 0.09                       |
| iii    |                                                                 | Thathampattikanmai area of 50 acres extent                                                                                                                                           | 0.0724                    | -                          | 0.08        | 80.0                       |
| 5      | Green Belt<br>Development in<br>nearby villages                 | Tulukkappatti,<br>Thammanayakkanpatti &<br>Vachchakkarappatti                                                                                                                        | 0.15                      | 0.10                       | 0.05        | 0.15                       |
| 6<br>i | Drinking water supply to nearby villages                        | 4 Nos. borewells with a Sintex tank for water supply at Vachchakkarappatti Village                                                                                                   | 0.16                      |                            | 0.20        | 0.20                       |
| ii     |                                                                 | Construction of new Borewells & OH tanks for Meenatchipuram,                                                                                                                         | 0.15                      |                            | 0.20        | 0.20                       |

|     | T .              | D                                                                                     |      |       | i i   |       |
|-----|------------------|---------------------------------------------------------------------------------------|------|-------|-------|-------|
|     |                  | Pattamputhur and                                                                      |      |       |       |       |
|     |                  | Ettanayakkanpatti villages                                                            |      |       |       |       |
| iii |                  | Borewell for Vadi Panchayat will                                                      | 0.02 | 0.03  |       | 0.03  |
|     |                  | be constructed for Green Belt maintenance                                             |      |       |       |       |
| iv  |                  | Borewell at Muniyasamy kovil street                                                   | 0.03 | 0.03  |       | 0.03  |
| V   |                  | Borewell at Nallurpatti village                                                       | 0.03 | 0.03  |       | 0.03  |
| 7   | Infrastrucutures |                                                                                       |      |       |       |       |
| i   |                  | Bus stop and health facility at RR<br>Nagar - Contributed to MLA<br>Fund for the same | 0.09 | 0.10  |       | 0.10  |
| ii  |                  | Road works for Pattamputhur Adithiravidar Colony                                      | 0.10 | 0.13  |       | 0.13  |
| iii |                  | Disinfection of nearby Villages                                                       | 0.05 | 0.06  |       | 0.06  |
|     | Total            |                                                                                       |      | 20.46 | 10.78 | 24.00 |

Table: 1.9 Implementation of CSR Activities at Expansion Stage

| Date       | Contribution by RCL for                                                                                                       | Amount, Rs. |
|------------|-------------------------------------------------------------------------------------------------------------------------------|-------------|
| 30.06.2023 | Providing Health Kit (Irumbu Penmani Thittam) for Govt & Govt Aided Schools – to District Collector, Virudhunagar             | 66,40,000   |
| 29.07.2023 | Bus Shelter Work at Aralvoimozhi                                                                                              | 5,06,667    |
| 30.08.2023 | Road works for Jumma Pallivasal, Vachchakkarappatti                                                                           | 2,65,338    |
| 31.08.2023 | Desilting of Pond & Construction of Steps at Tirumalaipuram                                                                   | 2,95,454    |
| 30.11.2023 | High mast Light at Thammanayakkanpatti Panchayath                                                                             | 5,01,807    |
| 14.12.2023 | Electric Dryer Machine to Virudhunagar Medical College Hospital                                                               | 4,01,200    |
| 18.12.2023 | Tree Saplings provided to the Chief Education Officer (CEO) Virudhunagar                                                      | 2,00,000    |
| 31.01.2024 | Tuticorin Flood Relief Materials provided                                                                                     | 8,20,063    |
| 31.01.2024 | Borewell & Submersible Pump to Thavasilingapuram                                                                              | 2,84,331    |
| 31.01.2024 | Borewell & Submersible Pump to Kallupatti Village                                                                             | 2,85,170    |
| 31.01.2024 | Water Facility provided to Vachchakkarappatti Panchayath                                                                      | 1,80,332    |
| 01.02.2024 | Panchayath Union Office Compound Wall Construction Works Phase -II                                                            | 4,12,232    |
| 15.03.2024 | Financial Assistance to Sri Ambal Educational & Charitable Trust for Plantation of Saplings in the Villages                   | 10,00,000   |
| 21.03.2024 | DD to Wildlife Warde, Grizzled Wildlife Sanctuary, Srivilliputtur for Conservation of Indian Peafowl in Virudhunagar District | 75,00,000   |
| 29.03.2024 | Construction of Bus Shelter for Muthuswamipuram Village                                                                       | 2,12,400    |
| 31.03.2024 | Provision of Borewell & Erection of Submersible Pump with Sintex Tank at Koppuchithampatti Village                            | 2,62,126    |
| 31.03.2024 | Construction of Toilets at Government School,<br>Sennamareddipatti Village                                                    | 5,25,886    |
| 31.03.2024 | Installation of RO Units at Vachchakkarappatti Panchayath                                                                     | 9,32,112    |
| 31.03.2024 | Gravel Transportation to nearby Villages for Road works                                                                       | 5,62,881    |
|            | Total Amount Spent during II Half of 2023-24                                                                                  | 2,17,87,998 |

# 1.5.2 Compliance to CTO Conditions

RR Nagar Plant operations are in compliance with existing CTO conditions as given in Table 1.10.

Table: 1.10 Compliance to CTO Conditions (Dated 13.09.2024)

| SI.<br>No. | Additional Conditions                                                                                                                                                                                                                                                                  | Compliance Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I          | Water Act (Order 2408157290712)                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Α          | Special Conditions :                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1          | The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002                    | Not Applicable. RCL is not using any biological resources for the operation.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2          | The industries shall take all efforts to use and popularize "Mission LiFE" logo and mascot which is available in TNPCB & MoEF&CC website. They shall also request their employees to adopt "Mission LiFE" action points and document the same and furnish half yearly report to Board. | Complied. The logo and mascot of "Mission LiFE" are actively utilized in all environmental awareness initiatives. A training program focused on the 7 themes of "Mission LiFE" was conducted for all employees and contract workmen and the action points related to the seven themes have been prominently displayed on notice boards to enhance awareness. Documentation of these activities are furnished in the half yearly report to the Board.                                                              |
| В          | Additional Conditions :                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1          | The unit shall operate and maintain the Sewage Treatment Plant efficiently and continuously to achieve the Standards prescribed by the Board                                                                                                                                           | Complied. Sewage Treatment Plant is operated efficiently to meet the prescribed standards. NABL accredited third party is engaged to monitor the quality of treated STP water and in addition TNPCB officials also inspecting and collecting the treated sewage samples regularly. The results of treated sewage water parameters are within the limit prescribed by the Board. Further Online Continuous Effluent Monitoring System is installed in the STP and it is connected to the TNPCB Water Watch Centre. |
| 2          | The unit shall utilize the treated sewage for gardening and industrial cooling purposes.                                                                                                                                                                                               | Complied. The Treated Sewage is used for Green belt development and also for industrial cooling purpose during monsoon seasons.                                                                                                                                                                                                                                                                                                                                                                                   |
| 3          | The unit shall develop rainwater harvesting system as per the action plan submitted in order to achieve the gradual shifting of ground water                                                                                                                                           | Complied. Rain water harvesting ponds 6 Nos. are created in the complex as detailed below:                                                                                                                                                                                                                                                                                                                                                                                                                        |

| SI.    | Additional Conditions                                                                                                                                                     | Compliance Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|
| No.    | usage within the time frame fixed in the EC condition.                                                                                                                    | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dimension in m (Dia.x Depth)    | Holding<br>Capacity,<br>KL        |
|        |                                                                                                                                                                           | Near<br>Materials<br>Gate                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 x 2                          | 3,930                             |
|        |                                                                                                                                                                           | Near STP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 x 2                          | 1,410                             |
|        |                                                                                                                                                                           | Near CPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 x 2                          | 1,410                             |
|        |                                                                                                                                                                           | Near Ramco<br>Vidyalaya<br>School South                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 x 2                          | 900                               |
|        |                                                                                                                                                                           | Near Ramco<br>Vidyalaya<br>School North                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 x 2                          | 900                               |
|        |                                                                                                                                                                           | Near Sriram<br>School in<br>Colony                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 x 2                          | 1,150                             |
|        |                                                                                                                                                                           | Total Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 9,700                             |
| 4      | The unit shall comply with conditions mentioned in the environmental clearance issued by MoEF&CC, GoI vide proceeding No. J-11011/119/2009.IA.II(I) dt. 25.10.2021.       | About 230 KLD harvested Rainwater from these RWH Structures is supplementing the raw water demand of the Complex.  Complied. All conditions mentioned in the environmental clearance issued by MoEF&CC, Gol vide proceeding No. J-11011/119/2009.IA.II (I) dt. 25.10.2021 are being complied. CCR has been issued by Integrated Regional Office (IRO), MoEF&CC, Chennai vide Letter EP 12.1/867/TN/353 dated 18.03.2024. There is no Non-Compliance / Partial Compliance reported. |                                 |                                   |
| II     | Air Act (Order 2408257290712):                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                                   |
| 1<br>1 | Additional Conditions  The unit shall operate and maintain APC measures efficiently and continuously so as to adhere to the AAQ/SE/ANL standards prescribed by the Board. | Complied. RCL is operating and maintaining all APC measures efficiently and continuously so as to adhere to the AAQ/SE/ANL standards prescribed by the Board. Continuous Ambient Air Quality Monitoring Station (CAAQMS) 4 Nos., Continuous Emission Monitoring System (CEMS) for all main Stacks are installed and real time data being transmitted continuously to Care Air Centre of TNPCB & CPCB Servers. All monitored values are with the prescribed limits.                 |                                 |                                   |
| 2      | The unit shall provide the Waste Heat Recovery Boiler System to Line 3 kiln in compliance to the conditions imposed in EC and CTE Exp. as                                 | Complied. An order for the Recovery Boiler been placed with of Rs. 81.81                                                                                                                                                                                                                                                                                                                                                                                                           | System in the In M/s. ISGES, No | ine 3 kiln has<br>oida, for a sum |

| 01         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SI.<br>No. | Additional Conditions                                                                                                                                                                                                                                                                                            | Compliance Status                                                                                                                                                                                                                                                    |  |  |
|            | committed by the unit vide letter dated 15.07.2024.                                                                                                                                                                                                                                                              | commissioning tasks will be completed by January 2026.                                                                                                                                                                                                               |  |  |
| 3          | The unit shall operate all the dust containment measures in the coal stock yard efficiently and continuously to control the fugitive emission                                                                                                                                                                    | Complied. RCL installed Coal stacker and reclaimer with covered shed for coal storage. Coal is conveyed through belt conveyers with covered sheds and bag filters are installed at all transfer points to control the fugitive emission.                             |  |  |
| 4          | The unit is permitted to use the permitted quantity of petcoke 423T/day as feed stock or in the manufacturing process to use pet coke as feed stock for the consumption. Also comply with the following conditions for import of pet coke:                                                                       | Complied. Only indigenous Petcoke less than 423 T/day is utilized in kiln for cement manufacturing.                                                                                                                                                                  |  |  |
| i.         | The industry is permitted to directly import petcoke and consignment shall be in the name of the user industrial units for their own use only.                                                                                                                                                                   | Complied.  RCL is receiving indigenous Petcoke in the unit name and it is being used for own operational needs only.                                                                                                                                                 |  |  |
| ii.        | Import of pet coke for the purpose of trading shall not be permitted.                                                                                                                                                                                                                                            | Complied. From January 2024, only indigenous Petcoke is being used for cement manufacturing, Petcoke is not traded.                                                                                                                                                  |  |  |
| iii.       | The industry shall furnish opening and closing stock of imported Petcoke and consumption of the same to the TNPCB on a monthly basis.                                                                                                                                                                            | Complied. The opening and closing stock, along with its consumption, is being reported to TNPCB on a monthly basis.                                                                                                                                                  |  |  |
| 5          | The unit has to maintain minimum drop height while unloading the coal from the Tippers                                                                                                                                                                                                                           | Complied. Minimum drop height is being maintained while unloading coal from tipplers, Additionally, a bag filter has been installed at the feeder to capture dust generated during unloading.                                                                        |  |  |
| 6          | The unit shall carry out cleaning of spilled materials such as Gypsum, Fly ash, and Coal dust inside the working area periodically to avoid carryover of dust to the surrounding                                                                                                                                 | Complied. All Raw materials are stored in closed Sheds. A dedicated heavy-duty vacuum cleaning machine and two sweeping machines are deployed for cleaning up spilled materials in the working area. These machines are functioning continuously throughout the day. |  |  |
| 7          | The industry shall utilize /enhance the usage of Alternate Fuels and Raw materials (AFR such as Plastic wastes, Hazardous wastes) for Coprocessing/Co-incineration in Cement Kiln so as to improve the Thermal Substitution Ratio (TSR). Also the unit shall provide necessary infrastructure facilities such as | Complied. Alternate Fuels and Raw materials being utilized for Co-processing depending on the quality and market availability, Necessary feeding arrangements like dedicated storage shed, hopper, belt conveyor and elevators are provided for Co-processing.       |  |  |

| SI.<br>No. | Additional Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compliance Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | feeding system, conveyor systems, etc., for Coprocessing.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8          | The unit shall operate the four CAAQMS in the receptors like public school, temple, Health Care Facility etc., in and around 10 km radius and shall be connected to Care Air Centre, TNPCB, Chennai as well as CPCB portal.                                                                                                                                                                                                                                                                                      | Complied. RCL has installed four CAAQMS at Plant Laboratory Building, Ramco Vidyalaya School Building, Tulukkappatti village near river bed and Thammanayakkanpatti village (West compound wall area). Real time data from all 4 CAAQMS are connected to Care Air Centre, TNPCB and to CPCB Server.                                                                                                                                                                                           |
| 9          | The unit shall increase the green belt around the boundary adjoining with the Highway.                                                                                                                                                                                                                                                                                                                                                                                                                           | Complied. Green belt has been developed around the boundary adjoining the highway                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10         | The unit shall maintain a good housekeeping                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Complied. Housekeeping is being maintained in the factory premises. A Heavy-duty vacuum cleaning machine and two sweeping machines are operated continuously throughout the day.                                                                                                                                                                                                                                                                                                              |
| 11         | The unit has to ensure that its operation shall not evoke any complaints from the surroundings                                                                                                                                                                                                                                                                                                                                                                                                                   | Complied. Plant operations are in compliance with statutory norms. There is no public compliant received in recent time.                                                                                                                                                                                                                                                                                                                                                                      |
| 12         | The unit shall not use 'use and throwaway plastics' such as plastic sheets used for food wrapping, spreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumbler, water pouches and packets, plastic straw, plastic carry bag and plastic flags irrespective of thickness, within the industry premises. Instead it shall encourage use of ecofriendly alternative such as banana leaf, areca nut palm plate, stainless steel, glass, porcelain plates/cups, cloth bag, Jute bag etc. | Complied. RCL has banned usage of one time use and throwaway plastics in our factory and colony premises as per the direction of Government of Tamil Nadu. RCL has carried out awareness though notice, hoardings, and display boards, competitions for school children and training sessions for employees to avoid plastic usage in the factory and colony premises. RCL has also replaced the one time plastic waste with stainless steel, glass and porcelain materials, cloth bags, etc. |
| 13         | The unit shall comply with conditions mentioned in the environmental clearance issued by MoEF&CC, Gol vide proceeding No. J-11011/119/2009.IA.II(I) dt. 25.10.2021.                                                                                                                                                                                                                                                                                                                                              | Complied. All conditions mentioned in the environmental clearance issued by MoEF&CC, Gol vide proceeding No. J-11011/119/2009.IA.II (I) dt. 25.10.2021 are being complied. CCR has been issued by Integrated Regional Office (IRO), MoEF&CC, Chennai vide Letter EP 12.1/867/TN/353 dated 18.03.2024. There is no Non-Compliance / Partial Compliance reported.                                                                                                                               |

# 1.5.3 Compliance to CREP Guidelines

A series of industry specific interaction meetings had been organized to formulate the **Charter on Corporate Responsibility for Environmental Protection (CREP)** and action points were enlisted for the Cement Industry. RCL is in full compliance of the Action Points as detailed in the **Table 1.11**.

Table: 1.11 Compliance to CREP Guidelines

| SI.<br>No. | Control Measures to be<br>Provided                                                                                            | Guidelines                                                                                                                                                                                                                                                            | Action taken                                                                     |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
|            | 1. Unloading Section (Limestone, Coal & other relevant material)                                                              |                                                                                                                                                                                                                                                                       |                                                                                  |  |
| 1          | Enclosure should be provided for all unloading operations, except wet materials like gypsum                                   | The enclosures for the unloading sides could be flexible curtain type material covering up to height of dumpers discharge from the roof.                                                                                                                              | Curtain type enclosures are provided at unloading section.                       |  |
| 2          | Water shall be sprayed on<br>the material prior and during<br>unloading                                                       | A dust suppression system should be provided to spray water. The amount of water sprayed should preferably be optimized by employing proper design of spray system. Suitable systems may be adopted to reduce the problems like choking, jamming of the moving parts. | Dust suppression system with spray nozzles is in operation at unloading section. |  |
|            | 2. Material H                                                                                                                 | landling Section (Including Transfer Point                                                                                                                                                                                                                            | s)                                                                               |  |
| 1          | All transfer point locations should be fully enclosed.                                                                        | The enclosures from all sides with the provision for access doors, which shall be kept, closed during operation. Spillages should be periodically removed.                                                                                                            | Transfer points are fully enclosed.                                              |  |
| 2          | Airborne dust at all transfer operations/points should be controlled either by spraying water or by extracting to bag filter. | Either water spray system should be provided for suppressing the air borne dust or dry extraction cum bag filter with adequate extraction volume.                                                                                                                     | Bag Filters are provided at all transfer points to control fugitive emissions    |  |
| 3          | Belt conveyors should preferably be closed.                                                                                   | This will avoid wind blowing of fines.                                                                                                                                                                                                                                | All belt conveyors are closed ones.                                              |  |
|            | •                                                                                                                             | 3. Coal Storage Section                                                                                                                                                                                                                                               |                                                                                  |  |
| 1          | Coal yard/storage area should be clearly earmarked.                                                                           | A board should be erected to display the area earmarked.                                                                                                                                                                                                              | Coal stacker and reclaimer with covered shed are provided for                    |  |
| 2          | The pathways in coal yard for vehicle movement should be paved.                                                               | Proper pathways with entry and exit point should be provided.                                                                                                                                                                                                         | coal storage. Coal is conveyed through belt conveyers with                       |  |
| 3          | Accumulated dust shall be removed/swept regularly and water the area after sweeping.                                          | Any deposits of dust on the concrete roads should be cleaned regularly by sweeping machines.                                                                                                                                                                          | covered sheds.                                                                   |  |
| 4          | Coal other than coal stock pile should preferably be stored under covered shed.                                               | Where ever blending activity is carried out by chaining in open ground, covered shed should be provided to reduce the fine coal dust getting airborne. The enclosure walls shall cover minimum three sides up to roof level.                                          |                                                                                  |  |
| 5          | The coal stock pile should preferably be under                                                                                | The enclosure should be from three sides and roof so as to contain the airborne emissions.                                                                                                                                                                            |                                                                                  |  |

| SI.      | Control Measures to be                                                                                                                           | Guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Action taken                                                                                                                                                                       |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| No.      | Provided                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |  |  |
|          | covered shed for new plants.                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |  |  |
| 6        | Instead of dust extraction cu<br>additional control measures s                                                                                   | um bag filter system, If dust suppression measure is used, following should be provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |  |  |
| a        | Wetting before unloading.                                                                                                                        | Coal should be sufficiently moistened to suppress fines by spraying minimum quantity of water, if possible.                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bag filters are provided at all transfer points and coal mill area                                                                                                                 |  |  |
| b        | Spray water at crusher discharge and transfer points.                                                                                            | Water spray should also be applied at crusher discharge and transfer points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                    |  |  |
|          |                                                                                                                                                  | 4. Clinker Cooler Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |  |  |
| 1        | Air borne fines extracted from clinker cooler shall be separated and sent to last possible destination directly, if possible.                    | The possibilities especially in new cement plant may be explored for the following: The unit may need to add on/install necessary provisions for separating fine particulates from the clinker cooler ESP collection. Fines separation may be achieved by passing collected dust through cyclone, the fines escaping cyclone to be separated, cyclone collection (coarse particles) could be recycled. The fines shall be recycled to the last possible destination (like clinker day silo) suitable or safely disposed.  5. Clinker Stock Piles Section | ESP is installed or Cooler in both the kilns. Dust collected in ESP is collected through bottom hopper and reused in the process.                                                  |  |  |
| 1        |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |  |  |
| <u>'</u> | should be stored preferably in silo.                                                                                                             | out the gases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in silos. We have provided bag filter at                                                                                                                                           |  |  |
| 2        | Clinker should be stored in closed enclosure covered from all sides and should have a venting arrangement along with a bag filter.               | The enclosures should have a venting arrangement located at transfer point where clinker is dropped to the stockpile. The extraction/venting should be sufficient enough. Clinker stockpile access door should be covered by mechanical gate or by flexible rubber curtain. The access doors shall be kept closed at all possible times.                                                                                                                                                                                                                 | silo top. Clinker is conveyed through deep pan conveyors and we have provided bag filters at all transfer points. The dust collected in the bag filter is recycled in the process. |  |  |
| 3        | The dust extracted and captured in bag filter should be avoided to feed back/recycled to the clinker stockpile, if possible.                     | Extracted dust should be captured in bag filter and the collected dust should be avoided to feed back to the clinker stockpile, if layout permits. It may be recycled at last possible destination i.e., cement mill section through suitable arrangement, if possible.                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |  |  |
| 4        | Generally open storage of clinker should be avoided. Only in case of emergency clinker should be stored in open with following control measures. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |  |  |
| 5        | Area for open storage of clinker should be clearly earmarked.                                                                                    | After earmarking the open storage area of clinker, a board should be erected to display the area earmarked.                                                                                                                                                                                                                                                                                                                                                                                                                                              | Clinker is being stored in silos only.                                                                                                                                             |  |  |
| 6        | Provide cover on openly stored clinker.                                                                                                          | During the period when the openly stored clinker is inactive, it should be covered fully by HDPE or tarpaulin type sheets to prevent wind blowing of fugitive dust.                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |  |  |

| SI.<br>No. | Control Measures to be<br>Provided                                                                                                                                                                                                                                                                                      | Guidelines                                                                                                                                                                                                                                                                                                         | Action taken                                                                                                                                     |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7          | Provide windbreak walls or greenbelt on three sides of open stock piles                                                                                                                                                                                                                                                 | Install three sided enclosures, which extend to average height of the stockpile, where ever feasible.                                                                                                                                                                                                              |                                                                                                                                                  |  |
| 8          | Provide partial enclosure for retrieving area.                                                                                                                                                                                                                                                                          | Flexible type wind breaking enclosure should be provided covering the clinker retrieval area as wind barrier to prevent dust carry over by wind. The enclosure could be of lightweight material like moulded plastic material or similar, which could be dismantled/assembled and shifted from one place to other. |                                                                                                                                                  |  |
| 9          | The travel path of pay loaders should be paved and frequently swept.                                                                                                                                                                                                                                                    | Travel areas path used by the front - end pay loader shall be paved with concrete. It should be regularly swept by high efficiency vacuum sweeper to minimize the material build up.                                                                                                                               |                                                                                                                                                  |  |
| 10         | Provide loading of clinker by pay loaders into trucks / trailers be carried out in an enclosure vented to a bag filter.                                                                                                                                                                                                 | An enclosure fitted with bag filter could be located at the most central place adjacent to the clinker storage area. The pay loader moves to the fixed loading area from one end of the enclosure and the truck/trailer enters the enclosure from other end.                                                       |                                                                                                                                                  |  |
|            | 6. Storage of Li                                                                                                                                                                                                                                                                                                        | mestone, Gypsum, Fly ash and other addi                                                                                                                                                                                                                                                                            | tives:                                                                                                                                           |  |
| 1          | The storage should be done under covered shed.                                                                                                                                                                                                                                                                          | The enclosure walls shall cover minimum two sides up to roof level.                                                                                                                                                                                                                                                | Limestone and gypsum are stored in closed sheds. We have installed Limestone stacker and reclaimer with closed shed. Fly ash is stored in silos. |  |
| 2          | Dry fly ash shall be transported by closed tankers. In case of wet fly ash trucks may be used for transportation.                                                                                                                                                                                                       | Fly ash shall be pumped directly from the tankers to silos pneumatically in closed loop or mechanically such that fugitive emissions do not occur.                                                                                                                                                                 | Dry Fly ash is transported through closed tankers and pneumatically transferred and stored                                                       |  |
| 3          | Dry Fly ash shall be stored in silos only.                                                                                                                                                                                                                                                                              | The silo vent be provided with a bag filter type system to vent out the air borne fines.                                                                                                                                                                                                                           | in silos. We have provided bag filters for                                                                                                       |  |
| 4          | Fly ash in the dry form should be encouraged and in wet form should be discouraged. In case wet fly ash is to be used, it may be stored in open temporarily for the purpose of drying with necessary wind break arrangement to avoid wind carryover of fly ash. The fly ash should be removed immediately after drying. | If possible, the dry fly ash should be sent to closed silos. Otherwise, fly ash should be transported through closed belt conveyors to avoid wind carryover of fly ash.                                                                                                                                            | silo venting.                                                                                                                                    |  |
|            | 7. Cement Packing Section                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |  |
| 1          | Provide dust extraction arrangement for packing machines.                                                                                                                                                                                                                                                               | The packing machines should be equipped with dust extraction arrangement such that the packing operation is performed under negative                                                                                                                                                                               | Bag filters are provided in packers. The dust collected in bag filter is reused in process.                                                      |  |

| SI.<br>No. | Control Measures to be<br>Provided                                                              | Guidelines                                                                                                                                                                                                                                                                                                                                                                       | Action taken                                                                                                                                                                                         |
|------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                 | pressure. The dust may be captured in bag filters.                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |
| 2          | Provide adequate ventilation for the packing hall.                                              | Adequate ventilation for the packing hall should be provided for venting out suspended particulate thereby ensuring dust free work environment.                                                                                                                                                                                                                                  | The packing section is designed with proper ventilation to maintain dust free environment.                                                                                                           |
| 3          | Spillage of cement on floor shall be minimized and cleared daily to prevent fugitive emissions. | The spilled cement from the packing machine should be collected properly and sent for recycling. The spilled cement on the shop floor should be swept by vacuum sweeping machines periodically. Proper engineering controls to prevent the fugitive emissions may include arrangements like providing guiding plate, scrapper brush for removing adhered dust on cement bag etc. | High vacuum spillage cleaning machines and One truck mounted and one high vacuum road sweeping machines are continuously operated to keep the area neat and clean. Also, self-bag cleaning device is |
| 4          | Prevent emissions from the recycling screen by installing appropriate dust extraction system.   | The vibratory screen provided for screening/ recycling spilled cement should be provided with a dust extraction arrangement to prevent fugitive emission from that section.                                                                                                                                                                                                      | provided with suction arrangements to remove the dust from bags.                                                                                                                                     |
|            |                                                                                                 | 8. Silo Section                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| 1          | The silo vent to be provided with a bag filter type system to vent out the air borne fines.     | The bag filter should be operated and maintained properly, especially the cleaning of bags to avoid pressurization of silos thereby causing fugitive emissions from leakages etc.                                                                                                                                                                                                | Bag filters are provided at all Silos.                                                                                                                                                               |
|            |                                                                                                 | 9. Roads                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      |
| 1          | All roads on which vehicle movement of raw materials or products take place should be paved.    | The paved roads should be maintained as paved at all times and necessary repairs to be done immediately after damages to the road if any.                                                                                                                                                                                                                                        | All roads are concrete paved.                                                                                                                                                                        |
| 2          | Limit the speed of vehicles.                                                                    | Limit the speed of vehicle to 10 km/h for heavy vehicles with in the plant premises to prevent the road dust emissions.                                                                                                                                                                                                                                                          | Vehicle speed is restricted inside the plant premises and continuous inspection is being done by security guards.                                                                                    |
| 3          | Employ preventive measures to minimize dust build up on roads.                                  | Preventive measures include covering of trucks and paving of access areas to unpaved areas.                                                                                                                                                                                                                                                                                      | All raw materials are transported through covered trucks and truck mounted and                                                                                                                       |
| 4          | Carry out regular sweeping of roads to minimize emissions.                                      | Mitigative controls include vacuum sweeping, water flushing.                                                                                                                                                                                                                                                                                                                     | high vacuum road sweeping machines are continuously operated to control dust emissions.                                                                                                              |

## 1.6 Important to the Country & Region

# 1.6.1 Demand - Supply Gap

The Union Budget's focus on infrastructure is projected to drive a 10-15% rise in cement demand, fueled by the swift implementation of various infrastructure projects such as new airports, major road developments, ports, Metro rail initiatives, and energy sector ventures. Additionally, robust activity in the real estate and rural affordable housing sectors under the Pradhan Mantri Awas Yojana – Gramin (PMAY-G) is expected to further bolster demand.

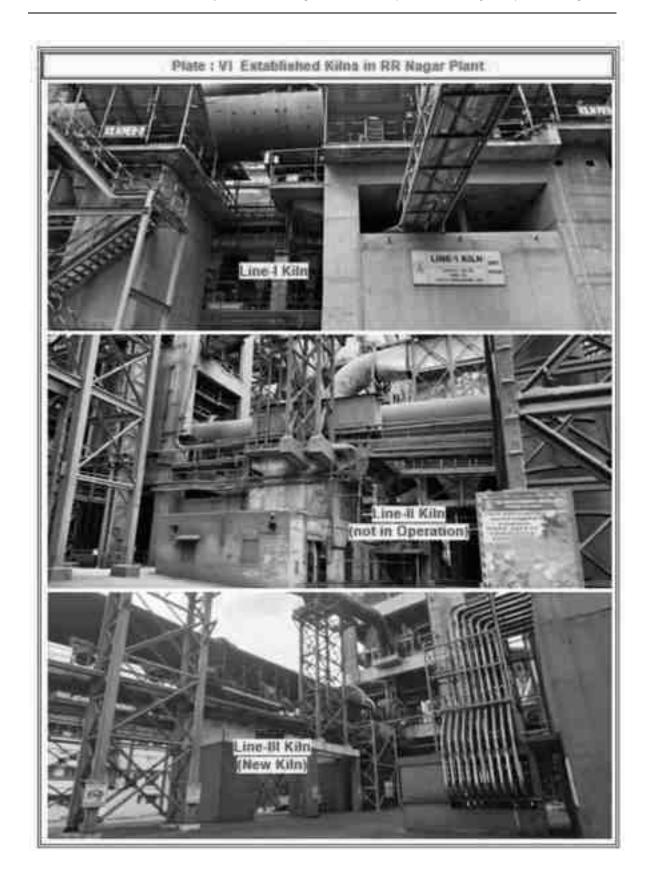
RCL successfully marketed 3.0-3.5 MTPA cement recently across the South Tamil Nadu and South Kerala. However, the sales growth in these regions has been consistently increasing between 15 to 40% annually. To accommodate this growth, RCL is planning to increase cement production from 2.70 MTPA to 4.00 MTPA, representing 48% increase from existing capacity.

# 1.6.2 Imports & Indigenous Production

Entire cement produced from the Plant is marketed in the local markets in Southern Districts of Tamil Nadu & Karela States. On demand, cement from RR Nagar Plant will also be transported to RCL Nagercoil Packing Unit for packing dispatch to the local markets. There is no import of cement proposed.

# 1.6.3 Export Possibility

Currently, there are no export plans from the Plant. Major production will be consumed locally.


### 1.6.4 Domestic / Export Markets

Domestic market for the Plant is mainly Southern Districts of Tamil Nadu and Kerla States.

### 1.7 Need for the Proposal

On commissioning of New Kiln-III, the old Kiln-II operations are stopped. RCL took the services of the Plant Engineering Consultant & Supplier, FLSmidth (FLS), for evaluation of Line-II Kiln & its accessories for sale value, they took detailed inspection and suggested certain required modifications so that Kiln-II can be operated for another 10 years sustainably. FLS has also advised to revamp the production of Kiln-I & New Kiln-III by increasing the volumetric flows and with some possible minor modifications. Kiln-II Modifications suggested (Plates VI & VII ) include:

- ✓ Kiln shell 1.91-meter replaced.
- ✓ Kiln inlet tyre replacement.





- ✓ Kiln Drive pinion and gearbox replacement.
- ✓ Hydraulic thrust device replacement.
- ✓ Kiln Old burner replaced with latest pillard burner.
- ✓ Cooler internals replaced.
- ✓ ID fan shaft & hub replaced.

To meet the increasing market demand, the Cement production of RR Nagar Cement Plant has to be increased to 4.00 MTPA. In addition to the Limestone Mines, operations of Lime Kankar Quarries in Pandalgudi Region commenced and accordingly, Raw Materials viz. Limestone & Lime Kankar supply increased to double time. With increased Raw Material supply, Clinker production of the Plant can be increased by inclusion of Old Kiln-II operations. Also, by increasing the No. of operational days of the Kilns from existing 320 days to 345 days, Clinker production can be increased.

### 1.8 The Proposal

With the Proposal, Clinker production of RR Nagar Cement Plant will be increased from existing 1.44 MTPA to 2.76 MTPA (91.67% increase) (Table 1.12) and Cement production from 2.70 MTPA to 4.00 MTPA of various Cements (48.15% increase) (OPC 43 & 53 Grades, Rapid Hardening Portland Cement-RHPC, Portland Pozzolana Cement-PPC, Masonry Cement-MC, Composite Cement-CC, etc.) along with associated Waste Heat Recovery System (WHRS) of 13 MW. Imported Clinker from RCL's other Cement Plants demand will be 0.50 MTPA, on demand.

Table: 1.12 Proposed Clinker Production with Operation of all 3 Existing Lines

| RR<br>Nagar<br>Plant<br>Kilns | Existing Operational Capacity, TPD | No. of<br>Days | Clinker<br>Production,<br>TPA | Operational<br>Capacity on<br>Revamping of<br>Kilns, TPD | No. of<br>Days | Proposed<br>Clinker<br>Production,<br>TPA |
|-------------------------------|------------------------------------|----------------|-------------------------------|----------------------------------------------------------|----------------|-------------------------------------------|
| Line-I                        | 1,500                              | 320            | 4,80,000                      | 2,000                                                    | 345            | 6,90,000                                  |
| Line-II                       | (1,400)                            | 0              | 0                             | 2,000                                                    | 345            | 6,90,000                                  |
| Line-III                      | 3,000                              | 320            | 9,60,000                      | 4,000                                                    | 345            | 13,80,000                                 |
| Total                         | 4,500                              | -              | 14,40,000                     | 8,000                                                    | -              | 27,60,000                                 |

Existing Waste Hear Recovery (WHR) Boilers of Line-I and proposed WHRBs for Lines II & III will be combined for producing about 13 MW by a dedicated Turbine Generator. Project Cost for this Expansion will be additional Rs.103.38 Crores.

All activities are **proposed within the Industry premises** and no additional land is required. Also, there is **no Rehabilitation & Resettlement** (R&R) involved. There is **no Litigation or Pending Case** against the Project.

#### 1.9 Scope

The proposed Expansion of Cement Plant (≥1.0 MTPA) falls under SI. No. 3(b) - Category 'A' of EIA Notification 2006 and requires prior EC from MoEF&CC. As per General Condition No. (ii) of the amendment vide MoEF&CC Notification S.O. 1599 (E) dated 25<sup>th</sup> June, 2014 and as per OM vide F. No. 22-24/2018-IA.III dated 22.01.2019, prior EC for installation of WHRB is exempted. Hence, application for prior EC under Project or Activity 1(d) is excluded. Thus, RCL filed TOR Application vide Parivesh Online Proposal No. IA/TN/IND1/498318/2024 on 26.09.2024 with a request for Standard TOR for this existing Plant. On scrutiny of the Application, the Ministry raised 'Essential Details Sought-EDS' on 07.10.2024. RCL submitted Reply to EDS on 05.11.2024. MoEF&CC granted Standard Terms of Reference (Standard TOR) for the Project with TOR Identification No. TO24A1102TN5995426N dated 12.11.2024 under File No. J-11011/119/2009.IA.II(I).

As permitted, Baseline Data was collected during Jul.-Sep. 2024 in Premonsoon Season Period for this Region as the area experiences (Northeast) Monsoon Season during Oct.-Dec. months in compliance with MoEF&CC Office Memorandum No. J-11013/41/2006-IA-II(I)(Part) dated 29.08.2017. EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including Sector-9 (Cement Plants) for Category 'A' by the National Accreditation Board for Education & Training (NABET) vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025 (SI. No. 4 of List dated 29.10.2024). ABC Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) vide Certificate No. TC-5770 dated 03.04.2024 with validity till 02.04.2026.

The Draft Environmental Impact Assessment (Draft EIA) Report has been prepared in compliance with **Awarded Standard TORs & Specific TORs** for Cement Plants and also as per the generic structure proposed in Appendix III of EIA Notification 2006 with the following Chapters:

- Introduction with Need for the Project
- Project Profile Environmental Setting of the Project & an outline of the Project and allied activities .
- Baseline Environmental Status.
- Anticipated Impacts along with Prediction of Impacts and Mitigation Measures.
- Analysis of Alternatives (Technology & Site).
- Environmental Quality Monitoring Programme.
- Project Benefits.
- ❖ Additional Studies like Risk Assessment, DMP, etc.
- Cost-Benefit Analysis, if any.
- Environmental Management Plan
- Summary & Conclusion.
- Disclosure of Consultants engaged.

The Draft EIA along with Summary EIA Reports (both in English & Tamil Languages) are submitted for the Public Consultation & Public Hearing.

# 2.0 Project Profile

### 2.1 Description of the Proposal

The Proposal is an Interdependent Project. The following Expansion activities are proposed within the existing Premises with no additional Land & no R&R:

- Operation of Kiln-II & its accessory Units, stalled earlier, are to be commenced as Line-II.
- ❖ To increase the Life Span of Kiln-II, Modifications proposed by FLS are to be carried out to the revamped level of 2,000 TPD.
- ❖ Kiln-I operations not to be de-rated and to be continued to the design level of 2,000 TPD by increasing the volumetric loading.
- Volumetric loading of Kiln-III has to be increased to the design/capable level of 4,000 TPD.
- Line-I-Ball Mill of 125 TPH and Pre Grinder Mill of 150 TPH operations are to be commenced.
- ❖ Coal grinding Ball Mills-I & II of each 12 TPH capacity (total 24 TPH) operations are to be commenced.
- ❖ Bag House & Bag Filter bags are to be replaced in Line-II Kiln & its Units to meet PM emission standards 30 mg/Nm³ with a cost of Rs.1.50 Crores.
- Additive pumping from existing Silo to cement grinding section with a cost of Rs.4.07 Crores.
- ❖ Increasing the operational days of all 3 Kilns from existing 320 days to 345 days.
- ❖ Increasing operational capacity of all 3 Cement Mills to 500 TPH total for **345 days**.
- Accordingly, Plant production capacity has to be increased as: Clinker from 1.44 MTPA to 2.76 MTPA & Cement from 2.70 MTPA to 4.00 MTPA.
- Waste Heat Recovery Boilers 1 No. Pre-Heater (PH) Boiler & 1 No. Air Quenching Cooler (AQC) Boiler are proposed now for Line-III Kiln.
- ❖ Existing WHR Boilers of Line-I and proposed WHRBs for Lines II & III will be combined for producing about 13 MW by a dedicated Turbine Generator at a cost of Rs.97.81 Crores.
- Expansion activities are proposed with a Project Cost of Rs.103.38 Crores.
- ❖ No change in Land Use & existing Green Belt has to be maintained.

#### 2.2 Magnitude of Operation

On proposed Expansion, the details of Products & By-products are given in Table 2.1.

Table: 2.1 Details of Products & By-Products on Expansion

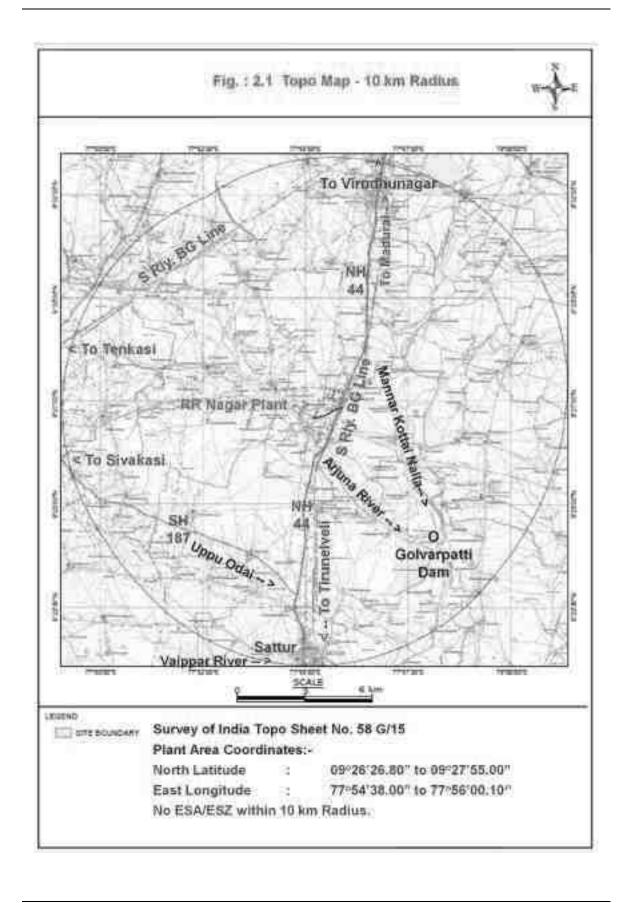
| Production of                                    | Product /  | Pro      | duction, MTP | A     | Mode of          |
|--------------------------------------------------|------------|----------|--------------|-------|------------------|
| Production of                                    | By-product | Existing | Proposed     | Total | Transportation   |
| Clinker                                          | By-product | 1.44     | 1.32         | 2.76  | By Conveyor      |
| Imported Clinker from RCL Sister Units           | By-product | 0.50     | 0            | 0.50  | Rail             |
| Cement                                           | Product    | 2.70     | 1.30         | 4.00  | Both Road & Rail |
| WHRB Power Generation from all 3 Lines @ 13.0 MW |            |          |              |       |                  |

With the Proposal, Clinker production of RR Nagar Cement Plant will be increased from existing 1.44 MTPA to 2.76 MTPA (91.67% increase) and Cement production from 2.70 MTPA to 4.00 MTPA of various Cements (48.15% increase) (OPC 43 & 53 Grades, Rapid Hardening Portland Cement-RHPC, Portland Pozzolana Cement-PPC, Masonry Cement-MC, Composite Cement-CC, etc.). Imported Clinker from RCL's other Cement Plants demand will be 0.50 MTPA, on demand. Existing WHR Boilers of Line-I and proposed WHRBs for Lines II & III will be combined for producing about 13 MW by a dedicated Turbine Generator.

#### 2.3 Environmental Setting

Plant area falls in Survey of India Topo Sheet No. 58 G/15 (Open Series Map-C43R15). Topo Sheet is given as Fig. 2.1 & Environmental Setting as Fig. 2.2. Plant Coordinates (Table 2.2) are:

North Latitude : 09°26'26.80" to 09°27'55.00" East Longitude : 77°54'38.00" to 77°56'00.10".


Table: 2.2 Plant Site Coordinates

| Site Location ID | Latitude    | Longitude    | Site Location ID | Latitude    | Longitude    |
|------------------|-------------|--------------|------------------|-------------|--------------|
| North            | 9°27'55.00" | 77°55'46.74" | NE Corner        | 9°27'51.63" | 77°56'00.10" |
| East             | 9°27'22.70" | 77°55'55.69" | SE Corner        | 9°26'54.36" | 77°55'39.81" |
| South            | 9°26'26.80" | 77°55'14.90" | SW Corner        | 9°27'16.65" | 77°54'38.00" |
| West             | 9°27'20.61" | 77°55'19.58" | NW Corner        | 9°27'47.49" | 77°55'37.41" |

There are **no Eco Sensitive Areas** like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar Sites, Tiger/Elephant Reserves, Reserved Forests, etc. (existing as well as proposed), within 10 km Study Area. **None of the followings are located** in the Study Area:

- ☑ Protected areas notified under the Wild life (Protection) Act, 1972.
- Critically Polluted Area (CPA) or Severely Pollution Area (SPA) as notified by Central Pollution Control Board.
- ☑ Interstate boundaries within 5 km radius from the boundary of the proposed site.

The elevation of the Plant area ranges from 67 m to 89 m above MSL. The region falls in Seismic Zone III. Administrative Units within 10 km radius zone comprises of parts of Virudhunagar, Aruppukottai, Sattur and Sivakasi Taluks of Virudhunagar District. Environmental Setting of 15 km Radius is delineated in **Table 2.2**. There is **no perennial River** in the Region. **Seasonal Arjuna River** (0.3 km in south) and Mannarkottai Nalla (2.0 km-east) are flowing near the Plant. These Streams are flowing towards south to southeast and confluences at Golvarpatti Dam (7.0 km in SE). Vaippar River flows at 9.8 km in south near Sattur.



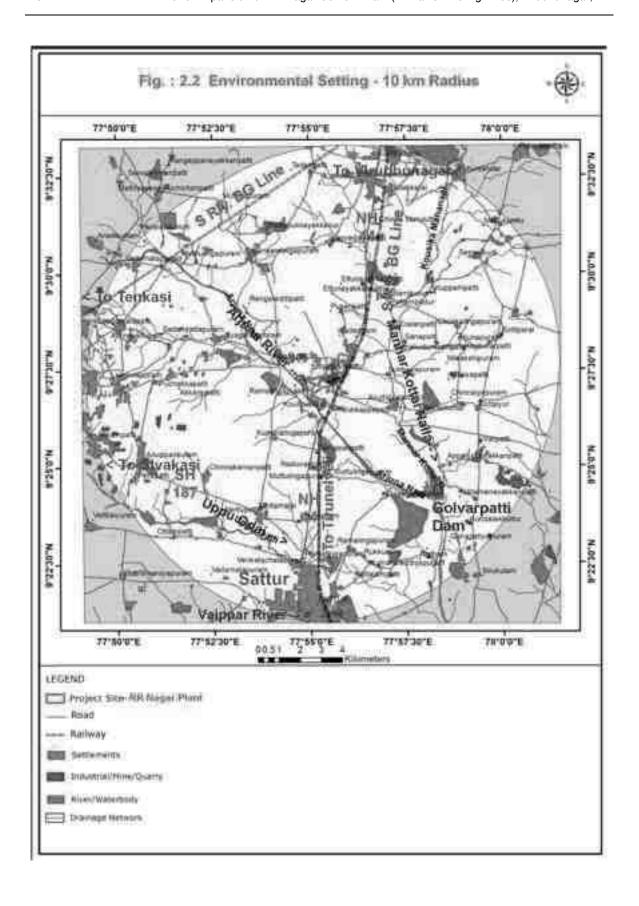



Table: 2.3 Environmental Setting – 15 km Radius

| No. Areas protected under international conventions, national or local legislation for their ecological, landscape, cultural or other related value  2 Areas which are important or sensitive for ecological reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests  3 Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  4 Inland, coastal, marine or underground waters  5 State, National boundaries  6 Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  7 Defence installations  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources (ground water resources, surface resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present environmental problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SI. | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aerial Distance(within 15 km)             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| conventions, national or local legislation for their ecological, landscape, cultural or other related value  2 Areas which are important or sensitive for ecological reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests  3 Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  4 Inland, coastal, marine or underground waters  5 State, National boundaries  6 Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  7 Defence installations  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present  Nill  Seasonal Arjuna River flows - 0.3 km (S)  Nill  Nill  Nill  Nill  Nill  Seasonal Arjuna River flows - 0.3 km (S)  Nill  Nill  The region falls in Seismic Zone III.  Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No. | Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proposed Project location boundary        |
| their ecological, landscape, cultural or other related value  Areas which are important or sensitive for ecological reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests  Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  Inland, coastal, marine or underground waters  Seasonal Arjuna River flows - 0.3 km (S)  Mannarkottai Nalla - 2.0 km (E)  River Vaippar - 9.8 km (S)  State, National boundaries  Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  Defence installations  Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  Pareas containing important, high quality or scarce resources, forestry, agriculture, fisheries, tourism, minerals)  Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  The region falls in Seismic Zone III. Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1   | <b>'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nil                                       |
| other related value  Areas which are important or sensitive for ecological reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests  Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  Inland, coastal, marine or underground waters  Seasonal Arjuna River flows - 0.3 km (S) Mannarkottai Nalla - 2.0 km (E) River Vaippar - 9.8 km (S)  State, National boundaries  Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  Defence installations  Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  Areas containing important, high quality or scarce resources, forestry, agriculture, fisheries, tourism, minerals)  Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  Pares on the important or sensitive for access to recreation or other tourist, pilgrim area and uses the project to present or sensitive flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
| 2 Areas which are important or sensitive for ecological reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests  3 Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  4 Inland, coastal, marine or underground waters  5 State, National boundaries 6 Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  7 Defence installations  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present  Nil  Nil  Nil  Seasonal Arjuna River flows - 0.3 km (S)  Mannarkottai Nalla - 2.0 km (E)  River Vaippar - 9.8 km (S)  Mannarkottai Nalla - 2.0 km (E)  River Vaippar - 9.8 km (S)  Mannarkottai Nalla - 2.0 km (E)  River Vaippar - 9.8 km (S)  Mall-44 (adjacent in east)  Madurai-Kanniyakumari Southern  Railway BG Line @ 0.5 km in east.  Nil  Sivakasi - 11 km (W)  Sivakasi - 11 km (W)  Nil  Nil  Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |
| ecological reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests  3 Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  4 Inland, coastal, marine or underground waters  5 State, National boundaries  6 Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  7 Defence installations  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources(ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | APT                                       |
| watercourses or other water bodies, coastal zone, biospheres, mountains, forests  3 Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  4 Inland, coastal, marine or underground waters  5 State, National boundaries  6 Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  7 Defence installations  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present  Nil  Nil  Nil  Seasonal Arjuna River flows - 0.3 km (S)  Mannarkottai Nalla - 2.0 km (E)  River Vaippar - 9.8 km (S)  Mannarkottai Nalla - 2.0 km (E)  River Vaippar - 9.8 km (S)  Nil  MH-44 (adjacent in east)  Madurai-Kanniyakumari Southern  Railway BG Line @ 0.5 km in east.  Nil  Sattur - 8 km (S)  Virudhunagar - 15 km (N)  Sivakasi - 11 km (W)  Nil  Nil  The region falls in Seismic Zone III.  Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2   | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NII                                       |
| coastal zone, biospheres, mountains, forests  3 Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  4 Inland, coastal, marine or underground waters  5 State, National boundaries  6 Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  7 Defence installations  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present  Nil  Nil  Nil  Nil  Sattur – 8 km (S)  Virudhunagar – 15 km (N)  Sivakasi – 11 km (W)  Nil  Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | , in the second of the second |                                           |
| forests  Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  Inland, coastal, marine or underground waters  State, National boundaries  Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  Defence installations  Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  Areas containing important, high quality or scarce resources, forestry, agriculture, fisheries, tourism, minerals)  Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  Pares containing important hazard which could cause the project to present  Nil  Nil  Nil  Nil  Nil  Nil  Nil  Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | , in the second of the second |                                           |
| Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  Inland, coastal, marine or underground waters  State, National boundaries  Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  Defence installations  Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  Areas susceptible to natural hazard which could cause the project to present  Nil  Seasonal Arjuna River flows - 0.3 km (S)  Mannarkottai Nalla - 2.0 km (E)  Mannarkottai Nalla - 2.0 km (S)  Mannarkottai Nalla - 2 |     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
| sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration  4 Inland, coastal, marine or underground waters  5 State, National boundaries  6 Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  7 Defence installations  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present  Seasonal Arjuna River flows - 0.3 km (S)  Mannarkottai Nalla - 2.0 km (E)  Macula - 2.0 km (E)  Ma | 3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nil                                       |
| breeding, nesting, foraging, resting, over wintering, migration  4 Inland, coastal, marine or underground waters  5 State, National boundaries  6 Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  7 Defence installations  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present  Seasonal Arjuna River flows - 0.3 km (S)  Mannarkottai Nalla - 2.0 km (E)  Nil Mannarkottai Nalla - 2.0 km (E)  Nil NH-44 (adjacent in east)  Madurai-Kanniyakumari Southern Railway BG Line @ 0.5 km in east.  Nil  Sattur - 8 km (S)  Virudhunagar - 15 km (N)  Sivakasi - 11 km (W)  Nil  Nil  The region falls in Seismic Zone III.  Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                        |
| wintering, migration  Inland, coastal, marine or underground waters  Seasonal Arjuna River flows - 0.3 km (S)  Mannarkottai Nalla - 2.0 km (E) River Vaippar – 9.8 km (S)  State, National boundaries  Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  Defence installations  Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows - 0.3 km (S)  Mannarkottai Nalla - 2.0 km (E) River Vaippar - 9.8 km (S)  Nil NH-44 (adjacent in east)  NH-44 (adjacent in east)  Nadurai-Kanniyakumari Southern Railway BG Line @ 0.5 km in east.  Nil Sattur - 8 km (S)  Virudhunagar - 15 km (N)  Nil Sivakasi - 11 km (W)  Nil  The region falls in Seismic Zone III. Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
| Inland, coastal, marine or underground waters   Seasonal Arjuna River flows - 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |
| River Vaippar – 9.8 km (S)  5 State, National boundaries  6 Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  7 Defence installations  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources(ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present  Nil  NH-44 (adjacent in east)  NH-44 (adjacent in east)  Madurai-Kanniyakumari Southern Railway BG Line @ 0.5 km in east.  Nil  Sattur – 8 km (S)  Virudhunagar – 15 km (N)  Sivakasi – 11 km (W)  Nil  Nil  Nil  The region falls in Seismic Zone III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Seasonal Arjuna River flows - 0.3 km (S)  |
| 5 State, National boundaries Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas Railway BG Line @ 0.5 km in east.  Nil  Defence installations Nil  Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  Areas susceptible to natural hazard which could cause the project to present  Nil  NH-44 (adjacent in east)  NH-45 (adjacent in east)  NH-44 (adjacent in east)  NH-44 (adjacent in east)  Nadurai-Kanniyakumari Southern  Railway BG Line @ 0.5 km in east.  Nil  Sattur – 8 km (S)  Virudhunagar – 15 km (N)  Sivakasi – 11 km (W)  Nil  Nil  Nil  Nil  The region falls in Seismic Zone III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | waters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mannarkottai Nalla - 2.0 km (E)           |
| Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas  NH-44 (adjacent in east)  Madurai-Kanniyakumari Southern Railway BG Line @ 0.5 km in east.  Nil  Defence installations  Nil  Sattur – 8 km (S)  Virudhunagar – 15 km (N)  Sivakasi – 11 km (W)  occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  Areas susceptible to natural hazard which could cause the project to present  Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | River Vaippar – 9.8 km (S)                |
| access to recreation or other tourist, pilgrim areas  Areas  Defence installations  Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  Areas containing important, high quality or scarce resources, forestry, agriculture, fisheries, tourism, minerals)  Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  Areas susceptible to natural hazard which could cause the project to present  Madurai-Kanniyakumari Southern Railway BG Line @ 0.5 km in east.  Nil  Sattur – 8 km (S)  Virudhunagar – 15 km (N)  Sivakasi – 11 km (W)  Nil  Nil  Nil  The region falls in Seismic Zone III. Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5   | State, National boundaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nil                                       |
| areas Railway BG Line @ 0.5 km in east.  7 Defence installations Nil  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources(ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6   | Routes or facilities used by the public for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NH-44 (adjacent in east)                  |
| 7 Defence installations  8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | access to recreation or other tourist, pilgrim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Madurai-Kanniyakumari Southern            |
| 8 Densely populated or built-up area & Areas occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources(ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Railway BG Line @ 0.5 km in east.         |
| occupied by sensitive man-made land uses (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources(ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |
| (hospitals, schools, places of worship, community facilities)  9 Areas containing important, high quality or scarce resources(ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ` '                                       |
| community facilities)  9 Areas containing important, high quality or scarce resources(ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , ,                                       |
| 9 Areas containing important, high quality or scarce resources(ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sivakasi – 11 km (W)                      |
| scarce resources(ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N.O.                                      |
| surface resources, forestry, agriculture, fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INII                                      |
| fisheries, tourism, minerals)  10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |
| 10 Areas already subjected to pollution or environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |
| environmental damage. (those where existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nil                                       |
| existing legal environmental standards are exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '   | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 ***                                     |
| exceeded)  12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |
| 12 Areas susceptible to natural hazard which could cause the project to present Seasonal Arjuna River flows at 0.3 km (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |
| \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The region falls in Seismic Zone III.     |
| environmental problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | could cause the project to present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Seasonal Arjuna River flows at 0.3 km (S) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | environmental problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |

The Cement Plant is located at a distance of 15 km in south from District Head Quarters Virudhunagar. Sattur Town is at a distance of 7.5 km (south) and Sivakasi Town is at 11 km (west). NH-44 (earlier NH-7) (4-Lane Madurai-Kanniyakumari Section) and Southern Railway BG Line (Chennai-Madurai-Kanniyakumari Section) run parallel to the Plant. The Railway siding for the Plant is from Tulukkappatti Railway Station (0.5 km in east). A Road Under Pass has been made in the NH-44 for the Plant vehicular traffic. Madurai is the nearest Airport (50 km in north). Thoothukudi VOC Port is the nearest Port (80 km-southeast). Chennai is at 450 km in northeast from the Plant. The nearest habitations are:

| <u>Village</u>      | <u>Distance &amp;</u><br><u>Direction</u> | Total Population | No. of Households |
|---------------------|-------------------------------------------|------------------|-------------------|
| Thammanayakkanpatti | 0.2 km in N                               | 3360             | 883               |
| Vachchakkarappatti  | 0.2 km in NNE                             | 3859             | 994               |
| Tulukkappatti       | 0.5 km in SE                              | 2684             | 671               |

There is **no major Industry** in the Study Area other than RR Nagar Cement Plant & CPP in the Region. Pandalgudi Region Mines of RCL are at 18-30 km distance (ESE). Dalmia Sattur Grinding Unit is at 18 km distance (S). Both Small & Medium Scale **Fire Cracker Units** predominantly exist in the Study Area. Stone Quarries exist in scattered places. Small Textile Mills exist in northern as well as southern parts of the Study Area,

Vulnerable Groups i.e. Man made Sensitive Areas (Schools & Health Centres) in the Study Area are given in Tables 2.4-2.5. All Institutions are functioning after the establishment of the Plant. Workship places like Temples, Churches, Mosques, etc. exist in predominant villages.

Table: 2.4 Vulnerable Groups within 10 Km radius - Schools

| SI. No. | School Particulars                          | Village            |
|---------|---------------------------------------------|--------------------|
| 1       | Ramco Vidhya Mandir                         | Ramco Colony       |
| 2       | Sriram Primary School                       | Ramco Colony       |
| 3       | Amirtha Training Institute                  | Vachchakkarappatti |
| 4       | Upper Primary School                        | Ettanayakanpatti   |
| 5       | Panchayat Union Primary School              | Pattampudur        |
| 6       | Govt. High School                           | Pattampudur        |
| 7       | Govt. High School                           | Inam Reddiyapatti  |
| 8       | Wisdom Wealth International School          | Inam Reddiyapatti  |
| 9       | Wisdom Wealth Catering School               | Inam Reddiyapatti  |
| 10      | Panchayat Union Primary School              | Chinnathathampatti |
| 11      | Panchayat Union Primary School              | Thathampatti       |
| 12      | Elementary School                           | Sevalpatti         |
| 13      | Dhamu Memorial Matric. Sec. School          | Sevalpatti         |
| 14      | Govt. Induatrial Training Institute         | Sulakarai          |
| 15      | Sevendiran Special Hr. Sec. School for Deaf | Sulakarai          |
| 16      | Govt. Higher Secondary School               | Sulakarai          |

| SI. No. | School Particulars                       | Village                 |
|---------|------------------------------------------|-------------------------|
| 17      | Govt. School                             | Periya Maruluttu        |
| 18      | Panchayat Union Primary School           | Meenakshipuram          |
| 19      | Govt. High School                        | Sennalkudi              |
| 20      | Govt. Higher Secondary School            | Malayapatti             |
| 21      | Govt. High School                        | Avudayapuram            |
| 22      | Panchayat Union Middle School            | Kotthiparai             |
| 23      | Hindu Nadar Hr. Sec. School              | Melakottaiyur           |
| 24      | Panchayat Union Primary School           | Avudayapuram            |
| 25      | Panchayat Union Primary School           | Mannarkottai            |
| 26      | Panchayat Union Primary School           | Ammapatti               |
| 27      | Middle School                            | Ramalingapuram          |
| 28      | Upper Primary School                     | Kumarareddiyapuram      |
| 29      | Govt. Hr. Sec. School                    | Naduvapatti             |
| 30      | Sri Vastha College                       | Sattur                  |
| 31      | PSNL College of Education                | Mettamalai Road, Sattur |
| 32      | Govt. Arts & Science College             | Mettamalai Road, Sattur |
| 33      | Sri Krishnasamy Arts & Science College   | Sattur                  |
| 34      | Primary, Middle, High & Hr. Sec. Schools | Sattur                  |
| 35      | Sri S Ramasamy Naidu Mem. Polytechnic    | Venkatachalapuram       |
| 36      | KMT Girls Higher Secondary School        | Venkatachalapuram       |
| 37      | Govt. Higher Secondary School            | Chinnakamanpatti        |
| 38      | Govt. Higher Secondary School            | Perapatti               |
| 39      | Panchayat Union Primary School           | Puchakapatti            |
| 40      | Govt. Higher Secondary School            | Sankaralingapuram       |

Table: 2.5 Vulnerable Groups within 10 Km radius – Health Centres

| SI. No. | Hospital Particulars               | Village          |
|---------|------------------------------------|------------------|
| 1       | Ramco Occupational Health Centre   | RR Nagar         |
| 2       | Govt. Primary Health Centre        | Kanniseri Pudhur |
| 3       | Urban PHC                          | Kovilpatti       |
| 4       | Primary Health Centre              | Amathur          |
| 5       | Primary Health Centre              | Malayapatti      |
| 6       | Primary Health Centre              | Avudayapuram     |
| 7       | Sub-Health Centre                  | Chokkalingapuram |
| 8       | Sub-Health Centre                  | Alamarathupatti  |
| 9       | Govt. Hospital                     | Puchakapatti     |
| 10      | Govt. Hospital                     | Minnampatti      |
| 11      | Primary Health Centre              | Vadamalapuram    |
| 12      | Govt. & Private Hospitals          | Sattur           |
| 13      | Hanumandha Multispecialty Hospital | Chokkalingapuram |
| 14      | Govt. Primary Health Centre        | Alamarathupatti  |
| 15      | Government Veterinary Hospital     | Thathapatti      |

**Existing EMP measures**: Existing mitigation measures for Air Quality, Water Quality & Solid Wastes Control in safeguarding Vulnerable Groups in the vicinity are detailed below:

- ✓ The (old) Line-II Kiln is already provided with Reverse Air Bag House, Cooler with ESP, Coal Mill with Bag Filters so as to control the Particulate Emissions from the Line-II <30 mg/Nm³.
- ✓ All the Material conveyors are fully covered and provided with Bagfilters at Transfer Points.
- ✓ Dry Fly ash is pneumatically transferred to the RCC storage silo and pumped to the cement grinding section through pneumatic pipelines.
- ✓ Bag filters are provided in the material loading hoppers, transporting conveyors, feeding area, cement grinding, storage & packing areas to control the fugitive emissions from the unit.
- ✓ Thus, fugitive emissions during loading and unloading operations are controlled effectively in compliance with CREP Guideline Norms.
- ✓ There is no trade effluent generation from the Cement Plant.
- ✓ On Expansion, DM/RO Rejects of 40 KLD, Boiler Bleed-offs of 8 KLD and Colling Tower Rejects of 12 KLD, total 60 KLD effluent will be generated additionally which will be treated for pH Correction in a 100 KLD Neutralisation Pit separately and Treated Effluent of 60 KLD will be utilized for Equipment Cooling of (old) Line-II machineries where it will be evaporated fully.
- ✓ Domestic Sewage & Canteen wastewaters of 25 KLD from the Cement Plant, 9 KLD Domestic Sewage from CPP, 160 KLD Domestic Sewage from the Township and another 86 KLD Domestic Sewage from Labour Qtrs., thus, a total of 280 KLD is generated. All the Domestic Sewage is treated in a 400 KLD Sewage Treatment Plants (350+50 KLD STPs). The Treated Sewage of 250 KLD is fully used for the Green Belt development. There will be no change to existing status on Expansion.
- ✓ Thus, it will be a 'Zero Effluent Discharge'.
- ✓ The solid waste generated from the process and dust collected from various air pollution control equipment is being recycled in the process. Solid waste from the Sewage treatment plant 0.8 @ TPD is vermi-composted and used as manure for Green belt development. Fly ash (29.3 TPD) produced from CPP and Bottom ash (5.2 TPD) are transported pneumatically with the help of dense phase pneumatic pumps to the RCC storage silos. The ash is evacuated from silo and transported to Cement Plant for Portland Pozzolana Cement (PPC) manufacturing.
- ✓ Spent Oil (Category 5.1) generation is 94.62 TPA and is being sold to TNPCB/CPCB Authorised Recyclers for further processing & recycling.

Thus, all EMP measures will be in place to control the pollution levels within the Plant premises and there will not be any impact on the nearby environment including the sensitive man-made land uses.

## 2.4 Plant Layout & Land Use

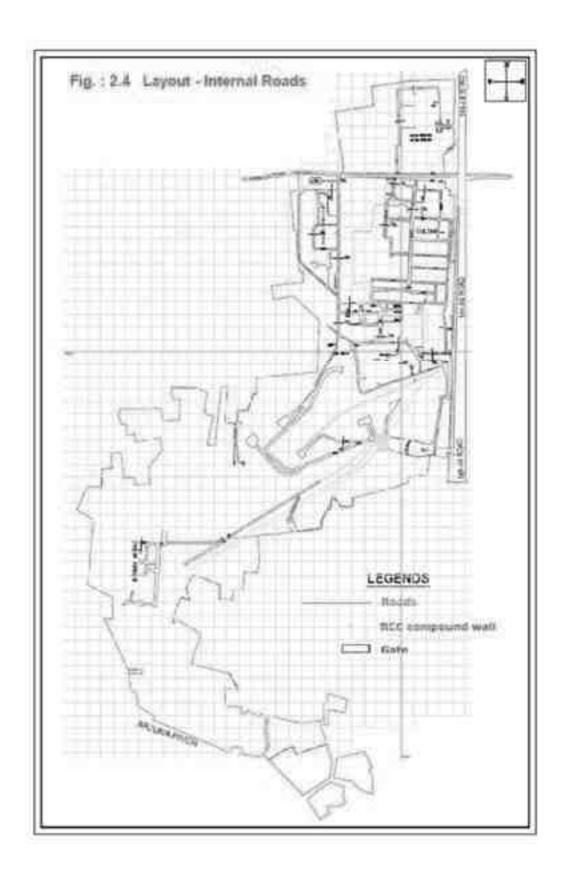
All Expansion activities i.e. **Line-II inclusion**, are proposed within the existing Premises and **no additional land** is required. **No establishment** is required for the Proposal. No change in Land Use. Proposed Layout is given as **Fig. 2.3** and detailed in **Table 2.6**. **No development area of 50 m** is provided along Seasonal Arjuna River Bank.

**All internal roads** are designed for minimum **6 m width and 9 m turning radius** for smooth traffic flow inside the Unit including fire tender, as per NBC Norms. Road network is connecting all service areas. Layout with Internal Roads is attached as **Fig. 2.4**.

Total Builtup Area of the Complex is **61.266 Ha** (with Roof Top Area of 27.570 Ha) and Paved Area of **17.012 Ha**. The total Green Belt Area is **64.50 Ha** in the total extent of 191.434 Ha with **33.69% coverage**. **No additional Green Belt** is required.

|                                | Land Use, Ha          |                   |                   |                    |
|--------------------------------|-----------------------|-------------------|-------------------|--------------------|
| Land Use                       | Cement Plant & School | Township          | СРР               | Total              |
| Builtup Area                   | 50.638                | 9.998             | 0.630             | 61.266             |
| Asphalt/Paved Area/Rly. Siding | 15.552                | 1.110             | 0.350             | 17.012             |
| Solid Waste Storage            | 7.000                 | -                 | -                 | 7.000              |
| Green Belt & (Coverage)        | 52.500<br>(33.27%)    | 9.500<br>(36.35%) | 2.500<br>(33.20%) | 64.500<br>(33.69%) |
| Vacant Land within the Plant   | 4.588                 | 5.525             | 4.050             | 14.163             |
| RWH Ponds & Drains             | 2.493                 | -                 | -                 | 2.493              |
| Vacant Land – Non Industrial   | 25.00                 | -                 | -                 | 25.00              |
| Grand Total                    | 157.771               | 26.133            | 7.53              | 191.434            |

Table: 2.6 Land Use at the Plant


# 2.5 Stability Certificate

RCL has engaged Mr.M.Senthilkumar, a 'Certified Competent Person for carrying out examination and certification of Stability of Buildings used in a factory' by the Directorate of Industrial Safety and Health Department, Govt. Of Tamil Nadu for inspect and issue the Stability Certificate for the RR Nagar Factory Structures.

He has inspected the Plant on 22.11.2024, carry out the required Tests and issued the Building Stability Certificate with validity till 21.11.2027.

All the Buildings & Structures of RR Nagar Cement Plant are rated under 'A' & 'B' Rating viz. 'Very Good' & 'Good' and found to be Good. Excerpts of the Report are appended.





## **Stability Certificate for Plant Structures (Excerpts)**



Dr. M. Senthil Kumar

BUILDING STABILITY (2024 - 2027)

Grout Name

# M/s. THE RAMCO CEMENTS LTD.,

No.180,183,/W4, Ramasarny Raja Napar, Thulukapatti Villaga, Vaudhunagar District - 425,204.

#### CONTENT & VALIDITY

| ANNEXURE | PARTICULARS                                                                                                 | DATE       | NEXT OUL<br>DATE |
|----------|-------------------------------------------------------------------------------------------------------------|------------|------------------|
| 1.       | 1. DISH Approval Copy                                                                                       |            |                  |
| 1002     | Index (List of building with approval number<br>and validity)                                               |            |                  |
| ***      | Building stability certificate     Machinery installation certificate     Building construction certificate | 22.11.2024 | 21.11.2027       |
| IV       | 1. Retround Hammer Test result                                                                              |            |                  |



Chartered Clef Engineer, SENTHIL SAPETY SOLUTIONS PVT, LTD.,

Flat No. 2146, West Ind Colors. Anna Neger West Economy, Chermal 55.

Competent Person Under Fectories Act, DISH Chennal.

DIGH Order: PEX /17204/2003; CE.96 (D.2023 to CS.20.2025 MOSE-RH ENGIT / OCUMANIT/ENV/ACO/38/1575, DF 18:12.2828

Flot Null 40, West End Colony, Anna Nagar West Extension, Chemica 600 080, Main (904)0 76333. Email (100) sensibilisation com, Web (100) augustin



### GOVERNMENT OF TAMIL NADU

# DIRECTORATE OF INDUSTRIAL SAFETY AND HEALTH

Chennai- 32.

No.H1/17204/2023

# Dated:06.10.2023

# CERTIFICATE OF COMPETENCY ISSUED TO A PERSON

#### (Under Sub-Rule (3) of Rule 2A)

1, M.V. Senthil Kumar, the Director (FAC), Industrial Safety and Health in exercise of the powers conferred on me under Section 2 (ca) of the Factories Act and the rules made there under, hereby recognize Thiru.M.SENTHILKUMAR, Plot No.1148, Anna Nagar West and Colony, Mugappair, Channal – 50 to be the Competent Person for the purpose of carrying out examinations and certification of Stability of buildings used in a factory located in the State of Tamil Nadu under section 6 of the Factories Act, 1948 and the Rules made there under.

# This certificate is valid for Three Years from 06.10.2023 to 05.10.2026

This certificate is issued subject to the conditions stipulated hereunder:

- Tests, Examinations and Inspections shall be carried out in accordance with the provisions of the Act and Rules made there under.
- Tests, Examinations Inspections shall be carried out under the direct supervision of the competent person.
- The Director, Industrial Safety and Health, Chennai 32 reserves the right to revoke or amend this order at anytime during its validity period in accordance with the provisions under Sub-rule (4) of Rule 2-A of the Tamil Nadu Factories Rules 1950.
- (v) Record of the daily work done by the Competent Person should be maintained in a log book. Incorporating therein the name of the factories, the details of work done, observations made, directions given, etc.,



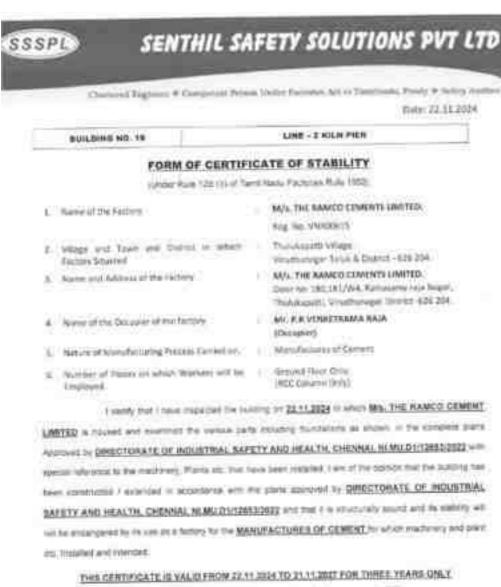
# INDEX LIST OF THE BUILDING

|     | HAME OF THE BUILDING     | APPRIOVAL NO.                             | DATE COM   | DUE SATE   |
|-----|--------------------------|-------------------------------------------|------------|------------|
| 1   | LINE-S RAW MISS.         | H DIS. NO. (D3) /12653/2022 Dt 23.05.2022 | 22.11.2024 | 21.11.2027 |
| ı   | LINE ERAW MILL HOPPER    | # 205.000 (0.1)/12655/2022 0x 23.05.2022  | 29.11.4024 | 30.13.1651 |
| 3   | UNE -S KILLY PIEN        | W.DH. NO: (DX) /12853/2022 OH 23 RA 2022  | 22.11.2024 | 21.11.2027 |
|     | TIME -T MIE HEXIER       | N Ord. NO. (D3)/\$2658/2022 Dt 28.05.2022 | 22:11:2024 | 21.11.2017 |
| 5   | LINE -E COOLER           | H. DHS. NO. (D1)/12613/2022 Dt 23.05.2022 | 23:13.3024 | 23.11.2027 |
| 6   | 188-2 SOME WILL          | R.D/S. NO: (D3)/32653/7032 OI 23.05 2022  | 22.11.2024 | 21 11 2007 |
| 7   | UNE-1 KEN SUB STATION    | 8.05. NO: (01) (1265)/2027 OI 23:05:2022  | 22.13.2024 | 23,33,2027 |
|     | UNE ECIMENTARIE          | # D/S NO 19/0/732053/2022 Ot 23.05.2022   | 2211.2024  | 21.31.2027 |
| ,   | CINE -3 NAW MILL II      | N.DES. NO: (D11/12655/2022 Dr 23.DS.2022  | 22:11:2024 | 21.11.2027 |
| 10. | CONTRACTOR STATE         | N.DIS. NO. (D1):/12553/2022 Oc 23.85-2022 | 22.11.1024 | 21.11.2027 |
| 11  | UNE 3 PREPENTER          | 8 DES. NO: 671) /12/93/2012 On 23:05-2022 | 22.11.2024 | 35.11.2027 |
| 12  | LINE-STEEN PHOTO RAWARES | 8:05: NO (01)/12553/2017 Dt X1:05:2012    | 22313004   | 23.13.2027 |
| 13  | LINE- 3 KILN-SUB STATION | N.DIS. NO. (D1) /32653/2022 OX 23.DS 2012 | 22.11.7024 | 23.51.2027 |
| 14  | UNE -S COOLS N           | 8.005.90 (D1)/32653/2022 Dt 23:05:2022    | 32.11.2024 | 33:31:3022 |
| 15  | UNE GROW MILE HOPPER     | R.DIS. NO. (D3) /12953/3022 Dt 23-05-2022 | 22.11.2024 | 21.11.2027 |
| 25  | LINE # COAL MICL         | R DIS NO (D10/12655/2021 Dt 23:05:2022    | 22.11.2024 | 21.11.202  |
| 17  | LINE -2 NAW MILL         | H.DIS. NO: (01) /12653/3032 CK 33.05-20/2 | 23.11.2024 | 21.11.2021 |



| 18 | DATE -5 WALTER        | H,045, NO. (012/32858/2022 DK #3.55-2022     | 32.31.303# | 21.11.2027  |
|----|-----------------------|----------------------------------------------|------------|-------------|
| 15 | LINE-2 JOLN PIEN.     | R.DIS. NO: (D1) /13953/3022 Dt 2X.05-2022    | 12.11.2024 | #3.11.200T  |
| 20 | LHK- 2 00N 25F        | # 015. NO. 0311/12/65/1022 Dt 23.25-2022     | 22.11.2004 | 21.11.2007  |
| 21 | Linie -2 COOLER       | ALDES NO: (01) /12851/2022 Ot 28:05:2022     | 32.11.2024 | 23,11,2027  |
| 22 | 1ms-z-souches         | H.196, NO. (01) /12855/3022 SK 81-08-2022    | 22312024   | 11.11.2029  |
| 21 | LINE 2 CEMENT MILL    | BLD/S. NO. (DIL) / E7N/A (2022 DI 29 DS 2022 | 22.11.2024 | 21,11,2027  |
| 24 | UNE 2 REW WILL HOPPER | B.D.S. NO. 3351/12453/2022 Dt 23.05.3023     | 22 51.2034 | 35.51.362)  |
| 26 | CEMENT SILO (SNOS)    | N.DIS. NO. (D1)/12613/2012 DK 23.DL 2017     | 33.11.3034 | 21.11.2027  |
| 26 | CONSTRUCTION OF       | 8.045-90-011/12/53/2022 \$4.23.65.2022       | 3933.3924  | 31.11.2027  |
| 27 | KAW MILL SILO (SNOT). | N.DrS. NO: (DX)/12HS3/2022 Dt 23 05 2022     | 32.11.9924 | 23.33.2027  |
| 25 | FLY MIN TILD INFORM   | 11.115. NO. (P11/1281A/2033 DH 3 A (N. 3092  | 33313034   | :81.33.2022 |
| 29 | PACKING PLANT         | R.DK. WO: ID11/13659/2021 0x 21:05:3022      | 22.11.0024 | 21.11.1023  |




SENTHIL SAFETY SOLUTIONS PVT, LTD.

For No. 1348, West End Commu. Anna Regar West Edenson, Chemia - 600050.

Competent Person Lindar Factories Act, 183H Chennel.

URSK Order: H1 /17284/2023, Oc.06.10.3023 to 05.10.2036

MDEF-RM.Expert: QCI/NABIT/ENV/ACD/20/1575, DT.18.12.2020





From Hope State Communication - SCHOOL Communication - SCHOOL Companies February Confer February - SCHOOL Companies - SCHOOL CO

MIGGS BY DIGHT DICHMET/VINCHCO/MCTUSE, DC 18.13.2000



# TEST REPORT OF REBOUND HAMMER

# M/S. THE RAMCO CEMENTS LTD,

No. 180, 181/W4, Ramasamy Raja Nagar, Thululiapatti Wilage, Vinushunagar District – 626 204.

|             |                                     |                 |                        | 01 = 1 = 0 = |          |                  |                     | Date    | 22.11.202    |  |
|-------------|-------------------------------------|-----------------|------------------------|--------------|----------|------------------|---------------------|---------|--------------|--|
| Ted Certifi | sale No: TRCL/HV45-31               | 111.2024        |                        |              |          |                  |                     |         |              |  |
| alterous)   | NO DIRECTORATE O                    | PROUNTERS, SAFE | TY AND R               | EATIN.       | CHINNA   | 1, 6.215. NO     | 1035/12889/         | 2111112 | 25.05.2072   |  |
| COLIPMEN    | ENAME                               |                 |                        | . 0          | ONCHES   | SE HAR           | ots.                |         |              |  |
| MAG         |                                     |                 |                        | - 8          | 01/10    | MARTINE          |                     |         |              |  |
| MODEL.      |                                     |                 |                        | - 0          | sx200    |                  |                     |         |              |  |
| SERIAL NUM  | Mich                                |                 | _                      | > K          | (10.00)  |                  |                     |         |              |  |
| TEST COND   | NUCTED AS PER IS COL                | 1               |                        |              |          |                  |                     |         |              |  |
| DATAS AND   | AS FOLLOWS:                         |                 |                        |              |          |                  |                     | -       |              |  |
|             |                                     | NAMMER TEST BES | OW STAN                | DAROS        | AS PER S | LVERSCHI         | нат – маска         | ē       |              |  |
|             | BEMARKS. VERY GOOD HARD LEYER       |                 |                        | LINE         | 9        | uie              | POOR CONCRETE       | OE:     | AMMATES      |  |
|             | VALUE                               | CHLATER THAN    | IN BETWEEN IN<br>to 60 |              |          | ETWEEN<br>Day 10 | 1855/R<br>TMAN - 30 |         | with a       |  |
|             | NATINE                              | *               |                        | * c          |          | ¢                | D                   |         | £            |  |
| 8, 90.      | LOCATION                            | AREA / SPOY     |                        | 200          | 20 1     | QVALE            |                     |         | ASTRO        |  |
| 111111      | Continue                            | Three-looks     |                        | -            |          | Brown            | _                   |         | - Acceptance |  |
|             |                                     |                 | 30                     | Ī            | 49       | 256              | 363                 | 35      | Γ            |  |
| 130         | Dre-3<br>Ray Mill<br>(Ground floor) | Silune1:        | 35                     |              | 061      | - 34             | :90                 | ж       | (00)         |  |
|             |                                     |                 |                        |              | 35       | The .            | 500                 | 10      |              |  |

| SL: NO. | LOCATION                                | AREA / SPCT | Mi. | E     | Q VALUE | -41   | . 5  | RATING |
|---------|-----------------------------------------|-------------|-----|-------|---------|-------|------|--------|
|         |                                         |             | 18  | 37    | 3       | 36    | 57   |        |
| 180     | Line 1<br>Coal Mill<br>(Sinsured Floor) | Columb-3    | 16  | n     | 36      | ii    | 30.  |        |
|         |                                         |             | 349 | 35    | 15      | ж     | 31   |        |
|         |                                         |             | 33  | 65    | 55      | 190   | :390 |        |
| 88      | Line-3                                  | Column 2    | 25  | 15    | Ħ       | (M    | 36   | 363    |
|         |                                         |             | 40  | 95    | 96      | 71925 | 736  |        |
|         |                                         |             | H   | 41    | 44      | Œ     | 36   |        |
| 13fe    | Line - 2<br>Have Mill                   | Column:1    | 0   | 40    | M       | 165   | 146  | (6)    |
|         |                                         |             | 40  | al al | 43      | 85    | 38   |        |
|         |                                         |             | #   | 44    | 45      | 100   | ж    |        |
| 176     | tine-2<br>Yaw Will                      | Column-2    | 40  | В     | 90      | 102   | 936  | A      |
|         |                                         |             | 40  | #     | 40      | dii   | 300  |        |

| SL NO. | LOCATION                                 | AREA / SPILIT    |     |     | QVALUE |      |      | BATING |
|--------|------------------------------------------|------------------|-----|-----|--------|------|------|--------|
|        |                                          |                  | 160 | 52  | 196    | :50: | 301  |        |
| 381    | Line - 2<br>Pre-Heater                   | Column 2         | 92  | 56  | Sit    | 38   | 52   | (#)    |
|        |                                          |                  | 91  | 33  | H      | 55   | 56   |        |
|        |                                          |                  | 44  | 43  | :49    | 199  | .00  |        |
| 39     | Single 2<br>Kilon Pleat                  | Resource<br>Wall | 49  | 82  | 48     | (46) | 46   | (4)    |
|        |                                          |                  | 40  | 43  | 165    | :46  | :300 |        |
|        |                                          |                  | ñ   | 4   | 41,    | (9)  | 46   |        |
| (0)    | 130e - 3<br>60n 732                      | Cotumn-3         | 36  | 35  | 36     | 86   | 46   | (#)    |
|        |                                          |                  | la. | 39) | 38     | 16   | 36   |        |
|        |                                          |                  | 8   | 34. | 9      | 19   | 38   |        |
| 71     | Line - 2<br>Elle Colles<br>(Grown Floor) | Enforme-1        | 40  | 35  | 30     | M.   | 33   | A      |
|        |                                          |                  | 40  | 42  | 45.    | .6   | 100  |        |

| SL NO. | LOCATION                                  | MEA/SPER           |              |     | QVALUE | g II. |      | RATING |
|--------|-------------------------------------------|--------------------|--------------|-----|--------|-------|------|--------|
|        |                                           |                    | D#K          | 37  | :96    | (85)  | (88) |        |
| 31.    | Line - 2<br>#Im Cocker<br>(Ground Moon)   | Near<br>Cooler Fan | 7.86         | 111 | 150    | an    | 367  | ¥      |
|        |                                           |                    | 48           | 35  | 35     | 38    | 31   |        |
|        |                                           |                    | 100          | 45  | 55     | Ser.  | 36   |        |
| n      | Une - 7<br>Cast Mill<br>(Graund Floor)    | Celumin-2          | 6            | 25  | я      | 36    | и    |        |
|        |                                           |                    | 149 XX 130 3 | 31  | 30     |       |      |        |
|        |                                           |                    | Q            | 41  | 196    | 2987  | 1981 |        |
| n      | Line - 3<br>Clear Mill<br>(Gratuod Floor) | Solumn-3           | 13           | XI  | Z4#    | 360   | og:  | ×      |
|        |                                           |                    | 40           | 10  | ાક     | Эù    | -361 |        |
|        |                                           |                    | 9            | #3  | 145    | 39    | 36.  |        |
| 22     | Line = 2<br>Coat ANS<br>(Second Floor)    | Calumn-3           | 46           | 35  | 100    | 7997  | 7000 | A      |
|        |                                           |                    | 40           | 43  | 165    | 146   | 260  |        |

| SL NO. | LOCATION                                      | AREA/SPOT |       |      | G.VALUE |     |     | AATING |
|--------|-----------------------------------------------|-----------|-------|------|---------|-----|-----|--------|
|        |                                               |           | 58    | 45   | 98      | 30  | 10  |        |
| 23)    | Common Mass<br>Common Mass<br>(General Floor) | Column-3  | В     | 36   | H       | 30  | Hc. |        |
|        |                                               |           | 46)   | 18   | 30      | я   | 31  |        |
|        |                                               |           | 40    | 44.  | 200     | 38. | #1. |        |
| 234    | Line+3<br>Cement Mill<br>(Second Floor)       | Column 2  | 26)   | at.  | **      | 46  | 9   | Ŧ      |
|        |                                               |           | (40)  | (82) | 966     | 960 | 360 |        |
|        |                                               |           | #6    | 45   | 30      | 30) | #   |        |
| 230    | Line - 2<br>Comert MIII<br>(Ground Floor)     | Column-2  | Digit | 1860 | (425    | 41  | 983 | 3      |
|        |                                               |           | 52    | 50   | 10      | st  | 56  |        |
|        |                                               |           | 301   | in.  | 7460    | 361 | air |        |
| 2hr    | Une - 2<br>Commercialiti<br>(Second Floor)    | Column-3  | -80   | 35   | 300     | 300 | 300 | *      |
|        |                                               |           | 40    | 42   | 40.     | (4) | 381 |        |

| SL, NO. | LOCATION      | ANEA/SPOT  | N. III |     | Q VALUE |     |      | RATING |
|---------|---------------|------------|--------|-----|---------|-----|------|--------|
|         |               |            | 40     | 12  | 45      | 46. | (84  |        |
| 28      | Packing Plant | Column-1   | (42)   | 340 | 340     | .39 | 206  | A      |
|         |               |            | 4)     | 41  | 49      | 41  | 41   |        |
|         |               |            | 3420   | 349 | 346     | 196 | -380 |        |
| .29w    | Packing Plant | Calumn-3   | a.     | 42  | *       | 43  | 41   | 8      |
|         |               | :45        | 345    | 42  | :46     | 46  | -306 |        |
|         |               |            | 42     | 40  | :45     | ЭĚ  | 38   |        |
| (290)   | Heating Plant | : Column-1 | 0      | -10 | 46      | -eg | 146  | Æ      |
|         |               |            | 45     | 44  | 45      | 146 | 38   |        |
|         |               |            | A2     | 140 | 45      | 196 | 38   |        |
| 291     | Packing Plant | Column-3   | 46     | 35  | 80      | 62  | **   | è      |
|         |               |            | 46     | 42  | - 36    | 36  | 196  |        |

# REBOUND HAMMER TEST REPORT

# M/S. THE RAMCO CEMENTS LTD,

No.180,181/W4, Ramasamy Raja Nagar, Thulukapatti Village, Virudhunagar District – 626 204

| Market | 7                   | _      |
|-----------------------------------------------------------------------------------------------------------------|---------------------|--------|
| LAYER                                                                                                           | VALUE               | KATING |
| VERY GOOD HARD LAYER                                                                                            | GREATER THAN 92     | A      |
| GOOD LAYER                                                                                                      | IN BETWEEN 30 to 40 |        |
| PAIR                                                                                                            | IN SETWEEN 20 to 30 | 10     |
| POOR CONCRETE                                                                                                   | LESSER THAN - 20    | D      |
| DELAMINATED                                                                                                     | VALUE 0             | E      |

#### Conclusion:

The above result shows the quality of concrete and construction is found good

Dr. M. SENTHIL RUMAR., Ph.D.,
Chartered Civil Engineer.

Mot No. 1148, West End Colony,
Anna Nagar West Extension, Chennal - 600030.

Competent Person Under Factories Act, DISH Chennal,
DISH Order: H1 /17204/2023, 0t.06.10.2023 to 05.10.2026

MOSF- RH Expert: QCI/NABET/ENV/ACO/20/1575, DT.18.12.2020

SENTHIL SAFETY SOLUTIONS PVT. LTD.,

#### 2.6 Green Belt Development

Green Belt was maintained in the Complex over an extent of 33.00 Ha with 62,910 Trees @ 1,906 Trees/Ha & Survival Rate of 85-90% before 2021 Expansion. During last EIA Stage, it was submitted that additional Green Belt to an extent of 31.50 Ha with 78,750 Nos. to be raised in the vacant areas of western & southern parts.

On Expansion, additional Plantations were done over an extent of 31.50 Ha with 98,340 Trees in the western & southern sides (where recent Expansion activities took place). Now, total Green Belt extent is 64.50 Ha (33.69% Coverage) with 1,61,250 Trees @ 2,500 Trees/Ha (Table 2.7) with Survival Rate @ 90% average. No additional Green Belt is required.

| Period               | GB Extent, Ha | No. of Trees |
|----------------------|---------------|--------------|
| EIA Stage            | 33.00         | 62,910       |
| End of 2021-22       | 12.00         | 28,624       |
| 2022-23              | 18.00         | 64,865       |
| 2023-24 till Jan. 24 | 1.50          | 4,851        |
| Total                | 64.50         | 1,61,250     |

**Table: 2.7 Green Belt Development** 

Green Belt Layout is given as Fig. 2.5. Geotagged Green Belt Photographs, all along the boundaries of the Complex, are attached as Plates VIII-XI.

As shown in the Photographs, recently planted trees are 1-2 years old which are yet to be reflected in Google Earth KML file. However, recent Certified Compliance Report (CCR) issued by the Integrated Regional Office (IRO), MoEF&CC, Chennai vide Letter EP 12.1/867/TN/353 dated 18.03.2024 captured the Green Belt developed in the Complex.

Predominantly, native plant species are preferred for Green Belt like Azadirachta indigo (Neem), Cassia Siamea (Manjakondrai), Pongamia pinnata (Pungan), Albizia lebeck (Vagai), Samanea saman (Thoongumoonji), Holoptelia integrifolia (Arali), Tecoma stans (Thangarali), Cassia fistula (Sarakondrai), etc. Additionally fruit bearing trees are also planted and maintained. Local women are engaged for the maintenance of Green Belt.

Area-wise Green Belt developed in the Complex is detailed in Table 2.8.

Green Belt Covered in Areas listed in Table 2.8 :
Other Areas including Labour Quarters covered :
Grand Total - Green Belt Development :

50.40 Ha with 1,06,675 Plants 14.10 Ha with 54,575 Plants 64.50 Ha with 1,61,250 Plants @ 2,500 Plants/Ha (90% Survival)

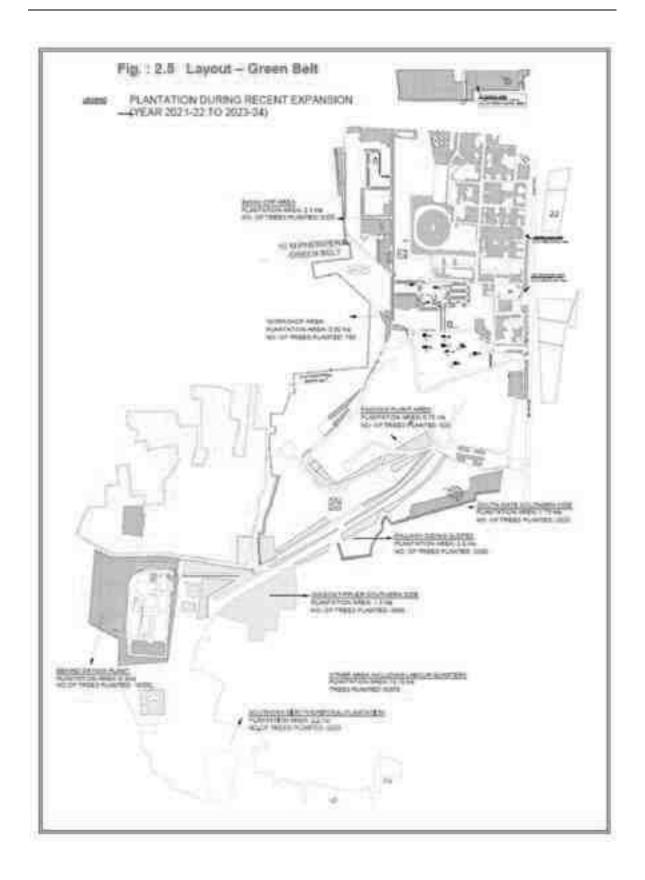



Plate: VIII - Green Belt Photographs (Geotagged-26.10.2024)



Plate: IX - Green Belt Photographs (Geotagged-26.10.2024)



Plate: X- Green Belt on Expansion - New Plantations (Geotagged)











Plate: XI- Green Belt on Expansion - New Plantations (Geotagged)



Table : 2.8 Areawise Green Belt Development

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |              |      |               |                    | No. of 1                      | Pees Pranted a                 | 4.Maintained         |                       |                          |                          |          |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|------|---------------|--------------------|-------------------------------|--------------------------------|----------------------|-----------------------|--------------------------|--------------------------|----------|
| SIL<br>No. | Scientific teams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Common Name         | AV<br>School | CP#  | Work-<br>shop | Bebind<br>DM Plant | Southern<br>Side<br>Periphery | Wagon<br>Tippler<br>South Area | Siding<br>Slope Area | South<br>Cate<br>Area | Packing<br>Plant<br>Area | Admitt<br>Ellock<br>Area | Township |
| 1          | Acadia leucossiesii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Write bark Apacia   |              | - 28 |               | - 10               | To Dog St                     |                                | 747                  | 119-1                 |                          | 1100                     |          |
| 4          | Acaca metitera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hooked tham spacial | - 78         | 18   | 7.7           | 60                 | 3.50                          | 100                            | 1.34                 |                       | 175                      |                          | 100      |
| 3.         | Acadia Hitotola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bobul time          | 1.55         | 18.0 |               | 103                | 100                           | 61                             |                      |                       | 100                      | 11.63                    |          |
| 4          | Adenium sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Desert rose         | 1,4          | 1.8  | 2.4           | 11.4-0             | 201                           | 20                             | C4                   | 100                   | 100                      | . 50                     | 100      |
| 5          | Aegle mamelos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wood apple tree     | 0.71         | 1.0  |               | -                  | 200                           |                                |                      |                       |                          | 100                      | 50       |
| 6          | Agave sug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Apaves              | 200          |      | - 2           | 187                | 580                           | 9.7                            | - 9                  | 5                     | 177                      | 300                      | 500      |
| T.         | Altica letters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dits tree           |              | -50  | - 3           | 793                | 800                           | 9.1                            | 1.3                  | 293                   | 70.                      | 1000                     | 1000     |
| 8          | Whittis saman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Run Nee             | 78           | 7.5  |               | 200                | 12.0                          | 1.7                            | 72                   | 1.37                  |                          | 45                       | 45       |
| 7          | Albe iera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dice                | 100          | -    | -             | 1,000              | 5,45                          | - 5                            | 350                  |                       | -                        | 5.                       | - 60     |
| 10         | Alapeouse praisives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fire tall prace.    | 720          | - 5  | 7.4           | 2.5                |                               | -                              | 100                  |                       |                          | -                        | -        |
|            | Alatonia scriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Devilation:         | 2817         | -    | 2.45          | 300                | 16.                           |                                |                      | 7.46.7                | 50<br>80                 | C 2875.5                 | 77.43    |
|            | Apadrachia ridea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Name to See         | 0000         | 1450 | 100           | 700                | 700                           | 1050                           | -                    | 300                   | 30                       | 7000                     | 1000     |
|            | . Bampusa pps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bandon              | 10           | 10   |               | 1107               |                               |                                | 1.0                  | -                     | 1                        | 150                      | 250      |
|            | Sautinia purpuma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stutterfly tree     | - 19         | 60   |               |                    | - 4                           | 97                             |                      | - 4-                  | 2                        | 50                       | 250      |
| مستهام     | Sautinia racercasi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Skd leaf hee        | 100          |      |               |                    | 7.4                           | 100                            |                      |                       | 100                      | -2                       | -        |
| 16         | Bautine transmisse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Velice putst line   |              | 14   |               |                    | 7.6                           | 160                            |                      |                       | 96                       | - 7-                     | -165     |
| 17         | Baugrowies out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Placer Sover        | 2000         | 7.6  |               | -                  | 100                           |                                | 10                   | -                     | -                        | 450                      | 960      |
| 18         | Cienalpina corres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Divindos            | 4000         |      | -             | -                  |                               |                                | 100                  |                       |                          | 100                      | 1200     |
| 10         | Camalsina puliterirena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pracocs Spyer       | 1200         | 100  | -             |                    | -                             | -                              | 250                  |                       | 100                      | 1150                     | 1190     |
| 20         | Carrie fotula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Golden shower time  | Carrier      | 100  |               | -                  |                               |                                | 201                  |                       | - 74                     | 10                       | 58       |
|            | Carolia piorreu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Campd free          | 1000         | 1991 |               | 600                | 1                             |                                | 80                   | 250                   | 100                      | 19                       | 1100     |
|            | Canuaring son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sea dos             | 19904        |      | - 1           | 1000               |                               |                                | .79                  | 3210                  | -                        |                          | 200      |
| 35         | Caracialninia conentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Divi-disi           |              |      | -             | 75011              | 200                           | - 95                           | -                    |                       | 1 1                      | -                        | -600     |
| 24         | Clerodendrone interne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tim plory flower    | 500          | 450  |               |                    | MIDT.                         |                                | 100                  | -                     |                          | 360                      | 460      |
| 55         | Concerna anotakut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dutto tree          | 100          | -740 |               | 100                | 1                             | - 2                            | - 300                | _                     | 100                      | 277                      | 160      |
| 35         | Cardia domentica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lanua hine          | 700          |      | -             | _                  | -                             | 195                            |                      | -                     | 90                       | -                        | 1301     |
| 17         | ALTERNATION AND ADDRESS OF THE PARTY OF THE | Pupper wire         | 1000         |      |               |                    |                               |                                | 100                  |                       |                          |                          | 190      |
|            | Crypostegia grandifera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | PORES.       | 74   |               | -                  | - 4                           | -                              | 1947                 |                       | -                        | 10                       | 20       |
| 29         | Cypus oper<br>Debutio regia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cycum               | 7.2          | 112  | -             | 100                | 54                            | 42                             |                      |                       | -                        | 20                       | 30       |
| 30         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sidile bush         | 17.          | 12   |               | 30                 | 200                           | -                              |                      |                       | 1 3                      | 30                       | - 30     |
| 31         | Dightsclastlys one:64<br>Euphorbia ephylia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mili Pedge          | 50           | -    | -             | -                  | 200                           |                                |                      | _                     | 1 -                      |                          | -        |
| 32         | Euphortsa tricalli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Milk bush           | 50           | -    |               | -                  | 1                             |                                |                      |                       | 1 -                      |                          | -        |
| 33         | Figus bengharensia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Baryan tree         | 300          | -    |               | 250                | 1                             | -2                             |                      | 200                   | 1 3 1                    | 150                      | 100      |
| 34         | Figure penda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weening to          | 100          | 50   | - 74          | 150                | 1                             | -                              |                      | 500                   |                          | 100                      | 100      |
| 35         | Figure racernass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ouster fig.         | 700          | 50   |               | -                  | -                             | -                              |                      | 1000                  |                          | -                        | 150      |
|            | Ficus religiosa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | peepul tee          | 300          | 500  | 80            | 250                |                               | 2                              |                      | 176                   | 90                       | 300                      | 100      |
|            | Figura viteno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | White ha            |              |      | 50            | 130                |                               | _                              |                      |                       | 30                       | 300                      | 10       |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 19.0         |      |               | -                  |                               |                                | 100                  | 14                    |                          |                          | _        |
| 28         | Discrete articles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ages Critica.       | 1105         | -4   |               | -                  |                               | -                              |                      |                       | -                        |                          | -        |
|            | Grzelia adayyu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | white teak          | 100          |      |               | 10                 | 3.5                           | 1446                           | -                    | -                     | - 6                      |                          | - 1      |
| 40         | Phythwickia brista                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Argan tree          | 10277        | 74   |               |                    | 1.6                           | 150                            | -                    |                       | -                        | 60                       |          |
| 41         | PRINCIPAL STRUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chirace rose        | 80           |      | - 14          | 1.2                | 3.6                           | - 20                           |                      | -                     | -                        |                          | 720      |
|            | History till porous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Seq hitrotian:      | 29           | - 4  | -             | -                  |                               | 1100                           | -                    | 1.50                  |                          | 7.25                     | 503      |
| 43         | Holoctelu megnhalu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Photography free    | 1000         |      | - 1           | 1170               | 0.5%                          | 100                            | -                    | 1.77                  | 2                        | 4.0                      | 100      |
| 44         | Ingo stuce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Manta tamarini      | 1000         | 7.4  | 3.4           | 1400               | 250                           | 1190                           | -                    | 1712                  | 80                       | 150                      | 1220     |
| 45         | lyora spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HIDS.               |              | 10   | -             | 9-1                | 1.4                           |                                | -                    | 7.76                  | 240.                     | 400                      | 100      |
| 46         | Jacobskim puppdifum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pointed Somme       | 200          |      | -             |                    |                               |                                | 7 7 7                | -                     |                          | 1                        | 1        |

| 54  |                          | No. of Trees Flunted & Maintained |               |         |               |                         |                               |                                |                                 |              |                        |                        |          |
|-----|--------------------------|-----------------------------------|---------------|---------|---------------|-------------------------|-------------------------------|--------------------------------|---------------------------------|--------------|------------------------|------------------------|----------|
| No  | Scientific Name          | Common Name                       | RV<br>5-cheef | CFF     | Work-<br>shop | Distriction Distriction | Southern<br>Side<br>Periphery | Wagon<br>Tippler<br>South Arms | Rainery<br>Siding<br>Slope Aven | Sale<br>Area | Plant<br>Plant<br>Area | Admin<br>Block<br>Arms | Township |
| 47  | Jaminum person           | Jaamin                            |               | -       |               |                         | 7                             | 1 4                            | 1.5                             |              | -                      | 100                    | 200      |
| 48  | Lagestitiensia Specioca: | Queen-Crape Myrtie                |               | 5       | -             | 4.                      | -                             |                                |                                 | 1.4          | -                      | -                      | D        |
| 40  | Larearia IIII            | Larriana                          | F 100         |         |               |                         |                               |                                |                                 | (+           | -                      | - 1                    | 7.8      |
| 80  | Lawsonia (marmi)         | Phenytial,                        |               |         | -             | +                       |                               | 5.0                            |                                 | -            | L = 1                  | -                      | 100      |
| 51  | Leurischullum hubmoens   | Tends uspe                        |               | -       | 11 ±          |                         | 1.00                          | 1 4                            | -                               | 5.9          | -                      |                        | 13%      |
| 52  | Limonia aciddopina       | Ottore applie                     |               | -       | -             | - 20                    | 150                           |                                | -                               |              |                        | 1.61                   | 100      |
| 55  | Madhuga tonghasa         | Butter tree                       |               |         | 16.7          | . 1000                  | -                             |                                | 197                             | 0.6          | 50                     | 200                    | 190      |
| 54  | Manghes Indica           | Mango                             | 47            | -9-1    | (W.)          |                         | -                             |                                | - 4                             | 48.00        | (4)c                   | 1200                   | 70       |
| 166 | Mindago, elengi          | Sullet wood tree                  | 1162          | 250     | 50            | 700                     | (A)                           | 70                             | - 2                             | 200          | -00                    | 800                    | 860      |
| 56  | Muranga pasitiva         | Januaria cherry                   | .60           | 7.7     |               | 17.85                   |                               |                                | .5                              | 11           |                        | - F.                   | 460      |
| 117 | Nersum coo               | Ceuvan                            | 480           | -       | -             | 107                     |                               | -                              | 180                             | -            | -                      | -900                   | 290      |
| 56  | Omaniertal patris        | Faire                             | -             | -       | -             | -                       | +                             |                                |                                 | -            | -                      | -2003                  | 160      |
| 33  | Peditorthus Etymerades   | Fratte Sime?                      |               |         | -             | 2.                      | -                             | -                              | -                               |              | -                      | 100                    | 20       |
| (E) | Perhapsorum personapum   | Chapter pod tite                  | 1100          | 8563    | 100           | 3600                    | 100                           | 100                            | 70                              | 490          | 00                     | 1000                   | 1000     |
| 63  | Plumena gov              | Franguare                         | 50            |         |               | -                       |                               |                                |                                 |              | -                      | 150                    | 300      |
| 62  | Polasiffica longitotia:  | Platter justiplies free           | 1.5           |         |               | 901                     |                               | . 4                            | 190                             | 40           | (I) _ (e) _ ()         |                        | 350      |
| 53  | Pongarwa protata         | #torygam                          | 5000          | 1000    | 100           | 2000                    | 800                           | 1060                           |                                 | 270          | 166                    | 1500                   | 1500     |
| 64  | Perhapoli sen            | Little (Append)                   |               |         | 1 1           |                         |                               |                                |                                 | 7.4          | -                      | 100                    | 50       |
| 105 | Wenny servicing          | PRINTED TO THE                    | 50            | -       |               | 4.                      |                               | 4                              | 100                             | 1.4          | -                      | -                      | 860      |
| 56  | Prencarpan martiagem     | PRESENTED THE                     |               | 100     | 30            | 100                     | -                             | - 4                            |                                 |              | -                      | -                      | 100      |
| 107 | Photograph bertaling     | Plant mondern                     | 100           | -       | -             | 10                      | 110                           |                                |                                 |              |                        | 10.7                   | 30       |
| 635 | Caprodus emargentus      | Slove nut tree                    |               |         | 200           | 100                     |                               | -                              | - 19                            |              | -                      | -                      | 50       |
| 69  | Servia autoritata        | Tanners Gazois                    | 100000        | 200     | -             | 2.1                     | 1.200                         |                                | 90                              |              | -                      | -                      | 150:     |
| 70  | Suregada anguestoka      | tube line hee                     | TOOL          | 200     |               | -20                     | 100                           |                                |                                 | - 74         |                        |                        | 100,00   |
| 71  | Zieretenia mehopiani     | Indian mehopany                   | 201           | B / - 1 | -7-           | 100                     | 250                           | 6.4m                           | . 4                             | 5.6          |                        | 11.87                  | 11947    |
| 72. | Sydygum cumon            | damen                             | 200           | -       | 100           | 141                     | - 2                           | 101                            |                                 | 14           |                        | 100                    | 600      |
| 73  | Tabermentana disancata   | Progress Squeen                   | 12.0          |         | 7.45          | -                       | 1 1                           | 1                              | 1.5                             |              |                        | 100                    | 455      |
| 34  | Teburita wwwarron        | Five manual line                  |               | 55      |               | -                       |                               |                                | - 4                             |              | -                      | - V-                   | 100      |
| 76  | Topusting publish        | Pain Harbour, how                 |               | 2503    |               | - V                     | 1 1                           |                                | -                               |              | -                      | 500                    | 290      |
| 79  | Tapuebia roneu.          | Visitory Inumped tree             |               |         | -             | 4.1                     |                               |                                |                                 | 1.6          | _                      |                        | - 2      |
| 77  | Care unmitte inches      | Tarnariti -                       |               |         | 4.            | -                       | 12.5                          |                                |                                 |              |                        | 30                     | 100      |
| TB  | Terconia unpertura       | Cince honey tasks                 |               |         |               | -                       |                               |                                |                                 |              |                        | 190                    | 90       |
| 79  | Texantis status          | Yellow trumper tree               | 1000          |         |               | 0.44                    |                               | -67                            | 100                             |              |                        | 260                    | 575      |
| DD  | Terminake anuna          | Ariun free                        | 200           | 1       | 100           | T100                    | 450                           | 500                            |                                 | 96D -        |                        | 700                    | 185      |
| #1  | Terrinaka petimpa        | peting remptation                 | 200           |         | 7.            | 790                     | 10.00                         | 101                            | 100                             | -            |                        | 119 U - 1              | 185      |
| 82  | Terminolis catinote      | Indian almond tree                | 100           |         | 50            | 70                      | 200                           |                                | -                               | 90           | -                      | 1000                   | 905      |
| 805 | Terrorcator marting      | Madagattpy amond                  | 1             | -       | 7.            | 101                     |                               |                                |                                 |              | 1                      | 111111                 | 66       |
| 34  | Tetura grants.           | Tmak                              | -             |         |               |                         |                               | -                              | - 1                             |              |                        | - 50                   | 20       |
| 116 | Therapeola popularea     | Portis free                       | :200          |         | 1 4           | 100                     | 200                           | 100                            |                                 |              | 125                    | -                      | 145      |
| 96  | Vernonia elaeugnitolia   | - Quitain tree                    | -800          |         | -             | 1/0/                    |                               | 1000                           |                                 |              | 142                    | 100                    | 20       |
| £   | Version's incommittee    | Vehide                            |               |         |               | -                       |                               |                                | 300                             |              |                        | 1100                   |          |
| 85  | Week negundo             | Characters:                       | 100           |         |               | -                       |                               |                                | 192                             | 1.0          | -                      |                        |          |
| 19  | Waltura tribusas         | Implan beech here                 | -             |         |               | 200                     | 150                           |                                | 140                             |              | 1 2                    |                        | -        |
| 95- | Wrightly brotokia        | indgo tee                         | -             |         | 55            | -                       | 136                           |                                | -                               |              |                        |                        |          |
| 91  | Others                   | riago see                         | 400           | 70      | 10            | 1300                    | 1840                          | 80                             | NO                              | 126          | 56                     | 2002                   | 3900     |
| 4   | Tytal Plantations        |                                   | 28080         | R200    | 799           | 16000                   | 8200                          | 2000                           | 2236                            | 1925         | 920                    | 19600                  | 28080    |
| 1   | Area Covered, No.        |                                   | AULEE         | 2.50    | 11.50         | 9.30                    | 2.20                          | 1,80                           | 2.50                            | 1,78         | 920                    | 12.6                   | 31.60    |

### 2.7 Plant Contour Levels & Drainage Pattern

The elevation of the Plant area ranges from 67 m to 89 m above MSL with sloping towards north (from Colony area) and predominantly towards south (from Line-II area. Based on the Slope, **Surface Drainage Network** has been developed and **Rainwater harvested effectively** in the Complex (**Fig. 2.6**).

The 70 year **Normal Rainfall** of the Plant Area is **895 mm**. Peak Rainfall (Intensity) considered is **10 cm/hr**. Pre-Project and Post Project Surface Runoffs from the Plant Area is estimated as per Manual of Artificial Recharge of Ground Water (CGWB, 2007) and given in **Table 2.9**.

Table: 2.9 Estimation of Quantum of Runoff available through RWH

| SI.<br>No. | Land Use                   | Area, sq.m | Rainfall,<br>m | Runoff<br>Coefficient* | Quantum of<br>Runoff Available,<br>KL/Annum |
|------------|----------------------------|------------|----------------|------------------------|---------------------------------------------|
| I          | Pre-Project Runoff         |            |                |                        |                                             |
| 1          | Total Area                 | 1914340    | 0.895          | 0.20                   | 3,42,666.86                                 |
| П          | Post-Project Runoff        |            |                |                        |                                             |
| 1          | Roof Top of building/Sheds | 275700     | 0.895          | 0.85                   | 209738.775                                  |
| 2          | Road/Paved area            | 170120     | 0.895          | 0.65                   | 98967.31                                    |
| 3          | Open Land                  | 728590     | 0.895          | 0.20                   | 130417.61                                   |
| 4          | Green Belt                 | 715000     | 0.895          | 0.15                   | 95988.75                                    |
| 5          | RWH Ponds & Canals         | 24930      | 0.895          | 0.90                   | 20081.115                                   |
|            | Total                      | 1914340    | -              | -                      | 5,55,193.56                                 |

<sup>\*</sup> Ref: Manual of Artificial Recharge of Ground Water (CGWB, 2007).

Pre-Project Runoff : 3,42,666 KL/Year Post Project Runoff : 5,55,193 KL/Year

Total Plant Area is dived into **3 Zones** viz. Zone-1 of 49 Ha (with 1A & 1B), Zone-2 of 54 Ha (with 2A & 2B) and Zone-3 of 88 Ha and Surface Drains created are connected to Rain Water Harvesting Ponds in the Plant vicinity. Design Parameters are given in **Table 2.10 & Plate XII**.

Table: 2.10 Surface Drains Design Data

| SI. | Design Parameter                     | Zon      | e-1     | Zon      | e-2     | Zone-3  |
|-----|--------------------------------------|----------|---------|----------|---------|---------|
| No. | Design Parameter                     | 1A       | 1B      | 2A       | 2B      | Zone-3  |
| 1   | Catchment Area, Ha                   | 15       | 34      | 10       | 44      | 88      |
| 2   | Length, km                           | 0.5      | 0.7     | 0.8      | 0.7     | 1.1     |
| 3   | Max. Velocity through Catchment, m/s | 2.010    | 2.345   | 2.080    | 2.495   | 3.273   |
| 4   | Peak Runoff from Catchment, cu.m/sec | 1.176    | 2.580   | 0.811    | 3.569   | 6.677   |
| 5   | Dimension of Drain, Width x Depth, m | 0.65x1.0 | 1.0x1.2 | 0.65x0.7 | 1.3x1.2 | 1.2x1.8 |
| 6   | Slope of the Drain                   | 1:200    | 1:250   | 1:150    | 1:325   | 1:200   |
| 7   | Max. Velocity through Drain, m/s     | 2.268    | 2.586   | 2.470    | 2.545   | 3.427   |
| 8   | Drain Discharge, cu.m/sec            | 1.327    | 2.845   | 0.963    | 3.640   | 6.911   |

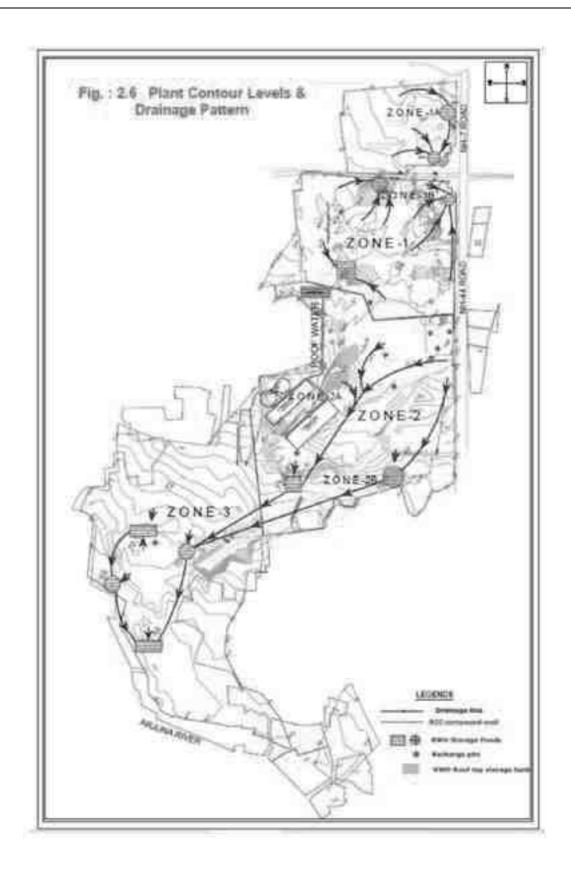
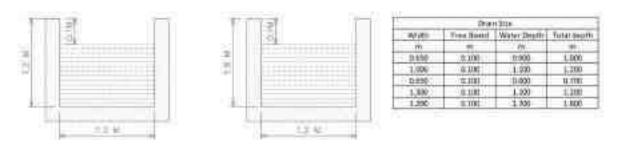




Plate : XII Hydraulic Design of Rectangular Drains (As per IRC SP013-2004 & SP050-2013)



As water flow (Velocity) in Surface Drains are designed more than the water flow of Catchment Area as well as Peak Discharge designed for Surface Drains are more than Discharge generated in the Catchment Area, **provided Surface Drains are adequate**. The Dimension of Rain Water Harvesting Structures in the Complex are given as **Plate XIII**.

Plate: XIII Dimension of Rain Water Harvesting Structures

| S.NO | Location                          | Dimension:          | Holding Capacity, KL |
|------|-----------------------------------|---------------------|----------------------|
|      |                                   | (Dia. X Depth) in m |                      |
| 1    | Near Materials Gate               | 50 x 2              | 3930                 |
| 2    | Near STP                          | 30 x 2              | 1410                 |
| 3    | Near CPP                          | 30 x 2              | 1410                 |
| -4   | Near Ramco Vidyalaya School South | 24 x 2              | 900                  |
| - 5  | Near Ramco Vidyalaya School North | 24×2                | 900                  |
| 6    | Near Sriram School in Colony      | 27 x 2              | 1150                 |
| 7    | North side of DRY Mix Plant       | 50 X 3.5            | 6870                 |
| 8    | Western side of DRY Mix Plant     | 50 X 3.5            | 6870                 |
| 9    | North east of Dry Mix Plant       | 30 X 3.5            | 2460                 |
|      |                                   | (LXBX Depth) in m   |                      |
| 10   | North side of DRY Mix plant       | 50 X 40 X 4         | 8000                 |
| 11   | south side of DRY Mix plant       | 60 X 25 X 3.5       | 5250                 |
| 12   | Recharge Pits-15 Nos              | 2 x 3 x 15          | 450                  |
| 13   | Roof top-Collection tank          |                     | 1780                 |
|      |                                   |                     | 41380                |

In total, **41,380 KL** Surface Drain water can be stored and utilised effectively through these Structures. Roof Top Collection of 2,09,738 KL/Year is directly collected in a **above GL Sump of 1,780 KL** capacity and utilised for supplementing Raw Water Demand. Additionally, 20,081 KL/Year is collected in RWH Ponds and utilized for Green Belt development. The balance 3,25,373 KL/Year Rain water reaches the natural Drains to discharge into Arjuna River.

## 2.8 Raw Materials Demand, Source & Mode of Transportation

On Expansion, Clinker production of RR Nagar Cement Plant will be increased from existing 1.44 MTPA to 2.76 MTPA and Cement production from 2.70 MTPA to 4.00 MTPA of various Cements. The Raw Materials demand for enhanced production, Source and their mode of Transportation are given in **Table 2.11**.

## 2.9 Sustainable Limestone & Kankar Supply

For 2.76 MTPA Clinker production, Raw Meal requirement is 4.17 MTPA. Lime Kankar is blended with Limestone for Raw Meal preparation. Accordingly, Limestone requirement is 1.794 MTPA @ 5,200 TPD & Lime Kankar requirement is 2.085 MTPA @ 6,050 TPD. Existing Captive Limestone Mines in Pandalgudi Region have consented production quantity of 2.691 MTPA Limestone of various grades. Likely, existing Captive Lime Kankar Quarries have consented production quantity of 3.914 MTPA ROM Kankar. Pandalgudi Lime Kankar Beneficiation Plant is being expanded which will supply adequate beneficiated Kankar.

| Mineral     | Demand on Expansion,<br>MTPA | Consented Production of Existing<br>Mines / Quarries, MTPA |
|-------------|------------------------------|------------------------------------------------------------|
| Limestone   | 1.794                        | 2.691                                                      |
| Lime Kankar | 2.085                        | 3.914                                                      |

For proposed Expansion of Cement Plant, Limestone supply will be 67% of existing consented production quantity of Captive Limestone Mines. Likewise, Lime Kankar supply will be 53% of existing consented production quantity of Captive Lime Kankar Quarries. Thus, existing supply/consented quantity of Mines & Quarries are adequate for the proposed Expansion of RR Nagar Plant. RCL is having Surface Rights for new Lime Kankar Quarries in Pandalgudi Region with about 10.00 Million Tonnes Mineable Reserves for which Applications will be made soon.

## 2.10 Machineries & Storages

Centralised Crusher & Colour Sorter is located at about 18 km away (in the East) from RR Nagar Plant at Pandalgudi near Captive Mines in the Region. Also, one Lime Kankar Beneficiation Plant exists at Pandalgudi. Limestone & Lime Kankar are being transported to the Cement Plant by Tippers/Trailers in RCL's own (dedicated) Road.

The Plant Machineries are given in Table 2.12 and Storage Facilities are given in Table 2.13.

Table: 2.11 Raw Materials Demand – Existing & Proposed

| SI.<br>No. | Raw Material                                   | Source                                                                                   | Existing<br>Demand,<br>MTPA | Proposed<br>Demand,<br>MTPA | Mode of<br>Transport                          | Avg.<br>Moisture,<br>% |
|------------|------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------------------------|------------------------|
| 1          | Limestone (&<br>Lime Kankar)                   | Captive Mines in<br>Pandalgudi<br>Region &<br>Crusher at<br>Pandalgudi                   | 2.16<br>@ 6740<br>TPD       | 1.794<br>@ 5200<br>TPD      | By Tippers<br>through Own<br>Haulage<br>Roads | 6                      |
| 2          | Beneficiated<br>Lime Kankar                    | Captive Quarries<br>in Pandalgudi<br>Region &<br>Beneficiation<br>Plant at<br>Pandalgudi | -                           | 2.085<br>@ 6050<br>TPD      | By Tippers<br>through Own<br>Haulage Road     | 8-10                   |
| 3          | Clay, Chips &<br>Roughstone                    | -                                                                                        | -                           | 0.209<br>@ 605<br>TPD       | By Road<br>(Covered<br>Trucks)                | -                      |
| 4          | Copper Slag /<br>Laterite / Iron<br>Ore        | Thoothukudi<br>(Tuticorin)                                                               | 0.022<br>@ 63 TPD           | 0.083<br>@ 242<br>TPD       | By Road<br>(Covered<br>Trucks)                | 10                     |
| 5          | Fuel for<br>Cement Plant<br>i) 100%<br>Petcoke | Indigenous from<br>BPCL, MRPL<br>Imported from<br>USA, Middle<br>East, Australia.        | 0.128<br>@ 423 TPD          | 0.246 @<br>715 TPD          | By Ship, Rail<br>& Road                       | 10                     |
| 6          | ii) 100%<br>Imported Coal                      | South Africa,<br>Indonesia                                                               | 0.187<br>@ 584 TPD          | 0. 358@<br>1040 TPD         | By Ship, Rail<br>& Road                       | 25                     |
| 6          | Clinker                                        | Own Plant production                                                                     | 1.44<br>@ 4500 TPD          | 2.760<br>@ 8000<br>TPD      | By closed conveyors                           | -                      |
|            |                                                | From Sister<br>Concerns/Import                                                           | 0.42-0.50 @<br>1220 TPD     | 0.504<br>@ 1460<br>TPD      | By Rail &<br>Road                             | -                      |
| 7          | Gypsum                                         | SPIC,<br>Thoothukudi                                                                     | 0.108<br>@ 290 TPD          | 0.136<br>@ 395<br>TPD       | By road<br>(Covered<br>Trucks)                | 20                     |
| 8          | Dry Fly Ash                                    | TTPS, Coastal<br>Energy, NTPL,<br>Thoothukudi                                            | 0.677<br>@ 2050<br>TPD      | 1.120<br>@ 3246<br>TPD      | By road<br>(By Bowsers)                       | -                      |
| 9          | Wet Fly Ash                                    | TTPS,<br>Thoothukudi                                                                     | 0.054<br>@ 50 TPD           | 0.080<br>@ 232 TPD          | By road<br>(Covered<br>Trucks)                | 25                     |
| 10         | Slag                                           | Jindal, Salem /<br>ECL,<br>Srikalahasthi                                                 | 63 TPD                      | 2.200<br>@ 6377<br>TPD      | By road<br>(Covered<br>Trucks)                | -                      |
| 11         | Limestone/<br>Limestone<br>Powder as PI        | Captive Mines at<br>Pandalgudi<br>Region                                                 | -                           | 0.040<br>@ 115<br>TPD       | By Tippers<br>through Own<br>Haulage<br>Roads | 6                      |

**Table: 2.12 Plant Machineries** 

| Machinery        | Line-I                                                       | Line-II                       | Line-III                                                  | Cumulative                                                                                 |
|------------------|--------------------------------------------------------------|-------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Truck Tippler    | -                                                            |                               | 100 T                                                     | 100 T                                                                                      |
| Raw Mill         | Ball Mill of -125<br>TPH &<br>Pre-grinder Mill of<br>150 TPH | -                             | Hydraulic Roller<br>Press (HRP)<br>2x200 TPH              | Ball Mill of -125 TPH & Pre-grinder Mill of 150 TPH Hydraulic Roller Press (HRP) 2x200 TPH |
| Coal Mill        | Ball Mill of -12<br>TPH                                      | Ball Mill of<br>12 TPH        | Vertical Roller Mill<br>(VRM) of 24 TPH<br>on Petcoke     | Ball Mills 2 x 12 TPH Vertical Roller Mill (VRM) of 24 TPH on Petcoke                      |
| Rotary Kiln      | 2000 TPD                                                     | 2000 TPD                      | 4000 TPD<br>(New Kiln)                                    | 8000 TPD                                                                                   |
| Cement Mill      | Roller Press with<br>Ball Mill - 270<br>TPH PPC              | Ball mill of<br>60 TPH<br>PPC | Vertical Roller<br>Pregrinder (VRPM)<br>Ball Mill-170 TPH | Roller Press-BM -270 TPH<br>Ball Mill-60 TPH<br>VRPM-BM-170 TPH                            |
| Rotary Packers   | -                                                            | 2x180 TPH<br>1x120 TPH        | 1x240 TPH                                                 | 2x180 TPH<br>1x120 TPH<br>1x240 TPH                                                        |
| Wagon<br>Tippler | -                                                            | -                             | 1,500 TPH                                                 | 1,500 TPH                                                                                  |
| Crusher          | -                                                            | -                             | 200 TPH                                                   | 200 TPH                                                                                    |

**Table: 2.13 Cement Plant Storage Facilities** 

| Storage                                                         | Lines I & II                                           | Line-III                             | Cumulative                                              |
|-----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|---------------------------------------------------------|
| Limestone Stacker<br>& Reclaimer (LSR)                          | •                                                      | 2x18,000 MT<br>(Circular)<br>New     | 2x18,000 MT                                             |
| Additives Stacker & Reclaimer (Gypsum, Wet Fly Ash, Slag, etc.) | 30,000 MT                                              | -                                    | 30,000 MT                                               |
| Coal/Fuels Stacker & Reclaimer                                  | 45,000 MT                                              | -                                    | 45,000 MT                                               |
| Raw Meal RCC<br>Silos                                           | 2x8000 MT<br>1x7000 MT                                 | 1x14000 MT<br>1x6000 MT              | 2x8000 MT<br>1x7000 MT<br>1x14000 MT<br>1x6000 MT       |
| Clinker RCC Silos                                               | 3 x 18000 MT                                           | 1x30000 MT                           | 3x18000 MT<br>1x30000 MT                                |
| Cement Silos                                                    | 1x5000 MT (RCC)<br>2x9000 MT(RCC)<br>1x1000 MT (Steel) | 2x9000 MT (RCC)<br>1x1000 MT (Steel) | 1x5000 MT (RCC)<br>4x9000 MT (RCC)<br>2x1000 MT (Steel) |
| Fly Ash Silos                                                   | 2x5000 MT (RCC)                                        | -                                    | 2x5000 MT (RCC)                                         |

#### 2.11 Action Plan for Stock Piles

Stacker Reclaimers are provided - two circular ones, each with a diameter of 80 m, for Limestone storage and two linear ones for Additives (230 x 55 m) and Coal (310 x 70 m). Positioned on an **impervious RCC bed**, the site incorporates strategic topographical planning, including graded elevations (0.3-0.6 m above) relative to nearby surfaces. This gradient, subtly designed to slope outward toward the periphery, facilitates efficient runoff management. The **garland drainage and catch pit systems**, spaced at 30-50 m intervals, are tailored for each stacker reclaimer, considering their unique configurations, materials handled, and operational requirements. Constructed with gravel linings and perforated pipes, they efficiently manage both surface and subsurface runoff.

#### 2.12 Process

The manufacturing process includes various stages viz. Limestone Mining & Kankar Quarrying, Crushing/Beneficiation at Pandalgudi and transportation to Cement Plant through own Haulage Road, Raw meal preparation, Clinkerisation, Cement grinding, Cement Packing and Dispatch by trucks and bulkers. General Process Flow Chart is given as **Fig. 2.7**. The proportions for Raw Mix (average) are given below:

#### Raw Mix:

Limestone : 43%
Lime Kankar : 50%
Clay Chips & Roughstone : 5%
Slag, Laterite, Iron Ore : 2%

Clinkerisation Factor : 1.512 (Raw meal to Clinker)

Fuel Consumption : 9.28 % (100% Pet coke)

13.62% (100% Imported coal)

Material Balance for 2.76 MTPA Clinkerisation is given as **Fig. 2.8**. The **Cement Mix** for various Cement varieties are given in **Table 2.14**.

Table: 2.14 Various Cements & their Composition

| Component                     |          | Proportion by Weight (%) |     |     |  |  |
|-------------------------------|----------|--------------------------|-----|-----|--|--|
| Component                     | OPC/RHPC | PPC                      | PSC | PCC |  |  |
| Clinker                       | 96       | 66                       | 41  | 40  |  |  |
| Gypsum & Phospho Gypsum       | 4        | 4                        | 4   | 4   |  |  |
| Fly Ash                       | 0        | 28                       | 0   | 23  |  |  |
| Wet Fly Ash                   | 0        | 2                        | 0   | 2   |  |  |
| Limestone/Lime Powder (as PI) | 0        | 0                        | 0   | 1   |  |  |
| Slag                          | 0        | 0                        | 55  | 30  |  |  |
| Total                         | 100      | 100                      | 100 | 100 |  |  |

Fig. : 2.7 General Process Flow Chart

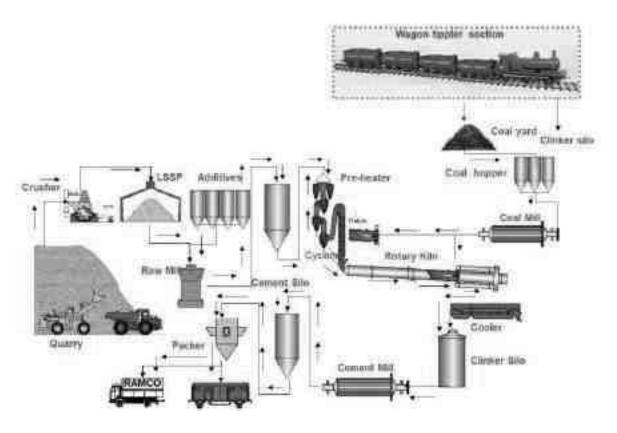
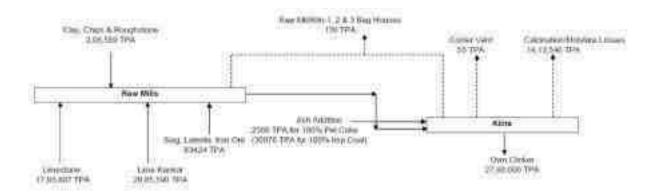




Fig. : 2.8 Material Balance for 2.76 MTPA Clinker Production



**Ordinary Portland Cement (OPC)/RHPC:** -OPC/RHPC is manufactured by inter-grinding well-burnt ordinary Clinker with Gypsum only.

**Pozzolana Portland Cement (PPC):** -PPC is manufactured by inter-grinding well-burnt Clinker with gypsum and pozzolanic materials like fly ash or silicious earths, limestone/lime powder, etc.

**Portland Slag Cement (PSC):** - PSC is manufactured by either inter-grinding the clinker, Gypsum & Granulated Slag or blending the Ground Granulated Blast Furnace Slag (GGBS) with Ordinary Portland Cement by means of mechanical blenders.

**Portland Composite Cement (PCC):** - Provides moderate sulphate resistance, and gives off less heat during hydration. This type of cement costs about the same as PPC. Composite Cement is covered under IS: 16415-2015 and presents a good opportunity to produce high strength concrete which is highly durable. Composite cement is a mixture of high quality clinker (IS:16353-2015), fly ash (IS:3812 (Part 1) - 2013), granulated slag (IS:12089-1987) and gypsum.

Material Balance for various Cement varieties are given in Figs. 2.9-2.12.

Well established **Dry Process** utilising the Precalciner technology along with the technological advances in the area of grinding and homogenisation has been incorporated. The basic raw materials used in clinker manufacturing are Limestone, Lime Kankar, Chips & Roughstone and Iron rich Slag. Petcoke / Imported coal from Indonesia and South Africa are being used in the process. Petcoke is being imported from USA, Australia, Middle East and also sourced indigenously.

Limestone mined out from Captive Mines located about 20-35 km from the Plant is being crushed to the required size Centralised Crusher at Pandalgudi. Lime Kankar from Captive Quarries are beneficiated for Silica Removal at Pandalgudi Lime Kankar Beneficiation Plant. Both Limestone and Beneficiated Kankar are brought to RR Nagar Plant by Tippers/Trailers of 40 T capacity in RCL's own Black Topped Road. Limestone & Lime Kankar is then unloaded and stacked in the existing Stacker Reclaimer by means of Samson Feeder and Belt conveyor for reclamation to the respective Hoppers in Raw Mill.

Limestone & Lime Kankar along with other additives is metered in suitable proportions and sent to Raw Mill where the raw material is ground to the required size. The powdered Raw Meal is stored in the Raw Meal Silo. Belt bucket elevator is used to feed the raw material to Preheater Cyclones / Precalciner. The calcined material from the Preheater enters the Kiln and is subjected to physical and chemical changes to form Clinker. The hot molten Clinker is allowed to pass through a modern high efficient Clinker Cooler to cool it down to 150 °C. Cooled Clinker is then stored in Clinker Silos.

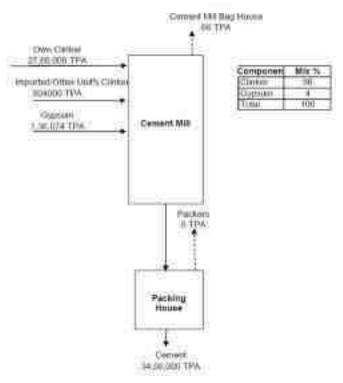
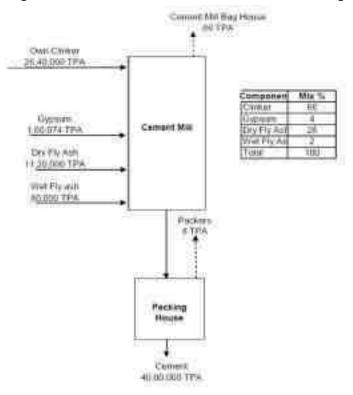




Fig.: 2.9 Material Balance for OPC Manufacturing

Fig.: 2.10 Material Balance for PPC Manufacturing



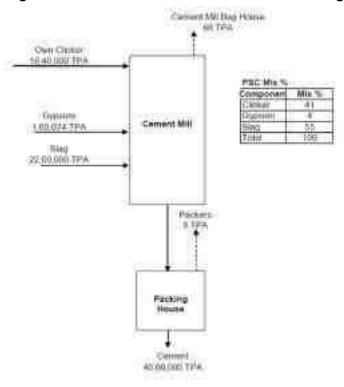
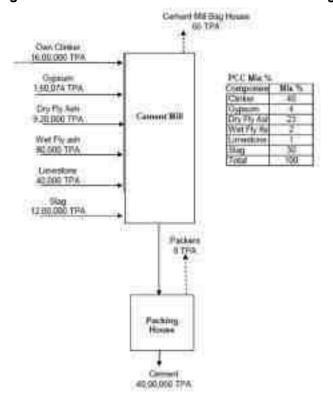




Fig.: 2.11 Material Balance for PSC Manufacturing

Fig.: 2.12 Material Balance for PCC Manufacturing



Clinker is then ground along with Gypsum, Slag, Fly Ash, Wet Fly Ash, Pl, etc. to produce various grades of Cement. To pre grind the mill feed Clinker, Roller Press exists in the circuit. The Cement is then conveyed to the Silos through elevators. There are Electronic Packers with two discharges for automatic weighing and packing the cement in HDPE, Paper Bags and BOPP Bags. Facilities are available to dispatch Cement through Trucks as well as Rail Wagons to the Marketing Centres.

## 2.13 Raw Materials Characteristics & Fuel Linkages

Required Limestone & Lime Kankar will be from own Captive Mines & Quarries in Pandalgudi Region (no Linkage Document is required). Presently, Petcoke is sourced from Dubai in addition to BPCL, Kochi. For Imported Coal supply, a MOU has been signed with M/s. Visa Resource Pte Ltd., Singapore on Shipment basis. Purchase Agreements are made for Gypsum from SPIC, Tuticorin and Fly Ash from NLC Tamil Nadu Power Limited, Tuticorin. All MOU/Sale Agreement & Purchase Order copies are appended in the Annexure.

The average characteristics of Raw Materials & Fuels are given in **Tables 2.15-2.16**. As per the analysis Report, **there is no trace elements** in the Raw Materials and Fuels supplied.

Table: 2.15 Raw Materials Characteristics

| Parameter                        | Limestone | Copper Slag | Fly Ash | Phospho<br>Gypsum |
|----------------------------------|-----------|-------------|---------|-------------------|
| Moisture %                       | 2.0       | 4.0         | 0.5     | 16.0              |
| LOI                              | 33.70     | 5.14        | 0.50    | 20.65             |
| SiO <sub>2</sub> %               | 14.00     | 28.60       | 59.09   | 5.06              |
| Al <sub>2</sub> O <sub>3</sub> % | 3.08      | 5.78        | 28.91   | 0.47              |
| Fe <sub>2</sub> O <sub>3</sub> % | 1.94      | 55.58       | 8.97    | 0.31              |
| CaO %                            | 43.55     | 3.85        | 0.01    | 30.55             |
| MgO %                            | 2.12      | 0.01        | 1.01    | 0.91              |
| SO <sub>3</sub> %                | 0.10      | 0.43        | 0.15    | 41.14             |
| Na <sub>2</sub> O%               | 0.48      | 0.07        | 0.28    | 0.39              |
| K <sub>2</sub> O%                | 0.52      | 0.05        | 1.09    | 0.02              |
| CI%                              | 0.006     | 0.09        | 0.020   | 0.02              |
| MS                               | 2.79      | -           | -       | -                 |
| MA                               | 1.59      | -           | -       | -                 |
| LSF                              | 98.63     | -           | -       | -                 |

| Parameter            | Imported Coal | Petcoke |
|----------------------|---------------|---------|
| Surface Moisture, %  | 19.2          | 7.0     |
| Inherent Moisture, % | 12.10         | 0.86    |
| Volatile Matters, %  | 40.73         | 9.84    |
| Fixed Carbon, %      | 40.14         | 88.97   |
| Ash Content, %       | 7.03          | 0.33    |
| SO <sub>3</sub> ,%   | 0.54          | 18.24   |
| Sulphur Content, %   | 0.22          | 7.30    |
| GCV, kcal/kg         | 5804          | 8420    |
| NCV, kcal/kg         | 5544          | 8015    |

Table: 2.16 Fuel Characteristics (Avg.)

## 2.14 Waste Heat Recovery Boilers

Waste heat is recovered from the following areas in Clinkerisation: Recovery from preheater / calciner / clinker cooler vent duct etc. to generate steam for power generation or regenerative feed water heating (HP/LP Heater) in captive power plant. Waste heat recovery system consists of the following two Boilers commonly in most of the cement plants:

- ✓ Preheater (PH) Boiler Installed between preheater exhaust gas duct and preheater ID fan.
- ✓ Clinker Cooler Boiler Installed between clinker cooler and ESP inlet duct (diverted from self cleaning duct area of an ESP).

The waste heat recovery (WHR) system effectively utilizes the available waste heat from exit gases of pre-heater and clinker cooler. The WHR system consists of Suspension pre-heater (SP) boiler, Air Quenching Chamber (AQC) boiler, steam turbine generator, distributed control system (DCS), water-circulation system and dust-removal system, etc. General Process Flow Chart of WHR System is given in **Plate XIV**.

In Line-I, WHR circuit installed in Year 2019, there is a Pre-Heater (PH) Boiler and an Air Quenching Cooler (AQC) Boiler which are used for steam generation and generated steam is utilized in the CPP for power generation. Now, PH Boilers & AQC Boilers are proposed for Lines-II & III Kiln. Existing WHR Boilers of Line-I and proposed WHRBs for Lines II & III will be combined for producing about 13 MW by a dedicated Turbine Generator. WHRB Power Plant specifications are given in Table 2.17.

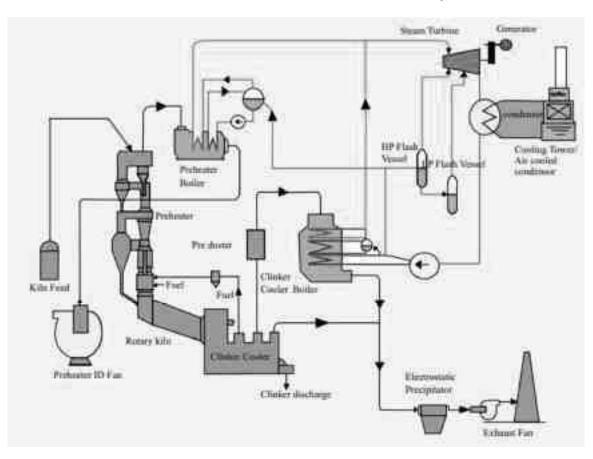



Plate: XIV General Process Flow Chart of WHR System

Table: 2.17 WHRB Power Plant - Specifications

| Boiler Specification                 |                        |           |            |  |  |  |
|--------------------------------------|------------------------|-----------|------------|--|--|--|
|                                      |                        | AQC       | PH         |  |  |  |
| No of boilers                        |                        | 1 No AQC  | 1 no PH    |  |  |  |
| Type of Boiler                       |                        | Water     | Tube       |  |  |  |
| Drum                                 |                        | Sin       | gle        |  |  |  |
| Circulation Type                     |                        | Natural C | irculation |  |  |  |
| Flue gas volume at WHR boiler inlet  | Nm³/hr                 | 93333     | 213333     |  |  |  |
| Flue gas temp at inlet               | Deg. C                 | 450       | 325        |  |  |  |
| Flue Gas temp at outlet              | Deg. C                 | 90 +/- 5  | 160 +/- 5  |  |  |  |
| Dust Load at exhaust                 | gm/Nm3                 | 100       | 90         |  |  |  |
| Flue gas Pressure at boiler inlet    | Mm Wc                  | -50       | -550       |  |  |  |
| Flue gas pressure drop across boiler | Mm Wc                  | <90       | <90        |  |  |  |
| HP Super heated steam flow           | TPH                    | 7.5       | 8.3        |  |  |  |
| HP Super heated steam Pressure       | kg/cm <sup>2</sup> (a) | 17.5      | 20         |  |  |  |
| HP Super heated steam Temp.          | Deg. C                 | 385 +/- 5 | 310 +/- 5  |  |  |  |
| LP Super heated steam flow           | TPH                    | 2         | 3.8        |  |  |  |
| LP Super heated steam Pressure       | kg/cm <sup>2</sup> (a) | 3.5       | 3.5        |  |  |  |
| LP Super heated steam Temp.          | Deg. C                 | 200 +/- 5 | 240 +/- 5  |  |  |  |

| Steam Turbine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Food water temp, at accommission      | Dog C        | 40                                     | )e                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|----------------------------------------|-------------------|--|
| Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                     |              |                                        | 26                |  |
| Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Si                                    | eam Turbin   | 1                                      |                   |  |
| Rated Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Туре                                  |              |                                        |                   |  |
| Inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rated Capacity                        | MW           |                                        |                   |  |
| Lurbine inlet ( HP / LP )         Jeg. C         395 / 205           Superheated steam Flow at turbine inlet (HP / LP )         TPH         41.5 / 11.5           Type of Condenser         Ata         0.18           Exhaust Pressure         Ata         0.18           Alternator           Rated Power Factor         cos Ø         0.80 lag           Rated active power         KW         10000           Rated Voltage         KV         11 +/- 10 %           Rated Frequency         Hz         50 +/- 5           number of Phases         3         3           Rated Speed         RPM         1500           Air Cooled Condenser           Exhaust Steam Flow         TPH         53           Exhaust Steam Pressure         Ata         0.18           No of Cells         Nos.         4           Type of Fins         KL / LL type Aluminium Fins           No of Condensate Extraction Pumps / unit         Nos.         2 x 100 %           Type of Fins         Horizontal centrifugal type           Auxiliary Cooling Tower           Structure         FRP           Type         Induced Draft Counter Flow           Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                     | Ata          | HP 16.5                                | / LP 2.5          |  |
| CHP / LP   Type of Condenser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | Deg. C       | 395 /                                  | 205               |  |
| Exhaust Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (HP/LP)                               | TPH          | 41.5 /                                 | <sup>′</sup> 11.5 |  |
| Alternator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type of Condenser                     |              | Air Cooled                             | Condenser         |  |
| Rated Power Factor         cos Ø         0.80 lag           Rated active power         KW         10000           Rated Voltage         KV         11 +/- 10 %           Rated Frequency         Hz         50 +/- 5           number of Phases         3           Rated Speed         RPM         1500           Air Cooled Condenser           Exhaust Steam Flow         TPH         53           Exhaust Steam Pressure         Ata         0.18           No of Cells         Nos.         4           Type of Fins         KL / LL type Aluminium Fins           No of Condensate Extraction Pumps / unit         Nos.         2 x 100 %           Type of Fins         Horizontal centrifugal type           Auxiliary Cooling Tower           Structure         FRP         Induced Draft Counter Flow           Fill         PVC Fill         250           Total Cells         No.         1 working cell + 1 standby           Pumps         No.         1 working cell + 1 standby           Pumps         Pumps         Centrifugal horizontal end suction           Lead - 45 m WC         2.2           Head - 90 m WC           Boiler Initial fill pump         1 W + 1 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exhaust Pressure                      | Ata          | 0.                                     | 18                |  |
| Rated active power   KW   10000     Rated Voltage   KV   11 +/- 10 %     Rated Frequency   Hz   50 +/- 5     number of Phases   3     Rated Speed   RPM   1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Alternator   |                                        |                   |  |
| Rated Voltage         KV         11 +/- 10 %           Rated Frequency         Hz         50 +/- 5           number of Phases         3           Rated Speed         RPM         1500           Exhaust Steam Flow         TPH         53           Exhaust Steam Pressure         Ata         0.18           No of Cells         Nos.         4           Type of Fins         KL / LL type Aluminium Fins           No of Condensate Extraction Pumps / unit         Nos.         2 x 100 %           Type of Fins         Horizontal centrifugal type           Auxiliary Cooling Tower           Structure         FRP           Type         Induced Draft Counter Flow           Fill         PVC Fill           Each Fill capacity         m³/hr         250           Total Cells         No.         1 working cell + 1 standby           Pumps           Pump Description         Qty         Type         Flow (m3/hr)           Auxiliary Cooling Water Transfer Pump         1 W + 1 S         Centrifugal horizontal end suction         220           Head – 90 m WC         2.2         Head – 90 m WC           Boiler Initial fill pump         1         Portable Pump <td>Rated Power Factor</td> <td>cos Ø</td> <td>0.80</td> <td>lag</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rated Power Factor                    | cos Ø        | 0.80                                   | lag               |  |
| Rated Frequency         Hz         50 +/- 5           number of Phases         3           Rated Speed         RPM         1500           Exhaust Steam Flow         TPH         53           Exhaust steam Pressure         Ata         0.18           No of Cells         Nos.         4           Type of Fins         KL / LL type Aluminium Fins           No of Condensate Extraction Pumps / unit         Nos.         2 x 100 %           Type of Fins         Horizontal centrifugal type           Auxiliary Cooling Tower           Structure         FRP           Type         Induced Draft Counter Flow           Fill         PVC Fill           Each Fill capacity         m³/hr         250           Total Cells         No.         1 working cell + 1 standby           Pumps           Pump Description         Qty         Type         Flow (m3/hr)           Auxiliary Cooling Water Transfer Pump         1 W + 1 S         Centrifugal horizontal end suction         2250           Head - 45 m WC         2.2         Head - 90 m WC           Boiler Initial fill pump         1 W + 1 S         Centrifugal horizontal end suction         2.2           He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rated active power                    | KW           | 100                                    | 000               |  |
| number of Phases         3           Rated Speed         RPM         1500           Exhaust Steam Flow         TPH         53           Exhaust steam Pressure         Ata         0.18           No of Cells         Nos.         4           Type of Fins         KL / LL type Aluminium Fins           No of Condensate Extraction Pumps / unit         Nos.         2 x 100 %           Type of Fins         Horizontal centrifugal type           Auxiliary Cooling Tower           Structure         FRP           Type         Induced Draft Counter Flow           Fill         PVC Fill           Each Fill capacity         m³/hr         250           Total Cells         No.         1 working cell + 1 standby           Pumps           Pump Description         Qty         Type         Flow (m3/hr)           Auxiliary Cooling Water Transfer Pump         1 W + 1 S         Centrifugal horizontal end suction         2250           Head - 45 m WC         2.2         Head - 90 m WC           Boiler Initial fill pump         1 W + 1 S         Centrifugal horizontal end suction         2.2           Head - 90 m WC         Head - 90 m WC         Head - 90 m WC           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rated Voltage                         | KV           | 11 +/-                                 | 10 %              |  |
| Rated Speed   RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rated Frequency                       | Hz           | 50 +                                   | -/- 5             |  |
| Exhaust Steam Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | number of Phases                      |              | 3                                      | 3                 |  |
| Exhaust Steam Flow         TPH         53           Exhaust steam Pressure         Ata         0.18           No of Cells         Nos.         4           Type of Fins         KL / LL type Aluminium Fins           No of Condensate Extraction Pumps / unit         Nos.         2 x 100 %           Type of Fins         Horizontal centrifugal type           Auxiliary Cooling Tower           Structure         FRP           Type         Induced Draft Counter Flow           Fill         PVC Fill           Each Fill capacity         m³/hr         250           Total Cells         No.         1 working cell + 1 standby           Pumps           Pumps         Pumps         Centrifugal horizontal end suction           Lead - 45 m WC         2.2           Head - 45 m WC         2.2           Head - 90 m WC         20           Head - 90 m WC         20 </td <td>Rated Speed</td> <td>RPM</td> <td colspan="3">1500</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rated Speed                           | RPM          | 1500                                   |                   |  |
| Exhaust steam Pressure         Ata         0.18           No of Cells         Nos.         4           Type of Fins         KL / LL type Aluminium Fins           No of Condensate Extraction Pumps / unit         Nos.         2 x 100 %           Type of Fins         Horizontal centrifugal type           Auxiliary Cooling Tower           Structure         FRP           Type         Induced Draft Counter Flow           Fill         PVC Fill           Each Fill capacity         m³/hr         250           Total Cells         No.         1 working cell + 1 standby           Pumps           Pump Description         Qty         Type         Flow (m3/hr)           Auxiliary Cooling Water Transfer Pump         1 W + 1 S         Centrifugal horizontal end suction         250           DM water transfer pump         1 W + 1 S         Centrifugal horizontal end suction         2.2           Head - 90 m WC         20         Head - 90 m WC           Sump pump         1         Portable Pump           Ash Handling - Drag chain conveyor           DCC Capacity in PH boiler         TPH         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Air C                                 | ooled Conde  | nser                                   |                   |  |
| No of Cells Type of Fins No of Condensate Extraction Pumps / unit Nos.  Type of Fins  Auxiliary Cooling Tower  Structure  FRP Type Induced Draft Counter Flow Fill Each Fill capacity Total Cells Pumps Pumps Pump Description Auxiliary Cooling Water Transfer Pump DM water transfer pump  TW + 1S Boiler Initial fill pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler  Nos.  4  KL / LL type Aluminium Fins La value Fins  FRP Type Induced Draft Counter Flow FIN  PVC Fill Each Fill capacity Type Flow (m3/hr)  250 Head – 45 m WC 220 Head – 90 m WC 20 Head – 90 m WC 20 Head – 90 m WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exhaust Steam Flow                    | TPH          | 53                                     |                   |  |
| Type of Fins  No of Condensate Extraction Pumps / unit  Nos.  Type of Fins  Auxiliary Cooling Tower  Structure  FRP  Type  Induced Draft Counter Flow Fill  Each Fill capacity  Pumps  Pumps  Pump Description  Auxiliary Cooling Water Transfer Pump  DM water transfer pump  Boiler Initial fill pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler  Nos.  2 x 100 %  Horizontal centrifugal type  Horizontal centrifugal type  FRP  Induced Draft Counter Flow  FRP  FRP  Type  Induced Draft Counter Flow  FRP  1 W + 1 S  Centrifugal  Abrizontal end suction  Centrifugal  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler  TPH  250  Head - 90 m WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exhaust steam Pressure                | Ata          | 0.18                                   |                   |  |
| No of Condensate Extraction Pumps / unit  Type of Fins  Auxiliary Cooling Tower  Structure  FRP  Type  Induced Draft Counter Flow Fill  Each Fill capacity  Total Cells  Pumps  Pump Description  Auxiliary Cooling Water Transfer Pump  DM water transfer pump  Boiler Initial fill pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler  No.  2 x 100 %  Horizontal centrifugal type  FRP  Induced Draft Counter Flow  PVC Fill  250  1 working cell + 1 standby  Flow (m3/hr)  250  Centrifugal horizontal end suction  1 W + 1 S  Portable Pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler  TPH  2 x 100 %  Horizontal centrifugal type  Centrifugal horizontal end suction  1 Portable Pump  250  Head - 45 m WC  2.2  Head - 90 m WC  20  Head - 90 m WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No of Cells                           | Nos.         | 4                                      |                   |  |
| unit Type of Fins  Auxiliary Cooling Tower  Structure  FRP Type Induced Draft Counter Flow Fill Each Fill capacity Total Cells  Pumps  Pump Description Auxiliary Cooling Water Transfer Pump  DM water transfer pump Boiler Initial fill pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler  Horizontal centrifugal type  FRP Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow FRP  Induced Draft Counter Flow Flow Flow Flow Flow Flow Flow Flow | Type of Fins                          |              | KL / LL type Aluminium Fins            |                   |  |
| Structure Structure Type Induced Draft Counter Flow Fill Each Fill capacity Total Cells No. 1 working cell + 1 standby  Pumps  Pump Description Qty Type Flow (m3/hr) Auxiliary Cooling Water Transfer Pump IW + 1 S Boiler Initial fill pump  Ash Handling - Drag chain conveyor  Structure FRP Induced Draft Counter Flow FRP Induced Draft Counter Flow FRP Flow (m3/hr) 250 Centrifugal horizontal end suction  Centrifugal horizontal end suction  1 Portable Pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler  TPH  25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                     | Nos.         | 2 x 1                                  | 00 %              |  |
| Structure Type Induced Draft Counter Flow Fill PVC Fill Each Fill capacity m³/hr 250  Total Cells No. 1 working cell + 1 standby  Pumps Pump Description Qty Type Flow (m3/hr)  Auxiliary Cooling Water Transfer Pump 1 W + 1 S  DM water transfer pump 1W + 1S  Boiler Initial fill pump 1W  Sump pump 1 Portable Pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler TPH 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type of Fins                          |              | Horizontal ce                          | ntrifugal type    |  |
| Type Induced Draft Counter Flow Fill PVC Fill  Each Fill capacity m³/hr 250  Total Cells No. 1 working cell + 1 standby  Pumps  Pump Description Qty Type Flow (m3/hr)  Auxiliary Cooling Water Transfer Pump 1 W + 1 S  DM water transfer pump 1W + 1S  Boiler Initial fill pump 1W  Sump pump 1 Portable Pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler TPH 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auxilia                               | ry Cooling   | Tower                                  |                   |  |
| Fill PVC Fill  Each Fill capacity m³/hr 250  Total Cells No. 1 working cell + 1 standby  Pumps  Pump Description Qty Type Flow (m3/hr)  Auxiliary Cooling Water Transfer Pump 1 W + 1 S  DM water transfer pump 1W + 1S  Boiler Initial fill pump 1W  Sump pump 1 Portable Pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler TPH 250  PVC Fill  PVC Fill  PVC Fill  PVC Fill  250  Head - 45 m WC  Centrifugal horizontal end suction  1 Portable Pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler TPH 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Structure                             |              | FF                                     | RP                |  |
| Each Fill capacitym³/hr250Total CellsNo.1 working cell + 1 standbyPumpsPump DescriptionQtyTypeFlow (m3/hr)Auxiliary Cooling Water Transfer Pump1 W + 1 SCentrifugal horizontal end suction250 Head - 45 m WCDM water transfer pump1W + 1SCentrifugal horizontal end suction2.2 Head - 90 m WCBoiler Initial fill pump1WPortable PumpSump pump1 Portable PumpAsh Handling - Drag chain conveyorDCC Capacity in PH boilerTPH25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Туре                                  |              | Induced Draft                          | Counter Flow      |  |
| Total Cells  No. 1 working cell + 1 standby  Pumps  Pump Description Qty Type Flow (m3/hr)  Auxiliary Cooling Water Transfer Pump 1 W + 1 S  DM water transfer pump 1W + 1S  Boiler Initial fill pump 1 W  Sump pump 1 Portable Pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler TPH 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fill                                  |              | PVC                                    | Fill              |  |
| PumpsPump DescriptionQtyTypeFlow (m3/hr)Auxiliary Cooling Water Transfer Pump1 W + 1 SCentrifugal horizontal end suction250 Head - 45 m WCDM water transfer pump1W + 1SCentrifugal horizontal end suction2.2 Head - 90 m WCBoiler Initial fill pump1WPortable PumpSump pump1 Portable PumpAsh Handling - Drag chain conveyorDCC Capacity in PH boilerTPH25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Each Fill capacity                    | m³/hr        | 25                                     | 50                |  |
| Pump DescriptionQtyTypeFlow (m3/hr)Auxiliary Cooling Water Transfer Pump1 W + 1 SCentrifugal horizontal end suction250 Head - 45 m WCDM water transfer pump1W + 1SCentrifugal horizontal end suction2.2 Head - 90 m WCBoiler Initial fill pump1WPortable PumpSump pump1 Portable PumpAsh Handling - Drag chain conveyorDCC Capacity in PH boilerTPH25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Cells                           | No.          | 1 working cel                          | l + 1 standby     |  |
| Auxiliary Cooling Water Transfer Pump  1 W + 1 S  Centrifugal horizontal end suction  1 W + 1S  Boiler Initial fill pump  1 W + 1S  The suction  1 Portable Pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler  TPH  250  Head - 45 m WC  2.2  Head - 90 m WC  Protable Pump  Ash Handling - Drag chain conveyor  The suction  250  Head - 45 m WC  2.2  Head - 90 m WC  20  Head - 90 m WC  250  Alier A - 90 m WC  20  Elevation Suction  20  Elevation Suction  250  Head - 90 m WC  20  Elevation Suction  20  Elevation Suction  25  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler  TPH  25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Pumps        |                                        |                   |  |
| Auxiliary Cooling Water Transfer Pump 1 W + 1 S   Centrifugal horizontal end suction 2.2   Head - 90 m WC    Boiler Initial fill pump 1 W   1   Portable Pump    Ash Handling - Drag chain conveyor    DCC Capacity in PH boiler TPH   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pump Description                      | Qty          | Туре                                   | Flow (m3/hr)      |  |
| DM water transfer pump  Boiler Initial fill pump  1W + 1S  horizontal end suction  1W  1W  Boiler Initial fill pump  1W  1W  Portable Pump  Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler  TPH  2.2  Head - 90 m WC  20  Head - 90 m WC  25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Auxiliary Cooling Water Transfer Pump | 1 W + 1 S    | Contributed                            |                   |  |
| Boiler Initial fill pump         1W         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DM water transfer pump                | 1W + 1S      | horizontal end suction  Head – 90 m WC |                   |  |
| Ash Handling - Drag chain conveyor  DCC Capacity in PH boiler TPH 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Boiler Initial fill pump              | 1W           |                                        |                   |  |
| DCC Capacity in PH boiler TPH 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sump pump                             | 1            | Portable Pump                          |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ash Handling                          | g - Drag cha | in conveyor                            |                   |  |
| DCC Capacity in AQC Boiler TPH 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DCC Capacity in PH boiler             | TPH          |                                        | 25                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DCC Capacity in AQC Boiler            | TPH          | 12.5                                   |                   |  |

## 2.15 Power Demand & Source

The power demand of existing Plant operations and Township is 32.85 MW. Proposed Kiln-II operations will require additional Power Demand will be 7.65 MW and the total Power Demand will be 40.50 MW (**Table 2.18**). RCL is operating 25 MW CPP along with Furnace Oil based DG sets of 2x4 MW, 1x7 MW & 1x0.5 MW for standby operations. In addition to 24.0 MW from CPP, 13.0 MW from WHRB Power Plant, 34.5 MW from TANGEDCO Grid ) & wind power generated through RCL windmills (by wheeling within the State), **total 71.50 MW**, **are available** for the Plant. Depending upon the availability of Power supply from Renewable Energy Sources, the operation of CPP will be reduced for meeting total Power demand of RR Nagar Cement Plant on Expansion.

Table: 2.18 Power Demand – Existing & Proposed

| Process / Load Centre             | Actual<br>Demand, KW | Existing Power<br>Demand, KW | Power Demand on<br>Expansion, KW | Power<br>Source |
|-----------------------------------|----------------------|------------------------------|----------------------------------|-----------------|
| RM - VRMP                         |                      |                              | 2,100                            |                 |
| RM – Ball Mill                    |                      |                              | 2,500                            |                 |
| Limestone SR                      | 950                  | 350                          |                                  |                 |
| Kiln-l                            | 2,150                | 2,150                        |                                  |                 |
| Coal Mill 1                       |                      |                              | 550                              |                 |
| Kiln-II                           |                      |                              | 2,000                            |                 |
| Coal Mill 2                       |                      |                              | 500                              |                 |
| Coal SR                           | 750                  | 250                          |                                  |                 |
| Roller Press                      | 3,800                | 3,800                        |                                  |                 |
| RP-Ball mill 1                    | 2800                 | 2800                         |                                  |                 |
| RP-Ball mill 2                    | 850                  | 850                          |                                  |                 |
| Cement Mill new                   | 4,850                | 4,500                        |                                  |                 |
| Packing Plants                    | 1,360                | 600                          |                                  |                 |
| PG Mines                          | 1,600                | 1,600                        |                                  |                 |
| Factory & Colony Lighting         | 650                  | 370                          |                                  |                 |
| Genset Aux.                       | 120                  | 120                          |                                  |                 |
| TPP Aux                           | 1,800                | 1,800                        |                                  |                 |
| Wagon Tippler                     | 1,200                | 1,200                        |                                  |                 |
| cement mill 9 & 10 - filling      |                      | 80                           |                                  |                 |
| cement mill 9 & 10 - extraction   |                      | 80                           |                                  |                 |
| Line-III New Kiln                 | 10,000               | 10,000                       |                                  |                 |
| ASR (LSR 1 & 2-<br>Circular Yard) | 800                  | 700                          |                                  |                 |
| 4th packer                        |                      | 300                          |                                  |                 |
| Beneficiation Plant at Pandalgudi | 1,300                | 1,300                        |                                  |                 |
| Blackstone Crusher                | 850                  |                              |                                  |                 |
| New Thickners-LKBP                | 970                  |                              |                                  |                 |
| <b>Total Power Demand</b>         | 36,800               | 32,850                       | 7,650                            | 40,500          |
| Total Power Generation:-          |                      |                              |                                  |                 |

| Process / Load Centre              | Actual<br>Demand, KW | Existing Power<br>Demand, KW | Power Demand on Expansion, KW | Power<br>Source |
|------------------------------------|----------------------|------------------------------|-------------------------------|-----------------|
| From Existing CPP Power Generation | 24,000               |                              |                               | 24,000          |
| WHRB Power Plant                   |                      |                              | 13,000                        | 13,000          |
| Wind Wheeling through TNEB Grid    | 34,500               |                              |                               | 34,500          |
| Total Supply (available)           |                      |                              | 40,500                        | 71,500          |

## 2.16 Solar Power Harnessing

RCL has installed a **30 KW** solar panel installed in Ramco Vidyalaya School. Totally 90 Nos. Solar lights have been installed in the Colony premises and nearby Villages (in CSR)

## 2.17 Fuel Storages

RCL has obtained the License for Storage of Petroleum Products as detailed in Table from the Chief Controller of Explosives, Nagpur P/SC/TN/15/5259(P499385) dt. 30.06.2022, which is valid up to 31.12.2031 (**Table 2.19**).

Table 2.19 Consented HSD & HFO Storages

| Materials      | Hazardous<br>Properties | Installed<br>Capacity | License<br>Valued<br>Upto | No. of<br>Tanks<br>in the<br>Plant | Design<br>Capacity      | Threshold<br>Quantity<br>for<br>MAH |
|----------------|-------------------------|-----------------------|---------------------------|------------------------------------|-------------------------|-------------------------------------|
| High Speed     | Class B                 | 63 KL                 | 31.12.2031                | 2                                  | 1 x 50 KL               |                                     |
| Diesel (HSD)   |                         | 53.55 Tonnes          |                           |                                    |                         |                                     |
| Heavy Fuel Oil |                         | 775 KL                |                           |                                    | 2 x 200 KL<br>1 x 50 KL | 2500<br>Tonnes                      |
| (HFO)          | Class C                 | 689.85                | 31.12.2031                | 7                                  | 3 x 30 KL               |                                     |
|                |                         | Tonnes                |                           |                                    | 1 x 5 KL                |                                     |

<sup>\*:</sup> MAH-Major accident hazards Installations which is defined as the isolated storage and industrial activity at a site handling (including transport through carrier or pipeline) of hazardous chemicals equal to or, in excess of the threshold quantities specified in Column 3 of Schedule 2 and 3 respectively.

Other Fuels Storages in the Plant are as follows:

Waste Oils: 1x44 KL & 1x15 KL Tank. Engine Oil Wastes: 1x30 KL Tank.

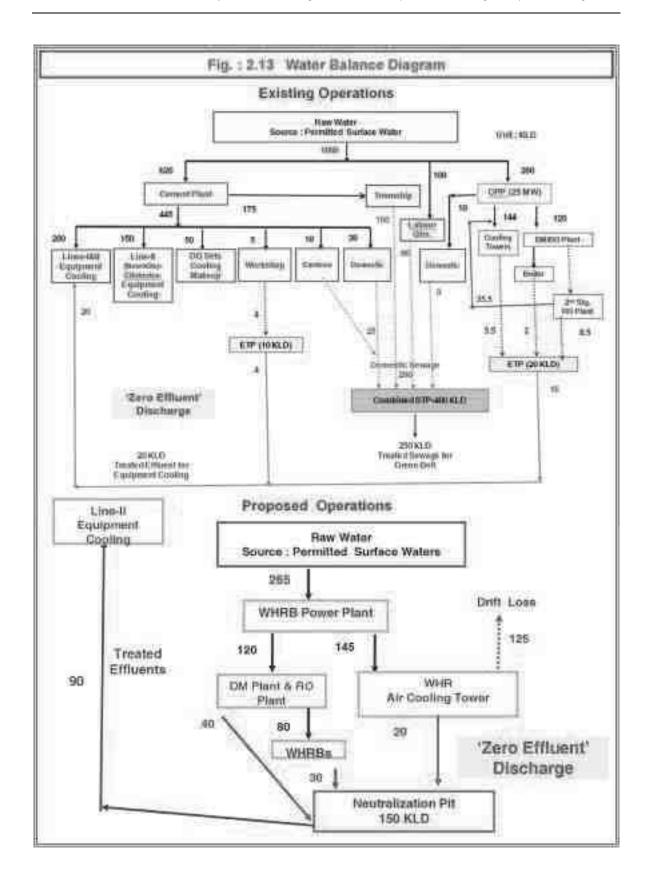
#### 2.18 Electrical Energy and Heat Energy Consumption

On Expansion, Specific Fuel consumption will be 721.7 kcal/kg of Clinker and Specific Power consumption will be 58.3 kwh/Ton of Clinker (**Table 2.20**).

| Lines    |          | el Consumption,<br>g Clinker | Specific Power Consumption (Clinker Stage), kwh/T Clinker |              |  |
|----------|----------|------------------------------|-----------------------------------------------------------|--------------|--|
|          | Existing | On Expansion                 | Existing                                                  | On Expansion |  |
| Line-I   | 730      | 730                          | 65                                                        | 55           |  |
| Line-II  | (860)*   | 730                          | (70.5)*                                                   | 68           |  |
| Line-III | 705      | 705                          | 52                                                        | 52           |  |
| Average  | 765      | 721.7                        | 62.5                                                      | 58.3         |  |

Table: 2.20 Electrical Energy and Heat Energy Consumption

#### 2.19 Water Demand & Source


Presently, the fresh water demand of the Cement Plant, CPP & Township is 1,000 KLD. The Unit has been **permitted for the drawl of 1,500 KLD** from the nearby Seasonal Arjuna River. There is an Intake Well in the River Basin for tapping the required water. There is **no ground water drawl for the Plant**. Also, treated sewage of 250 KLD, treated Effluent of 20 KLD from CPP and harvested Rainwater of 230 KLD, in total 500 KLD, are supplementing the raw water demand of the Complex.

On Expansion, fresh water to the tune of 265 KLD is required for WHRB Power Plant. Thus, total water demand will be 1,265 KLD which is well within the permitted drawl quantity of 1,500 KLD from Arjuna River.

There is no trade effluent from the Cement Plant. Workshop washings of 4 KLD and 16 KLD Rejects from CPP are individually neutralized and the Treated Effluent of 20 KLD is taken to the Cement Plant for equipment cooling (where it is evaporated fully). **On Expansion**, DM/RO Rejects of 40 KLD, Boiler Bleed-offs of 8 KLD and Colling Tower Rejects of 12 KLD, total **60 KLD effluent will be generated** additionally which will be treated for pH Correction in a **100 KLD Neutralisation Pit separately** and **Treated Effluent of 60 KLD** will be utilized for Equipment Cooling of (old) Line-II machineries where it will be evaporated fully.

Domestic Sewage & Canteen wastewaters of 25 KLD from the Cement Plant, 9 KLD Domestic Sewage from CPP, 160 KLD Domestic Sewage from the Township and another 86 KLD Domestic Sewage from Labour Qtrs., thus, a total of 280 KLD is generated. All the Domestic Sewage is treated in a 400 KLD Sewage Treatment Plants (350+50 KLD STPs). The Treated Sewage of 250 KLD is fully used for the Green Belt development. There will be no change to existing status on Expansion. Thus, it will be a 'Zero Effluent Discharge' Plant. Water Balance is shown in Fig. 2.13.

<sup>\*:</sup> At the time of operation.



| The STP | Unite and  | Dimensions | will he | as detailed below | , . |
|---------|------------|------------|---------|-------------------|-----|
| THEST   | Utilis and |            | WIII DE | as detailed below |     |

| Name of the Unit        | No. of Unit | Dimensions in meter        |
|-------------------------|-------------|----------------------------|
| Bar Screen              | 1           | 1x 1                       |
| Collection Tank         | 1           | 8.5 x 8.5 x 4.0            |
| Aeration Tanks          | 2           | 8.5 x 4.25 x 4             |
| Clarifier Tank          | 1           | Dia – 6.0 m, depth – 3.8 m |
| Pressure Sand Filter    | 1           | Dia - 1.5 m, Height - 2.5m |
| Activated Carbon Filter | 1           | Dia – 1.5 m, depth – 2.5m  |
| Sludge Drying Beds      | 3           | 1.5 x 1.5x 1               |
| Filter feed tank        | 1           | 6 x 6 x 3                  |
| Treated water tank      | 1           | 6 x 6 x 3                  |
| UV System               | 1           | 1.0 x0.75                  |

#### 2.20 APC Measures

The (old) Line-II Kiln is already provided with Reverse Air Bag House, Cooler with ESP, Coal Mill with Bag Filters so as to control the **Particulate Emissions from the Line-II <30 mg/Nm³**. All the Material conveyors are fully covered and provided with Bagfilters at Transfer Points. The Plant operations will be in compliance with new Emission Standards issued by MoEF&CC for Cement Industry vide Notifications dated 25.08.2014 and amended on 09.05.2016 & 10.05.2016 as below:

PM Emissions from all Major Stacks :  $<30 \text{ mg/Nm}^3$ . SO<sub>2</sub> Emissions from all Major Stacks :  $<100 \text{ mg/Nm}^3$  (pyritic Sulphur is <0.25%). NOx Emissions from New Kiln-II :  $<600 \text{ mg/Nm}^3$ .

All Main Stacks of Line-II is provided with **Online Monitors** and the **Real Time Emission Levels are** connected to the TNPCB Care Air Centre & CPCB Servers.

#### 2.21 Solid Wastes

The solid waste generated from the process and dust collected from various air pollution control equipment is being recycled in the process. Solid waste from the Sewage treatment plant 0.8 @ TPD is vermi-composted and used as manure for Green belt development. Fly ash (29.3 TPD) produced from CPP and Bottom ash (5.2 TPD) are transported pneumatically with the help of dense phase pneumatic pumps to the RCC storage silos. The ash is evacuated from silo and transported to Cement Plant for Portland Pozzolana Cement (PPC) manufacturing. There will not be any change to the existing Status of Solid Waste Generation, Treatment and Disposal from the Complex on Expansion.

#### 2.22 Hazardous Wastes

The Plant has obtained Hazardous Wastes Authorisation from TNPCB vide No. 23HPC42009117 dated 07.06.2023 with validity till 31.03.2028 to handle 94.62 TPA used/Spent

Oil (Category 5.1) from the Plant. There will not be any change to the existing Status on Expansion.

## 2.23 Employment Generation

Presently, there are 465 Direct Employees working in the Cement Complex. Indirect Employment to about 600 persons has been provided. Due to the Expansion Proposal, **another 35 Direct Employees & 50 Indirect Employees will be added**.

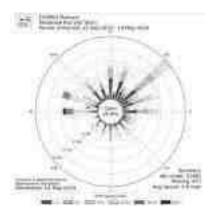
| Description        | Additional Manpower Requirement   |  |  |  |  |
|--------------------|-----------------------------------|--|--|--|--|
| Construction Phase | Nil (No construction is involved) |  |  |  |  |
| Operation Phase    | Direct – 35                       |  |  |  |  |
|                    | Indirect – 50 (in 3 shifts)       |  |  |  |  |
|                    | Total – 85                        |  |  |  |  |

## 2.24 Project Cost

The Project Cost of the existing Cement Plant Complex is Rs.894.00 Crores. A budget Rs.14.20 Crores is presently the EMP Capital Cost and Rs.3.90 Crores/annum is the EMP Recurring Cost. For proposed Expansion, with existing Line-II infrastructures and facilities, the Project Cost will be additional Rs.103.38 Crores. Thus, total Project Cost on this Expansion will be Rs.997.38 Crores. A budget Rs.1.00 Crores as EMP Capital Cost and Rs.0.25 Crores/annum as EMP Recurring Cost are proposed additionally for the Expansion. Thus, total EMP Capital Budget will be Rs.15.20 Crores and EMP Operating Budget will be Rs.4.20 Crores per Annum.

## 2.25 Project Completion Schedule

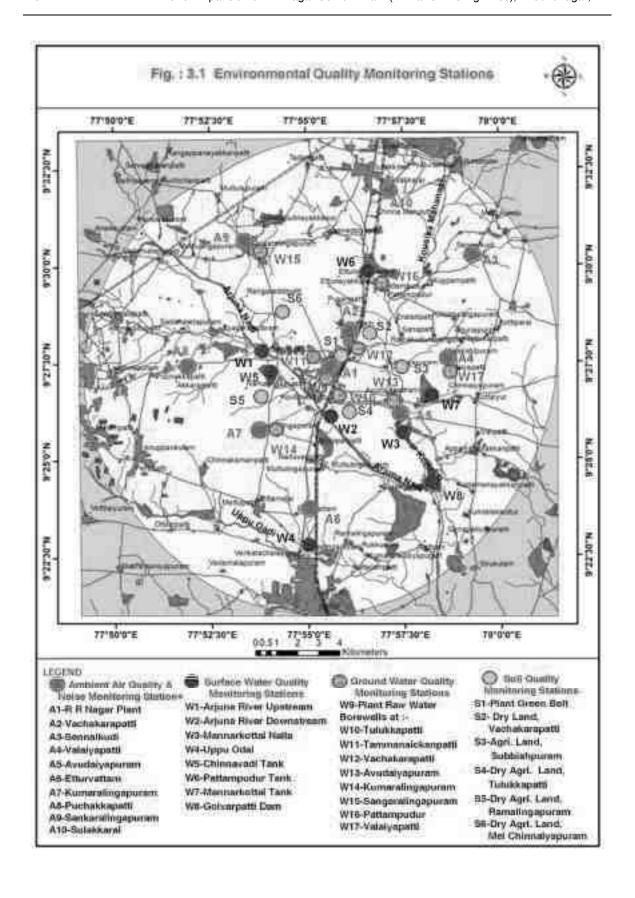
**No establishment is required for the Proposal**. No. of Working days will be increased to 345 days to achieve the production enhancement **with existing machineries**. Thus, on obtaining all Statutory approvals, the Plant can be operated for expansion quantity from 01.04.2025 (**Table 2.21**).


Table : 2.21 Project Schedule

| SI. | Activities           | FY 2024-25 |      |      |      |      |      |      |      |      |
|-----|----------------------|------------|------|------|------|------|------|------|------|------|
| No. | Activities           | Aug.       | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| 1   | Application for TOR  |            |      |      |      |      |      |      |      |      |
| 2   | Grant of TOR         |            |      |      |      |      |      |      |      |      |
| 3   | Public Hearing       |            |      |      |      |      |      |      |      |      |
| 4   | EC                   |            |      |      |      |      |      |      |      |      |
| 5   | DCTO                 |            |      |      |      |      |      |      |      |      |
| 6   | Expansion Operations |            |      |      |      |      |      |      |      |      |

# 3.0 Description of the Environment (Baseline Status)

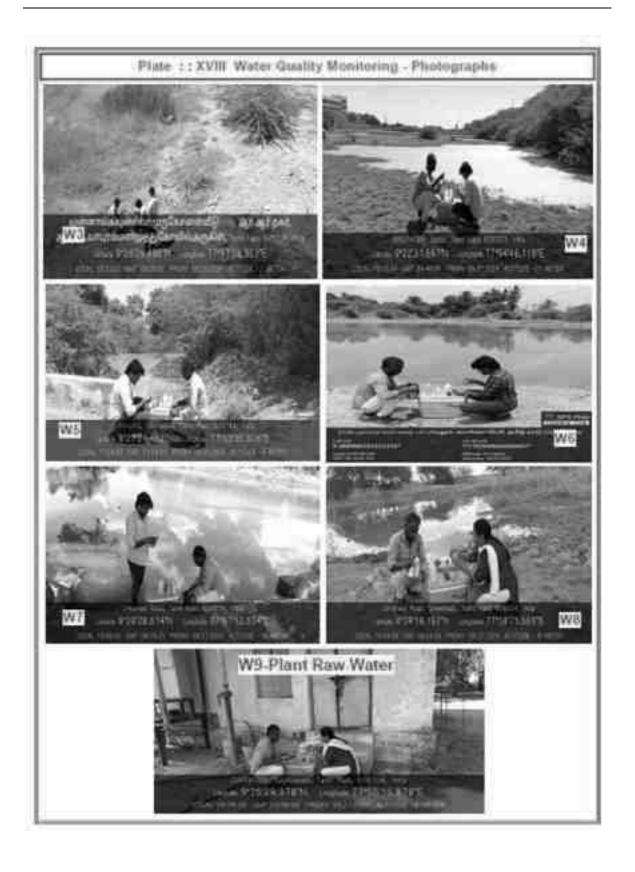
## 3.1 Study Area


The study area of 10 km radius (from boundary) has been considered for assessing the baseline environmental status. Project area does not fall in Critically Polluted Industrial Clusters listed by CPCB. As Bay of Bengal is at 100 km from the Plant, Coastal Regulation Zone (CRZ) applicability is not there. The nearest IMD Station is Madurai Airport. The Wind Rose of Madurai for the Period 1953 to 2019 (Source IEM Website) is referred while fixing the Monitoring Stations (Fig. 3.1). Geotagged Monitoring Station Photographs are given in Plates VIII-XIII. Baseline Data (BLD) is being collected during Jul.-Sep. 2024 (Premonsoon Season) for the EIA Study as the area experiences (Northeast) Monsoon Season during Oct.-Dec. months.



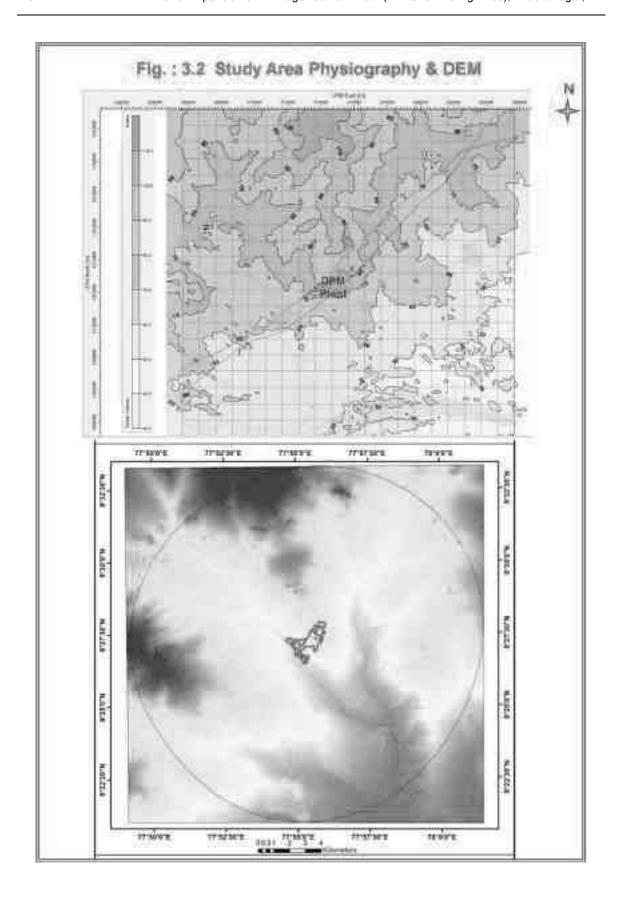
**Physiography**: The general elevation of the Study Area ranges from 55 m to 121 m above MSL (aMSL) (**Fig. 3.2**). The elevation of the Plant area ranges from 67 m to 89 m above MSL. The elevation contour indicates the area is sloping towards south and southeast. The natural landforms like buried pediments and valley fills are seen near the Arjuna River. The region falls in Seismic Zone III.

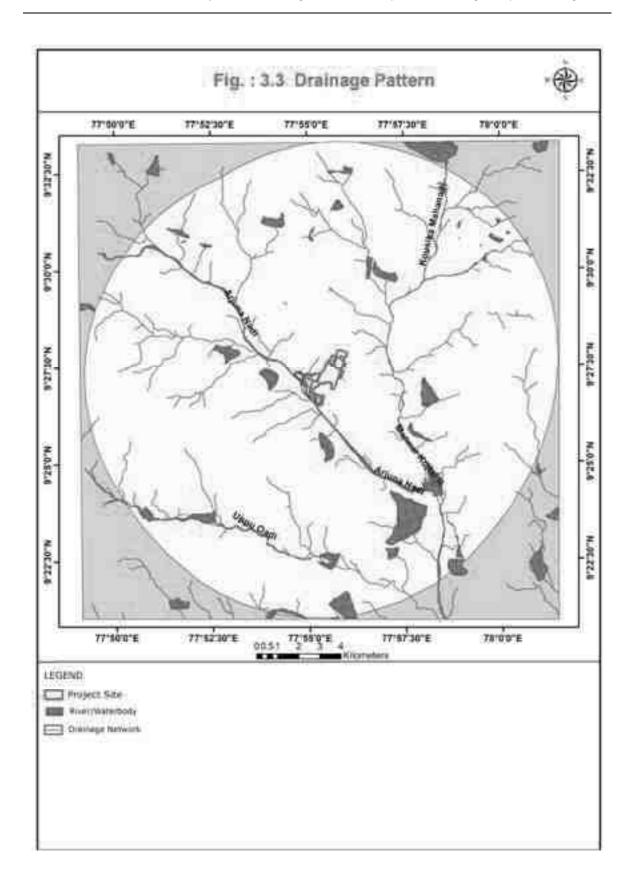
**Drainage Pattern:** The Area is characterized by parallel to sub parallel drainage pattern which are controlled by the structural features. There is **no perennial river** in the study area. The **seasonal nallas Arjuna River** (0.3 km in south) and **Mannarkottai Nalla** (2.0 km in east) (**Fig. 3.3**) are flowing near the Plant. These Streams are flowing towards south to southeast and confluences at Golvarpatti Dam (7.0 km in SE). Vaippar River flows at 9.8 km in south near Sattur.


**Geology**: The Plant area is part of the hard rock terrain and predominantly occupied by crystalline rocks of Archaean Age. The commonly occurring rock types are Granitic gneisses, Charnockites and its derivatives, Calc granulites, etc. River alluvium associated with Kankar nodules is observed in the Arjuna River bed.


















## 3.2 Environmental Components

Considering the Environmental setting of the project, project activities and their interaction, environmental regulations and Standards, Environmental Attributes included for the EIA Study are given in **Table 3.1**.

Table: 3.1 Baseline Data Collection – Monitoring Locations

|                        |                                              |                     | Sampling                                                                               |                                                                                                                                                                                |  |  |
|------------------------|----------------------------------------------|---------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Attributes             |                                              | No. of<br>Locations | Frequency                                                                              | Remarks                                                                                                                                                                        |  |  |
| Air                    | Meteorological<br>Parameters at<br>Core Zone | 1                   | For a Season                                                                           | Wind speed, wind direction (wind rose), temperature, humidity, cloud cover, atmospheric pressure, rainfall, etc.                                                               |  |  |
| All                    | AAQ<br>Parameters                            | 10                  | 24-hourly basis, continuously for 2 days in a week for 4 weeks in a month for a season | For the parameters as per<br>Revised NAAQ Norms                                                                                                                                |  |  |
| Noise                  | Leq Levels                                   | 10                  | Once in the season                                                                     | For Leq, Lday and Lnight values                                                                                                                                                |  |  |
| Water                  | Surface Water<br>Quality<br>Parameters       | 8                   | Once in the                                                                            | As per CPCB Norms (including existing Plant Raw Water)                                                                                                                         |  |  |
| Water                  | Ground Water<br>Quality<br>Parameters        | 9                   | Season                                                                                 | As per IS:10500 Norms                                                                                                                                                          |  |  |
| Land                   | Soil Quality                                 | 6                   | Once in the<br>Season                                                                  | Season for Textural & Physical Parameters & Nutrients.                                                                                                                         |  |  |
|                        | Land Use                                     | Study<br>Area       | Once during the Study Period                                                           | Based on recent available<br>Satellite Imagery                                                                                                                                 |  |  |
| Biological<br>(Flors & | Aquatic                                      | Study               | Once during the                                                                        | Flora & Fauna in Core & Buffer Zones                                                                                                                                           |  |  |
| Fauna)                 | Terrestrial                                  | Area                | Study Period                                                                           | Buller Zories                                                                                                                                                                  |  |  |
| Socio<br>Parameters    | economic<br>s                                | Study<br>Area       | Once during the<br>Study Period                                                        | Based on 2011-Census and Need Based Assessment for: Total Population / Household Size, Gender Composition, S.C / S.T Population, Literacy Levels, Occupational Structure, etc. |  |  |

- Site specific Micro-meteorological Data from Plant Area for the Season, on hourly basis continuously, on wind speed, wind direction (wind roses), temperature, humidity, cloud cover, atmospheric pressure and rainfall.
- Ambient Air Quality Monitoring at 10 locations on 24-hourly basis, continuously for 2 days in a week for 4 weeks in a month for 3 months in the season for all 12 parameters as per Revised NAAQ Norms.
- Noise Level Measurements at **10 locations** (air quality monitoring stations) for Leq, Lday and Lnight values once in the season.
- Water Quality Monitoring grab sampling of Surface Water (8 locations) and Ground Water including Plant Raw Water (9 Locations) once in the Season.
- Soil Quality Monitoring at 6 locations once in the Season for Textural & Physical Parameters, Nutrients, etc.
- Land Use Pattern based on recent available Satellite Imagery.
- ❖ Biotic Attributes for : Flora & Fauna in Core & Buffer Zones.
- Socio-Economic Profile, based on 2011-Census and Need Based Assessment, once in the study period for: Total Population / Household Size, Gender Composition, SC / ST Population, Literacy Levels, Occupational Structure, etc.

## 3.3 Methodology Adopted

**Micrometeorology**: As a part of the study, the micrometeorology and microclimatic parameters were recorded by installing a weather monitoring station (Envirotech WM 200) at the Plant at 10 m height. Data of wind velocity, wind direction, ambient temperature, relative humidity, cloud cover and atmospheric pressure were recorded at hourly intervals along with rainfall during the monitoring period.

Ambient Air Quality: The study area represents the Industrial, Residential, Rural and other Areas with respect to Revised National Ambient Air Quality (NAAQ) Norms stipulated by CPCB. Calibrated Fine Particulate Samplers (Envirotech APM 550) & Respirable Dust Samplers (Envirotech APM 460) were used for monitoring of PM2.5 & PM10. Gaseous samples are collected by integrated gas sampling assembly (Envirotech APM 411). A tapping provided in the hopper of the sampler is utilised for gaseous sampling. with proper flow controller and a flow of 1.0 l/min.

**PM2.5 & PM10**: APM 550 system is a manual method for sampling fine particles and is based on impactor designs standardized by EPA for Ambient Air Quality Monitoring. Ambient Air enters the APM 550 system through an omni-directional inlet designed to provide a clean aerodynamic cut point for particles greater than 10 microns. Particles in the air stream finer than 10 microns proceed to a second impactor that has an aerodynamic cut point at 2.5 microns. The air sample and the fine particulates existing from the PM2.5 impactor is passed through a 47 mm dia filter. Teflon filter

membrane that retains the FPM. The APM 550 system allows removal of the PM2.5 impactor from the sample stream so that the same system may be optionally used as a PM10 sampler also.

SO<sub>2</sub>: Modified West & Gaeke method (spectrophotometric) was adopted. SO<sub>2</sub> was collected in a scrubbing solution of sodium tetrachloro mercurate (TCM) and was allowed to react with sulphamic acid, formaldehyde and then with pararosaniline hydrochloride. The absorbance of product red-violet dye was measured using UV Visible Spectrophotometer at a wavelength of 560 nm. Concentration of SO<sub>2</sub> was calculated by multiplying the absorbance with calibration factor and dividing by volume of air sampled.

**NOx**: Jacob and Hocheiser modified method was adopted. Nitrogen oxides as nitrogen dioxide were collected by bubbling air through sodium hydroxide-sodium arsenite solution to form a stable solution of sodium nitrite. The nitrite ion produced during sampling was determined spectrophotometrically (at 540 nm) by reacting the exposed absorbing reagent with phosphoric acid, sulphanilamide and N (1-naphthyl) ethylamine dihydrochloride. Concentration of NOx was calculated as described in SO<sub>2</sub> measurement.

**Ammonia**: Indophenols method (APHA Method 401, Air Sampling and Analysis, 3<sup>rd</sup> Edition) was adopted. Ammonia in the atmosphere is collected by bubbling a measured volume of air through a dilute solution of sulphuric acid to form ammonium sulphate. The ammonium sulphate formed in the sample is analysed colorimetrically by reaction with phenol and alkaline sodium hypochlorite to produce indophenols. The reaction is accelerated by addition of Sodium nitroprusside as catalyst.

**Ozone**: IS:5182 Part IX (Methods for Measurement of Air Pollution - Oxidants)/ APHA Method 410 was adopted. Micro amounts of ozone and the oxidants liberate iodine when absorbed in a 1% solution of potassium iodine buffered at pH 6.8 ±0.2. The iodine is determined spectrophotometrically by measuring the absorption of tri-oxide ion at 352 nm. Drager Multiwarn Detector was also used for real time value.

**CO**: Envirotech APM 850 Organic Vapour Samplers are used for CO monitoring. Standard MSA tubes are used for monitoring carbon monoxide. A measured volume of air is passed at the flow rate of 100 to 200 ml/min for 1 to 8 hours and the colour change (yellow to green) in indicating gel filled in the detector tubes and is matched with the colour chart provided with detector tubes for finding out CO concentration. Drager Multiwarn Detector was also used for real time value.

**Particulate Lead**: The exposed glass fibre filter papers were cut into small pieces and to it 100 ml distilled water and 10 ml nitric acid were added and heated on a hot plate for 4-6 hours. The clear solution obtained after digestion was filtered and made upto 25 ml and were analysed on a Analytic Jena Atomic Absorption Spectrophotometer (AAS) employing Lead Hollow Cathode Lamp. Concentration of lead was calculated by taking the result obtained from AAS analysis and dividing it with the volume of air sampled.

**Benzene**: The charcoal tubes are available in different sizes and contain varying amount of activated charcoal. The ambient air was sucked through the tube using a low flow sampler used for collection of BTX sample in a way that results in an enrichment of the relevant substances in the activated charcoal. Desorption of the adsorbed benzene was done using Carbon disulphide (CS<sub>2</sub>). The substances desorbed in CS<sub>2</sub> were analyzed by capillary Gas Chromatography.

**Benzo (a) Pyrene (BaP)** is one of the most important constituent of PAH compounds and also one of the most potent carcinogens. This can be measured in both particulate phase and vapour phase. In the vapour phase the concentration of B(a)P is significantly less than the particulate phase. Therefore, more care to be taken for the measurement of Benzo(a) Pyrene in the particulate phase. It is based on BIS method IS 5182 (Part XII). This method is designed to collect particulate phase PAHs in ambient air and fugitive emissions and to determine individual PAH compounds using capillary Gas Chromatography equipped with flame ionization detector.

**Nickel and Arsenic**: The Atomic Absorption Spectroscopy (AAS) technique makes use of absorption spectrometry to assess the concentration of an analyte in the sample. The method is based on active sampling using PM10 High Volume Sampler and then sample analysis is done by atomic absorption spectroscopy.

The detectable range of the Air Pollutants are given in Table 3.2.

Table: 3.2 AAQ Parameters – Detectable Range

| Parameter                                               | Method                                                                                         | Range                         |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------|--|
| Respirable Particulate Matter (less than 10 µm or PM10) | IS 5182: (Part 23) : 2006 RA: 2017                                                             | 5-1000 μg/m <sup>3</sup>      |  |
| Particulate matter (less than 2.5 μm or PM2.5)          | USEPA Quality Assurance Handbook Vol II Part II - Guidance Documents 2.12 issue year: Nov-1998 | 10-1000 μg/m <sup>3</sup>     |  |
| Sulphur Dioxide                                         | IS 5182: (Part 2), 2001 RA: 2017                                                               | 5-1000 μg/m <sup>3</sup>      |  |
| Nitrogen Dioxide                                        | IS 5182: (Part 6), 2006 RA: 2017                                                               | 6-750 μg/m <sup>3</sup>       |  |
| Carbon Monoxide                                         | IS 5182: (Part 10), 1999 RA: 2014                                                              | 1-200 mg/m <sup>3</sup>       |  |
| Ammonia                                                 | Indophenol Method (Method of Air sampling and analysis 3 <sup>rd</sup> edition method 401)     | 5-700 μg/m <sup>3</sup>       |  |
| Ozone                                                   | IS 5182: (Part 9), 1974, RA 2014                                                               | 10-19000 μg/m <sup>3</sup>    |  |
| Benzene (C <sub>6</sub> H <sub>6</sub> )                | IS 5182 (Part 11), 2006 RA: 2017                                                               | 0.01-1000 µg/m <sup>3</sup>   |  |
| Banzo (a) Pyrene<br>Particulate Phase only              | IS 5182: (Part 12): 2004, RA: 2014                                                             | 0.1-10,000 ng/ m <sup>3</sup> |  |
| Nickel                                                  | 10 5400 (D. 100) 0004 DA 0044 (MAA00                                                           | 1.0 -50 ng/m <sup>3</sup>     |  |
| Arsenic                                                 | IS 5182: (Part 22), 2004, RA: 2014 /NAAQS<br>Monitoring & Analysis Guidelines Volume-I         | 1.0-10 ng/ m <sup>3</sup>     |  |
| Lead                                                    | Morniorning & Amaryono Galdenneo Volume 1                                                      | 0.1-50 μg/m <sup>3</sup>      |  |

**Noise Levels**: Noise levels were monitored at all air monitoring locations during day time as well as night time in a day. A totally portable measurement systems, Lutron SL 4001 with an internal calibrator and wind screen was used. The built-in internal oscillation system 1 KHz sine wave

generator is used for on the spot calibration at 94.0 dB(A) at 1000 Hz. The basic unit of measurement is A-weighted sound level.

**Water Quality**: Water samples of both surface and ground waters were collected during the survey period and analysed for physico-chemical and bacteriological parameters (**Table 3.3**).

Table: 3.3 Methodology Adopted for Water Analysis

| SI.<br>No. | Parameter                                     | Unit                  | Reference      | Method                                                                  |
|------------|-----------------------------------------------|-----------------------|----------------|-------------------------------------------------------------------------|
| 1          | Taste & Odour                                 | -                     | IS:3025 (5/7)* | As perceived                                                            |
| 2          | pH                                            | -                     | IS:3025 (11)   | Digital pH meter                                                        |
| 3          | Colour                                        | Hazen units           | IS:3025 (4)    | Comparison with Standards                                               |
| 4          | Turbidity                                     | NTU                   | IS:3025 (10)   | Nephelometric                                                           |
| 5          | Total Dissolved Solids                        | mg/l                  | IS:3025 (16)   | Gravimetric                                                             |
| 6          | Total Hardness                                | mg/l                  | IS:3025 (21)   | Titrimetric (EDTA)                                                      |
| 7          | Iron (as Fe)                                  | mg/l                  | 32 of IS3025   | Colorimetric (Phenonthroline)                                           |
| 8          | Chlorides (as CI)                             | mg/l                  | IS:3025 (32)   | Titrimetric (Argentometric)                                             |
| 9          | Residual Chlorine                             | mg/l                  | IS:3025 (26)   | Titrimetric                                                             |
| 10         | Calcium (as Ca)                               | mg/l                  | IS:3025 (40)   | Titrimetric (EDTA)                                                      |
| 11         | Magnesium (as Mg)                             | mg/l                  | IS:3025 (46)   | Titrimetric (by difference between Total Hardness and Calcium Hardness) |
| 12         | Alkalinity (as CaCO <sub>3</sub> )            | mg/l                  | IS:3025 (23)   | Colour indicator titration                                              |
| 13         | Dissolved Oxygen                              | mg/l                  | IS:3025 (38)   | Winkler titrimetric-azide modification                                  |
| 14         | Sulphate (as SO <sub>4</sub> )                | mg/l                  | IS:3025 (24)   | Turbidimetric/Gravimetric                                               |
| 15         | Fluoride (as F)                               | mg/l                  | IS:2488 (II)+  | Distillation followed by Colorimetric (SPADNS)                          |
| 16         | Nitrate (as NO <sub>3</sub> )                 | mg/l                  | IS:3025 (34)   | Colorimetric (PDA)                                                      |
| 17         | Cyanide (as CN)                               | mg/l                  | IS:3025 (27)   | Colorimetric (Pyridine-Bispyrazolone)                                   |
| 18         | Pesticides                                    | mg/                   | IS:2488 (III)  | Gas chromatograph                                                       |
| 19         | Phenols (as C <sub>6</sub> H <sub>5</sub> OH) | mg/l                  | IS:3025 (43)   | Distillation followed by colorimetric (4-Aminoantipyrine)               |
| 20         | Manganese (as Mn)                             | mg/l                  | 35 of IS3025   | Colorimetric (Persulpahte)                                              |
| 21         | Chromium (as Cr <sup>6+</sup> )               | mg/l                  | IS:2488 (II)   | Colorimetric (Diphenyl carbazide)                                       |
| 22         | Copper (as Cu)                                | mg/l                  | IS:3025 (42)   | Atomic Absorption Spectrophotometric                                    |
| 23         | Selenium (as Se)                              | mg/l                  | IS:2488 (II)   | Atomic Absorption Spectrophotometric                                    |
| 24         | Cadmium (as Cd)                               | mg/l                  | IS:3025 (41)   | Atomic Absorption Spectrophotometric                                    |
| 25         | Arsenic (as As)                               | mg/l                  | IS:3025 (37)   | Atomic Absorption Spectrophotometric                                    |
| 26         | Boron (as B)                                  | mg/l                  | IS:2488 (III)  | Colorimetric (Curcumin)                                                 |
| 27         | Mercury (as Hg)                               | mg/l                  | IS:3025 (48)   | Mercury analyser                                                        |
| 28         | Lead (as Pb)                                  | mg/l                  | IS:3025 (47)   | Atomic Absorption Spectrophotometric                                    |
| 29         | Zinc (as Zn)                                  | mg/l                  | IS:3025 (49)   | Colorimetric (Dithizone)                                                |
| 30         | Percent sodium                                | %                     | IS:2488 (V)    | From Na, K, Ca & Mg values                                              |
| 31         | BOD-3 days@27 °C                              | mg/l                  | IS:3025 (44)   | 3 days @ 27°C                                                           |
| 32         | COD                                           | mg/l                  | IS:2488 (V)    | Dichromate reflux                                                       |
| 33         | Oil & Grease                                  | mg/l                  | IS:3025 (39)   | Gravimetric                                                             |
| 34         | Coliforms                                     | MPN/100 ml            | IS:1622        | Multiple tube fermentation (5 tubes)                                    |
| 35         | Plate Counts                                  | No. of<br>Colonies/ml | IS:1622        | Colony count in Agar-agar medium                                        |

<sup>\*:</sup> IS:3025 (Parts)-Methods of Sampling and Test (Physical and Chemical) for Water and Wastewater;

<sup>+:</sup> IS:2488 (Parts)-Methods of Sampling and Test for Industrial Effluents.

Parameters like pH, conductivity, temperature, DO, etc. were measured in the field itself while collecting the samples using a microprocessor based Portable Water Analysis Kit (Elico Model PE136). Samples for chemical analysis were collected as per IS:2488. Sterilised bottles were used for collection of bacteriological samples.

**Soil Quality**: Samples at 3 depths viz. 0-30 cm, 30-60 cm and 60-90 cm were collected using sampling augers and field capacity apparatus. Soil extraction (10%) were used for analysis.

**Calibration**: The monitoring and analytical instruments are being calibrated periodically. The correction factors, if any, are being used in computation of the data.

**Flora & Fauna**: A general ecological survey covering an area of 10 km radius area were conducted and reported. Faunal survey covers the Terrestrial and Avian Fauna.

Based on the Wildlife Protection Act, 1972 (as amended in 2022), species were short-listed as Schedule II or I and considered as endangered species.

Indian Peafowl (*Pavo cristatus*), Schedule-I Fauna as per Wild Life (Protection) Act, 1972 as amended in 2022, is found in the study area and its surroundings. The **Conservation Plan for Peafowl duly approved with the Budget Provisions** by the Wildlife Warden, Srivilliputhur, Virudhunagar District - for Habitat improvement, Community participation in Conservation, etc., is being implemented and will be continued.

This study included the identification of endangered and rare species as per Red Book.

Socio-Economic profile of population in study area is based on Census 2011 data.

#### 3.4 Micrometeorological Status

#### 3.4.1 Regional Status

Sub-tropical climate prevails over the study area. The temperature is maximum during March to May and it drops from June onwards. The maximum temperature ranges from 40 °C to 44 °C and minimum temperature from 22 °C to 27 °C. The nearest IMD station is **Madurai Airport** (45 km in north) and nearest rain gauge station is located at Sattur. The Normal Rainfall of the Plant Area is **895 mm**.

NE Monsoon Rainfall : 419.0 SW Monsoon Rainfall : 196.8

(Source: Revenue Department, Virudhunagar)

## 3.4.2 Site Specific Status

The abstract of collected hourly meteorological data are presented in **Tables 3.4-3.6**. Based on the wind parameters, wind rose is drawn and presented as **Fig. 3.4**.

**July 2024**: Predominant winds were from W/WSW direction with mean value of 274.7 Degrees. Mean Wind velocity was 7.4 kmph. Temperature values were ranging from 25.0 °C to 40.0 °C with mean value of 31.0 °C. Mean maximum relative humidity value was 60.9%. Mean atmospheric pressure value was computed as 756.5 mm of mercury. There were 5 rainy days with total rainfall of 7.0 mm in this month.

**August 2024**: Predominant winds were from W/WSW directions with mean value of 270.5 Degrees. Mean Wind velocity was 5.5 kmph. Temperature values were ranging from 24.0 °C to 39.0 °C with mean value of 29.7 °C. Mean maximum relative humidity value was 70.5%. Mean atmospheric pressure value was computed as 757.5 mm of mercury. There were 4 rainy days with total rainfall of 5.0 mm in this month.

**September 2024**: Predominant winds were from W/WNW directions with mean value of 275.5 Degrees. Mean Wind velocity was 6.3 kmph. Temperature values were ranging from 25.0 °C to 40.0 °C with mean value of 31.8 °C. Mean maximum relative humidity value was 56.6%. Mean atmospheric pressure value was computed as 757.1 mm of mercury. There was 2 rainy days with total rainfall of 2.5 mm in this month.

#### Premonsoon Season (Jul.-Sep. 2024):

- Predominant winds were from W/WSW/WNW directions.
- Mean Wind velocity was 6.4 kmph.
- Temperature values were ranging from 24.0 °C to 40.0 °C with mean value of 30.8 °C.
- Mean maximum relative humidity value was 62.7%.
- Mean atmospheric pressure value was computed as 757.0 mm of mercury.
- There were 11 rainy days with total rainfall of 14.5 mm on this Premonsoon Period.

The monitored meteorological data were found to be in compliance with local weather phenomena.

Table: 3.4 Micrometeorological Data – Jul.2024

Location : RR Nagar Plant

|                     | Mean                      | Pred.                                  | Ten  | perature | e, °C | Relative                 | <u> </u>                 | Atm.                            | <b>D</b>             |
|---------------------|---------------------------|----------------------------------------|------|----------|-------|--------------------------|--------------------------|---------------------------------|----------------------|
| Date                | Wind<br>Velocity,<br>kmph | Wind<br>Direction<br>in Deg.<br>(from) | Min. | Max.     | Mean  | Humidity<br>(Mean),<br>% | Cloud<br>Cover,<br>oktas | Pressure<br>(Mean),<br>mm of Hg | Rain-<br>fall,<br>mm |
| 01.07.2024          | 6.7                       | 283                                    | 27.0 | 36.0     | 31.0  | 65                       | 4                        | 757.5                           | 0                    |
| 02. 07.2024         | 6.2                       | 302                                    | 26.5 | 38.0     | 31.5  | 61                       | 5                        | 757.0                           | 0                    |
| 03. 07.2024         | 7.2                       | 282                                    | 27.0 | 39.0     | 32.5  | 60                       | 4                        | 757.0                           | 0                    |
| 04. 07.2024         | 6.2                       | 259                                    | 26.5 | 37.5     | 32.0  | 59                       | 4                        | 757.5                           | 0                    |
| 05. 07.2024         | 8.2                       | 291                                    | 27.0 | 39.0     | 31.5  | 62                       | 5                        | 756.5                           | 0                    |
| 06. 07.2024         | 7.7                       | 284                                    | 26.0 | 35.0     | 30.5  | 63                       | 6                        | 756.5                           | 0.5                  |
| 07. 07.2024         | 7.2                       | 293                                    | 27.0 | 38.0     | 31.5  | 59                       | 4                        | 756.0                           | 0                    |
| 08. 07.2024         | 7.2                       | 293                                    | 27.0 | 37.0     | 31.0  | 60                       | 4                        | 756.0                           | 0                    |
| 09. 07.2024         | 6.7                       | 261                                    | 26.0 | 35.5     | 30.0  | 62                       | 6                        | 756.5                           | 0                    |
| 10. 07.2024         | 4.1                       | 288                                    | 27.0 | 39.0     | 31.5  | 62                       | 4                        | 758.0                           | 0                    |
| 11. 07.2024         | 3.6                       | 170                                    | 26.0 | 38.0     | 31.0  | 67                       | 4                        | 757.5                           | 1.0                  |
| 12. 07.2024         | 7.7                       | 277                                    | 26.0 | 37.0     | 30.0  | 71                       | 4                        | 757.0                           | 0                    |
| 13. 07.2024         | 7.7                       | 266                                    | 25.0 | 35.0     | 29.5  | 69                       | 4                        | 756.5                           | 3.0                  |
| 14. 07.2024         | 7.7                       | 266                                    | 26.0 | 36.0     | 30.0  | 65                       | 5                        | 755.5                           | 0                    |
| 15. 07.2024         | 8.8                       | 270                                    | 25.0 | 35.0     | 28.5  | 74                       | 6                        | 755.5                           | 1.0                  |
| 16. 07.2024         | 9.8                       | 269                                    | 26.0 | 33.0     | 29.5  | 66                       | 6                        | 756.0                           | 0                    |
| 17. 07.2024         | 8.2                       | 272                                    | 25.5 | 34.0     | 29.5  | 64                       | 5                        | 756.5                           | 0                    |
| 18. 07.2024         | 7.7                       | 274                                    | 26.0 | 33.0     | 29.5  | 65                       | 6                        | 756.5                           | 0                    |
| 19. 07.2024         | 9.3                       | 275                                    | 28.0 | 36.0     | 31.5  | 54                       | 4                        | 755.5                           | 0                    |
| 20. 07.2024         | 7.7                       | 274                                    | 26.5 | 36.0     | 31.5  | 54                       | 5                        | 756.0                           | 0                    |
| 21. 07.2024         | 8.8                       | 275                                    | 28.0 | 37.0     | 32.0  | 52                       | 4                        | 756.5                           | 0                    |
| 22. 07.2024         | 7.2                       | 281                                    | 26.0 | 38.0     | 31.5  | 55                       | 5                        | 758.0                           | 0                    |
| 23. 07.2024         | 7.2                       | 267                                    | 27.0 | 37.0     | 31.5  | 59                       | 4                        | 758.0                           | 0                    |
| 24. 07.2024         | 6.7                       | 277                                    | 26.5 | 40.0     | 32.5  | 56                       | 3                        | 757.0                           | 0                    |
| 25. 07.2024         | 7.2                       | 273                                    | 27.0 | 36.0     | 30.5  | 61                       | 5                        | 756.0                           | 0                    |
| 26. 07.2024         | 7.7                       | 277                                    | 28.0 | 39.0     | 32.2  | 55                       | 5                        | 756.0                           | 0                    |
| 27. 07.2024         | 6.7                       | 275                                    | 28.0 | 37.5     | 32.5  | 54                       | 4                        | 756.0                           | 0                    |
| 28. 07.2024         | 7.7                       | 285                                    | 26.5 | 38.0     | 31.5  | 56                       | 5                        | 755.0                           | 0                    |
| 29. 07.2024         | 8.8                       | 285                                    | 27.5 | 36.0     | 31.0  | 58                       | 6                        | 755.0                           | 0                    |
| 30. 07.2024         | 7.5                       | 281                                    | 26.5 | 37.0     | 31.0  | 61                       | 6                        | 757.0                           | 1.5                  |
| 31. 07.2024         | 7.2                       | 292                                    | 28.0 | 35.0     | 31.0  | 58                       | 5                        | 757.5                           | 0                    |
| Monthly<br>Abstract | 7.4                       | 274.7                                  | 25.0 | 40.0     | 31.0  | 60.9                     | 4.7                      | 756.5                           | 7.0                  |

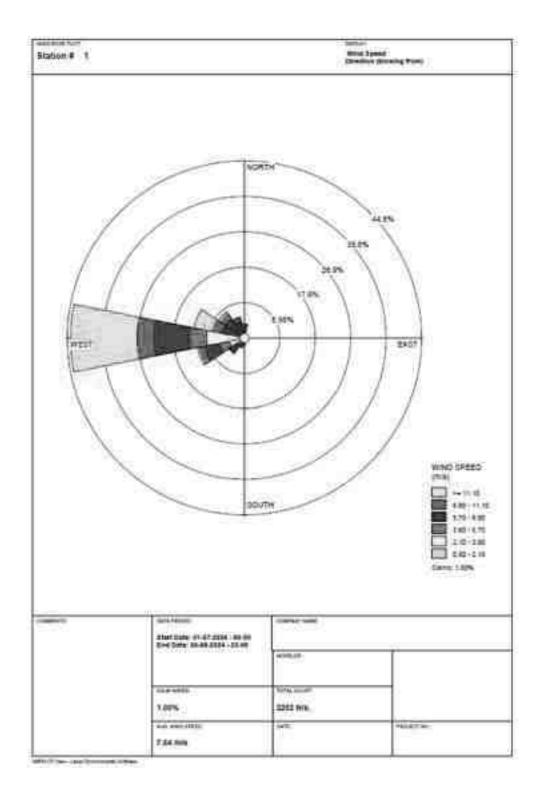
Note: Abstract values are taken from the hourly readings (00:00-24:00 hrs.) recorded continuously during the monitoring period.

Table: 3.5 Micrometeorological Data - Aug. 2024

Location : RR Nagar Plant

|                     | Mean<br>Wind      | Pred.<br>Wind               | Ten  | nperatur | e, °C | Relative                 | Cloud           | Atm.<br>Pressure    | Rain-       |
|---------------------|-------------------|-----------------------------|------|----------|-------|--------------------------|-----------------|---------------------|-------------|
| Date                | Velocity,<br>kmph | Direction in<br>Deg. (from) | Min. | Max.     | Mean  | Humidity<br>(Mean),<br>% | Cover,<br>oktas | (Mean),<br>mm of Hg | fall,<br>mm |
| 01.08.2024          | 6.2               | 281                         | 26.0 | 39.0     | 32.0  | 58                       | 4               | 757.5               | 0           |
| 02.08.2024          | 7.2               | 284                         | 28.0 | 38.0     | 31.0  | 59                       | 4               | 757.5               | 0           |
| 03.08.2024          | 6.2               | 297                         | 27.0 | 39.0     | 31.5  | 59                       | 3               | 758.0               | 0           |
| 04.08.2024          | 5.1               | 214                         | 26.0 | 38.0     | 31.5  | 61                       | 4               | 758.0               | 1.0         |
| 05.08.2024          | 4.1               | 273                         | 25.0 | 35.0     | 29.0  | 75                       | 6               | 758.5               | 0           |
| 06.08.2024          | 4.6               | 342                         | 25.0 | 38.0     | 29.5  | 72                       | 5               | 757.5               | 1.0         |
| 07.08.2024          | 5.1               | 283                         | 25.0 | 34.5     | 28.5  | 76                       | 6               | 758.0               | 0           |
| 08.08.2024          | 3.1               | 254                         | 25.0 | 34.0     | 28.0  | 78                       | 5               | 758.5               | 0           |
| 09.08.2024          | 5.1               | 289                         | 25.0 | 35.0     | 29.5  | 72                       | 4               | 758.0               | 0           |
| 10.08.2024          | 5.1               | 282                         | 25.0 | 36.0     | 29.5  | 71                       | 4               | 758.0               | 0           |
| 11.08.2024          | 6.2               | 270                         | 24.0 | 34.0     | 29.0  | 78                       | 6               | 757.0               | 0           |
| 12.08.2024          | 5.1               | 263                         | 25.0 | 36.0     | 29.5  | 75                       | 3               | 756.0               | 0           |
| 13.08.2024          | 5.1               | 293                         | 25.0 | 34.0     | 29.0  | 78                       | 5               | 756.5               | 1.5         |
| 14.08.2024          | 3.1               | 311                         | 26.0 | 33.0     | 28.0  | 81                       | 5               | 756.0               | 0           |
| 15.08.2024          | 4.1               | 226                         | 26.0 | 35.0     | 29.5  | 79                       | 4               | 755.5               | 0           |
| 16.08.2024          | 4.1               | 288                         | 26.8 | 35.0     | 30.0  | 77                       | 5               | 755.0               | 0           |
| 17.08.2024          | 3.6               | 235                         | 27.0 | 35.0     | 29.0  | 80                       | 5               | 756.0               | 0           |
| 18.08.2024          | 4.6               | 213                         | 26.0 | 35.0     | 30.0  | 73                       | 4               | 756.5               | 0           |
| 19.08.2024          | 4.1               | 238                         | 25.0 | 35.0     | 28.5  | 81                       | 5               | 756.5               | 1.5         |
| 20.08.2024          | 4.1               | 296                         | 25.0 | 34.0     | 28.5  | 80                       | 4               | 756.5               | 0           |
| 21.08.2024          | 6.2               | 226                         | 25.0 | 34.0     | 28.5  | 75                       | 4               | 758.0               | 0           |
| 22.08.2024          | 4.1               | 283                         | 26.0 | 34.0     | 29.0  | 72                       | 6               | 758.5               | 0           |
| 23.08.2024          | 4.1               | 241                         | 26.0 | 35.5     | 29.5  | 76                       | 4               | 759.0               | 0           |
| 24.08.2024          | 7.7               | 261                         | 25.0 | 36.0     | 30.0  | 70                       | 4               | 759.5               | 0           |
| 25.08.2024          | 6.7               | 271                         | 26.0 | 37.0     | 30.5  | 57                       | 4               | 759.0               | 0           |
| 26.08.2024          | 7.7               | 251                         | 25.0 | 38.0     | 31.0  | 59                       | 4               | 758.5               | 0           |
| 27.08.2024          | 7.7               | 269                         | 26.0 | 38.0     | 31.0  | 59                       | 3               | 758.5               | 0           |
| 28.08.2024          | 6.2               | 300                         | 26.0 | 36.0     | 30.5  | 61                       | 6               | 758.0               | 0           |
| 29.08.2024          | 6.2               | 288                         | 27.0 | 37.0     | 30.5  | 62                       | 5               | 757.5               | 0           |
| 30.08.2024          | 6.2               | 291                         | 26.0 | 33.0     | 29.5  | 67                       | 5               | 757.5               | 0           |
| 31.08.2024          | 10.3              | 275                         | 26.0 | 38.0     | 30.5  | 65                       | 5               | 757.0               | 0           |
| Monthly<br>Abstract | 5.5               | 270.5                       | 24.0 | 39.0     | 29.7  | 70.5                     | 4.5             | 757.5               | 5.0         |

Note: Abstract values are taken from the hourly readings (00:00-24:00 hrs.) recorded continuously during the monitoring period.


Table: 3.6 Micrometeorological Data - Sep.2024

Location : RR Nagar Plant

|                     | Mean<br>Wind      | Pred.<br>Wind               | Tem   | perature | e, °C | Relative<br>Humidity | Cloud           | Atm.<br>Pressure    | Rain        |
|---------------------|-------------------|-----------------------------|-------|----------|-------|----------------------|-----------------|---------------------|-------------|
| Date                | Velocity,<br>kmph | Direction in<br>Deg. (from) | Min.  | Max.     | Mean  | (Mean),              | Cover,<br>oktas | (Mean),<br>mm of Hg | fall,<br>mm |
| 01.09.2024          | 4.6               | 286                         | 26.0  | 37.0     | 30.5  | 65                   | 4               | 756.6               | 0           |
| 02.09.2024          | 6.2               | 293                         | 27.0  | 37.0     | 31.0  | 60                   | 4               | 756.8               | 0           |
| 03.09.2024          | 7.2               | 272                         | 27.0  | 37.0     | 31.5  | 58                   | 5               | 757.7               | 0           |
| 04.09.2024          | 6.2               | 295                         | 26.0  | 38.0     | 31.5  | 56                   | 3               | 757.8               | 0           |
| 05.09.2024          | 5.1               | 313                         | 27.0  | 39.0     | 32.0  | 55                   | 3               | 757.0               | 0           |
| 06.09.2024          | 5.1               | 323                         | 27.5  | 38.0     | 32.0  | 57                   | 4               | 757.1               | 0           |
| 07.09.2024          | 6.2               | 315                         | 27.0  | 38.0     | 32.0  | 55                   | 3               | 757.4               | 0           |
| 08.09.2024          | 9.3               | 273                         | 27.0  | 37.0     | 31.5  | 57                   | 3               | 758.3               | 0           |
| 09.09.2024          | 7.2               | 270                         | 28.0  | 37.0     | 31.5  | 56                   | 3               | 756.9               | 0           |
| 10.09.2024          | 7.2               | 262                         | 27.0  | 38.0     | 32.0  | 56                   | 3               | 756.8               | 0           |
| 11.09.2024          | 7.7               | 271                         | 28.0  | 38.0     | 32.0  | 57                   | 4               | 757.8               | 0           |
| 12.09.2024          | 8.2               | 285                         | 28.0  | 39.0     | 33.0  | 52                   | 3               | 758.2               | 0           |
| 13.09.2024          | 7.2               | 311                         | 27.0  | 39.0     | 32.5  | 53                   | 3               | 757.7               | 0           |
| 14.09.2024          | 8.8               | 292                         | 27.25 | 39.0     | 32.5  | 54                   | 3               | 757.4               | 0           |
| 15.09.2024          | 6.2               | 304                         | 27.0  | 38.0     | 32.5  | 53                   | 4               | 757.4               | 0           |
| 16.09.2024          | 5.1               | 247                         | 27.0  | 39.0     | 32.5  | 53                   | 3               | 757.2               | 0           |
| 17.09.2024          | 4.1               | 230                         | 28.0  | 40.0     | 33.0  | 51                   | 2               | 757.0               | 0           |
| 18.09.2024          | 5.7               | 219                         | 27.0  | 39.0     | 31.0  | 54                   | 3               | 756.2               | 0           |
| 19.09.2024          | 4.1               | 217                         | 27.0  | 39.0     | 32.0  | 53                   | 3               | 756.5               | 0           |
| 20.09.2024          | 4.6               | 214                         | 27.0  | 39.0     | 32.0  | 51                   | 3               | 756.4               | 0           |
| 21.09.2024          | 4.6               | 270                         | 27.0  | 37.0     | 32.0  | 53                   | 3               | 756.6               | 0           |
| 22.09.2024          | 4.6               | 244                         | 26.0  | 37.0     | 32.0  | 51                   | 3               | 756.2               | 0           |
| 23.09.2024          | 7.7               | 230                         | 28.0  | 38.0     | 32.0  | 54                   | 4               | 755.8               | 0           |
| 24.09.2024          | 8.2               | 287                         | 28.0  | 39.0     | 32.5  | 51                   | 4               | 755.5               | 0           |
| 25.09.2024          | 6.2               | 296                         | 27.0  | 40.0     | 33.0  | 51                   | 3               | 755.6               | 0           |
| 26.09.2024          | 6.2               | 315                         | 28.0  | 37.0     | 32.0  | 55                   | 4               | 756.2               | 0           |
| 27.09.2024          | 6.2               | 327                         | 27.0  | 39.0     | 31.5  | 59                   | 4               | 757.5               | 0           |
| 28.09.2024          | 7.2               | 260                         | 26.0  | 38.0     | 30.5  | 68                   | 4               | 758.2               | 0           |
| 29.09.2024          | 5.7               | 279                         | 25.0  | 36.0     | 30.5  | 70                   | 4               | 759.0               | 0.5         |
| 30.09.2024          | 5.1               | 265                         | 25.0  | 32.0     | 28.5  | 79                   | 5               | 759.4               | 2.0         |
| Monthly<br>Abstract | 6.3               | 275.5                       | 25.0  | 40.0     | 31.8  | 56.6                 | 3.5             | 757.1               | 2.5         |

Note: Abstract values are taken from the hourly readings (00:00-24:00 hrs.) recorded continuously during the monitoring period.

Fig.: 3.4 Seasonal Wind Rose
Location: RR Nagar Plant
Premonsoon (Jul.-Sep.) 2024



# 3.5 Ambient Air Quality

# 3.5.1 Monitoring Locations

Existing Cement and Power Plants are the major industries in operation within the Study Area. Sivakasi Region and this part of Virudhunagar District are famous for Match Industries, Fire Cracker and Printing Industries. AAQ Monitoring Stations were selected based on the **Upwind & Downwind directions** for that Season and also considering the Annual Wind Rose (**Table 3.7**). **Mobile Monitoring Stations** were also established for the monitoring.

Table: 3.7 Ambient Air Quality Monitoring Stations - Location & Bearing

| SI.<br>No. | Location             | North<br>Latitude | East<br>Longitude | Direction<br>from<br>Plant | Distance<br>from Plant,<br>km | Location<br>Scenario |
|------------|----------------------|-------------------|-------------------|----------------------------|-------------------------------|----------------------|
| 1          | A1-RCL Plant         | 09°27'09.86"      | 77°55'36.54"      | -                          | -                             | -                    |
| 2          | A2-Vachchakarapatti  | 09°28'06.88"      | 77°56'02.83"      | NNE                        | 0.5                           | Crosswind            |
| 3          | A3-Sennalkudi        | 09°30'21.46"      | 77°59'26.90"      | NE                         | 7.6                           | Downwind             |
| 4          | A4-Valaiyapatti      | 09°27'18.15"      | 77°58'54.51"      | Е                          | 5.0                           | Downwind             |
| 5          | A5-Avudaiyapuram     | 09°26'36.69"      | 77°56'58.95"      | ESE                        | 2.5                           | Downwind             |
| 6          | A6-Etturvattam       | 09°23'33.91"      | 77°54'41.74"      | 8                          | 5.3                           | Downwind             |
| 7          | A7-Kumaralingapuram  | 09°25'46.35"      | 77°54'01.87"      | SW                         | 2.5                           | Upwind               |
| 8          | A8-Puchakkapatti     | 09°27'19.4"       | 77°51'26.1"       | W                          | 6.0                           | Upwind               |
| 9          | A9-Sankaralingapuram | 09º30'42.85"      | 77º53'38.45"      | NW                         | 6.0                           | Upwind               |
| 10         | A10-Sulakkarai       | 09º32'11.95"      | 77º56'31.33"      | NNE                        | 8.2                           | Crosswind            |

#### 3.5.2 AAQ Status

All 12 AAQ parameters (24/8/1 hourly basis) were monitored in compliance with NAAQ Norms. The monitored ambient air quality data are presented in **Tables 3.8-3.17**. The abstract of those monitored data is given as **Table 3.18** and ambient air quality status in the study area as **Table 3.19**. During the study, each **240 samples** were collected, analysed and reported. On the synthesized data, the following observations are made:

PM2.5 values (24 hours Time Weighted) were monitored in the range between 10-38 microgram/cu.m (ug/m³) in the Study Area with a mean value of 21.7 ug/m³ against NAAQ Norm value of 60 ug/m³ (24 hours Time Weighted).

**PM10** values were monitored in the range between 13-65 ug/m³ with a **mean value of 39.0 ug/m³** against NAAQ Norm value of **100 ug/m³** (24 hours Time Weighted).

SO<sub>2</sub> values were monitored in the range between 6-24 ug/m<sup>3</sup> with a mean value of 11.4 ug/m<sup>3</sup> against NAAQ limit value of 80 ug/m<sup>3</sup> (24 hours Time Weighted).

**NOx** values were monitored in the range between 7-27 ug/m³ with a **mean value of 13.9 ug/m³** against NAAQ limit value of **80 ug/m³** (24 hours Time Weighted).

Ammonia (NH<sub>3</sub>) concentrations were monitored less than 5 ug/m<sup>3</sup> at all monitoring locations against NAAQ limit value of 400 ug/m<sup>3</sup> (24 hours Time Weighted).

**O**<sub>3</sub> concentrations (hourly samples reported for 8-hour average) were monitored in the range between 10-35.4 ug/m³ with a mean value of 15.1 ug/m³ against NAAQ limit value of 100 ug/m³ (8 hours Time Weighted).

**CO**: Monitored values were less than 1000 ug/m³ during the study period against NAAQ limit value of 2 mg/m³ (2,000 ug/m³) (8 hours Time Weighted).

Particulate Lead (Pb) concentrations were monitored less than 0.1 ug/m³ at all monitoring locations against NAAQ limit value of 1.0 ug/m³ (24 hours Time Weighted).

Arsenic (As) concentrations were monitored less than 1 nanogram/cu.m (ng/m³) at all monitoring locations against NAAQ limit value of 6 ng/m³ (annual mean).

**Nickel (Ni)** concentrations were monitored **less than 1 ng/m³** at all monitoring locations against NAAQ limit value of 20 ng/m³ (annual mean).

Benzene ( $C_6H_6$ ) concentrations were monitored less than 0.01 ug/m<sup>3</sup> at all monitoring locations against NAAQ limit value of 5 ug/m<sup>3</sup> (annual mean).

Benzo(a) Pyrene (BaP) concentrations were monitored less than 0.1 ng/m³ at all monitoring locations against NAAQ limit value of 1.0 ng/m³ (annual mean).

While comparing with the National Ambient Air Quality (NAAQ) Standards revised as per GSR 826(E) dated 16.11.2009, all monitored values were found to be well within the respective limit values for 24-hourly periods for Industrial, Residential, Rural and other Areas.

## Table: 3.8 Ambient Air Quality Data at A1-RCL RR Nagar Plant

Season: Premonsoon (Jul.-Sep.2024)

Sample Size: 24 hly. (otherwise mentioned)

| Monito         | ring         | Particulat      | es, ug/m³        |                 | Ga              | seous Polluta    | ants, ug/m³        |                    |                  | Other Pollut    | tants (Particu | late Phase)                                          |                 |
|----------------|--------------|-----------------|------------------|-----------------|-----------------|------------------|--------------------|--------------------|------------------|-----------------|----------------|------------------------------------------------------|-----------------|
| Date           | Period, hrs. | PM2.5           | PM10             | SO <sub>2</sub> | NOx             | NH <sub>3</sub>  | O₃<br>(8-hly Avg.) | CO<br>(8-hly Avg.) | Pb,<br>ug/m³     | As,<br>ng/m³    | Ni,<br>ng/m³   | C <sub>6</sub> H <sub>6</sub> ,<br>ug/m <sup>3</sup> | BaP,<br>ng/m³   |
| 04-05.07.2024  | 06:00-06:00  | 32              | 58               | 10              | 13              | <5               | 22.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.07.2024  | 06:00-06:00  | 28              | 54               | 12              | 15              | <5               | 20.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.07.2024  | 06:00-06:00  | 35              | 62               | 11              | 14              | <5               | 19.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.07.2024  | 06:00-06:00  | 31              | 57               | 13              | 17              | <5               | 21.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 20-21.07.2024  | 06:00-06:00  | 34              | 60               | 10              | 14              | <5               | 28.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.07.2024  | 06:00-06:00  | 37              | 62               | 12              | 15              | <5               | 27.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.07.2024  | 06:00-06:00  | 33              | 58               | 14              | 18              | <5               | 20.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30. 07.2024 | 06:00-06:00  | 30              | 55               | 12              | 15              | <5               | 21.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 03-04.08.2024  | 06:00-06:00  | 26              | 51               | 13              | 17              | <5               | 20.5               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 04-05.08.2024  | 06:00-06:00  | 30              | 54               | 11              | 14              | <5               | 27.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 11-12.08.2024  | 06:00-06:00  | 34              | 58               | 15              | 21              | <5               | 25.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.08.2024  | 06:00-06:00  | 31              | 56               | 12              | 16              | <5               | 24.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.08.2024  | 06:00-06:00  | 33              | 55               | 14              | 18              | <5               | 22.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.08.2024  | 06:00-06:00  | 38              | 60               | 13              | 15              | <5               | 21.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 27-28.08.2024  | 06:00-06:00  | 32              | 54               | 12              | 14              | <5               | 20.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.08.2024  | 06:00-06:00  | 30              | 51               | 14              | 18              | <5               | 21.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.09.2024  | 06:00-06:00  | 27              | 49               | 16              | 20              | <5               | 22.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 06-07.09.2024  | 06:00-06:00  | 30              | 53               | 13              | 17              | <5               | 24.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.09.2024  | 06:00-06:00  | 34              | 56               | 15              | 21              | <5               | 20.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 14-15.09.2024  | 06:00-06:00  | 38              | 65               | 14              | 18              | <5               | 15.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.09.2024  | 06:00-06:00  | 35              | 60               | 12              | 15              | <5               | 20.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.09.2024  | 06:00-06:00  | 33              | 55               | 13              | 17              | <5               | 17.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.09.2024  | 06:00-06:00  | 30              | 53               | 15              | 19              | <5               | 18.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30.09.2024  | 06:00-06:00  | 37              | 63               | 14              | 17              | <5               | 20.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Range (Minimu  | m-Maximum)   | 26-38           | 49-65            | 10-16           | 13-21           | <5               | 15.8-28.4          | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Mean V         | alue         | 32.4            | 56.6             | 12.9            | 16.6            | <5               | 21.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| NAAQ N         | orms*        | 60<br>(24 hrs.) | 100<br>(24 hrs.) | 80<br>(24 hrs.) | 80<br>(24 hrs.) | 400<br>(24 hrs.) | 100<br>(8 hrs.)    | 2,000<br>(8 hrs.)  | 1.0<br>(24 hrs.) | 6.0<br>(annual) | 20<br>(annual) | 5.0<br>(annual)                                      | 1.0<br>(annual) |

<sup>\*:</sup> NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

# Table: 3.9 Ambient Air Quality Data at A2-Vachchakarapatti

Season : Premonsoon (Jul.-Sep.2024)

Sample Size : 24 hly. (otherwise mentioned)

| Jeason . i i   | emonsoon (Ju | <del>- '</del>  |                  | r -             |                 |                  |                    |                    | Jaiii            | ple Size : 2    | <u>_</u>       |                                                      | lioneu)         |
|----------------|--------------|-----------------|------------------|-----------------|-----------------|------------------|--------------------|--------------------|------------------|-----------------|----------------|------------------------------------------------------|-----------------|
| Monito         | ring         | Particulat      | es, ug/m³        |                 | Ga              | seous Polluta    |                    |                    |                  |                 | ants (Particu  |                                                      |                 |
| Date           | Period, hrs. | PM2.5           | PM10             | SO <sub>2</sub> | NOx             | NH₃              | O₃<br>(8-hly Avg.) | CO<br>(8-hly Avg.) | Pb,<br>ug/m³     | As,<br>ng/m³    | Ni,<br>ng/m³   | C <sub>6</sub> H <sub>6</sub> ,<br>ug/m <sup>3</sup> | BaP,<br>ng/m³   |
| 04-05.07.2024  | 06:00-06:00  | 35              | 62               | 18              | 21              | <5               | 26.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.07.2024  | 06:00-06:00  | 33              | 58               | 22              | 24              | <5               | 30.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.07.2024  | 06:00-06:00  | 28              | 50               | 18              | 20              | <5               | 32.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.07.2024  | 06:00-06:00  | 31              | 54               | 23              | 26              | <5               | 30.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 20-21.07.2024  | 06:00-06:00  | 30              | 51               | 17              | 19              | <5               | 32.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.07.2024  | 06:00-06:00  | 34              | 55               | 20              | 23              | <5               | 35.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.07.2024  | 06:00-06:00  | 29              | 51               | 18              | 21              | <5               | 33.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30. 07.2024 | 06:00-06:00  | 33              | 54               | 16              | 20              | <5               | 32.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 03-04.08.2024  | 06:00-06:00  | 37              | 58               | 15              | 18              | <5               | 30.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 04-05.08.2024  | 06:00-06:00  | 26              | 50               | 21              | 26              | <b>&lt;</b> 5    | 26.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 11-12.08.2024  | 06:00-06:00  | 30              | 53               | 17              | 20              | <5               | 26.9               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.08.2024  | 06:00-06:00  | 24              | 47               | 15              | 18              | <5               | 30.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.08.2024  | 06:00-06:00  | 34              | 55               | 16              | 19              | <5               | 28.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.08.2024  | 06:00-06:00  | 37              | 58               | 20              | 24              | <b>&lt;</b> 5    | 23.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 27-28.08.2024  | 06:00-06:00  | 30              | 54               | 22              | 24              | <5               | 22.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.08.2024  | 06:00-06:00  | 35              | 57               | 17              | 20              | <5               | 29.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.09.2024  | 06:00-06:00  | 33              | 55               | 19              | 22              | <b>&lt;</b> 5    | 25.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 06-07.09.2024  | 06:00-06:00  | 30              | 53               | 21              | 25              | <b>&lt;</b> 5    | 30.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.09.2024  | 06:00-06:00  | 34              | 57               | 17              | 20              | <b>&lt;</b> 5    | 32.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 14-15.09.2024  | 06:00-06:00  | 32              | 52               | 20              | 24              | <b>&lt;</b> 5    | 28.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.09.2024  | 06:00-06:00  | 30              | 50               | 22              | 26              | <b>&lt;</b> 5    | 26.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.09.2024  | 06:00-06:00  | 28              | 48               | 24              | 27              | <5               | 25.9               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.09.2024  | 06:00-06:00  | 31              | 52               | 21              | 25              | <5               | 28.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30.09.2024  | 06:00-06:00  | 26              | 46               | 23              | 27              | <5               | 30.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Range (Minimu  | m-Maximum)   | 24-37           | 46-62            | 15-24           | 18-27           | <5               | 22.6-35.4          | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Mean V         | alue         | 31.3            | 53.3             | 19.3            | 22.5            | <5               | 29.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| NAAQ N         | orms*        | 60<br>(24 hrs.) | 100<br>(24 hrs.) | 80<br>(24 hrs.) | 80<br>(24 hrs.) | 400<br>(24 hrs.) | 100<br>(8 hrs.)    | 2,000<br>(8 hrs.)  | 1.0<br>(24 hrs.) | 6.0<br>(annual) | 20<br>(annual) | 5.0<br>(annual)                                      | 1.0<br>(annual) |

<sup>\*:</sup> NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

# Table: 3.10 Ambient Air Quality Data at A3-Sennalkudi

Season: Premonsoon (Jul.-Sep.2024)

Sample Size: 24 hly. (otherwise mentioned)

| Monito         | ring         | <del>- '</del>  | es, ug/m³        |                 | Ga              | seous Polluta    | ants, ug/m³        |                    | Jam              | Other Pollut    | ants (Particu  |                                                      |                 |
|----------------|--------------|-----------------|------------------|-----------------|-----------------|------------------|--------------------|--------------------|------------------|-----------------|----------------|------------------------------------------------------|-----------------|
| Date           | Period, hrs. | PM2.5           | PM10             | SO <sub>2</sub> | NOx             | NH <sub>3</sub>  | O₃<br>(8-hly Avg.) | CO<br>(8-hly Avg.) | Pb,<br>ug/m³     | As,<br>ng/m³    | Ni,<br>ng/m³   | C <sub>6</sub> H <sub>6</sub> ,<br>ug/m <sup>3</sup> | BaP,<br>ng/m³   |
| 04-05.07.2024  | 06:00-06:00  | 14              | 27               | 6               | 8               | <5               | 10.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.07.2024  | 06:00-06:00  | 17              | 31               | 7               | 8               | <5               | 10.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.07.2024  | 06:00-06:00  | 13              | 25               | 6               | 7               | <5               | 11.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.07.2024  | 06:00-06:00  | 15              | 29               | 8               | 9               | <5               | 10.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 20-21.07.2024  | 06:00-06:00  | 12              | 24               | 8               | 10              | <5               | 10.5               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.07.2024  | 06:00-06:00  | 16              | 30               | 7               | 8               | <5               | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.07.2024  | 06:00-06:00  | 12              | 21               | 7               | 9               | <5               | 11.5               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30. 07.2024 | 06:00-06:00  | 14              | 25               | 8               | 10              | <5               | 10.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 03-04.08.2024  | 06:00-06:00  | 15              | 28               | 9               | 11              | <5               | 10.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 04-05.08.2024  | 06:00-06:00  | 12              | 24               | 8               | 10              | <5               | 13.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 11-12.08.2024  | 06:00-06:00  | 14              | 20               | 7               | 8               | <5               | 12.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.08.2024  | 06:00-06:00  | 17              | 31               | 7               | 9               | <5               | 11.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.08.2024  | 06:00-06:00  | 13              | 24               | 8               | 10              | <5               | 10.5               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.08.2024  | 06:00-06:00  | 16              | 30               | 6               | 8               | <5               | 11.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 27-28.08.2024  | 06:00-06:00  | 12              | 23               | 8               | 9               | <5               | 10.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.08.2024  | 06:00-06:00  | 11              | 20               | 7               | 8               | <5               | 11.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.09.2024  | 06:00-06:00  | 15              | 28               | 6               | 7               | <b>&lt;</b> 5    | 10.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 06-07.09.2024  | 06:00-06:00  | 12              | 23               | 9               | 10              | <5               | 10.5               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.09.2024  | 06:00-06:00  | 16              | 33               | 8               | 9               | <5               | 10.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 14-15.09.2024  | 06:00-06:00  | 14              | 27               | 7               | 8               | <b>&lt;</b> 5    | 10.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.09.2024  | 06:00-06:00  | 13              | 25               | 8               | 10              | <b>&lt;</b> 5    | 10.0               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.09.2024  | 06:00-06:00  | 15              | 31               | 7               | 9               | <5               | 11.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.09.2024  | 06:00-06:00  | 18              | 34               | 7               | 8               | <5               | 10.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30.09.2024  | 06:00-06:00  | 21              | 38               | 8               | 11              | <5               | 11.0               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Range (Minimu  | m-Maximum)   | 11-21           | 20-38            | 6-9             | 7-11            | <5               | 10-13.6            | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Mean V         | /alue        | 14.5            | 27.1             | 7.4             | 8.9             | <5               | 11.0               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| NAAQ N         | orms*        | 60<br>(24 hrs.) | 100<br>(24 hrs.) | 80<br>(24 hrs.) | 80<br>(24 hrs.) | 400<br>(24 hrs.) | 100<br>(8 hrs.)    | 2,000<br>(8 hrs.)  | 1.0<br>(24 hrs.) | 6.0<br>(annual) | 20<br>(annual) | 5.0<br>(annual)                                      | 1.0<br>(annual) |

<sup>\*:</sup> NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

## Table: 3.11 Ambient Air Quality Data at A4-Valaiyapatti

Season: Premonsoon (Jul.-Sep.2024)

Sample Size: 24 hlv. (otherwise mentioned)

| Ocason. 11     | emonsoon (Ju | <del>- '</del>  |                  | г               |                 |                  |                    |                    | Jaiii            | ple Size : 2    | <u>_</u>       |                                          | lioneu)         |
|----------------|--------------|-----------------|------------------|-----------------|-----------------|------------------|--------------------|--------------------|------------------|-----------------|----------------|------------------------------------------|-----------------|
| Monito         | ring         | Particulat      | es, ug/m³        |                 | Ga              | seous Polluta    |                    |                    |                  |                 | ants (Particu  |                                          |                 |
| Date           | Period, hrs. | PM2.5           | PM10             | SO <sub>2</sub> | NOx             | NH₃              | O₃<br>(8-hly Avg.) | CO<br>(8-hly Avg.) | Pb,<br>ug/m³     | As,<br>ng/m³    | Ni,<br>ng/m³   | C <sub>6</sub> H <sub>6</sub> ,<br>ug/m³ | BaP,<br>ng/m³   |
| 04-05.07.2024  | 06:00-06:00  | 10              | 18               | 6               | 7               | <5               | 12.4               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 05-06.07.2024  | 06:00-06:00  | 17              | 30               | 8               | 9               | <5               | 10.7               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 12-13.07.2024  | 06:00-06:00  | 15              | 27               | 7               | 8               | <b>&lt;</b> 5    | 10.2               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 13-14.07.2024  | 06:00-06:00  | 13              | 24               | 9               | 10              | <b>&lt;</b> 5    | 11.0               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 20-21.07.2024  | 06:00-06:00  | 15              | 29               | 10              | 11              | <b>&lt;</b> 5    | 10.6               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 21-22.07.2024  | 06:00-06:00  | 12              | 22               | 9               | 10              | <5               | 10.4               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 28-29.07.2024  | 06:00-06:00  | 14              | 25               | 8               | 9               | <5               | 10.2               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 29-30. 07.2024 | 06:00-06:00  | 11              | 21               | 8               | 10              | <5               | 10.0               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 03-04.08.2024  | 06:00-06:00  | 10              | 20               | 10              | 12              | <5               | 11.3               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 04-05.08.2024  | 06:00-06:00  | 13              | 24               | 7               | 9               | <5               | 10.7               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 11-12.08.2024  | 06:00-06:00  | 11              | 21               | 9               | 11              | <5               | 12.4               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 12-13.08.2024  | 06:00-06:00  | 15              | 27               | 9               | 10              | <5               | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 21-22.08.2024  | 06:00-06:00  | 12              | 24               | 11              | 12              | <5               | 11.5               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 22-23.08.2024  | 06:00-06:00  | 14              | 28               | 10              | 11              | <b>&lt;</b> 5    | 12.3               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 27-28.08.2024  | 06:00-06:00  | 12              | 23               | 8               | 10              | <5               | 10.6               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 28-29.08.2024  | 06:00-06:00  | 13              | 25               | 11              | 13              | <5               | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 05-06.09.2024  | 06:00-06:00  | 16              | 29               | 10              | 12              | <b>&lt;</b> 5    | 15.2               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 06-07.09.2024  | 06:00-06:00  | 14              | 25               | 8               | 10              | <b>&lt;</b> 5    | 10.4               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 13-14.09.2024  | 06:00-06:00  | 17              | 31               | 9               | 11              | <b>&lt;</b> 5    | 10.7               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 14-15.09.2024  | 06:00-06:00  | 12              | 26               | 7               | 9               | <b>&lt;</b> 5    | 11.8               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 21-22.09.2024  | 06:00-06:00  | 15              | 32               | 8               | 10              | <5               | 10.6               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 22-23.09.2024  | 06:00-06:00  | 18              | 35               | 8               | 9               | <5               | 10.0               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 28-29.09.2024  | 06:00-06:00  | 14              | 30               | 7               | 9               | <5               | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| 29-30.09.2024  | 06:00-06:00  | 16              | 33               | 7               | 8               | <5               | 10.4               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| Range (Minimu  | m-Maximum)   | 10-18           | 18-35            | 6-11            | 7-13            | <5               | 10-15.2            | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| Mean V         | alue         | 13.7            | 26.2             | 8.5             | 10.0            | <5               | 11.2               | <1000              | <0.1             | <1              | <1             | <0.01                                    | <0.1            |
| NAAQ N         | orms*        | 60<br>(24 hrs.) | 100<br>(24 hrs.) | 80<br>(24 hrs.) | 80<br>(24 hrs.) | 400<br>(24 hrs.) | 100<br>(8 hrs.)    | 2,000<br>(8 hrs.)  | 1.0<br>(24 hrs.) | 6.0<br>(annual) | 20<br>(annual) | 5.0<br>(annual)                          | 1.0<br>(annual) |

<sup>\*:</sup> NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

# Table: 3.12 Ambient Air Quality Data at A5-Avudaiyapuram

Season: Premonsoon (Jul.-Sep.2024) (Ore Transport Road) Sample Size: 24 hly. (otherwise mentioned)

| Monito         | ring         | Particulat      | es, ug/m³        |                 | Ga              | seous Polluta    | ants, ug/m³        |                    |                  | Other Pollut    | tants (Particu | late Phase)                                          | ,               |
|----------------|--------------|-----------------|------------------|-----------------|-----------------|------------------|--------------------|--------------------|------------------|-----------------|----------------|------------------------------------------------------|-----------------|
| Date           | Period, hrs. | PM2.5           | PM10             | SO <sub>2</sub> | NOx             | NH <sub>3</sub>  | O₃<br>(8-hly Avg.) | CO<br>(8-hly Avg.) | Pb,<br>ug/m³     | As,<br>ng/m³    | Ni,<br>ng/m³   | C <sub>6</sub> H <sub>6</sub> ,<br>ug/m <sup>3</sup> | BaP,<br>ng/m³   |
| 04-05.07.2024  | 06:00-06:00  | 19              | 35               | 13              | 15              | <5               | 11.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.07.2024  | 06:00-06:00  | 20              | 38               | 11              | 14              | <5               | 12.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.07.2024  | 06:00-06:00  | 18              | 34               | 10              | 13              | <5               | 10.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.07.2024  | 06:00-06:00  | 22              | 40               | 12              | 15              | <5               | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 20-21.07.2024  | 06:00-06:00  | 21              | 38               | 11              | 14              | <5               | 15.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.07.2024  | 06:00-06:00  | 17              | 35               | 10              | 13              | <5               | 10.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.07.2024  | 06:00-06:00  | 20              | 37               | 13              | 15              | <5               | 11.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30. 07.2024 | 06:00-06:00  | 19              | 39               | 12              | 14              | <5               | 11.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 03-04.08.2024  | 06:00-06:00  | 20              | 41               | 16              | 18              | <5               | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 04-05.08.2024  | 06:00-06:00  | 22              | 44               | 12              | 15              | <5               | 15.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 11-12.08.2024  | 06:00-06:00  | 26              | 47               | 14              | 18              | <5               | 11.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.08.2024  | 06:00-06:00  | 20              | 42               | 11              | 14              | <5               | 12.0               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.08.2024  | 06:00-06:00  | 23              | 45               | 13              | 15              | <5               | 11.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.08.2024  | 06:00-06:00  | 20              | 38               | 10              | 12              | <5               | 10.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 27-28.08.2024  | 06:00-06:00  | 18              | 34               | 12              | 15              | <5               | 11.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.08.2024  | 06:00-06:00  | 21              | 41               | 15              | 16              | <5               | 10.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.09.2024  | 06:00-06:00  | 23              | 44               | 10              | 13              | <5               | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 06-07.09.2024  | 06:00-06:00  | 22              | 40               | 12              | 15              | <5               | 11.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.09.2024  | 06:00-06:00  | 24              | 46               | 15              | 17              | <5               | 12.5               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 14-15.09.2024  | 06:00-06:00  | 20              | 43               | 13              | 16              | <5               | 11.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.09.2024  | 06:00-06:00  | 23              | 45               | 15              | 19              | <5               | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.09.2024  | 06:00-06:00  | 27              | 48               | 14              | 17              | <5               | 10.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.09.2024  | 06:00-06:00  | 21              | 38               | 12              | 15              | <5               | 11.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30.09.2024  | 06:00-06:00  | 28              | 52               | 16              | 20              | <5               | 13.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Range (Minimu  | m-Maximum)   | 17-28           | 34-52            | 10-16           | 12-20           | <5               | 10.4-15.4          | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Mean V         | /alue        | 21.4            | 41.0             | 12.6            | 15.3            | <5               | 11.9               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| NAAQ N         | orms*        | 60<br>(24 hrs.) | 100<br>(24 hrs.) | 80<br>(24 hrs.) | 80<br>(24 hrs.) | 400<br>(24 hrs.) | 100<br>(8 hrs.)    | 2,000<br>(8 hrs.)  | 1.0<br>(24 hrs.) | 6.0<br>(annual) | 20<br>(annual) | 5.0<br>(annual)                                      | 1.0<br>(annual) |

<sup>\*:</sup> NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

## Table: 3.13 Ambient Air Quality Data at A6-Etturvattam

Season: Premonsoon (Jul.-Sep.2024)

Sample Size: 24 hlv. (otherwise mentioned)

| Jeason . i i   | emonsoon (Ju |                 |                  | r -             |                 |                  |                    |                    | Jaiii            | ple Size : 2    |                |                                                      | lioneu)         |
|----------------|--------------|-----------------|------------------|-----------------|-----------------|------------------|--------------------|--------------------|------------------|-----------------|----------------|------------------------------------------------------|-----------------|
| Monito         | ring         | Particulat      | es, ug/m³        |                 | Ga              | seous Polluta    |                    |                    |                  |                 | ants (Particu  |                                                      |                 |
| Date           | Period, hrs. | PM2.5           | PM10             | SO <sub>2</sub> | NOx             | NH₃              | O₃<br>(8-hly Avg.) | CO<br>(8-hly Avg.) | Pb,<br>ug/m³     | As,<br>ng/m³    | Ni,<br>ng/m³   | C <sub>6</sub> H <sub>6</sub> ,<br>ug/m <sup>3</sup> | BaP,<br>ng/m³   |
| 04-05.07.2024  | 06:00-06:00  | 21              | 43               | 11              | 14              | <5               | 14.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.07.2024  | 06:00-06:00  | 19              | 40               | 13              | 16              | <5               | 12.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.07.2024  | 06:00-06:00  | 23              | 45               | 15              | 18              | <5               | 15.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.07.2024  | 06:00-06:00  | 24              | 47               | 12              | 14              | <5               | 13.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 20-21.07.2024  | 06:00-06:00  | 20              | 43               | 14              | 17              | <5               | 12.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.07.2024  | 06:00-06:00  | 26              | 53               | 17              | 21              | <5               | 14.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.07.2024  | 06:00-06:00  | 22              | 41               | 16              | 18              | <5               | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30. 07.2024 | 06:00-06:00  | 24              | 45               | 12              | 15              | <5               | 15.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 03-04.08.2024  | 06:00-06:00  | 27              | 49               | 14              | 19              | <5               | 12.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 04-05.08.2024  | 06:00-06:00  | 25              | 45               | 15              | 20              | <5               | 16.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 11-12.08.2024  | 06:00-06:00  | 30              | 51               | 13              | 16              | <5               | 13.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.08.2024  | 06:00-06:00  | 28              | 48               | 11              | 15              | <5               | 12.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.08.2024  | 06:00-06:00  | 31              | 53               | 15              | 17              | <5               | 15.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.08.2024  | 06:00-06:00  | 25              | 46               | 13              | 19              | <5               | 11.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 27-28.08.2024  | 06:00-06:00  | 33              | 52               | 14              | 18              | <5               | 13.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.08.2024  | 06:00-06:00  | 30              | 52               | 17              | 20              | <5               | 20.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.09.2024  | 06:00-06:00  | 26              | 48               | 15              | 18              | <5               | 15.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 06-07.09.2024  | 06:00-06:00  | 29              | 50               | 16              | 19              | <5               | 13.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.09.2024  | 06:00-06:00  | 30              | 54               | 14              | 18              | <5               | 17.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 14-15.09.2024  | 06:00-06:00  | 32              | 55               | 18              | 20              | <5               | 20.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.09.2024  | 06:00-06:00  | 27              | 51               | 15              | 18              | <5               | 12.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.09.2024  | 06:00-06:00  | 30              | 58               | 16              | 18              | <5               | 14.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.09.2024  | 06:00-06:00  | 24              | 46               | 13              | 15              | <5               | 15.9               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30.09.2024  | 06:00-06:00  | 28              | 48               | 15              | 17              | <5               | 12.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Range (Minimu  | m-Maximum)   | 19-33           | 40-58            | 11-18           | 14-21           | <5               | 11.4-20.2          | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Mean V         | alue         | 26.4            | 48.5             | 14.3            | 17.5            | <5               | 14.5               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| NAAQ N         | orms*        | 60<br>(24 hrs.) | 100<br>(24 hrs.) | 80<br>(24 hrs.) | 80<br>(24 hrs.) | 400<br>(24 hrs.) | 100<br>(8 hrs.)    | 2,000<br>(8 hrs.)  | 1.0<br>(24 hrs.) | 6.0<br>(annual) | 20<br>(annual) | 5.0<br>(annual)                                      | 1.0<br>(annual) |

<sup>\*:</sup> NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

## Table: 3.14 Ambient Air Quality Data at A7-Kumaralingapuram

Season: Premonsoon (Jul.-Sep.2024)

Sample Size: 24 hly. (otherwise mentioned)

| Monito         | emonsoon (Ju | Particulat      |                  |                 | Ga              | seous Polluta    | ants ug/m³                     |                    | Jani             |                 | tants (Particu |                                                      | iioriou <sub>j</sub> |
|----------------|--------------|-----------------|------------------|-----------------|-----------------|------------------|--------------------------------|--------------------|------------------|-----------------|----------------|------------------------------------------------------|----------------------|
| Date           | Period, hrs. | PM2.5           | PM10             | SO <sub>2</sub> | NOx             | NH <sub>3</sub>  | O <sub>3</sub><br>(8-hly Avg.) | CO<br>(8-hly Avg.) | Pb,<br>ug/m³     | As,<br>ng/m³    | Ni,<br>ng/m³   | C <sub>6</sub> H <sub>6</sub> ,<br>ug/m <sup>3</sup> | BaP,<br>ng/m³        |
| 04-05.07.2024  | 06:00-06:00  | 20              | 37               | 9               | 11              | <5               | 10.4                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 05-06.07.2024  | 06:00-06:00  | 21              | 39               | 8               | 10              | <5               | 10.7                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 12-13.07.2024  | 06:00-06:00  | 18              | 35               | 7               | 8               | <5               | 11.2                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 13-14.07.2024  | 06:00-06:00  | 23              | 40               | 9               | 10              | <5               | 10.5                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 20-21.07.2024  | 06:00-06:00  | 26              | 42               | 8               | 10              | <5               | 10.1                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 21-22.07.2024  | 06:00-06:00  | 22              | 39               | 10              | 12              | <5               | 10.0                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 28-29.07.2024  | 06:00-06:00  | 18              | 34               | 8               | 11              | <5               | 13.1                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 29-30. 07.2024 | 06:00-06:00  | 16              | 33               | 7               | 9               | <5               | 10.7                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 03-04.08.2024  | 06:00-06:00  | 19              | 36               | 9               | 11              | <5               | 11.5                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 04-05.08.2024  | 06:00-06:00  | 22              | 40               | 8               | 10              | <5               | 14.0                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 11-12.08.2024  | 06:00-06:00  | 20              | 38               | 10              | 12              | <5               | 11.8                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 12-13.08.2024  | 06:00-06:00  | 24              | 42               | 8               | 10              | <5               | 15.1                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 21-22.08.2024  | 06:00-06:00  | 18              | 33               | 9               | 11              | <5               | 12.4                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 22-23.08.2024  | 06:00-06:00  | 20              | 41               | 9               | 12              | <5               | 10.6                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 27-28.08.2024  | 06:00-06:00  | 17              | 33               | 7               | 9               | <5               | 10.3                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 28-29.08.2024  | 06:00-06:00  | 16              | 31               | 11              | 13              | <5               | 11.8                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 05-06.09.2024  | 06:00-06:00  | 19              | 38               | 8               | 10              | <5               | 10.4                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 06-07.09.2024  | 06:00-06:00  | 23              | 41               | 9               | 12              | <5               | 10.9                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 13-14.09.2024  | 06:00-06:00  | 21              | 40               | 11              | 14              | <5               | 11.2                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 14-15.09.2024  | 06:00-06:00  | 20              | 38               | 10              | 11              | <5               | 11.5                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 21-22.09.2024  | 06:00-06:00  | 26              | 45               | 8               | 10              | <5               | 10.2                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 22-23.09.2024  | 06:00-06:00  | 22              | 40               | 9               | 12              | <5               | 11.3                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 28-29.09.2024  | 06:00-06:00  | 24              | 42               | 8               | 10              | <5               | 15.2                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| 29-30.09.2024  | 06:00-06:00  | 23              | 40               | 10              | 11              | <5               | 11.8                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| Range (Minimu  | m-Maximum)   | 16-26           | 31-45            | 7-11            | 8-14            | <5               | 10-15.2                        | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| Mean V         | /alue        | 20.8            | 38.2             | 8.8             | 10.8            | <5               | 11.5                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1                 |
| NAAQ N         | orms*        | 60<br>(24 hrs.) | 100<br>(24 hrs.) | 80<br>(24 hrs.) | 80<br>(24 hrs.) | 400<br>(24 hrs.) | 100<br>(8 hrs.)                | 2,000<br>(8 hrs.)  | 1.0<br>(24 hrs.) | 6.0<br>(annual) | 20<br>(annual) | 5.0<br>(annual)                                      | 1.0<br>(annual)      |

<sup>\*:</sup> NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

## Table: 3.15 Ambient Air Quality Data at A8-Pochakapatti

Season: Premonsoon (Jul.-Sep.2024)

Sample Size: 24 hlv. (otherwise mentioned)

|                | emonsoon (Ju |                 |                  | Ī               |                 |                  |                    |                    | Saiii            | ple Size : 2    | <u>_</u>       |                                                      | lioneu)         |
|----------------|--------------|-----------------|------------------|-----------------|-----------------|------------------|--------------------|--------------------|------------------|-----------------|----------------|------------------------------------------------------|-----------------|
| Monito         | ring         | Particulat      | es, ug/m³        |                 | Ga              | seous Polluta    |                    |                    |                  |                 | ants (Particu  |                                                      | 1               |
| Date           | Period, hrs. | PM2.5           | PM10             | SO <sub>2</sub> | NOx             | NH <sub>3</sub>  | O₃<br>(8-hly Avg.) | CO<br>(8-hly Avg.) | Pb,<br>ug/m³     | As,<br>ng/m³    | Ni,<br>ng/m³   | C <sub>6</sub> H <sub>6</sub> ,<br>ug/m <sup>3</sup> | BaP,<br>ng/m³   |
| 04-05.07.2024  | 06:00-06:00  | 20              | 38               | 10              | 12              | <5               | 12.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.07.2024  | 06:00-06:00  | 18              | 35               | 9               | 10              | <5               | 11.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.07.2024  | 06:00-06:00  | 22              | 40               | 11              | 13              | <5               | 10.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.07.2024  | 06:00-06:00  | 26              | 43               | 13              | 15              | <5               | 11.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 20-21.07.2024  | 06:00-06:00  | 21              | 38               | 12              | 14              | <5               | 12.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.07.2024  | 06:00-06:00  | 20              | 36               | 11              | 13              | <5               | 11.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.07.2024  | 06:00-06:00  | 23              | 41               | 10              | 12              | <5               | 11.5               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30. 07.2024 | 06:00-06:00  | 18              | 35               | 15              | 18              | <5               | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 03-04.08.2024  | 06:00-06:00  | 19              | 37               | 12              | 14              | <5               | 13.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 04-05.08.2024  | 06:00-06:00  | 20              | 40               | 14              | 17              | <b>&lt;</b> 5    | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 11-12.08.2024  | 06:00-06:00  | 22              | 41               | 10              | 13              | <b>&lt;</b> 5    | 10.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.08.2024  | 06:00-06:00  | 18              | 37               | 12              | 15              | <5               | 12.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.08.2024  | 06:00-06:00  | 24              | 41               | 12              | 14              | <b>&lt;</b> 5    | 11.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.08.2024  | 06:00-06:00  | 21              | 38               | 13              | 18              | <5               | 13.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 27-28.08.2024  | 06:00-06:00  | 18              | 36               | 10              | 14              | <5               | 12.4               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.08.2024  | 06:00-06:00  | 20              | 42               | 11              | 15              | <b>&lt;</b> 5    | 11.8               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.09.2024  | 06:00-06:00  | 23              | 45               | 12              | 15              | <5               | 12.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 06-07.09.2024  | 06:00-06:00  | 22              | 41               | 11              | 13              | <5               | 14.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.09.2024  | 06:00-06:00  | 20              | 40               | 10              | 13              | <5               | 14.5               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 14-15.09.2024  | 06:00-06:00  | 17              | 38               | 14              | 17              | <5               | 13.7               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.09.2024  | 06:00-06:00  | 19              | 41               | 11              | 15              | <5               | 15.2               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.09.2024  | 06:00-06:00  | 22              | 44               | 13              | 16              | <5               | 14.3               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.09.2024  | 06:00-06:00  | 20              | 41               | 10              | 12              | <b>&lt;</b> 5    | 12.1               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30.09.2024  | 06:00-06:00  | 24              | 45               | 12              | 15              | <b>&lt;</b> 5    | 14.0               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Range (Minimu  | m-Maximum)   | 17-26           | 35-45            | 9-15            | 10-18           | <5               | 10.6-15.2          | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Mean V         | /alue        | 20.7            | 39.7             | 11.6            | 14.3            | <5               | 12.6               | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| NAAQ N         | orms*        | 60<br>(24 hrs.) | 100<br>(24 hrs.) | 80<br>(24 hrs.) | 80<br>(24 hrs.) | 400<br>(24 hrs.) | 100<br>(8 hrs.)    | 2,000<br>(8 hrs.)  | 1.0<br>(24 hrs.) | 6.0<br>(annual) | 20<br>(annual) | 5.0<br>(annual)                                      | 1.0<br>(annual) |

<sup>\*:</sup> NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

# Table: 3.16 Ambient Air Quality Data at A9-Sankaralingapuram

Season: Premonsoon (Jul.-Sep.2024)

Sample Size: 24 hly. (otherwise mentioned)

| Monito         | emonsoon (Ju | Particulat      |                  |                 | Ga              | seous Polluta    | ants ug/m³                     |                    | Jani             |                 | tants (Particu |                                                      | 101100)         |
|----------------|--------------|-----------------|------------------|-----------------|-----------------|------------------|--------------------------------|--------------------|------------------|-----------------|----------------|------------------------------------------------------|-----------------|
| Date           | Period, hrs. | PM2.5           | PM10             | SO <sub>2</sub> | NOx             | NH <sub>3</sub>  | O <sub>3</sub><br>(8-hly Avg.) | CO<br>(8-hly Avg.) | Pb,<br>ug/m³     | As,<br>ng/m³    | Ni,<br>ng/m³   | C <sub>6</sub> H <sub>6</sub> ,<br>ug/m <sup>3</sup> | BaP,<br>ng/m³   |
| 04-05.07.2024  | 06:00-06:00  | 12              | 15               | 8               | 10              | <5               | 10.6                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.07.2024  | 06:00-06:00  | 14              | 17               | 10              | 12              | <5               | 10.0                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.07.2024  | 06:00-06:00  | 13              | 15               | 9               | 11              | <5               | 10.5                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.07.2024  | 06:00-06:00  | 15              | 18               | 8               | 10              | <5               | 10.9                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 20-21.07.2024  | 06:00-06:00  | 11              | 14               | 11              | 13              | <5               | 11.5                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.07.2024  | 06:00-06:00  | 13              | 13               | 8               | 10              | <5               | 10.4                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.07.2024  | 06:00-06:00  | 14              | 17               | 9               | 10              | <5               | 10.0                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30. 07.2024 | 06:00-06:00  | 11              | 14               | 11              | 14              | <5               | 12.8                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 03-04.08.2024  | 06:00-06:00  | 11              | 13               | 10              | 12              | <5               | 11.6                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 04-05.08.2024  | 06:00-06:00  | 12              | 15               | 12              | 15              | <5               | 10.6                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 11-12.08.2024  | 06:00-06:00  | 16              | 18               | 10              | 11              | <5               | 11.3                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 12-13.08.2024  | 06:00-06:00  | 13              | 14               | 10              | 13              | <5               | 10.5                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.08.2024  | 06:00-06:00  | 15              | 18               | 13              | 15              | <5               | 12.7                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.08.2024  | 06:00-06:00  | 11              | 13               | 11              | 14              | <5               | 14.1                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 27-28.08.2024  | 06:00-06:00  | 14              | 17               | 10              | 12              | <5               | 12.0                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.08.2024  | 06:00-06:00  | 12              | 13               | 9               | 11              | <5               | 10.6                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 05-06.09.2024  | 06:00-06:00  | 10              | 13               | 9               | 10              | <5               | 11.2                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 06-07.09.2024  | 06:00-06:00  | 12              | 14               | 8               | 10              | <5               | 10.5                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 13-14.09.2024  | 06:00-06:00  | 12              | 15               | 10              | 13              | <5               | 10.0                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 14-15.09.2024  | 06:00-06:00  | 16              | 18               | 8               | 10              | <b>&lt;</b> 5    | 11.2                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 21-22.09.2024  | 06:00-06:00  | 13              | 15               | 9               | 11              | <5               | 10.5                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 22-23.09.2024  | 06:00-06:00  | 14              | 17               | 11              | 13              | <5               | 10.2                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 28-29.09.2024  | 06:00-06:00  | 17              | 19               | 10              | 13              | <5               | 11.0                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| 29-30.09.2024  | 06:00-06:00  | 13              | 15               | 9               | 11              | <5               | 10.5                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Range (Minimu  | m-Maximum)   | 10-17           | 13-19            | 8-13            | 10-15           | <5               | 10-14.1                        | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| Mean V         | /alue        | 13.1            | 15.4             | 9.7             | 11.8            | <5               | 11.1                           | <1000              | <0.1             | <1              | <1             | <0.01                                                | <0.1            |
| NAAQ N         | orms*        | 60<br>(24 hrs.) | 100<br>(24 hrs.) | 80<br>(24 hrs.) | 80<br>(24 hrs.) | 400<br>(24 hrs.) | 100<br>(8 hrs.)                | 2,000<br>(8 hrs.)  | 1.0<br>(24 hrs.) | 6.0<br>(annual) | 20<br>(annual) | 5.0<br>(annual)                                      | 1.0<br>(annual) |

<sup>\*:</sup> NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

# Table: 3.17 Ambient Air Quality Data at A10-Sulakkarai

Season: Premonsoon (Jul.-Sep.2024)

Sample Size: 24 hly. (otherwise mentioned)

| Monito         | ring         | Particulat      |                  |                 | Ga              | seous Polluta    | ants, ug/m³                 |                    |                  |                 | 4 my. (ome<br>tants (Particu |                                          |                 |
|----------------|--------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------------------|--------------------|------------------|-----------------|------------------------------|------------------------------------------|-----------------|
| Date           | Period, hrs. | PM2.5           | PM10             | SO <sub>2</sub> | NOx             | NH <sub>3</sub>  | O <sub>3</sub> (8-hly Avg.) | CO<br>(8-hly Avg.) | Pb,<br>ug/m³     | As,<br>ng/m³    | Ni,<br>ng/m³                 | C <sub>6</sub> H <sub>6</sub> ,<br>ug/m³ | BaP,<br>ng/m³   |
| 04-05.07.2024  | 06:00-06:00  | 20              | 41               | 14              | 17              | <5               | 14.1                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 05-06.07.2024  | 06:00-06:00  | 23              | 44               | 17              | 20              | <5               | 11.8                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 12-13.07.2024  | 06:00-06:00  | 21              | 40               | 13              | 15              | <5               | 13.6                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 13-14.07.2024  | 06:00-06:00  | 24              | 44               | 12              | 15              | <5               | 15.7                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 20-21.07.2024  | 06:00-06:00  | 27              | 48               | 15              | 18              | <5               | 19.2                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 21-22.07.2024  | 06:00-06:00  | 25              | 46               | 11              | 14              | <5               | 15.4                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 28-29.07.2024  | 06:00-06:00  | 23              | 42               | 13              | 17              | <5               | 12.8                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 29-30. 07.2024 | 06:00-06:00  | 21              | 38               | 15              | 18              | <5               | 16.1                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 03-04.08.2024  | 06:00-06:00  | 24              | 43               | 16              | 18              | <5               | 13.7                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 04-05.08.2024  | 06:00-06:00  | 20              | 38               | 17              | 19              | <5               | 16.9                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 11-12.08.2024  | 06:00-06:00  | 23              | 44               | 18              | 21              | <5               | 20.2                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 12-13.08.2024  | 06:00-06:00  | 25              | 48               | 15              | 18              | <5               | 17.7                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 21-22.08.2024  | 06:00-06:00  | 22              | 43               | 15              | 16              | <5               | 18.5                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 22-23.08.2024  | 06:00-06:00  | 27              | 50               | 13              | 15              | <5               | 13.6                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 27-28.08.2024  | 06:00-06:00  | 20              | 43               | 15              | 17              | <5               | 13.1                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 28-29.08.2024  | 06:00-06:00  | 23              | 47               | 14              | 18              | <5               | 14.8                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 05-06.09.2024  | 06:00-06:00  | 21              | 43               | 14              | 17              | <5               | 15.2                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 06-07.09.2024  | 06:00-06:00  | 18              | 38               | 12              | 15              | <5               | 17.1                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 13-14.09.2024  | 06:00-06:00  | 20              | 41               | 15              | 18              | <5               | 19.2                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 14-15.09.2024  | 06:00-06:00  | 23              | 45               | 13              | 16              | <5               | 18.2                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 21-22.09.2024  | 06:00-06:00  | 26              | 47               | 14              | 17              | <5               | 14.4                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 22-23.09.2024  | 06:00-06:00  | 23              | 43               | 15              | 18              | <5               | 17.0                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 28-29.09.2024  | 06:00-06:00  | 25              | 48               | 18              | 21              | <5               | 15.2                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| 29-30.09.2024  | 06:00-06:00  | 22              | 44               | 16              | 19              | <5               | 16.1                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| Range (Minimu  | m-Maximum)   | 18-27           | 38-50            | 11-18           | 14-21           | <5               | 11.8-20.2                   | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| Mean V         | /alue        | 22.8            | 43.7             | 14.6            | 17.4            | <5               | 15.8                        | <1000              | <0.1             | <1              | <1                           | <0.01                                    | <0.1            |
| NAAQ N         | orms*        | 60<br>(24 hrs.) | 100<br>(24 hrs.) | 80<br>(24 hrs.) | 80<br>(24 hrs.) | 400<br>(24 hrs.) | 100<br>(8 hrs.)             | 2,000<br>(8 hrs.)  | 1.0<br>(24 hrs.) | 6.0<br>(annual) | 20<br>(annual)               | 5.0<br>(annual)                          | 1.0<br>(annual) |

<sup>\*:</sup> NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

Table: 3.18 Abstract of Ambient Air Quality Data

|            |                                   | Pollutant Concentration, ug/m³ |         |                 |      |       |          |                 |      |  |  |
|------------|-----------------------------------|--------------------------------|---------|-----------------|------|-------|----------|-----------------|------|--|--|
| SI.<br>No. | Parameter                         | PM2.5                          | PM10    | SO <sub>2</sub> | NOx  | PM2.5 | PM10     | SO <sub>2</sub> | NOx  |  |  |
| 140.       |                                   | A1                             | -RCL RR | Nagar Pl        | ant  | A     | 2-Vachch | akarapat        | ti   |  |  |
| 1          | No. of Observations               | 24                             | 24      | 24              | 24   | 24    | 24       | 24              | 24   |  |  |
| 2          | Minimum                           | 26                             | 49      | 10              | 13   | 24    | 46       | 15              | 18   |  |  |
| 3          | 10 <sup>th</sup> Percentile Value | 29                             | 52      | 11              | 14   | 27    | 49       | 16              | 19   |  |  |
| 4          | 20 <sup>th</sup> Percentile Value | 30                             | 54      | 12              | 15   | 29    | 50       | 17              | 20   |  |  |
| 5          | 30 <sup>th</sup> Percentile Value | 30                             | 54      | 12              | 15   | 30    | 51       | 17              | 20   |  |  |
| 6          | 40 <sup>th</sup> Percentile Value | 31                             | 55      | 12              | 15   | 30    | 52       | 18              | 21   |  |  |
| 7          | 50 <sup>th</sup> Percentile Value | 33                             | 56      | 13              | 17   | 31    | 54       | 20              | 23   |  |  |
| 8          | 60 <sup>th</sup> Percentile Value | 33                             | 58      | 13              | 17   | 33    | 54       | 20              | 24   |  |  |
| 9          | 70 <sup>th</sup> Percentile Value | 34                             | 58      | 14              | 18   | 33    | 55       | 21              | 24   |  |  |
| 10         | 80 <sup>th</sup> Percentile Value | 35                             | 60      | 14              | 18   | 34    | 57       | 22              | 25   |  |  |
| 11         | 90 <sup>th</sup> Percentile Value | 37                             | 62      | 15              | 20   | 35    | 58       | 23              | 26   |  |  |
| 12         | 95 <sup>th</sup> Percentile Value | 38                             | 63      | 15              | 21   | 37    | 58       | 23              | 27   |  |  |
| 13         | 98 <sup>th</sup> Percentile Value | 38                             | 64      | 16              | 21   | 37    | 60       | 24              | 27   |  |  |
| 14         | Maximum                           | 38                             | 65      | 16              | 21   | 37    | 62       | 24              | 27   |  |  |
| 15         | Arithmetic Mean                   | 32.4                           | 56.6    | 12.9            | 16.6 | 31.3  | 53.3     | 19.3            | 22.5 |  |  |
| 16         | Geometric Mean                    | 32.3                           | 56.5    | 12.8            | 16.4 | 31.1  | 53.2     | 19.1            | 22.3 |  |  |
| 17         | Standard Deviation                | 3.3                            | 4.1     | 1.6             | 2.3  | 3.4   | 3.9      | 2.7             | 2.9  |  |  |
| 18         | NAAQ Norms*                       | 60                             | 100     | 80              | 80   | 60    | 100      | 80              | 80   |  |  |
| 19         | % Values exceeding Norms*         | 0                              | 0       | 0               | 0    | 0     | 0        | 0               | 0    |  |  |
|            |                                   |                                | A3-Sen  | nalkudi         |      |       | A4-Vala  | yapatti         |      |  |  |
| 1          | No. of Observations               | 24                             | 24      | 24              | 24   | 24    | 24       | 24              | 24   |  |  |
| 2          | Minimum                           | 11                             | 20      | 6               | 7    | 10    | 18       | 6               | 7    |  |  |
| 3          | 10 <sup>th</sup> Percentile Value | 12                             | 22      | 6               | 8    | 11    | 21       | 7               | 8    |  |  |
| 4          | 20 <sup>th</sup> Percentile Value | 12                             | 24      | 7               | 8    | 12    | 23       | 7               | 9    |  |  |
| 5          | 30 <sup>th</sup> Percentile Value | 13                             | 24      | 7               | 8    | 12    | 24       | 8               | 9    |  |  |
| 6          | 40 <sup>th</sup> Percentile Value | 14                             | 25      | 7               | 8    | 13    | 25       | 8               | 10   |  |  |
| 7          | 50 <sup>th</sup> Percentile Value | 14                             | 27      | 7               | 9    | 14    | 26       | 8               | 10   |  |  |
| 8          | 60 <sup>th</sup> Percentile Value | 15                             | 28      | 8               | 9    | 14    | 27       | 9               | 10   |  |  |
| 9          | 70 <sup>th</sup> Percentile Value | 15                             | 30      | 8               | 10   | 15    | 29       | 9               | 11   |  |  |
| 10         | 80 <sup>th</sup> Percentile Value | 16                             | 31      | 8               | 10   | 15    | 30       | 10              | 11   |  |  |
| 11         | 90 <sup>th</sup> Percentile Value | 17                             | 32      | 8               | 10   | 17    | 32       | 10              | 12   |  |  |
| 12         | 95 <sup>th</sup> Percentile Value | 18                             | 34      | 9               | 11   | 17    | 33       | 11              | 12   |  |  |
| 13         | 98 <sup>th</sup> Percentile Value | 20                             | 36      | 9               | 11   | 18    | 34       | 11              | 13   |  |  |
| 14         | Maximum                           | 21                             | 38      | 9               | 11   | 18    | 35       | 11              | 13   |  |  |
| 15         | Arithmetic Mean                   | 14.5                           | 27.1    | 7.4             | 8.9  | 13.7  | 26.2     | 8.5             | 10.0 |  |  |
| 16         | Geometric Mean                    | 14.3                           | 26.8    | 7.3             | 8.8  | 13.5  | 25.9     | 8.4             | 9.9  |  |  |
| 17         | Standard Deviation                | 2.3                            | 4.6     | 0.9             | 1.1  | 2.2   | 4.4      | 1.4             | 1.4  |  |  |
| 18         | NAAQ Norms*                       | 60                             | 100     | 80              | 80   | 60    | 100      | 80              | 80   |  |  |
| 19         | % Values exceeding Norms*         | 0                              | 0       | 0               | 0    | 0     | 0        | 0               | 0    |  |  |

Legend: PM2.5-Particulate Matter size less than 2.5 um; PM10-Respirable Particulate Matter size less than 10 um; SO<sub>2</sub>-Sulphur dioxide; NOx-Oxides of Nitrogen. O<sub>3</sub>-Ozone values are reported locationwise. ug-microgram. NH<sub>3</sub>-Ammonia; CO-Carbon monoxide; Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel; C<sub>6</sub>H<sub>6</sub>-Benzene and BaP-Benzo (a) pyrene in particulate phase levels were monitored below respective detectable limits. \*: NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

Table: 3.18 (Contn.) Abstract of Ambient Air Quality Data

|            |                                   |                     |          | Pollut          | ant Conce | ntration, ι | ıg/m³    |                 |      |
|------------|-----------------------------------|---------------------|----------|-----------------|-----------|-------------|----------|-----------------|------|
| SI.<br>No. | Parameter                         | PM2.5               | PM10     | SO <sub>2</sub> | NOx       | PM2.5       | PM10     | SO <sub>2</sub> | NOx  |
| 140.       |                                   | A                   | 5- Avuda | aiyapurar       | n         |             | A6-Ettur | rvattam         | •    |
| 1          | No. of Observations               | 24                  | 24       | 24              | 24        | 24          | 24       | 24              | 24   |
| 2          | Minimum                           | 17                  | 34       | 10              | 12        | 19          | 40       | 11              | 14   |
| 3          | 10 <sup>th</sup> Percentile Value | 18                  | 35       | 10              | 13        | 21          | 43       | 12              | 15   |
| 4          | 20 <sup>th</sup> Percentile Value | 20                  | 38       | 11              | 14        | 24          | 45       | 13              | 16   |
| 5          | 30 <sup>th</sup> Percentile Value | 20                  | 38       | 12              | 14        | 24          | 46       | 13              | 17   |
| 6          | 40 <sup>th</sup> Percentile Value | 20                  | 39       | 12              | 15        | 25          | 47       | 14              | 17   |
| 7          | 50 <sup>th</sup> Percentile Value | 21                  | 41       | 12              | 15        | 27          | 48       | 15              | 18   |
| 8          | 60 <sup>th</sup> Percentile Value | 22                  | 42       | 13              | 15        | 28          | 50       | 15              | 18   |
| 9          | 70 <sup>th</sup> Percentile Value | 22                  | 44       | 13              | 16        | 29          | 51       | 15              | 18   |
| 10         | 80 <sup>th</sup> Percentile Value | 23                  | 45       | 14              | 17        | 30          | 52       | 16              | 19   |
| 11         | 90 <sup>th</sup> Percentile Value | 25                  | 47       | 15              | 18        | 31          | 54       | 17              | 20   |
| 12         | 95 <sup>th</sup> Percentile Value | 27                  | 48       | 16              | 19        | 32          | 55       | 17              | 20   |
| 13         | 98 <sup>th</sup> Percentile Value | 28                  | 50       | 16              | 20        | 33          | 57       | 18              | 21   |
| 14         | Maximum                           | 28                  | 52       | 16              | 20        | 33          | 58       | 18              | 21   |
| 15         | Arithmetic Mean                   | 21.4                | 41.0     | 12.6            | 15.3      | 26.4        | 48.5     | 14.3            | 17.5 |
| 16         | Geometric Mean                    | 21.3                | 40.7     | 12.4            | 15.2      | 26.1        | 48.2     | 14.2            | 17.4 |
| 17         | Standard Deviation                | 2.8                 | 4.7      | 1.9             | 2.0       | 3.8         | 4.6      | 1.9             | 2.0  |
| 18         | NAAQ Norms*                       | 60                  | 100      | 80              | 80        | 60          | 100      | 80              | 80   |
| 19         | % Values exceeding Norms*         | 0                   | 0        | 0               | 0         | 0           | 0        | 0               | 0    |
|            |                                   | A7-Kumaralingapuram |          |                 |           | A8-Puch     | akapatti |                 |      |
| 1          | No. of Observations               | 24                  | 24       | 24              | 24        | 24          | 24       | 24              | 24   |
| 2          | Minimum                           | 16                  | 31       | 7               | 8         | 17          | 35       | 9               | 10   |
| 3          | 10 <sup>th</sup> Percentile Value | 17                  | 33       | 7               | 9         | 18          | 36       | 10              | 12   |
| 4          | 20th Percentile Value             | 18                  | 35       | 8               | 10        | 19          | 37       | 10              | 13   |
| 5          | 30 <sup>th</sup> Percentile Value | 19                  | 37       | 8               | 10        | 20          | 38       | 11              | 13   |
| 6          | 40 <sup>th</sup> Percentile Value | 20                  | 38       | 8               | 10        | 20          | 38       | 11              | 14   |
| 7          | 50th Percentile Value             | 21                  | 39       | 9               | 11        | 20          | 40       | 12              | 14   |
| 8          | 60 <sup>th</sup> Percentile Value | 22                  | 40       | 9               | 11        | 21          | 41       | 12              | 15   |
| 9          | 70 <sup>th</sup> Percentile Value | 22                  | 40       | 9               | 11        | 22          | 41       | 12              | 15   |
| 10         | 80 <sup>th</sup> Percentile Value | 23                  | 41       | 10              | 12        | 22          | 41       | 13              | 15   |
| 11         | 90 <sup>th</sup> Percentile Value | 24                  | 42       | 10              | 12        | 24          | 44       | 14              | 17   |
| 12         | 95th Percentile Value             | 26                  | 42       | 11              | 13        | 24          | 45       | 14              | 18   |
| 13         | 98 <sup>th</sup> Percentile Value | 26                  | 44       | 11              | 14        | 25          | 45       | 15              | 18   |
| 14         | Maximum                           | 26                  | 45       | 11              | 14        | 26          | 45       | 15              | 18   |
| 15         | Arithmetic Mean                   | 20.8                | 38.2     | 8.8             | 10.8      | 20.7        | 39.7     | 11.6            | 14.3 |
| 16         | Geometric Mean                    | 20.6                | 38.0     | 8.7             | 10.7      | 20.6        | 39.6     | 11.5            | 14.2 |
| 17         | Standard Deviation                | 2.8                 | 3.6      | 1.2             | 1.4       | 2.3         | 2.9      | 1.5             | 2.0  |
| 18         | NAAQ Norms*                       | 60                  | 100      | 80              | 80        | 60          | 100      | 80              | 80   |
| 19         | % Values exceeding Norms*         | 0                   | 0        | 0               | 0         | 0           | 0        | 0               | 0    |

Legend: PM2.5-Particulate Matter size less than 2.5 um; PM10-Respirable Particulate Matter size less than 10 um; SO<sub>2</sub>-Sulphur dioxide; NOx-Oxides of Nitrogen. O<sub>3</sub>-Ozone values are reported locationwise. ug-microgram. NH<sub>3</sub>-Ammonia; CO-Carbon monoxide; Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel; C<sub>6</sub>H<sub>6</sub>-Benzene and BaP-Benzo (a) pyrene in particulate phase levels were monitored below respective detectable limits. \*: NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

Table: 3.18 (Contn.) Abstract of Ambient Air Quality Data

|            |                                   |       | Pollutant Concentration, ug/m³ |                 |      |       |               |                 |      |  |  |  |
|------------|-----------------------------------|-------|--------------------------------|-----------------|------|-------|---------------|-----------------|------|--|--|--|
| SI.<br>No. | Parameter                         | PM2.5 | PM10                           | SO <sub>2</sub> | NOx  | PM2.5 | PM10          | SO <sub>2</sub> | NOx  |  |  |  |
| 110.       |                                   | A9    | A9-Sankaralingapuram           |                 |      |       | A10-Sulakarai |                 |      |  |  |  |
| 1          | No. of Observations               | 24    | 24                             | 24              | 24   | 24    | 24            | 24              | 24   |  |  |  |
| 2          | Minimum                           | 10    | 13                             | 8               | 10   | 18    | 38            | 11              | 14   |  |  |  |
| 3          | 10 <sup>th</sup> Percentile Value | 11    | 13                             | 8               | 10   | 20    | 39            | 12              | 15   |  |  |  |
| 4          | 20 <sup>th</sup> Percentile Value | 12    | 14                             | 9               | 10   | 21    | 41            | 13              | 16   |  |  |  |
| 5          | 30 <sup>th</sup> Percentile Value | 12    | 14                             | 9               | 11   | 21    | 43            | 14              | 17   |  |  |  |
| 6          | 40 <sup>th</sup> Percentile Value | 12    | 15                             | 9               | 11   | 22    | 43            | 14              | 17   |  |  |  |
| 7          | 50 <sup>th</sup> Percentile Value | 13    | 15                             | 10              | 12   | 23    | 44            | 15              | 18   |  |  |  |
| 8          | 60 <sup>th</sup> Percentile Value | 13    | 15                             | 10              | 12   | 23    | 44            | 15              | 18   |  |  |  |
| 9          | 70 <sup>th</sup> Percentile Value | 14    | 17                             | 10              | 13   | 24    | 45            | 15              | 18   |  |  |  |
| 10         | 80 <sup>th</sup> Percentile Value | 14    | 17                             | 11              | 13   | 25    | 47            | 16              | 18   |  |  |  |
| 11         | 90 <sup>th</sup> Percentile Value | 16    | 18                             | 11              | 14   | 26    | 48            | 17              | 20   |  |  |  |
| 12         | 95 <sup>th</sup> Percentile Value | 16    | 18                             | 12              | 15   | 27    | 48            | 18              | 21   |  |  |  |
| 13         | 98 <sup>th</sup> Percentile Value | 17    | 19                             | 13              | 15   | 27    | 49            | 18              | 21   |  |  |  |
| 14         | Maximum                           | 17    | 19                             | 13              | 15   | 27    | 50            | 18              | 21   |  |  |  |
| 15         | Arithmetic Mean                   | 13.1  | 15.4                           | 9.7             | 11.8 | 22.8  | 43.7          | 14.6            | 17.4 |  |  |  |
| 16         | Geometric Mean                    | 13.0  | 15.3                           | 9.6             | 11.7 | 22.6  | 43.5          | 14.5            | 17.3 |  |  |  |
| 17         | Standard Deviation                | 1.8   | 2.0                            | 1.3             | 1.7  | 2.4   | 3.3           | 1.8             | 1.9  |  |  |  |
| 18         | NAAQ Norms*                       | 60    | 100                            | 80              | 80   | 60    | 100           | 80              | 80   |  |  |  |
| 19         | % Values exceeding Norms*         | 0     | 0                              | 0               | 0    | 0     | 0             | 0               | 0    |  |  |  |

Legend : PM2.5-Particulate Matter size less than 2.5 um; PM10-Respirable Particulate Matter size less than 10 um;  $SO_2$ -Sulphur Legend : PM2.5-Particulate Matter size less than 2.5 um; PM10-Respirable Particulate Matter size less than 10 um;  $SO_2$ -Sulphur dioxide; NOx-Oxides of Nitrogen.  $O_3$ -Ozone values are reported locationwise. ug-microgram. NH<sub>3</sub>-Ammonia; CO-Carbon monoxide; Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel;  $C_6H_6$ -Benzene and BaP-Benzo (a) pyrene in particulate phase levels were monitored below respective detectable limits. \*: NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

## Table: 3.19 Ambient Air Quality Status

Season: Premonsoon (Jul.-Sep. 2024) No. of Locations: 10 Sample Size: 24-Hourly

| SI. | Parameter                         | Po    | ollutant Conce | entration, ug/  | m³   |
|-----|-----------------------------------|-------|----------------|-----------------|------|
| No. | rai ailletei                      | PM2.5 | PM10           | SO <sub>2</sub> | NOx  |
| 1   | No. of Observations               | 240   | 240            | 240             | 240  |
| 2   | Minimum                           | 10    | 13             | 6               | 7    |
| 3   | 10 <sup>th</sup> Percentile Value | 13    | 19             | 8               | 9    |
| 4   | 20 <sup>th</sup> Percentile Value | 15    | 27             | 8               | 10   |
| 5   | 30 <sup>th</sup> Percentile Value | 17    | 33             | 10              | 11   |
| 6   | 40 <sup>th</sup> Percentile Value | 20    | 38             | 10              | 13   |
| 7   | 50 <sup>th</sup> Percentile Value | 21    | 41             | 12              | 14   |
| 8   | 60 <sup>th</sup> Percentile Value | 23    | 43             | 13              | 15   |
| 9   | 70 <sup>th</sup> Percentile Value | 25    | 46             | 14              | 17   |
| 10  | 80 <sup>th</sup> Percentile Value | 28    | 51             | 15              | 18   |
| 11  | 90 <sup>th</sup> Percentile Value | 32    | 55             | 17              | 20   |
| 12  | 95 <sup>th</sup> Percentile Value | 34    | 58             | 19              | 22   |
| 13  | 98 <sup>th</sup> Percentile Value | 37    | 60             | 22              | 25   |
| 14  | Maximum                           | 38    | 65             | 24              | 27   |
| 15  | Arithmetic Mean                   | 21.7  | 39.0           | 12.0            | 14.5 |
| 16  | Geometric Mean                    | 20.5  | 36.4           | 11.4            | 13.9 |
| 17  | Standard Deviation                | 7.1   | 12.8           | 3.8             | 4.4  |
| 18  | NAAQ Norms*                       | 60    | 100            | 80              | 80   |
| 19  | % Values exceeding NAAQ Norms     | 0     | 0              | 0               | 0    |

Legend: PM2.5-Particulate Matter size less than 2.5 um; PM10-Respirable Particulate Matter size less than 10 um; SO<sub>2</sub>-Sulphur dioxide; NOx-Oxides of Nitrogen. O<sub>3</sub>-Ozone values are reported locationwise. ug-microgram. NH<sub>3</sub>-Ammonia; CO-Carbon monoxide; Pb-Particulate Lead; As-Particulate Arsenic; Ni-Particulate Nickel; C<sub>6</sub>H<sub>6</sub>-Benzene and BaP-Benzo (a) pyrene in particulate phase levels were monitored below respective detectable limits. \*: NAAQ Norms-National Ambient Air Quality Norms-Revised as per GSR 826(E) dated 16.11.2009 for Industrial, Residential, Rural and other Areas.

The levels of air quality with an adequate margin of safety, to protect the public health, vegetation and property. Whenever and wherever two consecutive values exceed the limit specified above for the respective category, it would be considered adequate reason to institute regular/continuous monitoring and further investigations.

<sup>1. 24-</sup>hly./8-hly. values should be met 98% of the time in a year; however, 2% of the time it may exceed but not on two consecutive days.

<sup>2.</sup> Annual arithmetic mean of minimum 104 measurements in a year taken twice a week 24-hourly at uniform interval.

## 3.5.3 RSPM Analysis

With the samples of Respirable Suspended Particulate Matter (RSPM or  $PM_{10}$ ) monitored, the main focus is on characterization and apportionment of  $PM_{10}$  to have a better understanding and correlation between the RSPM fraction at source and receptor. The results are tabulated in **Table 3.20**. There was no significant variation in the characteristics of RSPM values in the upwind and downwind direction locations. Free Respirable Silica in RSPM was also monitored using Personal Sampler and FTIR Method of Analysis. The Silica Content was found to be 2.2% of RSPM that monitored in the Study Area.

Free Respirable Silica Content (FTIR Method): 2.2%.

Table: 3.20 RSPM Analytical Data

|                                                   | Percentage in RSPM Content        |                                  |  |  |  |  |  |  |
|---------------------------------------------------|-----------------------------------|----------------------------------|--|--|--|--|--|--|
| Parameter                                         | Upwind Direction<br>(Location A8) | Downwind Direction (Location A5) |  |  |  |  |  |  |
| Loss on Ignition                                  | 12.7                              | 13.2                             |  |  |  |  |  |  |
| Iron oxides (Fe <sub>2</sub> O <sub>3</sub> )     | 8.0                               | 7.7                              |  |  |  |  |  |  |
| Calcium oxide (CaO)                               | 15.9                              | 15.2                             |  |  |  |  |  |  |
| Magnesium oxide (MgO)                             | 10.1                              | 8.7                              |  |  |  |  |  |  |
| Sodium oxide (Na <sub>2</sub> O)                  | 0.29                              | 0.30                             |  |  |  |  |  |  |
| Potassium oxide (K <sub>2</sub> O)                | 0.18                              | 0.20                             |  |  |  |  |  |  |
| Aluminium oxide (Al <sub>2</sub> O <sub>3</sub> ) | 11.4                              | 12.2                             |  |  |  |  |  |  |
| Titanium oxide (TiO <sub>2</sub> )                | 0.03                              | 0.03                             |  |  |  |  |  |  |

#### 3.5.4 Fugitive Emissions

The 'Charter on Corporate Responsibility for Environmental Protection (CREP)' stipulates the Environmental Guidelines for Prevention and Control of Fugitive Emissions from Cement Plants. As per the guideline, PM concentration was monitored at 10 m distance from the enclosure wall housing the emission source/edge of the stockpiles/pavement area, etc. Respirable Dust Samplers (Envirotech APM 460 BL) were used for the sampling as per standard method prescribed by CPCB/BIS, in the downwind direction, on 8-hourly basis for a day during the normal working hours. The monitored values are given in **Table 3.21**.

**Table: 3.21 Fugitive Emissions** 

| SI.<br>No. | Monitoring<br>Date | Monitoring<br>Time, hrs. | Location                      | Monitored<br>PM, ug/m³ | CREP<br>Standards,<br>PM, ug/m³ |
|------------|--------------------|--------------------------|-------------------------------|------------------------|---------------------------------|
| 1          | 28-29.09.2024      | 10:00-18:00              | Limestone Stacker & Reclaimer | 361                    | <5000                           |
| 2          | 28-29.09.2024      | 10:00-18:00              | Coal Stacker & Reclaimer      | 419                    | <2000                           |
| 3          | 28-29.09.2024      | 10:00-18:00              | Gypsum Shed                   | 335                    | <5000                           |

The monitored fugitive emissions were found to be well within the PM limit values stipulated by CREP Guidelines.

#### 3.5.5 Stack Emissions

The Plant operations are in compliance with new **Emission Standards issued by MoEF&CC** for Cement Industry vide Notifications dated 25.08.2014 and amended on 09.05.2016 & 10.05.2016 as below:

Particulate Matter (PM) Emissions from all Major Stacks: <20 mg/Nm³. SO₂ Emissions from Kiln Stacks: <100 mg/Nm³ (pyritic Sulphur is <0.25%). NO₂ Emissions from Kiln Stacks: <600 mg/Nm³.

All Main Stacks are provided with Online Monitors and the Real Time Emission Levels are connected to the TNPCB Care Air Centre and 4 Continuous AAQ Stations real time data are being transmitted to CPCB & SPCB Servers. Manual Monitoring of Stack Survey is also being carried out by an external agency accreditated by NABL (Tables 3.22-23). All the monitored stack emission values were found to be well within the stipulated Norms for Cement and Power Plants. Also, from the Survey Reports, the values of HCL, HF, TOC, Hg, Cd+Ti, etc. from Kiln Stack emissions were found to be below their respective detectable limits.

Table: 3.22 Stack Emissions-Cement Plant (Existing)

|                                                      |              | Lines                           | s I & III En     | nissions (                             | GLens Report           | dated 31                              | .08.2024)             |                                   |                         |
|------------------------------------------------------|--------------|---------------------------------|------------------|----------------------------------------|------------------------|---------------------------------------|-----------------------|-----------------------------------|-------------------------|
| Parameter                                            | Kiln-l PJBH  | Coal<br>Mill-I<br>Bag<br>Filter | Cooler-<br>I ESP | Cement<br>Mill<br>1&2<br>Bag<br>Filter | Kiln-III<br>Bag Filter | Coal<br>Mill-<br>III<br>Bag<br>Filter | Cooler-<br>III<br>ESP | Cement<br>Mill 3<br>Bag<br>Filter | Packer<br>Bag<br>Filter |
|                                                      |              |                                 | Partic           | ulate Matte                            | r                      |                                       |                       |                                   |                         |
| Stack Height, m                                      | 104          | 52.2                            | 31               | 65                                     | 123                    | 67                                    | 45                    | 70                                | 30                      |
| Stack Diameter, m                                    | 2.36         | 1.1                             | 1.8              | 3                                      | 4.5                    | 1.7                                   | 2.65                  | 1.6                               | 0.98                    |
| Stack Temperature, °C                                | 133          | 56                              | 186              | 90                                     | 143                    | 69                                    | 217                   | 79                                | 48                      |
| Stack Velocity, m/s                                  | 16.6         | 7.33                            | 15.2             | 8.4                                    | 10.4                   | 9.6                                   | 14.9                  | 9.3                               | 23.4                    |
| Stack Discharge,<br>Nm³/hr.                          | 188938       | 22,748                          | 89290            | 174058                                 | 416913                 | 67687                                 | 184758                | 56244                             | 57735                   |
| PM Concentration,<br>mg/Nm <sup>3</sup>              | 7.56         | 19                              | 11.5             | 9.26                                   | 9.03                   | 5.2                                   | 11.8                  | 9.41                              | 5.49                    |
| Pollution Load, g/sec                                | 0.397        | 0.120                           | 0.285            | 0.447                                  | 1.045                  | 0.098                                 | 0.605                 | 0.147                             | 0.088                   |
| Pollution Load, kg/day                               | 34           | 10                              | 25               | 39                                     | 90                     | 8                                     | 52                    | 13                                | 8                       |
|                                                      |              |                                 | Gaseou           | s Pollutai                             | nts                    |                                       |                       |                                   |                         |
| SO <sub>2</sub> Concentration,<br>mg/Nm <sup>3</sup> | BLQ(LOQ:3.0) |                                 |                  |                                        | BLQ(LOQ:3.0)           |                                       |                       |                                   |                         |
| NOx Concentration, mg/Nm <sup>3</sup>                | 545          |                                 |                  |                                        | 571                    |                                       |                       |                                   |                         |

| Parameter                                         | CPP Boiler ESP |
|---------------------------------------------------|----------------|
| Stack Height, m                                   | 90             |
| Stack Diameter, m                                 | 3.3            |
| Stack Temperature, °C                             | 134            |
| Stack Velocity, m/s                               | 14.3           |
| Stack Discharge, Nm <sup>3</sup> /hr.             | 1,12,261       |
| PM Concentration, mg/Nm <sup>3</sup>              | 26.9           |
| SO <sub>2</sub> Concentration, mg/Nm <sup>3</sup> | 555            |
| NOx Concentration, mg/Nm3                         | 433            |

Table: 3.23 Stack Emissions-CPP (21.08.2024)

#### 3.6 Noise Levels

**Ambient Noise Levels**: The Study area represents Industrial, Commercial and Residential Areas for comparing with the MoEF&CC Ambient Noise Norms. Industrial activities and the traffic flow in nearby NH are the main sources of Noise in the area. The abstract of monitored monthly noise data are presented in **Table 3.24**.

Table: 3.24 Ambient Noise Level Data (Abstract)

Monitoring Dates: 10-11.07.2024; 02-03.08.2024 & 28-29.09.2024

|                                    |                                |                                  |             |       | No                    | oise Lev | els, dB(A | <b>v)</b>                |      |
|------------------------------------|--------------------------------|----------------------------------|-------------|-------|-----------------------|----------|-----------|--------------------------|------|
| SI.<br>No.                         | Location                       | Location<br>Coordinates          | Area        |       | Day Time<br>0-22:00 h | rs.)     |           | light Time<br>00-06:00 h |      |
|                                    |                                |                                  |             | Lmin. | Lmax.                 | Leq      | Lmin.     | Lmax.                    | Leq  |
| 1                                  | A1-RCL Plant                   | 09°27'17.86" N<br>77°55'44.16" E | Industrial  | 36.8  | 92.4                  | 48.1     | 34.1      | 94.0                     | 44.7 |
| 2                                  | A2-Vachchakarapatti-NH<br>Jn.  | 09°28'06.14" N<br>77°56'07.10" E | Commercial  | 35.0  | 97.3                  | 46.4     | 33.0      | 98.2                     | 43.8 |
| 3                                  | A3-Sennalkudi                  | 09°30'25.93" N<br>77°59'26.61" E | Residential | 33.5  | 88.2                  | 42.6     | 32.8      | 80.4                     | 40.1 |
| 4                                  | A4-Valaiyapatti                | 09°27'17.53" N<br>77°58'54.94" E | Residential | 32.8  | 87.0                  | 42.0     | 32.1      | 81.3                     | 40.3 |
| 5                                  | A9-Avudaiyapuram-Trans.<br>Rd. | 09°26'34.01" N<br>77°57'13.14" E | Residential | 34.0  | 95.3                  | 43.7     | 32.9      | 90.1                     | 41.3 |
| 6                                  | A6-Etturvattam                 | 09°23'33.91" N<br>77°54'41.74" E | Residential | 33.8  | 97.1                  | 43.9     | 33.1      | 94.2                     | 41.5 |
| 7                                  | A7-Kumaralingapuram            | 09°25'45.65" N<br>77°54'02.25" E | Residential | 33.0  | 88.4                  | 42.4     | 32.4      | 83.5                     | 40.7 |
| 8                                  | A8-Puchakkapatti               | 09°30'51.50" N<br>77°59'00.84" E | Residential | 33.5  | 91.1                  | 42.0     | 32.6      | 88.2                     | 40.9 |
| 9                                  | A9-Sankaralingapuram           | 09°30'42.85" N<br>77°53'38.45" E | Residential | 32.9  | 88.8                  | 41.5     | 32.0      | 85.4                     | 40.1 |
| 10                                 | A10-Sulakkarai                 | 09°32'15.81" N<br>77°56'33.39" E | Residential | 33.0  | 85.7                  | 42.0     | 32.4      | 86.1                     | 40.5 |
|                                    | Study A                        | 32.8                             | 97.3        | 43.5  | 32.0                  | 98.2     | 41.4      |                          |      |
|                                    | MoEF&CC Norms* for             |                                  | -           | 55    |                       | -        | 45        |                          |      |
| MoEF&CC Norms for Commercial Areas |                                |                                  |             |       | -                     | 65       |           | -                        | 55   |
|                                    | MoEF&CC Norms for              |                                  | -           | 75    |                       | -        | 70        |                          |      |

Lmin.-Minimum Levels; Lmax.-Maximum Levels & Leq-Equivalent Noise Levels.

Day time is reckoned in between 6 a.m and 10 p.m. and Night time is reckoned in between 10 p.m. and 6 a.m.

<sup>\*:</sup> MoEF&CC Norms-Ministry of Environment, Forest & Climate Change Ambient Noise Norms (Leq).

Ambient Noise Levels were ranging from 32.6 dB(A) to 97.3 dB(A) during day times and from 32.0 dB(A) to 98.6 dB(A) during night times on the monitoring days. Day Equivalent Noise (Leq-d) level was found to be 43.5 dB(A) and Night Equivalent Noise (Leq-n) level was 41.4 dB(A). While comparing with the MoEF&CC Leq Norms for day and night times, the monitored **ambient noise levels were well within the limit values** for their respective Category Area.

**Workzone Noise (Leq) Levels** within the Plant Area, at a distance of 1.0-1.5 m from the sources, were monitored between 71.3-74.8 dB(A) which were found to be well within the **OSHA Standard of 85 dB(A) for 8-hours exposure**. However, the Noise levels at the Plant boundaries were found to be within the MoEF&CC Ambient Noise Leq Norms of <55 dB(A) during day times and <45 dB(A) during night times.

#### 3.7 Water Environment

## 3.7.1 Hydrogeology

Virudhunagar District is divided into two distinct regions viz. the eastern slopes of the Western Ghats in Srivilliputhur and Rajapalayam Taluks with undulations and the Eastern plains (District Profile of Tamil Nadu Water Supply and Drainage -TWAD- Board). Western Ghats occur as a series of parallel ridges running in an NE-SW directions and the eastern plain region is a flat terrain with isolated hillocks around Aruppukottai and Sattur. The area falls in two major river basins namely Vaippar and Gundar. River Vaippar has a number of tributaries of which Arjuna River/Nadi is an important one. The 70 year Normal Rainfall of the Plant Area is 895 mm.

The general hydro-geological setup of the study area indicates that the ground water potential of the site and its surroundings is **poor to moderate**. In crystalline metamorphic formations, ground water occurs under phreatic conditions in shallow weathered mantle and under semi-confined conditions in the deeper fractured zones and is heterogeneous in nature.

The deeper secondary openings have been developed by weathering and fracturing of the hard rock formations which act as water bearing formations. Ground water is exploited through deep bore wells and shallow dug wells. Hence, the yield from the aquifer system in these rocks has wide variations.

The study area is covered by hard rocks consisting of meta-sedimentary rocks like granitic gneisses and calc granulites. The ground water in such type of formations occurs within the secondary porosity developed within the host rocks such as joints, fractures and bedding plains or within the weathered mantle. The top soil overlying the basement rock is negligible in thickness over the study site.

Source: TWAD Data for Viridhunagar

The abandoned mine pits are located in high grounds and the localized ground water flow from the fractures occurs which again depends on the rain water storage in the pits and recharge on the upstream side of the mines area.

**Ground Water Levels:** The Ground Water Levels from the **60 number of Observation Wells of TWAD** in Virudhunagar District have been analysed for Post-Monsoon and Pre-Monsoon periods and give as 5 years average in **Table 3.25**. The Data for the Period 1991-2019 is also appended.

Table: 3.25 Ground Water Level Data

|              | Monitored Month & Ground Water Level, m BGL |             |             |             |             |             |             |             |             |             |             |             |             |
|--------------|---------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Jan.<br>2013 | May<br>2013                                 | Jan<br>2014 | May<br>2014 | Jan<br>2015 | May<br>2015 | Jan<br>2016 | May<br>2016 | Jan<br>2017 | May<br>2017 | Jan<br>2018 | May<br>2018 | Jan<br>2019 | May<br>2019 |
| 7.8          | 13.1                                        | 12.7        | 11.5        | 9.3         | 9.6         | 4.9         | 7.3         | 10.8        | 11.5        | 5.0         | 10.4        | 5.3         | 8.2         |

5-Years Pre-monsoon Average – 10.2 m BGL

5-Years Post-monsoon Average – 8.0 m BGL

District.

**Stage of Development**: As per Central Ground Water Board (CGWB) - Virudhunagar District Profile, the Pumping Test parameters and Stage of Ground Water Development are as follows:

| CGWB Data                           | <u>Hard Rock</u> | River Alluvium |
|-------------------------------------|------------------|----------------|
| Specific Yield, lpm                 | 40-110           | 200-400        |
| Transmissivity, m <sup>2</sup> /day | 0.224-0.6        | 14.91-671.14   |
| Hydraulic Conductivity, m/day       | 0.049-0.147      | 19.57-83.17    |

Net Ground Water Availability : 495.19 MCM Existing Gross Ground Water Draft for all Users : 341.86 MCM

Stage of Ground Water Development : 69%

Categorization of the District : Safe Category

However, as per PWD TN GO No. 43 dated 24.10.2018, the ground water Stage of Development of Vachchakarapatti Firka is in **Semi-Critical Category** (90-100%).

## 3.7.2 Water Quality

The Central Pollution Control Board (CPCB) has identified Five **Designated Best Use of Surface Waters** viz. **Class A** (Drinking Water Source without Conventional Treatment but after Disinfection), **B** (Out Door Bathing-Organised), **C** (Drinking Water Source after Conventional Treatment and Disinfection), **D** (Propagation of Wild life and Fisheries) & **E** (Irrigation, Industrial Cooling, Controlled Waste Disposal) and stipulated the Norms for the Classes; for few Parameters (**Table 3.26**).

| Parameter                      | Designated Best Use Class & Required Criteria |             |              |             |            |  |  |  |
|--------------------------------|-----------------------------------------------|-------------|--------------|-------------|------------|--|--|--|
| Parameter                      | Α                                             | В           | С            | D           | E          |  |  |  |
| рH                             | 6.5-8.5                                       | 6.5-8.5     | 6.5-9.0      | 6.5-8.5     | 6.5-8.5    |  |  |  |
| EC, umhos/cm (max.)            | -                                             | -           | -            | -           | 2,250      |  |  |  |
| DO, mg/l                       | 6 or more                                     | 5 or more   | 4 or more    | 4 or more   | 6 or more  |  |  |  |
| BOD-3 days @ 27 °C             | 2 or less                                     | 3 or less   | 3 or less    | -           | 2 or less  |  |  |  |
| Total Coliforms, MPN/100 ml    | 50 or less                                    | 500 or less | 5000 or less | 1           | 50 or less |  |  |  |
| Free Ammonia (as N), mg/l      | -                                             | -           | -            | 1.2 or less | -          |  |  |  |
| Boron, mg/l (max.)             | -                                             | -           | -            | 1           | 2          |  |  |  |
| Sodium Absorption Ratio (max.) | -                                             | -           | -            | -           | 26         |  |  |  |

Table: 3.26 CPCB Criteria for Designated Best Use of Water

Further, Bureau of Indian Standards (BIS) had also recommended Tolerance Limits for Inland Surface Waters for the different uses (IS 2296:1982). Even though, IS 2296:1982 has been withdrawn, the analysed data are compared with this Standard to have better understanding about the Surface Water Quality in the Study Area. The Ground Water Quality Parameters were compared with BIS 10500:2012 Standards of Acceptable and Permissible Limits for Drinking purpose with Ground Water as source.

The monitored water quality data are presented in **Tables 3.27-3.28** and the abstract of those data is given as **Table 3.29**.

The **surface water** samples were monitored with pH in the range 7.58-7.88 against the Limit value of 6.5-8.5. DO levels were in the range 4.0-4.8 mg/l against the minimum requirement value of 4.0-6.0 mg/l for Surface Waters. While EC values were in the range 470-880, TDS values were monitored in the range of 310-560 mg/l against the Limit values of 500/2100 mg/l. Chloride values ranging from 82 mg/l to 116 mg/l. Iron content was found to be in the range 0.06-0.14 mg/l. Oil and grease, phenolic compounds, cyanides, sulphides and insecticides were found to be absent. Trace metals were found to be in traceable levels. BOD and COD values were found to be <2 mg/l and 2-10 mg/l respectively.

The surface water quality were found to be within the prescribed CPCB Norms.

<sup>-:</sup> Not included/Not specified.

# Table: 3.27 Surface Water Quality Data

| 0.         |                                                     | W1                               | W2                               | W3                               | 10/4                             | ODOD           |
|------------|-----------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------|
| SI.<br>No. | Parameter                                           | Arjuna River                     | Arjuna River                     | Mannarkottai                     | W4<br>Uppu Odai                  | CPCB<br>Norms* |
|            |                                                     | Upstream                         | Downstream                       | Nallah                           |                                  | 11011110       |
| i.         | Location Co-ordinates                               | 09°27'39.26" N<br>77°54'13.05" E | 09°26'12.84" N<br>77°55'22.95" E | 09°26'29.69" N<br>77°57'28.35" E | 09°22'31.59" N<br>77°54'46.11" E | -              |
| ii.        | Date in Sep. 2024 / Time, Hrs.                      | 27/11:40                         | 28/11:15                         | 27/13:50                         | 27/10:10                         | -              |
| 1          | pH                                                  | 7.73                             | 7.68                             | 7.84                             | 7.88                             | 6.5-8.5        |
| 2          | Colour, Hazen units                                 | BDL(DL:5.0)                      | BDL(DL:5.0)                      | BDL(DL:5.0)                      | BDL(DL:5.0)                      | 10-30          |
| 3          | Temperature, °C                                     | 27.4                             | 27.1                             | 27.6                             | 27.8                             | -              |
| 4          | Turbidity, NTU                                      | 2.7                              | 2.1                              | 3.1                              | 3.4                              | -              |
| 5          | Residual Chlorine, mg/l                             | BDL(DL:1.0)                      | BDL(DL:1.0)                      | BDL(DL:1.0)                      | BDL(DL:1.0)                      | -              |
| 6          | Dissolved Oxygen, mg/l                              | 4.8                              | 4.6                              | 4.3                              | 4.0                              | 4.0-6.0        |
| 7          | Total Suspended Solids, mg/l                        | 33                               | 25                               | 36                               | 38                               | -              |
| 8          | Electrical Conductivity, umhos/cm                   | 620                              | 580                              | 740                              | 880                              | -              |
| 9          | Total Dissolved Solids, mg/l                        | 390                              | 370                              | 470                              | 560                              | 500-2100       |
| 10         | Total Hardness (as CaCO <sub>3</sub> ), mg/l        | 180                              | 170                              | 230                              | 270                              | -              |
| 11         | Calcium Hardness, mg/l                              | 100                              | 90                               | 110                              | 130                              | -              |
| 12         | Magnesium Hardness, mg/l                            | 80                               | 80                               | 120                              | 140                              | -              |
| 13         | Calcium (as Ca), mg/l                               | 40                               | 36                               | 44                               | 52                               | -              |
| 14         | Magnesium (as Mg), mg/l                             | 19                               | 19                               | 29                               | 34                               | -              |
| 15         | Sodium (as Na), mg/l                                | 34                               | 30                               | 38                               | 42                               | -              |
| 16         | Potassium (as K), mg/l                              | 2                                | 1                                | 3                                | 6                                | -              |
| 17         | Chlorides (as Cl), mg/l                             | 92                               | 84                               | 102                              | 116                              | 250-600        |
| 18         | Sulphates (as SO <sub>4</sub> ), mg/l               | 24                               | 28                               | 33                               | 43                               | 400-1000       |
| 19         | Total Alkalinity (as CaCO <sub>3</sub> ), mg/l      | 90                               | 80                               | 120                              | 140                              | -              |
| 20         | BOD-3 days @ 27°C, mg/l                             | BDL(DL:2.0)                      | BDL(DL:2.0)                      | BDL(DL:2.0)                      | BDL(DL:2.0)                      | <3             |
| 21         | COD, mg/l                                           | 6                                | 2                                | 8                                | 10                               | -              |
| 22         | Oil & Grease, mg/l                                  | BDL(DL:1.0)                      | BDL(DL:1.0)                      | BDL(DL:1.0)                      | BDL(DL:1.0)                      | -              |
| 23         | Iron (as Fe), mg/l                                  | 0.10                             | 0.06                             | 0.12                             | 0.14                             | 0.3-5.0        |
| 24         | Fluorides (as F), mg/l                              | 0.18                             | 0.14                             | 0.21                             | 0.26                             | 1.5            |
| 25         | Nitrates (as NO <sub>3</sub> ), mg/l                | 1.5                              | 1.0                              | 2.0                              | 3.5                              | 20-50          |
| 26         | Phosphates (as PO <sub>4</sub> ), mg/l              | <0.01                            | <0.01                            | <0.01                            | <0.01                            | -              |
| 27         | Cyanides (as CN), mg/l                              | BDL(DL:0.01)                     | BDL(DL:0.01)                     | BDL(DL:0.01)                     | BDL(DL:0.01)                     | -              |
| 28         | Pesticides (as Malathion), mg/l                     | <0.01                            | <0.01                            | <0.01                            | <0.01                            | -              |
| 29         | Phenols (as C <sub>6</sub> H <sub>5</sub> OH), mg/l | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | -              |
| 30         | Manganese (as Mn), mg/l                             | BDL(DL:0.002)                    | BDL(DL:0.002)                    | BDL(DL:0.002)                    | BDL(DL:0.002)                    | -              |
| 31         | Chromium (as Cr), mg/l                              | BDL(DL:0.03)                     | BDL(DL:0.03)                     | BDL(DL:0.03)                     | BDL(DL:0.03)                     | -              |
| 32         | Copper (as Cu), mg/l                                | <0.001                           | <0.001                           | <0.001                           | <0.001                           | 1.5            |
| 33         | Selenium (as Se), mg/l                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | -              |
| 34         | Aluminium (as Al), mg/l                             | <0.001                           | <0.001                           | <0.001                           | <0.001                           | -              |
| 35         | Cadmium (as Cd), mg/l                               | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | -              |
| 36         | Arsenic (as As), mg/l                               | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.05-0.2       |
| 37         | Boron (as B), mg/l                                  | BDL(DL:0.025)                    | BDL(DL:0.025)                    | BDL(DL:0.025)                    | BDL(DL:0.025)                    | 2              |
| 38         | Mercury (as Hg), mg/l                               | BDL(DL:0.0005)                   | BDL(DL:0.0005)                   | BDL(DL:0.0005)                   | BDL(DL:0.0005)                   | -              |
| 39         | Lead (as Pb), mg/l                                  | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.1            |
| 40         | Zinc (as Zn), mg/l                                  | <0.001                           | <0.001                           | <0.001                           | <0.001                           | 1.5-15         |
| 41         | Percent Sodium, %                                   | 28.8                             | 27.6                             | 26.1                             | 24.7                             | -              |
| 42         | Total Coliforms, MPN/100 ml                         | 39                               | 70                               | 24                               | 120                              | 50-5000        |
| 43         | Faecal Coliforms, MPN/100 ml                        | 17                               | 33                               | 14                               | 58                               | -              |
| 44         | E. Coli, MPN/100 ml                                 | 11                               | 17                               | 9                                | 27                               | -              |

<sup>\*:</sup> CPCB Norms-Central Pollution Control Board Norms for Surface Waters-Class C. -: Not included/Not available.

# Table: 3.27 (Contn.) Surface Water Quality Data

| SI. | Parameter                                           | W5<br>Tank,                      | W6<br>Tank, Pattam-              | W7<br>Tank,                      | W8<br>Golvarpatti                | СРСВ     |
|-----|-----------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------|
| No. | raiametei                                           | Chinnavadi                       | pudur                            | Mannarkottai                     | Dam                              | Norms*   |
| i.  | Location Co-ordinates                               | 09°27'21.48" N<br>77°53'35.60" E | 09°29'20.06" N<br>77°57'00.02" E | 09°26'28.51" N<br>77°57'52.53" E | 09°24'19.19" N<br>77°58'25.56" E | -        |
| ii. | Date in Sep. 2024 / Time, Hrs.                      | 27/11:25                         | 28/11:45                         | 27/13:55                         | 27/14:50                         | -        |
| 1   | pH                                                  | 7.62                             | 7.58                             | 7.63                             | 7.59                             | 6.5-8.5  |
| 2   | Colour, Hazen units                                 | BDL(DL:5.0)                      | BDL(DL:5.0)                      | BDL(DL:5.0)                      | BDL(DL:5.0)                      | 10-30    |
| 3   | Temperature, °C                                     | 27.1                             | 27.0                             | 26.9                             | 27.2                             | -        |
| 4   | Turbidity, NTU                                      | 3.6                              | 3.1                              | 2.7                              | 3.0                              | -        |
| 5   | Residual Chlorine, mg/l                             | BDL(DL:1.0)                      | BDL(DL:1.0)                      | BDL(DL:1.0)                      | BDL(DL:1.0)                      | -        |
| 6   | Dissolved Oxygen, mg/l                              | 4.1                              | 4.6                              | 4.8                              | 4.6                              | 4.0-6.0  |
| 7   | Total Suspended Solids, mg/l                        | 38                               | 34                               | 30                               | 33                               | -        |
| 8   | Electrical Conductivity, umhos/cm                   | 530                              | 580                              | 470                              | 540                              | -        |
| 9   | Total Dissolved Solids, mg/l                        | 340                              | 370                              | 310                              | 340                              | 500-2100 |
| 10  | Total Hardness (as CaCO <sub>3</sub> ), mg/l        | 150                              | 170                              | 140                              | 140                              | -        |
| 11  | Calcium Hardness, mg/l                              | 80                               | 90                               | 70                               | 80                               | -        |
| 12  | Magnesium Hardness, mg/l                            | 70                               | 80                               | 70                               | 60                               | -        |
| 13  | Calcium (as Ca), mg/l                               | 32                               | 36                               | 28                               | 32                               | -        |
| 14  | Magnesium (as Mg), mg/l                             | 17                               | 19                               | 17                               | 14                               | -        |
| 15  | Sodium (as Na), mg/l                                | 32                               | 36                               | 21                               | 28                               | -        |
| 16  | Potassium (as K), mg/l                              | 3                                | 4                                | 2                                | 4                                | -        |
| 17  | Chlorides (as Cl), mg/l                             | 84                               | 88                               | 82                               | 90                               | 250-600  |
| 18  | Sulphates (as SO <sub>4</sub> ), mg/l               | 20                               | 18                               | 14                               | 22                               | 400-1000 |
| 19  | Total Alkalinity (as CaCO <sub>3</sub> ), mg/l      | 70                               | 90                               | 60                               | 70                               | -        |
| 20  | BOD-3 days @ 27°C, mg/l                             | BDL(DL:2.0)                      | BDL(DL:2.0)                      | BDL(DL:2.0)                      | BDL(DL:2.0)                      | <3       |
| 21  | COD, mg/l                                           | 6                                | 4                                | 3                                | 4                                | -        |
| 22  | Oil & Grease, mg/l                                  | BDL(DL:1.0)                      | BDL(DL:1.0)                      | BDL(DL:1.0)                      | BDL(DL:1.0)                      | -        |
| 23  | Iron (as Fe), mg/l                                  | 0.11                             | 0.10                             | 0.08                             | 0.10                             | 0.3-5.0  |
| 24  | Fluorides (as F), mg/l                              | 0.14                             | 0.12                             | 0.08                             | 0.14                             | 1.5      |
| 25  | Nitrates (as NO <sub>3</sub> ), mg/l                | 1.8                              | 1.4                              | 1.0                              | 1.6                              | 20-50    |
| 26  | Phosphates (as PO <sub>4</sub> ), mg/l              | <0.01                            | <0.01                            | <0.01                            | <0.01                            | -        |
| 27  | Cyanides (as CN), mg/l                              | BDL(DL:0.01)                     | BDL(DL:0.01)                     | BDL(DL:0.01)                     | BDL(DL:0.01)                     | -        |
| 28  | Pesticides (as Malathion), mg/l                     | <0.01                            | <0.01                            | <0.01                            | <0.01                            | -        |
| 29  | Phenols (as C <sub>6</sub> H <sub>5</sub> OH), mg/l | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | -        |
| 30  | Manganese (as Mn), mg/l                             | BDL(DL:0.002)                    | BDL(DL:0.002)                    | BDL(DL:0.002)                    | BDL(DL:0.002)                    | -        |
| 31  | Chromium (as Cr), mg/l                              | BDL(DL:0.03)                     | BDL(DL:0.03)                     | BDL(DL:0.03)                     | BDL(DL:0.03)                     | -        |
| 32  | Copper (as Cu), mg/l                                | <0.001                           | <0.001                           | <0.001                           | <0.001                           | 1.5      |
| 33  | Selenium (as Se), mg/l                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | -        |
| 34  | Aluminium (as Al), mg/l                             | <0.001                           | <0.001                           | <0.001                           | <0.001                           | -        |
| 35  | Cadmium (as Cd), mg/l                               | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | -        |
| 36  | Arsenic (as As), mg/l                               | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.05-0.2 |
| 37  | Boron (as B), mg/l                                  | BDL(DL:0.025)                    | BDL(DL:0.025)                    | BDL(DL:0.025)                    | BDL(DL:0.025)                    | 2        |
| 38  | Mercury (as Hg), mg/l                               | BDL(DL:0.0005)                   | BDL(DL:0.0005)                   | BDL(DL:0.0005)                   | BDL(DL:0.0005)                   | -        |
| 39  | Lead (as Pb), mg/l                                  | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.1      |
| 40  | Zinc (as Zn), mg/l                                  | <0.001                           | <0.001                           | <0.001                           | <0.001                           | 1.5-15   |
| 41  | Percent Sodium, %                                   | 31.1                             | 30.9                             | 24.3                             | 29.5                             | -        |
| 42  | Total Coliforms, MPN/100 ml                         | 31                               | 22                               | 20                               | 17                               | 50-5000  |
| 43  | Faecal Coliforms, MPN/100 ml                        | 17                               | 14                               | 13                               | 9                                | -        |
| 44  | E. Coli, MPN/100 ml                                 | 13                               | 12                               | 10                               | 6                                | -        |

<sup>\*:</sup> CPCB Norms-Central Pollution Control Board Norms for Surface Waters-Class C. -: Not included/Not available.

# Table: 3.28 Ground Water Quality Data

|     |                                                     | 140             | W10                            | W11                                | W12-                              | W13-                           |             |
|-----|-----------------------------------------------------|-----------------|--------------------------------|------------------------------------|-----------------------------------|--------------------------------|-------------|
| SI. | Parameter                                           | W9<br>Plant Raw | Borewell,                      | Borewell,                          | Borewell,                         | Borewell,                      | IS:10500    |
| No. | Falanielei                                          | Water           | Tulukka-                       | Tammanai                           | Vachchak                          | Avudaiya-                      | Norms*      |
|     | <u> </u>                                            | 09°26'29.37" N  | <b>patti</b><br>09°26'27.89" N | <b>ckenpatti</b><br>09°26'52.86" N | <b>arapatti</b><br>09°27'38.17" N | <b>puram</b><br>09°26'36.75" N |             |
| i.  | Location Co-ordinates                               | 77°55'15.87" E  | 77°55'42.75" E                 | 77°54'33.88" E                     | 77°55'59.05" E                    | 77°57'06.94" E                 | -           |
| ii. | Date in Sep. 2024 / Time, Hrs.                      | 27/09:25        | 28/10:50                       | 27/12:45                           | 27/12:55                          | 27/13:30                       | -           |
| 1   | pH                                                  | 7.63            | 7.71                           | 7.77                               | 7.81                              | 7.66                           | 6.5-8.5     |
| 2   | Colour, Hazen units                                 | BDL(DL:5.0)     | BDL(DL:5.0)                    | BDL(DL:5.0)                        | BDL(DL:5.0)                       | BDL(DL:5.0)                    | 5/15#       |
| 3   | Temperature, °C                                     | 26.1            | 26.4                           | 26.1                               | 26.4                              | 26.0                           | -           |
| 4   | Turbidity, NTU                                      | 0.8             | 1.1                            | 1.3                                | 1.1                               | 0.8                            | 1/5         |
| 5   | Residual Chlorine, mg/l                             | BDL(DL:1.0)     | BDL(DL:1.0)                    | BDL(DL:1.0)                        | BDL(DL:0.1)                       | BDL(DL:0.1)                    | 0.2/1.0     |
| 6   | Dissolved Oxygen, mg/l                              | 4.4             | 4.1                            | 4.0                                | 4.0                               | 4.4                            | -           |
| 7   | Total Suspended Solids, mg/l                        | 12              | 14                             | 16                                 | 14                                | 10                             | -           |
| 8   | Electrical Conductivity, umhos/cm                   | 460             | 680                            | 660                                | 760                               | 630                            | -           |
| 9   | Total Dissolved Solids, mg/l                        | 300             | 440                            | 430                                | 520                               | 410                            | 500/2000    |
| 10  | Total Hardness (as CaCO <sub>3</sub> ), mg/l        | 120             | 190                            | 210                                | 230                               | 190                            | 200/600     |
| 11  | Calcium Hardness, mg/l                              | 70              | 100                            | 110                                | 120                               | 90                             | -           |
| 12  | Magnesium Hardness, mg/l                            | 50              | 90                             | 100                                | 110                               | 100                            | -           |
| 13  | Calcium (as Ca), mg/l                               | 28              | 40                             | 44                                 | 48                                | 36                             | 75/200      |
| 14  | Magnesium (as Mg), mg/l                             | 12              | 22                             | 24                                 | 26                                | 24                             | 30/100      |
| 15  | Sodium (as Na), mg/l                                | 21              | 36                             | 32                                 | 42                                | 36                             | -           |
| 16  | Potassium (as K), mg/l                              | 1               | 3                              | 2                                  | 4                                 | 2                              | -           |
| 17  | Chlorides (as CI), mg/l                             | 68              | 112                            | 106                                | 126                               | 94                             | 250/1000    |
| 18  | Sulphates (as SO <sub>4</sub> ), mg/l               | 14              | 36                             | 31                                 | 38                                | 23                             | 200/400     |
| 19  | Total Alkalinity (as CaCO <sub>3</sub> ), mg/l      | 60              | 100                            | 100                                | 110                               | 100                            | 200/600     |
| 20  | BOD-3 days @ 27°C, mg/l                             | BDL(DL:2.0)     | BDL(DL:2.0)                    | BDL(DL:2.0)                        | BDL(DL:2.0)                       | BDL(DL:2.0)                    | -           |
| 21  | COD, mg/l                                           | 2               | 4                              | 3                                  | 6                                 | 3                              | -           |
| 22  | Oil & Grease, mg/l                                  | Nil             | Nil                            | Nil                                | Nil                               | Nil                            | -           |
| 23  | Iron (as Fe), mg/l                                  | 0.06            | 0.08                           | 0.10                               | 0.11                              | 0.08                           | 0.3         |
| 24  | Fluorides (as F), mg/l                              | 0.08            | 0.14                           | 0.18                               | 0.21                              | 0.16                           | 1.0/1.5     |
| 25  | Nitrates (as NO <sub>3</sub> ), mg/l                | 0.50            | 0.55                           | 0.50                               | 0.60                              | 0.50                           | 45          |
| 26  | Phosphates (as PO <sub>4</sub> ), mg/l              | <0.01           | <0.01                          | <0.01                              | <0.01                             | <0.01                          | -           |
| 27  | Cyanides (as CN), mg/l                              | BDL(DL:0.01)    | BDL(DL:0.01)                   | BDL(DL:0.01)                       | BDL(DL:0.01)                      | BDL(DL:0.01)                   | 0.05        |
| 28  | Pesticides (as Malathion), mg/l                     | <0.01           | <0.01                          | <0.01                              | <0.01                             | <0.01                          | Abs./0.001  |
| 29  | Phenols (as C <sub>6</sub> H <sub>5</sub> OH), mg/l | BDL(DL:0.001)   | BDL(DL:0.001)                  | BDL(DL:0.001)                      | BDL(DL:0.001)                     | BDL(DL:0.001)                  | 0.001/0.002 |
| 30  | Manganese (as Mn), mg/l                             | BDL(DL:0.001)   | BDL(DL:0.001)                  | BDL(DL:0.001)                      | BDL(DL:0.001)                     | BDL(DL:0.001)                  | 0.1/0.3     |
| 31  | Chromium (as Cr), mg/l                              | BDL(DL:0.03)    | BDL(DL:0.03)                   | BDL(DL:0.03)                       | BDL(DL:0.03)                      | BDL(DL:0.03)                   | 0.05        |
| 32  | Copper (as Cu), mg/l                                | BDL(DL:0.001)   | BDL(DL:0.001)                  | BDL(DL:0.001)                      | BDL(DL:0.001)                     | BDL(DL:0.001)                  | 0.05/1.5    |
| 33  | Selenium (as Se), mg/l                              | BDL(DL:0.001)   | BDL(DL:0.001)                  | BDL(DL:0.001)                      | BDL(DL:0.001)                     | BDL(DL:0.001)                  | 0.01        |
| 34  | Aluminium (as Al), mg/l                             | BDL(DL:0.001)   | BDL(DL:0.001)                  | BDL(DL:0.001)                      | BDL(DL:0.001)                     | BDL(DL:0.001)                  | 0.03/0.2    |
| 35  | Cadmium (as Cd), mg/l                               | BDL(DL:0.001)   | BDL(DL:0.001)                  | BDL(DL:0.001)                      | BDL(DL:0.001)                     | BDL(DL:0.001)                  | 0.003       |
| 36  | Arsenic (as As), mg/l                               | BDL(DL:0.001)   | BDL(DL:0.001)                  | BDL(DL:0.001)                      | BDL(DL:0.001)                     | BDL(DL:0.001)                  | 0.01/0.05   |
| 37  | Boron (as B), mg/l                                  | BDL(DL:0.025)   | BDL(DL:0.025)                  | BDL(DL:0.025)                      | BDL(DL:0.025)                     | BDL(DL:0.025)                  | 0.5/1.0     |
| 38  | Mercury (as Hg), mg/l                               | BDL(DL:0.0005)  | BDL(DL:0.0005)                 | BDL(DL:0.0005)                     | BDL(DL:0.0005)                    | BDL(DL:0.0005)                 | 0.001       |
| 39  | Lead (as Pb), mg/l                                  | BDL(DL:0.001)   | BDL(DL:0.001)                  | BDL(DL:0.001)                      | BDL(DL:0.001)                     | BDL(DL:0.001)                  | 0.01        |
| 40  | Zinc (as Zn), mg/l                                  | BDL(DL:0.001)   | BDL(DL:0.001)                  | BDL(DL:0.001)                      | BDL(DL:0.001)                     | BDL(DL:0.001)                  | 5/15        |
| 41  | Percent Sodium, %                                   | 27.3            | 28.8                           | 24.7                               | 28.0                              | 28.9                           | -           |
| 42  | Total Coliforms, MPN/100 ml                         | Absent          | <2                             | <2                                 | <2                                | <2                             | Absent      |
| 43  | Faecal Coliforms, MPN/100 ml                        | Absent          | <2                             | <2                                 | <2                                | <2                             | Absent      |
| 44  | E. Coli, MPN/100 ml                                 | Absent          | <2                             | <2                                 | <2                                | <2                             | Absent      |

<sup>\*:</sup> IS:10500:2012-Drinking Water Standards; #: Requirement/Permissible Limit in the absence of alternate source.

# Table: 3.28 (Contn.) Ground Water Quality Data

| SI.<br>No. | Parameter                                           | W14<br>Borewell,<br>Kumara-<br>lingapuram | W14<br>Borewell,<br>Sankara-<br>lingapuram | W15<br>Borewell,<br>Pattampudur  | W16<br>Borewell,<br>Valayapatti  | IS:10500<br>Norms* |
|------------|-----------------------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|--------------------|
| i.         | Location Co-ordinates                               | 09°25'43.60" N<br>77°54'06.93" E          | 09°30'35.13" N<br>77°53'35.35" E           | 09°29'26.87" N<br>77°56'49.14" E | 09°27'14.79" N<br>77°58'51.70" E | -                  |
| ii.        | Date in Sep. 2024 / Time, Hrs.                      | 10:40                                     | 12:20                                      | 11:35                            | 14:15                            | -                  |
| 1          | pH                                                  | 7.81                                      | 7.63                                       | 7.75                             | 7.51                             | 6.5-8.5            |
| 2          | Colour, Hazen units                                 | BDL(DL:5.0)                               | BDL(DL:5.0)                                | BDL(DL:5.0)                      | BDL(DL:5.0)                      | 5/15#              |
| 3          | Temperature, °C                                     | 26.8                                      | 26.4                                       | 26.7                             | 26.3                             | -                  |
| 4          | Turbidity, NTU                                      | 1.1                                       | 0.8                                        | 1.3                              | 0.6                              | 1/5                |
| 5          | Residual Chlorine, mg/l                             | BDL(DL:1.0)                               | BDL(DL:0.1)                                | BDL(DL:1.0)                      | BDL(DL:1.0)                      | 0.2/1.0            |
| 6          | Dissolved Oxygen, mg/l                              | 4.3                                       | 4.4                                        | 4.2                              | 4.4                              | -                  |
| 7          | Total Suspended Solids, mg/l                        | 13                                        | 10                                         | 14                               | 8                                | -                  |
| 8          | Electrical Conductivity, umhos/cm                   | 650                                       | 560                                        | 690                              | 590                              | -                  |
| 9          | Total Dissolved Solids, mg/l                        | 420                                       | 360                                        | 450                              | 380                              | 500/2000           |
| 10         | Total Hardness (as CaCO <sub>3</sub> ), mg/l        | 190                                       | 160                                        | 210                              | 170                              | 200/600            |
| 11         | Calcium Hardness, mg/l                              | 100                                       | 80                                         | 110                              | 90                               | -                  |
| 12         | Magnesium Hardness, mg/l                            | 90                                        | 80                                         | 100                              | 80                               | -                  |
| 13         | Calcium (as Ca), mg/l                               | 40                                        | 32                                         | 44                               | 36                               | 75/200             |
| 14         | Magnesium (as Mg), mg/l                             | 22                                        | 19                                         | 24                               | 19                               | 30/100             |
| 15         | Sodium (as Na), mg/l                                | 36                                        | 32                                         | 40                               | 31                               | -                  |
| 16         | Potassium (as K), mg/l                              | 3                                         | 1                                          | 4                                | 2                                | -                  |
| 17         | Chlorides (as Cl), mg/l                             | 96                                        | 80                                         | 106                              | 88                               | 250/1000           |
| 18         | Sulphates (as SO <sub>4</sub> ), mg/l               | 24                                        | 21                                         | 30                               | 22                               | 200/400            |
| 19         | Total Alkalinity (as CaCO <sub>3</sub> ), mg/l      | 90                                        | 80                                         | 100                              | 90                               | 200/600            |
| 20         | BOD-3 days @ 27°C, mg/l                             | BDL(DL:2.0)                               | BDL(DL:2.0)                                | BDL(DL:2.0)                      | BDL(DL:2.0)                      | -                  |
| 21         | COD, mg/l                                           | 4                                         | 2                                          | 6                                | 2                                | -                  |
| 22         | Oil & Grease, mg/l                                  | Nil                                       | Nil                                        | Nil                              | Nil                              | -                  |
| 23         | Iron (as Fe), mg/l                                  | 0.10                                      | 0.08                                       | 0.11                             | 0.06                             | 0.3                |
| 24         | Fluorides (as F), mg/l                              | 0.14                                      | 0.10                                       | 0.18                             | 0.08                             | 1.0/1.5            |
| 25         | Nitrates (as NO <sub>3</sub> ), mg/l                | 0.55                                      | 0.50                                       | 0.60                             | 0.50                             | 45                 |
| 26         | Phosphates (as PO <sub>4</sub> ), mg/l              | <0.01                                     | <0.01                                      | <0.01                            | <0.01                            | -                  |
| 27         | Cyanides (as CN), mg/l                              | BDL(DL:0.01)                              | BDL(DL:0.01)                               | BDL(DL:0.01)                     | BDL(DL:0.01)                     | 0.05               |
| 28         | Pesticides (as Malathion), mg/l                     | <0.01                                     | <0.01                                      | <0.01                            | <0.01                            | Abs./0.001         |
| 29         | Phenols (as C <sub>6</sub> H <sub>5</sub> OH), mg/l | BDL(DL:0.001)                             | BDL(DL:0.001)                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.001/0.002        |
| 30         | Manganese (as Mn), mg/l                             | BDL(DL:0.001)                             | BDL(DL:0.001)                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.1/0.3            |
| 31         | Chromium (as Cr), mg/l                              | BDL(DL:0.03)                              | BDL(DL:0.03)                               | BDL(DL:0.03)                     | BDL(DL:0.03)                     | 0.05               |
| 32         | Copper (as Cu), mg/l                                | BDL(DL:0.001)                             | BDL(DL:0.001)                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.05/1.5           |
| 33         | Selenium (as Se), mg/l                              | BDL(DL:0.001)                             | BDL(DL:0.001)                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.01               |
| 34         | Aluminium (as Al), mg/l                             | BDL(DL:0.001)                             | BDL(DL:0.001)                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.03/0.2           |
| 35         | Cadmium (as Cd), mg/l                               | BDL(DL:0.001)                             | BDL(DL:0.001)                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.003              |
| 36         | Arsenic (as As), mg/l                               | BDL(DL:0.001)                             | BDL(DL:0.001)                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.01/0.05          |
| 37         | Boron (as B), mg/l                                  | BDL(DL:0.025)                             | BDL(DL:0.025)                              | BDL(DL:0.025)                    | BDL(DL:0.025)                    | 0.5/1.0            |
| 38         | Mercury (as Hg), mg/l                               | BDL(DL:0.0005)                            | BDL(DL:0.0005)                             | BDL(DL:0.0005)                   | BDL(DL:0.0005)                   | 0.001              |
| 39         | Lead (as Pb), mg/l                                  | BDL(DL:0.001)                             | BDL(DL:0.001)                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 0.01               |
| 40         | Zinc (as Zn), mg/l                                  | BDL(DL:0.001)                             | BDL(DL:0.001)                              | BDL(DL:0.001)                    | BDL(DL:0.001)                    | 5/15               |
| 41         | Percent Sodium, %                                   | 28.8                                      | 30.1                                       | 28.8                             | 28.1                             | -                  |
| 42         | Total Coliforms, MPN/100 ml                         | <2                                        | <2                                         | <2                               | <2                               | Absent             |
| 43         | Faecal Coliforms, MPN/100 ml                        | <2                                        | <2                                         | <2                               | <2                               | Absent             |
| 44         | E. Coli, MPN/100 ml                                 | <2                                        | <2                                         | <2                               | <2                               | Absent             |

<sup>\*:</sup> IS:10500:2012-Drinking Water Standards; #: Requirement/Permissible Limit in the absence of alternate source.

# **Table : 3.29 Water Quality Status**Monitoring Dates : 27-28.09.2024

|            |                              | Concentration Range & Norms |                                      |                  |                                               |  |  |
|------------|------------------------------|-----------------------------|--------------------------------------|------------------|-----------------------------------------------|--|--|
| SI.<br>No. | Parameter                    | Surface<br>Waters           | CPCB Norms*<br>for Surface<br>Waters | Ground<br>Waters | IS:10500<br>Norms** for<br>Drinking<br>Waters |  |  |
| 1          | pH                           | 7.58-7.88                   | 6.5-8.5                              | 7.51-7.81        | 6.5-8.5                                       |  |  |
| 2          | Total Dissolved Solids, mg/l | 310-560                     | -                                    | 360-520          | 500-2000*                                     |  |  |
| 3          | Dissolved Oxygen, mg/l       | 4.0-4.8                     | 4.0-6.0                              | 4.0-4.4          | -                                             |  |  |
| 4          | BOD (3 days @ 27 °C), mg/l   | BDL(DL:2.0)                 | <3                                   | BDL(DL:2.0)      | -                                             |  |  |
| 5          | COD, mg/l                    | 2-10                        | -                                    | 2-6              | -                                             |  |  |
| 6          | Oil & Grease, mg/l           | BDL(DL:1.0)                 | -                                    | BDL(DL:1.0)      | -                                             |  |  |
| 7          | Chlorides (as CI), mg/l      | 82-116                      | 250-600                              | 80-16            | 250-1000                                      |  |  |
| 8          | Iron (as Fe), mg/l           | 0.06-0.14                   | 0.3-5.0                              | 0.06-0.11        | 0.3                                           |  |  |
| 9          | Trace Metals, mg/l           | <0.01                       | -                                    | <0.01            | <0.001-<0.01                                  |  |  |
| 10         | Total Coliforms, MPN/100 ml  | 17-120                      | 50-5000                              | <2               | Absent                                        |  |  |

<sup>\*:</sup> CPCB Norms-Central Pollution Control Board Norms for Surface Waters-**Class C**. -: Not included/Not available. \*\*: \*: IS:10500:2012-Drinking Water Standards; #: Requirement/Permissible Limit in the absence of alternate source.

The pH of the **ground water** samples were ranging from 7.51-7.81 against the BIS Norm of 6.5-8.5. While EC values were in the range 560-760, TDS values were monitored in the range 360-520 mg/l (Norm 500 mg/l or 2,000 mg/l in the absence of alternate source). Chloride values were found to be in the range 68-126 mg/l (Norm 250/1000 mg/l). Iron content was found to be in the range 0.06-0.11 mg/l. Oil & Grease, Cyanides, Phenols, Pesticides, etc. were found to be absent. Most of the trace metals were monitored to be below their detectable limits. In general, the water quality of ground waters were found to be within the prescribed IS:10500-2012 Norms for Drinking in the absence of an alternative source.

#### 3.8 Land Environment

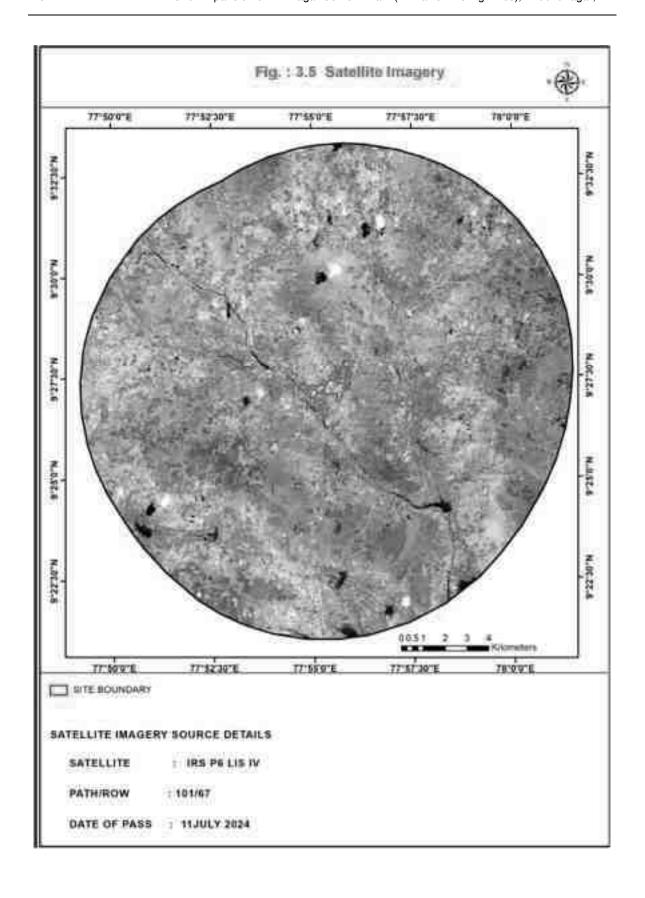
#### 3.8.1 Soil Status

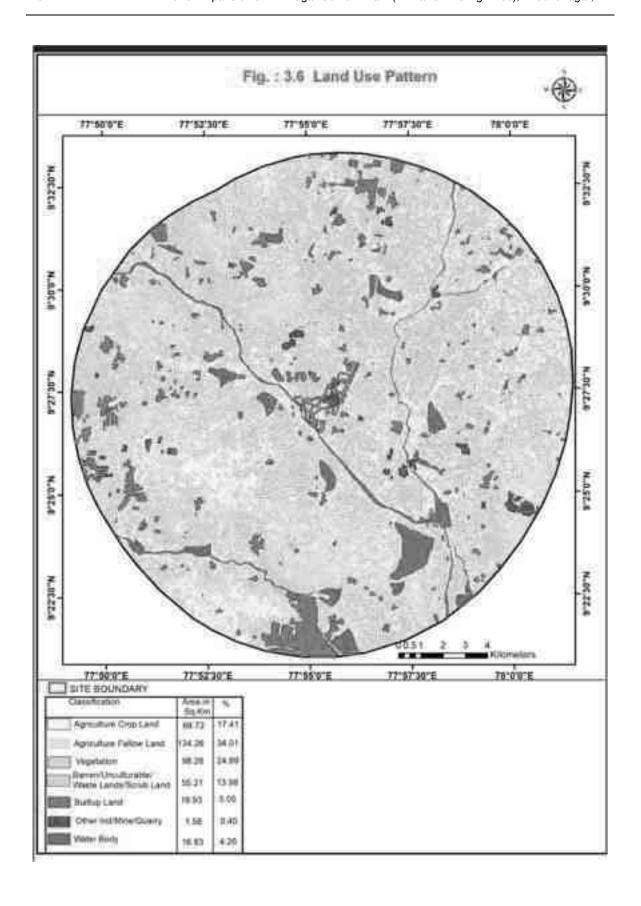
The major soil types encountered in the district are black cotton soils, red sandy to loamy soils and alluvial soils. The monitored soil quality data are given as **Table 3.30**. Soils with medium compaction and Silty loam texture are dominant in the study area. Soil pH values were found to be in alkaline range (7.53-7.86) and Electrical Conductivity values were in the range 0.92-1.45 mmhos/cm. There was significant moisture content at all the monitoring locations. Significant levels of Nitrogen, Phosphorous and Potassium (NPK) values were monitored at all locations. Sodium Absorption Ratio was in the range 2.16-5.51 (desirable value being <5). There was **no heavy metals intrusion**/leaching into the ground strata. Wilting coefficient in significant levels would mean that these soils would support the vegetation, if amended suitably.

#### 3.8.2 Land Use

For Land Use study of the Study Area, IRS P6-LIS IV- Imagery dated 11.07.2024 Satellite Digital Data of NRSA, Hyderabad was used (**Fig. 3.5**). Level-3 Classification with 1:50,000 scale was made for the preparation of land use mapping (**Fig. 3.6**). Land Use Pattern of the Study Area is given in **Table 3.31**. Fallow Land occupies the majority of the study area which is about 34.01%. Crop Lands occupy 17.41% of the study area Built-up lands occupy 5.05%. Water body occupies about 4.26% of the study area.

Table: 3.31 Land Use Pattern


| Land Use                              | Area, sq.km | Percentage, % |
|---------------------------------------|-------------|---------------|
| Agricultural Crop Land                | 68.72       | 17.41         |
| Fallow Land                           | 134.28      | 34.01         |
| Vegetation                            | 98.26       | 24.89         |
| Barren/Unculturable/Waste/Scrub Lands | 55.21       | 13.98         |
| Other Mine/Quarry/Industry Land       | 1.58        | 0.40          |
| Built-up Land                         | 19.93       | 5.05          |
| Water Body                            | 16.83       | 4.26          |
| Total                                 | 394.81      | 100           |


Table: 3.30 Soil Status

Monitoring Date: 27-28.09.2024

| SI.<br>No. | Parameter                             | S1-<br>Plant<br>Green<br>Belt            | S2-Dry<br>Land,<br>Vachch<br>akara-<br>patti | S3-Agri.<br>Land,<br>Subbiah<br>puram    | S4-Dry<br>Agri.<br>Land,<br>Tulukka<br>patti | S5-Dry<br>Agri.<br>Land,<br>Rama-<br>linga-<br>puram | S6-Dry<br>Agri.<br>Land,<br>Mel<br>Chinnia<br>puram | Desirable<br>Range* |
|------------|---------------------------------------|------------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------------------|------------------------------------------------------|-----------------------------------------------------|---------------------|
| i.         | Location Co-ordinates                 | 09°27'28.<br>41" N<br>77°55'47.<br>20" E | 09°28'00.<br>29" N<br>77°56'21.<br>22" E     | 09°27'21.<br>92" N<br>77°56'55.<br>69" E | 09°26'27.<br>47" N<br>77°55'52.<br>77" E     | 09°26'49.<br>72" N<br>77°53'36.<br>81" E             | 09°28'34.<br>33" N<br>77°54'10.<br>52" E            | -                   |
| ii.        | Date in Sep. 2024 / Time, Hrs.        | 28/<br>12:30-<br>12:45                   | 27/<br>13:00-<br>13:10                       | 27/<br>13:20-<br>13:30                   | 28/<br>10:45-<br>11:00                       | 27/<br>11:00-<br>11:15                               | 27/<br>11:45-<br>12:00                              | -                   |
| iii.       | Colour                                | Brown                                    | Grey                                         | Brown                                    | Brown                                        | Brown                                                | Brown                                               | -                   |
| iv.        | Compaction                            | Medium                                   | Medium                                       | Medium                                   | Medium                                       | Medium                                               | Medium                                              | -                   |
| 1          | pH (10% Solution)                     | 7.68                                     | 7.86                                         | 7.71                                     | 7.74                                         | 7.80                                                 | 7.53                                                | 5.5-9.0             |
| 2          | Electrical Conductivity, mmhos/cm     | 1.21                                     | 1.45                                         | 0.92                                     | 1.30                                         | 1.25                                                 | 1.28                                                | 0.2-0.5             |
| 3          | Natural Moisture Content, %           | 12.4                                     | 8.7                                          | 11.6                                     | 9.5                                          | 9.1                                                  | 10.1                                                | -                   |
| 4          | Organic Carbon, %                     | 1.10                                     | 0.72                                         | 1.12                                     | 0.94                                         | 0.88                                                 | 0.97                                                | >0.75               |
| 5          | Nitrogen (as N), %                    | 0.012                                    | 0.006                                        | 0.011                                    | 0.010                                        | 0.008                                                | 0.010                                               | 0.01-0.02           |
| 6          | Phosphorus (as P), %                  | 0.010                                    | 0.005                                        | 0.006                                    | 0.006                                        | 0.005                                                | 0.006                                               | 0.002-<br>0.004     |
| 7          | Potassium (as K), %                   | 0.008                                    | 0.01                                         | 0.003                                    | 0.008                                        | 0.007                                                | 0.008                                               | >0.01               |
| 8          | Sodium (as Na), ppm                   | 110                                      | 240                                          | 110                                      | 130                                          | 150                                                  | 140                                                 | -                   |
| 9          | Calcium (as Ca), ppm                  | 80                                       | 60                                           | 50                                       | 100                                          | 90                                                   | 80                                                  | -                   |
| 10         | Magnesium (as Mg), ppm                | 70                                       | 50                                           | 40                                       | 80                                           | 70                                                   | 90                                                  | -                   |
| 11         | Chlorides (as Cl), ppm                | 180                                      | 210                                          | 130                                      | 180                                          | 170                                                  | 190                                                 | -                   |
| 12         | Sulphates (as SO <sub>4</sub> ), ppm  | 80                                       | 90                                           | 40                                       | 90                                           | 70                                                   | 90                                                  | -                   |
| 13         | Cation Exchange Capacity, meq/100 g   | 24.2                                     | 17.1                                         | 25.3                                     | 22.1                                         | 22.6                                                 | 23.1                                                | 10-30               |
| 14         | Grain Size Distribution :- i. Sand, % | 25.8                                     | 30.5                                         | 25.7                                     | 24.8                                         | 27.6                                                 | 27.5                                                | -                   |
|            | ii. Silt                              | 63.8                                     | 62.5                                         | 63.0                                     | 65.8                                         | 64.1                                                 | 63.7                                                | -                   |
|            | iii. Clay                             | 10.4                                     | 7.0                                          | 11.3                                     | 9.4                                          | 8.3                                                  | 8.8                                                 | -                   |
| 15         | Textural Class                        | Silty<br>loam                            | Silty<br>loam                                | Silty<br>loam                            | Silty<br>loam                                | Silty<br>loam                                        | Silty<br>loam                                       | Loam                |
| 16         | Bulk Density, g/cc                    | 1.36                                     | 1.33                                         | 1.37                                     | 1.34                                         | 1.33                                                 | 1.35                                                | -                   |
| 17         | Infiltration Rate, cm/hr              | 3.4                                      | 4.0                                          | 3.5                                      | 3.7                                          | 3.6                                                  | 3.8                                                 | -                   |
| 18         | Field Capacity, %                     | 25.4                                     | 19.7                                         | 24.6                                     | 23.2                                         | 23.8                                                 | 21.2                                                | -                   |
| 19         | Wilting Coefficient, %                | 1.6                                      | 0.7                                          | 1.5                                      | 1.2                                          | 1.0                                                  | 0.9                                                 | >0.4                |
| 20         | Available Water Storage Capacity, %   | 23.8                                     | 19.0                                         | 23.1                                     | 22.0                                         | 22.8                                                 | 20.3                                                | -                   |
| 21         | Sodium Absorbing Ratio                | 2.16                                     | 5.51                                         | 2.80                                     | 2.34                                         | 2.87                                                 | 2.54                                                | <5                  |

<sup>\*:</sup> Desirable Range for High Production Soil.





## 3.9 Flora and Fauna

## 3.9.1 Flora

There is no Reserved Forests within 10 km radius area. The Study Area is not part of any National Park, Sanctuary, Biosphere Reserve, Wildlife Corridors, Migratory Path, etc. The list of plant species in the study area are presented in Table 3.32.

Table: 3.32 List of Flora in the Study Area

| SI. No.            | Botanical Name          | Family          | Common Name                  | Habit   |  |  |  |  |
|--------------------|-------------------------|-----------------|------------------------------|---------|--|--|--|--|
|                    |                         | Agricultural Cr | ops                          |         |  |  |  |  |
| 1                  | Arachis hypogea         | Fabaceae        | Groundnut                    | Herb    |  |  |  |  |
| 2                  | Cajanus cajan           | Fabaceae        | Pigeon Pea, Red Gram         | Herb    |  |  |  |  |
| 3                  | Capsicum frutescens     | Solanaceae      | Milagaai, Chilly             | Herb    |  |  |  |  |
| 4                  | Cicer arietinum         | Fabaceae        | Bengal Gram                  | Herb    |  |  |  |  |
| 5                  | Cyamopsis tetragonoloba | Fabaceae        | Cluster bean                 | Shrub   |  |  |  |  |
| 6                  | Eleusine corocana       | Poaceae         | Ragi                         | Herb    |  |  |  |  |
| 7                  | Hibiscus esculentus     | Malvaceae       | Lady's finger, Vendai        | Herb    |  |  |  |  |
| 8                  | Lagenaria vulgaris      | Cucurbitaceae   | Bottle gourd                 | Creeper |  |  |  |  |
| 9                  | Momordica charantia     | Cucurbitaceae   | Bittergourd                  | Creeper |  |  |  |  |
| 10                 | Moringa oleifera        | Moringaceae     | Drumstick, Murungai          | Tree    |  |  |  |  |
| 11                 | Musa paradisiaca        | Musaceae        | Plantain, Vazhai             | Tree    |  |  |  |  |
| 12                 | Oryza sativa            | Poaceae         | Rice                         | Herb    |  |  |  |  |
| 13                 | Phaseolus mungo         | Fabaceae        | Black gram                   | Herb    |  |  |  |  |
| 14                 | Ricinus communis        | Euphorbiaceae   | Castor Seed                  | Herb    |  |  |  |  |
| 15                 | Sesamum indicum         | Pedaliaceae     | Seasame, Ellu                | Herb    |  |  |  |  |
| 16                 | Solanum melongena       | Solanaceae      | Brinjal                      | Herb    |  |  |  |  |
| 17                 | Solanum torvum          | Solanaceae      | Turkey berry                 | Shrub   |  |  |  |  |
| 18                 | Trichosanthes cucurmina | Cucurbitaceae   | Snake gourd                  | Creeper |  |  |  |  |
| 19                 | Vicia faba              | Fabaceae        | Broad Bean                   | Creeper |  |  |  |  |
| 20                 | Vigna radiata           | Fabaceae        | Green Gram                   | Herb    |  |  |  |  |
| 21                 | Zea mays                | Poaceae         | Maize                        | Herb    |  |  |  |  |
|                    |                         | Commercial Cr   |                              |         |  |  |  |  |
| 1                  | Capsicum frutescens     | Solanaceae      | Milagaai, Chilly             | Herb    |  |  |  |  |
| 2                  | Cocus nucifera          | Arecaceae       | Coconut, Thennai             | Tree    |  |  |  |  |
| 3                  | Citrus aurantifolia     | Rutaceae        | Lemon                        | Tree    |  |  |  |  |
| 4                  | Gossypium arboreum      | Malvaceae       | Cotton, Paruthi              | Shrub   |  |  |  |  |
| 5                  | Helianthus annuus       | Asteraceae      | Sunflower                    | Herb    |  |  |  |  |
| 6                  | Mangifera indica        | Anacardiaceae   | Mango                        | Tree    |  |  |  |  |
| 7                  | Ricinus communis        | Euphorbiaceae   | Castor Bean Plant            | Shrub   |  |  |  |  |
|                    |                         | Plantations     |                              |         |  |  |  |  |
| 1                  | Casuarina equisetifolia | Casuarinaceae   | Casuarina, Savukku           | Tree    |  |  |  |  |
| 2                  | Cocos nucifera          | Palmae          | Coconut                      | Tree    |  |  |  |  |
| 3                  | Eucalyptus sp.          | Myrtaceae       | Eucalyptus                   | Tree    |  |  |  |  |
| 4                  | Mangifera indica        | Anacardiaceae   | Mango                        | Tree    |  |  |  |  |
| 5                  | Tectona grandis         | Lamiaceae       | Teak                         | Tree    |  |  |  |  |
| Natural Vegetation |                         |                 |                              |         |  |  |  |  |
| 1                  | Abrus precatorius       | Fabaceae        | Coral bead vine, Rosary pea, | Climber |  |  |  |  |
| 2                  | Abutilon indicum        | Malvaceae       | Country Mallow, Tutti        | Herb    |  |  |  |  |
| 3                  | Acacia arabica          | Mimosoideae     | Green Amaranth               | Herb    |  |  |  |  |
| 4                  | Acacia auriculiformis   | Mimosaceae      | Karuvelan                    | Tree    |  |  |  |  |

| SI. No.  | Botanical Name                            | Family                 | Common Name                              | Habit           |
|----------|-------------------------------------------|------------------------|------------------------------------------|-----------------|
| 5        | Acacia catechu                            | Mimosaceae             | karunkali                                | Tree            |
| 6        | Acacia latronum                           | Mimosaceae             | Kakka odai                               | Tree            |
| 7        | Acacia leucophloea                        | Mimosaceae             | Velvelam, White babool                   | Tree            |
| 8        | Acacia nilotica                           | Mimosaceae             | Babul, Karuvelam                         | Tree            |
| 9        | Acalypha indica                           | Euphorbiacea           | Indian Copperleaf, Kuppaimeni            | Herb            |
| 10       | Acanthospermum hispidum                   | Asteraceae             | Seruppadithazhai,                        | Herb            |
| 11       | Achchyranthes aspera                      | Amaranthaceae          | Prickly Chaff flower, Nayuruvi           | Herb            |
| 12       | Adathoda vasica                           | Acanthaceae            | Vasaca, Adathodai                        | Shrub           |
| 13       | Adenium obesum                            | Apocynaceae            | Desert Rose                              | Shrub           |
| 14       | Adina cordifolia                          | Rubiaceae              | Manjakadambu                             | Tree            |
| 15       | Aegle marmelos                            | Rutaceae               | Wood Apple, vilvam                       | Tree            |
| 16       | Aerva lanata                              | Amaranthaceae          | Sirupulai                                | Herb            |
| 17       | Agave americana                           | Agavaceae              | Century Plant, Karunkattralai            | Herb            |
| 18       | Agave sisalana                            | Agavaceae              | Kathalai                                 | Herb            |
| 19       | Ageratum conyzoides                       | Asteraceae             | Goat weed, Pumppillu                     | Herb            |
| 20       | Ailanthus excelsa                         | Simaroubaceae          | Indian Tree of Heaven,                   | Tree            |
| 21       | Alangium salvifolium                      | Alangiaceae            | Alingi, Sage-leaved alangium             | Climber         |
| 22       | Albizia amara                             | Mimosaceae             | Usilamaram                               | Tree            |
| 23       | Albizia lebbek                            | Mimosaceae             | Siris Tree, Vagai                        | Tree            |
| 24       | Albizia odorattissima                     | Fabaceae               | Karuvagai                                | Tree            |
| 25       | Aloe vera                                 | Asphodelaceae          | Chotthukattlalai                         | Shrub           |
| 26       | Alternanthera sessilis                    | Amaranthaceae          | Dwarf Copperleaf, Ponnanganni            | Herb            |
| 27       | Amaranthus spinosus                       | Amaranthaceae          | Mullukkirai, Prickly Amaranth            | Herb            |
| 28       | Amaranthus viridis                        | Amaranthaceae          | Kuppaikeerai                             | Herb            |
| 29       | Ammannia baccifera                        | Lythraceae             | Acrid weed, Kalluruvi                    | Herb            |
| 30       |                                           | Acanthaceae            | Asian Waterwillow, Siriyanangai          | Herb            |
| 31       | Andrographis paniculata Anisomeles indica | Lamiaceae              | Marutti                                  | Herb            |
| 32       | Anisomeles malabarica                     | Lamiaceae              | Peyimarutli                              | Herb            |
| 33       |                                           | Annonaceae             | Custard Apple, Seethapalam               | Tree            |
| 34       | Annona squamosa Apluda mutica             | Poaceae                | Mauritian Grass                          | Grass           |
| 35       | Arachis hypogea                           | Faboideae              | Ground nut                               | Herb            |
| 36       | Argemone mexicana                         | Papaveraceae           | Prickly poppy, Kudiyotti                 | Shrub           |
| 37       | Aristida adscensionis                     | Poaceae                | Coomon Needle grass                      | Herb            |
| 38       | Aristolochia bracteolata                  | Aristolochiacea        | <u> </u>                                 |                 |
| 39       |                                           |                        | Aduthinnarppalai                         | Herb            |
|          | Artocarpus heterophyllus                  | Moraceae               | Jackfruit                                | Tree            |
| 40<br>41 | Asparagus racemosus                       | Asparaceae<br>Rutaceae | Satawari, Tanneervittan  Kattu Elumeachi | Climber         |
| 42       | Atalantia monophylla  Azadirachta indica  | Meliaceae              | Neem, Vembu                              | Tree<br>Tree    |
| 42       | Baliospermum motanum                      | Euphorbiaceae          | Wild Castor, Peyamanakku                 | Herb            |
| 44       | Bambusa arundanacea                       |                        |                                          |                 |
| 45       | Bambusa vulgaris                          | Poaceae<br>Poaceae     | Bamboo, Mungil Mulmungil                 | Tree<br>Bamboo  |
| 46       |                                           | Acanthaceae            | _                                        |                 |
| 46       | Barleria prionitis Bassia latifolia       | Sapotaceae             | Porcupine flower, Kundan Iluppai         | Herb<br>Tree    |
| 47       |                                           | •                      | Bidi leaf tree, Aatti                    |                 |
| 48       | Bauhinia racemosa Bidens biternata        | Fabaceae<br>Asteraceae | Spanish needles                          | Tree<br>Herb    |
| 50       |                                           | Oxalidaceae            | Telegraph plant                          |                 |
| 51       | Biophytum sensitivium Blumea lacera       |                        | Kattumullangi, Narakkarandai             | Climber<br>Herb |
| 52       | Boerheavia diffusa                        | Asteraceae             |                                          |                 |
|          |                                           | Nyctaginaceae          | Pig weed, Mukkarattai Keerai             | Herb            |
| 53       | Boerheavia erecta                         | Nyctaginaceae          | Erect spiderling                         | Herb            |
| 54       | Borassus flabellifer                      | Arecaceae              | Palmyra Palm                             | Tree            |
| 55<br>56 | Bougainvillea spectabilis                 | Nyctaginaceae          | Kaakithapoo                              | Climber         |
| 56       | Bulbostylis barbatta                      | Cyperaceae             | Mukkutikorei                             | Herb            |

| SI. No.    | Botanical Name           | Family         | Common Name                         | Habit        |
|------------|--------------------------|----------------|-------------------------------------|--------------|
| 57         | Butea monosperma         | Fabaceae       | Flame of Forest                     | Tree         |
| 58         | Cactus sp.               | Cactaceae      | Kalli, Spurge                       | Shrub        |
| 59         | Cadiospermum halicacabum | Sapindaceae    | Mudakattan                          | Climber      |
| 60         | Caeselpinia pulcherrima  | Caesalpiniacea | Peacock Flower, Mayurkondrai        | Tree         |
| 61         | Cajanus cajan            | Fabaceae       | Pigeon Pea, Red Gram, Tuvarai       | Herb         |
| 62         | Calendula officinalis    | Asteraceae     | Marigold                            | Herb         |
| 63         | Calophyllum inophyllum   | Clusiaceae     | Punnai                              | Tree         |
| 64         | Calotropis gigantea      | Asclepiadaceae | Crown Flower, Erukku                | Shrub        |
| 65         | Canna indica             | Cannaceae      | Indian shot, Kalvalai               | Shrub        |
| 66         | Capparis divaricata      | Capparaceae    | Turatti                             | Climber      |
| 67         | Capparis sepiaria        | Capparaceae    | Kattukathiri, Wild Caper Bush       | Herb         |
| 68         | Capsicum annuum          | Solanaceae     | Capsicum, Chilli Pepper, Milakai    | Herb         |
| 69         | Carica papaya            | Caricaceae     | Pappaali                            | Tree         |
| 70         | Carissa carandas         | Apocynaceae    | Karanda, Kalakkai                   | Shrub        |
| 71         | Caryota urens            | Arecaceae      | kuntarpanai, Talippanai             | Palm         |
| 72         | Cassia auriculata        | Fabaceae       | Aavarampoo                          | Shrub        |
| 73         | Cassia biflora           | Fabaceae       | Twin Flowered Cassia,               | Tree         |
| 74         | Cassia fistula           | Fabaceae       | Golden shower tree, Kondrai         | Tree         |
| 75         | Cassia occidentalis      | Caesalpiniacea | Coffee weed, Payaverai              | Herb         |
| 76         | Cassia roxburghii        | Ceasalpineace  | Red Cassia, Vakai                   | Tree         |
| 77         | Cassia siamea            | Caesalpiniacea | Manja konnai                        | Tree         |
| 78         | Cassia tora              | Caesalpiniacea | Sickle senna, Tagarai               | Herb         |
| 79         | Casuarina equisetifolia  | Casuarinaceae  | Whistling Pine, Savukku             | Tree         |
| 80         | Catharanthus roseus      | Apocynaceae    | Periwinkle, Nithyakalyani           | Herb         |
| 81         | Ceiba pentandra          | Bombacaceae    | Silk-Cotton Tree,                   | Tree         |
| 82         | Cenchrus ciliaris        | Poaceae        | Buffel grass                        | Grass        |
| 83         | Cenchrus setigerus       | Poaceae        | Birdwood Grass, Black               | Grass        |
| 84         | Centella asiatica        | Apiaceae       | Pennyweed, Vallarai                 | Herb         |
| 85         | Chloris barbata          | Poaceae        | Kodaipullu                          | Grass        |
| 86         | Chloris dolichostachya   | Poaceae        | Finger grass, Kuruthupillu          | Grass        |
| 87         | Chloroxylon sweitenia    | Flindersiaceae | Porasu                              | Tree         |
| 88         | Chromolaena odorata      | Asteraceae     | Devil Weed, Siam Weed               | Shrub        |
| 89         | Chrysanthemum indicum    | Asteraceae     | Chrysanthemum, Samanthi             | Herb         |
| 90         | Cissus quadrangularis    | Vitaceae       | Devil's Backbone, Pirandai          | Climber      |
| 91         | Citrus aurantifolia      | Rutaceae       | Common Sour Lime, Elumichai         | Tree         |
| 92         | Citrus medica            | Rutaceae       | Citron, Kodiyelumichai, Narathai    | Tree         |
| 93         | Cleome gynandra          | Cleomaceae     | Wild Spider flower, Nalvelai        | Herb         |
| 94         | Cleome viscosa           | Cleomaceae     | Tickweed, Naikkaduku                | Herb         |
| 95         | Clitoria ternatea        | Fabaceae       | Sankupushpam, Butterfly Pea         | Climber      |
| 96         | Coccinia indica          | Cucurbitaceae  | Kovai                               | Climber      |
| 97         | Cocculus hirsutus        | Menispermacea  | Broom Creeper, Kattukkodi           | Climber      |
| 98         | Cocos nucifera           | Palmae         | Coconut                             | Tree         |
| 99         | Codiaeum variegatum      | Euphorbiaceae  | Croton                              | Shrub        |
| 100        | Colleus amboinicus       | Lamiaceae      | Indian Mint, Karpooravalli          | Herb         |
| 100        | Combretum indicum        | Combretaceae   | Rangoon Creeper, Irangunmalli       | Shrub        |
| 101        | Commelina benghalensis   | Commelinacea   | Dew Flower, Kanavachai              | Herb         |
| 102        | Commiphora candata       | Burseraceae    | Kiluvai                             | Tree         |
| 103        | Conocorpus erectus       | Combretaceae   | Buttonwood                          | Tree         |
| 104        | Convolvulus arvensis     | Covolvulaceae  |                                     | Climber      |
| 105        | Corcorus olitorius       | Tiliaceae      | Bhoomi Chakra poondu  Perattikkirai | Shrub        |
|            |                          |                |                                     |              |
| 107<br>108 | Crotolaria retusa        | Fabaceae       | Rattlepod, Kilukilupai              | Herb<br>Herb |
| 100        | Croton sparsiflorus      | Euphorbiaceae  | Reilpoondu                          | inein        |

| SI. No. | Botanical Name                           | Family                      | Common Name                                | Habit   |
|---------|------------------------------------------|-----------------------------|--------------------------------------------|---------|
| 109     | Cucumis melo                             | Cucurbitaceae               | Musk melon, Thumattikai                    | Herb    |
| 110     | Cucumis meio Cucumis sativus             | Cucurbitaceae               | Cucumber                                   | Climber |
| 111     | Cucums sativus  Cuscuta reflexa          | Convolvulaceae              | Verillakothan, Kodiyagundal                |         |
| 112     |                                          |                             | 1                                          | Cross   |
|         | Cymbopogon sp.                           | Poaceae                     | Lemon grass                                | Grass   |
| 113     | Cynodon dactylon                         | Poaceae                     | Bermuda grass, Arugampul                   | Grass   |
| 114     | Cyprus rotundus                          | Cyperaceae                  | Korai, Nut grass                           | Grass   |
| 115     | Dalbergia latifolia                      | Fabaceae                    | Indian Black Rosewood,                     | Tree    |
| 116     | Datura metel                             | Solanaceae                  | Thorn apple, Oomathai                      | Shrub   |
| 117     | Decalepis hamiltonii                     | Apocynaceae                 | Sawallow Root, Mavilinga                   | Shrub   |
| 118     | Delonix elata                            | Fabaceae                    | White Gulmohr, Vadanarayanan               | Tree    |
| 119     | Delonix regia                            | Fabaceae                    | Gulmohar                                   | Tree    |
| 120     | Dendrocalamus sp.                        | Poaceae                     | Stone Bamboo, Sirumungil                   | Shrub   |
| 121     | Dendrophthoe falcata                     | Loranthaceae                | Honey Suckle Mistletoe,                    | Herb    |
| 122     | Desmoslachye bipinneta                   | Poaceae                     | Darbhaipul                                 | Grass   |
| 123     | Dichanthium annulatum                    | Poaceae                     | Marvel grass                               | Grass   |
| 124     | Dichrostachis cinerea                    | Fabaceae                    | Sickle Bush, Veduttalam                    | Tree    |
| 125     | Digetaria adscendens                     | Poaceae                     | Crab grass                                 | Herb    |
| 126     | Digetaria bicornis                       | Poaceae                     | Finger grass                               | Herb    |
| 127     | Dodonaea viscosa                         | Sapindaceae                 | Hop Bush, Virali                           | Shrub   |
| 128     | Eclipta alba                             | Asteraceae                  | Bhringaraj, Karisalankanni                 | Herb    |
| 129     | Eclipta prostrata                        | Asteraceae                  | False daisy, Karisalankanni                | Herb    |
| 130     | Eleusine coracana                        | Poaceae                     | Finger Millet, Ragi                        | Herb    |
| 131     | Emblica officinalis                      | Phyllanthaceae              | Indian gooseberry, Nelli                   | Tree    |
| 132     | Enicostemma axillare                     | Gentianaceae                | Vellarugu                                  | Herb    |
| 133     | Eragrostis spectabilis                   | Poaceae                     | Bunchgrass                                 | Herb    |
| 134     | Erythrina indica                         | Fabaceae                    | Mullu murungai, Indian Coral               | Tree    |
| 135     | Erythrina variegata                      | Fabaceae                    | Indian coral tree,                         | Tree    |
| 136     | Erythroxylum monogynum                   | Erythroxylacea              | Bastard Sandal, Sembulichan                | Shrub   |
| 137     | Eucalvptus tereticomis                   | Myrtaceae                   | Thailamaram                                | Tree    |
| 138     | Euphorbia antiquorum                     | Euphorbiaceae               | Kalli, Triangular Spurge                   | Tree    |
| 139     | Euphorbia heterophyla                    | Euphorbiaceae               | Painted euphorbia, Palperukki              | Herb    |
| 140     | Euphorbia hirta                          | Euphorbiaceae               | Asthma weed, Ammam                         | Herb    |
| 141     | Euphorbia thymifolia                     | Euphorbiaceae               | Amman pacharisi                            | Herb    |
| 142     | Euphorbia tirucalli                      | Euphorbiaceae               | Pencil cactus, Thirukalli                  | Shrub   |
| 143     | Evolvulus alsinoides                     | Convolvulaceae              | Dwarf Morning Glory,                       | Herb    |
| 144     | Ficus benghalensis                       | Moraceae                    | Banyan, Alamaram                           | Tree    |
| 145     | Ficus benjamina                          | Moraceae                    | Weeping Fig, Vellal,                       | Tree    |
| 146     | Ficus hispida                            | Moraceae                    | Peyathi                                    | Tree    |
| 147     | Ficus racemosa                           | Moraceae                    | Cluster Fig, Athi                          | Tree    |
| 148     | Ficus religiosa                          | Moraceae                    | Peepal, Arasamaram                         | Tree    |
| 149     | Gardenia jasminoides                     | Rubiaceae                   | Cape jasmine, Kumbai                       | Shrub   |
| 150     | Gisekia pharnaceoides                    | Aizoaceae                   | Manal keerai                               | Herb    |
| 151     | Gloriosa superba                         | Colchicaceae                | Flame lily, Kallappai kilangu              | Herb    |
| 152     | Gmelina arborea                          | Verbenaceae                 | Gamhar, Kumil                              | Tree    |
| 153     | Gomphrena globosa                        | Amaranthaceae               | Globe Amaranth, Vaadamalli                 | Herb    |
| 154     | Grevia disperma                          | Tiliaceae                   | Narathai                                   | Tree    |
| 155     | Grewia abutilifolia                      | Tiliaceae                   | Palicamaram                                | Shrub   |
| 156     | Gymnema sylvestre                        |                             | Cowplant, Sirukurinjan                     | Shrub   |
| 157     |                                          | Apocynaceae<br>Celastraceae |                                            | Shrub   |
| 157     | Gynmosporia montana<br>Hardwickia binata |                             | Mountain Spike thorn, Kattangi             | Tree    |
|         |                                          | Ceasalpiniacea              | Anjan, Acchamaram                          |         |
| 159     | Helianthus annuus                        | Asteraceae                  | Sunflower  Indian belietrane The Leadulder | Herb    |
| 160     | Heliotropium indicum                     | Boraginaceae                | Indian heliotrope, Thel kodukku            | Herb    |

| SI. No. | Potenical Name          | Eamily         | Common Name                      | Habit   |
|---------|-------------------------|----------------|----------------------------------|---------|
|         | Botanical Name          | Family         |                                  |         |
| 161     | Hemidesmus indicus      | Apocynaceae    | Indian sarasaparilla, Nannari    | Herb    |
| 162     | Heteropogan contortus   | Poaceae        | Bunch Speargrass                 | Grass   |
| 163     | Heterostemma tanjorense | Asclepiadaceae | Palakeerai                       | Herb    |
| 164     | Hibiscus cannabinus     | Malvaceae      | Brown Indian Hemp, Puliccha      | Shrub   |
| 165     | Hibiscus esculentus     | Malvaceae      | Lady's finger, Vendai            | Herb    |
| 166     | Hibiscus micranthus     | Malvaceae      | Tiny Flower Hibiscus             | Herb    |
| 167     | Hibiscus rosasinensis   | Malvaceae      | Shoeflower, Sembaruthi           | Shrub   |
| 168     | Holoptelea integrifolia | Ulmaceae       | Indian Elm Tree, Aya             | Tree    |
| 169     | Hygrophila auriculata   | Acanthaceae    | Marsh Barbel, Neermulli          | Herb    |
| 170     | Hyptis suaveolens       | Lamiaceea      | Pignut                           | Shrub   |
| 171     | Impatiens balsamina     | Balsaminaceae  | Garden Balsam,                   | Herb    |
| 172     | Indigofera tinctoria    | Fabaceae       | Cassia Indigo, Avuri             | Shrub   |
| 173     | Ipomea carnea           | Convolvulaceae | Bush Morning Glory               | Shrub   |
| 174     | Ipomea hederfolia       | Convolvulaceae | Kanavalikkodi                    | Herb    |
| 175     | Ipomea obscura          | Convolvulaceae | Obscure morning glory, Chirutali | Herb    |
| 176     | Ipomea reniformis       | Convolvulaceae | Roundleaf bindweed,              | Climber |
| 177     | Ixora coccinea          | Rubiaceae      | Ixora, Vedchi                    | Shrub   |
| 178     | Ixora parviflora        | Rubiaceae      | Torch tree, Shulundu             | Tree    |
| 179     | Jasminum arborescens    | Oleaceae       | Shrubby Jasmine, Kattumalligai   | Shrub   |
| 180     | Jasminum sambac         | Oleaceae       | Jasmine, Kundumalli              | Shrub   |
| 181     | Jatropha curcas         | Euphorbiaceae  | Physic Nut, Kattukkottai         | Shrub   |
| 182     | Jatropha glandulifera   | Euphorbiaceae  | Vellaikattukottai, Kattamanakku  | Shrub   |
| 183     | Jatrropa gossypifolia   | Euphorbiaceae  | Seemaiamanakku                   | Shrub   |
| 184     | Justicia adhatoda       | Acanthaceae    | Adathoda                         | Shrub   |
| 185     | Justicia gendarusa      | Acanthaceae    | Asian Water willow, Karunochchi  | Shrub   |
| 186     | Kedrostis foetidissima  | Cucurbitaceae  | Appakovai                        | Climber |
| 187     | Kyllinga triceps        | Cyperaceae     | Spikes edge, Velutta Nirbasi     | Herb    |
| 188     | Lagerstroemia speciosa  | Lythraceae     | Queen Crape Myrtle, Kadali       | Tree    |
| 189     | Lannea coromandelica    | Anacardiaceae  | Indian Ash Tree, Othiyamaram     | Tree    |
| 190     | Lantana camara          | Verbenaceae    | Lantana, Unnichedi               | Shrub   |
| 191     | Lawsonia inermis        | Lythraceae     | Henna, Maruthondri               | Shrub   |
| 192     | Lepidagathis cristata   | Acanthaceae    | Karappanpoondu                   | Herb    |
| 193     | Leucaena leucocephala   | Fabaceae       | Periyatagarai, Horse Tamarind    | Shrub   |
| 194     | Leucas aspera           | Lamiaceae      | Common Leucas, Thumbai           | Herb    |
| 195     | Limonia acidissima      | Rutaceae       | Wood apple, Vilampazham          | Tree    |
| 196     | Lycopersicon esculentum | Solanaceae     | Thakkali                         | Herb    |
| 197     | Maduca longifolia       | Sapotaceae     | Indian Butter Tree, Iluppai      | Tree    |
| 198     | Malvastrum              | Malvaceae      | False Mallow                     | Herb    |
| 199     | Mangifera indica        | Anacardiaceae  | Mango                            | Tree    |
| 200     | Marselia quadrifolia    | Marsileaceae   | Four Leaf Clover, Aaraikkeerai   | Herb    |
| 201     | Melia azadirachta       | Meliaceae      | Indian Liliac, Malaivembu        | Tree    |
| 202     | Melia dubia             | Meliaceae      | Karuvembu, Malaivembu            | Tree    |
| 203     | Merremia emarginata     | Convolvulaceae | Kidney Leaf Morning Glory,       | Herb    |
| 204     | Millingtonia hortensis  | Bignoniaceae   | Tree Jasmine, Katmalli           | Shrub   |
| 205     | Mimosa catechu          | Mimosaceae     | Black Catechu, Karungali,        | Tree    |
| 206     | Mimosa hamata           | Mimosaceae     | Hooked Mimosa                    | Shrub   |
| 207     | Mimosa pudica           | Mimosaceae     | Touch-me-not, Thottachurungi     | Herb    |
| 208     | Mimusops elengi         | Sapotaceae     | Maulsari, Magizhamboo            | Tree    |
| 209     | Mimusops elengi         | Sapotaceae     | Maulsari, Magizhamboo            | Tree    |
| 210     | Mimusops elengi         | Sapotaceae     | Magizhamboo                      | Tree    |
| 211     | Mitragyna parvifolia .  | Rubiaceae      | Nirkadambai                      | Tree    |
| 212     | Morinda tinctoria       | Rubiaceae      | Nuna                             | Tree    |
|         |                         |                |                                  |         |

| SI. No.  | Botanical Name           | Comily           | Common Name                     | Habit   |
|----------|--------------------------|------------------|---------------------------------|---------|
| 213      | Morinda tinctoria        | Family Rubiaceae | Nuna, Manjanathi                |         |
| 213      |                          |                  | •                               | Tree    |
| <b>-</b> | Moringa oleifera         | Moringaceae      | Drumstick, Murungai             | Tree    |
| 215      | Muntigia calabura        | Muntigiaceae     | Cotton Candy Berry,             | Tree    |
| 216      | Murraya koengii          | Rutaceae         | Curry leaf, Karuveppilai        | Shrub   |
| 217      | Murraya paniculata       | Rutaceae         | Orange Jasmine, Vengarai        | Shrub   |
| 218      | Musa paradisiaca         | Musaceae         | Banana                          | Tree    |
| 219      | Nerium indicum           | Apocynaceae      | Sevvarali                       | Shrub   |
| 220      | Nerium oleander          | Apocynaceae      | Oleander, Arali                 | Shrub   |
| 221      | Nyctanthes arbortristis  | Oleaceae         | Coral Jasmine, Pavizhamalli     | Shrub   |
| 222      | Ocimum americanum        | Lamiaceae        | Hoary Basil, Nai Thulasi        | Herb    |
| 223      | Ocimum americanum        | Lamiaceae        | Nai Thulasi                     | Herb    |
| 224      | Ocimum basilicum         | Lamiaceae        | Sweet Basil, Thirunitruthulasi  | Herb    |
| 225      | Ocimum gratissimum       | Lamiaceae        | Wild Basil, Peruntulasi         | Herb    |
| 226      | Ocimum sanctum           | Lamiaceae        | Holy Basil, Thulasi             | Herb    |
| 227      | Ocimum tenuiflorum       | Lamiaceae        | Thulasi                         | Herb    |
| 228      | Odina wodier             | Anacardiaceae    | Odiyan                          | Tree    |
| 229      | Oldenlandia umbellata    | Rubiaceae        | Choyroot, Chayaver              | Herb    |
| 230      | Opuntia dillenii         | Cactaceae        | Prickly Pear, Chappathikkalli   | Shrub   |
| 231      | Opuntia elatior          | Cactaceae        | Prickly Pear, Chappattukalli    | Shrub   |
| 232      | Opuntia stricta          | Cactaceae        | Sappathikalli                   | Cactus  |
| 233      | Opuntia vulgaris         | Aizoaceae        | Pricklypear                     | Shrub   |
| 234      | Oxalis corniculata       | Oxalidaceae      | Creeping Wood Sorrel, Paliakiri | Climber |
| 235      | Pandanus odoraltissimus  | Pandanaceae      | Thazhai, Kewda                  | Shrub   |
| 236      | Parthenium hysterophorus | Asteraceae       | Parthenium, Carrot Grass        | Herb    |
| 237      | Passiflora foetida       | Passifloraceae   | Stinking passionflower,         | Climber |
| 238      | Pavetta indica           | Rubiaceae        | Indian Pavetta,Kattukkaranai    | Shrub   |
| 239      | Pavonia zeylanica        | Malvaceae        | Sittamutti, Thengai poondu      | Shrub   |
| 240      | Peltophorum pterocarpum  | Caesalpiniacea   | Copper pod, Perungondrai,       | Tree    |
| 241      | Pergularia extensa       | Apocynaceae      | Hair Knot Plant, Veliparuthi,   | Climber |
| 242      | Phoenix acaulis          | Arecaceae        | Stemless Date Palm              | Shrub   |
| 243      | Phoenix sylvestris       | Arecaceae        | Eeachamaram                     | Tree    |
| 244      | Phyla nodiflora          | Verbenaceae      | Creeping Lip Plant, Poduthalai  | Herb    |
| 245      | Phyllanthus emblica      | Euphorbiaceae    | Nelli                           | Tree    |
| 246      | Phyllanthus nirurii      | Phyllanthaceae   | Keelanelli, Seed under leaf     | Herb    |
| 247      | Phyllanthus reticulatus  | Phyllanthaceae   | Black-berried featherfoil,      | Herb    |
| 248      | Physalis minima          | Solanaceae       | Ground Cherry, Kupanti          | Herb    |
| 249      | Pisonia alba             | Nyctaginaceae    | Lettuce Tree, Lachakatta Keerai | Shrub   |
| 250      | Pistia stratiotes        | Arecaceae        | Water lettuce, Agasatamarai     | Aquatic |
| 251      | Pithecellobium dulce     | Mimosaceae       | Sweet tamarind, Kodukkappuli    | Tree    |
| 252      | Plectranthus amboinicus  | Lamiaceae        | Indian borage                   | Herb    |
| 253      | Plumeria acuminata       | Apocyanaceae     | Frangipani                      | Tree    |
| 254      | Plumeria acutifolia      | Apocynaceae      | Sampangi                        | Tree    |
| 255      | Plumeria alba            | Apocynaceae      | White Frangipani, Champangi     | Tree    |
| 256      | Polylathia longifolia    | Anonaceae        | Indian mast tree, Asoka,        | Tree    |
| 257      | Pongamia pinnata         | Fabaceae         | Indian Beech, Pungam            | Tree    |
| 258      | Portulaca grandiflora    | Portulacaceae    | Moss Rose, Table Rose           | Herb    |
| 259      | Portulaca oleracea       | Portulacaceae    | Common Purslane, Paruppu        | Herb    |
| 260      | Prosopis glandulosa      | Mimosodeae       | Vaelikkaruvai                   | Tree    |
| 261      | Prosopis juliflora       | Fabaceae         | Algaroba, Seemaikaruvel         | Tree    |
| 262      | Prosopis spicigera       | Fabaceae         | Vaelikkaruvai                   | Shrub   |
| 263      | Psidium gujava           | Myrtaceae        | Guava                           | Tree    |
| 264      | Pterocarpus marsupium    | Fabaceae         | Vengai, Indian kino tree        | Tree    |

| SI. No.    | Botanical Name                                | Family                       | Common Name                                               | Habit           |
|------------|-----------------------------------------------|------------------------------|-----------------------------------------------------------|-----------------|
| 265        | Punica granatum                               | Lythraceae                   | Pomegranate, Mathulai                                     | Shrub           |
| 266        | Rosa indica                                   | Rosaceae                     | Rose                                                      | Herb            |
| 267        | Saccharum munja                               | Poaceae                      | Munja grass                                               | Herb            |
| 268        | Saccharum spontaneum                          | Poaceae                      | Kans grass, Pekkarimpu                                    | Herb            |
| 269        | Salvadora persica                             | Salvadoraceae                | Peruvila, Ukaa                                            | Tree            |
| 270        | Samanea saman                                 | Mimosodeae                   | rain tree, Thoongumoonij maram                            | Tree            |
| 271        | Sapindus emarginatus                          | Sapindaceae                  | Notched Leaf Soapnut,                                     | Tree            |
| 272        | Securinega virosa                             | Phyllanthaceae               | Common Bush Weed, Pula                                    | Herb            |
| 273        | Senna siamea                                  | Fabaceae                     | Manjalkondrai                                             | Tree            |
| 274        | Sesbania grandiflora                          | Fabaceae                     | Agathikeerai                                              | Tree            |
| 275        | Sida acuta                                    | Malvaceae                    | Common Wireweed, Palambasi                                | Herb            |
| 276        | Sida cordifofia                               | Malvaceae                    | Country mallow, Kurunthotti,                              | Shrub           |
| 277        | Sida cordifolia                               | Malvaceae                    | Wild mallow, Jelly Leaf                                   | Herb            |
| 278        | Solanum incanum                               | Solanaceae                   | Karimulli                                                 |                 |
| 279        | Solanum nigrum                                | Solanaceae                   | Black-berry night                                         | Herb<br>Herb    |
| 280        | Solanum surattense                            | Solanaceae                   | Kandan kattiri                                            | Herb            |
| 281        | Solanum torvum                                | Solanaceae                   | Turkey berry, Sundaikkai                                  | Shrub           |
| 282        | Solanum trilobatum                            |                              | Thoodhuvalai                                              | Shrub           |
| 283        | Solanum xanthocarpum                          | Solanaceae                   | Yellow berried nightshade,                                | Herb            |
| 284        | Sorghum bicolor                               | Solanaceae<br>Poaceae        | Fox tail millet, Maize                                    | Herb            |
| 285        | Sterculia urens                               | Sterculiaceae                | •                                                         | Tree            |
|            | Sterculia villosa                             |                              | Gum Karaya, Kavalam                                       | Tree            |
| 286<br>287 |                                               | Sterculiaceae<br>Moraceae    | Anainaar                                                  | Shrub           |
| 288        | Streblus asper                                |                              | Toothbrush Tree, Kurripila Poison Nut, Ettimaram          | Tree            |
| -          | Strychnos nuxvomica                           | Loganaceae<br>Meliaceae      | Mahagony, Ciminukku,                                      | Tree            |
| 289<br>290 | Swietenia mahagoni                            |                              | Jamun, Navalpazham                                        | Tree            |
| 290        | Syzygium cumini Tabernaemontana coronaria     | Myrtaceae                    | Nandiyarvattai                                            | Shrub           |
| 291        |                                               | Apocynaceae                  | Crape Jasmine,                                            |                 |
| 292        | Tabernaemontana divaricata Tamarindus indicus | Apocynaceae<br>Fabaceae      | Tamarind, Puliyamaram                                     | Shrub<br>Tree   |
| -          |                                               |                              |                                                           |                 |
| 294<br>295 | Tecoma stans Tectona grandis                  | Bignoniaceae                 | Yellow trumpet Teak                                       | Shrub           |
| 295        | <u> </u>                                      | Lamiaceae<br>Fabaceae        | Fish poison, Kollukkai Velai                              | Tree<br>Herb    |
| 296        | Tephrosia purpurea Terminalia arjuna          | Combretaceae                 | Arjun, Maruthu                                            | Tree            |
| 298        | ,                                             |                              | Indian Almond, Nattuvadhumai,                             | Tree            |
| 298        | Terminalia catappa Terminalia chebula         | Combretaceae<br>Combretaceae | Kadullai                                                  | Tree            |
|            |                                               |                              |                                                           |                 |
| 300        | Thespesia lampas Thespesia populnea           | Malvaceae<br>Malvaceae       | Common Mallow, Kattupparuthi Indian Tulip Tree, Poovarasu | Herb<br>Tree    |
| 302        | Thesesia populitea  Thevetia peruviana        |                              | •                                                         |                 |
| 302        | Tinospora cordifolia                          | Apocynaceae<br>Menispermacea | Yellow Oleander, Arali<br>Guduchi, Shindilakodi           | Tree<br>Climber |
| 303        | Toddalia aculeata                             | Rutaceae                     | Milagaranai, Orange Climber                               | Shrub           |
| 304        | Tribulus terrestris                           | Zygophyllaceae               | Puncture Vine, Nerunji                                    | Herb            |
| 305        | Tridax procumbens                             | Asteraceae                   | Tridax daisy,                                             | Herb            |
| 307        | Typha angustata                               | Typhaceae                    | Cat tail reed                                             | Herb            |
| 308        | Vernonia cinerea                              | Asteraceae                   | Purple Fleabane,                                          | Herb            |
| 309        | Vicia faba                                    | Fabaceae                     | Broad Bean, Avarai, Mochchai                              | Creeper         |
| 310        | Vicoa indica                                  | Asteraceae                   | Mukkuthipoo                                               | Herb            |
| 311        | Vigna unguiculata                             | Fabaceae                     | Cow Pea, Kaaraamani                                       | Herb            |
| 312        | Vinca rosea                                   | Apocynaceae                  | Nithyakalyani                                             | Herb            |
| 313        | Vitex negundo                                 | Lamiaceae                    | Nochi                                                     | Shrub           |
| 314        | Wedelia calendulacea                          | Asteraceae                   | Ponniraichi                                               | Herb            |
| 314        |                                               |                              |                                                           | Tree            |
| 316        | Wrightia tinctoria  Xanthium strumarium       | Apocynaceae                  | Dyers Oleander, Paalai Common Cocklebur,                  | Shrub           |
| 310        |                                               | Asteraceae                   | Common Cockiebur,                                         | SHIUD           |

| SI. No. | Botanical Name         | Family         | Common Name                    | Habit   |
|---------|------------------------|----------------|--------------------------------|---------|
| 317     | Ziziphus jujube        | Rhamnaceae     | Jujube, Elandhai               | Tree    |
| 318     | Ziziphus mauritiana    | Rhamanaceae    | Indian Plum, Elandhai          | Tree    |
| 319     | Ziziphus nummularia    | Rhamnaceae     | Jhar Beri, Narielandai         | Shrub   |
| 320     | Ziziphus oenoplia      | Rhamnaceae     | Jackal Jujube, Suraimullu      | Shrub   |
|         |                        | Medicinal Spec | eies                           |         |
| 1       | Abrus precatorius      | Fabaceae       | Coral bead vine, Kundumani     | Creeper |
| 2       | Achyranthes aspera     | Amaranthaceae  | Prickly Chaff flower, Nayuruvi | Herb    |
| 3       | Adathoda vasica        | Acanthaceae    | Vasaca, Adathodai              | Shrub   |
| 4       | Aegle marmelos         | Rutaceae       | Wood Apple, vilvam             | Tree    |
| 5       | Aloe vera              | Liliaceae      | Kathalai                       | Herb    |
| 6       | Alternanthera sessilis | Amaranthaceae  | Dwarf Copperleaf, Ponnanganni  | Herb    |
| 7       | Amaranthus viridis     | Amaranthaceae  | Kuppaikeerai                   | Herb    |
| 8       | Azadirachta indica     | Meliaceae      | Neem, Vembu                    | Tree    |
| 9       | Calotropis gigantea    | Asclepiadaceae | Crown Flower, Erukku           | Shrub   |
| 10      | Cassia auriculata      | Fabaceae       | Tanners cassia, Avaram         | Shrub   |
| 11      | Cissus quadrangularis  | Vitaceae       | Devil's Backbone, Pirandai     | Climber |
| 12      | Cynodon dactylon       | Poaceae        | Bermuda grass, Arugampul       | Herb    |
| 13      | Eclipta alba           | Asteraceae     | Bhringaraj, Karisalankanni     | Herb    |
| 14      | Enicostemma axillare   | Gentianaceae   | Vellarugu                      | Herb    |
| 15      | Euphorbia hirta        | Euphorbiaceae  | Asthma weed, Ammam             | Herb    |
| 16      | Leucas aspera          | Lamiaceae      | Common Leucas, Thumbai         | Herb    |
| 17      | Ocimum sanctum         | Lamiaceae      | Holy Basil, Thulasi            | Herb    |
| 18      | Solanum surattense     | Solanaceae     | Yellow-berried Nightshade,     | Herb    |
| 19      | Solanum trilobatum     | Solanaceae     | Thoodhuvalai                   | Shrub   |
| 20      | Tridax procumbens      | Asteraceae     | Tridax daisy,                  | Herb    |
| 21      | Vitex negundo          | Lamiaceae      | Nochi                          | Shrub   |

**Endangered Plants**: The study area does not record the presence of any critically threatened species. The records of Botanical survey of India and Forest department also does not indicate presence of any endangered and or Vulnerable Species in this area.

#### 3.9.2 Fauna

Both direct and indirect observation methods were used for the faunal survey. Visual Encounter (search) Method was employed to record vertebrate species. Additionally, survey of relevant literature was also done to consolidate the list of vertebrate fauna distributed in the area. Quantitative data were gathered by:

- > Determining the bird population of migratory and local birds by taking 10 random readings at every location.
- ➤ Observing mammals, amphibians and reptiles, noting their calls, droppings, burrows, pugmarks and other signs.
- Point Survey Method: Observations were made in each site for 15 minutes duration.
- ➤ Road Side Counts: The observer traveled by motor vehicles from site to site, all sightings were recorded (this was done both in the day and night time). An index of abundance of each species was also established.

- Pellet and Track Counts: All possible animal tracks and pellets were identified and recorded (South Wood, 1978).
- Physical observations may also carried out from the machans (if required) for two-twelve hour periods, one during day time and the other during night time for terrestrial fauna and
- Local inhabitants were interviewed for details of plants and animals and to get ethnobiological data.

**Peafowl placed under Schedule-I** as per Wild Life (Protection) Amendment Act, 2022 is found in the study area and its surroundings.

The details of fauna found in the Study Area are given in Tables 3.33-3.34.

Table: 3.33 List of Fauna

| SI. No. | Scientific Name           | Common Name             | Schedule as per<br>WP(A) Act, 2022 |
|---------|---------------------------|-------------------------|------------------------------------|
|         | Insec                     |                         |                                    |
| 1       | Apis indica               | Honey bee               | II                                 |
|         | Butterf                   | lies                    |                                    |
| 1       | Pachliopta hector         | Crimson rose            | II                                 |
| 2       | Papilio polytes           | Common mormon           | II                                 |
| 3       | Triodes minos             | Southern birdwing       | II                                 |
|         | Amphib                    | ians                    |                                    |
| 1       | Bufo melanrostictus       | Common Indian Toad      | II                                 |
| 2       | Euphlyctis cyanophlyctis  | Skittering frog         | II                                 |
| 3       | Phrynoderma hexadactylum  | Indian Pond frog        | II                                 |
| 4       | Hoplobatrachus tigerinus  | Indian Bull frog        | II                                 |
|         | Reptil                    | es                      |                                    |
| 1       | Ahaetulla nasuta          | Common Green Whip Snake | II                                 |
| 2       | Amphiesma stolatum        | Stripped Keelback       | II                                 |
| 3       | Bangarus caeruleus        | Common Indian Krait     | ll ll                              |
| 4       | Hemidactylus flaviviridis | House gecko             | II                                 |
| 5       | Passerita mycterizaris    | Common Green Snake      | II                                 |
|         | Bird                      | s                       |                                    |
| 1       | Acridotheres tristicus    | Common myna             | II                                 |
| 2       | Alcedo atthis             | Common kingfisher       | II                                 |
| 3       | Apus affinis              | Indian House swift      | II                                 |
| 4       | Apus nipalensis           | House swift             | II                                 |
| 5       | Ardea alba                | Large Egret             | II                                 |
| 6       | Ardeola grayii            | Pond Heron or PaddyBird | ll ll                              |
| 7       | Athene brama              | Spotted Owlet           | II                                 |
| 8       | Bubulcus ibis             | Cattle Egret            | II                                 |
| 9       | Centropus sinensis        | Crow-Pheasant or coucal | II                                 |
| 10      | Cinnyris asiaticus        | Purple sunbird          | ll l                               |
| 11      | Cinnyris lotenius         | Loten's sunbird         | II                                 |

| SI. No. | Scientific Name            | Common Name               | Schedule as per<br>WP(A) Act, 2022 |
|---------|----------------------------|---------------------------|------------------------------------|
| 12      | Clamator jacobinus         | Pied Cuckoo               | II                                 |
| 13      | Columba pallumbus          | Common Wood Pigeon        | II                                 |
| 14      | Copsychus saularis         | Magpie robin              | II                                 |
| 15      | Coracias benghalensis      | Indian Roller             | II                                 |
| 16      | Corvus macrohynchos        | Large billed Crow         | II                                 |
| 17      | Coturnix coturnix          | Common quail              | II                                 |
| 18      | Cuculus canorus            | Common Cuckoo             | II                                 |
| 19      | Cuculus micropterus        | Indian cuckoo             | II                                 |
| 20      | Cypsiurus balasiensis      | Asian Palm Swift          | II                                 |
| 21      | Dicaeum erythrorhynchos    | Tickell's Flowerpecker    | II                                 |
| 22      | Dicrurus macrocerus        | Black Drongo              | II                                 |
| 23      | Egretta garzetta           | Little egret              | 11                                 |
| 24      | Eudynamys scolopacea       | Asian Koel                |                                    |
| 25      | Francolinus pondicerianus  | Grey Partridge            | 11                                 |
| 26      | Gallus gallus              | Red jungle fowl           | II                                 |
| 27      | Halcyon smyrnensis         | White throated Kingfisher | 11                                 |
| 28      | Hierococys varius          | Common hawk cuckoo        | 11                                 |
| 29      | Hirundo rustica            | Barn Swallow              | II                                 |
| 30      | Milvus migrans             | Black kite                | II                                 |
| 31      | Mirafra erythroptera       | Indian Bushlark           | II                                 |
| 32      | Motacilla maderaspatensis  | White browed wagtail      | II                                 |
| 33      | Nectarina asiatica         | Purple Sunbird            | II                                 |
| 34      | Orthotomus sutorius        | Tailor Bird               | II                                 |
| 35      | Passer domesticus          | House Sparrow             | II                                 |
| 36      | Pavo cristatus             | Pea Fowl                  | I                                  |
| 37      | Phalacrocorax carbo        | Large Commorant           | II                                 |
| 38      | Picus canus                | Grey headed Woodpecker    | II                                 |
| 39      | Ploceus philippinus        | Weaver bird               | II                                 |
| 40      | Prinia socialis            | Ashy Wren Warbler         | II                                 |
| 41      | Psittacula krameri         | RoseRinged Parakeet       | II                                 |
| 42      | Pycnonotus cafer           | Redvented BulBul          | II                                 |
| 43      | Saxicoloides fulicata      | Indian Robin              | II                                 |
| 44      | Streptopelia chinensis     | Spotted Dove              | II                                 |
| 45      | Tephrodornis pondicerianus | Common Wood shrike        | II                                 |
| 46      | Vanellus indicus           | Red Wattled Lapwing       | II                                 |
|         |                            |                           |                                    |
| 1       | Mamma Funambulus palmarum  | Indian Palm squirrel      | II                                 |
| 2       | Lepus nigricollis          | Indian Hare               | II                                 |
| 3       | Pteropus giganteus         | Bat, Indian Flying Fox    | II                                 |

Legend : C- Common, M- Migratory, R- Resident, T- Threatened

Note: Other than Peafowl there is no Schedule-I species in the study area.

Table: 3.34 Other Fauna found in the Study Area

| SI. No.  | Scientific Name           | Common Name                   |  |  |  |
|----------|---------------------------|-------------------------------|--|--|--|
|          | Insects                   |                               |  |  |  |
| 1        | Aranea sp Spider          |                               |  |  |  |
| 2        | Carausius morosus         | Stick insect                  |  |  |  |
| 3        | Cicada sp.                | Cicadas                       |  |  |  |
| 4        | Coccinella septempunctata | Lady bird beetle              |  |  |  |
| 5        | Coenagrion sp             | Damsel fly                    |  |  |  |
| 6        | Eumenus sp.               | Wasp                          |  |  |  |
| 7        | Hamitermes silvestri      | Termite                       |  |  |  |
| 8        | Hieroglyphus sp.          | Grasshopper                   |  |  |  |
| 9        | Ischnura                  | Common bluetail damselfly     |  |  |  |
| 10       | Mantis religiosa          | Praying mantis                |  |  |  |
| 11       | Monomorium indicum        | Ant                           |  |  |  |
| 12       | Myremeleon sp.            | Ant lion larva                |  |  |  |
| 13       | Palamnaeus swammerdam     | Scorpion                      |  |  |  |
| 14       | Petalura sp.              | Dragonfly                     |  |  |  |
| 15       | Pseudagrion indicum       | Yellow striped dart damselfly |  |  |  |
| 16       | Scolopendra sp.           | Centipede                     |  |  |  |
|          | Butterfl                  | ies                           |  |  |  |
| 1        | Acraea terpsicore         | Tawny coster                  |  |  |  |
| 2        | Catopsilla pomona         | Common emigrant               |  |  |  |
| 3        | Colotis danae             | Tip Crimson                   |  |  |  |
| 4        | Danaus chiysippus         | Plain tiger                   |  |  |  |
| 5        | Danaus plexipppus         | Striped tiger                 |  |  |  |
| 6        | Euploea core              | Common crow                   |  |  |  |
| 7        | Eurema hecabe             | Common Grass Yellow           |  |  |  |
| 8        | Euthalia nais             | Baronet                       |  |  |  |
| 9        | Graphium agamemnon        | Tailed jay                    |  |  |  |
| 10       | Ixias Marianne            | White orange tip              |  |  |  |
| 11       | Junonia almana            | Peacock pansey                |  |  |  |
| 12       | Junonia atlites           | Grey pansey                   |  |  |  |
| 13       | Junonia hierta            | Yellow Pansy                  |  |  |  |
| 14       | Neptis hylas              | Common sailor                 |  |  |  |
| 15       | Papilio demoleus          | Lime butterfly                |  |  |  |
| 16       | Parantica aglea           | Glassy tiger                  |  |  |  |
|          | Fish                      |                               |  |  |  |
| 1        | Catla catla               | Catla                         |  |  |  |
| 2        | Chela sp                  | Trout                         |  |  |  |
| 3        | Cirrhinus mrigala         | Mrigal                        |  |  |  |
| 4        | Cyprirus carpio           | Common Carp                   |  |  |  |
| 5        | Labeo rohita              | Rohu                          |  |  |  |
| 6        | Ophiocephalus punctatus   | Kuravai                       |  |  |  |
| 7        | Oreochromis mossambicus   | Tilapia                       |  |  |  |
| Reptiles |                           |                               |  |  |  |

| SI. No. | Scientific Name            | Common Name                     |
|---------|----------------------------|---------------------------------|
| 1       | Calotes versicolor         | Common Garden lizard            |
| 2       | Eumeces taeniolatus        | Yellow bellied mole skink       |
| 3       | Gongylophis conicus        | Rough tailed Sand boa, Pudaiyan |
| 4       | Mabuya carinata            | Brahminy Skink                  |
| 5       | Sauria lacertidae          | Lizard                          |
|         | Birds                      |                                 |
| 17      | Corvus splendens           | House Crow                      |
|         | Mamma                      | ls                              |
| 1       | Bandicota bengalensis      | Indian mole rat                 |
| 2       | Bandicota indica           | Bandicoot                       |
| 3       | Bos indicus                | Cow                             |
| 4       | Bubalus bubalis            | Buffalo                         |
| 5       | Canis familiaris           | Dog                             |
| 6       | Capra hircus               | Goat                            |
| 7       | Felis catus                | Domestic Cat                    |
| 8       | Mus booduga                | Indian Field Mouse              |
| 9       | Ovis aries                 | Sheep                           |
| 10      | Paraduxurus hermaphroditus | Common palm civet               |
| 11      | Rattus norvegicus          | Field mouse                     |
| 12      | Rattus rattus              | House Rat                       |
| 13      | Rhinolopus sps.            | Bat                             |
| 14      | Sorex caerulescens         | Common mush shrew               |

Legend : C- Common, M- Migratory, R- Resident, T- Threatened

Endangered Species: Among the fauna recorded, most of them are common resident population and no endangered species encountered in the study area.

**Plankton:** The studies on the aquatic biological environment were carried out in selected sites. The analysis of Phyto and Zoo-plankton was carried out as per the procedures of APHA. The List of Planktons are tabulated below:

| Phytoplanktons | Chlorella sp, Chlorococcum sp, Spirogyra sp, Euglena sp, Fragillaria sp,                                                          |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                | Gomphonema sp, Melosira sp, Merismopedia sp, Mecrocysstis sp, Navicula sp,                                                        |
|                | Nitzschia sp, Oscillatoria sp, Scendesmus sp, Spirulina sp, Tetradron sp, Moughtia                                                |
|                | sp, Ankistrodesmus sp., Anabaena sp, Rivularia sp                                                                                 |
| Zooplanktons   | Amoeba sp, Arcella sp, Cypris sp., Cyclops sp., Condylostoma sp, Daphnia sp, Kertella sp, Macrotric sp, Brachionus sp, Filinia sp |

**Shannon Wiener Index (SWI)** is a way to measure the diversity of species in a community and it may be considered as an overall index of diversity as it concedes a true picture of the information theory. The species diversity of such a community may be computed by employing the SWI of diversity by applying the Index.

n = Number of individual species

N = Total number of individual species

Pi = Importance value for each species n/N.

The SWI can be interpreted based on the SWI-H values obtained by computing the values of quantitative plankton analysis. Based on the H-values of SWI, the quality of water can be classified into the following four categories.

| Diversity Level | SWI values | Pollution Level         |
|-----------------|------------|-------------------------|
| High            | 3.0-4.5    | Slight                  |
| Moderate        | 2.0-3.0    | Light                   |
| Low             | 1.0-2.0    | Moderate                |
| Very Less       | 0.0-1.0    | <b>Heavily Polluted</b> |

In the study area, two sampling sites were fixed as the field stations for the study of aquatic environment. (**Table 3.35**). The SWI-H values were calculated and the results indicate that the water bodies in the study area are not polluted due any industrial and domestic activity.

**Diversity Index** SI. Water body **Usage** No. **Phytoplankton** Zooplankton Bathing, Washing 1 Pond, Vachchakarapatti 2.12 2.64 2 Pond, Manipparpatti Bathing, Washing 1.89 1.47

Table: 3.35 Diversity Index

#### 3.10 Socio-economic Environment

The socio-economic and health environment surveys were carried out for assessing the baseline status. There are 39Census villages and 5Census Towns in the study area of 10 km radius. The relevant socio-economic data such as demographic features including population distribution, literacy rate, occupational status, educational facilities and medical facilities were collected from Census 2011 Data and presented as **Tables 3.36-3.42**.

**Population**: In the study area of 10 km radius, there are 1,34,419 persons (66,910 Males-49.8% and 67,509 Females-50.2%) in 37,349 Households (HHs). As far as the population of Scheduled Castes and Scheduled Tribes are concerned, there were 34,424 (23.4%) Scheduled Castes Population and 45 Scheduled Tribes (0.03%). In the total population, the Literate population was 92,914 (69.1%) whereas the illiterate population was 41,505 (30.9%).

Table: 3.36 Demographic Profile- 2011 Census

| SI. |                      | No. of         | F     | opulatio | n      | Sch   | eduled ( | Castes | Sch   | eduled ' | Tribes |       | Literate | s      |       | Illiterate | es     |
|-----|----------------------|----------------|-------|----------|--------|-------|----------|--------|-------|----------|--------|-------|----------|--------|-------|------------|--------|
| No. | Name of the Village  | House<br>holds | Total | Male     | Female | Total | Male       | Female |
| 1   | A.Meenachipuram      | 377            | 1359  | 695      | 664    | 248   | 124      | 124    | 0     | 0        | 0      | 914   | 513      | 401    | 445   | 182        | 263    |
| 2   | Alagapuri            | 377            | 1362  | 698      | 664    | 262   | 133      | 129    | 0     | 0        | 0      | 1027  | 576      | 451    | 335   | 122        | 213    |
| 3   | Ammapatti            | 755            | 2516  | 1220     | 1296   | 279   | 141      | 138    | 0     | 0        | 0      | 1578  | 879      | 699    | 938   | 341        | 597    |
| 4   | Anuppankulam (CT)    | 3679           | 13526 | 6753     | 6773   | 4301  | 2131     | 2170   | 7     | 3        | 4      | 9377  | 5146     | 4231   | 4149  | 1607       | 2542   |
| 5   | Appayyanayakkanpatti | 354            | 1231  | 609      | 622    | 117   | 58       | 59     | 0     | 0        | 0      | 889   | 480      | 409    | 342   | 129        | 213    |
| 6   | Avudaiyapuram        | 1100           | 3975  | 2032     | 1943   | 233   | 114      | 119    | 0     | 0        | 0      | 2559  | 1540     | 1019   | 1416  | 492        | 924    |
| 7   | Bommakottai          | 252            | 815   | 399      | 416    | 17    | 6        | 11     | 0     | 0        | 0      | 642   | 322      | 320    | 173   | 77         | 96     |
| 8   | Chinnakamanpatti     | 831            | 2894  | 1421     | 1473   | 602   | 282      | 320    | 0     | 0        | 0      | 2050  | 1132     | 918    | 844   | 289        | 555    |
| 9   | Chinnavadi           | 422            | 1410  | 720      | 690    | 399   | 208      | 191    | 0     | 0        | 0      | 913   | 540      | 373    | 497   | 180        | 317    |
| 10  | Chokkalingapuram     | 1035           | 3968  | 1998     | 1970   | 1812  | 911      | 901    | 0     | 0        | 0      | 2388  | 1365     | 1023   | 1580  | 633        | 947    |
| 11  | Endappuli            | 508            | 1893  | 984      | 909    | 1404  | 732      | 672    | 0     | 0        | 0      | 1100  | 666      | 434    | 793   | 318        | 475    |
| 12  | Golwarpatti          | 753            | 2667  | 1321     | 1346   | 2599  | 1287     | 1312   | 0     | 0        | 0      | 1854  | 1050     | 804    | 813   | 271        | 542    |
| 13  | Gopalapuram          | 371            | 1307  | 593      | 714    | 322   | 139      | 183    | 0     | 0        | 0      | 1097  | 542      | 555    | 210   | 51         | 159    |
| 14  | Kadambankulam        | 842            | 3084  | 1569     | 1515   | 404   | 216      | 188    | 2     | 1        | 1      | 2126  | 1229     | 897    | 958   | 340        | 618    |
| 15  | Kariseri             | 652            | 2409  | 1194     | 1215   | 565   | 270      | 295    | 0     | 0        | 0      | 1470  | 829      | 641    | 939   | 365        | 574    |
| 16  | Koilvirarpatti       | 170            | 698   | 355      | 343    | 102   | 54       | 48     | 0     | 0        | 0      | 428   | 262      | 166    | 270   | 93         | 177    |
| 17  | Kottaiyur            | 319            | 1187  | 585      | 602    | 154   | 67       | 87     | 0     | 0        | 0      | 808   | 449      | 359    | 379   | 136        | 243    |
| 18  | Kumaralingapuram     | 724            | 2590  | 1293     | 1297   | 174   | 87       | 87     | 0     | 0        | 0      | 1673  | 924      | 749    | 917   | 369        | 548    |
| 19  | Kundalakkuttu        | 407            | 1327  | 639      | 688    | 187   | 89       | 98     | 0     | 0        | 0      | 918   | 508      | 410    | 409   | 131        | 278    |
| 20  | Mannarkottai         | 380            | 1332  | 651      | 681    | 204   | 101      | 103    | 0     | 0        | 0      | 987   | 522      | 465    | 345   | 129        | 216    |
| 21  | Maruluthu            | 335            | 1297  | 657      | 640    | 788   | 397      | 391    | 0     | 0        | 0      | 884   | 510      | 374    | 413   | 147        | 266    |
| 22  | Mettamalai (CT)      | 1476           | 5175  | 2499     | 2676   | 1506  | 738      | 768    | 0     | 0        | 0      | 3375  | 1851     | 1524   | 1800  | 648        | 1152   |
| 23  | Mettukkundu          | 737            | 2604  | 1288     | 1316   | 969   | 494      | 475    | 0     | 0        | 0      | 1752  | 958      | 794    | 852   | 330        | 522    |
| 24  | Muthulingapuram      | 583            | 2042  | 977      | 1065   | 390   | 188      | 202    | 0     | 0        | 0      | 1340  | 736      | 604    | 702   | 241        | 461    |
| 25  | Nallamanayakkanpatti | 117            | 425   | 204      | 221    | 237   | 124      | 113    | 0     | 0        | 0      | 305   | 162      | 143    | 120   | 42         | 78     |
| 26  | Naranapuram (Part)   | 609            | 2031  | 987      | 1044   | 591   | 294      | 297    | 0     | 0        | 0      | 1217  | 666      | 551    | 814   | 321        | 493    |

Table: 3.36 (Contd.,) Demographic Profile- 2011 Census

| SI. |                     | No. of         | F      | Populatio | n      | Sch   | eduled C | astes  | Sch   | eduled <sup>-</sup> | Tribes |       | Literates | s      |       | Illiterate | :s     |
|-----|---------------------|----------------|--------|-----------|--------|-------|----------|--------|-------|---------------------|--------|-------|-----------|--------|-------|------------|--------|
| No. | Name of the Village | House<br>holds | Total  | Male      | Female | Total | Male     | Female | Total | Male                | Female | Total | Male      | Female | Total | Male       | Female |
| 27  | Naranapuram (CT)    | 3303           | 11665  | 5766      | 5899   | 1372  | 661      | 711    | 2     | 1                   | 1      | 7979  | 4336      | 3643   | 3686  | 1430       | 2256   |
| 28  | Ondippulinayakkanur | 2113           | 7395   | 3633      | 3762   | 519   | 251      | 268    | 0     | 0                   | 0      | 5205  | 2863      | 2342   | 2190  | 770        | 1420   |
| 29  | Pattampudur         | 828            | 3032   | 1560      | 1472   | 578   | 289      | 289    | 0     | 0                   | 0      | 1991  | 1144      | 847    | 1041  | 416        | 625    |
| 30  | Pudupatti           | 685            | 2409   | 1167      | 1242   | 1065  | 519      | 546    | 0     | 0                   | 0      | 1595  | 890       | 705    | 814   | 277        | 537    |
| 31  | Pudur               | 1010           | 3518   | 1778      | 1740   | 1243  | 636      | 607    | 0     | 0                   | 0      | 2562  | 1415      | 1147   | 956   | 363        | 593    |
| 32  | Rajagopalapuram     | 201            | 919    | 469       | 450    | 31    | 20       | 11     | 0     | 0                   | 0      | 692   | 377       | 315    | 227   | 92         | 135    |
| 33  | Sennalkudi          | 705            | 2433   | 1216      | 1217   | 100   | 51       | 49     | 0     | 0                   | 0      | 1386  | 810       | 576    | 1047  | 406        | 641    |
| 34  | Sevalpatti          | 1316           | 4806   | 2438      | 2368   | 579   | 307      | 272    | 21    | 12                  | 9      | 3098  | 1795      | 1303   | 1708  | 643        | 1065   |
| 35  | Soolakkarai (CT)    | 1269           | 4990   | 2478      | 2512   | 1044  | 506      | 538    | 0     | 0                   | 0      | 3728  | 1986      | 1742   | 1262  | 492        | 770    |
| 36  | Sundaralingapuram   | 97             | 319    | 157       | 162    | 88    | 46       | 42     | 0     | 0                   | 0      | 191   | 111       | 80     | 128   | 46         | 82     |
| 37  | Thammanayakkanpatti | 1088           | 3824   | 1928      | 1896   | 217   | 116      | 101    | 0     | 0                   | 0      | 2902  | 1622      | 1280   | 922   | 306        | 616    |
| 38  | Thathampatti        | 459            | 1699   | 863       | 836    | 829   | 411      | 418    | 0     | 0                   | 0      | 1109  | 656       | 453    | 590   | 207        | 383    |
| 39  | Tulukkapatti        | 768            | 2934   | 1479      | 1455   | 781   | 386      | 395    | 1     | 0                   | 1      | 2173  | 1197      | 976    | 761   | 282        | 479    |
| 40  | V.Muthulingapuram   | 1006           | 3471   | 1678      | 1793   | 1689  | 825      | 864    | 0     | 0                   | 0      | 2267  | 1238      | 1029   | 1204  | 440        | 764    |
| 41  | Vachakkarapatti     | 1308           | 4754   | 2407      | 2347   | 701   | 354      | 347    | 0     | 0                   | 0      | 3585  | 1969      | 1616   | 1169  | 438        | 731    |
| 42  | Valayapatti         | 286            | 1138   | 578       | 560    | 8     | 5        | 3      | 0     | 0                   | 0      | 722   | 434       | 288    | 416   | 144        | 272    |
| 43  | Venkatachalapuram   | 2594           | 9540   | 4752      | 4788   | 1540  | 791      | 749    | 12    | 8                   | 4      | 7787  | 4046      | 3741   | 1753  | 706        | 1047   |
| 44  | Veppilaipatti       | 148            | 449    | 222       | 227    | 174   | 77       | 97     | 0     | 0                   | 0      | 271   | 156       | 115    | 178   | 66         | 112    |
|     | Study Area Total    | 37349          | 134419 | 66910     | 67509  | 31424 | 15636    | 15788  | 45    | 25                  | 20     | 92914 | 51402     | 41512  | 41505 | 15508      | 25997  |
|     | Percentage, %       | -              | -      | 49.8      | 50.2   | 23.4  | 11.6     | 11.7   | 0.03  | 0.02                | 0.01   | 69.1  | 38.2      | 30.9   | 30.9  | 11.5       | 19.3   |

Table: 3.37 Occupation of Population and Work Forces

|            |                               |                     |       | Workers |        | N     | on-Work | ers    |             | Main Wo                   | orkers                             |                  |             | Marginal                  | Workers                            |                  |
|------------|-------------------------------|---------------------|-------|---------|--------|-------|---------|--------|-------------|---------------------------|------------------------------------|------------------|-------------|---------------------------|------------------------------------|------------------|
| SI.<br>No. | Name of the<br>Census Village | Total<br>Population | Total | Male    | Female | Total | Male    | Female | Cultivators | Agricultural<br>Labourers | Household<br>Industrial<br>Workers | Other<br>Workers | Cultivators | Agricultural<br>Labourers | Household<br>Industrial<br>Workers | Other<br>Workers |
| 1          | A.Meenachipuram               | 1359                | 751   | 429     | 322    | 608   | 266     | 342    | 6           | 79                        | 4                                  | 605              | 1           | 4                         | 3                                  | 49               |
| 2          | Alagapuri                     | 1362                | 694   | 403     | 291    | 668   | 295     | 373    | 195         | 123                       | 48                                 | 311              | 5           | 1                         | 2                                  | 9                |
| 3          | Ammapatti                     | 2516                | 1332  | 690     | 642    | 1184  | 530     | 654    | 45          | 102                       | 102                                | 1044             | 1           | 7                         | 12                                 | 19               |
| 4          | Anuppankulam (CT)             | 13526               | 7272  | 4139    | 3133   | 6254  | 2614    | 3640   | 78          | 148                       | 126                                | 6602             | 2           | 17                        | 17                                 | 282              |
| 5          | Appayyanayakkanpatti          | 1231                | 630   | 360     | 270    | 601   | 249     | 352    | 99          | 147                       | 2                                  | 366              | 1           | 12                        | 0                                  | 3                |
| 6          | Avudaiyapuram                 | 3975                | 1893  | 1219    | 674    | 2082  | 813     | 1269   | 305         | 395                       | 43                                 | 909              | 12          | 89                        | 4                                  | 136              |
| 7          | Bommakottai                   | 815                 | 432   | 213     | 219    | 383   | 186     | 197    | 41          | 229                       | 0                                  | 160              | 0           | 0                         | 0                                  | 2                |
| 8          | Chinnakamanpatti              | 2894                | 1594  | 866     | 728    | 1300  | 555     | 745    | 9           | 58                        | 27                                 | 1486             | 1           | 0                         | 0                                  | 13               |
| 9          | Chinnavadi                    | 1410                | 822   | 431     | 391    | 588   | 289     | 299    | 29          | 46                        | 0                                  | 737              | 0           | 2                         | 0                                  | 8                |
| 10         | Chokkalingapuram<br>(Part)    | 3968                | 2197  | 1156    | 1041   | 1771  | 842     | 929    | 40          | 83                        | 40                                 | 2022             | 2           | 1                         | 2                                  | 7                |
| 11         | Endappuli                     | 1893                | 878   | 566     | 312    | 1015  | 418     | 597    | 64          | 322                       | 3                                  | 262              | 0           | 178                       | 0                                  | 49               |
| 12         | Golwarpatti                   | 2667                | 1456  | 758     | 698    | 1211  | 563     | 648    | 97          | 365                       | 4                                  | 374              | 4           | 398                       | 2                                  | 212              |
| 13         | Gopalapuram                   | 1307                | 610   | 315     | 295    | 697   | 278     | 419    | 3           | 3                         | 11                                 | 241              | 0           | 327                       | 3                                  | 22               |
| 14         | Kadambankulam                 | 3084                | 1759  | 985     | 774    | 1325  | 584     | 741    | 532         | 348                       | 17                                 | 798              | 8           | 14                        | 1                                  | 41               |
| 15         | Kariseri                      | 2409                | 1347  | 707     | 640    | 1062  | 487     | 575    | 90          | 95                        | 34                                 | 1061             | 6           | 18                        | 5                                  | 38               |
| 16         | Koilvirarpatti                | 698                 | 367   | 207     | 160    | 331   | 148     | 183    | 2           | 166                       | 9                                  | 158              | 1           | 14                        | 0                                  | 17               |
| 17         | Kottaiyur                     | 1187                | 705   | 380     | 325    | 482   | 205     | 277    | 13          | 155                       | 0                                  | 153              | 6           | 175                       | 9                                  | 194              |
| 18         | Kumaralingapuram              | 2590                | 1404  | 775     | 629    | 1186  | 518     | 668    | 129         | 319                       | 7                                  | 819              | 7           | 80                        | 7                                  | 36               |
| 19         | Kundalakkuttu                 | 1327                | 766   | 383     | 383    | 561   | 256     | 305    | 118         | 504                       | 1                                  | 111              | 3           | 26                        | 1                                  | 2                |
| 20         | Mannarkottai                  | 1332                | 668   | 387     | 281    | 664   | 264     | 400    | 19          | 4                         | 2                                  | 396              | 2           | 212                       | 6                                  | 27               |
| 21         | Maruluthu                     | 1297                | 683   | 386     | 297    | 614   | 271     | 343    | 13          | 10                        | 2                                  | 292              | 51          | 51                        | 42                                 | 222              |
| 22         | Mettamalai (CT)               | 5175                | 3167  | 1614    | 1553   | 2008  | 885     | 1123   | 4           | 22                        | 100                                | 2449             | 2           | 10                        | 16                                 | 564              |
| 23         | Mettukkundu                   | 2604                | 1344  | 757     | 587    | 1260  | 531     | 729    | 52          | 323                       | 16                                 | 539              | 16          | 242                       | 7                                  | 149              |
| 24         | Muthulingapuram               | 2042                | 1168  | 638     | 530    | 874   | 339     | 535    | 4           | 190                       | 23                                 | 742              | 3           | 70                        | 25                                 | 111              |

Table: 3.37 (Contd.,) Occupation of Population and Work Forces

|            |                               |                     |       | Workers |        | N     | on-Worke | ers    |             | Main Wo                   | orkers                             |                  |             | Marginal                  | Workers                            |                  |
|------------|-------------------------------|---------------------|-------|---------|--------|-------|----------|--------|-------------|---------------------------|------------------------------------|------------------|-------------|---------------------------|------------------------------------|------------------|
| SI.<br>No. | Name of the<br>Census Village | Total<br>Population | Total | Male    | Female | Total | Male     | Female | Cultivators | Agricultural<br>Labourers | Household<br>Industrial<br>Workers | Other<br>Workers | Cultivators | Agricultural<br>Labourers | Household<br>Industrial<br>Workers | Other<br>Workers |
| 25         | Nallamanayakkanpatti          | 425                 | 228   | 116     | 112    | 197   | 88       | 109    | 1           | 152                       | 0                                  | 68               | 1           | 6                         | 0                                  | 0                |
| 26         | Naranapuram (Part)            | 2031                | 1096  | 581     | 515    | 935   | 406      | 529    | 43          | 38                        | 15                                 | 968              | 0           | 2                         | 1                                  | 29               |
| 27         | Naranapuram (CT)              | 11665               | 6268  | 3592    | 2676   | 5397  | 2174     | 3223   | 31          | 41                        | 136                                | 5952             | 1           | 0                         | 5                                  | 102              |
| 28         | Ondippulinayakkanur           | 7395                | 3893  | 2216    | 1677   | 3502  | 1417     | 2085   | 215         | 405                       | 103                                | 2930             | 12          | 109                       | 23                                 | 96               |
| 29         | Pattampudur                   | 3032                | 1553  | 929     | 624    | 1479  | 631      | 848    | 127         | 171                       | 62                                 | 628              | 5           | 39                        | 39                                 | 482              |
| 30         | Pudupatti                     | 2409                | 1213  | 668     | 545    | 1196  | 499      | 697    | 188         | 237                       | 19                                 | 485              | 19          | 73                        | 8                                  | 184              |
| 31         | Pudur                         | 3518                | 1797  | 1036    | 761    | 1721  | 742      | 979    | 37          | 71                        | 105                                | 1524             | 5           | 7                         | 7                                  | 41               |
| 32         | Rajagopalapuram               | 919                 | 577   | 291     | 286    | 342   | 178      | 164    | 18          | 402                       | 0                                  | 57               | 2           | 84                        | 0                                  | 14               |
| 33         | Sennalkudi                    | 2433                | 1301  | 751     | 550    | 1132  | 465      | 667    | 17          | 652                       | 11                                 | 557              | 0           | 42                        | 1                                  | 21               |
| 34         | Sevalpatti                    | 4806                | 2702  | 1493    | 1209   | 2104  | 945      | 1159   | 82          | 407                       | 58                                 | 2086             | 4           | 9                         | 5                                  | 51               |
| 35         | Soolakkarai (CT)              | 4990                | 2193  | 1401    | 792    | 2797  | 1077     | 1720   | 16          | 27                        | 48                                 | 1800             | 3           | 148                       | 13                                 | 138              |
| 36         | Sundaralingapuram             | 319                 | 137   | 110     | 27     | 182   | 47       | 135    | 0           | 0                         | 0                                  | 16               | 0           | 121                       | 0                                  | 0                |
| 37         | Thammanayakkanpatti           | 3824                | 1780  | 1140    | 640    | 2044  | 788      | 1256   | 15          | 14                        | 22                                 | 1508             | 6           | 32                        | 80                                 | 103              |
| 38         | Thathampatti                  | 1699                | 949   | 527     | 422    | 750   | 336      | 414    | 47          | 76                        | 17                                 | 683              | 3           | 16                        | 4                                  | 103              |
| 39         | Tulukkapatti                  | 2934                | 1306  | 851     | 455    | 1628  | 628      | 1000   | 104         | 314                       | 7                                  | 804              | 14          | 7                         | 2                                  | 54               |
| 40         | V.Muthulingapuram             | 3471                | 2108  | 1053    | 1055   | 1363  | 625      | 738    | 65          | 110                       | 42                                 | 1838             | 5           | 13                        | 4                                  | 31               |
| 41         | Vachakkarapatti               | 4754                | 2176  | 1393    | 783    | 2578  | 1014     | 1564   | 95          | 151                       | 126                                | 1653             | 4           | 41                        | 9                                  | 97               |
| 42         | Valayapatti                   | 1138                | 687   | 352     | 335    | 451   | 226      | 225    | 37          | 282                       | 0                                  | 216              | 6           | 127                       | 1                                  | 18               |
| 43         | Venkatachalapuram (CT)        | 9540                | 3880  | 2606    | 1274   | 5660  | 2146     | 3514   | 13          | 34                        | 79                                 | 3521             | 0           | 5                         | 13                                 | 215              |
| 44         | Veppilaipatti                 | 449                 | 261   | 149     | 112    | 188   | 73       | 115    | 51          | 6                         | 1                                  | 144              | 4           | 7                         | 0                                  | 48               |
|            | Study Area Total              | 134419              | 70044 | 40019   | 30025  | 64375 | 26891    | 37484  | 3189        | 7826                      | 1472                               | 50075            | 228         | 2836                      | 379                                | 4039             |
|            | Percentage, %                 | -                   | 52.1  | 29.8    | 22.3   | 47.9  | 20.0     | 27.9   | 2.4         | 5.8                       | 1.1                                | 37.3             | 0.2         | 2.1                       | 0.3                                | 3.0              |

Note: Others category includes Constructions, Trade & Commerce, Transport Storage & Communications, Other Services, etc.

Table: 3.38 Educational Facilities in the Study Area

| SI.<br>No. | Name of the Village     | PPS* | PS* | MS* | SS* | SSS* | DC* | EC* | MC* | MI* | PT* | VTS* | SSD* |
|------------|-------------------------|------|-----|-----|-----|------|-----|-----|-----|-----|-----|------|------|
| 1          | A.Meenachipuram         | а    | 1   | а   | а   | b    | 2   | b   | С   | 2   | 2   | 2    | С    |
| 2          | Alagapuri               | 1    | 2   | а   | а   | а    | а   | а   | С   | а   | b   | а    | а    |
| 3          | Ammapatti               | 1    | 1   | 1   | b   | b    | b   | С   | С   | С   | b   | b    | С    |
| 4          | Appayyanayakkanpatti    | 1    | 1   | 1   | 1   | 1    | С   | С   | С   | С   | С   | С    | С    |
| 5          | Avudaiyapuram           | 2    | 1   | 1   | 1   | 1    | С   | С   | С   | С   | С   | С    | С    |
| 6          | Bommakottai             | 1    | 2   | а   | а   | а    | С   | С   | С   | С   | С   | С    | С    |
| 7          | Chinnakamanpatti        | 1    | 1   | 1   | 1   | 1    | b   | С   | С   | b   | 2   | b    | С    |
| 8          | Chinnavadi              | 1    | 1   | а   | а   | а    | С   | С   | С   | С   | С   | С    | С    |
| 9          | Chokkalingapuram (Part) | 1    | 1   | 1   | а   | а    | b   | b   | С   | b   | b   | b    | С    |
| 10         | Endappuli               | 1    | 1   | 1   | b   | b    | С   | С   | С   | С   | С   | b    | b    |
| 11         | Golwarpatti             | 1    | 1   | С   | С   | С    | С   | С   | С   | С   | С   | С    | С    |
| 12         | Gopalapuram             | 1    | 1   | 1   | 1   | а    | а   | b   | С   | а   | а   | b    | С    |
| 13         | Kadambankulam           | 1    | 1   | 1   | а   | а    | С   | С   | С   | С   | С   | b    | b    |
| 14         | Kariseri                | 1    | 1   | 1   | а   | а    | С   | 2   | С   | b   | а   | b    | С    |
| 15         | Koilvirarpatti          | 1    | 1   | а   | а   | а    | С   | С   | С   | С   | С   | С    | С    |
| 16         | Kottaiyur               | 1    | 1   | 2   | 2   | 2    | С   | С   | С   | С   | С   | С    | С    |
| 17         | Kumaralingapuram        | 1    | 1   | 2   | b   | b    | b   | 2   | С   | b   | b   | b    | b    |
| 18         | Kundalakkuttu           | 1    | 1   | 1   | b   | b    | С   | С   | С   | С   | С   | С    | С    |
| 19         | Mannarkottai            | 1    | 1   | 2   | 2   | 2    | С   | С   | С   | С   | С   | С    | С    |
| 20         | Maruluthu               | 1    | 1   | 1   | а   | а    | b   | b   | С   | b   | b   | а    | а    |
| 21         | Mettukkundu             | 1    | 1   | 1   | 1   | b    | b   | b   | С   | b   | b   | b    | b    |
| 22         | Muthulingapuram         | 1    | 1   | 1   | 1   | 1    | b   | С   | С   | С   | b   | а    | С    |
| 23         | Nallamanayakkanpatti    | 1    | b   | b   | b   | b    | С   | С   | С   | С   | С   | С    | С    |
| 24         | Naranapuram (Part)      | 1    | 1   | 1   | 1   | 2    | b   | b   | С   | b   | b   | b    | b    |
| 25         | Ondippulinayakkanur     | 1    | 1   | 1   | 1   | 1    | С   | С   | С   | С   | С   | С    | С    |

Table: 3.38 Educational Facilities in the Study Area

| SI.<br>No. | Name of the Village | PPS* | PS* | MS* | SS* | SSS* | DC* | EC* | MC* | MI* | PT* | VTS* | SSD* |
|------------|---------------------|------|-----|-----|-----|------|-----|-----|-----|-----|-----|------|------|
| 26         | Pattampudur         | 1    | 1   | 1   | b   | b    | b   | b   | С   | b   | b   | b    | b    |
| 27         | Pudupatti           | 2    | 1   | 1   | 1   | 1    | С   | С   | С   | С   | С   | С    | С    |
| 28         | Pudur               | 1    | 1   | 1   | 1   | 1    | С   | С   | С   | С   | С   | С    | С    |
| 29         | Rajagopalapuram     | 1    | 1   | 1   | а   | а    | С   | С   | С   | С   | С   | С    | 1    |
| 30         | Sennalkudi          | 1    | 1   | а   | а   | а    | b   | b   | С   | b   | b   | b    | b    |
| 31         | Sevalpatti          | 1    | 1   | 1   | 1   | 1    | С   | а   | С   | С   | а   | 2    | С    |
| 32         | Thammanayakkanpatti | 1    | 1   | 1   | 1   | b    | С   | С   | С   | С   | С   | b    | b    |
| 33         | Thathampatti        | 1    | 1   | 1   | а   | С    | С   | С   | С   | С   | С   | b    | а    |
| 34         | Tulukkapatti        | 1    | 1   | а   | а   | а    | b   | С   | С   | С   | b   | b    | b    |
| 35         | V.Muthulingapuram   | 1    | 1   | а   | а   | а    | С   | С   | С   | С   | С   | С    | С    |
| 36         | Vachakkarapatti     | 1    | 1   | 1   | b   | b    | b   | С   | С   | С   | b   | b    | b    |
| 37         | Valayapatti         | 1    | 2   | а   | а   | а    | С   | С   | С   | С   | С   | С    | С    |
| 38         | Veppilaipatti       | 1    | 1   | а   | а   | а    | b   | С   | С   | С   | b   | С    | С    |

PPS-Pre-Primary PS-Primary School MS-Middle School SS-Secondary School SSS-Senior Secondary DC-Degree College EC-Engineering College MC-Medical College MI-Management College / Institute PT-Polytechnic VTS-Vocational School/ITI SSD-Special School for Disabled 1-Available a-Facility available at <5 Kms b-Facility available at 5-10 Kms c-Facility available at >10 Kms

Table: 3.39 Medical Facilities in the Study Area

| SI. No. | Name of the Village     | СНС | PHC | PHSC | MCW | ТВ | НА | HAM | D | VH | FWC |
|---------|-------------------------|-----|-----|------|-----|----|----|-----|---|----|-----|
| 1       | A.Meenachipuram         | b   | b   | а    | b   | b  | С  | С   | b | b  | b   |
| 2       | Alagapuri               | b   | b   | b    | а   | b  | b  | b   | b | а  | b   |
| 3       | Ammapatti               | С   | С   | b    | b   | b  | b  | b   | С | b  | С   |
| 4       | Appayyanayakkanpatti    | b   | а   | 1    | а   | С  | С  | С   | а | b  | а   |
| 5       | Avudaiyapuram           | b   | 1   | 1    | 1   | 1  | С  | С   | 1 | 1  | 1   |
| 6       | Bommakottai             | С   | а   | 1    | а   | С  | С  | С   | а | а  | а   |
| 7       | Chinnakamanpatti        | С   | b   | 1    | 1   | b  | b  | b   | b | b  | b   |
| 8       | Chinnavadi              | b   | b   | 1    | b   | С  | С  | С   | b | а  | b   |
| 9       | Chokkalingapuram (Part) | а   | а   | 1    | а   | С  | С  | С   | а | b  | а   |
| 10      | Endappuli               | b   | b   | а    | b   | С  | С  | С   | b | b  | b   |
| 11      | Golwarpatti             | С   | b   | 1    | b   | С  | С  | С   | b | С  | b   |
| 12      | Gopalapuram             | 1   | 1   | 1    | 1   | 1  | а  | а   | 1 | а  | 1   |
| 13      | Kadambankulam           | С   | b   | 1    | b   | С  | С  | С   | b | С  | b   |
| 14      | Kariseri                | С   | b   | b    | 1   | С  | С  | С   | b | 1  | b   |
| 15      | Koilvirarpatti          | а   | а   | а    | а   | С  | С  | С   | а | С  | а   |
| 16      | Kottaiyur               | а   | а   | 1    | а   | С  | С  | С   | а | а  | а   |
| 17      | Kumaralingapuram        | b   | b   | b    | b   | b  | b  | b   | b | b  | b   |
| 18      | Kundalakkuttu           | b   | b   | b    | b   | С  | С  | С   | b | а  | b   |
| 19      | Mannarkottai            | а   | а   | а    | а   | С  | С  | С   | а | а  | а   |
| 20      | Maruluthu               | b   | b   | а    | b   | b  | b  | b   | b | а  | b   |
| 21      | Mettukkundu             | С   | b   | b    | b   | b  | b  | b   | b | b  | b   |
| 22      | Muthulingapuram         | b   | b   | а    | b   | b  | b  | b   | b | b  | b   |
| 23      | Nallamanayakkanpatti    | b   | b   | b    | b   | С  | С  | С   | b | а  | b   |
| 24      | Naranapuram (Part)      | b   | а   | 1    | а   | а  | b  | b   | а | b  | а   |
| 25      | Ondippulinayakkanur     | b   | b   | 3    | 1   | С  | С  | С   | b | 1  | b   |

# Table: 3.39 (Contn.) Medical Facilities in the Study Area

| SI. No. | Name of the Village | СНС | PHC | PHSC | MCW | ТВ | НА | HAM | D | VH | FWC |
|---------|---------------------|-----|-----|------|-----|----|----|-----|---|----|-----|
| 26      | Pattampudur         | b   | b   | 1    | b   | b  | b  | b   | b | b  | b   |
| 27      | Pudupatti           | b   | а   | а    | а   | С  | С  | С   | а | b  | а   |
| 28      | Pudur               | а   | а   | 1    | а   | С  | С  | С   | а | 1  | а   |
| 29      | Rajagopalapuram     | а   | а   | а    | а   | С  | С  | С   | а | С  | а   |
| 30      | Sennalkudi          | С   | b   | 1    | b   | b  | b  | b   | b | а  | b   |
| 31      | Sevalpatti          | С   | С   | 1    | С   | С  | С  | С   | С | С  | С   |
| 32      | Thammanayakkanpatti | 1   | 1   | 1    | 1   | 1  | С  | С   | 1 | а  | 1   |
| 33      | Thathampatti        | b   | b   | 1    | b   | b  | b  | b   | b | b  | b   |
| 34      | Tulukkapatti        | b   | а   | 1    | а   | С  | С  | С   | а | а  | а   |
| 35      | V.Muthulingapuram   | b   | b   | 1    | b   | С  | С  | С   | b | а  | b   |
| 36      | Vachakkarapatti     | а   | а   | 1    | а   | С  | С  | С   | а | а  | а   |
| 37      | Valayapatti         | b   | а   | а    | а   | С  | С  | С   | а | b  | а   |
| 38      | Veppilaipatti       | b   | b   | b    | b   | b  | b  | b   | b | b  | b   |

CHC-Community Health Cenre
PHC-Primary Health Centre
PHSC-Primary Health Sub Centre
MCW- Maternity and Child Welfare Centre

TBC-TB Clinic
HA-Aallopathic Hospital
HAM- Alternative Medicine
D-Dispensary

VH-Veterinary Hospital FWC-Family Welfare Centre 1-Available

a-Facility available at <5 Kms b-Facility available at 5-10 Kms c-Facility available at >10 Kms

Table: 3.40 Communication & Transport Facilities in the Study Area

| SI. No. | Name of the Village     | РО | P&T | Т | PCO | MP | IC | PCF | BS | PBS | RS | NH | SH | MDR | BTR | GR | AWR |
|---------|-------------------------|----|-----|---|-----|----|----|-----|----|-----|----|----|----|-----|-----|----|-----|
| 1       | A.Meenachipuram         | b  | b   | 1 | 1   | 1  | b  | 1   | 1  | а   | b  | С  | b  | 1   | 1   | 1  | 1   |
| 2       | Alagapuri               | b  | b   | 1 | 1   | 1  | b  | b   | 1  | а   | а  | b  | b  | b   | 1   | 1  | 1   |
| 3       | Ammapatti               | b  | b   | 1 | b   | 1  | b  | b   | 1  | 1   | b  | b  | С  | b   | 1   | 1  | 1   |
| 4       | Appayyanayakkanpatti    | С  | С   | 1 | b   | 1  | С  | С   | 1  | 1   | С  | С  | b  | 1   | 1   | 1  | 1   |
| 5       | Avudaiyapuram           | а  | b   | 1 | 1   | 1  | 1  | С   | 1  | 1   | а  | а  | b  | 1   | 1   | 1  | 1   |
| 6       | Bommakottai             | а  | а   | 1 | а   | 1  | С  | а   | 1  | 1   | С  | С  | С  | 1   | 1   | 1  | 1   |
| 7       | Chinnakamanpatti        | b  | b   | 1 | 1   | 1  | b  | b   | 1  | а   | b  | b  | 1  | b   | 1   | 1  | 1   |
| 8       | Chinnavadi              | а  | а   | 1 | а   | 1  | С  | b   | а  | а   | b  | b  | С  | 1   | 1   | 1  | 1   |
| 9       | Chokkalingapuram (Part) | b  | b   | 1 | 1   | 1  | b  | b   | 1  | 1   | b  | С  | 1  | 1   | 1   | 1  | 1   |
| 10      | Endappuli               | С  | С   | 1 | 1   | 1  | С  | b   | 1  | а   | С  | а  | С  | а   | 1   | 1  | 1   |
| 11      | Golwarpatti             | С  | С   | 1 | 1   | 1  | С  | С   | 1  | С   | С  | С  | С  | С   | 1   | 1  | 1   |
| 12      | Gopalapuram             | а  | а   | 1 | 1   | 1  | а  | 1   | 1  | 1   | а  | 1  | 1  | 1   | 1   | 1  | 1   |
| 13      | Kadambankulam           | С  | С   | 1 | 1   | 1  | С  | С   | 1  | 1   | С  | С  | С  | С   | 1   | 1  | 1   |
| 14      | Kariseri                | 1  | 1   | 1 | 1   | 1  | 1  | 1   | а  | а   | С  | С  | 1  | С   | 1   | а  | 1   |
| 15      | Koilvirarpatti          | b  | b   | 1 | 1   | 1  | С  | С   | 1  | b   | b  | b  | 1  | 1   | 1   | 1  | 1   |
| 16      | Kottaiyur               | b  | b   | 1 | 1   | 1  | b  | b   | 1  | 1   | С  | С  | 1  | b   | 1   | а  | 1   |
| 17      | Kumaralingapuram        | b  | b   | 1 | 1   | 1  | b  | b   | 1  | 1   | b  | b  | 1  | 1   | 1   | 1  | 1   |
| 18      | Kundalakkuttu           | С  | С   | 1 | b   | 1  | С  | С   | 1  | 1   | С  | С  | С  | 1   | 1   | 1  | 1   |
| 19      | Mannarkottai            | b  | b   | 1 | 1   | 1  | С  | С   | 1  | 1   | С  | b  | 1  | 1   | 1   | 1  | 1   |
| 20      | Maruluthu               | b  | b   | 1 | 1   | 1  | b  | b   | 1  | 1   | b  | 1  | b  | 1   | 1   | 1  | 1   |
| 21      | Mettukkundu             | С  | b   | 1 | 1   | 1  | b  | b   | 1  | 1   | b  | b  | b  | 1   | 1   | 1  | 1   |
| 22      | Muthulingapuram         | b  | b   | 1 | b   | 1  | b  | b   | 1  | b   | b  | 1  | С  | 1   | 1   | 1  | 1   |
| 23      | Nallamanayakkanpatti    | С  | С   | 1 | b   | 1  | С  | С   | 1  | 1   | С  | С  | С  | С   | 1   | 1  | 1   |
| 24      | Naranapuram (Part)      | b  | b   | 1 | 1   | 1  | b  | b   | 1  | 1   | b  | С  | С  | 1   | 1   | 1  | 1   |
| 25      | Ondippulinayakkanur     | 1  | 1   | 1 | 1   | 1  | С  | 1   | 1  | 1   | С  | С  | С  | С   | 1   | 1  | 1   |

Table: 3.40 (Contn.) Communication & Transport Facilities in the Study Area

| SI. No. | Name of the Village | РО | P&T | Т | PCO | MP | IC | PCF | BS | PBS | RS | NH | SH | MDR | BTR | GR | AWR |
|---------|---------------------|----|-----|---|-----|----|----|-----|----|-----|----|----|----|-----|-----|----|-----|
| 26      | Pattampudur         | b  | b   | 1 | 1   | 1  | b  | b   | 1  | а   | b  | 1  | b  | 1   | 1   | 1  | 1   |
| 27      | Pudupatti           | b  | b   | 1 | b   | 1  | С  | С   | 1  | 1   | С  | С  | b  | 1   | 1   | 1  | 1   |
| 28      | Pudur               | С  | С   | 1 | 1   | 1  | b  | С   | 1  | 1   | С  | b  | b  | 1   | 1   | 1  | 1   |
| 29      | Rajagopalapuram     | С  | С   | 1 | 1   | 1  | С  | а   | 1  | а   | С  | С  | 1  | 1   | 1   | 1  | 1   |
| 30      | Sennalkudi          | b  | b   | 1 | 1   | 1  | b  | b   | 1  | 1   | b  | b  | b  | b   | 1   | 1  | 1   |
| 31      | Sevalpatti          | 1  | 1   | 1 | 1   | 1  | 1  | С   | 1  | 1   | С  | С  | 1  | 1   | 1   | 1  | 1   |
| 32      | Thammanayakkanpatti | а  | а   | 1 | а   | 1  | С  | С   | 1  | а   | С  | а  | С  | а   | а   | 1  | 1   |
| 33      | Thathampatti        | а  | b   | 1 | 1   | 1  | b  | b   | 1  | b   | С  | а  | 1  | а   | 1   | 1  | 1   |
| 34      | Tulukkapatti        | b  | С   | 1 | а   | 1  | а  | С   | 1  | 1   | а  | 1  | С  | 1   | 1   | 1  | 1   |
| 35      | V.Muthulingapuram   | а  | а   | 1 | 1   | 1  | b  | b   | 1  | а   | b  | b  | b  | а   | а   | 1  | а   |
| 36      | Vachakkarapatti     | 1  | 1   | 1 | 1   | 1  | С  | 1   | 1  | 1   | 1  | 1  | b  | 1   | 1   | 1  | 1   |
| 37      | Valayapatti         | b  | b   | 1 | 1   | 1  | С  | С   | 1  | а   | С  | b  | 1  | 1   | 1   | а  | 1   |
| 38      | Veppilaipatti       | b  | b   | 1 | b   | 1  | b  | b   | а  | b   | b  | а  | С  | а   | 1   | 1  | 1   |

PO-Post Office PCO- Public Call Office/Mobile PCO) SPO-Sub Post Office MP- Mobile Phone Coverage IC-Internet Cafes / Common Service P&T-Post/Telegraph Office T-Telephones PCF-Private Courier Facility (landlines)

BS-Public Bus Service PBS-Private Bus Service RS-Railway Station NH-National Highway

SH-State Highway MDR-Major District Road BTR-Black Topped (Pucca) Roads GR-Gravel (kuchha) Roads **AWR-All Weather** a-Facility available at <5 Kms Road \*-Status b-Facility available at 5-10 Kms 1-Available

c-Facility available at >10 Kms

2-Not Available

Table: 3.41 Water & Drainage Facilities in the Study Area

| SI. No. | Name of the Village     | TP | CW | UCW | HP | TW/BH | S | R/C | T/P/L | CD | OD | СТ |
|---------|-------------------------|----|----|-----|----|-------|---|-----|-------|----|----|----|
| 1       | A.Meenachipuram         | 1  | 2  | 2   | 2  | 1     | 2 | 2   | 2     | 1  | 1  | 2  |
| 2       | Alagapuri               | 1  | 1  | 2   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |
| 3       | Ammapatti               | 1  | 2  | 1   | 1  | 1     | 1 | 2   | 2     | 1  | 1  | 1  |
| 4       | Appayyanayakkanpatti    | 1  | 1  | 2   | 2  | 2     | 2 | 2   | 2     | 1  | 1  | 2  |
| 5       | Avudaiyapuram           | 1  | 1  | 2   | 1  | 1     | 2 | 1   | 2     | 1  | 1  | 2  |
| 6       | Bommakottai             | 1  | 1  | 2   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 2  |
| 7       | Chinnakamanpatti        | 2  | 2  | 2   | 1  | 2     | 2 | 2   | 2     | 1  | 1  | 1  |
| 8       | Chinnavadi              | 1  | 2  | 2   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |
| 9       | Chokkalingapuram (Part) | 1  | 1  | 2   | 1  | 1     | 2 | 1   | 2     | 1  | 1  | 2  |
| 10      | Endappuli               | 1  | 2  | 2   | 2  | 2     | 2 | 2   | 2     | 1  | 1  | 2  |
| 11      | Golwarpatti             | 2  | 2  | 2   | 2  | 1     | 2 | 2   | 2     | 1  | 1  | 2  |
| 12      | Gopalapuram             | 1  | 1  | 2   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 2  |
| 13      | Kadambankulam           | 2  | 2  | 2   | 2  | 2     | 2 | 2   | 2     | 1  | 1  | 1  |
| 14      | Kariseri                | 1  | 2  | 1   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |
| 15      | Koilvirarpatti          | 1  | 1  | 1   | 1  | 1     | 2 | 2   | 2     | 2  | 2  | 2  |
| 16      | Kottaiyur               | 2  | 2  | 2   | 1  | 2     | 2 | 2   | 2     | 1  | 1  | 2  |
| 17      | Kumaralingapuram        | 1  | 2  | 2   | 2  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |
| 18      | Kundalakkuttu           | 1  | 2  | 2   | 2  | 1     | 2 | 2   | 2     | 1  | 1  | 2  |
| 19      | Mannarkottai            | 1  | 2  | 2   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |
| 20      | Maruluthu               | 1  | 2  | 2   | 1  | 1     | 2 | 1   | 2     | 1  | 1  | 2  |
| 21      | Mettukkundu             | 1  | 2  | 1   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |
| 22      | Muthulingapuram         | 1  | 2  | 2   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |
| 23      | Nallamanayakkanpatti    | 1  | 2  | 1   | 2  | 1     | 2 | 2   | 2     | 1  | 1  | 2  |
| 24      | Naranapuram (Part)      | 1  | 2  | 1   | 1  | 1     | 2 | 2   | 1     | 1  | 1  | 2  |
| 25      | Ondippulinayakkanur     | 1  | 1  | 1   | 2  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |

Table: 3.41 (Contn.) Water & Drainage Facilities in the Study Area

| SI. No. | Name of the Village | TP | CW | UCW | HP | TW/BH | S | R/C | T/P/L | CD | OD | СТ |
|---------|---------------------|----|----|-----|----|-------|---|-----|-------|----|----|----|
| 26      | Pattampudur         | 1  | 2  | 2   | 2  | 2     | 2 | 2   | 2     | 1  | 1  | 1  |
| 27      | Pudupatti           | 1  | 2  | 2   | 1  | 2     | 2 | 2   | 2     | 1  | 1  | 1  |
| 28      | Pudur               | 1  | 2  | 2   | 2  | 1     | 2 | 2   | 2     | 1  | 1  | 2  |
| 29      | Rajagopalapuram     | 1  | 2  | 2   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |
| 30      | Sennalkudi          | 1  | 2  | 2   | 1  | 1     | 1 | 2   | 2     | 1  | 1  | 1  |
| 31      | Sevalpatti          | 1  | 2  | 1   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |
| 32      | Thammanayakkanpatti | 1  | 2  | 1   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |
| 33      | Thathampatti        | 1  | 2  | 1   | 1  | 1     | 1 | 2   | 2     | 1  | 1  | 2  |
| 34      | Tulukkapatti        | 1  | 2  | 2   | 1  | 1     | 2 | 2   | 2     | 1  | 1  | 2  |
| 35      | V.Muthulingapuram   | 1  | 2  | 2   | 2  | 1     | 2 | 2   | 2     | 1  | 1  | 2  |
| 36      | Vachakkarapatti     | 1  | 1  | 2   | 1  | 2     | 2 | 2   | 2     | 1  | 1  | 1  |
| 37      | Valayapatti         | 1  | 2  | 2   | 1  | 1     | 2 | 2   | 2     | 2  | 2  | 1  |
| 38      | Veppilaipatti       | 1  | 2  | 1   | 2  | 1     | 2 | 2   | 2     | 1  | 1  | 1  |

T-Tap Water CW-Covered Well UCW-Uncovered Well HP-Hand Pump TW/BH-Tube Well/Bore Well S-Spring R/C- River/Canal T/P/L-Tank/Pond/Lake

CD-Covered Drainage OD-Open Drainage CT-Commmunity Toilet Complex for General \*-Status 1-Available 2-Not

Table: 3.42 Other Facilities in the Study Area

| SI. No. | Name of the Village     | ATM | СВ | СОВ | ACS | SHG | PDS | RM | AMS | NC | NC-AC | СС | SF | PL | NP | APS | BDRO | PS |
|---------|-------------------------|-----|----|-----|-----|-----|-----|----|-----|----|-------|----|----|----|----|-----|------|----|
| 1       | A.Meenachipuram         | b   | b  | b   | а   | 1   | 1   | b  | b   | а  | а     | а  | а  | а  | 1  | а   | а    | 1  |
| 2       | Alagapuri               | а   | а  | а   | а   | 1   | 1   | а  | а   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 3       | Ammapatti               | b   | b  | b   | b   | 1   | 1   | b  | b   | 1  | 1     | 1  | b  | 1  | 1  | 1   | 1    | 1  |
| 4       | Appayyanayakkanpatti    | С   | С  | b   | а   | 1   | 1   | С  | С   | 1  | 1     | b  | С  | 1  | 1  | 1   | а    | 1  |
| 5       | Avudaiyapuram           | а   | а  | С   | 1   | 1   | 1   | b  | С   | 1  | 1     | 1  | С  | 1  | 1  | 1   | 1    | 1  |
| 6       | Bommakottai             | а   | а  | а   | 1   | 1   | 1   | С  | С   | 1  | 1     | а  | а  | С  | 1  | 1   | 1    | 1  |
| 7       | Chinnakamanpatti        | b   | b  | а   | b   | 1   | 1   | b  | b   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 8       | Chinnavadi              | b   | а  | а   | а   | 1   | 1   | 1  | С   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 9       | Chokkalingapuram (Part) | b   | b  | а   | b   | 1   | 1   | b  | b   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 10      | Endappuli               | b   | С  | b   | а   | 1   | 1   | С  | С   | 1  | 1     | а  | 1  | 1  | 1  | 1   | 1    | 1  |
| 11      | Golwarpatti             | С   | С  | 1   | С   | 1   | 1   | С  | С   | 1  | 1     | 1  | 1  | С  | 1  | 1   | 1    | 1  |
| 12      | Gopalapuram             | а   | 1  | а   | а   | 1   | 1   | а  | а   | 1  | 1     | а  | 1  | 1  | 1  | 1   | 1    | 1  |
| 13      | Kadambankulam           | С   | С  | а   | а   | 1   | 1   | С  | С   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 14      | Kariseri                | С   | С  | 1   | 1   | 1   | 1   | С  | С   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 15      | Koilvirarpatti          | b   | b  | а   | b   | 1   | 1   | С  | С   | 1  | 1     | 1  | 1  | а  | а  | 1   | 1    | 1  |
| 16      | Kottaiyur               | b   | b  | 1   | 1   | 1   | 1   | b  | b   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 17      | Kumaralingapuram        | b   | b  | 1   | 1   | 1   | 1   | b  | b   | 1  | 1     | b  | 1  | 1  | 1  | 1   | 1    | 1  |
| 18      | Kundalakkuttu           | С   | С  | С   | 1   | 1   | 1   | b  | С   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 19      | Mannarkottai            | b   | b  | 1   | С   | 1   | 1   | b  | С   | 1  | 1     | 1  | 1  | а  | 1  | 1   | 1    | 1  |
| 20      | Maruluthu               | b   | b  | а   | а   | 1   | 1   | b  | b   | 1  | 1     | b  | b  | b  | 1  | 1   | 1    | 1  |
| 21      | Mettukkundu             | b   | b  | b   | b   | 1   | 1   | а  | b   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 22      | Muthulingapuram         | b   | b  | b   | b   | 1   | а   | b  | b   | 1  | 1     | b  | 1  | 1  | 1  | 1   | 1    | 1  |
| 23      | Nallamanayakkanpatti    | С   | С  | а   | С   | 1   | 1   | b  | С   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 24      | Naranapuram (Part)      | b   | b  | b   | b   | 1   | 1   | b  | b   | 1  | 1     | b  | 1  | а  | 1  | 1   | 1    | 1  |
| 25      | Ondippulinayakkanur     | С   | 1  | 1   | 1   | 1   | 1   | С  | С   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |

# Table: 3.42 (Contn.) Other Facilities in the Study Area

| SI. No. | Name of the Village | ATM | СВ | СОВ | ACS | SHG | PDS | RM | AMS | NC | NC-AC | СС | SF | PL | NP | APS | BDRO | PS |
|---------|---------------------|-----|----|-----|-----|-----|-----|----|-----|----|-------|----|----|----|----|-----|------|----|
| 26      | Pattampudur         | b   | b  | b   | 1   | 1   | 1   | b  | b   | а  | 1     | а  | а  | 1  | 1  | 1   | 1    | 1  |
| 27      | Pudupatti           | b   | b  | а   | 1   | 1   | 1   | С  | С   | 1  | 1     | b  | b  | 1  | 1  | 1   | 1    | 1  |
| 28      | Pudur               | b   | b  | 1   | 1   | 1   | 1   | 1  | С   | 1  | 1     | а  | а  | 1  | 1  | 1   | 1    | 1  |
| 29      | Rajagopalapuram     | С   | С  | а   | С   | 1   | 1   | 1  | С   | 1  | 1     | а  | 1  | 1  | 1  | 1   | 1    | 1  |
| 30      | Sennalkudi          | b   | а  | 1   | 1   | 1   | 1   | b  | b   | 1  | 1     | 1  | b  | 1  | 1  | 1   | 1    | 1  |
| 31      | Sevalpatti          | С   | b  | 1   | 1   | 1   | 1   | 1  | b   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 32      | Thammanayakkanpatti | а   | а  | а   | а   | 1   | 1   | а  | С   | а  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 33      | Thathampatti        | а   | b  | b   | b   | 1   | 1   | b  | b   | 1  | 1     | 1  | b  | 1  | 1  | 1   | 1    | 1  |
| 34      | Tulukkapatti        | 1   | 1  | С   | 1   | 1   | 1   | 1  | b   | 1  | 1     | 1  | b  | b  | 1  | 1   | 1    | 1  |
| 35      | V.Muthulingapuram   | b   | b  | а   | а   | 1   | а   | С  | С   | 1  | 1     | а  | 1  | 1  | 1  | 1   | 1    | 1  |
| 36      | Vachakkarapatti     | 1   | 1  | а   | а   | 1   | 1   | 1  | С   | 1  | 1     | 1  | 1  | С  | 1  | 1   | 1    | 1  |
| 37      | Valayapatti         | b   | b  | а   | С   | 1   | 1   | b  | С   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |
| 38      | Veppilaipatti       | b   | b  | b   | b   | 1   | 1   | b  | b   | 1  | 1     | 1  | 1  | 1  | 1  | 1   | 1    | 1  |

**CB-Commercial Bank** 

COB-Co-operative Bank
ACS-Agricultural Credit

Societies

SHG-Self Help Group ATM-Automatic Teller Machine PDS-Public Distribution System

(Shop)

RM-Regular Market

AMS-Agricultural Marketing

Society

NC-Nutritional Centres-ICDS

NC-AC-Nutritional Centres-Anganwadi

CC-Community Centre with/without TV

SF-Sports Field

PL-Public Library

NP-Daily Newspaper Supply

APS-Assembly Polling Station

BDRO-Birth and Death Registration

Office

PS-Power Supply

a-Facility available at <5

b-Facility available at 5-10

'---

Kms

c-Facility available at >10

Kms 1-Available

2-Not Available

**Occupational Structure**: According to the 2011 census, Total Workers in the total population were about 77,044 (52.1%). About 64,375 (47.9%) persons were non-workers. About 41.7% of the people were engaged in tertiary activities which included different services. The workers in the primary activities (Cultivators) and the secondary activities (Agricultural Labourers) were 2.6% and 7.9% respectively.

Educational Facilities: Primary and Middle Schools are available in almost all villages whereas Senior secondary schools are available in some of the villages. However, college education is available nearby only at Virudhunagar, Sattur, Aruppukkottai, Sivakasi, Madurai, etc. Thanks to Tamil Nadu Government's constant encouragement, almost all villages are having one or more Self Help Groups through which the people earn various sources of livelihood and are financially secured. There are community based organizations in some of the villages. Nearby Vacational Training Facilities are available at Soolakkarai, Sattur, Sivakasi, Kalkurichi and Thiruthangal whereas Special School for the Disabled is available at Soolakkarai and Aruppukkottai.

Medical Facilities: Medical facilities are available in many of the villages either in the form of primary health centers / primary health sub centers, Maternity & Child Welfare Centre., etc. Some of the villages have private medical practitioners. For major ailments villagers have to go to nearby Virudhunagar, Madurai, etc. Highest proportion of the study area population goes to Government hospital and Government health centres and other people approach nearest private hospitals and Private medical practitioners. Study area population has a good number of hospitals and health facilities are available very near from their residential places.

**Drinking Water:** Drinking water facilities are available almost in all villages in the study area. Wells and hand pumps are the major source of drinking water. Villagers depend upon both rain water and also irrigation tanks for the agriculture needs. Public water supply and Power supply are available in most of the villages.

**Communication**: There are good approach roads in the form of Panchayat roads, National Highways, etc. passing through the major villages and metal roads link all the smaller villages. People use different modes of transportation for commuting.

Market: The villages situated on the main road have market facilities for their day to day requirements. These daily/weekly markets are used for both purchasing the essential commodities and selling the cultivated produce and the products of the cottage industries. For major purchases they move to nearby Virudhunagar, Madurai, etc.

**Post & Telegraph**: There are post offices in many of the villages. Telecommunications are available in some villages. The possession and use of Cellular phones were widely noted in almost all the villages. All the villages in the study area have electricity.

**Public Health**: Local people are frequently suffering from fever, asthma, diarrhea, etc. and no occupational related disease recorded. Health Report from Kanniseri Pudur PHC is appended. Primary Health Centres Maternity & Child Welfare Centre are available only in some of the villages. For major ailments villagers have to go to Virudhunagar, Madurai, etc.



**Economic Activities**: Major Agricultural Commodities in the study area includes Paddy, Maize, Cotton, Groundnut, Corn, Chilli, Pulses, Sunflower, Jasmine, Black Gram, Green Gram, Cattle Feeds, Bajra, Groundnut, Vegetables, etc., and Manufacturer Commodities includes Limestone, Cement, Match Box, Indigo, Bricks, Crackers, etc. A sizable percentage of households in each village are engaged in cattle rearing, which fetches them a reasonable income.

**Perception of the Project :** Almost all villagers are aware about the Ramco Cement Plant & its Captive Mines in the region.

# 3.11 Interpretations of Baseline Data

# 3.11.1 Interpretation of Ambient Air Quality

Air Quality Index (AQI): AQI is a tool for effective dissemination of air quality information. There are six AQI categories viz. Good, Satisfactory, Moderately Polluted, Poor, Very Poor, and Severe. The AQI will consider eight pollutants (PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, SO<sub>2</sub>, CO, O<sub>3</sub>, NH<sub>3</sub>, and Pb) for which short-term (24-hourly averaging period) National Ambient Air Quality Standards are prescribed. Based on the measured ambient concentrations, corresponding standards and likely health impact, a sub-index is calculated for each pollutants. The worst sub-index reflects overall AQI. The AQI values and corresponding ambient concentrations (health breakpoints) for the identified eight pollutants are as follows:

|                                     |                           | AQI Cate                   | egory, Pollu             | tants (ug/m³; | other than            | CO)                      |              |             |
|-------------------------------------|---------------------------|----------------------------|--------------------------|---------------|-----------------------|--------------------------|--------------|-------------|
| AQI<br>Category<br>(Range)          | PM <sub>10</sub><br>24-hr | PM <sub>2.5</sub><br>24-hr | NO <sub>2</sub><br>24-hr | O₃<br>8-hr    | CO<br>8-hr<br>(mg/m³) | SO <sub>2</sub><br>24-hr | NH₃<br>24-hr | Pb<br>24-hr |
| Good (0-50)                         | 0-50                      | 0-30                       | 0-40                     | 0-50          | 0-1.0                 | 0-40                     | 0-200        | 0-0.5       |
| Satisfactory<br>(51-100)            | 51-100                    | 31-60                      | 41-80                    | 51-100        | 1.1-2.0               | 41-80                    | 201-400      | 0.5 –1.0    |
| Moderately<br>Polluted<br>(101-200) | 101-250                   | 61-90                      | 81-180                   | 101-168       | 2.1- 10               | 81-380                   | 401-800      | 1.1-2.0     |
| Poor<br>(201-300)                   | 251-350                   | 91-120                     | 181-280                  | 169-208       | 10-17                 | 381-800                  | 801-1200     | 2.1-3.0     |
| Very Poor<br>(301-400)              | 351-430                   | 121-250                    | 281-400                  | 209-748*      | 17-34                 | 801-1600                 | 1200-1800    | 3.1-3.5     |
| Severe<br>(401-500)                 | 430 +                     | 250+                       | 400+                     | 748+*         | 34+                   | 1600+                    | 1800+        | 3.5+        |

<sup>\*</sup> One hourly monitoring (for mathematical calculations only).

**Exceedance Factor (EF)** is the Monitored Avg. Value of criteria Pollutant/NAAQ Norm of the Pollutant. Critical Pollution if EF is 1.5; High Pollution if EF is between 1.0-<1.5, Moderate Pollution if EF is between 0.5-<1.0 and Low Pollution if EF is <0.5.

Study Area is falling under Low Pollution as monitored Pollutant Levels were <0.5 EF.

| Pollutant                           | Mean          | NAAQ | Exceedance Factor | Pollution |
|-------------------------------------|---------------|------|-------------------|-----------|
|                                     | Concentration | Norm | (EF)              | Category  |
| PM2.5, ug/m <sup>3</sup>            | 21.7          | 60   | 0.36              | Low       |
| PM10, ug/m <sup>3</sup>             | 39.0          | 100  | 0.39              | Low       |
| SO <sub>2</sub> , ug/m <sup>3</sup> | 12.0          | 80   | 0.15              | Low       |
| NO <sub>2</sub> , ug/m <sup>3</sup> | 14.5          | 80   | 0.18              | Low       |

## 3.11.2 Interpretation of Ambient Noise Levels

Day Equivalent Noise (Leq-d) level monitored in Core Zone (Plant area) was 48.1 dB(A) and monitored in Buffer Zone was in the range 41.5-46.4 dB(A). Night Equivalent Noise (Leq-n) level monitored in Core Zone (Plant area) was 44.7 dB(A) and monitored in Buffer Zone was in the range 40.1-43.8 dB(A). While comparing with the MoEF&CC Leq Norms for day and night times, the monitored ambient noise levels were well within the limit values for corresponding Zone/Area.

| Zone        | Category         | Day Time | Leq, dB(A) | Night Ti<br>dB | • *  | MoEF&CC Norm,<br>Leq, dB(A) |       |  |
|-------------|------------------|----------|------------|----------------|------|-----------------------------|-------|--|
|             |                  | From     | То         | From           | То   | Day                         | Night |  |
| Core Zone   | Industrial area  | 48.1     | 48.1       | 44.7           | 44.7 | 75                          | 70    |  |
| Buffer Zone | Residential area | 41.5     | 46.4       | 40.1           | 43.8 | 55                          | 45    |  |

## 3.11.3 Interpretation of Surface Water Quality

The surface water quality was found to be within CPCB Norms Class-C.

| <b>Zone</b><br>Buffer Zone | <b>Parameter</b><br>TSS | <b>Unit</b><br>mg/l | From<br>25 | <b>To</b><br>38 | <b>Standard</b><br>0 | <b>Class</b><br>C | <b>Standard</b> 0 |
|----------------------------|-------------------------|---------------------|------------|-----------------|----------------------|-------------------|-------------------|
| Buffer Zone                | Fluoride                | mg/l                | 80.0       | 0.26            | 1.5                  | С                 | 0                 |
| Buffer Zone                | COD                     | mg/l                | 2          | 10              | 0                    | С                 | 0                 |
| Buffer Zone                | рН                      | NA                  | 7.58       | 7.88            | 6.5-8.5              | С                 | 6.5-9.0           |
| Buffer Zone                | DO                      | mg/l                | 4.0        | 4.8             | 4.0-6.0              | С                 | 4                 |
| Buffer Zone                | TDS                     | mg/l                | 310        | 560             | 500-2100             | С                 | 0                 |
| Buffer Zone                | Total Hardnes           | ss mg/l             | 140        | 270             | 0                    | С                 | 0                 |
| Buffer Zone                | Chlorides               | mg/l                | 82         | 116             | 250-600              | С                 | 0                 |
| Buffer Zone                | BOD                     | mg/l                | 2          | 2               | 3                    | С                 | 3                 |
| Buffer Zone T              | otal Coliform M         | IPN/100 ml          | 17         | 120             | 50-5000              | С                 | 5000              |

**Exceedance Factor (EF)**: All the monitored Surface Water Quality Parameters were found to be well within the respective Limit Values and there was no Exceedance of the Norms.

### 3.11.4 Interpretation of Ground Water Quality

In general, the water quality of ground waters was found to be within the prescribed IS:10500-2012 Norms for Drinking in the absence of an alternative source.

| <b>Zone</b><br>Buffer Zone | <b>Parameter</b><br>TSS | <b>Unit</b><br>mg/L | From<br>8 | <b>To</b><br>16 | <b>Prescribed Norms</b> 0 |
|----------------------------|-------------------------|---------------------|-----------|-----------------|---------------------------|
| Buffer Zone                | Fluoride                | mg/L                | 0.08      | 0.21            | 1.0/1.5                   |
| Buffer Zone                | COD                     | mg/L                | 2         | 6               | 0                         |
| Buffer Zone                | рН                      | NA                  | 7.51      | 7.81            | 6.5-8.5                   |
| Buffer Zone                | DO                      | mg/L                | 4.0       | 4.4             | 0                         |
| Buffer Zone                | TDS                     | mg/L                | 360       | 520             | 500/2000                  |
| Buffer Zone                | Total Hardnes           | s mg/L              | 160       | 230             | 200/600                   |
| Buffer Zone                | Chlorides               | mg/L                | 80        | 126             | 250-1000                  |
| Buffer Zone                | BOD                     | mg/L                | 2         | 2               | -                         |
| Buffer Zone To             | otal Coliform M         | PN/100 ml           | <2        | <2              | Absent                    |

**Exceedance Factor (EF)**: All the monitored Ground Water Quality Parameters were found to be well within the respective Limit Values and there was no Exceedance of the Norms.

### 3.11.5 Interpretation of Soil Quality

Soils with Medium compaction and Silty Loam texture are dominant in the study area. There was **no heavy metals intrusion**/leaching into the ground strata. Sodium Absorption Ratio was in the range 2.16-5.51 (desirable value being <5).

| <u>Zone</u> | <u>Parameter</u> | Value/Remarks |
|-------------|------------------|---------------|
| Core Zone   | Soil Texture     | Silt Loam     |
|             | Org. Carbon      | 1.10%         |
|             | SAR              | 2.16          |
| Buffer Zone | Soil Texture     | Silt Loam     |
|             | Org. Carbon      | 0.72-1.12%    |
|             | SAR              | 2.34-5.51     |

# 3.11.6 Interpretation of Flora-Fauna

There is no Reserved Forests / eco sensitive areas exists in the study area. The study area is not part of any National Park, Sanctuary, Biosphere Reserve, Wildlife Corridors, Migratory Path, etc. and did not record the presence of any critically threatened species. Among the fauna recorded, most of them are common resident population and no endangered species encountered in the study area. Peafowl placed under Schedule-I as per Wildlife (Protection) Amendment Act, 2022 is found in the study area and its surroundings.

### 3.11.7 Interpretation of Socio-economics

During the survey, the following demands/expectations were observed from the public:

- Job opportunities.
- Training of local youths for suitable jobs.
- Training in computer typing, driving heavy vehicles, etc.
- Facilities like Medical assistance, health care, educational, community centres, etc.

### 3.12 Summary of Baseline Status

The findings of baseline environmental status of the study area are summarized below:

- Study Area is not falling in Critically Polluted Industrial Clusters listed by CPCB and also not falling in Coastal Regulation Zone (CRZ). There is no Reserved Forest and no Ecologically Sensitive Area within 10 km Radius Area.
- The collected meteorological data represented the local weather phenomena.
- The monitored ambient air quality in the study area was found to be in compliance with the National Ambient Air Quality (NAAQ) 24-hourly Norms for Industrial, Residential, Rural and other areas.
- Study Area is falling under Low Pollution Category as monitored Pollutant Levels were <0.5 Exceedance Factor.</p>
- Ambient equivalent Noise Levels (Leq) during day and night times were found to be well within the MoEF&CC Norms.
- Workzone Noise Levels were well within the Limit of 85 DB(A) for 8-hours exposure
- ❖ The water quality of surface waters were found to be in compliance with CPCB/BIS Norms.
- The ground water quality was found to be in compliance with the IS:10500-2012 Norms.
- The soil in the study area would very well support vegetation after amending it suitably.
- There is no eco sensitive area exists in the study area and only domesticated animals exist.
- ❖ Schedule-I Fauna, Peafowl are found inhabiting the Study area.
- The area is thinly populated and basic amenities are available almost in all villages.

Thus, there is adequate buffer for the proposed Project in the physical, biological and edaphic environments of the study area.

\*\*

# 4.0 Anticipated Environmental Impact and Mitigation Measures

## 4.1 Identification of Impacts

Environmental Impacts are categorized as primary or secondary impacts. Primary impacts are those which are attributed directly to the project and secondary impacts are those which are indirectly induced by the proposed Project. Any Project would create impact on the environment in two distinct phases viz. **Construction Phase** which may be regarded as Temporary & Short Term and **Operation Phase** which would have Long Term effects. Identification of all potential environmental impacts due to the Proposal are critically examined and major impacts (**both beneficial & adverse**) are assessed.

The impacts have been divided into two categories, viz. Localised and Cumulative. Localised Impact is confined to the area of influence of the Project and is not transmitted beyond its area. Cumulative Impact is the aggregate impact of a number of projects on any component. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time.

There is **no major Industry** in the Study Area. For **Cumulative Impact Assessment**, the existing industrial activities viz. Cement Plant & Captive Power Plant activities are considered and their Contribution are also assessed. The impacts have been assessed for the Project assuming that the **existing industrial activities has already been covered under baseline environmental status** and continue to remain same till the operation of the project.

#### 4.2 Construction Phase

Expansion activities are proposed within the Industry premises with no additional land & infrastructures. No. of Working days will be increased to 345 days to achieve the production enhancement with existing machineries. Thus, no major establishment is required for the Proposal. Structural Works for proposed WHR System will be the main works during Construction Phase.

Required materials for WHR installation like steel, etc. is readily available in the Plant. Local labourers will be engaged and provided with all Personal Protective Equipments (PPEs) like Mask, Gloves, Ear plugs/muffs, etc. Water, electricity, toilet facilities, etc. will be provided from existing facilities in the Plant during Construction Phase.

The widely adopted **Matrix Method** for identifying & evaluating potential Impacts due to the Proposal is used. Impact Matrix for Construction Phase is given as **Table 4.1**.

Table: 4.1 Impact Matrix - Construction Phase

| Environmental Components & |                           |      | Project Activity during Construction Phase |                  |       |              |             |                 |               |                   |  |  |  |  |
|----------------------------|---------------------------|------|--------------------------------------------|------------------|-------|--------------|-------------|-----------------|---------------|-------------------|--|--|--|--|
|                            | rameters                  | Land | Transpor-<br>tation                        | Air<br>Pollution | Noise | Raw<br>Water | Waste water | Solid<br>Wastes | Green<br>Belt | Social<br>Measure |  |  |  |  |
|                            | Land Use                  |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
| Land                       | Soil Quality              |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
|                            | Agricultural<br>Resources |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
| Air                        | Meteorology               |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
| All                        | Air Quality               |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
|                            | Intensity                 |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
| Noise                      | Duration /<br>Frequency   |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
|                            | Surface Water<br>Quality  |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
| Water                      | Ground Water<br>Quality   |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
|                            | Water-table               |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
| Biological                 | Species                   |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
| (Flora &                   | Population                |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
| Fauna)                     | Habitat                   |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
|                            | Population                |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
|                            | Employment                |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
| Socio-                     | Infrastructures           |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
| Socio-<br>Economics        | Economy                   |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
|                            | Public Health             |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |
|                            | Occupational<br>Health    |      |                                            |                  |       |              |             |                 |               |                   |  |  |  |  |

# Legend:

| Positive Impact               |
|-------------------------------|
| Insignificant Negative Impact |
| Significant Negative Impact   |

#### 4.2.1 Impact on Land Use

All Expansion activities i.e. **Line-II inclusion**, are proposed within the existing Premises and **no additional land** is required. There will be no excavation or cut & fill during Construction Phase.

### 4.2.2 Impact on Road & Traffic

On an average, 2-3 Truck loads/day will be visiting the site and will not have any adverse impact to the existing traffic volume of NH-44.

#### 4.2.3 Impact on Ambient Air Quality

The main sources of emission during the construction period are the movement of materials & equipments at site and dust emitted during the installation related activities. However, the impact will be for short duration and confined locally.

#### 4.2.4 Impact on Noise Levels

There will be very less impact on the existing noise levels due to construction, traffic for loading and unloading, fabrication and handling of equipments & materials, etc. The likely increase of about 1-2 dB(A) in Leq Noise Levels will be confined locally.

### 4.2.5 Impact on Surface & Ground Water Quality

There is no ground water drawl for the Plant. The construction water requirement is nil. Impact on water quality during construction phase may be due to non-point discharge of sewage generated from construction workforce. Existing STPs are adequate to treat additional sewage.

### 4.2.6 Impact on Biological Environment

Project does not warrant any cutting or transplantation of trees. Existing Green Belt will control the Air Pollution & Noise Levels, if any, generated during Construction Phase. Thus, there will not be any significant impact on existing flora-fauna of the study area.

### 4.2.7 Impact on Socioeconomic Environment

There is no rehabilitation and resettlement involved in the project. Presently, there are 465 Direct Employees working in the Cement Complex. Indirect Employment to about 600 persons has been provided. Due to the Expansion Proposal, another 35 Direct Employees & 50 Indirect Employees will be added. This is a positive impact due to the Proposal.

Thus, the Construction Phase activities will not cause any significant adverse impact on the surrounding areas.

Mitigating Measures: The following EMP measures shall be undertaken during the Expansion:

- All Personal Protective Equipments (PPEs) shall be provided to the workers.
- Construction employees shall have access to safe drinking water and Toilet facilities.
- Protection devices viz. ear plugs/ear muffs shall be provided to the workers during welding and structural works.
- All the debris resulting from the site shall be disposed off effective as per existing Norms.
- EMP Cell ensure the periodical Monitoring of Environmental Parameters during the Construction Period and ensure its compliance with Norms.

# 4.3 Impacts during Operation Phase

The impacts have been assessed for the Project assuming that the **existing industrial activities** has already been covered under baseline environmental status and continue to remain same till the operation of the project. The following activities related to the Operational Phase of the Project will have varying impacts on the environment and are considered for the impact assessment:

- Land Environment.
- Traffic Volume.
- Air Quality.
- Noise Levels.
- Water Environment.
- Solid Wastes.
- Biological Environment.
- Socio-economics.

The Impact Matrix for Operation Phase is given as **Table 4.2**.

#### 4.3.1 Impact on Land

All Expansion activities i.e. **Line-II inclusion**, are proposed within the existing Premises and **no additional land** is required. **No establishment** is required for the Proposal. No change in Land Use as existing facilities are utilised on Expansion.

Total Builtup Area of the Complex is 61.266 Ha (with Roof Top Area of 27.570 Ha) and Paved Area of 17.012 Ha. The total Green Belt Area is 64.50 Ha in the total extent of 191.434 Ha with 33.69% coverage.

Table: 4.2 Impact Matrix - Operation Phase

| Environmental Components & |                           |      |                     | Projec           | t Activity | during Ope   | eration Ph  | ase             |               |                   |
|----------------------------|---------------------------|------|---------------------|------------------|------------|--------------|-------------|-----------------|---------------|-------------------|
|                            | ameters                   | Land | Transpor-<br>tation | Air<br>Pollution | Noise      | Raw<br>Water | Waste water | Solid<br>Wastes | Green<br>Belt | Social<br>Measure |
|                            | Land Use                  |      |                     |                  |            |              |             |                 |               |                   |
| Land                       | Soil Quality              |      |                     |                  |            |              |             |                 |               |                   |
|                            | Agricultural<br>Resources |      |                     |                  |            |              |             |                 |               |                   |
| Air                        | Meteorology               |      |                     |                  |            |              |             |                 |               |                   |
| All                        | Air Quality               |      |                     |                  |            |              |             |                 |               |                   |
|                            | Intensity                 |      |                     |                  |            |              |             |                 |               |                   |
| Noise                      | Duration /<br>Frequency   |      |                     |                  |            |              |             |                 |               |                   |
|                            | Surface Water<br>Quality  |      |                     |                  |            |              |             |                 |               |                   |
| Water                      | Ground Water<br>Quality   |      |                     |                  |            |              |             |                 |               |                   |
|                            | Water-table               |      |                     |                  |            |              |             |                 |               |                   |
| Biological                 | Species                   |      |                     |                  |            |              |             |                 |               |                   |
| (Flora &                   | Population                |      |                     |                  |            |              |             |                 |               |                   |
| Fauna)                     | Habitat                   |      |                     |                  |            |              |             |                 |               |                   |
|                            | Population                |      |                     |                  |            |              |             |                 |               |                   |
|                            | Employment                |      |                     |                  |            |              |             |                 |               |                   |
| Socio-                     | Infrastructures           |      |                     |                  |            |              |             |                 |               |                   |
| Socio-<br>Economics        | Economy                   |      |                     |                  |            |              |             |                 |               |                   |
|                            | Public Health             |      |                     |                  |            |              |             |                 |               |                   |
|                            | Occupational<br>Health    |      |                     |                  |            |              |             |                 |               |                   |

# Legend:

| Positive Impact               |
|-------------------------------|
| Insignificant Negative Impact |
| Significant Negative Impact   |

#### 4.3.2 Impact on Road & Traffic

Raw and Finished Materials are being transported by **both Rail and Road Modes**. Limestone from Captive Mines & Primary Crusher at Pandalgudi is transported by 30 Tons Tippers through RCL's dedicated transportation road. There are 525 Truck movements in one way i.e. 1,050 Trucks/day now. On Expansion, 1,166 Truck movements in one way i.e. **2,332 Trucks/day** will be there. Thus, there will be **1,282 Trucks/day** additional traffic volume due to the Proposal (**Table 4.3**).

Table: 4.3 Traffic Volume - Existing & Proposed

| SI. | Raw Material                                   | Existing<br>Demand,     | Proposed<br>Demand, | Mode of                                               | No. of Tru<br>Day (on | ucks per<br>e way) | Increase in No.<br>of Trucks per |
|-----|------------------------------------------------|-------------------------|---------------------|-------------------------------------------------------|-----------------------|--------------------|----------------------------------|
| No. |                                                | MTPA                    | MTPA                | Transport                                             | Existing              | Prop.              | Day (2-ways)                     |
| 1   | Limestone (&<br>Lime Kankar)                   | 2.16<br>@ 6740 TPD      | 1.794<br>@ 5200 TPD | By Own Haulage<br>Road – 30 T                         | 225                   | 174                | (-) 102                          |
| 2   | Beneficiated<br>Lime Kankar                    | -                       | 2.085<br>@ 6050 TPD | Covered Tippers                                       | -                     | 202                | 404                              |
| 3   | Clay, Chips & Roughstone                       | -                       | 0.209<br>@ 605 TPD  | By Road - 20 T<br>Covered Trucks                      | -                     | 31                 | 62                               |
| 4   | Copper Slag /<br>Laterite / Iron<br>Ore        | 0.022<br>@ 63 TPD       | 0.083<br>@ 242 TPD  | By Road - 20 T<br>Covered Trucks                      | 4                     | 12                 | 16                               |
| 5   | Fuel for<br>Cement Plant<br>i) 100%<br>Petcoke | 0.128<br>@ 423 TPD      | 0.246 @ 715<br>TPD  | 50% by Rail & 50%<br>by Road 20 T<br>Covered Trucks   | 11                    | 18                 | 14                               |
| 5   | ii) 100%<br>Imported<br>Coal                   | 0.187<br>@ 584 TPD      | 0. 358@<br>1040 TPD | 50% by Rail &<br>50% by Road - 20<br>T Covered Trucks | (Or)<br>15            | (Or)<br>26         | (Or)<br>22                       |
| 6   | Clinker                                        | 1.44<br>@ 4500 TPD      | 2.760<br>@ 8000 TPD | By closed conveyors                                   | -                     | 1                  | -                                |
|     |                                                | 0.42-0.50 @<br>1220 TPD | 0.504<br>@ 1460 TPD | By Rail                                               | -                     | -                  | -                                |
| 7   | Gypsum                                         | 0.108<br>@ 290 TPD      | 0.136<br>@ 395 TPD  | By Road- 20 T<br>Covered Trucks                       | 15                    | 20                 | 10                               |
| 8   | Dry Fly Ash                                    | 0.677<br>@ 2050 TPD     | 1.120<br>@ 3246 TPD | By Road - 40 T<br>Bowsers                             | 52                    | 82                 | 60                               |
| 9   | Wet Fly Ash                                    | 0.054<br>@ 50 TPD       | 0.080<br>@ 232 TPD  | By Road -<br>20 T Covered<br>Trucks                   | 3                     | 12                 | 18                               |
| 10  | Slag                                           | 63 TPD                  | 2.200<br>@ 6377 TPD | By Road -<br>20 T Covered<br>Trucks                   | 4                     | 319                | 630                              |
| 11  | Limestone/<br>Limestone<br>Powder as PI        | -                       | 0.040<br>@ 115 TPD  | By Road -<br>20 T Covered<br>Trucks                   | -                     | 6                  | 12                               |
| 12  | Cement                                         | 8440                    | 11600               | 25% by Rail &<br>75% by Road – 30<br>T Covered Trucks | 211                   | 290                | 158                              |
|     |                                                | Tota                    | ıl                  |                                                       | 525                   | 1166               | 1282                             |

**Baseline Status :** For assessing the baseline status, the Traffic Survey based on Indian Road Congress-IRC: 64/106 Norms were carried out at Mukku Road Junction on NH-44 during a Week Day (Wednesday; 28.08.2024) and also during the Week end (Sunday; 01.09.2024). Based on the Survey, existing Traffic Volumes at the Junction is computed in **Passenger Car Units (PCUs)** and given in **Table 4.4**. The existing traffic volume in the Project vicinity was found to be **16,510.3 PCU/day**.

Table: 4.4 Existing Traffic Volume - Baseline Status

|                 | No.                              | of Vehicles/day*                 |                         | Average Traffic |                                           |
|-----------------|----------------------------------|----------------------------------|-------------------------|-----------------|-------------------------------------------|
| Type of Vehicle | Week Day<br>(28.08.2024;<br>Wed) | Week End<br>(01.09.2024;<br>Sun) | 1.09.2024; Avg. Traffic |                 | at NH-Plant Road<br>Junction,<br>PCU/day* |
| Two Wheelers    | 1224                             | 984                              | 1189.7                  | 0.5             | 594.9                                     |
| Autos           | 684                              | 672                              | 682.3                   | 1.0             | 682.3                                     |
| Vans/Tempos     | 744                              | 792                              | 750.9                   | 1.0             | 750.9                                     |
| Cars            | 1860                             | 2058                             | 1888.3                  | 1.0             | 1888.3                                    |
| Buses           | 840                              | 888                              | 846.9                   | 3.0             | 2540.6                                    |
| Trucks          | 2470                             | 2662                             | 2497.4                  | 3.0             | 7492.3                                    |
| Trailers        | 576                              | 528                              | 569.1                   | 4.5             | 2561.1                                    |
| Total           | 8398                             | 8584                             | 8424.6                  | -               | 16510.3                                   |

<sup>\* -</sup> Including the existing Traffic Volume to & from Mines.

In the Post-Project Scenario, there will be an addition of **2,332 Vehicles** (in 2 ways) to the existing traffic. Cumulatively, the traffic volume in the Project vicinity on Expansion will be **19,764 PCU/day** (**Table 4.5**). **The net increase (cumulative) will be 3,254 PCU/day only**. The existing Roads/NHs are adequate to handle the proposed traffic volume due to the Project.

Table: 4.5 Projected Traffic Volume in the Vicinity

| Type of Vehicle | Avg. Traffic,<br>No. of<br>Vehicles/day | Proposed<br>Addition, No. of<br>Vehicles/day | Cumulative<br>Volume, No. of<br>Vehicles/day | PCU Factor<br>as per<br>IRC:106 | Post Project,<br>No. of vehicles<br>in PCU/day |
|-----------------|-----------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|------------------------------------------------|
| Two Wheelers    | 1189.7                                  | -                                            | 1190                                         | 0.5                             | 594.9                                          |
| Autos           | 682.3                                   | -                                            | 682                                          | 1.0                             | 0.0                                            |
| Vans/Tempos     | 750.9                                   | -                                            | 751                                          | 1.0                             | 750.9                                          |
| Cars            | 1888.3                                  | -                                            | 1888                                         | 1.0                             | 1888.3                                         |
| Buses           | 846.9                                   | -                                            | 847                                          | 3.0                             | 2540.6                                         |
| Trucks          | 2497.4                                  | 1222                                         | 3719                                         | 3.0                             | 11158.3                                        |
| Trailers        | 569.1                                   | 60                                           | 629                                          | 4.5                             | 2831.1                                         |
| Total           | 8424.6                                  | 1282                                         | 9707                                         | -                               | 19764.0                                        |

**Level of Service (LOS)**: Capacity Standards of Roads are fixed in relation with the LOS which is commonly designated from A (best operating condition) to F (forced or breakdown flow). Normally LOS-C will be adopted for smooth traffic flow in Urban/Rural Areas. At this Level, traffic volume will be 0.7 times of the maximum capacity. Capacity/Design Service Volume is the maximum hourly volume at which a vehicle can be expected to transfer a point/section of a road at a given time period.

Ratio of existing Volume of PCU on road (V) and its Capacity (C) with corresponding LOS and their performance are given in Tables 4.6-4.7. Thus, there will not be any significant impact on the existing baseline traffic volume during Expansion Period also.

Table : 4.6 Level of Service & Performance of a Road (IRC:64-1990 Norms)

| Volume/Capacity Ratio | Level of Service | Performance of the Road |
|-----------------------|------------------|-------------------------|
| 0-0.2                 | A                | Excellent               |
| 0.2-0.4               | В                | Very Good               |
| 0.4-0.6               | С                | Good/Average/Fair       |
| 0.6-0.8               | D                | Poor                    |
| 0.8-1.0               | E                | Very Poor               |

Table: 4.7 Predicted Traffic Scenario at the Junction

| Road        | Volume,<br>PCU/hr. | Capacity of<br>the Road,<br>PCU/hr. | V/C<br>Ratio | Level of Service | Performance of the Road |
|-------------|--------------------|-------------------------------------|--------------|------------------|-------------------------|
| Existing:-  |                    |                                     |              |                  |                         |
| NH-44       | 687.9              | 3600                                | 0.19         | Α                | Excellent               |
| On Expn. :- |                    |                                     |              |                  |                         |
| NH-44       | 823.5              | 3600                                | 0.23         | В                | Very Good               |

**Mitigating Measures**: Adequate parkings are provided in the Plant. Facilities for **drivers** (rest room, toilet, etc.) are also provided. Other Measures are:

- Green Belt with thick foliage along the Plant/Ore Haulage/Transportation roads.
- Security Guards at the Road Junction to handle the inward and outward vehicles from the Plant to the Highway.
- All Trucks are to be fully covered with Tarpaulin to avoid any spillage on transportation.
- Restriction of over loading of Trucks/Tippers.
- Speed restrictions
- Restriction of Truck parking in the Highway and Public Roads.
- Regular and preventive maintenance of transport vehicles has to be ensured.
- Compliance to 'Pollution under Control' Certification has to be checked periodically.

#### 4.3.3 Impact on Air Quality

The (old) Line-II Kiln is already provided with Reverse Air Bag House, Cooler with ESP, Coal Mill with Bag Filters so as to control the **Particulate Emissions** from **Line-II <30 mg/Nm³**.  $SO_2$  Emissions from Kiln-II will be <100 mg/Nm³ and NOx Emissions will be <600 mg/Nm³. All material conveyors are fully covered and provided with Bagfilters at Transfer Points. The Plant operations will be in compliance with new Emission Standards issued by MoEF&CC for Cement Industry vide Notifications dated 25.08.2014 and amended on 09.05.2016 & 10.05.2016.

Stack Emission details, as monitored by a NABL Accreditated Lab, are given in Tables 4.8-4.9.

|     |                    |             | Monitoring Date (by NABL Lab)  |                         |                                |                         |                                |                         |  |
|-----|--------------------|-------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--|
| SI. | Stack Name         | Stack       | 09-10.0                        | 7.2024                  | 20-21.0                        | 8.2024                  | 20-23.0                        | 9.2024                  |  |
| No. | Stack Name         | Attached to | Stack<br>Discharge,<br>Nm³/hr. | PM<br>Concn.,<br>mg/Nm³ | Stack<br>Discharge,<br>Nm³/hr. | PM<br>Concn.,<br>mg/Nm³ | Stack<br>Discharge,<br>Nm³/hr. | PM<br>Concn.,<br>mg/Nm³ |  |
| 1   | Kiln-I             | RABH        | 157036                         | 11.30                   | 188938                         | 7.56                    | 196358                         | 8.56                    |  |
| 2   | Coal Mill-I        | Bag Filter  | 38000                          | 16.08                   | 38500                          | 17.00                   | 38200                          | 16.02                   |  |
| 3   | Cooler-I           | ESP         | 89557                          | 10.80                   | 89290                          | 11.50                   | 94036                          | 12.40                   |  |
| 4   | Kiln-III           | RABH        | 416913                         | 9.03                    | 383219                         | 5.0                     | 424797                         | 6.40                    |  |
| 5   | Coal Mill-III      | Bag Filter  | 60615                          | 6.14                    | 67687                          | 5.20                    | 65403                          | 7.50                    |  |
| 6   | Cooler-III         | ESP         | 188547                         | 14.90                   | 184758                         | 11.80                   | 184895                         | 13.10                   |  |
| 7   | Cement Mill<br>1&2 | Bag Filter  | 135657                         | 11.30                   | 174058                         | 9.26                    | 190547                         | 10.10                   |  |
| 8   | Cement Mill 3      | Bag Filter  | 55893                          | 10.30                   | 56244                          | 9.41                    | 61695                          | 11.30                   |  |
| 9   | Packer             | Bag Filter  | 55391                          | 6.85                    | 57735                          | 5.49                    | 58806                          | 6.20                    |  |
| 10  | CPP Boiler         | ESP         | 101386                         | 40.30                   | 112261                         | 26.90                   | 115441                         | 25.10                   |  |

Table: 4.8 Stack - Particulate Matter

Table: 4.9 Stack - Gaseous Emissions

|     |               | Stack - | Monitoring Date (by NABL Lab)        |                |                                         |                |                                         |                |  |  |
|-----|---------------|---------|--------------------------------------|----------------|-----------------------------------------|----------------|-----------------------------------------|----------------|--|--|
| SI. | Stack         |         | 09-10.07.2024                        |                | 20-21.08.2024                           |                | 20-23.09.2024                           |                |  |  |
| No. | Name          | to      | SO <sub>2</sub> , mg/Nm <sup>3</sup> | NOx,<br>mg/Nm³ | SO <sub>2</sub> ,<br>mg/Nm <sup>3</sup> | NOx,<br>mg/Nm³ | SO <sub>2</sub> ,<br>mg/Nm <sup>3</sup> | NOx,<br>mg/Nm³ |  |  |
| 1   | Kiln-I        | RABH    | BLQ<br>(LOQ:3.0)                     | 536            | BLQ<br>(LOQ:3.0)                        | 545            | BLQ<br>(LOQ:3.0)                        | 520            |  |  |
| 2   | Kiln-III      | RABH    | BLQ<br>(LOQ:3.0)                     | 571            | BLQ<br>(LOQ:3.0)                        | 552            | BLQ<br>(LOQ:3.0)                        | 475            |  |  |
| 3   | CPP<br>Boiler | ESP     | 566                                  | 412            | 555                                     | 433            | 482                                     | 395            |  |  |

**Load Based Emission :** Based on the monitored values, on 3-month average, PM Emission was 8.98 kg/hr. For 4,500 TPD Clinker production, the Load Based Emission is computed as **0.048 kg/Tonne of Clinker** which well within the MoEF&CC Norm of 0.125 kg/Tonne of Clinker.

For arriving the Pollutant emissions from all Stacks, designed/consented capacity of Discharges and Limit values are considered for Worst Case Scenario (**Table 4.10-4.11**).

Table: 4.10 Particulate Matter Emission (Cumulative)

| SI. No. | Line & Stack Attached to | Discharge,<br>Nm³/hr. | PM Concn.,<br>mg/Nm³ | PM Emission,<br>kg/hr. |
|---------|--------------------------|-----------------------|----------------------|------------------------|
| I       | Existing Scenario :-     |                       |                      |                        |
| Α       | Line-I                   |                       |                      |                        |
| 1       | RM/Kiln-I RABH           | 3,03,876              | 20                   | 6.08                   |
| 2       | Coal Mill-1 BFs          | 40,000                | 20                   | 0.80                   |
| 3       | Cooler-1 ESP             | 1,77,840              | 20                   | 3.56                   |
| В       | Line-III                 |                       |                      |                        |
| 4       | RM/Kiln-III RABH         | 7,20,000              | 20                   | 14.40                  |
| 5       | Coal Mill-3 BFs          | 1,54,800              | 20                   | 3.10                   |
| 6       | Cooler-3 ESP             | 3,56,040              | 20                   | 7.12                   |
| С       | Common Stacks            |                       |                      |                        |
| 7       | Cement Mill-1 & 2 BFs    | 3,50,000              | 20                   | 7.00                   |
| 8       | Cement Mill-3 BFs        | 3,30,000              | 20                   | 6.60                   |
| 9       | Packer Nos. 1 & 2        | 1,10,000              | 20                   | 2.20                   |
| 10      | Packer No. 3             | 75,000                | 20                   | 1.50                   |
| 11      | Packer No. 4             | 75,000                | 20                   | 1.50                   |
| 12      | Wagon Tippler            | 1,00,000              | 50                   | 5.00                   |
| 13      | Crusher - 200 TPH        | 15,000                | 100                  | 1.5                    |
| D       | Standby DG Sets          |                       |                      |                        |
| 14      | 7 MW                     | 45,000                | 100                  | 4.5                    |
| 15      | 4 MW                     | 23,000                | 100                  | 2.3                    |
| 16      | 4 MW                     | 23,000                | 100                  | 2.3                    |
| E       | Captive Power Plant      |                       |                      |                        |
| 15      | CPP 25 MW                | 2,00,000              | 50                   | 10.00                  |
| 16      | 0.5 MW DG Set            | 20,000                | 100                  | 2.00                   |
|         | Sub-Total                | 31,18,556             | -                    | 81.45                  |
| II      | Expansion Scenario :-    |                       |                      |                        |
| F       | Line-II                  |                       |                      |                        |
| 1       | RM/Kiln-II RABH          | 3,00,000              | 30                   | 9.00                   |
| 2       | Coal Mill-2 BFs          | 35,000                | 30                   | 5.25                   |
| 3       | Cooler-2 ESP             | 1,75,000              | 30                   | 1.05                   |
|         | Sub-Total                | 5,10,000              | -                    | 15.30                  |
|         | Total                    | 36,28,556             |                      | 96.75                  |

On Expansion, PM emission will increase by 18.78% to existing Levels.

|            | ī                        | ī                     | Ī                                                | T                                      |                          |                            |
|------------|--------------------------|-----------------------|--------------------------------------------------|----------------------------------------|--------------------------|----------------------------|
| SI.<br>No. | Line & Stack Attached to | Discharge,<br>Nm³/hr. | SO <sub>2</sub><br>Concn.,<br>mg/Nm <sup>3</sup> | SO <sub>2</sub><br>Emission,<br>kg/hr. | NOx<br>Concn.,<br>mg/Nm³ | NOx<br>Emission,<br>kg/hr. |
| ı          | Existing Scenario :-     |                       |                                                  |                                        |                          |                            |
| Α          | Line-I                   |                       |                                                  |                                        |                          |                            |
| 1          | RM/Kiln-I RABH           | 3,03,876              | 100                                              | 30.39                                  | 600                      | 182.33                     |
| В          | Line-III                 |                       |                                                  |                                        |                          |                            |
| 2          | RM/Kiln-III RABH         | 7,20,000              | 100                                              | 4.00                                   | 600                      | 24.00                      |
| С          | Captive Power Plant      |                       |                                                  |                                        |                          |                            |
| 3          | CPP 25 MW                | 2,00,000              | 600                                              | 120.00                                 | 450                      | 90.00                      |
|            | Sub-Total                | 12,23,876             | -                                                | 154.39                                 | -                        | 296.33                     |
| II         | Expansion Scenario :-    |                       |                                                  |                                        |                          |                            |
| D          | Line-II                  |                       |                                                  |                                        |                          |                            |
| 1          | RM/Kiln-II RABH          | 3,00,000              | 100                                              | 30.00                                  | 600                      | 180.00                     |
|            | Sub-Total                | 3,00,000              | -                                                |                                        |                          |                            |
|            | Total                    | 15,23,876             | -                                                | 184.39                                 |                          | 476.33                     |

Table: 4.11 Gaseous Emission (Cumulative & Designed)

On Expansion, SO<sub>2</sub> emission will increase by 19.43% and NOx will increase by 60.74% to existing Levels.

#### PM Pollution Load:

PM Pollution Load – Existing : 0.23 kg/T of Cement PM Pollution Load – On Expn. : 0.20 kg/T of Cement

Reduction in Stack PM Levels on Expn. : 13.04%

Based on the Monitored Data status, Emission of Pollutants from the Plant will be as detailed in **Table 4.12**.

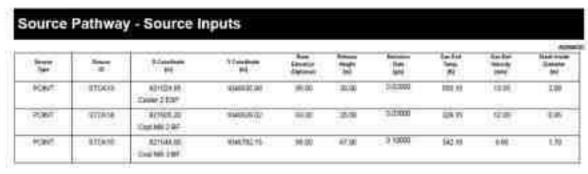
Table: 4.12 Emission Levels from the Complex (Cumulative & Designed)

| SI. No. | Pollutant       | Existing Emission, g/sec. | Emission on Expn,, g/sec. |
|---------|-----------------|---------------------------|---------------------------|
| 1       | PM2.5           | 0.792                     | 0.940                     |
| 2       | PM10            | 2.263                     | 2.690                     |
| 3       | SO <sub>2</sub> | 42.885                    | 51.219                    |
| 4       | NOx             | 82.31                     | 132.31                    |

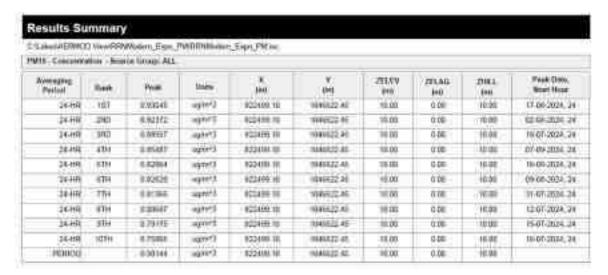
**Prediction Modelling**: **AERMOD View** (9.6.5 Version) is used for the Prediction Modelling for applicable Parameters PM2.5, PM10, SO<sub>2</sub> & NOx (<u>CO levels were below BDL</u>). The Model was run for proposed Plant operations. The **Model Inputs and Outputs** are appended. The predicted GLCs (cumulative impact) are given in **Table 4.13**. The predicted values are spatially distributed and given as **Fig. 4.1**.

PM2.5 - Input Data

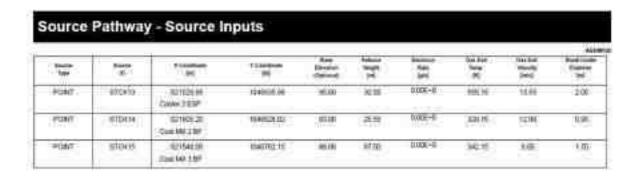
#### Source Pathway - Source Inputs MANIC Hour keesee THE PERSON 11 Sec. Sec. No. 7 W Peri 6.00900 PONT MOE sterne. 1041070.79 1000 10400 nro m 10.00 230 KNYT HARRY 0.03600 PONT STOQ! \$21856.79 SWINSON, NY 24.00 7130 桃林 1529 \$16 Carbo I State COMED powf: lifoxi. 821544-86 DARRESTAN 98.00 90.00 303.75 640 0.0E Connectal (1) 65 8.34500. trevil. myst. \$2500 SH vennt it 20 前面 10.40 450 KIND DAME PORIT 0.000000 · 130.43 Lic litoral. 421514.72 NATION THE 87,30 1.85 CHARLES 65930 PORT intool 12/48736 THE SHAPE at mr 40.00 40 h 1450 -Desired COP 6.00 KD coeff HIOR 121520 07 3046612.70 4400 ID.05 321.08 20.60 0.00 Pagest IF 121495.71 0.06400 302 H nont IITORE 9885001.12 No. 15.00 530 1180 DINNERE 0.04900 6090 HTORE 42879.73 334000526 7149 34,00 361000 12.09 1/6 House Taylor 0.0050 \$2167 H 4833 4.70 face; attests 1991775-85 81.86 -Em 230 CPF-\$1F ODMED 19909 6215E236 907.00 457.65 16.47 мосн NAMES OF 40.00 5.90 20x7#WE 0.08000 Project. STORES. STHEET AS 起廊 动炉 505 15 ute. HIE ABILANH


|             |         |                         |                    |                               |         |         |               |          | AA            |
|-------------|---------|-------------------------|--------------------|-------------------------------|---------|---------|---------------|----------|---------------|
| hare<br>No. | 8.00    | Mineral                 | i Liverinan<br>(N) | Special<br>Special<br>Special | PE .    | in.     | Time ( to a ) | Tan bear | Stance<br>(r) |
| riet.       | 670929  | 101126-95<br>Come 3-83F | 100000000          | 95,30                         | (90.00) | 0.01000 | 300(1)        | 19.96    | 290           |
| PORT        | IIICAIA | 67805.35<br>Coa MC18F   | MARCH ID.          | ALM.                          | 35.60   | diss    | 329.76        | 0.00     | 596           |
| PUNIT:      | stone   | CustW16F                | 1040702-15         | 30100                         | (87.00  | 6.03000 | 342111        | 100      | 170           |

## PM2.5 – Output Data

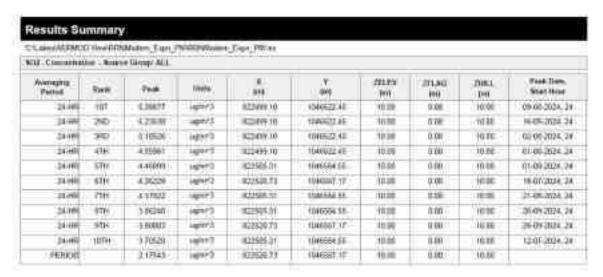

| S Common          | otton. Von | or George ALL |           |           |             |                 |        |           |                          |
|-------------------|------------|---------------|-----------|-----------|-------------|-----------------|--------|-----------|--------------------------|
| America<br>Paried |            |               | Units     | #<br>bro  | y<br>pol    | 23 (.E.V<br> mi | SALES. | 259L3.    | Peak Date,<br>Start Hard |
| 24.66             | 1817       | 3147394       | Haller () | 67240619  | 194922.45   | 10.00           | 10.00  | mm:       | 12 (H. JOH, D            |
| 24.66             | 2403       | 13400         | sgive)    | 02249910  | 1040123 All | 10.04           | 0.00   | 111.120   | 8549-2014, 3             |
| 26.66             | JMD.       | 8.3466        | 160-5     | 32289.95  | 18862245    | 16.06           | 18 MI  | 19.00     | 17-88-3004, 3            |
| 21115             | 476        | 0.32710       | ight)     | 922499.10 | 100062246   | 10.00           | 8.00   | rith talk | (9478/3004, 24           |
| 24.00             | 5714       | \$32MS        | spins)    | 822499.00 | 104602246   | 16.80           | 6.00   | 10.00     | 16-61-250A, D            |
| 26.68             | 1701       | 93700         | Minut.    | 022485.10 | 194HI22-65  | 10.09           | 10.00  | 10.00     | 95-89-3504-3             |
| 24.69             | 7164       | 8.39(1)       | 1890*)    | 622499700 | 1040622.48  | 16.00           | (0.0)  | 111,000   | 11-03-200A, 24           |
| 31-14             | 8700       | 0.38647       | igin")    | 201890.10 | 1006/522 4% | 10:10           | 18     | 13.135    | 1247-004, 2              |
| 34/98             | 0704       | 8.599E2       | ight)     | 022495 10 | 104042546   | 10.01           | 100    | 10.00     | 10-98-2014, 3            |
| 34.68             | (00)       | 8.25743       | spine)    | 812499.10 | 104002 49   | 10.00           | 0.00   | 10.00     | 30-64-300A, 24           |
| FERROD            |            | 0.79391       | spin/3    | 922506.31 | 104665455   | 10.00           | 11.007 | 10.00     | -                        |

PM10 – Input Data


| Names - | 100       | Home                         | Yanim<br>H   | Type<br>Typester<br>Optional | Super<br>Section | See<br>See<br>20 | Torres. | See Suit<br>Seinory<br>Servici | Part of the last o |
|---------|-----------|------------------------------|--------------|------------------------------|------------------|------------------|---------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POACE   | IC STREET | ROTERODE :                   | 196657579    | 90700                        | 19429            | 21,400,000       | V70(10. | 76.00                          | (2)6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| hat     | STURE     | Spike 197<br>Code 197        | terminal for | per chi                      | 5126             | 17000            | 40416   | W.25                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HON'T   | STORIA    | S2156.60<br>Consumble 1-2 EP | 104000.00    | 96.00                        | 40,00            | 0.6940           | 368.68  | 9.40                           | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PORT    | SACHE     | KHIPESE<br>RHERIGH           | 49600.31     | 90.00                        | 970              |                  | and of  | m.e                            | +10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PORCE   | intraes   | Coulet SF                    | EWETTED 45   | 16.00                        | stat.            | 0.02358          | 10116   | 131                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| THOP    | 107046    | COMPANY<br>COMPANY           | 50004020     | 307300                       | 40,00            | 0.9              | 490.40  | 44:00                          | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Poet    | STORT     | FEMORE IN                    | EMPAID 15    | 80                           | 5006             | A 64400          | 2015    | Jiel.                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PORT    | 2000      | Const Mill                   | Total Anna   | 76.00                        | 1000             | 0.0000           | 360.19  | 3.8                            | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PONT    | STORES    | R2007S F2<br>Wagen Oppose    | 164005.25    | 75/00                        | 1606             | 0.13900          | 300.00  | 12:00                          | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PORT    | STORTS    | ACHIEF OF                    | 40/07/45     | -60                          | 40.00            | 1000             | 49.66   | 676                            | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PORT    | ston      | 62100.16<br>D0s7-686/        | - men c      | 101.00                       | 901HC            | 12198            | aut in  | Maff                           | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PROPE   | 970612    | 52:522-0:<br>20175-001       | 1946851.40   | 10.00                        | 1006             | å f7000          | 104.15  | 12.00                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



PM10 - Output Data




SO<sub>2</sub> - Input Data



| 2000    |         |                        |             |                |                           |          |                       |                          | MI       |
|---------|---------|------------------------|-------------|----------------|---------------------------|----------|-----------------------|--------------------------|----------|
| ture in | tor.    | Horizon.<br>M          | H-          | Ave<br>Desired | Printer<br>Printer<br>(M) | No.      | 100,000<br>100<br>200 | 00-500<br>100-50<br>00-5 | Rad town |
| PONT    | simper. | 420H BI                | 1946/176    | .em            | 1000                      | 122400   | 1000                  | 10.00                    | Lin      |
| 7067    | 97092   | CORN<br>Sew 1895       | 1000000     | 98.00          | 31.00                     | \$380-0  | 48.11                 | 9.00                     | 140      |
| PORF    | stos    | TENDON LOW             | Semini      | 10 M           | =#                        | 1884     |                       | 16                       | 18       |
| TONE    | STDW    | HENDERS<br>MICHARDS    | 154100.71   | 200            | 67710                     | 4.9600   | 1939                  | 15.65                    | * (6)    |
| 7067    | SITNE   | CHREST                 | 1640790.46  | 90.00          | AT NO                     | 3,800000 | ::(CE10):             | 336                      | 1.00     |
| PORT    | Street  | Grand St.              | mento       | 41.00          | 4.00                      | 3,000.40 | 46.71                 | 16.00                    | 346      |
| F0602   | STORT   | Come<br>Princip        | 1066/3336   | #W             | 1000                      | #:000:00 | 2000                  | 20100                    | :416     |
| PORT    | 65.00   | School St.             | 340075      | 9.0            | 5.8                       | THE R    | de fi                 | 1.6                      | 146      |
| FORE    | emose-  | SERVICO<br>West Taylor | MADE 20     | (47%)          | 16.00                     | 3.380-6  | 308.00                | 30.00                    | 5,60     |
| PO66    | State   | SPER                   | 184727348   | ***            | 10.00                     | 1000E    | 436.00                | A.B.                     | 5.90     |
| POAT    | 14599   | some m<br>contailer:   | Temperal.   | 1000           | -0.00                     | SHE-0    | чим:                  | 78.00                    | 130      |
| PORE    | 170012  | 1010.40<br>1011001     | 16/80051 46 | 11.00          | 12.00                     | 1,568    | 39.11                 | UII                      | 100      |

SO<sub>2</sub> - Output Data



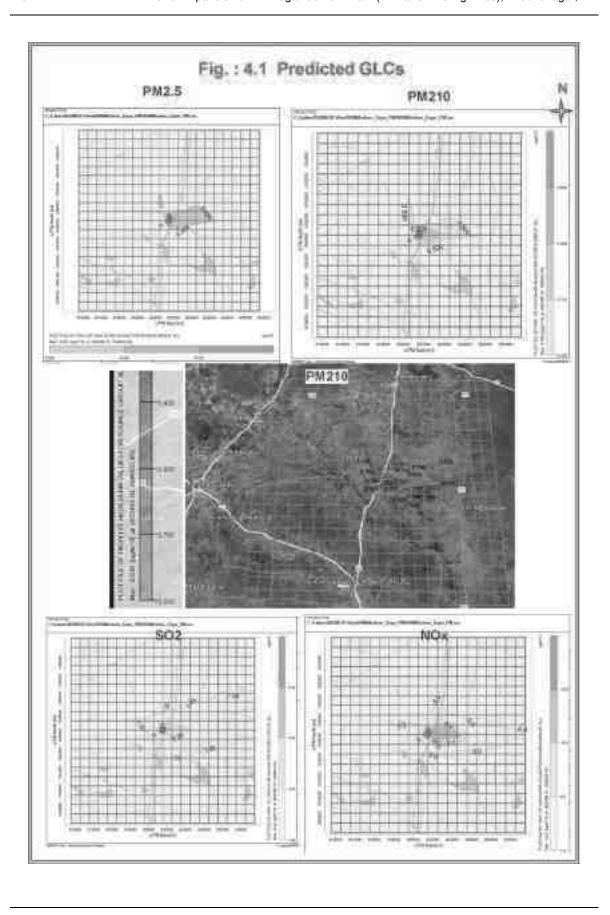
# NOx – Input Data

|         |            |                           |                   |                            |                            |             |                    |                          | *                             |
|---------|------------|---------------------------|-------------------|----------------------------|----------------------------|-------------|--------------------|--------------------------|-------------------------------|
| the the | 1          | Winds                     | 1-Condesia<br>(M) | Beet<br>Desket<br>(tables) | Street,<br>Street,<br>Str. | See<br>(et) | Ger Coll<br>Transp | Gerliet<br>Sands<br>Jorg | Visit has<br>Discovery<br>(M) |
| PORT    | emes       | SZYNTOON<br>SHIFT FORM    | EMILE IN          | 68                         | 104.50                     | 31999       | 170 17             | 9.60                     | 236                           |
| AGAIT : | 87092      | 121100.75<br>Governi ESP  | 10404619          | ###                        | 1000                       | 0100-1      | 456.35             | 9628                     | 1.60                          |
| PONT    | moso       | Committee 1-2 Car         | SMERTED.          | 91.44                      | RED.                       | 0.00=4      | 161.19             | 34                       | 3.00                          |
| HOME -  | (III) R.E. | BZ+ETN,SE.<br>Albid KARM  | ments:            | 4.0                        | HIN.                       | 50.4306     | 210.15             | 15.45                    | 4.90                          |
| PORT    | mxo        | SOURCES :<br>Guitarri (H  | 10401046          | 9690                       | erze)                      | mes         | \$19.56            | 236                      | 006                           |
| BUILT . | DVC/88     | Specialization            | 49404033          | HI                         | 40.00                      | 050==       | 410.15             | MW                       | 200                           |
| HONT    | IIIDO      | ROTTONOT                  | 194(415.10        | 99.00                      | 10:00                      | 0100-€      | 325.76             | 23.40                    | 30.04                         |
| PORT -  | IIIXX      | Conversions               | EBREET D          | ***                        | 1000                       | 0.WE-3:     | 262.16             | 12                       | 16                            |
| PONT.   | morp       | R28670.73<br>R000Y Taprim | (Delia) 30        | 13.00                      | 10:00                      | 0.000-0     | 300.00             | 1586                     | 580                           |
| mijajm: | 31006      | 294000<br>27459           | 100737545         | MW                         | 30.00                      | 1250000     | 430.00             | 870                      | 3.50                          |
| HUNT    | stown      | 621(CES)<br>204 (4160)    | (90000)           | 10720 )                    | 40.00                      | 0000-6      | (6139)             | 9637                     | 3.30                          |
| PONT    | 1000       | EPASS#                    | matter at         | 1126                       | THE                        | 975000      | 500.55             | 3016                     | 1,80                          |

|        |          |                        |              |                                |         |         |           |               | A4        |
|--------|----------|------------------------|--------------|--------------------------------|---------|---------|-----------|---------------|-----------|
| Seeter | August 1 | Frioden<br>OC          | Standon<br>M | Date<br>Cleaning<br>(Springer) | Things. | 27      | Torse (A) | Total Control | State Com |
| Poect  | 81003    | 621(2) (6)<br>2 (6) P  | (904000536)  | 38.00                          | 30.00   | 3,000-0 | \$10.40   | 19.50         | 2,00      |
| राजन   | STORY    | Courtes 2 RF           | (Market II)  | 91/0                           | 8.90    | 3.86-6  | 35/6      | 236           | 116       |
| foet:  | 870415   | 02/54030<br>Out MA 18F | 104(72)15    | III.00                         | 18730   | 318-9   | 34239     | XM:           | UE        |

| CHINADANO           | DYWWHIA | Money Eye.     | AVAIDAN-do- | Door, PM Inc. |            |        |      |       |               |
|---------------------|---------|----------------|-------------|---------------|------------|--------|------|-------|---------------|
| at Commun           | in Sur  | m Group: AG.L. |             |               |            |        |      |       |               |
| Averaging<br>Period | State 5 | Yest.          | Distric     | ini.          | Y<br>one   | SHEW.  | 2HAS | Steel | Pack See.     |
| 34 (17)             | 100     | (CHIEC)        | 48119       | #20499.RF     | 1986522.45 | 10.00  | 0.08 | 10.00 | 19-29-2004-20 |
| 24.69               | 310     | (E.8900)       | agnir)      | A23499 III    | 1946822.41 | 10.00  | 2.00 | 10.00 | 16-08-2004; 3 |
| 24.445              | 190     | 15.48420       | aprel f     | 623496 10     | 1946422.48 | 1636   | 0.04 | 400   | \$5-18-2004 D |
| 24-68               | 4771    | 16.13440       | 4977        | 803499.10     | 1946102.45 | 10.08  | 0.00 | 10,00 | \$5-08-0000 B |
| 21-HR               | 201     | 16 11001       | agirr2      | 102499 10     | 1940522.45 | 10.00  | 0.00 | 10 00 | D1-09-2104_3  |
| 24-110              | 601     | 13.79347       | matrit 2    | 102/09/10     | 1046522.45 | 10.00  | 0.00 | 19.00 | 26/04/2008.04 |
| 2648                | 710     | (2.863)        | sphrt)      | 80052673      | MACHINE OF | 10.00  | 0.00 | (0.00 | 01-19-2024, 3 |
| 24.40               | site    | 121284         | ugratil.    | 6039831       | 134534 55  | 181.00 | 100  | 10:00 | (945-200x.)   |
| 24.60               | 3714    | 11,75204       | 1071/2      | 822565.34     | 4346884.50 | 00.00  | 0.08 | 1436  | 31-07-2004, 3 |
| 31-69               | Hitti   | id inne        | witer)      | 92258831      | 1345556.58 | 10.00  | 0.06 | 91.00 | 29-49-2026 2  |
| PERCO               |         | 6,00004        | 4614.3      | 100499 10     | 1040027.41 | TIT-DD | 10.0 | 10:00 |               |
|                     |         |                |             |               |            |        |      |       |               |

NOx – Output Data


Table: 4.13 Predicted GLCs

| SI.<br>No. | Pollutant       | Concer<br>(24-I | round<br>ntration<br>nly.),<br>/m³ | Predicted<br>Ground Level<br>Concentration, | Distance<br>from<br>Plant | Total on Avg. | NAAQ<br>Norms, | Buffer<br>Available in<br>the |
|------------|-----------------|-----------------|------------------------------------|---------------------------------------------|---------------------------|---------------|----------------|-------------------------------|
|            |                 | Max. Avg.       |                                    | ug/m³                                       | (max.),<br>km             | ug/m³         | ug/m³          | Atmosphere                    |
| 1          | PM2.5           | 38              | 21.7                               | 0.42                                        | 1.0                       | 22.12         | 60             | 63.13%                        |
| 2          | PM10            | 65              | 39.0                               | 0.93                                        | 1.0                       | 39.93         | 100            | 60.07%                        |
| 3          | SO <sub>2</sub> | 24              | 12.0                               | 5.39                                        | 1.0                       | 17.39         | 80             | 78.26%                        |
| 4          | NO <sub>x</sub> | 27              | 14.5                               | 15.87                                       | 1.0                       | 30.37         | 80             | 62.04%                        |

The **maximum incremental GLC** for PM2.5 is  $0.42 \text{ ug/m}^3$ , PM10 -  $0.93 \text{ ug/m}^3$ , SO<sub>2</sub> -  $5.39 \text{ ug/m}^3$  & NOx 15.87 ug/m³. There will be **adequate Buffer (60.07%-78.26%)** in the Air Environment for proposed Expansion activities. The cumulative impacts were found to be confined locally i.e. within 1.0 km radius from the Plant boundaries.

**Mitigating Measures**: RCL has installed adequate air pollution control systems viz. Electro statistic precipitators, Bag house, bag filters, etc. are installed in the stacks to control the emissions. Also, adequate dust collection and extraction systems are installed at various transfer points raw mill handling (unloading, conveying, transporting, stacking), vehicle movement, bagging and packing areas, etc.

All efforts shall be undertaken to maintain the PM emission levels from the main stacks of Old Line-II New Kiln as <30 mg/Nm³.</p>



- ❖ NOx emission levels from Line-II with New Kiln shall be <600 mg/Nm³.</p>
- ❖ The periodical evaluation for the efficiency performance of ESPs and Bag Filters shall be carried out.
- ❖ Fugitive emissions due to storage, transportation, etc. and the leakages and spillages shall be continuously monitored and controlled.
- Thermal insulation is provided wherever necessary to minimize heat radiation from the equipment, piping etc, to ensure protection of personnel.
- ❖ Periodical Ambient Air Quality and Stack Emissions shall be undertaken and the Status Reports shall be submitted to the Authorities as required.

#### 4.3.4 Impact on Ambient Noise Quality

The noise level within the plant at a distance of one meter from the source will be maintained at <85 db(A) level for 8-hours exposure. Noise level at nearest plant boundary will be <55 dB(A) during day times and <45 dB(A) during night times. Thus, the noise levels will be well within the permissible MoEF&CC Norms for Residential Areas.

#### **Mitigating Measures:**

- All rotating items are well lubricated and provided with enclosures as far as possible to reduce noise termination.
- Extensive vibration monitoring systems are provided to check and reduce vibrations.
- ❖ For all fans, compressors etc. vibration isolators are provided to reduce noise.
- Provision of silencers are made wherever possible.
- Proper lubrication and housekeeping are maintained.
- The operator provided with necessary safety and protection equipment like ear plugs, ear muffs etc.

#### 4.3.5 Impact on Surface Waters Resource and Quality

Presently, the fresh water demand of the Cement Plant, CPP & Township is 1,000 KLD. The Unit has been permitted for the drawl of 1,500 KLD from the nearby Seasonal Arjuna River. There is an Intake Well in the River Basin for tapping the required water. On Expansion, fresh water to the tune of 265 KLD is required for WHRB Power Plant. Thus, total water demand will be 1,265 KLD which is well within the permitted drawl quantity of 1,500 KLD from Arjuna River.

Also, treated sewage of 250 KLD, treated Effluent of 20 KLD from CPP and harvested Rainwater of 230 KLD, in total 500 KLD, are supplementing the raw water demand of the Complex.

#### 4.3.6 Impact on Ground Waters Resource and Quality

There is **no ground water drawl for the Plant**. There is no trade effluent from the Cement Plant. Workshop washings of 4 KLD and 16 KLD Rejects from CPP are individually neutralized and the Treated Effluent of 20 KLD is taken to the Cement Plant for equipment cooling (where it is evaporated fully). **On Expansion**, DM/RO Rejects of 40 KLD, Boiler Bleed-offs of 8 KLD and Colling Tower Rejects of 12 KLD, total **60 KLD effluent will be generated** additionally which will be treated for pH Correction in a **100 KLD Neutralisation Pit separately** and **Treated Effluent of 60 KLD** will be utilized for Equipment Cooling of (old) Line-II machineries where it will be evaporated fully.

Domestic Sewage & Canteen wastewaters of 25 KLD from the Cement Plant, 9 KLD Domestic Sewage from CPP, 160 KLD Domestic Sewage from the Township and another 86 KLD Domestic Sewage from Labour Qtrs., thus, a total of 280 KLD is generated. All the Domestic Sewage is treated in a 400 KLD Sewage Treatment Plants (350+50 KLD STPs). The Treated Sewage of 250 KLD is fully used for the Green Belt development. There will be no change to existing status on Expansion. Thus, it will be a 'Zero Effluent Discharge' Plant.

#### Mitigating Measures - Water:

- No ground water tapping for industrial use.
- Water consumption shall not be more than the consented quantity.
- No trade effluent shall be discharged from the Plant.
- Cooling water is put into closed circuit to minimize the evaporation losses.
- The domestic sewages from the Cement Plant, Power Plant and Township shall be treated effectively in the Sewage Treatment Plant so to meet the TNPCB Discharge Norms and the treated sewage shall be used for Green Belt.
- 'Zero Effluent Discharge' shall be practiced.
- No percolation of treated water to the deep ground water table is done.
- Periodical monitoring for specific parameters shall be done regularly.

#### 4.3.7 Impact on Solid Wastes

The solid waste generated from the process and dust collected from various air pollution control equipment is being recycled in the process. Solid waste from the Sewage treatment plant 0.8 @ TPD is vermi-composted and used as manure for Green belt development. Fly ash (29.3 TPD) produced from CPP and Bottom ash (5.2 TPD) are transported pneumatically with the help of dense phase pneumatic pumps to the RCC storage silos. The ash is evacuated from silo and transported to Cement Plant for Portland Pozzolana Cement (PPC) manufacturing. There will not be any change to the existing Status of Solid Waste Generation, Treatment and Disposal from the Complex on Expansion.

#### **Mitigating Measures:**

- It should be ensured that there is no industrial solid waste from the Plants.
- The dust collected from APC Measures will be consumed in the Cement Plant fully.
- Solid wastes from STP Plant shall be vermi composted and used as manure for Green Belt.
- Waste Oil shall be collected and sold to the CPCB/TNPCB Authorised Agency for further treatment & disposal.
- The municipal wastes shall be collected, transported, treated in a landfill (composting) within the Plant vicinity to make use of it as manure for Green Belt.
- Redundant machinery or equipment scraps (1500 Tons/Annum) as and when generated, will be segregated, stored and sold to the authorised recyclers.

#### 4.3.8 Impact on Terrestrial and Aquatic Habitat

The plant will not have any significant impact on surrounding ecology and biodiversity. About 33% green belt has been developed and maintained in the Complex. The approved **budget for Peafowl Conservation Plan @ Rs.1.00 Lakhs/annum** is being spent for Habitat improvement, Community participation in Conservation, etc. No waste water will be discharged outside Plant boundary as well as no natural water course will be disturbed. Therefore, impact on aquatic habitat is not envisaged.

RCL has contributed Rs.75.00 Lakhs to the Director, Srivilliputtur-Megamalai Tiger Reserve, Srivilliputtur vide (i) Indian Bank, RR Nagar Brach DD bearing No. 560840 dated 05.09.2023 for Rs.25,00,000/-, (ii) DD bearing No. 560847 dated 12.09.2023 for Rs.30,00,000/- & (iii) DD bearing No. No. 560848 dated 12.09.2023 for Rs.20,00,000/- and all their receipts were acknowledged by its Dy. Director, Srivilliputtur-Megamalai Tiger Reserve Letters dated 20.10.2023.

#### **Mitigating Measures:**

- Green Belt shall be maintained effectively.
- Local species and fruit bearing trees may also be developed to have a thick canopy cover.
- The treated sewage shall be used fully for the Green Belt development.
- ❖ There will be ban on one time use and throw away Plastic usage in the Plant in compliance with Tamil Nadu, Environment and Forests (EC-2) Department, G.O.(D) No. 84 dated 25.06.2018. RCL will encourage the use of eco friendly alternative such as banana leaf, areca nut palm plate, stainless steel glass, porcelain plates / cups, cloth bag, jute bag etc.

#### 4.3.9 Impact on Socio-economic Environment

The plant is significantly contributing revenue to the State & Central Govt. exchequers. As per the Companies Act 2013, Companies should spend at least 2% of the Profit after Tax of the

previous year for the CSR activities but not lower than 2% of average of previous three years Profit after Tax. RCL is presently carrying out various Socio Measures for the local as well as regional populations. RCL has implemented CER proposed for addressing PH issues during 2021-22 to 2023-24 (I Half) at a cost of Rs.24.00 Crores. In addition, during the II Half of 2023-24, RCL has carried out various CSR activities to the tune of Rs.2.18 Crores.

As a CSR initiative, **RCL contributed Rs.66,40,000/-** vide Indian Bank, RR Nagar Brach DD bearing No. 560710 dated 03.05.2023 to the District Collector / Chairman, District Rural Development Agency for providing **1500** 'Nutrition Kit' under 'Irumbu Penmani (Iron Lady) Scheme' for Govt. School Girl Students in Virudhunagar District.

#### **Mitigating Measures:**

- As per the Companies Act 2013, Companies should spend at least 2% of the Profit after Tax of the previous year for the CSR activities but not lower than 2% of average of previous three years Profit after Tax.
- \* RCL is presently carrying out various Socio Measures for the local as well as regional populations which shall be continued as per existing CSR Norms.

#### 4.3.10 Impact on Occupational Health

The Upgraded Occupational Health Centre (OHC) for In & Out Patients Treatment with Emergency Care, Ambulance, etc. (Medical Officer with MBBS, DIH qualification) has all the Facilities to take care any emergency. Periodic medical checkups are carried out to determine the employee's current health status. Any deviations are investigated and appropriate preventive and remedial measures are suggested. Records of these examinations are maintained at the OHC. Tie-ups with Tertiary Health Care Referral Centres ensure that the best possible care is provided in case of any emergency.

#### **Mitigating Measures:**

- \* RCL shall provide a safety & healthy working conditions and continually improve the occupational health and safety performance.
- Its objectives shall be to achieve zero accident and safe work environment, to improve moral and health of all employees and to maintain the emission levels below the norms.
- RCL shall provide ergonomic support in work comfortness with periodical review.

# 4.4 Impact Quantification

To quantify the assessed impacts which are qualitatively described in the EIA Matrix, they are assigned certain arbitrary weightages (Table 4.14), with (+) for Positive Impacts and (-) for Negative Impacts.

Table: 4.14 Coefficient Values

| SI. No. | Coefficient Criteria                                     | Coefficient of Impact |
|---------|----------------------------------------------------------|-----------------------|
| 1       | No Impact                                                | 0                     |
| 2       | Insignificant impact-Short Term (I)                      | 1                     |
| 3       | Significant impact-Short Term (S)                        | 2                     |
| 4       | Significant Impact but Control Measures incorporated (P) | 3                     |
| 5       | Significant Impact, Long Term & Permanent (R)            | 4                     |
| 6       | Significant Benefit (Z)                                  | 5                     |

To sum up impact source, the coefficients impacts, ranging from 0 to 5 are used in quantification of total impact value for the proposed project (**Table 4.15**). The 'Plus' and 'Minus' values reported are cumulative value of the impact assigned for a particular Parameter under a particular Environmental Component as per EIA Matrix.

Table: 4.15 Impact Quantification - Operation Phase

|                           |                          |             |                | Projec           | t Activit | y & Coeffic     | cient Val      | ues            |               |              |                 |
|---------------------------|--------------------------|-------------|----------------|------------------|-----------|-----------------|----------------|----------------|---------------|--------------|-----------------|
| Envl.<br>Component        | Import<br>-ance<br>Value | Land<br>Use | Trans-<br>port | Air<br>Pollution | Noise     | Water<br>Demand | Waste<br>water | Solid<br>Waste | Green<br>Belt | CER &<br>CSR | Impact<br>Value |
| Land<br>Environment       | 150                      | +1          | -              | -                | -         | -               | -              | -              | +4            | -            | 750             |
| Air<br>Environment        | 200                      | -           | -2             | -2               | -         | -               | -              | -              | +3            | -            | -200            |
| Noise Levels              | 100                      | -           | -2             | -                | -2        | -               | -              | -              | +3            | -            | -100            |
| Water<br>Environment      | 200                      | -           | -              | -                | -         | -2              | -1             | -              | -             | -            | -600            |
| Biological<br>Environment | 150                      | +1          | -              | -                | -         | -               | -              | -              | +5            | -            | +900            |
| Socio-<br>economics       | 200                      |             | +2             | -                | -         | -               | -              | -              | +2            | +10          | +2800           |
| Total                     | 1000                     |             |                | •                |           | -               |                |                |               |              | +3550           |

Notes: - denotes 'No Impact/Impact Not Applicable'.

The total impact value is +3,550 favours the implementation of the Proposal. The total impact source is an assertive, positive score. In other words, the Spatial Impacts due to the Proposal will be low/insignificant and the Project can be implemented. Also, all indicated mitigative measures for pollution control in EMP shall be implemented in the Post-Project scenario by the Project Proponent to enhance the positive impacts.

\*\*\*

<sup>\*:</sup> Positive impact due to Backfilling of mined out voids and Reclamation by Afforestation.

# 5.0 Analysis of Alternatives (Technology & Site)

#### 5.1 Technology

Various cleaner production practices are initiated to control air emissions as well as fugitive emissions from various sources, etc. These practices are:

- For better housekeeping, '5S Work Place Management' is implemented.
- ❖ Fuel required for the Plant is received through railway wagons and the Rail Transportation will be given importance.
- Fly ash generated from thermal power plant is being utilized totally in cement plant.
- ❖ Road sweepers, Vacuum Cleaner and water sprinklers are in operation to maintain clean environment in the Complex.
- Duoflex Burners for kiln firing and low NOx calciners are used to reduce NOx emission.
- ❖ Usage of treated effluent from Thermal Power Plant Effluent Treatment Plant and Treated Sewage from STP are gainfully utized and 'zero effluent discharge' is being maintained.
- Internal roads are paved with concrete to arrest fugitive dusts.
- ❖ Telescopic chute and hatch for the wagon loading spout will be there for truck loading and wagon loading areas respectively to reduce the fugitive emission.

#### **Energy Conservation:**

- The available hot gases will be utilized for WHRBs.
- Pet coke is being used as fuel in the Cement Plant.
- The ordinary electrical bulbs are replaced with LED bulbs.
- Energy Management System (EnMS) is being implemented.

#### 5.2 Alternative Sites Considered

The proposal is proposed within the Industrial Complex. Therefore, site selection is not warranted.

#### 5.3 Co-Processing of Hazardous Waste

RCL has obtained Authorization No: **23HFC42009117** dated **07.06.2023** for the collection storage and disposal of the following hazardous wastes.

| Details of Waste                                | Yearly<br>Authorization<br>Quantity | Activity for which<br>Authorization is issued                                   | Quantity<br>generated /<br>Received<br>during the year<br>2023-2024 | Quantity Disposed during the year 2023- 2024 |
|-------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|
| 5.1-Used or<br>Spent Oil                        | 94.62<br>T/Annum                    | Generation, Collection, Storage, Transport and disposal to Authorized Recyclers | 29.68 T                                                             | 29.68 T                                      |
| 5.2- Wastes/<br>Residues<br>containing Oil      | 9125<br>T/Annum                     | Reception Storage & disposal for co-<br>processing in Cement Kiln               | 25.78 T                                                             | 25.78 T                                      |
| 35.3-Chemical sludge from waste water treatment | 6000<br>T/Annum                     | Reception, Storage & disposal for co-<br>processing in Cement Kiln              | 268.16 MT                                                           | 268.16 MT                                    |

**Packing and Transportation of hazardous wastes:** RCL is getting the above hazardous wastes from the different industries. The wastes are packed by the vendors in polythene bags or in closed drums. The transportation is done by the vendors and they deliver the material to RCL-RR Nagar factory.

**Receipt and Storage of hazardous wastes :** Hazardous wastes are received in packed condition or in closed drums and stored in covered shed.

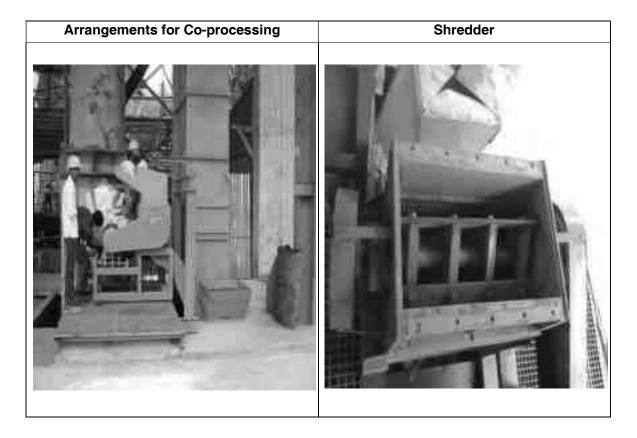
#### Processing of hazardous wastes by Co-Processing in Cement Kilns:

- 1. The hazardous waste is first shredded in a shredder for easy feeding.
- 2. The shredded material is moved to the alternate fuel feeding system hopper.
- 3. The alternate fuel feeding system has an elevator, dump hopper, & a feeder belt. The shredded material in carried by an elevator and dumped in a hopper. Further the material is fed into the pre heater for Co-processing in the Kiln through a feeder belt and Pneumatic Gates. Detailed flow diagram is enclosed.

#### Generation of Spent oil (5.1): RCL is using the following oils in the plant:

1. Lubricating oils - Used in all gear boxes, equipment and machineries

2. Engine Oil - Used in Earth moving equipment engines


3. Furnace Oil – Used as a fuel in the power generators

4. Greases – Used in all machineries and equipment

The lubricating oils, engine oils & greases are used for the specified hours of operation in the equipment. Then these used oil/greases are removed from the equipment and stored in closed drums

The furnace oil is filtered and the sludge generated during the process is stored in a separate sludge tank in the generator area

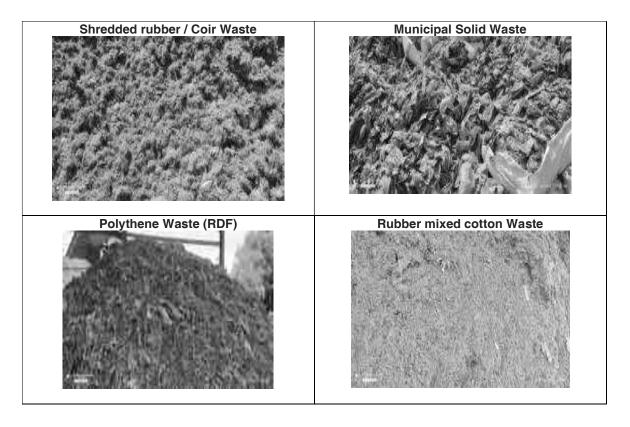
The used oil and Furnace oil sludge's are disposed to the authorised recycler's approved by TNPCB



# 5.4 Alternate Fuel System & Plastic Waste Utilsation

The following alternative fuels are being received and being fed in the Kiln through Alternate Fuel Feeding System:

- 1. Municipal Solid Waste
- 2. Shredded rubber / Coir Waste
- 3. Rubber mixed cotton Waste
- 4. Polythene Waste


RCL is receiving the above materials and unloaded in alternate fuel storage shed. From the storage shed it was transported to the AFR feeding system by truck. The alternate fuel system consists of the following equipments;

- 1. Feed Hopper
- 2. Belt Conveyors
- 3. Belt Bucket Elevator
- 4. Calciner Chute with Double flap gate.





Presently we are feeding alternative fuel to the Calciner in Preheater. RCL is planned to install similar kind of system in all Kilns.



#### 5.5 Solid Wastes Utilization

RCL has implemented proper waste management system for handling all domestic wastes generated from plant and colony premises. This process involves source and onsite segregation of waste and processing the same in the dedicated solid waste treatment facility. Wastes segregated at source are taken to onsite segregation for effective process of co-processing and composting.





Waste Management in factory

TO RECYLER

**Segregation :** Source segregation for biodegradable and non-biodegradable wastes are done by two bin system.

**Onsite Segregation :** Partially Source segregated waste are sent to SWM facility. After that, the waste is segregated by two dedicated man power into the categories of combustibles, compostable, saleable and glass and metals.

**Co-Processing**: Combustible wastes such as plastics, paper and cloths are segregated separately and sent to kiln for co-processing. combustible wastes have the calorific value of up to 4000 kcal/kg.

**Composting:** Leaves collected and sent to SWM facility area. The collected tree leaves and small branches are shredded in shredder and used for composting. Compostable wastes and tree leaves are sent to windrow composting and the compost used as a manure for plants

\*\*\*

# 6.0 Environmental Monitoring Programme

#### 6.1 Environment Cell and Compliances

The Unit has the well laid down Integrated Management System (IMS) Policy. The Environmental Management Plan (EMP) Cell is functioning under the Unit Head and Corporate Social Responsibility (CSR) Committee is functioning under the Corporate Office. The **Organisation Chart of RR Nagar Cement Plant** is appended.

# **Organization Chart Managing Director** Shri.P.R.Venketrama Raja **Chief Executive Officer** Shri A.V.Dharmakrishnan **Executive Director (Operations)** Asst. Vice President (Mfg.) & Mr. M. Srinivasan **Unit Head** Sr Vice President (ESG) Head-Env. & **CSR** Head-Admin. **GM Works Head-Mines Medical Officer**

### 6.2 Ambient Air, Noise, Water & Soil Quality

Periodical monitoring of the ambient air quality as per Revised NAAQ Norms, fugitive emissions, stack emissions, noise levels (at boundaries), water (once in a season) and soil quality (once in a season) shall be undertaken. The periodical status reports shall be submitted to TNPCB monthly, and Integrated Regional Office, MoEF&CC-Chennai as Half Yearly Status Reports.

#### 6.3 Noise Quality Management Plan

The noise level within the plant at a distance of one meter from the source will be maintained at <85 db(A) level for 8-hours exposure. Noise level at nearest plant boundary will be <55 dB(A) during day times and <45 dB(A) during night times. Thus, the noise levels will be well within the permissible MoEF&CC Norms for Residential Areas.

#### 6.4 Emission & Discharge from the Plant

Continuous online stack monitoring equipment/systems for PM, SO<sub>2</sub> and NOx are installed at all main stacks and the online real time monitoring data are being transmitted to SPCB & CPCB servers continuously. Four (4 Nos.) Continuous Ambient Air Quality Monitoring Stations are installed in the Plant for transmission of real time monitoring data to CPCB & SPCB Servers round-the-clock. Data on Stack Emissions and Ambient Levels of PM2.5, PM10, SO<sub>2</sub> & NO<sub>X</sub> are also displayed at the Main Gate for general public view.

Further Online Continuous Effluent Monitoring (CEM) System is installed in the STP and it is connected to the TNPCB Water Watch Centre.

#### 6.5 Green Belt

Green Belt has been developed with 33% coverage @2500 Trees/Ha. Survival rate of green belt developed shall be monitored on periodic basis to ensure that damaged plants are replaced with new plants in the subsequent years.

#### 6.6 Social Parameters

RCL has estimated the demand of infrastructure (Physical & Social) in the nearby area of the plant site and appropriate developmental activities will be undertaken under for various rural developmental programmes and initiatives for the up-liftment of the nearby communities from time to time.

### 6.7 Performance Monitoring Schedule of APC Equipments

Pollution control equipment maintenance includes regular inspections, preventative maintenance and shutdown maintenance activities. Bag filters are one such air pollution control equipment which is one of the most efficient, reliable, and cost-effective methods of gas stream filtration. It functions through interception and the prevention of particle movement. Since the bag filter systems utilize mechanical forces for dust collection, sensitivity to dusts like lime powder, coal or ash properties is lower. This has made the bag filter / Bag House systems gain worldwide acceptance in boilers cleaning and reduction of air pollution. Factors causing separation include diffusion, electrostatic attraction, and gravity.

The efficiency of the systems is affected by various factors like.

- Air to cloth ratio
- Air flow
- Air suction
- Velocity of air.
- Correct filter media

Bag filter inspection has been carried out in well planned and scheduled manner at RR Nagar with a dedicated Team. The following check list (Table 6.1) is followed for inspection and routine maintenance of the bag filters. Records are maintained according to the activities carried out in various sections and bag filters.

Table: 6.1 Bag Filters Maintenance – Check List

| SI. No. | Check Points                                   | Daily | Weekly   | Monthly | Annually |
|---------|------------------------------------------------|-------|----------|---------|----------|
| 1       | Visually inspect baghouse /Bag filter.         | ✓     |          |         |          |
| 2       | Check the stack /visually inspect dust.        | ✓     |          |         |          |
| 3       | Check Differential pressure.                   | ✓     |          |         |          |
| 4       | Check Hopper discharge/Level indication.       | ✓     |          |         |          |
| 5       | Check bag filter bags                          |       | <b>√</b> |         |          |
| 6       | Check Purging sequence.                        |       | <b>✓</b> |         |          |
| 7       | Check fan running condition.                   |       | ✓        |         |          |
| 8       | Inspect all purge valves and connecting hoses. |       |          | ✓       |          |
| 9       | Check bag filter discharge RAL.                |       |          | ✓       |          |
| 10      | Check Bag filter tube sheets.                  |       |          |         | <b>√</b> |
| 11      | Check Bag filter casing welding condition.     |       |          |         | <b>√</b> |
| 12      | Check connecting ducts                         |       |          |         | <b>√</b> |
| 13      | Check for hopper and casing wear.              |       |          |         | <b>√</b> |
| 14      | Check drive condition.                         |       |          |         | <b>√</b> |
| 15      | Check cages and purging pipe condition         |       |          |         | <b>√</b> |

Bag House / Bag Filters Performance Monitoring: At RR Nagar Plant, a well-established central control room (CCR) exists with entire plant operation done from a centralized location. All the plant equipment's and their performance is monitored by an experienced and qualified team of operators. At central control room we have facilities for monitoring all major bag houses/bag filters with necessary instruments connected online, these include the followings:

- Differential pressure.
- Bag house inlet temperatures.
- Bag house outlet temperatures.
- Purging pressure.
- Discharge hopper levels.
- Discharge equipment's running status.
- Online emission data.

**Electrostatic Precipitators (ESP):** The cement process industries utilizing raw materials for the production of cement and these raw materials are burnt in the kiln at the temperature around

1400°C. During cement manufacturing process air gets pollute which includes particulate matter NOx, SOx., CO, CO2, hydrocarbons and other substances are released to the atmosphere. The burning of organic material in kilns produces an exhaust gas. Without secondary purifying treatment, these gases cannot be released into the atmosphere due to environmental protection. This problem can be overcome from the device called electrostatic precipitation which is an efficient technique for removing entrained particulate contaminants from exhaust gases and is extensively used in these industries to limit particulate emanations.

An ESP is comprised of a series of parallel, vertical metallic plates (collecting electrodes) forming lanes through which the flue gas passes. Centered between the collecting electrodes are discharge electrodes which provide the particle charging and electric field. Regular inspections and maintenance are necessary to stabilize ESP performance and lifetime. An ESP is a filtration device used to remove fine particles like smoke and fine dust from flowing gas. They are commonly used in cement industries for dust control. ESP inspection has been carried out in well scheduled and safe manner at R R Nagar with a dedicated Team. The following check list (Table 6.2) is followed for inspection and routine maintenance of ESP.

Table: 6.2 ESP Maintenance - Check List

| SI. No. | Check Points                                                | Daily | Weekly   | Monthly  | Annually |
|---------|-------------------------------------------------------------|-------|----------|----------|----------|
| 1       | Visually inspect of ESP.                                    | ✓     |          |          |          |
| 2       | Check the stack /visually inspect dust.                     | ✓     |          |          |          |
| 3       | Check transformer voltage/ milliamps.                       | ✓     |          |          |          |
| 4       | Check Hopper discharge.                                     | ✓     |          |          |          |
| 5       | Check Rapping drive mechanism/running condition             |       | <b>√</b> |          |          |
| 6       | Check RAL Running condition                                 |       | <b>√</b> |          |          |
| 7       | Check ESP fan running conditions                            |       | <b>√</b> |          |          |
| 8       | Check oil levels of transformer                             |       |          | <b>√</b> |          |
| 9       | Check cold roof / insulation conditions.                    |       |          | <b>√</b> |          |
| 10      | Check and clean all high level probes in Discharge hoppers. |       |          | <b>√</b> |          |
| 11      | Lubricate all RAL bearings                                  |       |          | ✓        |          |
| 12      | Cleaning of collecting and emitting electrodes              |       |          |          | ✓        |
| 13      | Cleaning of discharge hoppers                               |       |          |          | <b>√</b> |
| 14      | Cleaning of rapping mechanism and insulators                |       |          |          | <b>√</b> |
| 15      | Check all shock bars condition                              |       |          |          | <b>√</b> |
| 16      | Check casing and hot roof condition                         |       |          |          | <b>√</b> |
| 17      | Check Transformer oil condition / Filtration.               |       |          |          | <b>√</b> |
| 18      | Check ESP fan condition                                     |       |          |          | <b>√</b> |

**ESP Performance Monitoring:**\_At R R Nagar Plant, RCL has dedicated ESP installed for all Kilns and the following systems in place to monitor ESP performance online from the CCR:

- ESP inlet temperature.
- ESP outlet temperature.
- ESP inlet draft
- ESP outlet draft
- ESP transformer current.

### 6.8 Post Project Environmental Monitoring

The frequency of monitoring is given in **Table 6.3**. PM, SO<sub>2</sub>, NOx from Stacks shall be monitored continuously. HCl, HF, TOC, Metals and Dioxins and Furans shall be monitored once in a year.

Table: 6.3 Post-Project Monitoring

| Activity                                                         | Aspect                                                                                         | Monitoring<br>Parameter                                                 | Location                                                             | Frequency                                                                    | Responsibility        |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------|
| <b>Construction P</b>                                            | hase                                                                                           |                                                                         |                                                                      |                                                                              | _                     |
| Construction<br>Activity                                         | Ambient Air<br>quality<br>Monitoring                                                           | PM10, PM2.5,<br>SOx and NOx /<br>12 parameters<br>as per<br>NAAQS, 2009 | CCR building within Plant                                            | Quarterly                                                                    | Third Party           |
| Operation Phas                                                   | e                                                                                              |                                                                         |                                                                      |                                                                              |                       |
| Manufacturing<br>process,<br>Storage,<br>Handling,<br>Loading-   | Ambient Air quality Monitoring                                                                 | PM10, PM2.5,<br>SOx and NOx /<br>12 parameters<br>as per NAAQS,<br>2009 | CCR building within Plant                                            | Continuous<br>Online<br>Monitoring                                           | Environmental<br>Head |
| Unloading,<br>Transportation,<br>cleaning,                       |                                                                                                |                                                                         | Around the plant in 120° angle at dominant and predominant locations | 24-hourly continuously for 2 days/week for 4 weeks in a month for whole year | Third Party           |
| Stack<br>Emission<br>Monitoring                                  | All Main<br>Stacks of 3<br>Lines (Kiln<br>RABH,<br>Cooler ESP &<br>Coal Mill,<br>Cement Mills) | PM10, PM2.5,<br>SOx and NOx                                             | All Main Stacks<br>of 3 Lines                                        | Online<br>Continuous<br>Emission<br>Monitoring                               | Work                  |
|                                                                  | APC<br>Equipment<br>Efficiency                                                                 | Performance<br>of APC<br>Equipments                                     | All Main Stacks                                                      | Once in a<br>Year                                                            | Environmental<br>Head |
| Storage,<br>Handling,<br>Loading-<br>Unloading,<br>Packing plant | Fugitive<br>emission                                                                           | PM                                                                      | All section of plants                                                | Quarterly and<br>As per CPCB<br>Guide Line<br>and Indian                     | Third Party           |

| Activity                  | Aspect                    | Monitoring<br>Parameter                                                                                                                                                     | Location                                                                                          | Frequency                                             | Responsibility |  |  |
|---------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------|--|--|
| Transportation, cleaning, |                           |                                                                                                                                                                             |                                                                                                   | Standard<br>11255 (1985).                             |                |  |  |
| Water Quality             | Water Quality             | pH, Turbidity, Colour, Odour, Taste, TDS, Total Hardness, Calcium hardness, Magnesium hardness, Chloride, Fluoride, Sulphate, Nitrates, Alkalinity, Iron, Copper, Manganese | Nearby<br>Ground/Surface<br>water sources<br>and as per<br>CTO conditions                         | Quarterly                                             | Third Party    |  |  |
|                           | Waste Water Monitoring    |                                                                                                                                                                             |                                                                                                   |                                                       |                |  |  |
| Domestic uses             | Waste Water<br>Monitoring | pH, BOD,<br>COD, Oil &<br>Grease, Cl,<br>TSS, Fecal<br>coliforms, Free<br>Ammonia                                                                                           | Sewage<br>Treatment<br>Plant                                                                      | Monthly - as per CTO                                  | Third Party    |  |  |
| RO/ WHRS                  | Neutralisation<br>tank    | Temp, pH,<br>TDS, TSS,<br>BOD, COD,<br>Dissolved<br>Phosphate, CI,<br>Oil and<br>Grease etc.                                                                                | Neutralisation<br>tank                                                                            | Monthly - as per CTO                                  | Third Party    |  |  |
| Noise Level               | Operation of machineries  | Day & Night<br>dB (A)                                                                                                                                                       | Plant Boundary, High noise generating areas within the project Boundary and as per CTO conditions | Monthly - as<br>per EC / CTO                          | Third Party    |  |  |
| Medical<br>Checkup        | Employees<br>/workers     | Spirometry, Audiometry, Biochemical Parameter (Urine, Blood), ECG, Vision Test and Chest X-ray                                                                              | Health Centre /<br>Dispensary                                                                     | Yearly / Six<br>Monthly or as<br>per Factories<br>Act | ОНС            |  |  |

#### 7.0 Additional Studies

#### 7.1 Hazards Identification & Risk Assessment

Hazards Identification & Risk Assessment (**HIRA**) is the tool to identify the potential Hazards due to the industrial activities and assessment of the Risks to propose an Emergency Preparedness Plan (EPP). The major elements of the Risk Assessment include:

- Hazard & Operability (HAZOP) Studies for identification of hazards and vulnerable sections of the storage.
- Consequence Analysis for various release scenarios.
- Presentation of Damage Contour for worst damage from fire or explosion.
- Risk Assessment and
- Provision of guidelines for Emergency Preparedness Plan based on the findings.

#### The study includes:

- Hazard Identification and Visualisation of Credible Accident Scenarios:
  - Study of Plant Layouts and Process involved in the Hazardous Materials storage and handling.
  - The inventory of stored materials.
  - Identification of hazards.
  - Analysis of past accident data to develop the credibility of worst accident scenarios and
  - Visualization of Credible Accident scenarios (CAS).
- 2. Analysis of CAS

Analysis of identified CAS and quantification of effects pertaining to the cases of :

- Outflow and releases
- Heat radiation
- Explosion
- ❖ Application of damage criteria for heat radiation and explosion.
- Presentation of damage contours for worst damages from fire or explosion.
- ❖ Effect of the proposed project on neighboring areas (including cascade effects if any).
- 3. Risk Assessment based on the individual Risk Contour Plots and
- 4. Emergency Preparedness Plan and other safety recommendations based on the studies.

#### 7.1.1 Plant Configuration

The existing and proposed Plant Configurations are given in **Table 7.1**.

| Description                 | Existing                      | On Expansion        |  |
|-----------------------------|-------------------------------|---------------------|--|
| Cement Plant – Lines I & II | Clinker: 1.44 MTPA            | Clinker : 2.73 MTPA |  |
|                             | Cement : 2.70 MTPA            | Cement : 4.00 MTPA  |  |
| WHRB                        | Line-I WHRB                   | 13 MW WHRB Plant    |  |
| Power generation capacity   | 25 MW CPP with 110 TPH Boiler | No change in CPP    |  |

**Table: 7.1 Plant Configuration** 

#### 7.1.2 Fuel Storages

There is no handling of any hazardous chemicals in the Cement Plant as well as Captive Power Plant other than Fuel Oil Storages and Imported Coal & Petcoke. The Imported Coal/Petcoke received through Thoothukudi Port is reaching the Cement Plant by Road & Rail Modes. Coal/Fuel Stacker & Reclaimer of 45,000 Tones exists in the Cement Plant. There is a dedicated Coal Stacker & Reclaimer of 15,000 Tonnes in the CPP Campus.

RCL has obtained the License for Storage of Petroleum Products as detailed in **Table 7.2** from the Chief Controller of Explosives, Nagpur P/SC/TN/15/5259(P499385) dt. 30.06.2022, which is valid up to 31.12.2031.

| Materials                  | Hazardous<br>Properties | Installed<br>Capacity | License<br>Valued<br>Upto | No. of<br>Tanks<br>in the<br>Plant | Design<br>Capacity                 | Threshold<br>quantity for<br>MAH |
|----------------------------|-------------------------|-----------------------|---------------------------|------------------------------------|------------------------------------|----------------------------------|
| High Speed Diesel<br>(HSD) | Class B                 | 63 KL                 | 31.12.2022                | 2                                  | 1 x 50 KL                          | 2500 Tonnes                      |
|                            |                         | 53.55<br>Tonnes       |                           |                                    |                                    |                                  |
|                            | Class C 689.8           | 775 KL                | 31.12.2022                | 7                                  | 2 x 200<br>KL                      |                                  |
| Heavy Fuel Oil (HFO)       |                         | 689.85<br>Tonnes      |                           |                                    | 1 x 50 KL<br>3 x 30 KL<br>1 x 5 KL |                                  |

Table: 7.2 Consented Storages of HSD & HFO

The storage quantity of **Higly Flammabble Liquids** viz. Diesel (Density-850 kg/m³) is 53.55 Tonnes and that of HFO (Density-890.13 kg/m³) is 689.85 and thus, the total storage quantity is **743.4 Tonnes** which is **verywell within the Theshold Quantity of 2,500 Tonnes** for application of Rules 5, 7-9 & 13-15 as under Column 3 of Part II of Schedule 3 of Manufacture, Storage and Import of Hazardous Chemical Rules, 1989 (as amended). Hence, Onsite/Off-site Emergency Plan is not warranted for the fuel storage tanks. MSDS have been provided in the storage area. However, **an On-site Emergency Plan is in place** in compliance with Sec. 41 'B' of Factories Act 1948.

<sup>\*:</sup> MAH-Major accident hazards Installations which is defined as the isolated storage and industrial activity at a site handling (including transport through carrier or pipeline) of hazardous chemicals equal to or, in excess of the threshold quantities specified in Column 3 of Schedule 2 and 3 respectively.

In case of fuel released in the area catching fire, a steady state fire will occur. Failures in pipeline may occur due to corrosion and mechanical defect. Failure of pipeline due to external interference is not considered as this area is **Licensed Area and all the work within this area is closely supervised with trained personnel**.

#### 7.1.3 PHA Technique

Hazard is present in any system, plant or process that handles flammable materials. Screening and ranking methodologies based on **Preliminary Hazard Analysis (PHA)** technique is adopted at different stages of the Project before risk can be evaluated. The storages have been assessed for its potential to initiate and propagate an unintentional event or sequence of events that can lead to an accident or emergency. The study has covered the following sections:

- Storage Tank.
- Unloading and loading points and
- Road tanker transportation system.

#### 7.1.4 Hazard Classification

Diesel is a petroleum product and is a highly flammable liquid having flash point at 51 °C. Fuel Oil is of similar characteristics having flash point above 66 °C. An inventory of the chemical stored is made and the chemical properties, including flammability and explosion characteristics, have been considered for hazard classification. The hazardous properties of HSD/HFO are:

| CAS No. : 68476-30-2<br>Chemical Name | UN No. 1202<br>Diesel Oil (Trade Na | ame : HSD)                  |
|---------------------------------------|-------------------------------------|-----------------------------|
| Formula Range                         | C13-C18                             |                             |
| Specific Gravity                      | 0.86-0.90 at 20 °C                  |                             |
| Specific Heat, kJ/kg. K               | 0.48                                |                             |
| Boiling point (°C)                    | 215-376                             |                             |
| Flash point (°C)                      | 32                                  |                             |
| Heat of Evaporation, kJ/kg            | 244                                 |                             |
| Heat of Combustion, kJ/kg             | 45586                               |                             |
|                                       | NH                                  | 1                           |
| NFPA rating*                          | NF                                  | 2                           |
|                                       | NR                                  | 0                           |
|                                       | MF                                  | 10                          |
| Fire Explosion Index                  | 74.00                               | (Medium)                    |
| Toxicity Index                        | 2.52                                | (Low)                       |
| Threshold Quantity                    | 2500 Tons<br>(Rules 5, 7-15)        | 20000 Tons<br>(Rules 10-12) |
|                                       | (110000, 1 10)                      | (1 10103 10 12)             |

<sup>\*</sup>NFPA classification for Health, Flammability & Reactivity of a chemical on a scale of 0-4 least to worst.

#### 7.1.5 Hazard Identification

The extent of the consequences of an accident in a hydrocarbon installation depends on type and quantity of the product stored and handled, mode of containment and external factors like location, density of population in the surrounding area, etc. In many cases realisation of hazard and its potential also depend on prevailing meteorological conditions and availability of ignition source. Thus, the most serious consequence would arise from a large inventory of petroleum products located in a densely populated area.

Any petroleum product such as HSD requires interaction with air or oxygen and an ignition source for the hazard to be realised. Under certain circumstances vapours of the product when mixed with air may be explosive, especially in confined spaces. A scientific analysis of past chemical accidents has been made to establish the credibility of accident scenarios.

Based on Fire & Explosion Index: The hazard identification involves the estimation of Fire & Explosion Index (F&EI) for the unit in the facility to give the relative severity of the unit from the fire angle. These are evaluated from the knowledge of the Material Factor, General Process Hazard (GPH) and Special Process Hazard (SPH) factors. Material Factor (MF) is the measure of the energy potential of a particular chemical or its mixture with other chemicals. GPH and SPH are evaluated by taking into account the exotherm or endotherm of a reaction, material handling and transfer hazards, accessibility, severity of process conditions and possibilities, dust and other explosions, inventory level of flammable material, etc. The F&EI value is then calculated as the product of MF, GPH and SPH.

The Toxicity Index (TI) is calculated using the Nh, Ts, GPH and SPH. TI is calculated by the following formula:

#### 7.1.6 MCA Analysis

Major Hazard from oil storage is fire. **Maximum Credible Accident** (MCA) from oil storage tank can be:

- Tank Fire and
- Pool / Dyke fire.

**Tank Fire:** Oil is stored in tanks. Leak or accumulation of vapour is a source of fire. Lighting can be a source of ignition and can cause tank fire. Overflow from tank leading to spillage may cause vapour cloud formation. This can catch fire and it can flash back to the tank to cause tank fire.

**Pool / Dyke Fire:** If there is outflow from the tank due to any leakage from tank or any failure of connecting pipes or valves, oil will flow outside and form a pool. Where the tank is surrounded by a dyke, the pool of oil will be restricted within that dyke. After sometime, the vapour from the pool can catch fire and can cause pool or dyke fire.

Heat Radiation and Thermal Damage Criteria: The level of damage caused by heat radiation due to fire is a function of duration of exposure as well as heat flux (i.e. radiation energy onto the object of concern). This is true both for the effect on building and plant equipment and for the effect on personnel. However, the variation of likely exposures times is more marked with personnel, due to possibility of finding shelter coupled with protection of the skin tissue (clothed or naked body). Further, it is assumed that everyone inside the area by the pool fire will be burned to death (100% lethality) or will asphyxiate. Radiation at various heat flux levels which are critical in risk analysis, are given in Table 7.3.

Incident Type of Damage Intensity SI. Radiatio No. Damage to equipment **Damage to People** (kW/m<sup>2</sup>)100 % lethality in 1 min.1% lethality in 10 sec. 1 37.5 Damage to process equipment Minimum energy required to ignite 100 % lethality in 1 min. Significant injury in 10 2 25.0 wood at indefinitely long exposure sec. without a flame Minimum energy required 1% lethality in 1 min. First degree burns in 10 3 12.5 piloted ignition of wood, melting plastic tubing Causes pain if duration is longer than 20 sec, 4.5 however blistering is un-likely (first degree burns). 5 1.6 Causes no discomfort on long exposures.

Table: 7.3 Effect of Heat Radiation

Effect of Heat Radiation: The damage and fatality (percentage of the exposed people to be killed) due to the exposure time is very important in determining the degree of fatality and corresponding effect distance. It is observed that the exposed persons normally find shelter or protection from the heat radiation (e.g. against a wall) within 10 seconds. However, exposure time of 30 seconds is normally assumed for pessimistic calculation which applies if people do not run away immediately or when no protection is available. The variation of the effects on humans due to heat flux and duration of exposure have been developed in the form of a Probit Equation which gives following values for human fatality levels (Table 7.4).

| Radiation<br>Intensity,<br>(KW/m²) | Exposure Time (Seconds) | Lethality (%) | Degree of Burns                         |
|------------------------------------|-------------------------|---------------|-----------------------------------------|
| 1.6                                | -                       | 0             | No discomfort even after long exposures |
| 4.5                                | 20                      | 0             | <b>1</b> st                             |
| 4.5                                | 50                      | 0             | 1 <sup>st</sup>                         |
| 8.0                                | 20                      | 0             | 1 <sup>st</sup>                         |
| 8.0                                | 50                      | <1            | 3 <sup>rd</sup>                         |
| 8.0                                | 60                      | <1            | 3 <sup>rd</sup>                         |
| 12.0                               | 20                      | <1            | 2 <sup>nd</sup>                         |
| 12.0                               | 50                      | 8             | 3 <sup>rd</sup>                         |
| 12.5                               | Inst                    | 10            | -                                       |
| 25.0                               | Inst                    | 50            | -                                       |
| 37.5                               | Inst                    | 100           | -                                       |

Table: 7.4 Radiation Exposure and Lethality

The results of MCA analysis indicate that the maximum damage distances for 4.5 kw/m² thermal radiations extends upto 8.8 m in the case of one full tank is on fire during worst meteorological conditions. As the fire resistant dyke walls are created, no cumulative effect of one tank form on fire to create fire on other tank farm is envisaged.

The source strength and threat zone for entire quantity of Fuel Oil have been calculated based on equations of USEPA's Computer Aided Management of Emergency Operations (CAMEO) Model (Version 3.1). ALOHA (Areal Locations of Hazardous Atmospheres) Program is used to estimate Threat Zones associated with hazardous chemical releases, including toxic gas clouds, fires, and explosions.

Protective Action Criteria (PAC) (Acute Exposure Guideline Levels-AEGLs, Emergency Response Planning Guidelines-ERPGs or Temporary Emergency Exposure Limits-TEELs) Levels. Acute Exposure Guideline Levels (AEGLs) represent threshold exposure limits for the general public and are applicable to emergency exposures ranging from 10 minutes to 8 hours. Three levels—AEGL-1, AEGL-2, AEGL-3—are developed for each of five exposure periods (10 minutes, 30 minutes, 1 hour, 4 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects. The guidance is to use the 1 hour AEGL values. The three AEGLs are defined as follows:

**AEGL-1** is the airborne concentration (expressed as ppm or mg/m³ of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, nonsensory effects. However, these effects are not disabling and are transient and reversible upon cessation of exposure.

**AEGL-2** is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting, adverse health effects or an impaired ability to escape.

**AEGL-3** is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience lifethreatening adverse health effects or death.

## **Model Output:**

#### SITE DATA:

Location: R R NAGAR VIRUDHUNAGAR, INDIA

Building Air Exchanges Per Hour: 0.50 (enclosed office)

#### **CHEMICAL DATA:**

Chemical Name: DIESEL Molecular Weight: 176.00 g/mol PAC-1: 100 mg/(cu m) PAC-2: 100 mg/(cu m) PAC-3: 2400 mg/(cu m)

Ambient Boiling Point: 214.6° C

Vapor Pressure at Ambient Temperature: 2.70e-008 atm Ambient Saturation Concentration: 0.027 ppm or 2.73e-006%

## ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)

Wind: 1.4 meters/second from NE at 10 meters

Ground Roughness: urban or forest Cloud Cover: 3 tenths

Air Temperature: 29° C

Stability Class: C (user override)

No Inversion Height Relative Humidity: 60%

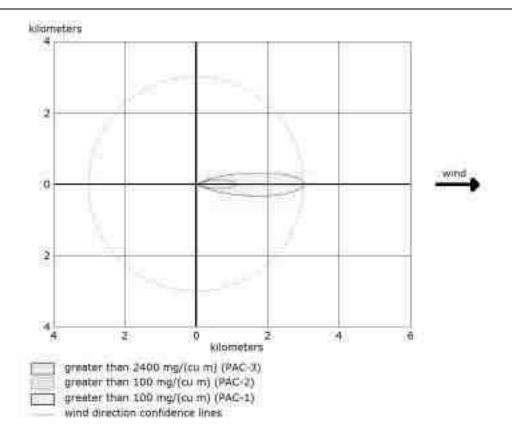
#### SOURCE STRENGTH:

Direct Source: 53.55 tons Source Height: 0

Release Duration: 1 minute

Release Rate: 810 kilograms/sec

Total Amount Released: 48,580 kilograms


## THREAT ZONE: (GAUSSIAN SELECTED)

Model Run: Gaussian

Red : 1.1 kilometers --- (2400 mg/(cu m) = PAC-3) Orange: 3.0 kilometers --- (100 mg/(cu m) = PAC-2) Yellow: 3.0 kilometers --- (100 mg/(cu m) = PAC-1)

AEGL-3 Threat Zone will be 1.1 km in the down wind direction i.e. SW direction within the Plant.

**Probability of Occurrence**: The overall probability of occurrence is found to be extremely low (10<sup>-7</sup>).





## 7.1.7 Fire Protection System in the Complex

Adequate and reliable arrangement is done for fighting the fire with water such as:

- Source of water equipped with diesel driven pumps.
- ❖ Arrangement of pipe lines along and around vulnerable areas.
- Alternative water supply arrangements.
- Provision of valves at appropriate points to enable supply of water at the required place/area or divert the same to another direction/pipe line.

Source of Water: Raw water Reservoir. Water source is equipped with one standby diesel driven pump to serve in case of power failure.

**Water Line Arrangement**: Water lines are provided at coal handling area along the conveyors and around the stockyards, transformers, oil tanks, crusher house, etc. Water lines are also provided around other infrastructures in the plant like administration building, canteen, stores and other plant equipment.

**Hydrant System** is feeding pressurized water to hydrant valves located through out the plant and also at strategic locations (**Table 7.5**). The water pressure is being maintained at 6 to 8 kg/cm<sup>2</sup> in these lines. By operating a few of the valves water pressure can be increased at one particular place. There are mainly two types of valves. Non-return valves are provided to allow on the unidirectional flow of water. Gate valves are provided for closing or opening the water supply. An adequate number of gate valves are provided at appropriate points to tap water to deal with fire if it breaks out at any point of the plant.

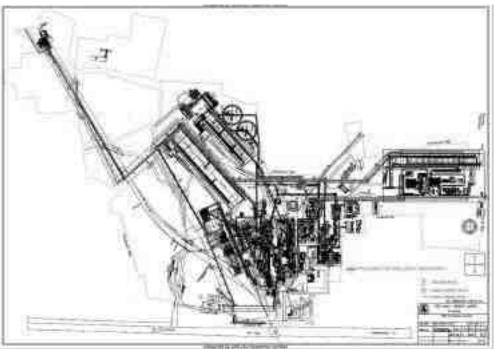



Table: 7.5 Fire Hydrants Location in RR Nagar Plant

| SI. No. | Fire Hydrant Points Location                      | Qty. |
|---------|---------------------------------------------------|------|
| 1       | Value yard                                        | 1    |
| 2       | For Long term storage yard                        | 1    |
| 3       | Engg office, Compr, DG                            | 1    |
| 4       | RM G.floor, Dg                                    | 1    |
| 5       | RMVRM G.floor, Pump room                          | 1    |
| 6       | K-1 PH G.floor, Old WS                            | 1    |
| 7       | K1 Cooler, Store entr.                            | 1    |
| 8       | Store Cylidner storage area                       | 1    |
| 9       | Refractories / others storage area                | 1    |
| 10      | Time off backside / Canteen                       | 1    |
| 11      | CCR backside                                      | 1    |
| 12      | Coalmill-1 1st floor (Separator area)             | 1    |
| 13      | D14 belt                                          | 2    |
| 14      | D13 belt                                          | 2    |
| 15      | Raw Coal steel hoppers                            | 2    |
| 16      | Raw coal hoppers feeding belt                     | 1    |
| 17      | D6 long belt from tunnel                          | 6    |
| 18      | Coal shed (10000t)                                | 3    |
| 19      | Coal shed (5000t)                                 | 2    |
| 20      | Imp coal extraction belt                          | 3    |
| 21      | Packer godown wall                                | 1    |
| 22      | Cement mill miller room                           | 1    |
| 23      | Old CMVRM B/F fan                                 | 1    |
| 24      | Cement mill pump house                            | 1    |
| 25      | Flyash transmitter area                           | 1    |
| 26      | Near old flyash unloading point                   | 1    |
| 27      | New flyash silo / Bulk loading area               | 1    |
| 28      | Raw mill reclaim belt tunnel                      | 1    |
| 29      | Clinker extraction elev                           | 1    |
| 30      | LSSP hopper area                                  | 2    |
| 31      | Raw mill / BF / Silo                              | 9    |
| 32      | Raw mill VRMP                                     | 4    |
| 33      | Kiln1 PH                                          | 5    |
| 34      | Kiln2 PH                                          | 5    |
| 35      | Coalmill-1 Elevation + G.floor                    | 10   |
| 36      | Coalmill-2 Elevation + Raw coal hopper / D44 belt | 6    |
| 37      | Coal Stacker Reclaimer                            | 8    |
| 38      | Line III – Cooler Building                        | 3    |
| 39      | Line III - Preheater                              | 8    |
| 40      | Line III – Raw Mill                               | 12   |
| 41      | Line III – Fine coal bin area                     | 5    |
| 42      | Line III - Raw cool and outer area                | 20   |

**Fire Extinguishers**: Adequate numbers of 'Fire Stations' are established (Table 7.6) which would house and keep in readiness the following type of equipment and arrangements:

- Dry Powder Chemical Extinguishers
- ❖ CO₂ Extinguishers
- Water spray hoses upto 150 m length.
- Foam Extinguishers

Appropriate types of fire extinguishers are provided at conveyor drive heads, crusher house, control rooms, in machines like stacker & reclaimer, electrical yard, sub-station and other infrastructural facilities within the premises. In the transformer yard, automatic fire detecting and quenching system are provided for each transformer. This system will come into operation whenever the temperature of surrounding air exceeds 80 °C and spray water over the transformer to prevent spreading of fire and quench the same.

Table: 7.6 Fire Extinguishers Location in RR Nagar Plant

| Zone No. | Fire Point Location   | DCP | CO <sub>2</sub> | Water | Foam | Total |
|----------|-----------------------|-----|-----------------|-------|------|-------|
| 1        | Line 01               | 27  | 8               | -     | 1    | 36    |
| 2        | Line 02               | 11  | 7               | -     | 1    | 19    |
| 3        | Line 03               | 53  | 37              | -     | 2    | 92    |
| 4        | Cement Line 01        | 19  | 3               | -     | -    | 22    |
| 5        | Cement Line 02        | 18  | 18              | -     | -    | 36    |
| 6        | Packing Plant         | 23  | 14              | 1     | -    | 38    |
| 7        | Wagon Tippler         | 13  | 9               | -     | 1    | 23    |
| 8        | Admin                 | 9   | 9               | 4     | -    | 22    |
| 8        | HR                    | 6   | 1               | 1     | -    | 8     |
| 9        | CCR                   | 1   | 2               | -     | -    | 3     |
| 10       | QC Lab                | 1   | 1               | -     | -    | 2     |
| 11       | Store                 | 6   | 1               | -     | -    | 7     |
| 12       | O2 Plant              | 1   | 2               | -     | -    | 3     |
| 13       | DG                    | 8   | 1               | -     | 1    | 10    |
| 14       | Switch Yard           | 10  | 7               | -     | 1    | 18    |
| 17       | Workshop              | 2   | -               | -     | -    | 2     |
| 18       | Engineering Office    | 4   | -               | -     | -    | 4     |
| 19       | Crusher - CLSR & LSSR | 2   | 5               | -     | -    | 7     |
| 20       | CSR                   | 26  | 8               | -     | -    | 34    |
| 21       | LSSP                  | 5   | 5               | -     | -    | 10    |
| 22       | Auto                  | 3   | 1               | -     | -    | 4     |
|          | Total                 | 248 | 139             | 6     | 7    | 400   |

## 7.1.8 Coal Handling & Coal Dust Explosion

Coal dust when dispersed in air and ignited would explode. Crusher house and conveyor systems are most susceptible to this hazard. To be explosive, the dust mixture should have:

Particles dispersed in the air with minimum size (about 400 microns).

Dust concentrations must be reasonably uniform.

Minimum explosive concentration for coal dust (33% volatiles) is 50 g/m<sup>3</sup>.

Failure of dust extraction and suppression systems may lead to abnormal conditions and may increase the concentration of coal dust to the explosive limits. Sources of ignition present are incandescent bulbs with the glasses of bulkhead fittings missing, electric equipment and cables, friction, spontaneous combustion in accumulated dust. **Dust explosions** may occur without any warnings with Maximum Explosion Pressure up to 6.4 bars. Another dangerous characteristic of dust explosions is that it sets off secondary explosions after the occurrence of the initial dust explosion. Many a times the secondary explosions are more damaging than primary ones. The dust explosions are powerful enough to destroy structures, kill or injure people and set dangerous fires which may cripple the lifeline of the Plant. The thermal radiation and shock waves in case of fire due to coal and explosion due to coal dust would be highest at the center and **starts falling down as one move away** from the seat of fire.

## 7.1.9 Hazard Mitigating Measures Provided

Thus, stockpile area is provided with **automatic water sprinklers** for dust suppression as well as to reduce spontaneous ignition of the coal stockpiles. Necessary **water distribution pipeline network** is also provided for distributing water at all transfer points, crusher house, control rooms, etc. Height of the coal stock pile is maintained the specified standard so as to avoid auto-ignition of coal in the storage (**Tables 7.7-7.8**).

Table: 7.7 Hazard Mitigating Measures - CPP

| SI.<br>No. | Unit                                                     | Hazard                                                                                              | Hazard<br>Potential | Hazard<br>Identified               | Safeguard Measures<br>Provided                                                                                                                         |
|------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Coal storages                                            | Fire may occur<br>due to excessive<br>heat during<br>summer (if coal is<br>not stacked<br>properly) | Moderate            | Fire,<br>Spontaneous<br>Combustion | Stacking is done adopting standard practice to avoid auto ignition. Fire hydrants are provided at suitable locations.                                  |
| 2          | Coal handling<br>plant (CHP)<br>including<br>Bunker area | Generation of coal dust and dust explosion                                                          | Moderate            | Fire and/or<br>Dust<br>Explosions  | The equipments and conveying system in the CHP are properly maintained to avoid fugitive emission. Adequate dust extraction systems are also provided. |

| SI.<br>No. | Unit                                       | Hazard                                                                                                      | Hazard<br>Potential | Hazard<br>Identified                                                                | Safeguard Measures<br>Provided                                                                                                                                                                                                                                                                                     |
|------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3          | Boilers                                    | Fire (mainly near<br>oil burners),<br>Steam Explosion,<br>Fuel Explosion                                    | Major               | Splinters of explosion may heat other equipments/ building & cause extensive damage | Burners are properly maintained and operated to avoid spillage of oil as well as to ensure proper fuel air ratio.                                                                                                                                                                                                  |
| 4          | Steam<br>Turbine<br>Generator<br>Buildings | Fires in –  a) Lube oil systems b) Cable galleries c) Short circuits in: i) Control Rooms ii) Switch-gears. | Major               | Fire may<br>propagate and<br>spread over to<br>other areas                          | Lube oil system are made leak proof by preventive maintenance. Good housekeeping is ensured. The cable rakes are dedusted periodically and inspected for any leakage in the insulation                                                                                                                             |
| 5          | Switchyard<br>Control room                 | Fire in cable galleries and Switchgear/ Control Room                                                        | Moderate            | Fire may propagate due to electric sparks to other areas.                           | The cable rakes are dedusted periodically and inspected for any leakage in the insulation.                                                                                                                                                                                                                         |
| 6          | Fuel Storage<br>Tanks                      | Pool Fire / Fire ball may occur in case of direct contact with flame                                        | Major               | Fire may<br>propagate and<br>spread over to<br>other areas                          | Dyke wall is of adequate height. The inter tank distances in the tank farm is maintained as per design norms. The tank farm area id barricaded with sign board preventing use of naked fire. Adequate number of fire hydrant points are provided and static fire hydrant guns pointing towards the tanks provided. |

Table: 7.8 Hazard Areas & Preventive Measures in the Cement Plant

| Area                 | Hazards                              | Prevention Measures                 |  |
|----------------------|--------------------------------------|-------------------------------------|--|
| Crusher area         | Loading/ Unloading                   | Uniformly distributed load          |  |
|                      | Truck movement (reversing)           | Worker movement segregation areas   |  |
|                      | Load displacement                    | Existence of safety signage         |  |
|                      | Reversing into hopper                | Implementation of approved codes of |  |
|                      | Falling rocks during unloading       | practice                            |  |
|                      | Absence of reversing barrier crusher | Install proper guards and barriers  |  |
|                      | Operation                            | Guards to isolate mechanical        |  |
|                      | Stacking of hopper                   | hazards                             |  |
|                      | Accidental start-up of crusher       | Maintenance by approved             |  |
|                      | Hazards during unplanned             | technicians under supervision       |  |
|                      | maintenance                          | Work inside the hopper only under   |  |
|                      | Electrical hazards                   | supervision                         |  |
|                      | Work inside the crusher control room | Concrete walls for the control room |  |
| Raw material Storage | Airborne dust                        | Use of the stacker and reclaimer    |  |
|                      |                                      | system to collect dust              |  |
|                      |                                      | Routine cleaning of the area        |  |
|                      |                                      | Good housekeeping                   |  |

| A                                 | Haravda                                                                  | Ducyontion Macoures                                                    |
|-----------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|
| Area                              | Hazards                                                                  | Prevention Measures                                                    |
| Raw material Mills                | Noise<br>Dust                                                            | Use of a tag in / tag out system during maintenance                    |
|                                   | Absence of protective barrier Absence of guards                          | Use of a dust suction system (Disab)                                   |
|                                   | Electrocution<br>Hot Material                                            |                                                                        |
| The Clinker Production            | High temperatures                                                        | Use of a safe system of work - no                                      |
| Process Preheating of<br>Material | Superheated material particles                                           | accidental operation (tag in/ tag out procedures)                      |
| Kiln Operation                    | Back firing of burner                                                    | Use of a closed circuit surveillance                                   |
|                                   | Working near hot surfaces Working in a hot environment                   | system Use of a safe system of work - no                               |
|                                   |                                                                          | accidental operation (tag in/ tag out procedures)                      |
| Cooling system                    | Dusty environment                                                        | Use of a dust suction system                                           |
|                                   | Accidental hurling of hot material Use of a high pressure pump to        | Use of a safe system of work - no accidental operation (tag in/tag out |
| Cement and Raw                    | clean the area                                                           | procedures)                                                            |
| material Storage, Silo            | Noise during the cleaning operation Falling material from the silo walls | Use of dust suction system Floor preparation                           |
| Cleaning                          | Dusty environment                                                        | Use of safety signage                                                  |
|                                   | Operator getting overcome by                                             | Use of tag in/ tag out procedures                                      |
|                                   | material at the base of the silo                                         | Use of blind flanges                                                   |
|                                   |                                                                          | Continual supervision                                                  |
|                                   |                                                                          | Provision of adequate lighting Provision of sufficient ventilation     |
|                                   |                                                                          | using bag filters                                                      |
| Packaging                         | Dusty environment                                                        | Use of a dust suction system                                           |
|                                   | Falling material                                                         | Use of appropriate PPEs                                                |
|                                   | Moving parts of packaging                                                | Training of personnel                                                  |
|                                   | machinery Movement of heavy trucks                                       | Adequate machine guarding Use of safety signage                        |
|                                   | Existence of third parties (truck                                        | Ose of safety signage                                                  |
|                                   | drivers) in the area                                                     |                                                                        |
| Loading                           | Overhead loads                                                           | Use of authorized personnel                                            |
| and                               | Use of lifting equipment                                                 | Provision of appropriate maintenance                                   |
| Unloading                         | Falling of loads                                                         | to the lifting equipment.                                              |
|                                   | Dusty environment                                                        | Use of load limiting devices Routine cleaning of the area              |
| Maintenance Department            | Toxic fumes from welding operations                                      | Use of a fumes suction system                                          |
| mamenanes Beparanem               | Insufficient tag in/tag out procedures                                   | Trained personnel                                                      |
|                                   | during maintenance                                                       | Use of hoists                                                          |
|                                   | Manual handling causing                                                  | Use of approved and maintained                                         |
|                                   | Musculoskeletal problems                                                 | Protective devices RCD 's 30 mA                                        |
|                                   | High temperatures Electricity Use of hand tools                          | Routine cleaning - good                                                |
|                                   | Bad housekeeping                                                         | housekeeping practices Use of approved and well maintained             |
|                                   |                                                                          | hand tools                                                             |
| Fuel Storage                      | Use of naked flames near fuel                                            | Existence of a work permit system for                                  |
|                                   | storage The creation of hot spots during                                 | working near the fuel storage  Maintenance and control of the anti-    |
|                                   | maintenance activities                                                   | discharge system                                                       |
|                                   | The hurling of hot material in the fuel                                  |                                                                        |
|                                   | area                                                                     |                                                                        |
|                                   | Electrical discharges (Thunderbolt,                                      |                                                                        |
|                                   | electrostatic charges during                                             |                                                                        |
|                                   | refueling, short circuits)                                               |                                                                        |

| _                                                     | ·                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area                                                  | Hazards                                                                                                                                                                                                                                                                                                                                    | Prevention Measures                                                                                                                                                                                                                                                                                                                 |
| Work Environment,<br>Work areas and<br>Passageways    | Absence of safety signage obstructions in the passage ways Inadequate environmental conditions Insufficient protection from physiochemical factors                                                                                                                                                                                         | Use of appropriate safety signage indicating the passageways and emergency exits Good housekeeping of the area Assessment of the environmental conditions and provision of adequate protection                                                                                                                                      |
| Use of work Vehicles (for lifts, Loaders & Unloaders) | Insufficient training Insufficient maintenance Inappropriate securing of the load Speeding Insufficientvisibility                                                                                                                                                                                                                          | Authorization and training of personnel Routine maintenance of the work vehicles Provision of work instructions. Labeling of the vehicle movement area                                                                                                                                                                              |
| Lifting Equipment                                     | Crush of the load or the lifting mechanism onto operatives Fall of the load to be lifted due to the failure of the lifting gear Insufficient or in appropriate securing of the load Tilting of the load during its transportation Crashing of the load on the building Electrocution as a result of lifting mechanism contacting o/h lines | Use of authorized and trained personnel Existence and compliance with work instructions Safe operation of the stopping mechanism, the breaks and the lifting lines Check on a routine basis the hook mechanism Always secure the load using the approved straps Always avoid the lifting of loads overhead from working operatives. |
| Demineralised Water<br>Plant                          | Poor quality feed water affecting the operation of the Demineralization plant resulting in increased regeneration Leakage of acid or caustic storage tank(s) Release of acid or caustic during truck unloading                                                                                                                             | Water supply quality control Demin plant control Guidelines for disposal of hazardous wastes Wastewater pond Site drainage /barriers & Bunding Regular inspections Separate containment for acid and caustic                                                                                                                        |

## 7.2 Disaster Management Plan (DMP)

Disasters are off natural as well as man-made. **Natural Disasters** include Earthquakes, Floods, River Erosion, Cyclones, Tsunami, Landslides, Fires, etc. and the **Man Made Disasters** include Nuclear, Chemical, Mines, Biological, Cyber Terrorism, Environmental Disasters, etc. In order to better protect the Factory from any hazards, proactive approach has been applied in all operations of disaster preparedness, prevention and mitigation. To deal with an emergency, the arrangement for immediate deployment or appointment of key personnel and their specific duties are brought out.

**Objectives:** The Disaster Management Plan is aimed to ensure safety of life, protection of environment, protection of installation, restoration of production and salvage operations in the same order of priorities. In effect, it is to optimize operational efficiency to rescue rehabilitation

and render medical help and to restore normalcy. For effective implementation of the DMP, it should be widely circulated and personnel training through rehearsals/drills.

The objective of the Industrial DMP is to make use of the combined resources of the Plant and the outside Services to achieve the following:

- Effect the rescue and medical treatment of causalities
- Safeguard other people
- Minimize damage to property and the environment
- Initially contain and ultimately bring the incident under control
- Identify any dead
- Provide for the needs of relatives
- Provide authoritative information to the news media
- Secure the safe rehabilitation of affected area
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency.

## 7.2.1 Onsite Emergency Plan

Site Main Controller : S. Lakshmanan (AVP - Mfg.),

The Ramco Cements Limited, Ramasamy Raja Nagar Post,

Virudhunagar Dt. -626 204. Mobile No. 7397773455.

## Key personnel of the organization and their Responsibilities:

| SI.<br>No. | Roles and<br>Responsibility | Name                               | Contact<br>Number |
|------------|-----------------------------|------------------------------------|-------------------|
| 1          | Plant Controller            | Mr. Arvind R Shenoy (DGM - Mech)   | 8754041464        |
| 2          | Incident Controller         | Mr. J.Manikandan (AVP – Accounts)  | 99429 86003       |
| 3          | Technical Officer           | Mr. P. Kotraivel (GM-Power Plant)  | 9443249725        |
| 4          | Technical Officer           | Mr. S.M Mahesh (GM - E&I)          | 8754041454        |
| 5          | Technical Officer           | Mr. V.Suresh (SDGM-Process& QC)    | 8754041468        |
| 6          | Communication Officer       | Mr. V.Jayamuthumagesh (DGM- HR)    | 9677785610        |
| 7          | Fire Fighting Officer       | Mr. G. Ramachandran ( DGM – A&L)   | 9400040300        |
| 8          | Rescue Officer              | Mr.D.Karthickumar (Manager-Safety) | 9500871220        |
| 9          | Rehabilitation Officer      | Dr.R.Vijayanand (DGM-Medical &OHC) | 87540 03559       |

## Outside Organizations in assisting during Emergency:

- 1. Fire Station Virudhunagar & Sattur.
- 2. Police Station Vachakarapatti.
- 3. Government Hospital Virudhunagar & Sattur

No Liaison arrangement with any Organization (Self -sufficient withown fire-fighting facilities).

**Emergency Control Centre:** Site Main Controller is normally seated in Admin Block. In case of an emergency, this office will function as the Emergency Control Centre. Also, Main security office is acting as alternate emergency control room. The Emergency Control Centre in CCR located in the CCR Building and alternate emergency control room is Main Security Office. The following **Emergency facilities** are available in the Emergency Control Centre:

- ❖ P & T Telephones
- Fax
- Intercoms
- Local Area Plan (Topographical Plan)
- Site Plan of the factory
- Predominant Wind Direction and Speed charts
- Fire Extinguishers as given in Annexure
- List of Key Personnel and their Telephone Number
- List of neighboring factories with the contact personnel and the telephone number
- List of Government Agencies and their contact telephone number
- Fire Suit
- Breathing Apparatus Set
- Face Masks
- Emergency Lights
- First Aid Items
- White Board with Marker Pens
- Sufficient numbers of Emergency Plan copies and
- Public Address System

Warning, alarm and safety and Security Systems: An Emergency siren is provided in the Time Office Building. This will be sounded on the instruction of the Site Controller or Incident Controller in the absence of Site Controller when any fire is noticed in any fire hazard area. The factory is surrounded by a compound wall and the security personnel sufficient innumbershall be deployed for surveillance of the factory premises round the clock.

Suitable procedures have been devised for those personnel who remain behind for the critical plant operations; this critical plant shut-down will be shut down only in events where immediate emergency evacuation is required. To minimize damage from emergency, the Rescue Officer is assigned with the additional responsibility of shutting them down emergency.

**Alarm and Hazard Control Plans**: Alarm and Hazard control plans in line with disaster control and hazard control planning, ensuring the necessary technical and organizational precautions. The Electrical siren that is installed in the Pre-Heater top floor will be used for the emergency warning.

Emergency : Wailing sound for 3 minutes.

All Clear : Continuous blast for 3 minutes.

All department heads and designated personnel have inter-com phone connection for communication to aid in the accountability of the employees. Therefore, all the department heads must know the attendance of their employees on any given day to account accurately for their personnel.

## Reliable measuring instruments, control units and servicing of such equipment:

- Safe instruments will be used
- Required instrument inter-locks are provided
- Redundant trips will also be provided
- Emergency push-button trips will be provided locally and in the control room
- ❖ All critical instrumentswill be provided with battery back-up

## Precautions in designing of the Foundations and load- bearing parts of the Building :

Adequate factor of safety will be provided in designing the foundations of all the buildings as well as the equipments. The buildings and the structures will be periodically maintained in tidy condition as per the Building Code of practice and relevant acts.

**Continuous surveillance of operations**: Round the clock surveillance is established in the factory premises.

# Maintenance and repair work according to the generally recognized rules of Good Engineering Practices

Electrical maintenance system will be streamlined through checklists covering preventive maintenance, half-yearly, yearly, turn-around and daily maintenance; this includes maintenance of equipment like motors, switch-gears, batteries, etc. The details of work to be done in each area are listed and codified. The records are computerized; all shut-down works are pre-planned and requirements of spares, etc. provisioned through the systemic coordination with the other service and operation departments. Predictive maintenance in the plant is highly evolved and job specific. The job history is computerized and the same is used in case of trouble- shooting also. The details about the equipments are maintained in the areas responsible for the maintenance activities. A Maintenance Engineer performs daily- LLF (Look, Listen and Feel) inspection to identify any abnormality. Process parameters are monitored by operating staff and logged in.

## Communication facilities available during Emergency and those required for an Off-site Emergency :

- Mobile and Intercom phones within the factory premises
- ❖ P & T Telephone Lines
- ❖ Walkie-Talkie and
- Public Addressing System

#### Fire-Fighting and other Facilities available

- Fire Hydrant is provided throughout the Factory
- Fire Fighting Equipments fixed throughout the Factory
- Sprinkler system provided and automated.
- Emergency Alarm System provided throughout the Factory.
- Exclusive Fire Water Storage with the capacity of 450 KL within the Factory Premises.
- Separate Diesel Pump and Jockey pump is also provided to maintain pressure of 10 kg/sqcm throughout the entire line.

## First Aid and Hospital Services available and their adequacy

- First Aid Boxes with medicines to provide in various sections of the Factory
- \* Required Number of persons are train in the First Aid by St. John Ambulance
- ❖ Round the Clock Ambulance service is available
- ❖ In case of serious emergency for further treatments the management has a tie-up with nearest hospital, name Thiruvenkatam Hospital located at Virudunagar.
- ❖ Taken Mediclaim Insurance for all employees covering family also.

## Main Stages of Emergency:-

Major Emergency goes through the following main stages:

- I. Communication during Emergency
- II. Declaration of Emergency by raising the Alarm
- III. Implementation of the Emergency Combat Procedure and
- IV. Rescue.

## I. Communication during Emergency

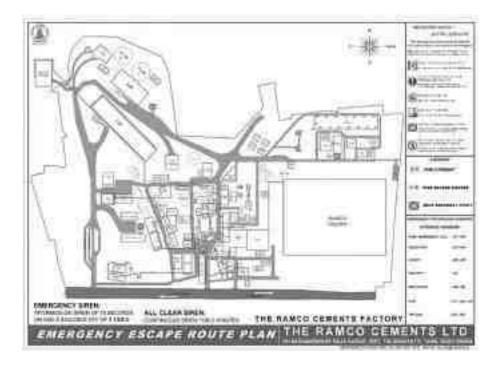
The person first noting the emergency has to inform to shift-in-charge of the respective section. On assessing the situation, shift-in-charge will inform to all the concerned as per the guidelines given in the communication net-work.

#### II. Determination of Emergency

On receipt of information, Incident Controller rushes to the site, assess the situation and advises them to tackle the situation/emergency. Then he informs the Site Main Controller and on the instruction of the Site Main Controller he instructs the central control room to raise the siren. In case of emergency, the siren will be raised in short wailing tone. On hearing the siren, all personnel will assemble at assembly points. The personnel assigned with the emergency duty will report to the respective key personnel at the emergency control center and take orders.

## III. Implementation of Emergency Combat Procedures

On hearing the siren/information over phone, all key personnel would assemble at emergency control centre and take orders from the site Main controller and play their roles as defined. In connection with the Emergency Operations to be carried out in an orderly and sequential manner, the following teams have been formed to assist the coordinators so as to restore the normalcy at the earliest.


- Process & Engineering Team Leaders
- Fire Team Leader
- Communication Team Leaders
- \* Rescue, Evacuation and Welfare Team Leader
- First Aid Team Leader

All others will remain in the Assembly Points until the Emergency is over which is indicated by the long ALL CLEAR SIGNAL. Depending on the wind direction and incident spot, all employees (including company employees as well as contract employees) and visitors should choose the escape route to reach the Assembly Points. Head count would be taken at the Assembly Point to ascertain that no one is trapped/missing in the plant area.

#### I. Rescue and Rehabilitation

In order to ensure that all the persons are safe, Head Count will be taken. In case of any difference in the count, rescue team will be pressed into service to rescue the victims.

**Head Count System:** No. of persons assembled in the Emergency Assembly Point should be informed to the Site Controller by Communication Team Leaders. The number of company employees, contract employees and visitors inside the plant at that point of time will be informed to the Site Controller within 15 minutes by the Human Resources Manager and the Security Officer respectively. Site Main Controller will match the figures and if needed advice the Rescue, Evacuation and Welfare Team Leader to search for the trapped employees.



**Emergency Call-Off:** Site Emergency Controller will check-up the area along with Incident Controller and Process & Engineering Team and Fire Team Leader so as to declare Emergency Call Off by raising continuous long siren. Communication Team Leaders will arrange to make announcements with public address system.

**Training:** The company believes that any job or task can be performed efficiently through good training. Human Resources Department takes care of the training needs of the factory. The Emergency Control is also a task connected with the industrial activity, which requires training of connected persons for effective management of the task. Training and re-training are imparted in two stages. Induction training is given to the facilitators and other members of the Emergency team. The role of each and every facilitator and the team would be perfected by Mock-Drills on a given emergency situation.

## Responsibilities and Duties

Duties of the Person noticing the Emergency: The primary responsibility of informing any Emergency situation to the Incident Controller shall be religiously followed by the person, who notices the Fire/emergency situations in the factory premises. In turn, the Incident Controller would consult with the Site main Controller after having assessed the Emergency Situation and declare Emergency without any further loss of time. The siren will be blown for a longer duration of 3 minutes, at intermission of 15 seconds "ON" and 5 seconds "OFF" for 5 times. The first responder shall be the vocal alerting system through voice audibility, pitch, volume and contents of the message. The person who notices the Emergency shall be determined to react and rise up to the occasion through periodical rehearsals and training. Since the response time to the Emergency Scenario is the most critical component of combating the emergencies, his reliable and specific communication about the nature, magnitude and severity of the incident shall be clearly shown by his action of carrying the Red Flag hoisted nearby.

**Duties of Site Controller/Plant Controller/Incident Controller:** The Site Controller/Plant Controller shall have the control options (in his absence) the Incident Controller shall have the Scenario Analysis to initiate the **Level I** (Minor Emergency managed by Department Level) or **Level II** (Possible Emergencies like Fire or toxic release that can be controlled by factory level) Emergencies.

- The Site Controller / Plant Controller/Incident Controller shall be able Carryout:
- ❖ How to implement the On-Site Emergency Plan
- How to implement the incident Control system
- How to identify, to the extent possible, all credible Accident Scenarios or the conditions present
- How to address the site analysis, use of Engineering Controls, hazardous material handling procedures and use of new techniques

- How to determine- through monitoring, when personal protective equipments or respiratory protection is required
- How to provide training to the First Responders based on their duties and functions within the factory premises; the skill and training required for all new Responders shall be conveyed to them through training, before they are permitted to take part in the actual Emergency Situation
- ❖ A First Responder Awareness Level employee is an individual who is likely to witness or discover a hazard and who, through training, is expected to initiate a response system by notifying the appropriate authorities of the Fire / hazardous chemical splashing. They are not expected to take further action
- ❖ A First Responder Operation Level is an individual who is expected to respond to the fire scenario as part of initial action to protect nearby personnel, property or the environment from the effects of the fire. They are trained to respond defensively to the fire scenario without necessarily being expected to extinguish the fire
- They shall have the knowledge of Hazards and the Risks associated with employees wearing in personal protective clothing
- When to decide for termination procedures.

**Duties of the Process & Engineering Team :** The Process & Engineering Team Leaders shall be able to demonstrate the implementation of the Emergency Response Plan.

- ❖ The knowledge of the classification, identification and verification of known and unknown materials by using field survey instruments equipments shall be acquired.
- Ability to function within the assigned role in the incident command system shall be exercised
- ❖ The knowledge of the selecting and using the specialized personal protective equipments shall be acquired.
- The knowledge of the in-depth Hazard and Risk Assessment shall be possessed.
- ❖ Performance of advance control, containment and confinement operations within the capabilities of the resources available shall be secured.
- Understanding of the termination procedures shall also be propagated.

**Duties of the Fire Team:** Identification of the standard fire-fighting functions or evaluations expected of them based on the credible accident scenario to be assigned, including fire scenario assessment shall be performed simultaneously. The specific Fire-Safety Rules, Procedures and First-aid/Medical Attention services shall be performed according to the type of each credible accident scenario. Whenever hot work operations are essential in the course of any industrial activities, the following Six Step Rules shall be adhered in the interest of safety:

- Conduct safety meeting with other officers
- Put up warning signs at the site
- Move combustibles away from the hot work site
- Shield combustibles with fire blankets or welder's blankets

- Provide fire watch
- Have nearby appropriate fire extinguisher and telephone
- Evacuate the area, if fire cannot be extinguished immediately and
- Protect stored materials with a thermal barrier such as half-an-inch gypsum sheet board as soon as possible.

Effective communication ensures that the fire-fighting crew understands their responsibilities during an assigned work. Effective coordination prevents conflicting activities and ensures that a proper sequence is followed, while conducting an assigned task. This becomes increasingly important as more agencies such as Tamil Nadu Fire & Rescue Service and Mutual Aid Member would be involved in fire-fighting operations. Written code of practice shall be observed during fire-fighting by each and every-one of the crew.

It is not necessary to develop standard operating procedures regarding every possible exposure to carbon-monoxide and carbon-di-oxide atmosphere in the course of fire- fighting activities. What is expected is that procedures would be followed by way of wearing personal protective equipments, which is mandatory for their own protection. Apart from the active fire-fighting crew, the Incident Controller and Fire Team Leader shall wear personal protective equipments invariably. Fit testing shall be conducted for one and all fire-fighting crew and equipment shall be made available in the correct size.

#### **Duties of the Communication Team:**

- Emergency communication and warning protocols, processes and procedures shall be developed, periodically tested and used to alert people potentially impacted by an actual or impending emergency;
- The communication Team Leaders shall develop procedures to disseminate and respond to request for pre-disaster, disaster and post-disaster information including procedures to provide information to the media and other external audience and deal with their enquiries.
- Effective communication shall be ensured in the interest of safety.
- The channel shall be monitored before transmitting.
- The message shall be planned suitably before pushing the transmitter switch.
- ❖ The push-to talk button in the Radio shall be pressed first and then wait for one second before starting the message; otherwise the first part of the message would be cut off due to the transmitter to work at its full power.
- The micro-phone shall be held two inches from the mouth.
- The unit or person shall be first identified.
- The message transmitted shall be acknowledged by saying "GO AHEAD". If long message could not be taken for some reasons, simply "STANDBY" shall be recorded until the problem is solved.
- While transmitting a number with two or more digits, ; first the entire number shall be given and then each digit separately; for example, the number "sixty three" shall be recorded as "63" first and then "six" and "three" shall be followed.

- ❖ Exclusive frequency shall be ensured for Emergency Management Services and the background noise shall be reduced as much as possible.
- There shall be adequate proper communication from each stage of a plan to the next, so that the Hazard Management Decisions could be understood, recorded and audible. One way of achieving this by summarizing the key information of fire events in the factory premises.
- The summary of the Key Information shall be a living document, which in its simplest form may be a compilation of entire details. It should convey information to all those who are responsible for operations in full, which is concise and easily read.

#### **Duties of the Rescue, Evacuation & Welfare Team:**

- Because air-way maintenance is one of the very important skills that has to be learnt by the Rescue Team Members and also the respiratory system shall be the first of the body systems to be reviewed in the course of an emergency.
- Unconscious persons who have not suffered trauma shall be placed in a side-laying or RECOVERY POSITION to help keeping air-way open.
- ❖ Improperly lifting or moving a person can result in injury to either the responder or to the injured person. By exercising good body mechanics, the possibility of injuring self as well as the injured will be reduced. Good Body Mechanics means using the strength in the large muscles from the legs to lift a person instead of applying back muscles.
- To lift safely, the Rescue Crew shall keep certain guide-lines in mind.
- ❖ Before attempting to move a person, check the weight of the patient; if required, another person may be called for the help. The rescue work shall be carried out in an effective and helpful manner If the patient is on the floor or on the ground during an emergency situation, the rescue team member may have to drag the person away from the site.
- Instead of trying to lift them and carry. Every effort shall be made to pull the person in the direction of long axis of the body in order to provide as much spinal protection for the person as possible. This sort of CLOTHES DRAG is simplest way to move a person in an emergency.
- If the person is dressed in cloths that could tear away easily during clothes drag (for example, burnt partially) the person injured shall be moved by using a blanket or large bed sheet, which is termed as BLANKET DRAG.
- If any large sheet is not readily available, the injured person shall be carried by ARMS-TO-ARMS DRAG by placing the hands under the lying person's arm-pits from the back of the person and grasping the person's fore-arm.
- ❖ There shall be close coordination and effective communication between the Rescue Team and the First Aid team.
- \* Rescue, Evacuation & Welfare Team Leader shall also hold responsibility for shutting down the critical plants in the course of their emergency rescue operations in the factory premises.

**Duties of the First - Aid Team :** The First Aid Team Leader shall establish logical capability and the Procedures to locate, store, distribute, maintain, test and account for Services, personnel, resource materials and facilities procured for the Purpose of supporting the plan. The First Aid

Team Leader shall develop functional and administrative procedures to support the entire sequence of operations like pre-disaster, disaster and post-disaster scenarios. Procedures shall include, but not limited to, the following:

- Control of access to the area affected by the emergency.
- Identification of personnel engaged in emergency activities at the scene of incident.
- Accounting for the personnel engaged in various activities.
- ❖ Accounting for the personnel affected, displaced or injured by the incident.
- Mobilization and Demobilization of resources.
- Provision of temporary, short-term or long-term shelters, feeding and care of people displaced by the emergency.
- Recovery, identification and safe-guarding of human remains.
- Provision of mental health and physical well-being of the individuals affected by the emergency.
- Provision for managing the critical incident stress for responders.

## **Duties of the Employees:**

- Employees in the factory including contractors and their contract workers shall, to the extent to which they are expected, that is, within their competency and skills, shall comply with all procedures and protection relating to the prevention and control of major accidents within the factory premises.
- \* They shall comply with all emergency procedures should a major accident or near miss occur
- They shall report promptly to the Incident Controller / shift-in-charge any matter of which they are aware that they may affect the facility compliance.
- They shall take, within the scope of their job, and without being placed at any disadvantage, corrective action and, if necessary, interrupt the operations / processes of the factory, where, on the basis of their training and skills, they have responsible jurisdiction to believe that there is an imminent danger of a major accident and notify to the Incident Controller / Shift-in-charge or raise an alarm, as appropriate, before or as far as possible, after taking such action.
- ❖ They shall discuss with the Emergency Coordinating Officers any potential hazards that they consider are capable of generating a major accident and they also have the right to notify the relevant District Administration Authorities of those hazards.
- They shall also be consulted through appropriate consultative Mechanism in order to provide the safe system of work in and around the factory premise. In particular, they shall invariably be consulted about the Hazard Identification, the maintenance and Implementation of the Safety Management Systems and also on the revision as well as updating periodically of the On-Site Emergency Plan.

**Special Features of Emergency Plan for RCL RR Nagar Cement Plant :** The major accidents possible in the plant are fire and explosion. These may be initiated by the physical explosion of the boiler and fires due to coal and firewood and agro waste used as fuel. The fire effects can

cause damage to the neighboring areas or persons working in the location. These scenarios are considered based on literature data and practical experiences.

Boiler explosions are possible only in case of negligence, mishandling and instrumentation failures. This need to be viewed seriously in the standard operating procedure and special care is to be taken during the emergency situations for each event and act accordingly the emergency plan lists the duties and responsibilities of the personnel.

## 7.2.2 Off - Site Emergency Preparedness Plan

The task of preparing the Off-Site Emergency Plan lies with the District Collector. However, the Off-Site Pplan is prepared with the help of the local District Authorities. Off-site emergency plan follows the on-site emergency plan. When the consequences of an emergency situation go beyond the plant boundaries, it becomes an off-site emergency. Off-site emergency is essentially the responsibility of the public administration. However, the factory management will provide the public administration with the technical information relating to the nature, quantum and probable consequences on the neighbouring population. The off-site plan in detail will be based on those events, which are most likely to occur, but other less likely events, which have severe consequence, will also be considered. Incidents which have very severe consequences yet have a small probability of occurrence should also be considered during the preparation of the plan. However, the key feature of a good off-site emergency plan is flexibility in its application to emergencies other than those specifically included in the formation of the plan.

The roles of the various parties who will be involved in the implementation of an off-site plan are described below. Depending on local arrangements, the responsibility for the off-site plan should be either rest with the works management or, with the local authority. Either way, the plan should identify an emergency co-ordinating officer, who would take the overall command of the off-site activities. As with the on-site plan, an emergency control centre should be set-up within which the emergency co-ordinating officer can operate. An early decision will be required in many cases on the advice to be given to people living "within range" of the accident - in particular whether they should be evacuated or told to go indoors. In the latter case, the decision can regularly be reviewed in the event of an escalation of the incident. Consideration of evacuation may include the following factors:

- In the case of a major fire but without explosion risk (e.g. an oil storage tank), only houses close to the fire are likely to need evacuation, although a severe smoke hazard may require this to be reviewed periodically
- ❖ If a fire is escalating and, in turn, threatening a store of hazardous material, it might be necessary to evacuate people nearby, but only if there is time; if insufficient time exists, people should be advised to stay indoors and shield themselves from the fire.

For release or potential release of toxic materials, limited evacuation may be appropriate downwind if there is time. The decision would depend partly on the type of housing "at risk". Conventional housing of solid construction with windows closed offers substantial protection from the effects of a toxic cloud, while shanty house, which can exist close to factories, offers little or no protection.

The major difference between releases of toxic and flammable materials is that toxic clouds are generally hazardous down to much lower concentrations and therefore hazardous over greater distances. Also, a toxic cloud drifting at, say 300 m per minute covers a large area of land very quickly. Any consideration of evacuation should take this into account. Although the plan will have sufficient flexibility built in to cover the consequences of the range of accidents identified for the on-site plan, it will over in some detail the handling of the emergency to a particular distance from each major hazard works.

## Aspects Proposed to be considered in the Off-Site Emergency Plan:-

**Organization**: Details of Command Structure, Warning Systems, Implementation Procedures, Emergency Control Centres. Names and appointments of Incident Controller, Site Main Controller, their deputies and other key personnel.

**Communications**: Identification of personnel involved, Communication Center, Call signs, Network, lists of Telephone numbers.

**Specialized Knowledge**: Details of specialist bodies, firms and people upon whom it may be necessary to call e.g. those with specialized chemical knowledge, laboratories.

Voluntary Organizations: Details of organizers, telephone numbers, resources etc...

**Chemical Information**: Details of the hazardous substances stored or procedure on each site and a summary of the risk associated with them.

**Meteorological Information**: Arrangements for obtaining details of weather conditions prevailing at the time and weather forecasts.

**Humanitarian Arrangements :** Transport, Evacuation Centers, Emergency treatment of injured, First Aid, Ambulances, temporary Mortuaries.

**Public Information**: Arrangements for (i) Dealing with the media press office (ii) Informing relatives, etc.,

**Assessment**: Arrangements for (i) Collecting information on the causes of the emergency (ii) Reviewing the efficiency and effectiveness of all aspects of the emergency plan.

## **Role & Responsibilities**

Emergency Co-ordinating Officer: The various emergency services should be co-ordinated by an emergency co-ordinating officer (ECO), who will be designated by the district collector. The ECO should liaise closely with the site controller. Again depending on local arrangements, for very severe incidents with major or prolonged off-site consequences, the external control should be passed to a senior local authority administrator or even an administrator appointed by the central or state government.

Local Authority: The duty to prepare the off-site plan lies with the local authorities. The emergency planning officer (EPO) appointed should carry out his duty in preparing for a whole range of different emergencies within the local authority area. The EPO should liaise with the works, to obtain the information to provide the basis for the plan. This liaison should ensure that the plan is continually kept upto date. It will be the responsibility of the EPO to ensure that all those organisations, which will be involved off site in, handling the emergency, know of their role and are able to accept it by having for example, sufficient staff and appropriate equipment to cover their particular responsibilities. Rehearsals for off-site plans should be organised by the EPO.

**Police:** Formal duties of the police during an emergency include protecting life and property and controlling traffic movements. Their functions should include controlling bystanders evacuating the public, identifying the dead and dealing with casualties, and informing relatives of death or injury.

**Fire Authorities:** The control of a fire should be normally the responsibility of the senior fire officer who would take over the handling of the fire from the site incident controller on arrival at the site. The senior fire officer should also have a similar responsibility for other events, such as explosions and toxic releases. Fire authorities in the region should be apprised about the location of all stores of flammable materials, water and foam supply points, and fire-fighting equipment. They should be involved in on-site emergency rehearsals both as participants and, on occasion, as observers of exercises involving only site personnel.

**Health Authorities:** Health authorities, including doctors, surgeons, hospitals, ambulances, and so on, should have a vital part to play following a major accident, and they should form an integral part of the emergency plan. For major fires, injuries should be the result of the effects of thermal radiation to a varying degree, and the knowledge and experience to handle this in all but extreme cases may be generally available in most hospitals. For major toxic releases, the effects vary

according to the chemical in question, and the health authorities should be apprised about the likely toxic releases from the plant which will unable then in dealing with the aftermath of a toxic release with treatment appropriate to such casualties. Major off-site incidents are likely to require medical equipment and facilities additional to those available locally, and a medical "mutual aid "scheme should exist to enable the assistance of neighboring authorities to be obtained in the event of an emergency.

**Government Safety Authority:** This will be the factory inspectorate available in the region. Inspectors are likely to want to satisfy themselves that the organization responsible for producing the off-site plan has made adequate arrangements for handling emergencies of all types including major emergencies. They may wish to see well documented procedures and evidence of exercise undertaken to test the plan.

In the event of an accident, local arrangements regarding the role of the factory inspector will apply. These may vary from keeping a watching brief to a close involvement in advising on operations in case involvement in advising on operations. In cases where toxic gases may have been released, the factory inspectorate may be the only external agency with equipment and resources to carry out tests.

## **Important Phone Nos.**

District Collector : 9444184000 Suptd. of Police : 9498111112 District Revenue Officer : 9445000927

Ditrict Fire Rescue Service : 04562 252286 / 94450386288

Dy. Director-Health Services: 9443193862 DEE, TNPCB: 8056042281

\*\*\*

## 8.0 Project Benefits

#### 8.1 Environmental Benefits

Plant Modernization & Expansion is necessary to increase the plant efficiency by adopting the state-of the-art technologies, machineries and operation of the Plant for optimum standards.

## 8.2 Social Benefits

There are 465 Direct Employees working in the Cement Complex. Indirect Employment to about 600 persons has been provided. Due to the Proposal, another 35 Direct Employees & 50 Indirect Employees will be added. Adequate Corporate Environmental Responsibility (CER) Budget will be allotted in compliance with MoEF&CC OM F. No. 22-65/2017.IA.III dated 01.05.2018.

## 8.3 Financial Benefits

The Project will bring **Rs.103.38 Crores** additional investment to the Region, improve the local and regional economy.

## 8.4 Tangible Benefits

GST: Incremental GST of Rs. 117 Crores to the Government on this expansion of Cement production from 2.70 MTPA to 4.00 MTPA.

Royalty: Rs.20.25 Crores will be paid additionally to the Government for Minerals consumption on this expansion.

## 8.5 Decarbonisation Programme

Project proponent shall submit a study report on Decarbonisation program, which would essentially consist of company's carbon emissions, carbon budgeting/ balancing, carbon sequestration activities and carbon capture, use and storage after offsetting strategies.

Further, the report shall also contain **time bound action plan** to <u>reduce its carbon intensity</u> of its **operations and supply chains**, energy transition pathway from fossil fuels to Renewable energy etc. All these activities/ assessments should be **measurable and monitor able** with defined **time frames**.

In Decarbonisation program the Carbon capture technology is evolving technology, pilot plant and the observation study is available in INDIA, based on the further improvement and viability of technology performance, the technology will be observed in the industrial level.

Details of adoption/ implementation status/plan to **achieve the goal** of Glasgow COP26 Climate Summit with regard to enhance the non-fossil energy, use of renewable energy, minimization of net carbon emission and carbon intensity with long-term target of "net Zero" emission.

## India presented the following five commitments toward climate action in Glasgow COP26:

Commitment 1- Reach 500GW Non-fossil energy capacity by 2030.

Commitment 2- 50 per cent of its energy requirements from renewable energy by 2030.

**Commitment 3-** Reduction of total projected carbon emissions by one billion tonnes from now to 2030.

**Commitment 4-** Reduction of the carbon intensity of the economy by 45 per cent by 2030, over 2005 levels.

**Commitment 5-** Achieving the target of net zero emissions by 2070.

## 1. Action plan for commitment 1

RCL is consistently investing in non-fossil fuel energy sources and increase renewable energy generation capacity Year on Year. The Waste Heat Recovery System (WHRS) at Ramco Cements has a total capacity of 43 MW, with an additional 25 MW planned to be commissioned. 10 MW of the WHRS is scheduled to be operational in the financial year 2025-2026, while the remaining 15 MW will be commissioned following the expansion of the Kurnool Line-II. The total installed capacity of wind power is 166 MW. The average PLF of 25%, the generation of wind power for captive use is expected to be 42 MW.

### 2. Action plan for commitment 2

As part of the initiative to reach Net Zero emissions, the capacity of renewable energy is being progressively increased. Currently, the renewable energy generation capacity totals 85 MW, with 43 MW share from Waste Heat Recovery Systems (WHRS) and 42 MW from wind energy. On an annualised basis, the share of green power is expected to reach 45% of the total energy consumption.

#### 3. Action plan for commitment 3 and 4

To achieve the ambitious reduction of carbon emissions as committed by India in COP26, we are progressively investing in renewable energy sources and improving energy efficiency to achieve a 10% reduction in carbon emissions by 2030. The carbon emission intensity during the FY 2023(baseline) was 591 kg/tonne of cement, we are continuously striving to reduce the emission intensity. The share of sustainable cementitious materials (SCMs) increased leading to reduction in clinker factor. In FY 24, the clinker factor stood at 0.77, indicating a reduction of 3% compared

to the baseline. The reduction in clinker factor plays a significant role in minimizing carbon emissions.

- 1. Energy efficiency is improved by implementing the following,
  - Implementation of an upgraded version of OPTIMA fuzzy logic control system for kiln operation. This adjusts the input requirement accurately, ensuring the kiln operates at optimal efficiency.
  - Installation of Variable Frequency Devices (VFDs) for precise control of process fans and pumps to match the actual demand, leading to substantial energy savings.
  - Installation of energy-efficient vortex rectifiers to improve the efficiency in the process of regulating and stabilizing the airflow within the cement plant, particularly in areas like preheaters, kilns, and coolers.
  - Adoption of the latest high-efficiency turbine rotor for captive power plant.
  - Installation of high-efficiency IE3-type motors for driving equipment.
- 2. The carbon emission reduction action plan,
  - Achieving 45% of the energy requirement from the captive Green energy generation capacity of 85 MW.
  - Enhancing the blended cement share to 80% of total cement production.
  - Improving the TSR to 10% by reducing the non-fossil fuel consumption.
  - Increasing the green cover by implementing Miyawaki method of afforestation to improve the plantation density leading to carbon sequestration.
  - Reducing the specific energy consumption by 15% from baseline by optimizing the energy efficiency of equipment.

## 4. Action plan for commitment 5

As part of the Net Zero emission pathway, we are continuously investing in green energy and alternate fuel usage. We are firmly aligned with the Global Cement and Concrete Association (GCCA) and The Energy and Resources Institute (TERI) roadmap for the Indian Cement and Concrete Industry, aiming for net zero carbon emissions by 2050.

\*\*\*

## 9.0 Environmental Cost Benefit Analysis

**Environmental Cost Benefit Analysis** is not applicable for the proposal as there is no forest land is envisaged and also no tree cutting is proposed.

Project IRR is arrived as follows:

# RAMASAMY RAJA NAGAR CAPACITY EXPANSION PRESENT VALUE OF THE BENEFITS OVER THE 5-YEAR PERIOD

## Rs. in Crores

| Year              | Cash flows<br>Inflow | 8% discounted rate | Present value |
|-------------------|----------------------|--------------------|---------------|
| 1                 | 37                   | 0.9259             | 34            |
| 2                 | 38                   | 0.8573             | 33            |
| 3                 | 42                   | 0.7938             | 33            |
| 4                 | 49                   | 0.7350             | 36            |
| 5                 | 54                   | 0.6806             | 37            |
| Present Value     | 220                  |                    | 173           |
| Net Present value | 1                    | 1                  | 70            |

At 8% discounted rate, NPV for 5 years is Rs.173 - Rs.103 = Rs 70 Cr. Hence, the Net Present value is Rs.70 Crores.

## Benefit to Cost Ratio (in Rs Cr.)

| Sum of present cash value of outflows | Α | 103  |
|---------------------------------------|---|------|
| Sum of present cash value of Inflows  | В | 173  |
| Benefit Cost Ratio                    |   | 1.67 |

## **Internal Rate of Return and Payback Period**

| SI. No. | Parameter                                               | Rs. in Cr. |  |
|---------|---------------------------------------------------------|------------|--|
| 1       | Investment                                              | 103        |  |
| 2       | Cash inflows with present value after reducing interest | 173        |  |
|         | Rate of Return                                          |            |  |
|         | 4.08 Years                                              |            |  |

## **Assumptions**

| Project Cost  | Rs. in Crores | 103    |
|---------------|---------------|--------|
| Debt Funding  | Rs. in Crores | 70%    |
| Discount Rate | %             | 8%     |
| Interest Rate | %             | 8%     |
| Tax Rate      | %             | 25.17% |

\*\*\*

## 10.0 Environmental Management Plan

An Environmental Management Plant (EMP) is formulated for mitigation of adverse impacts and is based on present environmental status and impact appraisal. It is mandatory to comply with the various regulatory Norms for Prevention and Control of Pollution. The following environmental management plans are proposed for mitigation of impacts on the environment:

#### 10.1 Construction Phase

The following EMP measures shall be undertaken during the Expansion:

- PPE shall be provided to the construction workers.
- Construction employees shall have access to safe drinking water and to existing Toilet facilities.
- Protection devices viz. ear plugs/ear muffs shall be provided to the workers during welding works.
- Smooth flow of traffic should be ensured on the internal roads to avoid idling of vehicles.
- All the debris resulting from the site shall be disposed off effective as per existing Norms.
- ❖ EMP Cell ensure the periodical Monitoring of Environmental Parameters during the Construction Period and ensure its compliance with Norms.

## 10.2 Operation Phase

#### 10.2.1 Impact on Traffic Volume

Adequate parkings are provided in the Plant. Facilities for **drivers (rest room, toilet, etc.)** are also provided. Other Measures are :

- Green Belt with thick foliage along the Plant/Ore Haulage/Transportation roads.
- Security Guards at the Road Junction to handle the inward and outward vehicles from the Plant to the Highway.
- ❖ All Trucks are to be fully covered with Tarpaulin to avoid any spillage on transportation.
- Restriction of over loading of Trucks/Tippers.
- Speed restrictions
- \* Restriction of Truck parking in the Highway and Public Roads.
- \* Regular and preventive maintenance of transport vehicles has to be ensured.
- Compliance to 'Pollution under Control' Certification has to be checked periodically.

## 10.2.2 Air Quality Management Plan

RCL has installed adequate air pollution control systems viz. Electro statistic precipitators, Bag house, bag filters, etc. are installed in the stacks to control the emissions. Also, adequate dust collection and extraction systems are installed at various transfer points raw mill handling

(unloading, conveying, transporting, stacking), vehicle movement, bagging and packing areas, etc.

- ❖ All efforts shall be undertaken to maintain the PM emission levels from the main stacks of Old Line-II New Kiln as <30 mg/Nm³.</p>
- NOx emission levels from Line-II with New Kiln shall be <600 mg/Nm<sup>3</sup>.
- The periodical evaluation for the efficiency performance of ESPs and Bag Filters shall be carried out.
- ❖ Fugitive emissions due to storage, transportation, etc. and the leakages and spillages shall be continuously monitored and controlled.
- Thermal insulation is provided wherever necessary to minimize heat radiation from the equipment, piping etc, to ensure protection of personnel.
- Periodical Ambient Air Quality and Stack Emissions shall be undertaken and the Status Reports shall be submitted to the Authorities as required.

## 10.2.3 Noise Quality Management Plan

- All rotating items are well lubricated and provided with enclosures as far as possible to reduce noise termination.
- Extensive vibration monitoring systems are provided to check and reduce vibrations.
- ❖ For all fans, compressors etc. vibration isolators are provided to reduce noise.
- Provision of silencers are made wherever possible.
- Proper lubrication and housekeeping are maintained.
- The operator provided with necessary safety and protection equipment like ear plugs, ear muffs etc.

## 10.2.4 Land - Solid & Hazardous Waste Management Plan

- It should be ensured that there is no industrial solid waste from the Plants.
- \* The dust collected from APC Measures will be consumed in the Cement Plant fully.
- Solid wastes from STP Plant shall be vermi composted and used as manure for Green Belt.
- Waste Oil shall be collected and sold to the CPCB/TNPCB Authorised Agency for further treatment & disposal.
- ❖ The municipal wastes shall be collected, transported, treated in a landfill (composting) within the Plant vicinity to make use of it as manure for Green Belt.
- ❖ Redundant machinery or equipment scraps (1500 Tons/Annum) as and when generated, will be segregated, stored and sold to the authorised recyclers.

## 10.2.5 Effluent Management Plan

- No ground water tapping for industrial use.
- Water consumption shall not be more than the consented quantity.

- ❖ No trade effluent shall be discharged from the Plant.
- Cooling water is put into closed circuit to minimize the evaporation losses.
- The domestic sewages from the Cement Plant, Power Plant and Township shall be treated effectively in the Sewage Treatment Plants so to meet TNPCB Discharge Norms and the treated sewage shall be used for Green Belt.
- 'Zero Effluent Discharge' shall be practiced.
- No percolation of treated water to the deep ground water table is done.
- Periodical monitoring for specific parameters shall be done regularly.

## 10.2.6 Storm Water Management Plan

- Surface Drainage Network has been developed in the Complex. Surface Drains created are connected to Rain Water Harvesting Ponds in the Plant.
- RCL is harvesting Rain Water through Roof Tops, RWH Ponds with Recharge Mechanism. Roof Top Collections shall be directly stored and used as Raw Water for the Plant.
- Harvested water by surface drain shall also be utilized for the industrial needs so as to conserve the fresh water demand.

## 10.2.7 Biodiversity Plan

- Green Belt shall be maintained effectively.
- ❖ Local species and fruit bearing trees may also be developed to have a thick canopy cover.
- The treated sewage shall be used fully for the Green Belt development.
- ❖ There will be ban on one time use and throw away Plastic usage in the Plant in compliance with Tamil Nadu, Environment and Forests (EC-2) Department, G.O.(D) No. 84 dated 25.06.2018. RCL will encourage the use of eco friendly alternative such as banana leaf, areca nut palm plate, stainless steel glass, porcelain plates / cups, cloth bag, jute bag etc.

## 10.2.8 Green Belt Development Plan

Total Green Belt extent is 64.50 Ha (33.69% Coverage) with 1,61,250 Trees @ 2,500 Trees/Ha with Survival Rate @ 90% average. Predominantly, native plant species are preferred for Green Belt like Azadirachta indigo (Neem), Cassia Siamea (Manjakondrai), Pongamia pinnata (Pungan), Albizia lebeck (Vagai), Samanea saman (Thoongumoonji), Holoptelia integrifolia (Arali), Tecoma stans (Thangarali), Cassia fistula (Sarakondrai), etc. Local women are engaged for the maintenance of Green Belt.

#### 10.2.9 Occupational Health

RCL shall provide a safety & healthy working conditions and continually improve the occupational health and safety performance.

- Its objectives shall be to achieve zero accident and safe work environment, to improve moral and health of all employees and to maintain the emission levels below the norms.
- RCL shall provide ergonomic support in work comfortness with periodical review.

## 10.2.10 Socio-economic Management Plan

- As per the Companies Act 2013, Companies should spend at least 2% of the Profit after Tax of the previous year for the CSR activities but not lower than 2% of average of previous three years Profit after Tax.
- \* RCL is presently carrying out various Socio Measures for the local as well as regional populations which shall be continued as per existing CSR Norms.

## 10.3 EMP Budget

The Project Cost of the existing Cement Plant Complex is Rs.894.00 Crores. A budget Rs.14.20 Crores is presently the EMP Capital Cost and Rs.3.90 Crores/annum is the EMP Recurring Cost. For proposed Expansion, with existing Line-II infrastructures and facilities, the Project Cost will be additional Rs.103.38 Crores. Thus, total Project Cost on this Expansion will be Rs.997.38 Crores. A budget Rs.1.00 Crores as EMP Capital Cost and Rs.0.25 Crores/annum as EMP Recurring Cost are proposed additionally for the Expansion. Thus, total EMP Capital Budget will be Rs.15.20 Crores and EMP Operating Budget will be Rs.4.20 Crores per Annum (Tables 10.1-10.2). The proposed budget for Peafowl Conservation Plan will be Rs.1.00 Lakhs/annum for Habitat improvement, Community participation in Conservation, etc.

Table: 10.1 EMP Budget

| SI. | Description of Item            | Total (Existing & Expansion)   |                                     |  |
|-----|--------------------------------|--------------------------------|-------------------------------------|--|
| No. |                                | Capital Cost,<br>Rs. in Crores | Recurring Cost,<br>Rs. Crores/Annum |  |
| 1   | Air Pollution Control/Noise    | 10.80                          | 2.75                                |  |
| 2   | Water Pollution Control        | 3.90                           | 1.00                                |  |
| 3   | Environmental Monitoring Works | -                              | 0.24                                |  |
| 4   | Greenbelt Development          | 0.50                           | 0.20                                |  |
| 5   | For Peafowl Conservation Plan  | -                              | 0.01                                |  |
|     | Total                          | 15.20                          | 4.20                                |  |

Table: 10.2 EMP Recurring Cost - Breakup

| SI.<br>No. | Proposed EMP Operational Budget                                  | Amount per Annum in Rs. |
|------------|------------------------------------------------------------------|-------------------------|
| 1          | Operation and Maintenance cost of APC measures ESP & Bag Filters | 40,00,000               |
| 2          | Bag Filters & ESP spares and consumables                         | 1,20,00,000             |
| 3          | Operation and Maintenance of STP                                 | 10,00,000               |
| 4          | STP spares and consumables                                       | 1,60,000                |
| 5          | Green belt development maintenance                               | 96,00,000               |
| 6          | Green belt development                                           | 30,00,000               |
| 7          | Rain water pond and storm water gutters desilting works          | 10,00,000               |
| 8          | Operation and maintenance of road sweeping machines              | 7,56,000                |
| 9          | Spares and consumables of road sweeping machines                 | 9,26,000                |
| 10         | CAAQMS operation and Maintenance cost                            | 6,00,000                |
| 11         | OCEMS operation and Maintenance cost                             | 3,00,000                |
| 12         | Calibration of OCEMS & CAAQMS & WQW Systems                      | 5,00,000                |
| 13         | Spares and consumables of CAAQMS per Annum                       | 4,00,000                |
| 14         | Spares and consumables of OCEMS & WQW Systems                    | 2,00,000                |
| 15         | Others                                                           | 75,58,000               |
|            | Total per Annum                                                  | 3,44,42,000             |

## 10.4 Authenticated Peafowl Conservation Plan

An extract from earlier Report, authenticated by the DFO, for the Plant is appended.

## AND CONCLUDING

Based on the study positively were encountered in the buffer zone onlyfor leading and in the core zone there is no suitable habital for pealow. Based on this it is very clear that project operations are not affecting the pealow! population, habital and other activities. But still it is necessary to take some summercation measure like habital restoration in the buffer zone to ensure the future of Indian pealow!

The Ramoo Coments Limited is very active in related to biodiversity and conservation. The company is working very closely to address conservation assets in past ese they worked in the area of green bell development, hubbat restriction and biodiversity assessment for various projects and programs.

This report on Conservation Plan for Peofositrecommendate-varial prevention and malgation measures as well as habitat improvement programs planned to protect biodiversity in the study area. This plan I was covered important aspects such as habitat restriction, biodiversity conservation and conservation measures and eco-development to address social and conservation issues, it also provides financial outlay of its implementation cost. All these measures will be smolly enforced and the conservation of the Poulow) will be provided.

Apart from the pea fowl conservation, RAMCO coments Limited undersided) the preventing Act and Rules such as Wild Life (Projection) Act 1972; Environment (Projection) Act 1986, The Water (Prevention and control of pollution) act 1974, The Air (Prevention and control of Pollution) act 1981, Tamil Nativ Forest Art 1982 are, and will are use the strict adhoration of all such related acts and rules.

The report of adherence of Pas tool communities plan shall be submitted annually to The District Forest efficur Thooblukudi this report also contain the Forest Range Officer's inspection note:

As the Pearlow and other and primate sprood all over the district the responsibility (CSR) assistance will be extended to Forest department under corporate social responsibility (CSR) funds where evaluate funds for the admission as nobital improvement programme, water conservation & resention works and other www.esass.proclamitations.

First Star Cities Hindustries N- EMPTON AND

Sr.Dy. General Manager(Miner)
This Ramico Cementa Limited
Fundalguel(Pe), Arcopublication Ta)
Virushunager(D)-628-113.

\*\*

## 11.0 Summary & Conclusion

M/s. The Ramco Cements Limited (RCL) of Ramco Group is operating their Ramasamy Raja Nagar (RR Nagar) Cement Plant with CPP & Township over an extent of 191.434 Ha own patta lands in SF Nos. Parts of 1-14, 16, 22, 24, 30-32, 34-39, 49-52, 56-60, 65-66, 210, 212, 214, 221, 222, 225-230 of Tulukkappatti, 192, 194-212, 215, 216 & 287 of Thammanayakkanpatti and 100-103, 108, 109, 112 & 113 Vachchakkarappatti Villages, Taluk & District Virudhunagar, Tamil Nadu State. The Plant is in operation since 1961-62.

RCL had established the recent expansion activities with New Kiln Line of 3000 TPD in compliance with EC from MoEF&CC awarded vide EC Identification No. EC21A009TN169325 dated **25.10.2021**. After obtaining CTEs & CTOs from TNPCB, the Plant is now being operated for production of 1.44 MTPA Clinker & 2.70 MTPA Cement from **1**st **March 2023**. Present **CTO-Renew Orders** are obtained from TNPCB vide 2408157290712 (Water Act) & 2408257290712 (Air Act) dated 13.09.2024 with **validity till 31.03.2025**. Certified Compliance Report (**CCR**) for earlier EC has been issued by Integrated Regional Office (IRO), MoEF&CC, Chennai on 18.03.2024 and there is **no Non-Compliance** / no Partial Compliance reported.

With revamping measures proposed by Engineering Consultant FLSmidth, RCL intends to expand RR Nagar Cement Plant with inclusion of revamped Old Line-II operations to existing Lines I & III i.e. operations of all 3 existing Lines-as Upgraded and also by increasing operational days from 320 to 345 days.

**Proposal**: 'Expansion of RR Nagar Cement Plant with inclusion of revamped Old Line-II operations to existing Lines I & III i.e. operations of all 3 existing Lines-as Upgraded and also by increasing operational days from 320 to 345 days - production enhancement of Clinker from 1.44 MTPA to 2.76 MTPA and Cement from 2.70 MTPA to 4.00 MTPA along with associated Waste Heat Recovery System of 13 MW' at Tulukkappatti, Thammanayakkanpatti & Vachchakkarappatti Villages, Taluk & District Virudhunagar, Tamil Nadu. The additional Project Cost is Rs.103.38 Crores. On proposed Expansion, the details of Products & By-products are given in **Table 1.1**.

**Production, MTPA** Product / Mode of Production of By-product **Existing** Proposed **Total Transportation** Clinker 1.44 1.32 By Conveyor By-product 2.76 Imported Clinker from 0.50 0 0.50 Rail RCL Sister Units 2.70 1.30 Cement **Product** 4.00 Both Road & Rail WHRB Power Generation from all 3 Lines @ 13.0 MW

Table: 1.1 Details of Products & By-Products on Expansion

Salient features of Proposal are given in Table 1.2.

Table: 1.2 Salient features of Expansion Proposal

| S. No. | Details                                | Project Details as per Latest EC                                                                          |                     | Project Details on Expansion now                                                                          |                     |
|--------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------|---------------------|
| 1      | Plant Extent in Ha                     | 191                                                                                                       | .434                | 191.434                                                                                                   |                     |
| 2      | Clinker Production,                    | Line                                                                                                      | Capacity,           | Line                                                                                                      | Capacity            |
|        | MTPA                                   | I                                                                                                         | 0.48                | I                                                                                                         | 0.69                |
|        |                                        | II                                                                                                        | -                   | II                                                                                                        | 0.69                |
|        |                                        | III                                                                                                       | 0.96                | III                                                                                                       | 1.38                |
|        |                                        | Total                                                                                                     | 1.44                | Total                                                                                                     | 2.76                |
| 3      | Import Clinker from Sister Units, MTPA | -                                                                                                         | 0.50                | -                                                                                                         | 0.50                |
| 4      | Cement Production, MTPA                | Total                                                                                                     | 2.70                | Total                                                                                                     | 4.00                |
| 5      | WHRS                                   | Line-I                                                                                                    | PH&AQC Boiler       | Lines I, II & III                                                                                         | 13 MW               |
| 6      | Raw Materials<br>Demand, TPA           | Limestone (&<br>Kankar)                                                                                   | 2.16<br>@ 6740 TPD  | Limestone                                                                                                 | 1.794<br>@ 5200 TPD |
|        |                                        | -                                                                                                         | -                   | Lime Kankar                                                                                               | 2.085<br>@ 6050 TPD |
|        |                                        | -                                                                                                         | -                   | Clay, Chips,<br>Roughstone                                                                                | 0.209<br>@ 605 TPD  |
|        |                                        | Copper Slag /<br>Laterite / Iron<br>Ore                                                                   | 0.022<br>@ 63 TPD   | Copper Slag /<br>Laterite / Iron<br>Ore                                                                   | 0.083<br>@ 242 TPD  |
|        |                                        | Fuel : Petcoke                                                                                            | 0.128<br>@ 423 TPD  | Fuel : Petcoke                                                                                            | 0.246 @ 715<br>TPD  |
|        |                                        | Gypsum                                                                                                    | 0.108<br>@ 290 TPD  | Gypsum                                                                                                    | 0.136<br>@ 395 TPD  |
|        |                                        | Fly Ash                                                                                                   | 0.677<br>@ 2050 TPD | Dry Fly Ash                                                                                               | 1.120<br>@ 3246 TPD |
|        |                                        | -                                                                                                         | -                   | Wet Fly Ash                                                                                               | 0.080<br>@ 232 TPD  |
|        |                                        | Slag                                                                                                      | 63 TPD              | Slag                                                                                                      | 2.200<br>@ 6377 TPD |
|        |                                        | -                                                                                                         | -                   | Limestone                                                                                                 | 0.040               |
| 7      | Power, MW                              | 32.85                                                                                                     |                     | Powder as PI @ 115 TPD 40.50                                                                              |                     |
| 8      | Water requirement in                   | 10                                                                                                        | 00                  | 1265                                                                                                      |                     |
|        | KLD & Source                           | Ground & Surface Water                                                                                    |                     | Surface Water only                                                                                        |                     |
| 9(i)   | Sewage generation in KLD               | 280                                                                                                       |                     | 280<br>(No Change)                                                                                        |                     |
| 9(ii)  | Trade Effluent generation in KLD       | 20                                                                                                        |                     | (20+60=) 80                                                                                               |                     |
| 10     | Air Pollution Control<br>Limits        | PM - <20 mg/Nm <sup>3</sup><br>SO <sub>2 -</sub> <100 mg/Nm <sup>3</sup><br>NOx - <600 mg/Nm <sup>3</sup> |                     | PM - <30 mg/Nm <sup>3</sup><br>SO <sub>2 -</sub> <100 mg/Nm <sup>3</sup><br>NOx - <600 mg/Nm <sup>3</sup> |                     |
| 11     | Hazardous waste generation             | Used/Spent Oil (Category 5.1) -<br>94.62 TPA                                                              |                     | Used/Spent Oil<br>(Category 5.1) - 94.62 TPA                                                              |                     |
| 12     | Project Cost                           | CP & CPP                                                                                                  | Rs.894 Cr.          | Addition                                                                                                  | Rs.103.38 Cr.       |
|        | EMP-Capital                            | Rs.14.20 Cr.                                                                                              |                     | Rs.1.00 Cr.                                                                                               |                     |
|        | EMP-Operation                          | Rs.3.90 Cr./annum                                                                                         |                     | Rs.0.25 Crores/annum                                                                                      |                     |

All activities are **proposed within the Industry premises** and no additional land is required. Also, there is **no Rehabilitation & Resettlement** (R&R) involved. There is **no Litigation or Pending Case** against the Project.

Well established **Dry Process** utilising the Precalciner technology along with the technological advances in the area of grinding and homogenisation has been incorporated. Presently, there are 465 Direct Employees working in the Cement Complex. Indirect Employment to about 600 persons has been provided. Due to the Expansion Proposal, **another 35 Direct Employees & 50 Indirect Employees will be added**.

Plant area falls in Survey of India Topo Sheet No. **58 G/15** (Open Series Map-C43R15. Plant Coordinates are:

North Latitude : 09°26'26.80" to 09°27'55.00" East Longitude : 77°54'38.00" to 77°56'00.10".

There are **no Eco Sensitive Areas** like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar Sites, Tiger/Elephant Reserves, Reserved Forests, Archaeological / Historical Monuments etc. (existing as well as proposed), within 10 km Study Area. **Seasonal Arjuna River** (0.3 km in south), Plant raw water source, is flowing near the Plant. There is **no major Industry** in the Study Area other than RR Nagar Cement Plant & CPP and Fire Cracker Units.

The Project Cost of the existing Cement Plant Complex is Rs.894.00 Crores. A budget Rs.14.20 Crores is presently the EMP Capital Cost and Rs.3.90 Crores/annum is the EMP Recurring Cost. For proposed Expansion, with existing Line-II infrastructures and facilities, the Project Cost will be additional Rs.103.38 Crores. Thus, total Project Cost on this Expansion will be Rs.997.38 Crores. A budget Rs.1.00 Crores as EMP Capital Cost and Rs.0.25 Crores/annum as EMP Recurring Cost are proposed additionally for the Expansion. Thus, total EMP Capital Budget will be Rs.15.20 Crores and EMP Operating Budget will be Rs.4.20 Crores per Annum. The Conservation Plan for Peafowl duly approved with the Budget Provision of Rs.1.00 Lakh/Annum by the Wildlife Warden, Srivilliputhur is being implemented and continued.

The proposed Expansion of Cement Plant (≥1.0 MTPA) falls under SI. No. 3(b) - Category 'A' of EIA Notification 2006 and requires prior EC from MoEF&CC. As per Notification SO 1599 (E) dated 25.06.2014 and OM F. No. 22-24/2018-IA.III dated 22.01.2019, prior EC for installation of WHRB is exempt and is excluded for prior EC under SI. No. 1(d). Accordingly, RCL filed TOR Application vide Parivesh Online Proposal No. IA/TN/IND1/498318/2024 on 26.09.2024. MoEF&CC granted Standard Terms of Reference (Standard TOR) for the Project with TOR Identification No. TO24A1102TN5995426N dated 12.11.2024 under File No. J-11011/119/2009.IA.II(I).

As permitted, Baseline Data was collected during Jul.-Sep. 2024 in Premonsoon Season for this Region in compliance with MoEF&CC Office Memorandum No. J-11013/41/2006-IA-II(I)(Part) dated 29.08.2017. The summary of baseline status is given in Table 1.3. There is adequate buffer for the proposed Project in the physical, biological and edaphic environments of the study area.

**Table: 1.3 Environmental Baseline Status** 

| Envl. Component      | Main Parameters | Minimum | Maximum | Mean | Desirable<br>Norms |
|----------------------|-----------------|---------|---------|------|--------------------|
|                      | PM2.5           | 10      | 38      | 21.7 | 60                 |
| Ambient Air Quality, | PM10            | 13      | 65      | 39.0 | 100                |
| ug/m <sup>3</sup>    | SO <sub>2</sub> | 6       | 24      | 12.0 | 80                 |
|                      | NOx             | 7       | 27      | 14.5 | 80                 |
| Ambient Noise,       | Leq-Day         | 41.5    | 48.1    | 43.5 | 55                 |
| dB(A)                | Leq-Night       | 40.1    | 44.7    | 41.4 | 45                 |
| Surface Waters       | TDS, mg/l       | 310     | 560     | -    | 500/2100           |
| Ground Waters        | TDS, mg/l       | 360     | 520     | -    | 500-2000           |
| Cail Ctatus          | EC, mmhos/cm    | 0.92    | 1.45    | -    | 0.2-0.5            |
| Soil Status          | SAR             | 2.16    | 5.51    | -    | <5                 |

Legend: PM2.5-Particulate Matter size less than 2.5 um; PM10- Particulate Matter size less than 10 um; SO<sub>2</sub>-Sulphur dioxide; NOx-Oxides of Nitrogen; Leq-Day & Leq-Night - Equivalent Noise Levels during Day & Night Times; TDS-Total Dissolved Solids; EC-Electrical Conductivity & SAR-Sodium Absorption Ratio.

Draft Environmental Impact Assessment (EIA) Report and Summary EIA Reports in English & Tamil languages, prepared in compliance with awarded TORs by accreditated EIA Consultant - M/s. ABC Techno Labs India Private Limited (Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025), has been submitted now for Public Consultation & Public Hearing.

Adequate Budget will be allotted in **EMP Budget** for addressing Public Hearing issues for execution in 2 years period, in compliance with MoEF&CC OM F. No. 22-65/2017.IA.III dated 01.05.2018.

\*\*\*

# 12.0 Disclosure of Consultants

EIA Consultant, M/s. ABC Techno Labs India Private Limited, Chennai has been accredited for various Sectors including **Sector-9 (Cement Plants) for Category 'A'** by the National Accreditation Board for Education & Training (**NABET**) vide Certificate NABET/EIA/2225/RA0290 dated 11.06.2023 with validity till 16.11.2025 (SI. No. 4 of List dated 29.10.2024). ABC Laboratory is accredited by the National Accreditation Board for Testing and Calibration Laboratories (**NABL**) vide Certificate No. TC-5770 dated 03.04.2024 with validity till 02.04.2026.

ABC comprises a team of highly talented professionals, who work in sync with clients ensuring that the defined assessment and survey or reporting is executed with high level of efficiency. The proficient team consists of Environmentalists, Policy makers, Geologists, Chemists, Engineers, Industrial hygienists, Technicians, Research Associates, Sociologists and others with expertise in various key areas.

ABC has a proven successful track record of working with industry & institutions and in executing multi faceted projects funded by organizations like World Bank, UNDP, MoEF&CC, amongst others. ABC Techno labs India Private Ltd. has laid down new benchmarks in all its areas of strategic operations by the dedicated team of outstanding professionals and client-centric approach, clearly evident by our accomplishments/ clients list. The accrediated/approved Experts of ABC are appended.





# National Accreditation Board for Education and Training



# Certificate of Accreditation

# ABC Tectino Labs India Private Limited, Chennal

ABC Toyer, 400, 13th Street, SIDCO Industrial Estate, North Phase, Ambettur, Ovennai (00098)

The organization is occupited at Eatingary A under the GC-NASET Scheme for Accordination of EA Consultant Organization, Version 3: for property (UR 45-9) reports in the following Section -

| 5.560  | (4) (c) (b) (c) (c)                                                                                                                                  | Sector | last perl | Cat |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----|
| 51.790 | Sector Description                                                                                                                                   | NAMET  | MoEFCC    | 6,3 |
| -5     | Moving of minerals including operant, underground moving                                                                                             | 1      | 1.56519   | - 4 |
| - 2    | Offshore and on shore oil and gaz exploration, development & production                                                                              | 2      | (3.0%)    | - 2 |
| 30     | River Valley projects                                                                                                                                | . 1    | 310       | - 4 |
| 4      | Thermal power plants                                                                                                                                 | 4      | 1100      |     |
| - 5    | Mineral beneficiation including polimination                                                                                                         | 7      | 2 (6)     | - 4 |
|        | Mefallugical audiatries (ferrous & pan-ferrous)                                                                                                      | - 1    | 200       | À   |
| 2      | Certent Plants                                                                                                                                       |        | 5/25      | - A |
| 3      | Petroleum refining industry                                                                                                                          | 30     | A(4)      |     |
|        | Leather/Hos/hole processing industry                                                                                                                 | - 13   | 4/6       |     |
| 15     | Chemical fertilicers                                                                                                                                 | 18     | 3 (a)     |     |
| 11     | Petro-cheruca compreses                                                                                                                              | 1.0    | 5(c)      | -   |
| 12     | Pytrochemical based processing                                                                                                                       | 20     | 3-(4)     | - 3 |
| .12    | Tynthetic organic chemicals industry                                                                                                                 | 21     | 5 [7]     |     |
| 14     | Cuttiliaries                                                                                                                                         | 22     | 3 (g)     |     |
| 15     | integrated paint indicatry                                                                                                                           | 23     | 510       |     |
| 18     | high industry.                                                                                                                                       | 25     | 5 (i)     |     |
| \$7    | Oil & gar transportation pipeline, pessing through national parks?<br>sanctuaries/corel neets / emings ally sensitive areas including this terminal. | 27     | 6(8)      | 4   |
| 12     | Arports                                                                                                                                              | 25     | - 7 (k)   |     |
| 18     | inclusive estates, parky complement Areas, expert principling pares (FP2), special estations series (IE2), factors parky, sawher complement          | 71.    | 7(0)      | 1   |
| 20     | Ports, furtiours, break waters and dredging                                                                                                          | 33.    | 7 (4)     |     |
| 21     | Highwayt                                                                                                                                             | 34     | 工(的       | - 4 |
| 22     | Commun officient Treatment Plants (CCTPs)                                                                                                            | . 36   | 7 (h)     |     |
| 21     | Common Marricpa Solid Watte Management Facility (OVEMAN)                                                                                             | - 57   | 7(i)      |     |
| 24     | Asiding and construction projects                                                                                                                    | . 51   | E (#)     | -   |
| 25     | Townships and area development projects                                                                                                              | 29     | 4.00      |     |

Note: Names of apparent EM Continuous and Functional Area Expense are mentioned in BAAC minutes detect June 20, 2023 posted to CCHABET metals.

The Accordance shall report to the subject to continued complying to the binner and continued in OD-ANNY legal of continued being no OD-ANNY ROLL TO detail Art. \$2,200, the contribution heads to be invested before the every date by ANY factors late in the forces Limited Observed Selecting the account of continued.



Sr. Director, NABET Dated: July 11, 2023 Certificate No. MABET/EIA/2225/RA 0290 Valid up to Nov 16, 2025

For the updated List of Aurentical Bill Consultant Department with appropriate Section plants for the CD 4455T metrics





# National Accreditation Board for Testing and Calibration Laboratories

MARIL

# CERTIFICATE OF ACCREDITATION

# ABC TECHNO LABS INDIA PRIVATE LIMITED

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2017

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

ABC TOWER, NO 499, LYTH STREET, SIDCO INDUSTRIAL ESTATE-NORTH PHASE, AMBATTUR, CHENNAL, TAMIL NADU, INDIA

in the field of

TESTING

Certificate Number: TC-8778

Issue Bair: 03/04/2024 Valid Until: 02/04/2026

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the relevant requirements of NABL.

(To see the scope of accreditation of distalmentary, you may also wint NABL sectors swearfelings)

Name of Legal Entity: ABC Techno Labs India Private Limited

Signed for and on behalf of NABL



herboom

N. Venkateswaran Chief Executive Officer

# **List of Experts**



# SCHEME FOR ACCREDITATION OF EIA CONSULTANT ORGANIZATIONS NATIONAL ACCREDITATION BOARD FOR EDUCATION AND TRAINING



(EIA: LogoForm asox)

tal for Scheme of Accreditation of EIA Consultant Organization || FAQ For Initial Accredita



| S<br>No | Name                 | Туре        | Designation | Sector                        | FA               |
|---------|----------------------|-------------|-------------|-------------------------------|------------------|
| 6       | Geetha 5             | In House    | FAE         |                               | SE(B)            |
| r       | Hansesh<br>Paniker   | Empariolist | EC.FAE      | 34(B),36(B),37(B),38(B),39(B) | AP(B),WP(B),NV   |
| •       | K Sexar              | Emparelled  | EG          | 1(A),7(A),5(A),31(A),33(A)    |                  |
| D.      | Kavima Zog           | Emparadist  | EG.FAE      | 3(A) (4股),22(A),25(D),3円(D)   | SHW(B),WP(B),    |
| 10      | M.S Bhaskar          | Emparelled  | ECFAE       | 1(A) 2(A) 7(B) 21(A)          | Ges(A).HG(A).L   |
| n       | Mutrian<br>Moriappen | Emparelled  | EG FAE      | 4(A),10(A),15(A),16(A),28(A)  | SHW(A), AP(A), V |
| 12:     | P Swamina)           | Emparation  | E0          | 34(A)                         |                  |
| 13      | R Flagendran         | Empanialled | EC.FAE      | II(B),38(B),3HB),2H(A)        | SHW(B),AP(B),    |

| S<br>No | Name                           | Туре       | Designation | Sector                        | FA             |
|---------|--------------------------------|------------|-------------|-------------------------------|----------------|
| ia)     | Shankar N<br>Gajthiye          | Empanalied | ec .        | 27(A),25(A)                   |                |
| 15      | Sushii<br>Maham                | In House   | FAE         |                               | SE(A)          |
| 16      | Valahnavi<br>Dilimakanan       | In House   | FAA         |                               | SHW,WP         |
| 17      | V <sub>jayalaha</sub> ten<br>K | Emparuried | ECTAE       | 29(B),39(B),4(a),21(A)        | NV[A],RH(A),AC |
| 10      | Vinod Kumar<br>Gautam          | Empanelled | EC,FAE      | 29(A),38(B),28(B),21(A),34(A) | SHW(A),AQ(A),  |
| to.     | Vivok P<br>Navare              | Emparalled | EG.FAE      | t(A)                          | HV(A)          |

#### Wetsite Competibility:

Sett viewed in 1 004K758 or higher resolution mode.

The discurrents are in PDF homes. It case you are not alle to view the discurrents, shally druk here (https://get.adule.com/reade/) promote 8UGO(10 download and install PDF Viewer.

For any changes, suggestion or complaint regarding wetsits all ease mail at adminibiliproxy or (mailteasitinn Bigcorgo).

# OCTO 2017 FAS Right Received.

Terricand Doublins (TerrisAndDunitton.asps) (). Despited by Pleates (Missilven Pleates.com)

\*\*:

3

0

# **Document 1 EDS Raised and Reply Submitted**

( | Options)

8211

No. Doery

tindy reter process for ferms of Reference (1941) round with 1947 ASE, the propositions been economic to be Married that the formation and PR this people of this without providing receiving information accumulation and the characters and provided required accommit fractional details of the proposition provided without providing receiving information accommits and the provided required accommits fractional details of the proposition.

Figure of the sums, you are requiring to remain the name over who will consultations person the first in the with the EARCH Excelors. 2009 or to oppose or negurity documents, in control to the catery thereof its become

- fi) On persual of the virtilitie, it is observed that proportion is not uniformly distributed of drong the project boundary of the existing project. If that exists the authorises and compacts distributed to be greatest persuaded personal transfer and compacts distributed to be greatest above out the photographs.
- (ii) It is advantaged that form that also requires of the proposed project cases \*\* shall shall a median the instance project is a year of his lattice and from proposed project.
- (iii) As reported, there are comply to secon within the study properties project also, IPI shall automat the mission programs undertaken to memory and project of project contribution on these contributions are the contribution of the contribution
- (iv) December of the from metastic and but integer and its mitigation manners sturing (randomizing matrix) be suferral and to the project.
  (iv) 2.23 for many dividences in the project.
- (v) If needs to submit the desafe of converse (CC)/CRa/CTO) is subject here are overgite desafe of ED/CTO in a resignation beginning even grant of CTI/CTO in present the problem. If one, All and CTE/CTO(a feet are of the problem if one.
- (iii) there align and constitute report of a which are a brittled to the WC heads to be a brittled
- (vil black at land more at the project () star one of the land, Type of land, the forestion of land in the name of PC Copy of proof of land with ones of the local Convenient of land of sections of land and propose the data occurringly.
- (viii) Details of court cores, three both specialty (PCE Flory, persong news), to the maintened
- (iv) Ff-shall config whether the project fells project PMT Figure than poor places to the SER guidelines are the accommod
- (a) Project proposed about precise sound plan allowing of independ mode many from both and Sirch among retire to a smooth mills of the standard many many and a content of the standard many and a content of the standard many proposed and the standard many properties of the standard many properties of the standard many properties and the standard many properties are standard many properties and the standard many properties and
- (x) Proper proporant shall subtration to underly set driving with driving about system with cocurations and drowing supported with proper travering individual traversing details with calculations maintaining about GW recruips driving with relevant crowing.
- half Physical plant agreement proposed provinciation, winder provinces, DOS Topositions, No. of high was expected for commissional and proposed
- The opposition for notices consists of shall review the complete application and remains the proposition.
- Liv) It is mentioned that the processing of LC proposed, with Miniop, is though Ported that the in the interruption and the Miniop that PP and blindy required to revise the opposition in the Form and resultings that PP and blindy required to revise the opposition in the Form and resulting to the PP and blindy required to revise the opposition in the Form and resulting to the PP and blindy required to revise the opposition in the Form and resulting to the PP and blindy required to revise the opposition in the Form and resulting to the PP and blindy required to revise the opposition in the Form and resulting to the PP and blindy required to revise the opposition in the Form and resulting to the PP and blindy required to revise the opposition of the Form and resulting to the PP and blindy required to revise the opposition of the Form and resulting to the PP and blindy required to revise the opposition of the Form and resulting to the PP and blindy required to revise the opposition of the Form and resulting to the PP and blindy required to revise the opposition of the Form and resulting to the PP and blindy required to revise the opposition of the Form and resulting to the PP and blindy required to revise the opposition of the PP and blindy required to revise the opposition of the PP and blindy required to th



Corporate Office: Auran Corporate Dentin, V Floor 88-A, Dr. Fardhaleristman Paloi, Mylapom. Chemia - 800 004, History Tel. +81 44 2847 8886 Fee: +81 44 2847 8676 Websie: www.igmcocimentuin. Corporate Identity Number: 126941TW1967PL0003666

Date: 5<sup>th</sup> November 2024

Our Ref.: RCL/RRN Expn.-3 Lines/03.25

The Member Secretary, IA Division Industry-1, Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, Jorbagh Road, Ali Ganj, New Delhi-110 003.

Respected Sir,

Sub: Expansion of Ramasamy Raja Nagar Cement Plant by inclusion of Revamped Old Line-II operations to existing Lines I & III (operations of all 3 existing Lines, as Upgraded) & and Increasing the Operational Days from 320 days to 345 days - Production Enhancement of Clinker from 1.44 MTPA to 2.76 MTPA & Cement from 2.70 MTPA to 4.00 MTPA at Villages Tulukkappatti, Thammanayakkanpatti & Vachchakarapatti, Taluk & District-Virudhunagar, Tamil Nadu by M/s.The Ramco Cement Limited - Prior EC for proposed Expansion activities under EIA Notification 2006; Sl. No. 3(b) & Category 'A' - Submission of EDS Reply - reg.

1. File No. J-11011/119/2009.IA.II(I). Ref.:

- 2. Earlier Expn. EC Identification No. EC21A009TN169325 dated 25.10.2021.
- 3. TOR Application vide Proposal No. IA/TN/IND1/498318/2024 on 26.09.2024.
- EDS Baised on 08.10.2024.

We have received the EDS message raised on 08.10.2024 for our above TOR Proposal in PARIVESH Portal. We are pleased to submit herewith Pointwise Reply for the EDS raised for your kind perusal.

EDS (i): On perusal of the kml file, it is observed that greenbelt is not uniformly distributed all along the project boundary of the existing project. PP shall submit the justification and complete details of the greenbelt developed so far along with the photographs.

Submission: The total extent of RR Nagar Complex is 191.434 Ha. As informed in Para 2.5 & 6.4 of PFR, Green Belt was maintained in the Complex over an extent of 33.00 Ha with 62,910 Trees @ 1,906 Trees/Ha before 2021 Expansion. During last EIA Stage, it was submitted that additional Green Belt to an extent of 31.50 Ha with 78,750 Nos. to be raised in the vacant areas of western & southern parts (Plate E1). On Expansion, additional Plantations were done over an extent of 31.50 Ha with 98,340 Trees in the western & southern sides (where recent Expansion activities took place). Now, total Green Belt extent is 64.50 Ha (33.69% Coverage) with 1,61,250 Trees @ 2,500 Trees/Ha, as detailed below:

| Period               | GB Extent, Ha | No. of Trees |
|----------------------|---------------|--------------|
| Expn. EIA Stage      | 33.00         | 62,910       |
| End of 2021-22       | 12.00         | 28,624       |
| 2022-23              | 18.00         | 64,865       |
| 2023-24 till Jan. 24 | 1.50          | 4,851        |
| Total                | 64.50         | 1,61,250     |

Green Belt Layout, as on date, is attached as **Plate E2**. In addition to the Geotagged Photographs shown in Plate-II of PFR, recent Geotagged Green Belt all along the boundaries of the Complex are attached as **Plate E3**.

As shown in the Photographs, recently planted trees are 1-2 years old which are yet to be reflected in Google Earth KML file. However, recent Certified Compliance Report (CCR) issued by the Integrated Regional Office (IRO), MoEF&CC, Chennai vide Letter EP 12.1/867/TN/353 dated 18.03.2024 captured the Green Belt developed in the Complex.

EDS (ii): It is observed that kml shows multiple patches of the proposed project area. PP shall clarify whether the instant project is a part of interlinked/ interdependent project.

<u>Submission</u>: It is an Interdependent Project i.e. Expansion of the Cement Plant located in a overall extent of **191.434 Ha** which includes Cement Plant, Captive Power Plant, Township, Schools, Labour Quarters located in other side of NH-44, etc. There is no additional land requirement for the Expansion as all activities are proposed within the industrial premises as shown in Fig. 1.2 & PFR Page No. 7.

EDS (iii): As reported, there are sensitive areas within the study area of the project site. PP shall submit the mitigation measures undertaken to minimise the impact of project activities on these sensitive areas.

<u>Submission</u>: This is existing Plant since 1959. There are **no Eco Sensitive Areas** like National Parks, Wildlife Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar Sites, Tiger/Elephant Reserves, Reserved Forests, etc. (existing as well as proposed), within 10 km from the Plant (PFR Page No. 19 & Fig. 1.4-Environmental Setting in Page No. 68). Mitigation Measures are given in PFR Page Nos. 89-92, Sectionwise for Water, Air & Solid Wastes which included the followings EMP measures:

- ✓ The (old) Line-II Kiln is already provided with Reverse Air Bag House, Cooler with ESP, Coal Mill with Bag Filters so as to control the Particulate Emissions from the Line-II <20 mg/Nm³.
- ✓ All the Material conveyors are fully covered and provided with Bagfilters at Transfer Points.
- ✓ Dry Fly ash is pneumatically transferred to the RCC storage silo and pumped to the cement grinding section through pneumatic pipelines.
- ✓ Bag filters are provided in the material loading hoppers, transporting conveyors, feeding area, cement grinding, storage & packing areas to control the fugitive emissions from the unit.
- ✓ Thus, fugitive emissions during loading and unloading operations are controlled effectively in compliance with CREP Guideline Norms.
- ✓ There is no trade effluent generation from the Cement Plant.
- ✓ On Expansion, DM/RO Rejects of 40 KLD, Boiler Bleed-offs of 8 KLD and Colling Tower Rejects of 12 KLD, total 60 KLD effluent will be generated additionally which will be treated for pH Correction in a 100 KLD Neutralisation Pit separately and Treated Effluent of 60 KLD will be utilized for Equipment Cooling of (old) Line-II machineries where it will be evaporated fully.
- ✓ Domestic Sewage & Canteen wastewaters of 25 KLD from the Cement Plant, 9 KLD Domestic Sewage from CPP, 160 KLD Domestic Sewage from the Township and another 86 KLD Domestic Sewage from Labour Qtrs., thus, a total of 280 KLD is generated. All the Domestic Sewage is treated in a 400 KLD Sewage Treatment Plants (350+50 KLD STPs). The Treated Sewage of 250

- KLD is fully used for the Green Belt development. There will be no change to existing status on Expansion.
- ✓ Thus, it will be a 'Zero Effluent Discharge'.
- ✓ The solid waste generated from the process and dust collected from various air pollution control equipment is being recycled in the process. Solid waste from the Sewage treatment plant 0.8 @ TPD is vermi-composted and used as manure for Green belt development. Fly ash (29.3 TPD) produced from CPP and Bottom ash (5.2 TPD) are transported pneumatically with the help of dense phase pneumatic pumps to the RCC storage silos. The ash is evacuated from silo and transported to Cement Plant for Portland Pozzolana Cement (PPC) manufacturing.
- ✓ Spent Oil (Category 5.1) generation is 94.62 TPA and is being sold to TNPCB/CPCB Authorised Recyclers for further processing & recycling.

Thus, all EMP measures will be in place to control the pollution levels within the Plant premises and there will not be any impact on the nearby environment including the sensitive man-made land uses.

EDS (iv): Details of all the Raw material and its linkage and its mitigation measure during transportation needs to be submitted under section (Part B, 2.3) for requirement of minerals involved in the project.

<u>Submission</u>: Raw material and its linkage details are provided in Para 3.5, Table 3.2 in Page No. 70 which are also addressed as directed in Part-B Section 2.3. Now, there was no provision in Parivesh Portal for Uploading the Linkage Documents at the time of Application. Linkage Documents are given in PFR.

Traffic Load (Baseline) (PCU/day)

Additional Traffic Load during Operation

Total Traffic Load during Operation

Traffic capacity

IRC 106-1990 Recommended Design Service Volume

LOS Factor

14,318 PCU/day
675 PCU/day
14,993 PCU/day
624.7 PCU/hr.
3600 PCU/hr
0.17 (A)

Adequate parkings are also provided in the Plant. Facilities for **drivers (rest room, toilet, etc.)** are also provided. EMP Measures are :

- Green Belt with thick foliage along the Plant/Ore Haulage/Transportation roads.
- Security Guards at the Road Junction to handle the inward and outward vehicles from the Plant to the Highway.
- All Trucks are to be fully covered with Tarpaulin to avoid any spillage on transportation.
- Restriction of over loading of Trucks/Tippers.
- Speed restrictions
- Restriction of Truck parking in the Highway and Public Roads.
- Regular and preventive maintenance of transport vehicles has to be ensured.
- Compliance to 'Pollution under Control' Certification has to be ensured and to be checked periodically.

EDS (v): PP needs to submit the details of activities/ECs/CTEs/CTOs in tabular form showing its details of ECs/CTEs/CTO vis-à-vis production capacity since grant of CTE/CTO to check the violation, if any. All old CTEs/CTOs/ HW Authorization to be uploaded to verify the violation, if any.

<u>Submission</u>: As directed, all Statutory Approvals since first EC, are given as **Docs-1&2** and detailed below:

#### **RR Nagar Cement Plant EC Details:**

- (i) RR Nagar Plant Modernisation & Expansion vide F. No. J-11011/119/2009 IA.II (I) dated 06.07.2009 for Cement production from 1.0 MTPA to 2.0 MTPA.
- (ii) Addition of 3<sup>rd</sup> Packer vide F. No. J-11011/119/2009 IA.II (I) dated 29.11.2017.
- (iii) Expansion with New Kiln Line of 3000 TPD (upto Clinkerisation) vide EC Identification No. EC21A009TN169325 dated 25.10.2021-Clinker 1.44 MTPA & Cement 2.70 MTPA

#### Consents to Establish:

- (i) CTE-Cement production of 6,200 T/day (or) 2.0 MTPA (with addition of 0.3 MTPA Cement Mill) vide TNPCB Order No. 5145 (Expansion) (Air Act) and 5204 (Expansion) (Water Act) dated 03.12.2009 validity 2 years.
- (ii) CTE for Expansion (Cement) vide TNPCB Order No. 2206141656739 (Water Act) & 2206241656739 (Air Act) dated 17.02.2022 validity 2 years.

#### **Consents to Operate:**

- (i) Initial CTO-Cement production of 6,200 T/day (or) 2.0 MTPA vide TNPCB Order No. 18354 (Air Act) and 22318 (Water Act) dated 03.01.2011- Valid till 31.03.2011
- (ii) Renewal CTOs: Order No. 16831 (Air) and 20796 (Water) dated 09.05.2011- Valid till 31.03.2012.
- (iii) Order No. 16831 (Air) and 20796 (Water) dated 29.01.2013- Valid till 31.03.2013.
- (iv) Order No. 16831 (Air) and 20796 (Water) dated 21.06.2013- Valid till 31.03.2014.
- (v) Order No. 18354 (Air) and 22318 (Water) dated 11.09.2014- Valid till 31.03.2015.
- (vi) Order No. 15082294874 (Air) and 15081294874 (Water) dated 10.08.2015- Valid till 31.03.2016.
- (vii) Order No. 160824725855 (Air) and 160814725855 (Water) dated 02.08.2016- Valid till 31.03.2017.
- (viii) Order No. 180828260593 (Air) and 180818260593 (Water) dated 28.02.2018-Valid from 01.04.2017 to 31.03.2019.
- (ix) Order No. 1908221827195 (Air) and 1908121827195 (Water) dated 18.09.2019- Valid till 31.03.2022.
- (x) CTO-Expn. Order No. 2307249733843 (Air Act) and 2307149733843 (Water Act) dated 27.02.2023- Valid till 31.03.2024.
- (xi) CTO-Renew Order No. 2408157290712 (Water Act) & 2408257290712 (Air Act) dated 13.09.2024- Valid till 31.03.2025.

**Hazardous Wastes Authorisation** vide Order No. 23HPC42009117 dated 07.06.2023- Validity till 31.03.2028.

EDS (vi): Details of last self-compliance report of EC which was submitted to the IRO needs to be submitted.

<u>Submission</u>: Self Compliance Report for the Period Apr.-Sep. 2023 is attached as **Annex. Doc-1**.

Certified Compliance Report (CCR) for the Expansion EC has been issued by Integrated Regional Office (IRO), MoEF&CC, Chennai vide Letter EP 12.1/867/TN/353 dated 18.03.2024 and attached as Document-4 in PFR.

EDS (vii): Details of land involved in the project [Total area of the land; Type of land; Details of possession of land in the name of PP; Copy of proof of land with area of the land; Conversion of land for industrial purpose from the State Government] needs to be submitted and uploaded the data accordingly.

<u>Submission</u>: As stated in Para 2.1-Page No.21, this is an existing Plant in operation since 1961-62. Entire land of 191.434 Ha, own Patta Lands of PP, is under the Industrial Use. The Village

Administrative Officers of Thulukkapatti, Thammanaickenpatti & Vacchakarapatti villages under TN Revenue Department have issued the Certificates for possession of the Lands in the name of PP with Survey Nos. & Land extent. The Certificates are attached as **Annex. Doc-2**. All the lands are falling under the Industrial Use. Recent Industry License issued by the State Government is attached as **Annex. Doc-3**.

All Expansion activities are proposed within the existing Premises and no additional land is required. No establishment is required for the Proposal. No change in Land Use, as stated in 2.6 PFR Page No. 59.

EDS (viii): Details of court case, directions issued by SPCB, if any, pending needs to be submitted.

Submission: There is no Litigation/Pending Case against the Proposal, as submitted.

EDS (ix): PP shall clarify whether the project falls under CPA/SPA? If yes, then compliance to the CEPI guidelines shall be submitted..

<u>Submission</u>: Project area does not fall in Critically Polluted Area (CP) or Severely Pollution Area (SPA) listed by CPCB (PFR Page No. 9). Thus, no compliance as per CEPI is required.

EDS (x): Project proponent shall prepare layout plan showing all internal roads minimum 6m width and 9 m turning radius for smooth traffic flow inside including fire tender as per NBC. Road network shall connect all service areas in layout. This drawing shall include area statement showing plot area, area under roads, parking, green belt with calculations and % with respect to plot area of project site and proper indexing.

<u>Submission</u>: All internal roads are designed for minimum 6 m width and 9 m turning radius for smooth traffic flow inside the Unit including fire tender, as per NBC Norms. Road network is connecting all service areas. Layout with internal Roads is attached as **Plate E4**.

EDS (xi): Project proponent shall submit contour map of project site along with drainage disposal system with calculations and drawings supported with proper indexing including rainwater harvesting details with calculations mentioning about GW recharge along with relevant drawing.

<u>Submission</u>: The elevation of the Plant area ranges from 73 m to 89 m above MSL. Plant Layout with Elevation Contours & existing Drainage Pattern are attached as **Plate E5**.

The 70 year **Normal Rainfall** of the Plant Area (Sattur Rain Gauge Station) is **835 mm**. Pre-Project and Post Project Surface Runoffs from the Plant Area is estimated as per Manual of Artificial Recharge of Ground Water (CGWB, 2007).

Pre-Project Runoff : 3,42,666 KL/Year Post Project Runoff : 5,55,193 KL/Year

# Estimation of Quantum of Runoff available through RWH

| Land Use                   | Area, sq.m | Rainfall, m | Runoff Coeff | .* Quantum of Runoff, KL/Annum |
|----------------------------|------------|-------------|--------------|--------------------------------|
| Pre-Project Runoff         |            |             |              |                                |
| Total Area                 | 1914340    | 0.895       | 0.20         | 130417.61                      |
| Post-Project Runoff        |            |             |              |                                |
| Roof Top of building/Sheds | 275700     | 0.895       | 0.85         | 209738.775                     |
| Road/Paved area            | 170120     | 0.895       | 0.65         | 98967.31                       |
| Open Land                  | 728590     | 0.895       | 0.20         | 130417.61                      |
| Green Belt & Lawns         | 715000     | 0.895       | 0.15         | 95988.75                       |

RWH Ponds & Canals 24930 0.895 0.90 20081.115 **Total** 19,14,340 - 55,51,93.56

Existing wells and created Ponds in the Plant vicinity are utilised for harvesting the Rain Water in the Plant vicinity. The Roof Top Collection of 2,09,738 KL/Year will be directly collected and used @ 575 KLD in supplementing the Raw Water Demand. Additionally, 20,081 KL/Year will be collected in RWH Ponds and utilized for Green Belt development. The balance 3,25,373 KL/Year Rain waters reach the natural Drains to discharge into the Arjuna River.

EDS (xii): PP shall also upload proposal presentation, water permission, SOI Toposheet, etc. which are essential for consideration of proposal.

<u>Submission</u>: TOR Presentation in the Template devised by EAC (Ind-1), Survey of India Topo Sheet and Water NOC are already uploaded in Parivesh Portal.

Water Drawl Agreement – Total water demand on Expansion is **1,000 KLD**. The required water is drawn from Arjuna River source as permitted by State PWD vide GO 1446/PWD dated 04.10.1975. There is no ground water drawl (Page No. 30 & Document-6)- Water Agreement is attached as **Annex**. **Doc-4**.

EDS (xiii): The application form has not been correctly. PP shall revise the complete application and resubmit the proposal.

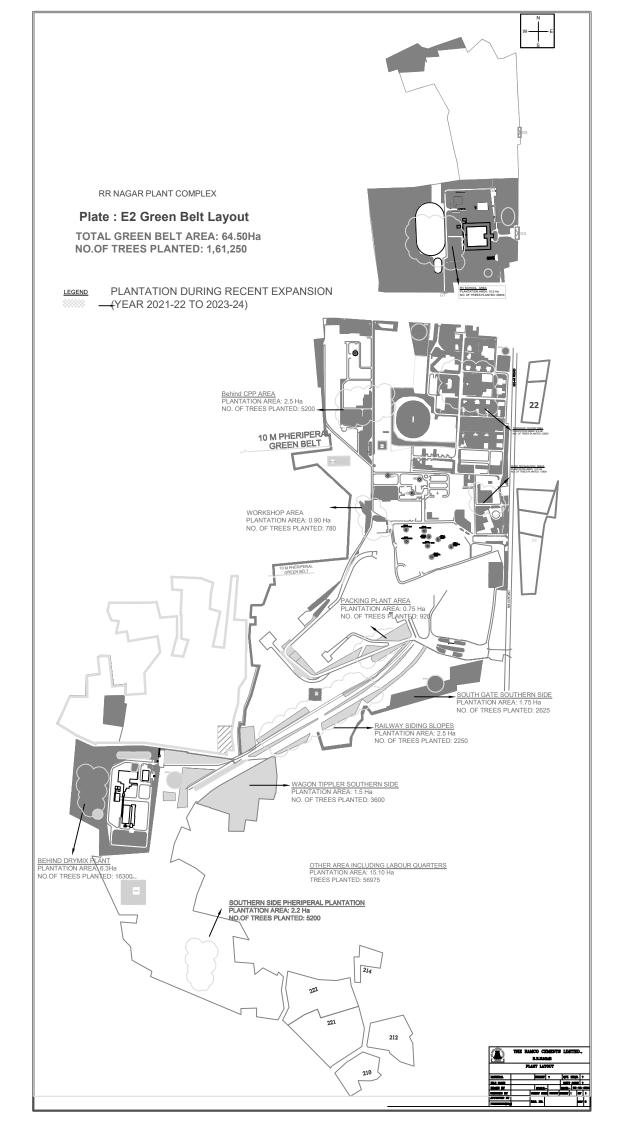
<u>Submission</u>: The Application has been now submitted with updated data/details, as directed.

EDS (xiv): It is mentioned that the processing of EC proposal, in the Ministry, is through Parivesh Portal only, therefore providing the requisite information/documents shall be in compliance as per Form and accordingly the PP are kindly requested to revise the application in the Form and resubmit the same.

<u>Submission</u>: Forms CAF, Part A/B (TOR Application Form-1) are reviewed and updated in the online Application, as directed.

We shall be very thankful to you, if you could kindly persue the Proposal and award AUTOMATIC TOR at the earliest.

Thanking you,


Yours faithfully,

For The Ramco Cements Limited

C.Ravichandran Sr. Vice President (ESG)

Encl: as stated above.

<sup>\*</sup> Ref: Manual of Artificial Recharge of Ground Water (CGWB, 2007).



# Plate: E3 RCL RR Nagar Plant – Green Belt Photographs (Geotagged-26.10.2024)









Ministry of Environment and Forests

(I.A. Division)

Paryavaran Bhawan CGO Complex, Lodhi Road New Delhi – 110 003

E-mail: pb.rastogi@nic.in Telefax: 011: 2436 7668

Dated 6th July, 2009

To.

Vice President (Mfg.) M/s Madras Cements Ltd Ramasamy Raja Nagar Post District Virudhunagar-626, 204, Tamii Nadu

E-mail: nrs@madrascements.co.in / mcl rm@yahoo.com; Fax No.: 04562-256268;

Subject: Modernization and expansion of Ramasamy Raja Nagar Cement Plant (1 MTPA to 2 MTPA) at S.F. Nos. 4-16 Parts, Village Tulukkappatti, Taluk & District Virudhunagar, Tamil Nadu by M/s Madras Cements Ltd. — Environment

clearance reg.

Ref. : Your letter no. nil dated 3<sup>rd</sup> February, 2009.

Sit

Kindly refer your letter no. nil dated 3" February, 2009 alongwith project documents including Form I, draft TOR and Pre-feasibility Report and subsequent clarifications furnished vide communications dated 13" March, 2009 regarding above mentioned cement project.

2.0 The Ministry of Environment and Forests has examined the application. It is noted that the proposal is for modernization and expansion of Ramasamy Raja Nagar Cement Plant (1 MTPA to 2 MTPA) at S.F. Nos. 4-16 Parts, Village Tulukkappatti, Taluk & District Virudhunagar, Tamil Nadu by M/s Madras Cements Ltd. Existing cement plant is located in 37.47 ha. and no additional land will be required for the expansion. No national Parkwild life sanctuary/reserve forest is located within 10 km radius of the project site. Total cost of the proposed expansion and modernization is Rs. 177.00 Crores. Existing and proposed production capacities will be as given below.

| Line              | Existing               |                   |                  | Proposed               |                       |                      |
|-------------------|------------------------|-------------------|------------------|------------------------|-----------------------|----------------------|
|                   | Kiln Capacity<br>(TPD) | Clinker<br>(MTPA) | Cement<br>(MTPA) | Kiln Capacity<br>(TPD) | Clinker<br>(MTPA)     | Cement<br>(MTPA)     |
| Line-I<br>Line-II | 1200<br>1000           | 0.39              | 0.55<br>0.45     | 1800<br>1400           | 0.61<br>0.48<br>0.28* | 0.90<br>0.70<br>0.40 |
| Total             |                        | 0.71              | 1:00             |                        | 1,37                  | 2.00                 |

<sup>\*</sup> Clinker from other units of M/s Madras Cements Ltd. or imported.

- Replacement/up gradation of old line-t by replacing 1,200 TPD kiln with 1,800 TPD kiln.
- Modernization of line-II by up gradation of pre-heater cyclone and cooler ESP and replacement of kiln ESP with Reverse Air Bag House.
- iii Cement production enhancement (1.0 MTPA to 2.0 MTPA) by addition of a 0.30 MTPA cement mion of concrete clinker silos to control fugitive emissions.
- iv. Raw mill VRM pra-grinder introduction
- v. VRMP optimization measures.
- vi. Truck unloading facility with truck tippler arrangement.
- vii. Packers and wagon loading improvement measures and cement bulk loading arrangements.
- viii. Addition of cement mill (0.3 MTPA) for cement grinding enhancement.
- Increasing the plant operational hours from 322 days to 345 days to achieve 2.0 MTPA.
   Cement production.
- Enhancement of cement production to 2.0 MTPA by increasing the blended cements in the total production
- xi. Installation of captive DG set (1x7 MW) for stand-by usage.
- 4.0 Electrostatic precipitators (ESPs) to clinker cooler, bag house to kiln/raw mill, coal mill, coment mill etc. shall be provided to control air emissions < 50 mg/m<sup>2</sup>. Bag filters and dust suppression measures will be provided to control fugitive emissions. Total water requirement from Arjuna River will be 900 KLD and permission for the drawl of 1,500 KLD water has been accorded vide Tamil Nadu State Government's G.O. No. 1446/PWD dated 04.10.1975. The water will also be sourced from MCL's mine pits in Pandalgudi region. All the treated effluent from the cement plant will be recycled/reused for cooling, dust suppression and green belt development. Dust collected from the various air pollution control devices shall be recycled in the process.
- 5.0 Public hearing / consultation is exempted u/s 7(ii) of EIA Notification, 2006.
- 6.0 The Ministry of Environment and Forests hereby accords environmental clearance to the above project under the provisions of EIA Notification dated 14<sup>th</sup> September, 2006 subject to strict compliance of the following specific and general conditions:

# A. SPECIFIC CONDITIONS:

- i) Continuous stack monitoring facilities to monitor gaseous emissions from all the stacks shall be provided. After expansion, limit of SPM shall be controlled within 50 mg/Nm³ by installing adequate air poliution control system. Electrostatic precipitators (ESPs) to clinker cooler, bag house to kiln/raw mill, coal mill, cement mill etc. shall be provided to control air emissions < 50 mg/m³. Monitoring of ambient air quality and stack emissions shall be carried out regularly in consultation with TNPCB and data submitted to the Ministry's Regional Office at Bangalore, CPCB and Tamil Nadu Pollution Control Board (TNPCB) regularly.
- ii) Possibilities shall be explored for the proper and full utilization of gases generated from the kiln in waste heat recovery boiler (WHR8) and a feasibility report shall be prepared and submitted to the Ministry and its Regional Office at Bangaiore within 3 months from the date of issue of the letter.
- Data on ambient air quality, stack emissions and fugitive emissions shall be unleaded on the Company's website and also regularly submitted on-line to the

Ministry's Regional Office at Bangalore, Kamataka Pollution Control Board (KPCB) and Central Pollution Control Board (CPCB) as well as hard copy once in six months. Data on SPM, SO<sub>2</sub> and NO<sub>X</sub> shall also be displayed prominently outside the premises at the appropriate place for the information of general public.

- The company shall install adequate dust collection and extraction system to control fugitive dust emissions. Bag filters shall be provided at all the transfer points. The fugitive emissions during loading and unloading shall be suitably controlled. Fugitive emissions from raw material handling areas, loading/unloading points, hoppers, storage silos, weigh feeders, grinding mill and packing machines shall be controlled by providing silos and covered sheds for storage of raw materials, fully covered conveyors for transportation of materials etc. Water sprinklers shall also be provided to control fugitive emissions.
- V) Secondary fugitive emissions shall be controlled and shall be within the prescribed limits and regularly monitored. Guidelines / Code of Practice issued by the CPCB in this regard shall be followed.
- vi) Efforts shall be made to reduce impact of the transport of the raw materials and end products on the surrounding environment including agricultural land. All the raw materials including fly ash shall be transported in the closed containers only and shall not be overloaded. Vehicular emissions shall be regularly monitored.
- vii) Total water requirement from Arjuna River and mine pit after expansion shall not exceed 900 m²/day as per permission accorded vide Tamil Nadu State Government's GO 1446/PWD dated 04 10 1975 for the drawl of water and shall be renewed time to time as deemed fit. Permission of drawl of water from MCL's mine pits in Pandalgudi regio: shall be obtained from the concerned department, if necessary No ground water shall be used. The liquid effluent from workshop and reverse esmosia (RO) plant shall be neutralized in neutralization tank and the treated effluent shall be used in cement plant for cooling, dust suppression and green belt development. No liquid effluent shall be discharged outside the premises and 'Zero' discharge shall be strictly followed. Domestic effluent shall be treated in sewage treatment plant (STF) and utilized for green belt development.
- viii) Solid waste viz dust collected from the air pollution control equipments (ESP, bag house, bag filters etc.) shall be properly recycled and reutilized in the process itself for cement manufacturing. No solid waste shall be disposed off outside the factory premises. As proposed, solid waste from sewage treatment plant (STP) shall be vermin-composted and used as manufe for green belt. Spent oil shall be used in the kilns as recommended by the Tamil Nadu Pollution Control Board (TNPCB) vide Authorization No. 2906/HWM/VNR/07 dated 04-07-2007.
- An effort shall be made to use of high calorific hazardous waste in the cement kiln and necessary provision shall be made accordingly.
- Efforts shall be made to use low-grade lime, more fly ash and solid waste in the cament manufacturing.

- All the fly ash shall be utilized as per Fly Ash Notification, 1999 subsequently amended in 2003. Efforts shall be made to use fly ash maximum in making Pozollona Portland Coment (PPC).
- xii) As proposed, green belt shall be developed in 22 ha (34.67%) out of the total 63.45 ha, plant and township area to mitigate the effects of air emissions as per the CPCB cuidelines in consultation of local DFC in a time bound manner.
- All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Cement plants shall be implemented
- xiv) The company shall provide housing for construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP safe drinking water, medical health care, creche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.

#### B. GENERAL CONDITIONS:

- The project authority shall adhere to the stipulations made by T.N. Pollution Control Board (TNPCB) and State Government.
- No further expansion or modification of the plant shall be carried out without prior approval of this Ministry.
- The gaseous and particulate matter emissions from various units shall conform to the standards prescribed by the T. N. Pollution Control Board. Continuous on-line monitors for particulate emissions shall be installed in stacks. Interlocking facility shall be provided in the pollution control equipment so that in the event of the pollution control equipment not working the respective unit (s) is shut down automatically.
- iv. Ambient air quality monitoring stations (AAQM) stations shall be set up as per statutory requirement in consultation with the TNPCB. Ambient air quality including ambient noise levels shall not exceed the standards stipulated under EPA or by the State authorities. Monitoring of ambient air quality and shall be carried out regularly in consultation with TNPCB and data submitted to the Ministry's Regional Office at Bangalore. CPCB and TNPCB regularly. The instruments used for ambient air quality monitoring shall be calibrated time to time.
- v. The overall noise levels in and around the plant area shall be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under Environmental (Protection) Act, 1986 Rules, 1989 viz. 75 dBA (day time) and 70 dBA (night time).
- vi. Rainwater harvesting measures shall be adopted. The company must also harvest the rainwater from the rooftops and storm water drains to recharge the ground water and use the same water for the various activities of the project to conserve fresh water.

- The company shall undertake eco-development measures including community welfare measures in the project area.
- Viii. Proper house keeping and adequate occupational health programmes shall be taken up.
- ix. A separate environmental management cell to carry out various management and monitoring functions shall be set up under the control of Senior Executive.
- As proposed, Rs. 1.50 Crores for the air pollution control measures. Rs. 2.50 Crores towards recurring cost/annum for environmental pollution control measures. Rs. 30.00 Lakhs and Rs. 25.00 Lakhs/annum for EMP/green beit development and occupational health measures and Rs. 50.00 Lakhs shall be earmarked for corporate social responsibility and used judiciously to implement the conditions stipulated by the Ministry of Environment and Forests as well as the State Government. The funds so provided shall not be diverted for any other purpose.
- xi. The Regional Office of this Ministry at Bangalore / CPCB / TNPCB shall monitor the stipulated conditions. A six monthly compliance report and the monitored data alongwith statistical interpretation shall be submitted to them regularly.
- xii The Project Authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work.
- The project proponent shall submit six monthly report on the status of the implementation of the stipulated environmental safeguards including results of monitored data (both in hard copies as well as by e-mail) to the Ministry of Environment and Forests, its Regional Office, Bhubaneswar, Central Pollution Control Board and State Pollution Control Board. The project proponent shall upload the status of compliance of the environment clearance conditions including the results of monitored data on their website and update the same periodically.
- The Project Proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the T.N. Pollution Control Board and may also be seen at Website of the Ministry of Environment and Forests at http://envfor.nic.in. This should be advertised within seven days from the date of issue of the clearance letter at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the Regional office at Bangaiore.
- xv. A copy of clearance letter shall be sent by the proponent to concerned Panchayat, Zila Panishad / Municipal Corporation, Urban Local Body and the local NGC; if any, from whom suggestions / representations, if any, were received while processing the proposal. The clearance letter shall also be put on the web site of the company by the proponent.
- xvi. The State Pollution Control Board should display a copy of the clearance letter at the Regional Office: District Industry Centre and the Collector's Office / Tehsildar's Office for 30 days.

- 7.0 The Ministry or any other competent authority may stipulate any further condition(s) on receiving reports from the project authorities. The above conditions shall be monitored by the Regional Office of this Ministry located at Bangalore.
- 8.0 The Ministry may revoke or suspend the clearance if implementation of any of the above conditions is not satisfactory.
- 9.0 Any other conditions or alteration in the above conditions shall have to be implemented by the project authorities in a time bound manner.
- 10.0. Any appeal against this environmental clearance shall lie with the National Environment Appellate Authority, if preferred within a period of 30 days as prescribed under Section 11 of the National Environment Appellate Act, 1997.
- 11.0 The above conditions shall be enforced, inter-alia under the provisions of the Water (Prevention and Control of Pollution) Act, 1974 the Air (Prevention and Control of Pollution) Act, 1981 the Environment (Protection) Act, 1986 and the Public Liability Insurance Act, 1991 along with their amendments and rules.

(Dr. P. B. Rastogi) Director

Copy to:

- The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD-cum-Office Complex, East Arjun Nagar, Delhi-110 032.
- 2 The Chairman, Tamil Nadu Pollution Control Board, 100, Anna Salai, Guindy, Chennai 600 032, Tamil Nadu.
- The Chief Conservator of Forests (Central), Regional Office (SZ), Kendriya Sadan, IV<sup>®</sup> Floor, E & F Wings, 7<sup>®</sup> Main Road, II<sup>®</sup> Block, Koramangala, Bangalore- 560 034, Karnataka.
- The Secretary (Environment), Govt. of Tamil Nadu. Fort. St. George, Chennal- 560 560;
   Tamil Nadu.
- Monitoring Cell, Ministry of Environment and Forests, Paryavaran Bhavan, CGO Complex, New Delhi
- 6. Guard File.
- 7 Monitoring File.
- Record File.

(Dr. P. B. Rastogi)

F. No. J-11011/119/2009-IA-II(I)

Government of India

Ministry of Environment, Forest and Climate Change

(Impact Assessment Division)

Indira Paryavaran Bhawan Jor Bagh Road, Aligani. New Delhi - 110003 E-mail: sharath.kr@gov.in Tel: 011-24695319

Dated: 29th November, 2017

M/s The Ramco Cements Limited

(Formerly Madras Cement Ltd.)

Village Tulukkapatti, Taluk & District Virudhunagar,

Tamil Nadu.

Subjecti

Addition of 3rd Packer Proposal in RCL Ramasamyraja Nagar Cement Plant Located at Village Tulukkapatti, Taluk & District Virudhunagar, Tamil Nadu by M/s The Ramco Cements Limited -Environmental Clearance under clause 7(ii) of EIA Notification, 2006 regarding.

Sir.

This has reference your online application vide proposal no.IA/TN/IND/67801/2017, dated 31st August 2017 seeking environmental clearance under the provisions of Clause 7(ii) of the EIA Notification, 2006 for the proposed addition of 3rd Packer without increase in Clinker or Cement Production capacity for improving the Despatch Schedule at above mentioned project. The proposed project activity is listed at Sl. No. 3(b) Cement Plants under category 'A' of the Schedule of EIA Notification, 2006 and the proposal is appraised at the Central Level.

- M/s The Ramco Cements Limited has expanded Cement Plant during 2009-10 and obtained Environmental Clearance vide F. No. J-11011/119/2009 IA.H(I) dated 06.07,2009 for a Clinker production of 1.097 MTPA and the Cement production of 2.00 MTPA. The certificate of compliance of earlier EC was obtained vide MoEF&CC, Regional Office Letter EP 12.1/867/TN/0591 dated 12.04.2017. No non-compliances were reported by Regional officer.
- 3.0 It was reported that the Consents to Operate (CTOs) from the Tamil Nadu Pollution Control Board (TNPCB) are obtained and renewed (RCTOs) periodically. RCTOs for the Cement Plant are 160824725855 (Air Act) & 160814725855 (Water Act) dated 02.08.2016 and for CPP are 160824727889 (Air Act) & 160814727889 (Water Act) dated 06.09.2016,
- 4.0 It was reported that RCL is manufacturing OPC and PPC cements at RR Nagar and dispatching by two double discharge packers with the capacity of 180 TPH each. There are 4 RCC Silos for storing the cement. The existing wagon loading system for cement is sufficient for load only 5 wagons at a time and it consumes more time for loading full racks. As per new Railway Loading Norms, the full rack (40 boxes) shall be loaded within 9 hours or otherwise it attracts heavy demerge charges and hampers future allotment of wagons by the Railway. The existing packers (2 Nos.) capacity is not sufficient to load full rack within 9 hours' time and thus, it requires to add 3td Packer of 120 TPH capacity. The addition of 3rd packer will help to manage efficiently to load different grades of Cement with different

types of packing material at a time which will also reduce the Trucks' Turnaround time and improve the dispatch logistics. Therefore, RCL is establishing a modernized Ware House at Tamil Nadu-Kerala Border to distribute cement in time to dealers in Kerala. Thus, it needs a Palletizing Unit with loading facility along with 3<sup>rd</sup>Packer proposal.

- 5.0 As such, RCL is proposing the addition of 3<sup>rd</sup>Packer of 120 TPH capacity, a dedicated 1000 Tons Steel Silo for Cement storage in addition to the existing 4 Nos. RCC Silos, the modification of extraction system in such a way that any packer can get cement from any silo, extending the existing wagon loading platform and loading shed for 700 m and a Palletizing Unit.
- 6.0 There is no increase in Clinker or Cement Production capacity; no additional water demand; no additional effluent generation; and no solid waste genrationdue to proposed addition of 3<sup>rd</sup>Packer. Air Pollution Control Devises has been installed and particulate matter levels will be <30 mg/Nm<sup>3</sup> from the Plant.
- 7.0 In the total extent of 70.96 Ha, an effective Green Belt has been developed in 25.00 Ha (35.23% Coverage) and maintained within the Plant and Township. Rain water is being harvested as Roof Top Collection in sumps and used as a raw water source. Surface Runoffs from Plant and Township are connected to a Storage Ponds and used for Green Belt development.
- 8.0 The proposal was considered by the Expert Appraisal Committee (Industry-I) during its 23<sup>rd</sup> meeting held on 9<sup>th</sup> to 10<sup>th</sup> October 2017. After detailed deliberations, the committee recommended the proposal for grant of Environmental Clearance subject to specific conditions along with other environmental conditions while considering for accord of Environmental Clearance by the ministry.
- M
- 9.0 The Ministry of Environment, Forest and Climate Change has considered the application based on the recommendations of the Expert Appraisal Committee (Industry-I) and hereby decided to grant Environmental Clearance for Addition of 3rd Packer Proposal in RCL Ramasamyraja Nagar Cement Plant located at Village Tulukkapatti, Taluk & District Virudhunagar, Tamil Nadu by M/s The Ramco Cements Limited under clause 7(ii) of EIA Notification. 2006, as amended, subject to strict compliance of the following Specific conditions:
  - The proposed Filer bag house for the 3<sup>rd</sup> packer shall be designed for 150% of the air flow rate. The filter bag shall be PTFE dipped PPS type
  - The project proponent shall carry out plantation on an additional area of 8 Ha with native species inter alia including plantation covering entire boundary.
- iii. The PP shall take suitable measures for control of fugitive dust.
- No change in the scope of the project shall be made without prior approval of the ministry.
- v. All the conditions prescribed in the environmental clearance letter No F. No. I-11011/119/2009 IA.II(I) dated 06.07.2009 shall be strictly complied with.
- 10.0 The Ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.

- 11.0 The Ministry reserves the right to stipulate additional conditions if found necessary.
  The Company in a time bound manner shall implement these conditions.
- 12.0 The project proponent shall abide by all the commitments and recommendations made in the EIA/EMP report and that during their presentation to the EAC.
- 13.0 The above conditions shall be enforced, inter-alia under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 and the Public Liability Insurance Act, 1991 along with their amendments and rules.

This issues with the approval of Competent Authority.

(Sharath Kumar Pallerla) Scientist 'F' / Director

# Copy to:-

- 1. The Secretary, Department of Environment, Government of Tamil Nadu, Chennai.
- The Additional Principal Chief Conservator of Forests(C). Ministry of Environment, Forest and Climate Change, Regional Office (SEZ), 1<sup>nt</sup> and 11<sup>nd</sup> Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai – 34.
- The Chairman, Central Pollution Control Board, Parivesh Bhawan, CBD-cum-Office Complex, East Arjun Nagar, Delhi-110032.
- The Chairman, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai- 600 032, Tamil Nadu.
- The Member Secretary. Central Ground Water Authority. A-2, W3, Curzon Road Barracks, K.G. Marg. New Delhi-110001.
- 6. The District Collector, Virudhunagar District, Tamil Nadu.
- Guard File / Record file / Monitoring file.
- 8. MOEF&CC Website.

(Sharath Kumar Pallerla) Scientist 'F'/Director ENVIRONMENTAL CLEARANCE

# Pro-Active and Responsive Facilitation by Interactive, and Virtuous Environment Single-Window Hub.



# Government of India Ministry of Environment, Forest and Climate Change (Impact Assessment Division)

To.

The President

RAMCO CEMENTS ENVIRONMENT

The Ramco Cements Limited 5th Floor Auras Corporate Centre 98A Dr Radhakrishnan Road Mylapore Chennai 60004, Chennai, Tamil Nadu-600004

Subject: Grant of Environmental Clearance (EC) to the proposed Project Activity

under the provision of EIA Notification 2006-regarding

Sir/Madam,

2.

4.

This is in reference to your application for Environmental Clearance (EC) in respect of project submitted to the Ministry vide proposal number IA/TN/IND/220866/2020 dated 15 Sep 2021. The particulars of the environmental clearance granted to the project are as below.

1. EC Identification No.

EC21A009TN169325 J-11011/119/2009.IA.II(I) File No.

Modernization 3. **Project Type** 

Category

5. Project/Activity including 3(b) Cement plants Schedule No.

6.

Name of Project Proposed Modernization & Expansion of Ramasamy Raja Nagar Cement Plant (proposed production Clinker 1.44 MTPA

& Cement 2.70 MTPA)

7. Name of Company/Organization RAMCO CEMENTS ENVIRONMENT

8. **Location of Project** Tamil Nadu 9. **TOR Date** 11 Nov 2020

The project details along with terms and conditions are appended herewith from page no 2 onwards.

(e-signed) Sundar Ramanathan Date: 25/10/2021 Scientist E IA - (Industrial Projects - 1 sector)



Note: A valid environmental clearance shall be one that has EC identification number & E-Sign generated from PARIVESH.Please quote identification number in all future correspondence.

This is a computer generated cover page.

This refers to your proposal no. IA/TN/IND/220866/2020 dated 15/09/2021 through Parivesh Portal for grant of Environmental Clearance (EC) for the project mentioned above.

- 2 As per the provisions of the Environment Impact Assessment (EIA) Notification, 2006, the above-mentioned project/activity is listed at schedule no. 3 (b) Cement Plants under Category "A" of the schedule of the EIA notification, 2006 and appraised at Central level.
- 3. Accordingly, the above-mentioned proposal has been considered by the Re-constituted EAC (Industry-I) in its 45th meeting held on 28th-29th September, 2021. The minutes of the meeting and all the project documents are available on PARIVESH portal which can be accessed at https://purivesh.nic.in/.
- The details of the proposal are as per the EIA report submitted by the proponent. The salient features of the expansion proposal as presented during the above-mentioned meeting of EAC (Industry 1) are as under: -

| S.No. | Particulars                                                        | Details                                                                                                                                                                                                                                   |
|-------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.   | Terms of Reference for<br>undertaking EIA study                    | 11/11/2020                                                                                                                                                                                                                                |
| b.    | Period of baseline data collection                                 | December 2019 - February 2020                                                                                                                                                                                                             |
| C,    | Date of Public Consultation                                        | 16/06/2021                                                                                                                                                                                                                                |
| ·d.   | Action plan to address the PH issues                               | In addition to EMP budget of Rs. 14.2 Crores (capital cost), an amount of Rs. 1277.84 lakhs have been earmarked to address the issues raised during public consultation and the issues based on Social Impact Assessment (SIA) conducted. |
| Ç.    | Location of the project                                            | Tulukkappatti, Thammanayakkanpatti &<br>Vachchakarapatti Villages Taluk & District<br>Virudhunagar, Tamil Nadu.                                                                                                                           |
| f.    | Latitude and Longitude of the project site                         | Latitude: 09°26'57" to 09°27'47" North<br>Longitude: 77°55'05" to 77°55'56" East                                                                                                                                                          |
| #     | Total land                                                         | 191.434 ha<br>(Existing Land: 191.434 ha + expansion Land:<br>0.00 ha)                                                                                                                                                                    |
| h.    | Land acquisition details as per<br>MoEF&CC O.M. dated 7/10/2014    | Proposed expansion will be carried out within the<br>existing project area of 191.434 ha. No additional<br>land is required for the proposed expansion and<br>modification.                                                               |
| 1.    | Existence of habitation & involvement of R&R, if any               | No R&R involved.                                                                                                                                                                                                                          |
| 1-    | Elevation of the project site                                      | 73-89 m AMSL                                                                                                                                                                                                                              |
| k.    | Involvement of Forest land if any                                  | No Forest Land is involved                                                                                                                                                                                                                |
| 1     | Water body exists within the<br>project site as well as study area | Project area: Nil  Study Area: Seasonal Arjuna River: 0.3 km in WSW) and Mannarkottai River: 2.0 km in Northeast)                                                                                                                         |
| m     | Existence of ESZ / ESA / national park / wildlife Sanctuary /      | NIL                                                                                                                                                                                                                                       |



| S.No. | Particulars                                                                                  | Details                                                                                                                           |
|-------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|       | biosphere Reserve / tiger reserve /<br>elephant reserve etc. if any within<br>the study area |                                                                                                                                   |
| D.    | Project cost                                                                                 | INR 300 Crores                                                                                                                    |
| 0;    | EMP cost                                                                                     | INR 14.2 Crores [INR 9.20 Crores (existing) and<br>INR 5.00 Crores (proposed expansion)]                                          |
| p.    | Employment opportunity                                                                       | 465 Nos                                                                                                                           |
| q.    | Water and Power requirement                                                                  | Water - 1180 m <sup>3</sup> /day (Existing), 1000 m <sup>3</sup> /day (Proposed)<br>Power - 22.34 MW (Existing), 33 MW (Proposed) |

# Unit configuration and capacity:

| S 1<br>No | Name    | Name Existing Units |                     | Proposes      | l Units             | Total<br>(Existing + Proposed) |                     |
|-----------|---------|---------------------|---------------------|---------------|---------------------|--------------------------------|---------------------|
|           |         | Configuration       | Production,<br>MTPA | Configuration | Production,<br>MTPA | Configuration                  | Production,<br>MTPA |
| 1         | Clinker | Lines [&H           | 1.09                | Lines I&II    | 0.35                | Lines 1&11                     | 1.44                |
| 2         | Cement  | Lines l&H           | 2.00                | Lines I&II    | 0.70                | Lines l&II                     | 2.70                |

- The Re-constituted EAC (Industry-I) EAC in its 45th meeting held on 28-29th September, 5. 2021, based on information & clarifications provided by the project proponent and after detailed deliberations recommended the proposal for grant of Environment Clearance subject to stipulation of specific and general conditions as detailed in the paragraph given below.
- The MoFF&CC has examined the proposal in accordance with the Environment Impact Assessment (EIA) Notification, 2006 & further amendments thereto and after accepting the recommendations of the Expert Appraisal Committee (Industry-1) hereby decided to grant Environment Clearance for instant proposal of M/s. The Rameo Cements Limited under the provisions of EIA Notification, 2006 subject to the following specific conditions and general conditions:

# A. Specific conditions

- Project proponent shall obtain Environment Clearance from the Competent Authority for proposed township expansion.
- ii. The 800 KLD water requirement for the project shall be met from ground water resource and 1000 KLD of water shall be met from Arjuna River. In the next three years from the date of issue of this E.C., PP shall switch over to use of treated sewage and harvested min water to meet 100 % of its ground water requirement as committed. Thereafter, no groundwater withdrawal will be permitted.
- iii. Waste oil generated from the existing and proposed cement plant expansion shall not be used as fuel in the kiln. It shall be handed over to the authorized recyclers in compliance to the provisions specified in Hazardous and Other Waste (M&TM) Rules, 2016.
- 64.50 ha of land shall be developed into green belt with a tree density of 2500 trees EV. per ha in a time frame of three years from date of grant of EC. This shall also include (i) land scape development without disturbing the natural stream and green belt development in southern part of the project site wherein two blocks are discontinued by a natural stream and (ii) green belt development with a width of



- 30 meters within the project site towards the villages namely Thammanaickenpatti (0.2 km in N), Vachchakarapatti (0.2 km in NNE) and Tulukkappatti (0.5 km in SE). In addition to this, gap filling shall be done in existing green belt developed area where tree density is only 1906 trees per ha.
- Particulate matter emissions from the existing and revamped production units shall :V25 be less than 20 mg/Nm<sup>1</sup> as committed by proponent.
- vi. Petcoke dosing shall be controlled automatically to control SO<sub>2</sub> emission from chimney within the prescribed limits.
- Co-processing of paint sludge and Oily sludge as done presently shall be continued VII Dioxin and furans shall be monitored twice a year and report shall be submitted to the Regional Office of the MoEF&CC.
- viii. Project proponent shall develop rainwater harvesting system as per the action plansubmitted in order to achieve the gradual shifting of ground water usage in next three years from the date of issue of this EC.

# B. General conditions

# Statutory compliance:

 The Environment Clearance (EC) grunted to the project/ activity is strictly under the provisions of the EIA Notification, 2006 and its amendments issued from time to time. It does not tantamount/ construe to approvals/ consent/ permissions etc... required to be obtained or standards/conditions to be followed under any other Acts/Rules/Subordinate legislations, etc., as may be applicable to the project.

# Air quality monitoring and preservation

- ii. The project proponent shall install 24x7 Continuous Emission Monitoring System (CEMS) at process stacks to monitor stack emission as well as 4 Nos. Continuous Ambient Air Quality Station (CAAQS) for monitoring AAQ parameters with respect to standards prescribed in Environment (Protection) Rules 1986 as amended from time to time. The CEMS and CAAQMS shall be connected to SPCB and CPCB online servers and calibrate these systems from time to time according to equipment supplier specification through labs recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories.
- iii. The project proponent shall monitor fugitive emissions in the plant premises at least once in every quarter through labs recognized under Environment (Protection) Act, 1986.
- iv. The project proponent shall provide leakage detection and mechanized bag cleaning facilities for better maintenance of bags.
- v. The project proponent shall ensure covered transportation and conveying of ore, coal and other raw material to prevent spillage and dust generation; Use closed bulkers for carrying fly ash;
- vi. The project proponent shall provide wind shelter fence and chemical spraying on the raw material stock piles;
- vii. Ventilation system shall be designed for adequate air changes as per the prevailing norms for all tunnels, motor houses, and cement bagging plants.

# III. Water quality monitoring and preservation

i. The project proponent shall install 24x7 continuous effluent monitoring system with respect to standards prescribed in Environment (Protection) Rules 1986 vide G.S.R. No. 612 (E) dated 25th August, 2014 (Cement) and subsequent amendment dated 9thMay, 2016 (Cement)and 10thMay, 2016(in case of Co-processing Cement)as



amended from time to time; S.O. 3305 (E) dated 70 December 2015 (Thermal Power Plants)as amended from time to time) and connected to SPCB and CPCB online servers and calibrate these system from time to time according to equipment supplier specification through labs recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories.

- ii. The project proponent shall regularly monitor ground water quality at least twice a year (pre- and post-monsoon) at sufficient numbers of piezometers/sampling wells in the plant and adjacent areas through labs recognized under Environment (Protection) Act, 1986 and NABL accredited laboratories:
- iii. Sewage Treatment Plant shall be provided for treatment of domestic wastewater to meet the prescribed standards.
- iv. Garland drains and collection pits shall be provided for each stock pile to arrest the run-off in the event of heavy rains and to check the water pollution due to surface run off
- Water meters shall be provided at the inlet to all unit processes in the cement plant.
- vi. The project proponent shall make efforts to minimize water consumption in the cement plant complex by segregation of used water, practicing cascade use and by recycling treated water.

# Noise monitoring and prevention

i. Noise quality shall be monitored as per the prescribed Noise Pollution (Regulation and Control) Rules, 2000 and report in this regard shall be submitted to Regional Officer of the Ministry as a part of six-monthly compliance report.

# Energy Conservation measures

- Waste heat recovery system shall be provided for kiln and cooler.
- ii. The project proponent makes efforts to achieve power consumption less than 65 units/ton for Portland Pozzolona Cement (PPC) and 85 units/ton for Ordinary Portland Cement (OPC) production and thermal energy consumption of 670 Kcal/Kg of clinker.
- iii. Provide solar power generation on roof tops of buildings, for solar light system for all common areas, street lights, parking around project area and maintain the same regularly.
  - iv. Provide the project proponent for LED lights in their offices and residential areas.

# Waste management

Used refractories shall be recycled as far as possible.

#### VII. Green Belt

 The project proponent shall prepare GHG emissions inventory for the plant and shall submit the program for reduction of the same including carbon sequestration by trees in the plant premises.

# VIII. Public hearing and Human health issues

- i. Emergency preparedness plan based on the Hazard identification and Risk Assessment (HIRA) and Disaster Management Plan shall be implemented.
- ii. The project proponent shall carry out heat stress analysis for the workmen who work in high temperature work zone and provide Personal Protection Equipment (PPE) as per the norms.



iii. Occupational health surveillance of the workers shall be done on a regular basis and records maintained.

# IX. Environment Management

- i. The project proponent shall comply with the provisions contained in this Ministry's OM vide F.No. 22-65/2017-IA.III dated 30/09/2020.
- ii. The company shall have a well laid down environmental policy duly approve by the Board of Directors. The environmental policy should prescribe for standard operating procedures to have proper checks and balances and to bring into focus any infringements/deviation/violation of the environmental / forest / wildlife norms / conditions. The company shall have defined system of reporting infringements / deviation / violation of the environmental / forest / wildlife norms / conditions and / or shareholders / stake holders. The copy of the board resolution in this regard shall be submitted to the MoEF&CC as a part of six-monthly report.
- iii. A separate Environmental Cell both at the project and company head quarter level, with qualified personnel shall be set up under the control of senior Executive, who will directly to the head of the organization.

# X. Miscellaneous

- i. The project proponent shall make public the environmental clearance granted for their project along with the environmental conditions and safeguards at their cost by prominently advertising it at least in two local newspapers of the District or State, of which one shall be in the vernacular language within seven days and in addition this shall also be displayed in the project proponent's website permanently.
- ii. The copies of the environmental clearance shall be submitted by the project proponents to the Heads of local bodies, Panchayats and Municipal Bodies in addition to the relevant offices of the Government who in turn has to display the same for 30 days from the date of receipt.
- iii. The project proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of monitored data on their website and update the same on half-yearly basis.
- The project proponent shall monitor the criteria pollutants level namely; PM<sub>10</sub>, SO<sub>2</sub> NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the projects and display the same at a convenient location for disclosure to the public and put on the website of the company.
- v. The project proponent shall submit six-monthly reports on the status of the compliance of the stipulated environmental conditions on the website of the ministry of Environment, Forest and Climate Change at environment clearance portal.
- vi. The project proponent shall submit the environmental statement for each financial year in Form-V to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently and put on the website of the company.
- vii. The project proponent shall inform the IntegratedRegional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities, commencing the land development work and start of production operation by the project.
- viii. The project proponent shall abide by all the commitments and recommendations made in the EIA/EMP report, commitment made during public hearing and also that during their presentation to the Expert Appraisal Committee.



- ix. No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forests and Climate Change (MoEF&CC).
- x. Concealing factual data or submission of false/fabricated data may result in revocation of this environmental clearance and attract action under the provisions of Environment (Protection) Act, 1986.
- xi. The Ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.
- xii. The Ministry reserves the right to stipulate additional conditions if found necessary. The Company in a time bound manner shall implement these conditions.
- xiii. The Regional Office of this Ministry shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / information/monitoring reports.
- xiv. Any appeal against this EC shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.
- This issues with the approval of the Competent Authority

Scientist 'E'

# Copy to:-

- 1. Secretary, Department of Environment, Government of Tamil Nadu Secretariat, Chennai.
- 2. Regional Officer, Ministry of Environment, Forest and Climate Change, Regional Office (SEZ), 1º and H<sup>rd</sup> Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai - 34.
- 3. Chairman, Central Pollution Control Board, Parivesh Bhawan, CBD-Cum-Office Complex, East Arjun Nagar, New Delhi-110 032.
- 4. Chairman, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai- 600 032. Tamil Nadu.
- Member Secretary, Central Ground Water Authority, West Block -II, Wing -3, Sector I. R.K.Puram, New Delhi - 110086.
- District Collector, District Virudhunagar, Government of Tamil Nadu.
- Guard File/Record File/Monitoring File.
- 8. MoEF&CC Website

(Sundar Ramana

Scientist 'E'

Digitally signed by Sundar Ramanathan

By Registered With Ack Doc-2 Consent Orders

(This document contains 5 pages)





# TAMILNADU POLLUTION CONTROL BOARD

CONSENT ORDER No: 5204 (Expansion)/DATED:03.12.2009

# PROCEEDINGS NO: T6/TNPCB/F-38120/VDR/RL/W/2009 DATED: 03.12.2009

Sub: TNPC Board-Consent for Establishment – M/s. Madras Cements Limited., S.F. No.6.9 & 10 Thulukkapatti Village, Virudhunagar Taluk, Virudhunagar District– for establishment or take steps to establish the industry under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974, as amended in 1988 (Central Act 53 of 1988) (For enhanced capacity).

Ref: 1. Your Application No: 0922 dated: 29.07.2009.

2 IR No: F.VDR0001/RL/DEE/VDR/2009 dt: 10:09:2009.

3. Sub Committee meeting held on 24.11.2009 vide TSC Item No: 47-07

\*\*\*\*\*\*\*

Consent to establish or take steps to establish is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974, as amended in 1988 (Central Act 53 of 1988) (hereinafter referred to as 'The Act') and the Rules and Orders made there under to

> The Vice President (Mfg), M/s. Madras Cements Limited

(herein after referred to as 'The Applicant') authorizing him to establish or take steps to establish the industry in the site mentioned below:

> S. F. No.6,9 & 10 Thulukkapatti Village, Virudhunagar Taluk, Virudhunagar District



# TAMILNADU POLLUTION CONTROL BOARD

This Consent to establish is valid for two years, or till the industry obtains consent to operate Section 25 of the Water (Prevention and Control of Pollution) Act, 1974, as amended in 1988 whichever is earlier subject to special and general conditions enclosed.

Sd./-xxxxxx, MEMBER SECRETARY.

To

The Vice President (Mfg),
M/s.Madras Cements Limited,
Ramasamyraja Nagar,
Virudunagar District
Pin: 626 204

# Copy to:

- The District Environmental Engineer, Tamil Nadu Pollution Control Board, Virudunagar District.
- The Commissioner,
   Virudunagar Panchayat Union,
   Virudunagar District.
- 3. BMS
- 4. Technical File.

//Forwarded By Order//

for MEMBER SECRETARY.

LG 8 12 09



# TAMILNADU POLLUTION CONTROL BOARD SPECIAL CONDITIONS

1 This consent to establish is valid for establishing the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/ byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| St No | . Description     | Quantity /Month         |
|-------|-------------------|-------------------------|
|       | Products : Cement | 6200 T/day(or) 2.0 MTPA |
|       |                   | (With addition of       |
|       | Byproduct -       | 0.30 MTPA Cement Mill)  |
|       |                   | *                       |

This consent to establish is valid for establishing the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets has to be brought to the notice of the Board and fresh consent has to be obtained if necessary.

| Outlet<br>No. | Description of Outlet | Maximum daily<br>discharge in KLD | Point of disposal            |
|---------------|-----------------------|-----------------------------------|------------------------------|
| 01.           | Sewage                | 100.00                            | On Industry's own land for   |
| 02.           | Trade effluent        | 10.00                             | Reused for equipment cooling |

The unit shall provide Sewage Treatment Plant and /or Effluent Treatment Plant as indicated below:

| SI.<br>No. | Name of the treatment unit                                                         | Dimension in M                                                      | No. of units                           |
|------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|
| 01.        | STP: Bar screen FAB Reactors Tube Settler Chlorine Contact Tank Sludge Drying beds | 1.3 m dia x 6 0m<br>1.90x1.90x3.84m<br>1.30x3.90x1.0m<br>5.0 x 5.0m | 1 No<br>2 Nos<br>1 No<br>1 No<br>2 Nos |
| 02.        | ETP:<br>Neutralization tank                                                        | Adequate size                                                       |                                        |





CONSENT ORDER NO:5145/(Expansion)DATED:03.12.2009

PROCEEDINGS NO: T6/TNPCB/F-38120/VDR/RL/A/2009 DATED : 03 .12.2009

Sub: TNPC Board-Consent for Establishment – M/s. Madras Cements Limited., S.F. No.6,9 & 10 Thulukkapatti Village, Virudhunagar Taluk, Virudhunagar District - for the establishment or take steps to establish the industry under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981, as amended in 1987. (for enhanced capacity).

Ref: 1. Your Application No: 1922 dated: 29.07.2009.

IR No. F.VDR0001/RL/DEE/VDR/2009 dated. 10.09.2009.

3. Sub Committee meeting held on 24.11.2009 vide TSC Item No: 47-07.

Consent to establish or take steps to establish is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act. 1981, as amended in 1987 and the Rules and Orders made there under to

> The Vice President (Mfg), M/s. Madras Cements Limited

(herein after referred to as 'The Applicant') authorizing him to establish or take steps to establish the industry in the site mentioned below:

S. F. No.6,9 & 10 Thulukkapatti Village, Virudhunagar Taluk, Virudhunagar District



This Consent to establish is valid for two years, or till the industry obtains consent to operate under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981, as amended in 1987 whichever is earlier subject to special and general conditions enclosed.

Sd /-xxxxxx, MEMBER SECRETARY.

To

The Vice President (Mfg).

M/s.Madras Cements Limited,

Ramasamyraja Nagar,

Virudunagar District

Pin: 626 204.

Copy to:

- The District Environmental Engineer, Tamil Nadu Pollution Control Board, Virudunagar District.
- The Commissioner,
   Virudunagar Panchayat Union,
   Virudunagar District.
- 3. BMS
- 4. Technical File.

//Forwarded By Order//

for MEMBER SECRETARY.

G 8 12:00



# TAMILNADU POLLUTION CONTROL BOARD SPECIAL CONDITIONS

 This consent to establish is valid for establishing the facility for the manufacture of products/byproducts (Coi. 2) at the rate (Coi 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| SI. | Description     | Quantity /Month                                                         |
|-----|-----------------|-------------------------------------------------------------------------|
| No  |                 |                                                                         |
| Pro | oducts : Cement | 6200 Tiday (or) 2.0 MTPA<br>(With addition of<br>0.30 MTPA Cement Mill) |
| Ву  | product         |                                                                         |

This consent to establish is valid for establishing the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent has to be obtained if necessary.

| SI.<br>No | Source        | Air pollution Control measures                                     | Stack<br>height<br>in m | Additional facilities to be provided | Maximum<br>discharge in<br>m3/Hr |
|-----------|---------------|--------------------------------------------------------------------|-------------------------|--------------------------------------|----------------------------------|
| 01.       | Point source] | Englosed in Annexure                                               |                         | 2                                    |                                  |
| 02.       | Fugitive ]    | Englosed in Annexure                                               |                         |                                      |                                  |
| 03.       | Noise         | Adequate acoustic measures to be provided in the Industrial plant. |                         |                                      |                                  |

#### 3. Additional conditions:

 The unit shall provide adequate Air Pollution Control measures to all the sources of emission as reported before commissioning of expansion so as to achieve the Ambient Air Quality / Emission standards prescribed by the Board.







#### CONSENT ORDER No. 18354 DATED 03.01.2011

## Proceedings No.T6/TNPCB/F-5747/VDR/RL/A/2011 Dated 03.01.2011

Consent for New operation of the plant under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended (Expansion)

Sub: TAMIL NADU POLLUTION CONTROL BOARD - CONSENT - M/s.

MADRAS CEMENTS LIMITED, Cement Plant, S.F. No.6,9 & 10,

Thulukkapatti Village, Virudhunagar Taluk, Virudhunagar District - for
the New operation of the plant under Section 21 of the Air
(Prevention and Control of Pollution) Act, 1981 as amended.

- Ref: 1. Your Application No.0922 Dated 29.07.2009.
  - Proc. No.T6/TNPCB/F-38120/VDR/RL/A/2009 Dated 03.12.2009.
  - 3. I.R. No.F-VDR-0001/URL/DEE/VDR/2010 Dated 20.10.2010.
  - 4. CCC Item No. 107-14 Dated 28 12:2010.

CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended. (Central Act, 14 of 1981) as amended (hereinafter referred to as 'The Act') and the rules and orders made there under to

The Vice President (Manufacturing),
M/s. Madras Cements Limited,
Cement Plant,
S.F. No.6,9 & 10, Thulukkapatti Village,
Virudhunagar Taluk,
Virudhunagar District.

(hereinafter referred to as 'The Applicant') authorising him to operate his industrial plant in the Air Pollution Control Area as notified by the Government and to make new discharge of emission from the stacks/chimneys.



TAMILNADU POLLUTION CONTROL BOARD

This is subject to the provision of the Act and the rules and orders made there under and further subject to the terms and conditions incorporated in the Special and General Conditions annexed.

This CONSENT is valid for a period ending with the 31.03.2011

Sd./- xxxxx Member Secretary.

To/

√The Vice President (Manufacturing), M/s Madras Cements Limited, Ramasamyraja Nagar, Virudhunagar District, Pincode: 626 204.

### Copy to:

- The District Environmental Engineer, Tamil Nadu Pollution Control Board, Virudhunagar District.
- The Commissioner, Virudhunagar Parichayat Union, Virudhunagar District.
- 3. BMS.
- 4. Technical File.

/Forwarded by Order/

for Member Secretary.

16/01



#### SPECIAL CONDITIONS

Details of the products manufactured

| SI. No | Description      | Quantity/Month                                                        |
|--------|------------------|-----------------------------------------------------------------------|
|        | Products: Cement | 6200 T/day (or) 2.00 MTPA<br>(with addition of 0.30 MTPA Cement Mill) |
|        | By-product:      |                                                                       |

This consent is valid for the manufacture of Products and the rate of production mentioned above. Any change in the quantity or quality of the products has to be brought to the notice of the Board and fresh Consent has to be obtained.

 Emission is permitted through the following chimneys / stacks and shall not exceed the figures indicated:

| Chimney<br>/ stack<br>Number | Description of chimney / stack | Maximum<br>discharge<br>(in m3/hour) | Point of<br>Discharge<br>(Height) in<br>metres |
|------------------------------|--------------------------------|--------------------------------------|------------------------------------------------|
|                              | Enclosed in Annexu             | re - l                               |                                                |

 (a) The emissions shall not contain constituents in excess of the tolerance limits as laid down hereunder.'

| SI.        | W-12 (17 (17 (17 (17 (17 (17 (17 (17 (17 (17 | ***** | Tolerance limit for Chimney / Stac                         |   |       |      |   | k Number |  |
|------------|----------------------------------------------|-------|------------------------------------------------------------|---|-------|------|---|----------|--|
| SI.<br>No. | Parameter                                    | Unit  | 1                                                          | 2 | 3     | 4    | 5 | 6        |  |
| 1          | SO.                                          |       |                                                            |   |       |      |   |          |  |
| 2          | co                                           | The   | The unit shall comply with the standards prescribed by the |   |       |      |   |          |  |
| 3          | NOx                                          |       | Board from time to time.                                   |   |       |      |   |          |  |
| 4          | COM                                          |       |                                                            |   |       |      |   |          |  |
| 1.0        | III rive in the                              |       |                                                            |   | 50 mg | /Nm³ |   | 1000     |  |







#### CONSENT ORDER No.22318 DATED 03.01.2011

## Proceedings No.T6/TNPCB/F-5747/VDR/RL/W/2011 Dated 03.01.2011

Consent for New discharge of sewage under section 25 of the Water (Prevention and Control of Pollution) Act, 1974, as amended

Sub: TAMIL NADU POLLUTION CONTROL BOARD – CONSENT – M/s.
MADRAS CEMENTS LIMITED, Cement Plant, S.F. No.5,9 & 10,
Thulukkapatti Village, Virudhunagar Taluk, Virudhunagar District – for the discharge of sewage under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 (Central Act, 6 of 1974) as amended.

- Ref: 1. Your Application No.0922 Dated 29.07.2009.
  - Proc. No T6/TNPCB/F-38120/VDR/RL/W/2009 Dated 03.12.2009.
  - I.R. No.F-VDR-0001/URL/DEE/VDR/2010 Dated 20:10:2010.
  - 4 CCC Item No 107-14 Dated 28 12 2010

CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution Act, 1974 (Central Act 6 of 1974) as amended (hereinafter referred to as 'The Act') and the rules and orders made there under to

The Vice President (Manufacturing),
M/s. Madras Cements Limited,
Cement Plant,
S.F. No.6,9 & 10, Thulukkapatti Village,
Virudhunagar Taluk,
Virudhunagar District.

(hereinafter referred to as 'The Applicant') Authorizing him to make new discharge of sewage and trade effluent.



This is subject to the provisions of the Act and the rules and orders made thereunder and further subject to the terms and conditions incorporated in the Special and General Conditions annexed.

This CONSENT is valid for a period ending with the 31.03.2011

LOTED IS IT (F)

Sd./- xxxxx Member Secretary.

The Vice President (Manufacturing), M/s. Madras Cements Limited, Ramasamyraja Nagar, Virudhunagar District,

Pincode: 626 204

## Copy to:

To

- The District Environmental Engineer, Tamil Nadu Pollution Control Board, Virudhunagar District.
- The Commissioner, Virudhunagar Panchayat Union, Virudhunagar District.
- 3 BMS
- 4. Technical File.

/Forwarded by Order/

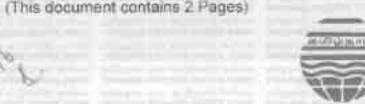
for Member Secretary.



#### SPECIAL CONDITIONS

Details of the products manufactured

| SI. No | De          | escription | Quantity/Month                                                       |
|--------|-------------|------------|----------------------------------------------------------------------|
|        | Products:   | Cement     | 6200 T/day (or) 2.0 MTPA<br>(with addition of 0.30 MTPA Cement Mill) |
|        | By-product: |            |                                                                      |


This consent is valid for the manufacture of Products and the rate of production mentioned above. Any change in the quantity or quality of the products has to be brought to the notice of the Board and fresh Consent has to be obtained.

Discharge of effluent is permitted from the following outlets. The quantity of effluent discharged shall not exceed the figures mentioned below:

| Outlet<br>Number | Description of Outlet | Maximum<br>Discharge<br>(in<br>litres/day) | Point of Disposal                                         |
|------------------|-----------------------|--------------------------------------------|-----------------------------------------------------------|
| 1                | Sewage                | 100000                                     | On Industry's own land for gardening and cooling purposes |
| 2.               | Trade Effluent        | Nil                                        | Does not arise                                            |

 The effluent discharge shall not contain constituents in excess of the tolerance limits as laid down hereunder.

| Characteristics                          |                                                         |                                                                             | nce Limits<br>tiet No.                                                                       |  |
|------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| 2                                        | 3                                                       | 4                                                                           |                                                                                              |  |
|                                          |                                                         | 1                                                                           |                                                                                              |  |
| pH                                       | Number                                                  | 5.5 - 9.0                                                                   | ANT TOTAL                                                                                    |  |
| Temperature                              | °C                                                      |                                                                             |                                                                                              |  |
| Particles size of Total Suspended solids | mm/micron                                               |                                                                             |                                                                                              |  |
| Total Suspended Solids                   | mg/1                                                    | 30                                                                          |                                                                                              |  |
|                                          | pH Temperature Particles size of Total Suspended solids | pH Number Temperature °C Particles size of Total Suspended mm/micron solids | 2 3  pH Number 5.5 – 9.0  Temperature °C  Particles size of Total Suspended mm/micron solids |  |





#### RENEWAL OF CONSENT ORDER No.16831

#### Proceeding No.T6/TNPCB/F-5747/VNR/RL/A/2011 Dated 09.05.2011

Consent for Existing operation of the plant under Section 21 of the Air (Prevention and Control of Pollution) Act. 1981

> Sub: TAMIL NADU POLLUTION CONTROL BOARD - RENEWAL OF CONSENT - M/s MADRAS CEMENTS LIMITED, Ramasamy Raja Nagar, R.S. No.4.5,6.9.10.etc of Thulukkapatti. Village, Virudunagar. Taluk, Virudunagar District - for the existing Operation of the plant under Section 21 of the Air (Prevention and Control of Pollution) Act. 1981

Ref: 1 Proc No T6/TNPCB/F-5747/VNR/A/2009 Dated 23 04 2009

- Proc. No.T6/TNPCB/F-5747/VNR/A/2010 Dated 10.05.2010.
- 3 I.R. No F-VDR-0001/RL/DEE/VDR/2011 Dated 12:04:2011

CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 (Central Act 14 of 1981) (bereinafter referred to as "The Act") and the rules and orders made there under to

The Senior General Manager:

M/s Madras Cements Limited,

Ramasamy Raja Nagar

R.S.No. 4,5,6,9,10,etc of Thulukkapatti Village,

Virudunagar Taluk.

Virudunagar District:

(herein after referred to as "The Applicant") authorizing him /them to operate his/her, their industrial plant in the air pollution control area as notified by the Government and to continue to make existing discharge emissions from the stacks / chimneys.

This is subject to the provisions of the Act. And the rules and order made there under and further subject to the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued in this Office Proceedings cited above and subject to the following conditions.



- The unit shall operate all the Air Pollution Control measures efficiently and continuously so as to achieve the revised emission Ambient Air Quality standards as per Ministry of Environment and Forest.
- The unit shall connect the online stack monitoring system to CARE AIR CENTRE before 31.05.2011 and report to the Board.
- 3. The unit shall store the raw materials in a closed shed.
- The unit shall improve the Air Pollution Control measures to arrest the fugitive emission in the coal clinker and cement handling area.
- 5. The unit shall improve the house keeping.

The CONSENT is valid for the period ending 31.03.2012

SET COLOR DE DICEST

(Thirty First March Two Thousand and Twelve)

Sd./- xxxxx Chairman.

To

The Senior General Manager, M/s. Madras Cements Limited, Ramasamyraja Nagar Post. Virudunagar District – 626 204

#### Copy to:

- The District Environmental Engineer. Tamil Nadu Pollution Control Board. Virudunagar District.
- The Commissioner, Thulukkapatti Panchayat Union. Virudunagar District.
- 3 BMS:
- Technical File.

/Forwarded by Order/

for Chairman.

**在777日 05.11** 







## RENEWAL OF CONSENT ORDER No. 20796

#### Proceeding No.T6/TNPCB/F-5747/VNR/RL/W/2011 Dated 09.05.2011

Consent for Existing discharge of sewage and trade effluents under Section 25 of the Water (Prevention and Control of Pollution) Act. 1974

Sub: TAMIL NADU POLLUTION CONTROL BOARD - RENEWAL OF CONSENT - M/s. MADRAS CEMENTS LIMITED, Ramasamy Raja Nagar. R.S. No. 4.5.6.9,10,etc of Thulukkapatti. Village, Virudunagar. Taluk, Virudunagar District - Discharge of sewage and trade effluent under Section 25 of the Water (Prevention and Control of Pollution). Act. 1974. (Central Act. 6 of 1974).

Ref: 1 Proc No:T6/TNPCB/F-5747/VNR/W/2009 Dated 23:04:2009

2 Proc No.T6/TNPCB/F-5747/VNR/W/2010 Dated 10.05.2010.

3 I.R. No F-VDR-0001/RL/DEE/VDR/2011 Dated 12:04:2011.

CONSENT is hereby granted under Section 25 of the Water (Prevention and control of Pollution) Act, 1974 (Central Act 6 of 1974) (herein after referred to as "The Act") and the rules and orders made there under to

The Senior General Manager,

M/s Madras Cements Limited,

Ramasamy Raja Nagar,

R.S.No. 4.5.6.9, 10 etc of Thulukkapath Village,

Virudunagar Taluk,

Virudunagar District.

(herein after referred to as "The Applicant") authorizing him to continue to discharge of sewage and / or trade effluent.



This is subject to the provisions of the Act. And the rules and order made there under and further subject to the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued in this Office Proceedings cited above and subject to the following conditions.

- The unit shall ensure that no trade effluent is generated at any stage of the manufacturing process.
- The unit shall improve house keeping.

The CONSENT is valid for the period ending 31.03.2012

STLO LD IS II (F)

(Thirty First March Two Thousand and Twelve)

Sd./- xxxxx Chairman.

To

The Senior General Manager, M/s. Madras Cements Limited, Ramasamyraja Nagar Post, Virudunagar District – 626 264

#### Copy to:

- The District Environmental Engineer. Tamil Nadu Pollution Control Board. Virudunager District.
- The Commissioner, Thulukkapatti Panchayat Union. Virudunagar District.
- 3 BMS:
- 4. Technical File.

/Forwarded by Order/

for Chairman.

ET118.05.11





#### RENEWAL OF CONSENT ORDER No 20796

#### Proceeding No. T10/TNPCB/F-5747/VDR/URL/W/2013 Dated: 29.01.2013

Consent for Existing discharge of sewage and trade effluents under Section 25 of the Act 1974, Water (P & CP) Act, 1974 (Central Act. 6 of 1974)

Sub: TAMIL NADU POLLUTION CONTROL BOARD - RENEWAL OF CONSENT -M/s. Madras Cements Limited, Ramasamy Raja Nagar, R.S.No. 4, 5, 6, 9, 10, etc of Thulukkapatti Village, Virudunagar Taluk, Virudunagar District - Discharge of sewage and trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 (Central Act. 6 of 1974)

Ref: 1) Proc No.T6 /TNPCB/F-5747 /VNR/W/2010 Dt. 10.05.2010

- Proc No.T6 /TNPCB/F-5747 /VNR/RL/W/2011 Dt. 09.05.2011
- 3) Proc No.T6 /TNPCB/F-5747 /VNR/URL/W/2012 Dt.29.06:2012

\*\*\*\*\*

CONSENT is hereby granted under Section 25 of the Water (Prevention and control of Pollution) Act, 1974 (Central Act 6 of 1974) (herein after referred to as "The Act") and the rules and orders made there under to

The Senior General Manager,
M/s. Madras Cements Limited,
Ramasamy Raja Nagar,
R.S.No. 4,5,6,9,10,etc of Thulukkapatti Village,
Virudunagar Taluk,
Virudunagar District

(herein after referred to as "The Applicant") authorizing him to continue to discharge of sewage and trade effluent.



This is subject to the provisions of the Act. And the rules and order made there under and further subject to the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued in this Office Proceedings cited above

The CONSENT is valid for the period ending 31.03.2013

(Thirty First March Two Thousand Thirteen)

Sd./-xxxxxx; Chairman

Τo

The Senior General Manager, M/s. Madras Cements Limited, Ramasamyraja Nagar Post, Virudunagar District -626 1204

#### Copy to :-

- The District Environmental Engineer
   Tamilnadu Pollution Control Board
   Virudunagar District
- The Commissioner,
   Thulukkapatti Panchayat Union,
   Virudunagar District.
- 3. BMS
- 4. Technical File.

//Forwarded By Order//

for Chairman.

LG 31.1.2013





#### RENEWAL OF CONSENT ORDER No. 16831

#### Proceeding No. T10/TNPCB/F-5747/VDR/URL/A/2013 Dated: 29.01.2013

Consent for Existing operation of the plant under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981.

Sub: TAMIL NADU POLLUTION CONTROL BOARD - RENEWAL OF
CONSENT - M/s. Madras Cements Limited, Ramasamy Raja Nagar,
R.S.No. 4,5,6,9,10,etc of Thulukkapatti Village, Virudunagar
Taluk, Virudunagar District - for the existing Operation of the plant under
Section 21 of the Air (Prevention and Control of Pollution) Act, 1981

Ref: 1) Proc No.T6 /TNPCB/F-5747 /VNR/A/2010 Dt. 10.05.2010

- 2) Proc No. T6 /TNPCB/F-5747 /VNR/RL/A/2011 Dt. 09.05 2011
- 3) Proc No. T6 /TNPCB/F-5747 /VNR/URL/A/2012 Dt 29:06:2012

CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Senior General Manager,
M/s. Madras Cements Limited,
Ramasamy Raja Nagar,
R.S.No. 4,5,6,9,10,etc of Thulukkapatti Village,
Virudunagar Taluk,
Virudunagar District

(herein after referred to as "The Applicant") authorizing him to operate his industrial plant in the air pollution control area as notified by the Government and to continue to make existing discharge emissions from the stacks / chimneys.



This is subject to the provisions of the Act. And the rules and order made there under and further subject to the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued in this Office Proceedings cited above and subject to the following conditions.

 The unit shall operate and maintain the Air Pollution Control measures efficiently and continuously so as to achieve the revised Ambient Air Quality/Emission standards as per Ministry of Environment and Forest Notification dated 16.11.2009

The CONSENT is valid for the period ending 31.03.2013

(Thirty First March Two Thousand Thirteen)

Sd./-xxxxxx, Chairman

To

The Senior General Manager, M/s. Madras Cements Limited, Ramasamyraja Nagar Post, Virudunagar District -626204

#### Copy to -

- The District Environmental Engineer Tamilnadu Pollution Control Board Virudunagar District
- The Commissioner, Thulukkapatti Panchayat Union, Virudunagar District.
- 3. BMS
- 4. Technical File.

//Forwarded By Order//

for Chairman

1/2/15





# RENEWAL OF CONSENT ORDER No. 20796 Proceeding No. T10/TNPCB/F-5747/VDR/URL/W/2013 Dated: 21.06.2013

Consent for Existing discharge of sewage under Section 25 of the Act 1974, Water (P & CP)

Sub: TAMIL NADU POLLUTION CONTROL BOARD - RENEWAL OF CONSENT - M/S. MADRAS CEMENTS LIMITED, Ramasamy Raja Nagar, R.S. No. 4, 5, 6, 9, 10, etc of Thulukkapatti Village, Virudunagar Taluk, Virudunagar District Discharge of sewage under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 (Central Act, 6 of 1974)

Ref: 1) Proc No. T10/TNPCB/F-5747//DR/URL/W/2013 Dated: 29 ,01.2013

RIR No. F. VDR0001/UL/JCEE (M)/MDU/2013 Dated: 16:04:2013.

CONSENT is hereby granted under Section 25 of the Water (Prevention and control of Pollution) Act, 1974 (Central Act 6 of 1974) (herein lafter referred to as "The Act") and the rules and orders made there under to

The Senior General Manager,

MIS. MADRAS CEMENTS LIMITED,

Ramasamy Raja Nagar,

R.S.No. 4, 5, 6, 9, 10, etc of Thulukkapatti Village,

Virudunagar Taluk,

Virudunagar District.

(herein after referred to as "The Applicant") authorizing him to continue to discharge of sewage.



This is subject to the provisions of the Act. And the rules and order made there under and further subject to the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued in this Office Proceedings cited above and subject to the following conditions.

 The unit shall operate and maintain the sewage treatment plant to achieve the standards prescribed by Board.

The CONSENT is valid for the period ending 31.03.2014
(Thirty First March Two Thousand and Fourteen)

Dated: 21.08.2013

Sd-xxxxx Chairman

Τo

√The Senior General Manager, M/s. Madras Cements Limited, Ramasamyraja Nagar Post, Virudunagar District - 626204.

#### Copy to

- The District Environmental Engineer, Ternil Nadu Pollution control Board, Virudunagar District.
- The Commissioner, Thulukkapatti Panchayat Union, Virudunagar District.
- BMS.
- 4. Technical File.

//Forwarded by Order//

<u>g</u>

S.NJ 27.06.2013

By Registered Post with Acknowledgement Due (This document contains ...2... Pages)





# TAMILNADU POLLUTION CONTROL BOARD

# RENEWAL OF CONSENT ORDER No. 16831 Proceeding No. T10/TNPCB/F-5747/VDR/URL/A/2013 Dated: 21.06,2013

Consent for Existing operation of the plant under Section 21 of the Air (Prevention and Control of Poliution) Act, 1981.

Sub: TAMIL NADU POLLUTION CONTROL BOARD - RENEWAL OF CONSENT - M/S. MADRAS CEMENTS LIMITED, Ramasamy Raja Nagar, R.S.No. 4,5,6,9,10,etc of Thulukkapatti Village, Virudunagar Taluk, Virudunagar District for the existing Operation of the plant under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981.

Ref: 1) Proc No. T10/TNPCB/F-5747/VDR/URL/A/2013 Dated: 29 .01.2013

RIR No.F. VDR0001/UL/JCEE (M)/MDU/2013 Dated: 16.04.2013.

CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Senior General Manager,

M/S. MADRAS CEMENTS LIMITED,

Ramasamy Raja Nagar,

R.S.No. 4, 5, 6, 9, 10, etc of Thulukkapatti Village,

Virudunagar Taluk,

(herein after referred to as "The Applicant") authorizing him to operate his industrial plant in the air pollution control area as notified by the Government and to continue to make existing discharge emissions from the stacks / chimneys.

Virudunagar District.



This is subject to the provisions of the Act. And the rules and order made there under and further subject to the terms and conditions incorporated under the Special—and General conditions stipulated in the Consent Order issued in this Office Proceedings cited above and subject to the following conditions.

- The unit shall operate and maintain the Air Pollution Control measures efficiently and continuously so as to achieve the Ambient Air Quality/Emission standards prescribed by Board.
- The unit shall maintain the online stack monitoring system connected with CARE Air Centre and online display board installed in the main entrance of the unit efficiently
- The unit shall install a continuous Ambient Air Quality Monitoring station covering the predominant wind direction and connect it with Care Air Centre.
- The unit shall continue to develop green belt more in and around the premises.

The CONSENT is valid for the period ending 31.03.2014
(Thirty First March Two Thousand and Fourteen)

Dated: 21.06.2013.

Sd-xxxxx Chairman

To
The Senior General Manager,
M/s. Madras Cements Limited,
Ramasamyraja Nagar Post,
Virudunagar District - 626204.

#### Copy to

- The District Environmental Engineer, Tamil Nadu Pollution control Board, Virudunagar District
- 2 The Commissioner, Thulukkapatti Panchayat Union, Virudunagar District.
- BMS.
- 4. Technical File.

//Forwarded by Order//

For ettatogram

S.N/ 27.86.2013

By Registered Post with Acknowledgement Due GMCHI) St Manager ms (This document contains 2 Pages)





# TAMILNADU POLLUTION CONTROL BOARD

#### RENEWAL OF CONSENT ORDER No. 18354

#### Proceeding No. T10/TNPCB/F-5747/VDR/URL/A/2014 Dated: 11.09.2014

Consent for Existing operation of the plant under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981.

Sub: TAMIL NADU POLLUTION CONTROL BOARD - RENEWAL OF CONSENT - M/S. THE RAMCO CEMENTS LIMITED, Ramasamy Raia Nagar, R.S.No. 4,5,6,9,10,etc of Thulukkapatti Village, Virudunagar Taluk, Virudunagar District -for the existing Operation of the plant under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981

Ref: 1. Proceeding No. T10/TNPCB/F-5747/VDR/URL/A/2013 Dated: 29.01.2013

- IR No.F.VDR0001/UL/JCEE(M)/MDU/2014 Dated:28,03.2014
- 3. Unit's Letter Dated 02 09 2014
- Proceeding No. T10/TNPCB/F-5747/VDR/URL/A/2014-1 Dated 11.09.2014

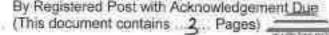
\*\*\*\*\*\*

CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

> The Director, IM/S. THE RAMCO CEMENTS LIMITED. Ramasamy Raja Nagar R.S.No. 4,5,6,9,10 etc of Thulukkapatti Village, Virudunagar Taluk, Virudunagar District

(herein after referred to as "The Applicant") authorizing him to operate his industrial plant in the air pollution control area as notified by the Government and to continue to make existing discharge emissions from the stacks / chimneys.




This is subject to the provisions of the Act. And the rules and order made there under and further subject to the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued in this Office Proceedings cited above and subject to the following conditions.

- 1) The unit shall operate and maintain the APC measures efficiently and continuously so as to achieve the Ambient Air Quality/Emission standards prescribed by Board. The unit shall maintain the online stack monitoring system connected with CARE Air Centre and online display board installed in the main entrance of the unit efficiently.
- The unit shall provide online monitors for emission parameters NOx and SO<sub>2</sub> and effluent parameters pH, BOD and TSS and connect to CARE AIR Centre, TNPCB, Chenna.
- Performance evolution of Effluent Treatment Plant (APC measures will be based on the report of analysis of TNPC Board Lab.
- 4) The unit shall furnish Bank Guarantee of Rs. 10 Lakhs (Rupees Ten Lakhs only) for one year favoring Tamil Nadu Pollution Control Board, Chennal for the compliance of condition No. 3, 4, 5 of Water Act of compliances of condition no. 2 of Air Act.

The CONSENT is valid for the period ending 31,03,2015 (Thirty First March Two Thousand Fifteen)

> Sd/xxxx Chairman

To







# RENEWAL OF CONSENT ORDER No. 22318 Proceeding No. T10/TNPCB/F-5747/VDR/URL/W/2014 Dated: 11.09.2014

Consent for Existing discharge of sewage and trade effluents under Section 25 of the Act 1974, Water (P & CP) Act, 1974 (Central Act, 6 of 1974)

Sub: TAMIL NADU POLLUTION CONTROL BOARD - RENEWAL OF CONSENT - M/S. THE RAMICO CEMENTS LIMITED, Ramesamy Raja Nagar, R. S. No. 4, 5, 6, 9, 10, etc of Thulukkapatti Viilage, Virudunegar Taluk, Virudunegar District - Discharge of sewage and trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 (Central Act. 6 of 1974)

Ref: 1. Proceeding No. T10/TNPCB/F-5747/VDR/URL/V1/2013 Dated: 29.01.2013

IR No.F.VDR0001/UL/JCEE(M)/MDU/2014 Dated: 28.03.2014

Unit's Letter Dated: 02.09.2014

Proceeding No. T10/TNPCB/F-5747/VDR/URL/W/2014-1Dated: 11.09.2014

\*\*\*\*\*

CONSENT is hereby granted under Section 25 of the Water (Prevention and control of Pollution) Act, 1974 (Central Act 6 of 1974) therein after referred to as "The Act") and the rules and orders made there under to

The Director,
M/S. THE RAMCO CEMENTS LIMITED,
Ramasamy Raja Nagar,
R. S. No. 4,5,6,9,10,etc of Thulukkapatti Village,
Virudunagar Taluk,
Virudunagar District

(herein after referred to as "The Applicant") authorizing him to continue to discharge of sewage and trade effluent.



This is subject to the provisions of the Act. And the rules and order made there under and further subject to the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued in this Office Proceedings cited above and subject to the following conditions.

- The unit shall operate and maintain the STP efficiently and continuously to achieve the standards prescribed by Board.
- The unit shall furnish the ROA of treated sewage samples through Boards lab.
- Sludge drying bed to be replaced with Mechanical filter press within three months.
- Chlorine contact filter in STP is to be replaced with UV / Ozonation within 3 months
- EMFM (s) at the inlet and outlet of STP with computer recording to be provided within 3 months.
- Performance evolution of ETP /APC measures will be based on the report of analysis of TNPC Board Lab.
- 7) The unit shall furnish Bank Guarantee of Rs. 10 Lakhs (Rupees Ten Lakhs only) valid for one year favouring Tamil Nadu Pollution Control Board, Chennal for the compliance of condition No 3,4,5 of Water Act. And complaint of condition No 2 of Air Act.

The CONSENT is valid for the period ending 31.03.2015 (Thirty First March Two Thousand Fifteen)

> Sd/xxxx Chairman

To

The Director,

M/S. THE RAMCO CEMENTS LIMITED.

Ramasamyraja Nagar Post, Virudunagar District -626 204



# TAMILNADU POLLUTI



CONSENT ORDER NO. 15082294874

DATED: 10/08/2015.

PROCEEDINGS NO.T3/TNPCB/F.0052VDR/RL/VDR/A/2015 DATED: 10/08/2015

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT -M/s. THE RAMCO CEMENTS LIMITED, S.F.No. 6, 9 & 10, TULUKAPATTI village, Virudhunagar Taluk and Virudhunagar District - Renewal of Consent for the operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) -Issued- Reg.

REF: 1. Proceedings No.:T10/TNPCB/F-5747/VDR/ URL/ W &A/ 2014 dt. 11.09.2014

Units application dt. 13.04.2015

FIR.No : F.0052VDR/R/L/JCEE-M/VDR/2015 dated 17/04/2015

RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (percinafter referred to as "The Act") and the rules and orders made there under to

The Vice Chairman M/s.THE RAMCO CEMENTS LIMITED. S.F.No. 6, 9 & 10. TULUKAPATTI village, Virudhungar Taluk, Virudinmagar District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2016

Member Secretary, Tuminago Pollution Control Board,

POLLUTION PREVENTION PAYS



#### SPECIAL CONDITIONS

 This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| SI.<br>No. | Description     | Quantity | Unit |
|------------|-----------------|----------|------|
| 2.122      | Product Details |          |      |
| 1.         | Cement          | 2        | MTPA |

This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.





CONSENT ORDER NO. 15081294874

DATED: 10/08/2015.

PROCEEDINGS NO.T3/TNPCB/F.0052VDR/RL/VDR/W/2015 DATED: 10/08/2015

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT -M/s. THE RAMCO CEMENTS LIMITED, S.F.No. 6, 9 & 10, TULUKAPATTI village, Virudhunagar Taluk and Virudhunagar District - Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) - Issued- Reg.

REF: 1. Proceedings No.:T10/TNPCB/F-5747/VDR/ URL/W &A/ 2014 dt. 11.09.2014

Units application dt. 13.04.2015

FIR.No: F.0052VDR/R/L/JCEE-M/VDR/2015 dated 17/04/2015

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Polistion) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (bereinafter referred to as "The Act") and the rules and orders made there under to

The Vice Chairman

M/s.THE RAMCO CEMENTS LIMITED,

S.F.No. 6, 9 & 10

, TULUKAPATTI Village,

Virudhungar Taluk .

Virudhunagar District.

Authorising the occupier to make discharge of sewage and for trade effinent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2016

Member Secretary, Tamilnadu Pollution Control Board,

Chenn



#### SPECIAL CONDITIONS

 This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Si.<br>No. | Description     | Quantity | Unit |
|------------|-----------------|----------|------|
|            | Product Details |          |      |
| 1.         | Cement          | 2        | MTPA |

This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Outlet No.  | Description of Outlet | Maximum daily discharge in KLD | Point of disposal     |
|-------------|-----------------------|--------------------------------|-----------------------|
| Effluent Ty | pe : Sewage           | 2/10/                          |                       |
| 1.          | Common STP at Factory | 100.0                          | On land for gardening |

#### Additional Conditions:

 The unit shall operate and maintain the STP efficiently and continuously to achieve the standards prescribed by Board.

2. The unit shall continue to develop green belt inside the premises.

Tumidandu Pollution Control Board, Chennai

Τσ

Vice Chairmin.

M/s.THE RAMCO CEMENTS LIMITED,

Ramasamy Raja Nagar,

Pin: 626204

#### Copy to:

- 1. The Commissioner, VIRUDHUNAGAR-Panchayat Union, Virudhunagar Taluk, Virudhunagar District
- 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, VIRUDHUNAGAR.
- 3. The JCEE-Menitoring, Tamil Nadu Pollution Control Board, Maduri.
- 4. File





CONSENT ORDER NO. 160824725855

DATED: 02/08/2016.

PROCEEDINGS NO.T9/TNPCB/F.0052VDR/RL/VDR/A/2016 DATED: 02/08/2016

SUB: Tamil Nada Pollution Control Board - RENEWAL OF CONSENT -M/s. THE RAMCO CEMENTS LIMITED., S.F.No. Survey No. 4,5,6,9,10 etc. TULUKAPATTI village, Virudhunagar Taliuk and Virudhunagar District - Renewal of Consent for the operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) -Issued- Reg.

REF: 1. Bd's Proc. No T3/TNPCB/F 0052VDR/RL/VDR/A&W/2015, dated:10.08.2015

2. Unit's Application for CTO renewal dated 16.03.2016

IR.No.:F.0052VDR/RL/JCEE-M/VDR/2016, dated 11.07.2016

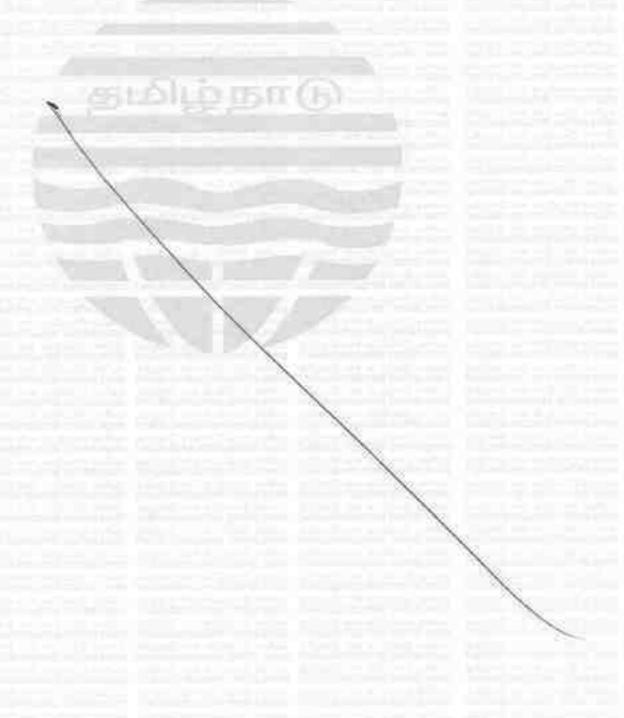
RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

Vice Chairman
M/s.THE RAMCO CEMENTS LIMITED,
S.F.No. Survey No. 4,5,6,9,10 etc,
TULUKAPATTI village,
Virudhunagar Tatuk,
Virudhunagar District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2017


Member Secretary, 3 V Tamil Nadu Pollution Control Board, Chennai



 This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| SI. | Description                                                         | Quantity | Unit |
|-----|---------------------------------------------------------------------|----------|------|
|     | Product Details                                                     |          |      |
| 1.  | Cement (6200 TPD or 2 MTPA - with addition of 0,3 MTPA Cement Mill) | 2        | MTPA |

 This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.



POLLUTION PREVENTION PAYS அகம் தூய்மை வாய்மைக்கு! புறம் தூய்மை வாழ்வுக்கு!



#### Additional Conditions:

 The unit shall operate and maintain the APC measures efficiently and continuously so as to achieve the AAQ! Emission standards prescribed by the Board.

The unit shall maintain the online monitors attached to the APC measures so as to get quality data and continuous connectivity to CAC, Chennai and online display board installed in the entrance of the unit efficiently.

 The unit shall comply with the new emission standards issued by MoEF & CC vide Notification dated 25.08.2014, 09.05.2016 & 10.05.2016.

 The unit shall comply with the fugitive emission guidelines prescribed by CPCB vide PROBES/118/2007, dated 06.07.2007.

The unit shall ensure that the noise generated by the unit shall adhere to the Ambient Noise level standards prescribed by the Board.

Member Secretary,

Tamil Nadu Pollution Control Board,

Chennai

To

Vice Chairman,

M/s.THE RAMCO CEMENTS LIMITED.

Ramasamy Raja Nagar,

Pin: 626204

#### Copy to:

1. The Commissioner, VIRUDHUNAGAR-Panchayat Union, Virudhunagar Taluk, Virudhunagar District .

2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, VIRUDHUNAGAR.

3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Madurai.

4. Pile





### POLLUTION CONTROL

CONSENT ORDER NO. 160814725855

DATED: 02/08/2016.

PROCEEDINGS NO.T9/TNPCB/F.0052VDR/RL/VDR/W/2016 DATED: 02/08/2016

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT - M/s. THE RAMCO CEMENTS LIMITED S.F.No. Survey No. 4,5,6,9,10 etc. TULUKAPATTI vilinge, Virudhunagar Taluk and Virudhunagar District - Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) — Issued-Reg.

REF: 1. Bd's Proc. No T3/TNPCB/F 0052VDR/RL/VDR/A&W/2015, dated:10.08.2015

Unit's Application for CTO renewal dated 16.03.2016
 IR.No. F.0052VDR/RL/JCEF-M/VDR/2016, dated 11.07.2016

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

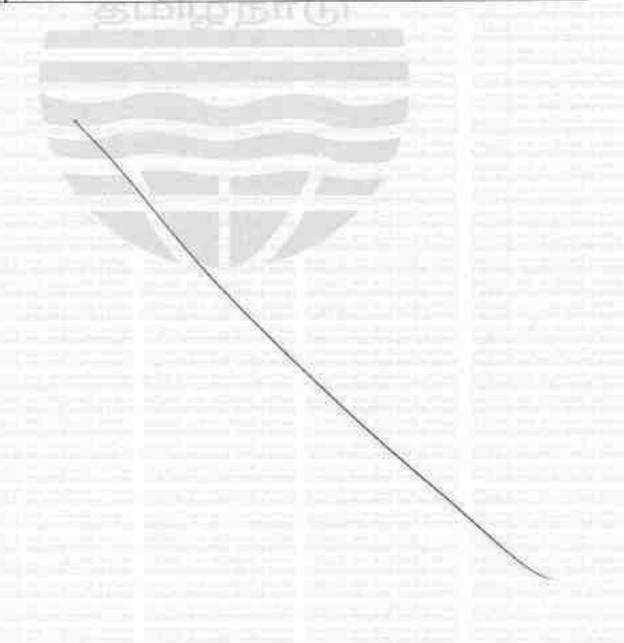
Vice Chairman M/s.THE RAMCO CEMENTS LIMITED, S.F.No. Survey No. 4,5,6,9,10 etc. TULUKAPATTI Village Virudhunagar Taluk . Virudhunggar District

Authorising the occupier to make discharge of sewage and /or trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2017

Member Serretary Tamil Nadu Pollution Control Board, Chennai




 This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Sl. | Description                                                         | Quantity | Unit |
|-----|---------------------------------------------------------------------|----------|------|
|     | Product Details                                                     |          |      |
| T.  | Cement (6200 TPD or 2 MTPA - with addition of 0.3 MTPA Cement Mill) | 2        | MTPA |

 This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Outlet No.  | Description of Outlet | Maximum daily discharge in KLD | Point of disposal                |
|-------------|-----------------------|--------------------------------|----------------------------------|
| Effluent Ty | pe : Sewage           |                                |                                  |
| 1.          | Common STP at Factory | 100.0                          | Gardening and Cooling<br>purpose |



POLLUTION PREVENTION PAYS அகம் தூய்மை வாய்மைக்கு ! புறம் தூய்மை வாழ்வுக்கு !



#### Additional Conditions:

 The unit shall operate and maintain STP efficiently and continuously so as to achieve the standards prescribed by the Board.

2. The unit shall continue to develop greenhelt in and around the premises of the unit.

Tamil Nadu Pollution Control Board, Chennai

Part mile

To

Vice Chairman.

M/s.THE RAMCO CEMENTS LIMITED.

Ramusamy Raja Nagar,

Pin: 626204

#### Copy to:

- 1. The Commissioner, VIRUDHUNAGAR-Panchayat Union, Virudhunagar Taluk, Virudhunagar District.
- The District Environmental Engineer, Tamii Nadu Pollution Control Board, VIRUDHUNAGAR.
- 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, Madurai.
- 4. File





CONSENT ORDER NO. 180828260593

DATED: 28/02/2018.

PROCEEDINGS NO.T2/TNPCB/F.0052VDR/RL/VDR/A/2018 DATED: 28/02/2018

SUB: Turnia Nadu Pollution Control Board - RENEWAL OF CONSENT -Mos. THE RAMCO CEMENTS LIMITED S.F.No. Survey No. 4.5.6,9.10 etc., TULUKAPATTI village, Virudhumagar Tahuk and Viridhumagar District - Renewal of Consent for the operation of the plant and discharge of collisions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amencied in 1987 (Cemrai Act 14 of 1981) - Issued- Reg.

REF: 1. Bound Proceedings No.T9/TNPCB/F 0052VDR/RL/VDR/A&W/2016 dated: 02/08/2016

Unit's application on 27-02-2017 and resubmitted on 02.01.2018.

DEF's IR.No. F 0052VDR/RL/JCEE-M/VDR/2017 dated 28/06/2017.

RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Air, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

Vice Chairman
M/s. THE RAMCO CEMENTS LIMITED,
S.F. No. Survey No. 4.5,6.9,10 etc.
TULUKAPATTI village,
Virudhumagar Taluk,
Virudhumagar Disence

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order Issued earlies and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2019

S. CHARLES RODRIGUEZ



For Member Secretary.
Tamii Nada Pollution Control Board.
Chennal



 This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| SL<br>No. | Description     | Quantit | y Unit |
|-----------|-----------------|---------|--------|
|           | Product Details |         |        |
| 1         | Cement          | 2       | MTPA   |

This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.





CONSENT ORDER NO. 180818260593

DATED: 28/02/2018.

PROCEEDINGS NO.T2/TNPCB/F.0052VDR/RL/VDR/W/2018 DATED: 28/02/2018

SUB: Taim! Nedu Pollution Control Board - RENEWAL OF CONSENT - Mrs. THE RANCO CEMENTS LIMITED - S.F.No. Survey No. 4,5,6,9,10 etc. TULUKAPATIT village, Visualhanague Taluk and Virudhunague District - Renewal of Consent for the operation of the plant and cuscharge of sewage and/or trade cifluent under Section 25 of the Water (Provention and Control of Pollution) Act. 1974 as amended in 1988 (Central Act. 6 of 1974) - Issued- Reg.

REF: 1. Board Proceedings No.T9/TNPCB/F.0052VDR/RL/VDR/A&W/2016 dited: 02/08/2016

2. Unit's application on 27-02-2017 and resubmitted on 02.01.2018.

DEE's (R.No : F.0052VDR/RL-ICEE-M/VDR/2017 dated 28/06/2017.

RENEWAL OF CONSHIPT is hereby granted under Section 25 of the Water (Prevention and Control of pullution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act," and the rules and orders made there under to

Vice Chairman
Mrs. THE RAMCO CEMENTS LIMITED.
S.F.No. Survey No. 4,5,6,9,10 etc.
PULCHAPATH Village.
Viruffmungar Talak.
vonaffmungar District

Authorising the occupier to make discharge of sewage and /or code effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issue) curves and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2019

S. CHARLES RODRIGUEZ

For Member Secretary. Tamil Nadu Polistion Control Board. Chennal



This renewal of consent is valid for operating the facility for the manufacture of products byproducts (Col. 2) at the rate (Col. 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Sl.<br>No. | Description | Quantity | 1)nit |
|------------|-------------|----------|-------|
| Product    | Details     |          |       |
| 1. Cemen   | 0           | 2        | MTPA  |

2. This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade of focust. Any change in the outlets and the quantity has to be brought to the potter of the Board and fresh consent has to be obtained.

| Outlet No.  | Description of Outlet | Maximum daily discharge in KLD | Point of disposal                                               |
|-------------|-----------------------|--------------------------------|-----------------------------------------------------------------|
| Effluent Ty | pe : Sewage           |                                |                                                                 |
| 1,          | Sewage                | 100.G                          | On industry's own land<br>for gardening and cooling<br>purposes |



## Additional Conditions:

The unit shall operate and maintain the STP efficiently and continuously to achieve the standards prescribed by the Board.

The unit shall maintain good housekeeping.

3. The unit shall continue to develop green belt in and around the premises.

5. CHARLES RODRIGUEZ

For Member Secretary, Tamil Nadu Pollution Control Board, Chennal

To.
Vice Chairman,
M/s.THE RAMCO CEMENTS LIMITED,
Ramasansy Raja Nagar.
Pin: 626204

## Copy to:

- i The Commissioner, VIRUDHUNAGAR-Panchayat Union, Virudhunagar Taluc, Virudhunagar Diamet
- The District Environmental Engineer, Tamil Nadu Pollution Control Board, VIRUDHUNAGAR.
- 3. The JCEE-Monstoring, Tamil Nadu Pollution Control Board, TIRCNELVELL
- 6. File

Category of the Industry :

RED

CONSENT ORDER NO. 1908221827195

DATED: 18/09/2019.

PROCEEDINGS NO.T2/TNPCB/F.0052VDR/RL/VDR/A/2019 DATED: 18/09/2019



SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT -M/s. THE RAMCO CEMENTS LIMITED , S.F.No. Survey No. 4,5,6,9,10 etc, TULUKAPATTI village, Virudhunagar Taluk and Virudhunagar District - Renewal of Consent for the operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) -Issued- Reg.

REF: 1) Board Proceedings No. T2/TNPCB/F,0052VDR/RL/VDR/W&A/2018 DATED: 28/02/2018 2) Unit's application for CTO-Renew submitted through OCMMS on 29/03/2019 and resubmitted in full shape on 17/07/2019.

3) JCEE's IR.No: F.0052VDR/RL/JCEE-M/VDR/2019 dated 23/07/2019.

RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

Chairman & Managing Director
M/s.THE RAMCO CEMENTS LIMITED,
S.F.No. Survey No. 4,5,6,9,10 etc,
TULUKAPATTI village,
Virudhunagar Taluk,
Virudhunagar District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2022

K. Dignally signed by K Solvulades
Gokuladas Date: 2019.09.18
For Member Secretary,
Tamil Nadu Pollution Control Board,
Chennal

POLLUTION PREVENTION PAYS



 This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Sl.<br>No. | Description     | Quantity | Unit |
|------------|-----------------|----------|------|
|            | Product Details |          |      |
| 1.         | Cement          | 2        | MTPA |

2. This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.





Category of the Industry

RED

CONSENT ORDER NO. 1908121827195

DATED: 18/09/2019.

PROCEEDINGS NO.T2/TNPCB/F.0052VDR/RL/VDR/W/2019 DATED: 18/09/2019

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT - M/s. THE RAMCO CEMENTS LIMITED, S.F.No. Survey No. 4,5,6,9,10 etc, TULUKAPATTI village, Virudhunagar Taluk and Virudhunagar District - Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) - Issued- Reg.

REF: 1) Board Proceedings No. T2/TNPCB/F.0052VDR/RL/VDR/W&A/2018 DATED: 28/02/2018
2) Unit's application for CTO-Renew submitted through OCMMS on 29/03/2019 and resubmitted in full shape on 17/07/2019.

JCEÉ's IR.No: F.0052VDR/RL/JCEE-M/VDR/2019 dated 23/07/2019.

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

Chairman & Managing Director
M/s THE RAMCO CEMENTS LIMITED,
S.F.No. Survey No. 4,5,6,9,10 etc.,
TULUKAPATTI Village,
Virudhunagar Taluk,
Virudhunagar District.

164

Authorising the occupier to make discharge of sewage and for trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2022

K. Gokuladas

Digitally signed by K. Gokuladas Data: 2018.09.19 14:09:27:405:10

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai



 This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| SL<br>No. | Description     | Quantity | Unit |
|-----------|-----------------|----------|------|
| 1         | Product Details |          |      |
| 1.        | Cement          | 2        | MTPA |

 This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Outlet No.  | Description of Outlet | Maximum daily discharge in KLD | Point of disposal                                               |
|-------------|-----------------------|--------------------------------|-----------------------------------------------------------------|
| Effluent Ty | pe : Sewage           |                                |                                                                 |
| :4.         | Sewage                | 100.0                          | On industry's own land<br>for gardening and cooling<br>purposes |

Category of the Industry:

RED



CONSENT ORDER NO. 2208243746933 DATED: 13/06/2022.

### PROCEEDINGS NO.T4/TNPCB/F.0052VDR/RL/VDR/A/2022 DATED: 13/06/2022

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT -M/s. THE RAMCO CEMENTS LIMITED, S.F.No. Survey No. 4,5,6,9,10 etc, TULUKAPATTI village, Virudhunagar Taluk and Virudhunagar District - Renewal of Consent for the operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) –Issued- Reg.

**REF:** 1. Unit's application no. 43746933 DATED:03.03.2022

2. IR.No: F.0052VDR/RL/JCEE-M/VDR/2022 dated 11/05/2022.

RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

Chairman & Managing Director M/s.THE RAMCO CEMENTS LIMITED, S.F.No. Survey No. 4,5,6,9,10 etc, TULUKAPATTI village, Virudhunagar Taluk, Virudhunagar District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2023

RATNAM VIJAYABASKARAN Digitally signed by RATNAM VJAYABASKARAN Date: 2022.06.16 13:47:23 +05'30'

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

## **SPECIAL CONDITIONS**

1. This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Sl.<br>No. | Description     | Quantity | Unit |
|------------|-----------------|----------|------|
|            | Product Details |          |      |
| 1.         | Cement          | 2        | MTPA |

2. This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.

RATNAM VIJAYABASKARAN Digitally signed by RATNAM VIJAYABASKARAN Date: 2022.06.16 13:48:09 +05'30'

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

To Chairman & Managing Director, M/s.THE RAMCO CEMENTS LIMITED, Ramasamy Raja Nagar, Virudhunagar, Pin: 626204

## Copy to:

- 1. The Commissioner, VIRUDHUNAGAR-Panchayat Union, Virudhunagar Taluk, Virudhunagar District .
- 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, VIRUDHUNAGAR.
- 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, TIRUNELVELI.
- 4. File

-----

Category of the Industry:

**RED** 



CONSENT ORDER NO. 2208143746933 DATED: 13/06/2022.

#### PROCEEDINGS NO.T4/TNPCB/F.0052VDR/RL/VDR/W/2022 DATED: 13/06/2022

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT - M/s. THE RAMCO CEMENTS LIMITED, S.F.No. Survey No. 4,5,6,9,10 etc, TULUKAPATTI village, Virudhunagar Taluk and Virudhunagar District - Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) – Issued-Reg.

**REF:** 1. Unit's application no. 43746933 DATED:03.03.2022

2. IR.No: F.0052VDR/RL/JCEE-M/VDR/2022 dated 11/05/2022.

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

Chairman & Managing Director M/s.THE RAMCO CEMENTS LIMITED, S.F.No. Survey No. 4,5,6,9,10 etc, TULUKAPATTI Village, Virudhunagar Taluk, Virudhunagar District.

Authorising the occupier to make discharge of sewage and /or trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2023

RATNAM VIJAYABASKARAN VIJAYABASKARAN Date: 2022.06.16 13:48:50 +05'30'

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

## **SPECIAL CONDITIONS**

1. This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Sl.<br>No. | Description     | Quantity | Unit |
|------------|-----------------|----------|------|
|            | Product Details |          |      |
| 1.         | Cement          | 2        | MTPA |

2. This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Outlet No.             | <b>Description of Outlet</b>   | Maximum daily discharge in KLD | Point of disposal     |  |  |
|------------------------|--------------------------------|--------------------------------|-----------------------|--|--|
| Effluent Type : Sewage |                                |                                |                       |  |  |
| 1.                     | Sewage                         | 100.0                          | On Industrys own land |  |  |
| Effluent Ty            | Effluent Type : Trade Effluent |                                |                       |  |  |



Category of the Industry:

RED





CONSENT ORDER NO. 2307249733843

DATED: 27/02/2023.

PROCEEDINGS NO.T1/TNPCB/F.0052VDR/RL//VDR/A/2023 DATED: 27/02/2023

SUB: Tamil Nadu Pollution Control Board - CONSENT TO OPERATE FOR EXPANSION I M/s. THE RAMCO CEMENTS LIMITED . S.F.No. Survey No. 1/6, 4/1B, 5/2, 5/5B, 5/6, 5/7; 5/8, 5/9, 5/10, 6/2, 6/3, 6/4, 6/5, 6/6, 6/7, 7/1, 7/2, 8/1, 8/2, 8/3, 8/4, 9/2, 9/3, 9/4, 9/5, 9/6, 9/7, 10/1, 10/2, 10/3, 10/4, 10/5, 10/6, 10/7, 11/1, 11/2, 11/3, 11/4, 11/5, 12/2, 12/3, 12/4, 12/5, 12/6, 12/7, 12/8, 12/9, 12/10, 13/2, 13/3, 13/4, 13/5, 13/6, 13/7, 13/8, 14/1, 14/2, 14/3, 14/4, 14/5, 14/6, 14/7, 16/1, 16/2, 16/3, 16/4, 22/1, 22/2A, 24/1, 24/2,24/3A, 24/4, 30/1C, 30/2, 30/3, 31/1, 31/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/4, 12/5, 32/6, 32/7, 32/8, 32/9A, 34/4, 35/3, 36/2, 37/2, 38/5B, 38/6, 39/4, 39/6, 39/7, 49/5, 50/1A, 50/2A, 50/2C, 51/1, 51/2, 52/1, 52/2, 58/1A, 58/1B, 58/1C, 58/2, 59/2, 59/3, 59/45, 59/6A, 59/7A, 59/6B, 59/6C, 59/6B, 59/6E, 59/7B, 59/7C, 59/8A, 59/8B, 59/8D, 60/1, 60/2, 60/3, 57/3A, 57/3B, 57/4, 56/1, 56/5, 65/2, 66/1, 210/1, 210/2, 210/3, 210/4, 210/5, 210/6, 212/1, 212/2, 214/1, 214/4, 214/6, 214/7, 221/1A, 221/1B, 221/2, 221/3, 221/4, 221/5, 221/6, 222/1, 222/2, 222/3, 222/4A, 222/4B, 222/5, 221/7, 221/8, 226/1, 226/5, 227/1, 227/2A, 227/2B, 227/2C, 227/3, 228/1, 230/2A, 230/2B, 230/2B, 230/3, 230/4, 230/2, 230/9, 230/9, 230/10, 230/11 in Tulukkapanti, 196/3, 196/4, 196/7, 197/5, 197/6B, 197/6C, 198/7, 198/8, 199/2, 199/3, 199/4, 200/2, 200/3, 200/4, 200/5, 201/2A, 201/2B, 201/3, 201/4, 202/1, 202/2, 202/4, 202/5, 203/1, 203/2, 203/4, 203/5, 204/2A, 204/2B, 204/3, 204/4, 205/1, 206/3A, 206/3A, 206/4A, 206/5A, 206/7A, 207/1B, 207/2B, 209/1, 209/6, 209/7, 210/3, 210/4A, 210/4B, 211/4, 211/5, 211/7, 212/1, 212/2, 212/3, 215/4, 215/5B, 216/3, 216/4, 216/9, 287/1B, 287/2 in Tharnmanickapanti, 112/1, 113/1A1, 160/1A2, 100/2, 100/3A, 100/4A, 100/5A, 100/5B1, 100/6A, 101/1, 101/2, 101/3, 101/4, 101/5, 102/1, 102/2, 103/2, 108/1, 108/2, 108/3, 108/4A, 109/1A, 100/2A/1A in Vachakarapanti, 112/1, 113/1A1, 160/1A2, 100/2, 100/3A, 100/4A, 100/5B1, 100/6B1, 100/6B, 101/1, 101/2, 101/3, 101/4, 101/5, 102/1, 103/2, 108/1, 108/2,

REF: 1. Unit's application no. 49733843 dated 23.01.2023

IR,No: F.0052VDR/RL/JCEE-M/VDR/2023, dated 07/02/2023

3. Minutes of the 211th TSC meeting vide item no. 211-07 dated: 22.02.2023.

CONSENT TO OPERATE FOR EXPANSION is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hurninafter referred to us "The Art") and the rules and orders made there under to

The Managing Director,

M/s. THE RAMCO CEMENTS LIMITED

5.F No.Survey No. 1/6, 4/1B, 5/2, 5/5B, 5/6, 5/7, 5/8, 5/9, 5/10, 6/2, 6/3, 6/4, 6/5, 6/6, 6/7, 1/1, 7/2, 8/1, 8/2, 8/3, 8/4, 9/2, 9/3, 9/6, 9/5, 9/6, 9/7, 10/1, 10/2, 10/3, 10/4, 10/5, 10/6, 10/7, 11/1, 11/2, 11/3, 11/4, 11/5, 12/2, 12/4, 12/5, 12/6, 12/7, 12/8, 12/6, 12/10, 13/2, 13/1, 13/4, 13/5, 13/6, 13/7, 13/8, 14/1, 14/2, 14/3, 14/4, 14/5, 14/6, 14/7, 16/1, 16/2, 16/3, 16/4, 22/1, 22/2A, 24/1, 24/2, 24/3A, 24/4, 36/1C, 36/2, 30/3, 31/1, 11/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/4, 32/5, 32/6, 32/7, 32/8, 32/9A, 34/4, 15/3, 36/2, 37/2, 38/5B, 38/6, 39/4, 36/6, 39/7, 49/5, 56/1A, 56/2A, 56/2C, 51/1, 51/2, 52/1, 52/2, 38/1A, 56/1B, 58/1C, 58/2, 59/2, 59/3, 39/4, 56/1, 56/5, 59/6A, 59/7A, 59/6B, 59/6C, 50/6D, 59/6E, 59/7B, 59/7C, 59/8A, 59/8B, 59/6D, 66/1, 60/2, 60/3, 37/3A, 57/3B, 57/4, 56/1, 56/5, 65/2, 66/1, 210/1, 210/2, 210/3, 210/4, 210/5, 210/6, 212/1, 212/2, 214/1, 214/4, 214/6, 314/7, 221/1A, 231/1B, 221/2, 221/3, 221/4, 221/5, 231/6, 222/1, 222/2, 222/3, 223/3A, 229/3A, 223/3B, 223/3B, 223/3B, 223/3A, 228/3B, 223/3A, 229/3A, 229/3A, 229/3B, 229/3A, 230/2B, 230/2B, 230/3B, 228/3C, 238/3B, 228/3B, 228



230/4.230/6. 230/7. 230/8. 230/9. 230/10. 230/11 in Tuliskkapatti. 196/3. 196/4. 196/7. 197/5. 197/6B. 197/6C. 198/7. 196/8. 199/2. 199/3. 199/4. 200/2. 200/3. 200/3. 200/3. 201/2A. 201/2B. 201/3. 201/4. 302/1. 202/2. 202/4. 202/5. 203/1. 203/2. 203/4. 203/5. 204/2A. 204/2B. 204/3. 204/4. 205/2. 205/4. 210/1. 210/2. 210/5A. 210/5B. 216/8. 197/8. 198/2. 198/4. 205/1. 205/3A. 206/1. 205/3A. 206/5A. 206/5A. 206/5A. 206/5A. 206/7A. 207/1B. 207/2B. 209/1. 200/6. 209/7. 210/3. 210/4A. 210/4B. 211/4. 211/5. 211/7. 212/1. 212/2. 212/3. 215/4. 215/5B. 216/3. 216/4. 216/9. 287/1B. 287/2 in Thurmanusickampatti. 112/1. 113/1A1. 101/1A2. 160/2. 100/3A. 100/4A. 100/5A. 100/5A. 100/5A. 100/5A. 101/1. 101/2. 101/3. 101/4. 101/5. 102/1. 102/2. 103/2. 108/1. 108/2. 108/4A. 100/1A. 109/2A.1A in Vachakampatti.

TULUKAPATTI Village,

Virudhunagar Taluk.

Virudhinggar District,

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This CONSENT is valid for the period ending March 31, 2024

BAJAMANICKAM

For Member Secretary, Tamil Nada Pollation Control Board, Chemani

To

The Managing Director,

M/s. THE RAMCO CEMENTS LIMITED,

Ramusumy Raja Nagar, Vieudhunagar,

Pin: 625204

### Copy to:

- 1. The Commissioner, VIRUDHUNAGAR-Panchayat Union, Virudhunagar Talak, Virudhunagar District
- 2. The District Environmental Engineer, Tamil Nadu Pollution Control Board, VIRUDHUNAGAR.
- 3. The JCEE-Monitoring, Tamil Nadu Pollution Control Board, TIRUNELVELL
- 4. Pile



### SPECIAL CONDITIONS

 This consent to operate for Expansion is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| SL. | Description                  | Quantity | Unit                        |
|-----|------------------------------|----------|-----------------------------|
|     | Product Details              |          |                             |
| 1.  | Cement                       | 2.7      | Million Tonnes<br>Per Annum |
|     | Intermediate Product Details |          | - Constitution was          |
| 1.  | Clinker                      | 1,44     | Million Tonnes<br>Per Annum |

This consent to operate for Expansion is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.



Category of the Industry:

RED





CONSENT ORDER NO. 2307149733843

DATED: 27/02/2023.

PROCEEDINGS NO.TI/TNPCB/F.0052VDR/RL/VDR/W/2023 DATED: 27/02/2023

SUB: Tamil Nacha Pollution Control Board --CONSENT TO OPERATE FOR EXPANSION-1 -M/s. THE RAMCO CEMENTS LIMITED . S.F.No. Survey No. 1/6. 4/1B, 5/2, 5/5B, 5/6, 5/7, 5/8, 5/9, 5/10, 6/2, 6/3, 6/4, 6/5, 6/6, 6/7, 7/1, 7/2, 8/1, 8/2, 8/3, 8/4, 9/2, 9/3, 9/4, 9/8, 9/6, 9/7, 10/1, 10/2, 10/3, 10/4, 10/5, 10/6, 10/7, 11/1, 11/2, 11/3, 11/4, 11/5, 12/2, 12/3, 12/4, 12/5, 12/6, 12/7, 12/8, 12/9, 12/10, 13/2, 13/3, 13/4, 13/5, 13/6, 13/7, 13/8, 14/1, 14/2, 14/3, 14/4, 14/5, 14/6, 14/7, 16/1, 16/2, 16/3, 16/4, 22/1, 22/2A, 24/1, 24/2,24/3A, 24/4, 30/1C, 30/2, 30/3, 31/1, 31/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/3, 32/4, 32/5, 32/6, 32/7, 32/8, 32/9A, 34/4, 35/3, 36/2, 37/2, 38/5B, 38/6, 39/4, 39/6, 39/7, 49/5, 50/1A, 50/2A, 50/2C, 51/1, 51/2, 52/1, 52/1, 58/1B, 58/1B, 58/1C, 58/2, 59/2, 59/3, 50/4, 59/5, 59/6A, 59/7A, 59/6B, 59/6C, 59/6B, 59/7B, 59/7C, 59/8A, 59/8B, 59/8B

REF: 1. Unit's application no. 49733843 dated 23.01.2023

IR No : F.0052VDR/RL/JCEE-M/VDR/2023, dated 07/02/2023

3. Minutes of the 211th TSC meeting vide item no. 211-07 dated: 22.02.2023.

CONSENT TO OPERATE FOR EXPANSION is hereby grained under Section 25 of the Water (Prevention and Control of Pollinion) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Managing Director,

M/s. THE RAMCO CEMENTS LIMITED

S.F.Nu. Survey No. 1/6, 4/1B, 5/2, 5/5B, 5/6, 5/7, 5/8, 5/9, 5/10, 6/2, 6/3, 6/4, 6/5, 6/6, 6/7, 7/1, 7/2, 8/1, 8/2, 8/3, 8/4, 9/2, 9/3, 9/4, 9/5, 9/6, 9/7, 10/1, 10/2, 10/3, 10/4, 10/5, 10/6, 10/7, 11/1, 11/2, 11/3, 11/4, 11/5, 12/2, 12/3, 12/4, 12/3, 12/6, 12/7, 12/8, 12/9, 12/10, 13/2, 13/3, 13/4, 13/5, 13/6, 13/7, 13/8, 14/1, 14/2, 14/3, 14/4, 14/5, 14/6, 14/7, 16/1, 16/2, 16/3, 16/4, 22/1, 22/2A, 24/1, 24/2, 24/3, A, 24/4, 30/1C, 36/2, 30/3, 31/1, 31/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/4, 32/5, 32/6, 32/7, 32/8, 32/9A, 34/4, 36/2, 37/2, 38/5B, 38/6, 39/4, 39/6, 39/7, 40/5, 60/1A, 50/2A, 50/2C, 51/1, 51/2, 52/1, 52/2, 58/1A, 58/1B, 58/1C, 58/2, 59/2, 59/3, 39/4, 59/5, 39/6A, 59/7A, 59/6B, 50/6C, 59/6D, 59/6B, 59/7B, 59/7C, 59/8A, 59/8B, 59/8D, 60/1, 60/2, 60/3, 57/3A, 57/3B, 57/4, 36/1, 56/5, 65/2, 66/1, 210/1, 210/1, 210/2, 210/3, 210/4, 216/5, 210/6, 212/1, 212/2, 214/1, 214/4, 214/6, 314/7, 221/1A, 221/1B, 221/2, 221/3, 221/4, 221/5, 221/6, 222/1, 222/2, 222/3, 222/4A, 322/4B, 222/5, 221/7, 221/8, 236/1, 326/5, 227/1, 223/2A, 227/2B, 227/2C, 227/5.



228/1, 228/2, 228/3C, 228/3B, 228/3D, 228/3A, 228/3E, 228/4, 229/1, 229/2, 229/3A, 229/3B, 229/4, 230/1, 230/2A, 230/2B, 230/3, 230/4, 230/6, 230/7, 239/8, 230/9, 230/10, 230/11 in Tuliukapani, 196/3, 196/4, 196/7, 197/5, 197/6B, 197/6C, 198/7, 198/8, 199/2, 199/3, 199/4, 200/2, 200/3, 200/4, 200/5, 201/2A, 201/2B, 201/3, 201/4, 202/1, 202/2, 262/4, 202/5, 203/1, 203/2, 263/4, 203/5, 204/2A, 204/2B, 204/3, 204/4, 205/2, 205/4, 210/1, 210/7, 210/5A, 210/5B, 216/8, 197/8, 198/2, 198/4, 205/1, 205/3A, 296/1, 206/3A, 206/3A, 206/5A, 206/6, 206/7A, 207/1B, 207/2B, 209/1, 209/6, 209/7, 210/3, 210/4A, 210/4B, 211/4, 211/5, 211/7, 212/1, 212/2, 212/3, 215/4, 215/5B, 216/3, 216/4, 216/9, 287/1B, 287/2 in Thurmanuckamputi, 112/1, 113/1A1, 100/1A2, 100/2A, 100/4A, 100/5A, 100/5A, 100/5A, 101/1, 101/2, 101/3, 101/4, 101/5, 102/1, 102/2, 103/2, 108/1, 108/2, 108/3, 108/4A, 109/1A, 109/2A1A in Vachakuruputti,

TULUKAPATTI Village.

Virudhunagur Taluk,

Virudhunagar District.

Authorising the occupier to make discharge of sewage and for trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions unnexed.

This CONSENT is valid for the period ending March 31, 2024

RAMASAMY RAJAMANICKAM

For Member Secretary, Tamil Nada Pullation Control Board, Chemai

Τα

The Managing Director.

M/s THE RAMCO CEMENTS LIMITED,

Ramasamy Reja Nagar, Virudhonagar,

Pin: 626204

### Copy to:

- LThe Commissioner, VIRODHUNAGAR-Panchayat Union, Virudhunagar Talnk, Virudhunagar District
- 2. The District Environmental Engineer, Tunil Nadu Pollution Control Board, VIRUDHUNAGAR:
- 3. The JCEE-Menizoring, Tamil Nada Pollution Control Board, TIRUNELVELL
- 4. File



### SPECIAL CONDITIONS

 This consent to operate for Expansion is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| SL<br>No. | Description                  | Quantity | Unit                        |
|-----------|------------------------------|----------|-----------------------------|
|           | Product Details              |          |                             |
| 1.        | Cement                       | 2.7      | Million Tonnes<br>Per Annum |
|           | Intermediate Product Details |          | JIII TANGUTAN               |
| 1.        | Clinker                      | 1.44     | Million Tonnes              |

This consent to operate for Expansion is valid for operating the facility with the below mentioned permitted outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Outlet No.  | Description of Outlet | Maximum daily discharge in KLD | Point of disposal     |
|-------------|-----------------------|--------------------------------|-----------------------|
| Effluent Ty | pe : Sewage           |                                |                       |
| 1.          | Sewage                | 280.0                          | On land for gardening |

 The effluent discharge shall not contain constituents in excess of the tolerance Limits as laid down bereunder. Category of the Industry:

RED



CONSENT ORDER NO. 2408257290712 DATED: 13/09/2024.

### PROCEEDINGS NO.T3/TNPCB/F.0052VDR/RL/VDR/A/2024 DATED: 13/09/2024

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT -M/s. THE RAMCO CEMENTS LIMITED , S.F.No. Survey No. 1/6, 4/1B, 5/2, 5/5B, 5/6, 5/7, 5/8, 5/9, 5/10, 6/2, 6/3, 6/4, 6/5, 6/6, 6/7, 7/1, 7/2, 8/1, 8/2, 8/3, 8/4, 9/2, 9/3, 9/4, 9/5, 9/6, 9/7, 10/1, 10/2, 10/3, 10/4, 10/5, 10/6, 10/7, 11/1, 11/2, 11/3, 11/4, 11/5, 12/2, 12/3, 12/4, 12/5, 12/6, 12/7, 12/8, 12/9, 12/10, 13/2, 13/3, 13/4, 13/5, 13/6, 13/7, 13/8, 14/1, 14/2, 14/3, 14/4, 14/5, 14/6, 14/7, 16/1, 16/2, 16/3, 16/4, 22/1, 22/2A, 24/1, 24/2,24/3A, 24/4, 30/1C, 30/2, 30/3, 31/1, 31/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/4, 32/5, 32/6, 32/7, 32/8, 32/9A, 34/4, 35/3, 36/2, 37/2, 38/5B, 38/6, 39/4, 39/6, 39/7, 49/5, 50/1A, 50/2A, 50/2C, 51/1, 51/2, 52/1, 52/2, 58/1A, 58/1B, 58/1C, 58/2, 59/2, 59/3, 59/4, 59/5, 59/6A, 59/7A, 59/6B, 59/6C, 59/6D, 59/6E, 59/7B, 59/7C, 59/8A, 59/8B, 59/8D, 60/1, 60/2, 60/3, 57/3A, 57/3B, 57/4, 56/1, 56/5, 65/2, 66/1, 210/1, 210/2, 210/3, 210/4, 210/5, 210/6, 212/1, 212/2, 214/1, 214/4, 214/6, 214/7, 221/1B, 221/1B, 221/2, 221/3, 221/4, 221/5, 221/6, 222/1, 222/2, 222/3, 222/4B, 222/5, 221/7, 221/8, 226/1, 226/5, 227/1, 227/2A, 227/2B, 227/3B, 229/4, 230/1, 230/2A, 230/2B, 230/3, 230/4,230/6, 230/7, 230/8, 230/9, 230/10, 230/11 in Tulukkapatti, 196/3, 196/4, 196/7, 197/5, 197/6B, 197/6C, 198/7, 198/8, 199/2, 199/3, 199/4, 200/2, 200/3, 200/4, 200/5, 201/2A, 201/2B, 201/3, 201/4, 202/1, 202/2, 202/4, 202/5, 203/1, 203/2, 203/5, 204/2A, 204/2B, 204/3, 204/4, 205/2, 205/4, 210/1, 210/2, 210/5A, 210/5B, 216/8, 197/8, 198/2, 198/4, 205/1, 205/3A, 206/1, 206/2, 206/3A, 206/4A, 206/5A, 206/6, 206/7A, 207/1B, 207/2B, 209/1, 209/6, 209/7, 210/3, 210/4A, 210/4B, 211/4, 211/5, 211/7, 212/1, 212/2, 212/3, 215/4, 215/5B, 216/3, 216/4, 216/9, 287/1B, 287/1B, 287/2 in Thammanaickanpatti, 112/1, 113/1A1, 100/1A2, 100/2, 100/3A, 100/4A, 100/5A, 100/5B1, 100/6A, 101/1, 101/2, 101/3, 101/4, 101/5, 102/1, 102/2, 103/2, 108/1, 108/2, 108/3, 108/4A, 109/1A, 109/2A1A in Vachakarapatti, TULUKAPATTI village, Virudhunagar Taluk and Virudhunagar Distr

**REF:** 1) Board Proceedings No. T1/TNPCB/F.0052VDR/RL//VDR/A&W/2023 dated: 27/02/2023

2) Unit's Application Number: 57290712 dated: 15/03/2024

3) JCEE's IR.No: F.0052VDR/RL/JCEE-M/VDR/2024 dated 19/07/2024

RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Managing Director
M/s . THE RAMCO CEMENTS LIMITED

S.F. No. Survey No. 1/6, 4/1B, 5/2, 5/5B, 5/6, 5/7, 5/8, 5/9, 5/10, 6/2, 6/3, 6/4, 6/5, 6/6, 6/7, 7/1, 7/2, 8/1, 8/2, 8/3, 8/4, 9/2, 9/3, 9/4, 9/5, 9/6, 9/7, 10/1, 10/2, 10/3, 10/4, 10/5, 10/6, 10/7, 11/1, 11/2, 11/3, 11/4, 11/5, 12/2, 12/3, 12/4, 12/5, 12/6, 12/7, 12/8, 12/9, 12/10, 13/2, 13/3, 13/4, 13/5, 13/6, 13/7, 13/8, 14/1, 14/2, 14/3, 14/4, 14/5, 14/6, 14/7, 16/1, 16/2, 16/3, 16/4, 22/1, 22/2A, 24/1, 24/2,24/3A, 24/4, 30/1C, 30/2, 30/3, 31/1, 31/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/4, 32/5, 32/6, 32/7, 32/8, 32/9A, 34/4, 35/3, 36/2, 37/2, 38/5B, 38/6, 39/4, 39/6, 39/7, 49/5, 50/1A, 50/2A, 50/2C, 51/1, 51/2, 52/1, 52/2, 58/1A, 58/1B, 58/1C, 58/2, 59/2, 59/3, 59/4, 59/5, 59/6A, 59/7A, 59/6B, 59/6C, 59/6D, 59/6E, 59/7B, 59/7C, 59/8A, 59/8B, 59/8D, 60/1, 60/2, 60/3, 57/3A, 57/3B, 57/4, 56/1, 56/5, 65/2, 66/1, 210/1, 210/2, 210/3, 210/4, 210/5, 210/6, 212/1, 212/2, 214/1, 214/4, 214/6, 214/7, 221/1A, 221/1B, 221/2, 221/3, 221/4, 221/5, 221/6, 222/1, 222/2, 222/3, 222/4A, 222/4B, 222/5, 221/7, 221/8, 226/1, 226/5, 227/1, 227/2A, 227/2B, 227/2C, 227/3, 228/1, 228/2, 228/3C, 228/3B, 228/3D, 228/3A, 228/3E, 228/4, 229/1, 229/2, 229/3A, 229/3B, 229/4, 230/1, 230/2A, 230/2B, 230/3, 230/4,230/6, 230/7, 230/8, 230/9, 230/10, 230/11 in Tulukkapatti, 196/3, 196/4, 196/7, 197/5, 197/6B, 197/6C, 198/7, 198/8, 199/2, 199/3, 199/4, 200/2, 200/3, 200/4, 200/5, 201/2A, 201/2B, 201/3, 201/4, 202/1, 202/2, 202/4, 202/5, 203/1, 203/2, 203/4, 203/4, 203/5, 204/2A, 204/2B, 204/3, 204/4, 205/2, 205/4, 210/1, 210/2, 210/5A, 210/6B, 197/8, 198/4, 205/1, 205/3A, 206/1, 206/2, 206/3A, 206/4A, 206/5A, 206/6A, 206/7A, 207/1B, 207/2B, 209/1, 209/6, 209/7, 210/3, 210/4A, 210/4B, 211/4, 211/5, 211/7, 212/1, 212/2, 212/3, 215/4, 215/5B, 216/3, 216/4, 216/9, 287/1B, 287/2 in Thammanaickanpatti, 112/1, 113/1A1, 100/1A2, 100/2, 100/3A, 100/4A, 100/5A, 100/5A, 100/5A, 100/6A, 101/1, 101/2, 101/3, 101/4, 101/5, 102/1, 102/2, 103/2, 103/2, 108/1, 108/2, 108/3, 108/4A, 109/1A, 109/2A1A in Vachakarapatti

TULUKAPATTI Village

Virudhunagar Taluk

Virudhunagar District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2025

Digitally signed by NALINI Date: 2024.09,18 20:22:38 +05'30'

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

## **SPECIAL CONDITIONS**

1. This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Sl.<br>No. | Description                  | Quantity | Unit                        |
|------------|------------------------------|----------|-----------------------------|
|            | Product Details              |          |                             |
| 1.         | Cement                       | 2.7      | Million Tonnes<br>Per Annum |
|            | Intermediate Product Details |          |                             |
| 1.         | Clinker                      | 1.44     | Million Tons /<br>Annum     |

2. This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.

Category of the Industry:

RED



CONSENT ORDER NO. 2408157290712 DATED: 13/09/2024.

## PROCEEDINGS NO.T3/TNPCB/F.0052VDR/RL/VDR/W/2024 DATED: 13/09/2024

\_\_\_\_\_

SUB: Tamil Nadu Pollution Control Board - RENEWAL OF CONSENT - M/s. THE RAMCO CEMENTS LIMITED , S.F.No. Survey No. 1/6, 4/1B, 5/2, 5/5B, 5/6, 5/7, 5/8, 5/9, 5/10, 6/2, 6/3, 6/4, 6/5, 6/6, 6/7, 7/1, 7/2, 8/1, 8/2, 8/3, 8/4, 9/2, 9/3, 9/4, 9/5, 9/6, 9/7, 10/1, 10/2, 10/3, 10/4, 10/5, 10/6, 10/7, 11/1, 11/2, 11/3, 11/4, 11/5, 12/2, 12/3, 12/4, 12/5, 12/6, 12/7, 12/8, 12/9, 12/10, 13/2, 13/3, 13/4, 13/5, 13/6, 13/7, 13/8, 14/1, 14/2, 14/3, 14/4, 14/5, 14/6, 14/7, 16/1, 16/2, 16/3, 16/4, 22/1, 22/2A, 24/1, 24/2,24/3A, 24/4, 30/1C, 30/2, 30/3, 31/1, 31/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/4, 32/5, 32/6, 32/7, 32/8, 32/9A, 34/4, 35/3, 36/2, 37/2, 38/5B, 38/6, 39/4, 39/6, 39/7, 49/5, 50/1A, 50/2A, 50/2C, 51/1, 51/2, 52/1, 52/2, 58/1A, 58/1B, 58/1C, 58/2, 59/2, 59/3, 59/4, 59/5, 59/6A, 59/7A, 59/6B, 59/6C, 59/6D, 59/6E, 59/7B, 59/7C, 59/8A, 59/8B, 59/8D, 60/1, 60/2, 60/3, 57/3A, 57/3B, 57/4, 56/1, 56/5, 65/2, 66/1, 210/1, 210/2, 210/3, 210/4, 210/5, 210/6, 212/1, 212/2, 214/1, 214/4, 214/6, 214/7, 221/1A, 221/1B, 221/2, 221/3, 221/4, 221/5, 221/6, 222/1, 222/2, 222/3, 222/4A, 222/4B, 222/5, 221/7, 221/8, 226/1, 226/5, 227/1, 227/2A, 227/2B, 227/2C, 227/3, 228/1, 228/2, 228/3C, 228/3B, 228/3D, 228/3A, 228/3B, 228/4, 229/1, 229/2, 229/3A, 229/3B, 229/4, 230/1, 230/2A, 230/2B, 230/3, 230/4,230/6, 230/7, 230/8, 230/9, 230/10, 230/11 in Tulukkapatti, 196/3, 196/4, 196/7, 197/5, 197/6B, 197/6C, 198/7, 198/8, 199/2, 199/3, 199/4, 200/2, 200/3, 200/4, 200/5, 201/2A, 201/2B, 201/3, 201/4, 202/1, 202/2, 202/4, 202/5, 203/1, 203/2, 203/4, 203/5, 204/2A, 204/2B, 204/3, 204/4, 205/2, 205/4, 210/1, 210/2, 210/5A, 210/5B, 216/8, 197/8, 198/2, 198/4, 205/1, 205/3A, 206/1, 206/2, 206/3A, 206/4A, 206/5A, 206/6A, 206/7A, 207/1B, 207/2B, 209/1, 209/6, 209/7, 210/3, 210/4A, 210/4B, 211/4, 211/5, 211/7, 212/1, 113/1A1, 100/1A2, 100/2, 100/3A, 100/4A, 100/5A, 100/5B1, 100/6A, 101/1, 101/2, 101/3, 101/4, 101/5, 102/1, 102/2, 103/2, 108/1, 108/2, 108/3, 108/4A, 109/1A, 109/2A1A in Vachakarapatti, TULUKAPATTI village, Virudhunagar Taluk and Virud

**REF:** 1) Board Proceedings No. T1/TNPCB/F.0052VDR/RL//VDR/A&W/2023 dated: 27/02/2023

2) Unit's Application Number: 57290712 dated: 15/03/2024

3) JCEE's IR.No: F.0052VDR/RL/JCEE-M/VDR/2024 dated 19/07/2024

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Managing Director
M/s . THE RAMCO CEMENTS LIMITED

S.F No. Survey No. 1/6, 4/1B, 5/2, 5/5B, 5/6, 5/7, 5/8, 5/9, 5/10, 6/2, 6/3, 6/4, 6/5, 6/6, 6/7, 7/1, 7/2, 8/1, 8/2, 8/3, 8/4, 9/2, 9/3, 9/4, 9/5, 9/6, 9/7, 10/1, 10/2, 10/3, 10/4, 10/5, 10/6, 10/7, 11/1, 11/2, 11/3, 11/4, 11/5, 12/2, 12/3, 12/4, 12/5, 12/6, 12/7, 12/8, 12/9, 12/10, 13/2, 13/3, 13/4, 13/5, 13/6, 13/7, 13/8, 14/1, 14/2, 14/3, 14/4, 14/5, 14/6, 14/7, 16/1, 16/2, 16/3, 16/4, 22/1, 22/2A 24/1, 24/2,24/3A, 24/4, 30/1C, 30/2, 30/3, 31/1, 31/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/4, 32/5 32/6, 32/7, 32/8, 32/9A, 34/4, 35/3, 36/2, 37/2, 38/5B, 38/6, 39/4, 39/6, 39/7, 49/5, 50/1A, 50/2A, 50/2C, 51/1, 51/2, 52/1, 52/2, 58/1A, 58/1B, 58/1C, 58/2, 59/2, 59/3, 59/4, 59/5, 59/6A, 59/7A, 59/6B, 59/6C, 59/6D, 59/6E, 59/7B, 59/7C, 59/8A, 59/8B, 59/8D, 60/1, 60/2, 60/3, 57/3A, 57/3B, 57/4, 56/1, 56/5, 65/2, 66/1, 210/1, 210/2, 210/3, 210/4, 210/5, 210/6, 212/1, 212/2, 214/1, 214/4, 214/6, 214/7, 221/1A, 221/1B, 221/2, 221/3, 221/4, 221/5, 221/6, 222/1, 222/2, 222/3, 222/4A, 222/4B, 222/5, 221/7, 221/8, 226/1, 226/5, 227/1, 227/2A, 227/2B, 227/2C, 227/3, 228/1, 228/2, 228/3C, 228/3B, 228/3D, 228/3A, 228/3E, 228/4, 229/1, 229/2, 229/3A, 229/3B, 229/4, 230/1, 230/2A, 230/2B, 230/3, 230/4,230/6, 230/7, 230/8, 230/9, 230/10, 230/11 in Tulukkapatti, 196/3, 196/4, 196/7, 197/5, 197/6B, 197/6C, 198/7, 198/8, 199/2, 199/3, 199/4, 200/2, 200/3, 200/4, 200/5, 201/2A, 201/2B, 201/3, 201/4, 202/1, 202/2, 202/4, 202/5, 203/1, 203/2, 203/4, 203/5, 204/2A, 204/2B, 204/3, 204/4, 205/2, 205/4, 210/1, 210/2, 210/5A, 210/5B, 216/8, 197/8, 198/2, 198/4, 205/1, 205/3A, 206/1, 206/2, 206/3A, 206/4A, 206/5A, 206/6, 206/7A, 207/1B, 207/2B, 209/1, 209/6, 209/7, 210/3, 210/4A, 210/4B, 211/4, 211/5, 211/7, 212/1, 212/2, 212/3, 215/4, 215/5B, 216/3, 216/4, 216/9, 287/1B, 287/2 in Thammanaickanpatti, 112/1, 113/1A1, 100/1A2, 100/2, 100/3A, 100/4A, 100/5A, 100/5B1, 100/6A, 101/1, 101/2, 101/3, 101/4, 101/5, 102/1, 102/2, 103/2, 108/1, 108/2, 108/3, 108/4A, 109/1A, 109/2A1A in Vachakarapatti

TULUKAPATTI Village Virudhunagar Taluk Virudhunagar District.

Authorising the occupier to make discharge of sewage and /or trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

This RENEWAL OF CONSENT is valid for the period ending March 31, 2025

**NALINI** 

Digitally signed by NALINI Date: 2024.09.18 20:23:59

For Member Secretary, Tamil Nadu Pollution Control Board, Chennai

### SPECIAL CONDITIONS

1. This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Sl.<br>No. | Description                  | Quantity | Unit                        |
|------------|------------------------------|----------|-----------------------------|
|            | <b>Product Details</b>       |          |                             |
| 1.         | Cement                       | 2.7      | Million Tonnes<br>Per Annum |
|            | Intermediate Product Details |          |                             |
| 1.         | Clinker                      | 1.44     | Million Tons /<br>Annum     |

2. This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

| Outlet No.                            | <b>Description of Outlet</b> | Maximum daily discharge in KLD | Point of disposal     |  |  |
|---------------------------------------|------------------------------|--------------------------------|-----------------------|--|--|
| <b>Effluent Ty</b>                    | Effluent Type : Sewage       |                                |                       |  |  |
| 1.                                    | Treated Sewage water         | 280.0                          | On land for gardening |  |  |
| Effluent Type : Trade Effluent - NILL |                              |                                |                       |  |  |

### **Special Additional Conditions:**

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

The industries shall take all efforts to use and popularize "Mission LiFE" logo and mascot which is available in TNPCB & MoEFCC website. They shall also request their employees to adopt "Mission LiFE" action points and document the same and furnish half yearly report to Board.

### **Additional Conditions:**

- 1. The unit shall operate and maintain the Sewage Treatment Plant efficiently and continuously so as to achieve the standards prescribed by the Board.
- 2. The unit shall utilize the treated sewage for gardening and industrial cooling purposes.
- 3. The unit shall develop rainwater harvesting system as per the action plan submitted in order to achieve the gradual shifting of ground water usage within the time frame fixed in the EC condition.
- 4. The unit shall comply with conditions mentioned in the environmental clearance issued by MoEF&CC, GoI vide proceeding No. J-11011/119/2009.IA.II(I) dt. 25.10.2021.

Digitally signed by NALINI
Date: 2024.09.18 20:24:27
+05'30'

For Member Secretary,

Tamil Nadu Pollution Control Board, Chennai

To
The Managing Director,
M/s.THE RAMCO CEMENTS LIMITED,
Ramasamy Raja Nagar, Virudhunagar
Pin: 626204

# Copy to:









# AUTHORISATION No. 23HFC42009117 dated 07/06/2023 Proceeding No. TI/TNPCB/F-0052VDR/HWA/RI/VDR/2023 dated 07/06/2023

Sub: Tamil Nath Pollution Comtrol Board, Hazardoni Wasie Authorization-Fresh M/s, THE RAMCO CEMENTS LIMITED, S.F.No. Survey No. 1/6, 4/1B, 5/2, 5/5B, 3/6, 5/7, 5/8, 5/9, 5/10, 6/2, 6/3, 6/4, 6/5, 6/6, 6/7, 7/1, 7/2, 8/1, 8/2, 8/3, 8/4, 9/2, 9/3, 9/4, 9/5, 4/6, 9/7, 10/1, 10/2, 10/3, 10/4, 10/5, 10/6, 10/7, 11/1, 11/2, 11/3, 11/4, 11/5, 12/2, 12/3, 12/4, 12/5, 12/6, 12/7, 12/8, 12/9, 12/10, 13/2, 13/3, 13/4, 13/5, 13/6, 13/7, 13/8, 14/1, 14/2, 14/3, 14/4, 14/5, 14/6, 14/7, 16/1, 16/2, 16/3, 16/4, 22/1, 22/2A, 24/1, 14/2, 24/3, A, 24/4, 30/1C, 30/7, 30/7, 31/1, 31/2, 31/3, 11/5, 31/6, 32/2, 32/3, 32/4, 32/5, 32/6, 32/7, 32/8, 32/9A, 34/4, 36/3, 36/2, 37/2, 36/5B, 58/6, 39/4, 39/6, 39/7, 49/3, 50/1A, 50/2A, 10/2C, 51/1, 51/2, 52/1, 52/2, 58/1A, 58/1B, 58/1C, 18/2, 59/2, 59/3, 59/4, 59/3, 59/6A, 39/7A, 59/6B, 59/6B, 59/7B, 59/7C, 59/8A, 59/8B, 59/8B, 59/8B, 60/1, 60/2, 66/3, 57/3A, 57/3B, 57/4, 56/1, 56/5, 56/2, 66/1, 21/0/1, 21/0/2, 21/0/3, 21/0/4, 212/1, 212/2, 212/4, 21/4, 21/4, 21/4, 21/4, 21/4/6, 21/4/7, 221/1A, 221/1B, 121/2, 221/3, 221/4, 221/5, 221/6, 222/1, 222/2, 222/3, 222/4A, 222/4B, 222/3, 221/7, 221/3, 226/1, 226/5, 227/1, 227/2A, 227/2B, 227/2C, 227/3, 228/1, 228/3C, 228/3B, 228/3D, 228/3A, 228/3B, 228/3D, 228/3B, 228/3D, 228/3A, 228/3B, 228/3D, 228/3A, 228/3B, 228/3D, 228/3B, 228/3D, 228/3A, 228/3B, 228/3D, 228/3B, 228/3D, 228/3A, 228/3B, 228/3D, 2

Ref. 1, Unit's application No. 42009117, dated 25-11-2021/11-04-2023.

HWA-IR No.0052 VDR/HWA/RL/ICEE-M/VDR/2023 dated 21/04/2023

#### FORM 2

[See rule 6 (2)]

FORM FOR GRANT OR RENEWAL OF AUTHORISATION TO THE OCCUPIERS, RECYCLERS, REPROCESSORS, REUSERS, USER AND OPERATORS OF DISPOSAL FACILITIES

Number of authorization: 23HFC42009117 and dated: 07/06/2023



The Managing Director of Nia. THE RAMCO CIMENTS LIMITED is hereby granged an Authorisation based on the enclosed algoed Imprecion report for Generation and handling of hazardous or other wastes or both on the premises situated at S.F. No. Survey No. 1.6, 4/18, 5/2, 5/38, 5/6, 5/7, 5/8, 5/6, 5/10, 5/2, 6/3 fo/2, 6/5, 6/5, 6/6, 6/7, 7/1, 7/2, 8/1, 8/2, 8/3, 8/4, 9/2, 9/3, 9/4, 9/5, 9/6, 9/7, 10/1, 10/2, 10/3, 10/4, 10/5, 10/6, 10/7, 11/1, 11/2, 11/3, 11/4, 11/5, 12/2, 12/3, 12/4, 12/5, 12/6, 12/7, 12/8, 12/9, 12/10, 13/2, 13/3, 13/4, 13/5, 13/6, 13/7, 13/8, 14/1, 14/2, 14/3, 14/4, 14/5, 14/6, 14/5, 14/6, 14/7, 16/7, 16/7, 16/3, 16/4, 22/1, 22/2, 22/4, 22/4/3, 22/4/3, 30/10, 30/2, 10/3, 31/1, 31/2,31/3, 31/5, 31/6, 32/2, 32/3, 32/5, 32/6, 12/7, 32/8, 32/9A, 34/4, 30/10, 30/2, 10/3, 31/1, 31/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/5, 32/6, 12/7, 32/8, 32/9A, 34/4, 30/10, 30/2, 10/3, 31/1, 31/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/5, 32/6, 12/7, 32/8A, 32/9A, 34/4, 30/10, 30/2, 10/3, 31/1, 31/2,31/3A, 31/5, 31/6, 32/2, 32/3, 32/5, 32/6, 12/7, 32/8A, 32/9A, 34/4, 30/10, 30/2, 10/3, 31/2, 31/2, 59/3, 59/4, 50/10, 51/2, 52/1, 52/2, 52/1, 52/2, 58/1A, 58/1B, 58/1C, 58/2, 59/3, 59/3, 59/4, 59/5, 59/6A, 59/6B, 5

| SI<br>No | Schedule / Name of the<br>Processes                                                                                             | Name of Hazardous Waste<br>(with category No)                                             | Quantity         | Activities for which<br>Authorization is<br>issued.                                                                                |
|----------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Schedule 1/3, Industrial operations using mineral or synthetic will be administ to hydraulic systems or other applications      | 3,1-Used or spool oil                                                                     | 94 62<br>T/Annum | Ceneration, Collection,<br>Storage, Transportation<br>and send to Authorized<br>Recycless for Recovery<br>and Return (Recyclishle) |
| 2        | Schedule I /5. Industrial operations using rational or synthetic uit or labeluart in hydraulic synthetic or other applications. | 5.2-Wastes or residues<br>containing oil                                                  | 196 TYAnomo      | Generation, Collection,<br>Surrage, Transposation<br>and sond to Authorized<br>Recyclers for Recovery<br>and Recover, Recycloble)  |
| 3        | Schedule 1/13. Handling of<br>hugardom observation and<br>wasten                                                                | 33.1-Empty<br>harmits-containers/liners<br>containment with hazardina<br>chemicals/writes | 100 T/Annum      | Generation, Callection,<br>Suruge, Transportation<br>and sand to Authorized<br>Recyclers for Broovery<br>and Reuse ( Unificable)   |

This authorization shall be valid for a period upto \(\frac{\pi}{2}\)/05/2028.

The Authorization is issued subject to the following general and special conditions annexed.

R RAJAMANICKAM BUMBEUM

For Member Secretary Tamil Nada Pollution Control Board Chennal

### A. GENERAL CONDITIONS OF AUTHORIZATION

- The authorised person shall comply with the provisions of the Environment (Protection) Act, 1986 and the rules made there under.
- The authorization or its venewal shall be produced for inspection at the request of an officer authorized by Tamil Nodu Pollution Control Board.
- The person authorized shall not vent, lend, sell, transfer or atherwise transport the hazardaus and other wastes except what is permitted through this Authorization.
- Any mouthorized change in personnel, equipment or working conditions as mentioned in the application by the person authorized shall constitute a breach of his authorization.

## CERTIFICATE

21st October 2024

This is to certify that the Land over an Extent of 112 899 His in the following survey numbers of Thulukapatti Village, Virudhusagar Taluk is Virudhusagar District belongs to "The Ramco Cements Limited", Ramasamy Raja Nagar and having Patta Nos 381, 1104, 1105, 1378, 1381, 1382, 1383, 1384 and 1394.

| 27.6 | (All marks) | F 45.44 In |
|------|-------------|------------|
| SI   | Survey      | Extent In  |
| No   | Number      | Hectares   |
| - 1  | 1/1         | 0.680      |
| 2    | 1/2         | 0,565      |
| 3    | 1/3         | 0.555      |
| 4    | 1/4         | 0.565      |
| 5    | 1/5         | 0.470      |
| 6    | 1/6         | 0.480      |
| 7    | 1/7         | 0.965      |
| 8    | 2/1         | 0.820      |
| 9    | 2/2         | 3.325      |
| 10   | 3/1         | 1.070      |
| 11   | 3/2         | 1,140      |
| 12   | 3/3         | 0.140      |
| 13   | 3/4         | 0.350      |
| 14   | 3/5         | 0.695      |
| 15   | 4/18        | 1.005      |
| 16   | 4/2A28      | 1.315      |
| 17   | 4/28        | 0.075      |
| 18   | 4/3         | 0.640      |
| 19   | 5/1         | 0.415      |
| 20   | 5/2         | 0.395      |
| 21   | 5/38        | 0.500      |
| 22   | 5/4B        | 0.465      |
| 23   | 5/5B        | 0.500      |
| 24   | 5/6         | 0.495      |
| 25   | 5/7         | 0.375      |
| 26   | 5/8         | 0.140      |
| 27   | 5/9         | 0.565      |
| 28   | 5/10        | 0.455      |
| 29   | 6/2         | 1.670      |
| 30   | 6/3         | 0.705      |
| 31   | 6/4         | 0.330      |
| 32   | 6/5         | 0.625      |
| 33   | 6/8         | 0.590      |
| 34   | 6/7         | 0.350      |
| 35   | 7/1         | 0.380      |
| 36   | 7/2         | 0.615      |
| 37   | 8/1         | 0.415      |
| 38   | 8/2         | 0.530      |

ஆம்ரர் இற்பர் அன்னம் சுத்திர ஆம்ரர் இற்பர் அன்னம் சுத்திர

| 29 | 8/3   | 0.350 |
|----|-------|-------|
| 40 | 8/4   | 0.250 |
| 41 | 9/2   | 0.860 |
| 42 | 9/3   | 0.545 |
| 43 | 9/4   | 0.550 |
| 44 | 9/5   | 0.630 |
| 45 | 9/6   | 0.380 |
| 46 | 9/7   | 1.210 |
| 47 | 10/1  | 0 725 |
| 48 | 10/2  | 0.775 |
| 49 | 10/3  | 0.710 |
| 50 | 10/4  | 0.435 |
| 51 | 10/5  | 0.330 |
| 52 | 10/6  | 0.255 |
| 53 | 10/7  | 0.175 |
| 54 | 11/1  | 1.365 |
| 56 | 11/2  | 0.945 |
| 57 | 11/3  | 0.565 |
| 58 | 11/4  | 0.300 |
| 59 | 11/5  | 0.480 |
| 60 | 12/2  | 0.465 |
| 61 | 12/3  | 0.415 |
| 62 | 12/4  | 0.310 |
| 63 | 12/5  | 0.730 |
| 64 | 12/6  | 0.235 |
| 65 | 12/7  | 0.685 |
| 66 | 12/8  | 0.785 |
| 67 | 12/9  | 0.280 |
| 88 | 12/10 | 0.225 |
| 69 | 13/2  | 0.115 |
| 70 | 13/3  | 0.125 |
| 71 | 13/4  | 0.535 |
| 72 | 13/5  | 0:250 |
| 73 | 13/6  | 1.000 |
| 74 | 13/7  | 0.605 |
| 75 | 13/8  | 0.325 |
| 76 | 14/1  | 0.350 |
| 77 | 14/2  | 0.370 |
| 78 | 14/3  | 0.275 |
| 79 | 14/4  | 0.345 |
| 80 | 14/5  | 1.155 |
| 81 | 14/6  | 0.555 |
| 82 | 14/7  | 0.315 |
| 83 | 16/1  | 0.585 |
| 84 | 16/2  | 0.795 |
| 85 | 16/3  | 0.000 |
| 30 | 130   | 0.550 |

அற்பபு அற்பபு பற்றாளர் மற்றா இராம் நிர்வாக அதுவவர்

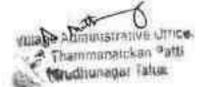
| 88  | 15/4  | 0,325 |
|-----|-------|-------|
| 87  | 22/1  | 0.335 |
| 88  | 22/2A | 0,545 |
| 89  | 24/1  | 0.590 |
| 90  | 24/2  | 0,600 |
| 91  | 24/3A | 0.712 |
| 92  | 24/4  | 1.117 |
| 93  | 30/1C | 0.055 |
| 94  | 30/2  | 0.215 |
| 95  | 30/3  | 0.830 |
| 96  | 31/1  | 0.315 |
| 97  | 31/2  | 0.310 |
| 98  | 31/3A | 0.608 |
| 99  | 31/5  | 0.545 |
| 100 | 31/6  | 0.340 |
| 101 | 32/2  | 0.100 |
| 102 | 32/3  | 0.095 |
| 103 | 32/4  | 0.140 |
| 184 | 32/5  | 0.525 |
| 105 | 32/6  | 0.575 |
| 106 | 32/7  | 0.350 |
| 107 | 32/8  | 0.335 |
| 108 | 32/9A | 0.725 |
| 109 | 34/4  | 0.235 |
| 110 | 34/5  | 1.130 |
| 111 | 35/2  | 0.600 |
| 112 | 35/3  | 0.550 |
| 113 | 36/2  | 1.430 |
| 114 | 37/2  | 0.405 |
| 115 | 38/58 | 0.985 |
| 116 | 38/6  | 0.165 |
| 117 | 38/7  | 0.340 |
| 118 | 39/4  | 0.415 |
| 119 | 39/6  | 0.190 |
| 120 | 39/7  | 0.385 |
| 121 | 49/5  | 1,390 |
| 122 | 50/1A | 0.565 |
| 123 | 50/2A | 0,200 |
| 124 | 50/2C | 0,245 |
| 125 | 51/1  | 0.655 |
| 126 | 51/2  | 0.260 |
| 127 | 52/1  | 0.335 |
| 128 | 52/2  | 0.270 |
| 129 | 56/1  | 0.245 |
| 130 | 56/5  | 0.275 |
| 131 | 57/3A | 0.050 |

திறக்கபட்ச இராம் இர்வாக அறுவரை அறப்பு புதிவரை மற்றும்

| 132 | 57/3B           | 0.870                                   |
|-----|-----------------|-----------------------------------------|
| 133 | 57/4            | 0.315                                   |
| 134 | 58/1A           | 0.035                                   |
| 135 | 58/1B           | 0.825                                   |
| 136 | 58/1C           | 0.565                                   |
| 137 | 58/2            | 0.555                                   |
| 138 | 59/2            | 0.480                                   |
| 139 | 59/3            | 0.695                                   |
| 140 | 59/4            | 0.225                                   |
| 141 | 59/5            | 0.300                                   |
| 142 | 59/6A           | 0.015                                   |
| 143 | 59/7A           | 0.020                                   |
| 144 | 59/68           | 0.435                                   |
| 145 | 59/6C           | 0.160                                   |
| 146 | 59/6D           | 0.160                                   |
| 147 | 59/6E           | 0.100                                   |
| 148 | 59/78           | 0.130                                   |
| 149 | 69/7C           | 0.190                                   |
| 150 | 59/8A           | 0.080                                   |
| 151 | 59/8B           | 0.055                                   |
| 152 | 59/80           | 0.295                                   |
| 153 | 60/1            | 0.455                                   |
| 154 | 60/2            | 0.345                                   |
| 155 | 60/3            | 0.520                                   |
| 156 | 65              | 2.430                                   |
| 157 | 65              | 2.830                                   |
| 158 | 65              | 2 695                                   |
| 159 | 66/1            | 0.845                                   |
| 160 | 210/1           | 0.420                                   |
| 161 | 210/2           | 0.010                                   |
| 162 | 210/3           | 0.290                                   |
| 163 | 210/4           | 0.001                                   |
| 164 | 210/5           | 0.325                                   |
| 165 | 210/6           | 0.160                                   |
| 166 | 212/1           | 0.170                                   |
|     | 212/2           | 0.325                                   |
| 167 | AND THE RESERVE | 100000000000000000000000000000000000000 |
| 168 | 214/1A          | 0.070                                   |
| 169 | 214/4           | 0.410                                   |
| 170 | 214/6           | 0.410                                   |
| 171 | 214/7           | 0.310                                   |
| 172 | 221/1A          | 0.330                                   |
| 173 | 221/18          | 0.130                                   |
| 174 | 221/2           | 0.290                                   |
| 175 | 221/3           | 0.465                                   |
| 176 | 221/4           | 0.420                                   |
| 177 | 221/5           | 0.245                                   |
| 178 | 221/6           | 0.150                                   |

ஆராம் நிர்வாக அன்னை ஆரார் இறப்பு எதுவாளர் கூறிர்

| 179 | 222/1  | 1.010   |
|-----|--------|---------|
| 180 | 222/2  | 0.415   |
| 181 | 222/3  | 0.420   |
| 182 | 222/4A | 0.385   |
| 183 | 222/48 | 0.370   |
| 184 | 222/5  | 0.210   |
| 165 | 221/7  | 0.105   |
| 186 | 221/8  | 0.910   |
| 187 | 226/1  | 1.110   |
| 188 | 226/5  | 0.640   |
| 189 | 227/1  | 0.995   |
| 190 | 227/2A | 2.025   |
| 191 | 227/28 | 1.215   |
| 192 | 227/2C | 1.050   |
| 193 | 227/3  | 0.535   |
| 194 | 228/1  | 0.805   |
| 195 | 228/2  | 0.585   |
| 196 | 228/3C | 0.430   |
| 197 | 228/3B | 0.175   |
| 198 | 228/3D | 0.205   |
| 199 | 228/3A | 0.260   |
| 200 | 228/3E | 0.225   |
| 201 | 228/4  | 0.390   |
| 202 | 229/1  | 0.420   |
| 203 | 229/2  | 1.095   |
| 204 | 229/3A | 0.510   |
| 205 | 229/3B | 0.380   |
| 206 | 229/4  | 0.625   |
| 207 | 230/1  | 0.080   |
| 208 | 230/2A | 6.180   |
| 209 | 230/2B | 0.250   |
| 210 | 230/3  | 0.340   |
| 211 | 230/4  | 0.220   |
| 212 | 230/6  | 0.200   |
| 213 | 230/7  | 0.205   |
| 214 | 230/8  | 0.495   |
| 215 | 230/9  | 0.009   |
| 216 | 230/10 | 0.325   |
| 217 | 230/11 | 0.265   |
|     | TOTAL  | 112.899 |


Thulogare to villa caspens of the ca

### CERTIFICATE

21st October 2024

This is to certify that the Land over an Extent of 57.677 Ha in the following survey numbers of Thammanaickanpatti Village, Virudhunagar Taluk in Virudhunagar District belongs to "The Ramco Cements Limited", Ramasamy Raja Nagar and having Patta Nos. 939, 1176, 1252, 1311, 1365, 1367, 1368, 1369, 1503, 1504, 1505, 1506, 1507, 1508, 1509, 1513, 1514, 1515 & 1516.


| SI.<br>No | Survey<br>Number | Extent In<br>Hectares |
|-----------|------------------|-----------------------|
| 1         | 192/3B           | 0.265                 |
| 2         | 192/6            | 0.565                 |
| 3         | 192/7            | 0.010                 |
| 4         | 192/8            | 0.010                 |
| 5         | 194/1            | 0.330                 |
| 6         | 194/2            | 0.325                 |
| 7         | 194/3            | 0.295                 |
| 8         | 194/4            | 0.130                 |
| 9         | 194/5            | 0.725                 |
| 10        | 194/6            | 0.115                 |
| 11        | 194/7            | 0.310                 |
| 12        | 194/8            | 0.225                 |
| 13        | 194/9            | 0:055                 |
| 14        | 194/10           | 0.530                 |
| 15        | 194/11           | 0.395                 |
| 15        | 195/7            | 1 605                 |
| 17        | 195/8            | 0.615                 |
| 18        | 196/2            | 0.180                 |
| 19        | 196/3A           | 0.005                 |
| 20        | 196/38           | 0.175                 |
| 21        | 196/4            | 0.285                 |
| 22        | 196/5            | 0.280                 |
| 23        | 196/6            | 0.595                 |
| 24        | 196/7            | 1.720                 |
| 25        | 197/5            | 0.345                 |
| 26        | 197/6B           | 0.130                 |
| 27        | 197/6C           | 0.060                 |
| 28        | 197/8            | 1.045                 |
| 29        | 198/2            | 0.300                 |
| 30        | 198/4            | 0.030                 |
| 31        | 198/7            | 0.545                 |
| 32        | 198/8            | 0.555                 |
| 33        | 199/2            | 0.540                 |
| 34:       | 199/3            | 0.595                 |
| 35        | 199/4            | 0.550                 |
| 36        | 200/2            | 1,020                 |



| 37  | 200/3  | 1.040 |
|-----|--------|-------|
| 38  | 200/4  | 0.985 |
| 39  | 200/5  | 0.965 |
| 40  | 201/2A | 2.685 |
| 41  | 201/28 | 0.370 |
| 42  | 201/3  | 0.315 |
| 43  | 201/4  | 0.545 |
| 44  | 202/1  | 0.695 |
| 45  | 202/2  | 0.095 |
| 45  | 202/4  | 0.975 |
| 47  | 202/5  | 0.875 |
| 48  | 203/1  | 0.630 |
| 49  | 203/2  | 0.115 |
| 59  | 203/4  | 0.995 |
| 51  | 203/5  | 1.285 |
| 52  | 204/2A | 0.345 |
| 53  | 204/2B | 0.215 |
| 54  | 204/3  | 0.795 |
| 55  | 204/4  | 1.305 |
| 56  | 205/1  | 0.410 |
| 57  | 205/2  | 0.425 |
| 58  | 205/3A | 0.480 |
| 59  | 205/4  | 1.330 |
| 60  | 206/1  | 0.945 |
| 61  | 206/2  | 0.370 |
| 62  | 206/3A | 0.300 |
| 63  | 206/4A | 1.070 |
| 64  | 206/5A | 0.645 |
| 65  | 206/6  | 0.350 |
| 66  | 206/7A | 0.575 |
| 67  | 207/1B | 0.860 |
| 68  | 207/28 | 1.380 |
| 69  | 209/1  | 0.795 |
| 70  | 209/6  | 1.050 |
| 7.1 | 209/7  | 0.675 |
| 72  | 210/1  | 1,185 |
| 73  | 210/2  | 0.405 |
| 74  | 210/3  | 0.420 |
| 75  | 210/4A | 0.335 |
| 76  | 210/4B | 0.365 |
| 77  | 210/5A | 0.360 |
| 78  | 210/5B | 0.755 |
| 79  | 211/4  | 0.500 |
| 80  | 211/5  | 0.310 |
| 81  | 211/7  | 0.720 |
| 82  | 212/1  | 0.085 |



|    | Total  | 57.677 |
|----|--------|--------|
| 92 | 287/2  | 1.965  |
| 91 | 287/1B | 1.205  |
| 90 | 216/9  | 0.075  |
| 89 | 216/8  | 1.265  |
| 88 | 216/4  | 0.225  |
| 87 | 216/3  | 0.515  |
| 86 | 215/58 | 0.810  |
| 85 | 215/4  | 0.630  |
| 84 | 212/3  | 1.050  |
| 83 | 212/2  | 2 140  |



### CERTIFICATE

21<sup>st</sup> October 2024

This is to certify that the Land over an Extent of 20,865 Ha in the following survey numbers of Vachchkarapatti Village, Virudhunagar Taluk in Virudhunagar District belongs to "The Ramco Cements Limited", Ramasamy Raja Nagar and having Patta Nos. 994,1016 & 1325.

| 51.<br>No. | Survey<br>Number | Extent In<br>Hectares |
|------------|------------------|-----------------------|
| 1.         | 100/1A2          | 0.675                 |
| 2          | 100/2            | 0.305                 |
| 3          | 100/3A           | 0.247                 |
| 4.         | 100/4A           | 0.096                 |
| 5.         | 100/5A           | 1.395                 |
| 6:         | 100/581          | 0.075                 |
| 28         | 100/6A           | 0.064                 |
| 8.         | 101/1            | 0.615                 |
| 9.         | 101/2            | 0.595                 |
| 10.        | 101/3            | 1,025                 |
| 11.        | 101/4            | 0.570                 |
| 12         | 101/5            | 0.525                 |
| 13.        | 102/1            | 1.010                 |
| 14.        | 102/2            | 2.146                 |
| 15         | 103/2            | 1.020                 |
| 163        | 108/1            | 0.975                 |
| 17.        | 108/2            | 0.840                 |
| 18.        | 108/3            | 0.960                 |
| 19         | 108/4A           | 0.215                 |
| 20:        | 109/1A           | 0.590                 |
| 21.        | 109/2A1A         | 0.102                 |
| 22,        | 112/1            | 0,245                 |
| 23.        | 112/2            | 1,500                 |
| 24.        | 112/3            | 0.455                 |
| 25.        | 112/4            | 0.355                 |
| 26.        | 112/5            | 1.425                 |
| 27.        | 113/1A1          | 0.585                 |
| 28.        | 113/161          | 0.040                 |
| 29.        | 113/1C1          | 0.030                 |
| 30.        | 113/2            | 0:500                 |
| 31.        | 113/3A           | 1.285                 |
| 32         | 113/36           | 0.175                 |
| 33.        | 113/3C2          | 0.225                 |
| 34         | TOTAL            | 20.865                |

Village Administrative Officer Vachchkarapatti Village Virudhunagar Taluk and District Village Administrative Officer

Virudhunagar Taluk.

# Annex Doc-3 Factory License Nadu

தொழிலகப் பாதுகாப்பு மற்றும் சகாதார இயக்ககம்

Directorate of Industrial Safety and Health

Licence Fee : ₹ 1,800,000

### Form No.4 - Registration and Licence to work a factory [Prescribed under Rule 4 (6) of the Tamil Nadu Factories Rules 1950]



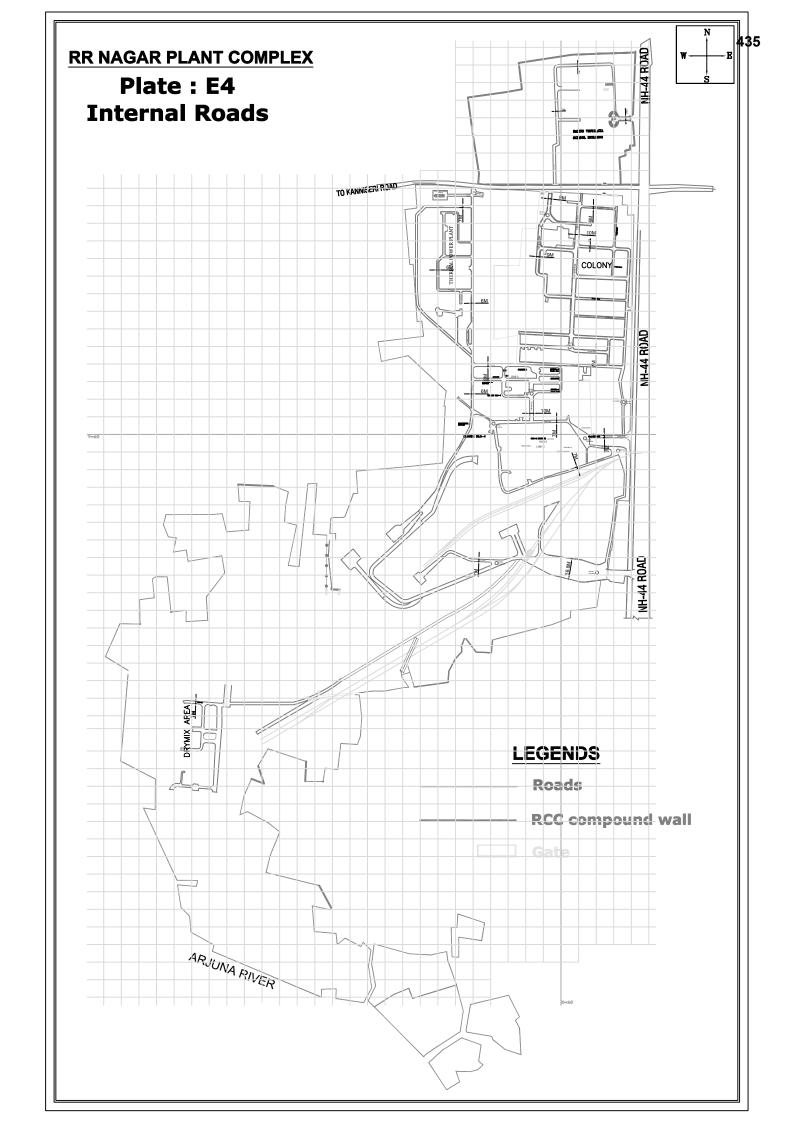
Registration Number : VNR00615

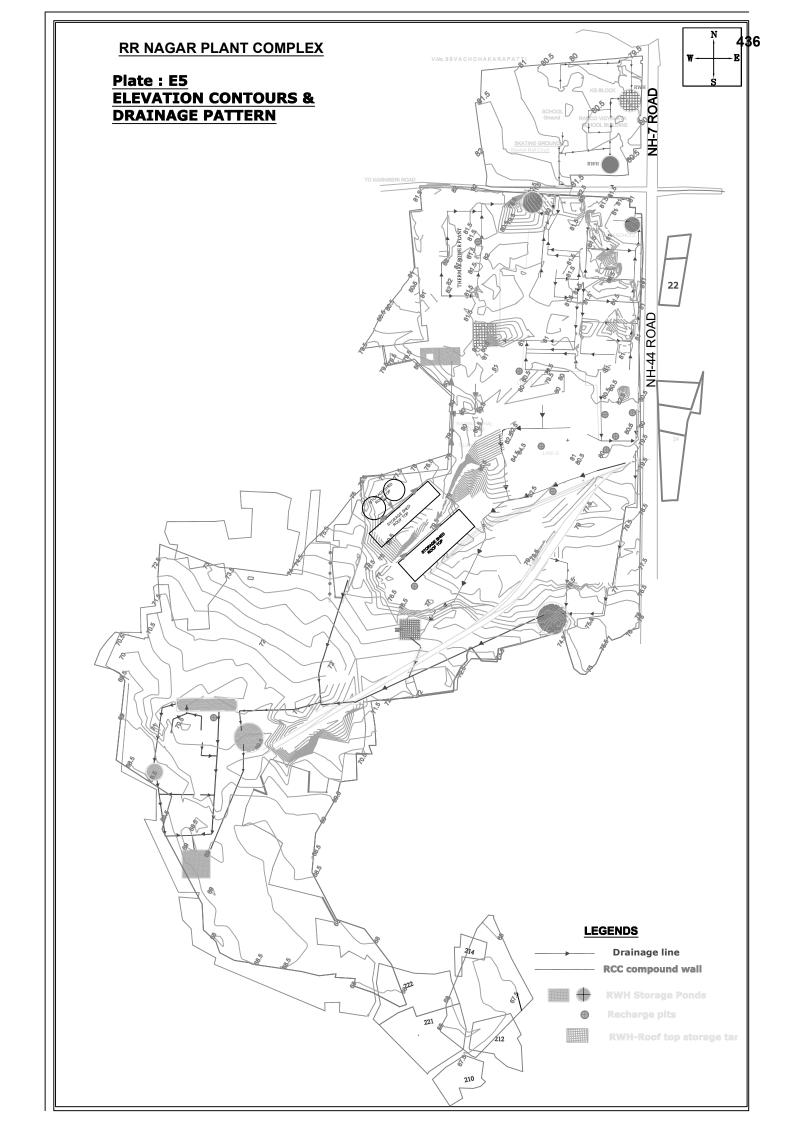
Licence is hereby granted / renewed to Mr. P.R VENKETRAMA RAJA valid only for the premises detailed below for use as a factory employing not more than 2000 workers on any one day during the year and using installed horse power inclusive of mobile equipment above 10000 horse power subject to the provisions of the Factories Act, 1948 and the Rules made thereunder.

This licence shall remain in force till the 31st day of December 2025 unless such licence is cancelled before that date under rule 109.

Name of the factory : THE RAMCO CEMENTS LIMITED

#### **Description of Licensed Premises**


The licensed premises shown on Plan No. - dated - are situated in Survey No.: 4/12, Door No. / Plot No.: 180,181/W4, RAMASAMY RAJA NAGAR, THULUKUPATTI, Virudhunagar Taluk, Virudhunagar District - 626204.


This License renewal is auto Generated through Portal. Hence no signature required.

Date: 02/09/2024

Joint Director of Industrial Safety and Health, Virudhunagar

|        | 7(1)                              | R                                               | enewals             | 71113                          |
|--------|-----------------------------------|-------------------------------------------------|---------------------|--------------------------------|
| SI.No. | Date of<br>Renewal                | Fee for<br>Renewal                              | Date of<br>Expiry   | Signature of<br>Joint Director |
| 1      | 02/09/2024                        | 1,800,000/-                                     | 31/12/2029          |                                |
|        |                                   | Ame                                             | ndments             |                                |
| SI.No. | Amended to<br>Install horse power | Amended to<br>Employ maximum numl<br>of workers | per Additional fee  | Signature of<br>Joint Director |
| 1.     |                                   |                                                 |                     |                                |
| 2.     |                                   |                                                 |                     |                                |
|        |                                   | Tra                                             | nsfers              |                                |
| SI.No. | Name of the pe<br>to whom trans   | erson<br>fered                                  | Name of the factory | Signature of<br>Joint Director |
| 1.     |                                   | -                                               |                     |                                |
| 2.     |                                   |                                                 |                     |                                |





Annex. Doc-4 Water Permissi

· BE' Office

CUYA NEAR MY UP TA AT LEADU. Abstract.

Irrigation -Charges for Water drawn for Industrial purposes revision smendment to pure 258(s) of Temilneon Public Works Account Code -Imsued.

PUBLIC WORK & DEPARTMANT.

5.G. Na . No . 1446 .

Dated: 4--10--1975 2 badi

1. G.O.Ms.No.454/PW.Dt.22-2-1966.

2. From the Chief Engineer (Irrigo) Ir. No. N2/888/72-27. Dt. 8--2--1973.

3. From the Sperd of Sevenue It. No. 83/1464/73-9/79/1-12-75.

Union #4

1.3

The Govt approve the following summinuments to the Tamilnodu Public Works Accounts Cone:

A POST WAR NEED

In the seld code Under pare 258(s) for the items (1) and (11) under the beeding "By bend" and "By mechanical centrivates " the shall be substituted; vis., follow ine

258(a) The charges for water drawn for Industrial purposes directly from Govt. either by hend or by mechanical contrivances will be as follows:

1) For consumptive use for Won-Agriculturel purpose atter Shan dommetic water mopply:-

At Ra.50/- per 1000 cubic metres subject to a minimum of He. 5,000/- per annum.

tid ros Couling Purposes Water taken for couling purposes and refer med undiminished todayt, sources shall be charged at He.10/- per 1000 cubic metrem subject to a minimum of He. 300/per summe. For the rest of water compused full charge of Be.30/per 1000 cobic metres embject to a minimum of Re.3,000/- perannum.

iii) If water is supplied from special Gov! .echemes, for the purposes mentioned in (i) and (ii) above the cost of sporetion of suck schemes such appropring cupits I charges towards depreciation and interest on the cost of installation will be charged in addition.

The amendments indicated in para 1 s mys, will take effect from 1-4-75.

/By prove of the Cove more

B. Wijeysteshovan. Secretary to Sout.

STREET, ST. COURSE THE PROPERTY OF THE PARTY OF TH



THIS INDENTURE made this | 5 to 100 of 1984 BETWEEN THE GOVERNOR OF TAMIL NADU (hereinafter called "THE GOVERNOR" which expression shall where the context admits include his successors-in-office and assigns) of the one part AND Messrs. Madras Cements Ltd., a Company incorporated under the Companies Act 1956 and having its Registered Office at "Remamandiram", Rejapalayam, (hereinafter called "THE LICENSEE" which expression shall where the context admits include its executors, administrators, legal representatives and permitted assigns) of the other part.

WHEREAS the canal known as Arjuna River in Tulukkapatti village, virudhunagar Taluk, Sattur Sub District in the District of Ramanathapuram vests in the Government and whereas the Licensee is the owner of the Factory and premises situate at Ramasamy-Raja Magar within the limits of Tulukkapatti village and known as Madras Cements Ltd., hereinafter called 'The said Factory'.

FOR MADRAS CEMENTS LTD.,

12

COLLECTOR,

AND WHEREAS the Licensee has applied to the Government of Temil Hadu (hereinafter called "the Government") to grant him such rights of taking water from the said canal for the purposes of the said factory and such other rights of access and incidental rights as are hereinafter described for the term of ten years hereinafter mentioned which the Governor has agreed to do upon the terms and conditions hereinafter expressed.

NOW THIS INDENTURE WITHESSETH as follows:
1. In pursuance of the said agreement and in consideration of the yearly sums hereinafter made payable to the Government and of the covenants on the part of the Licensee hereinafter contained the Governor hereby grants unto the Licensee the rights and liberties following namely,

- (a) The right to take from the said canal at the point marked 'A' on the plan annexed hereto or at such other point as the Collector of Ramanathapuram (hereinafter called the 'Collector') shall determine and to convey a cross the lands of Government (hereinafter called 'the said lands') by means of pipes and/or sluices and/or channels and/or by hand such quantity of water as the licensee shall require (and shall be available) for the purposes of the said factory and shall have paid for in advance not exceeding the maximum quantity hereinafter mentioned or such lesser quantity as in the opinion of the Collector of Rememathepuram (hersinafter called 'the collectors) cannot be exceeded without interfering with irrigation or navigation or the ordinary use of the said canal by the public.
- (b) The right for the purpose of taking such water and for the purpose of restoring such water if the Licensee shall think fit so to restore the same where such water is intended to be taken and discharged by means of pipes, to lay and maintain in the said lends a line of intake pipes and a line of discharge pipes of cast iron or RCC of the gauge of about 8 to 12 inches

ADMINISTRATIVE MANAGER

COLLECTION

in the respective courses shown by dotted lines on the said plan so howover that the same shall be laid not less than about 3 to 10 feet below the surface of the soil in cowered trenches and for the same purpose to cut, construct and maintain sluices in the said lands of the dimensions and following the course specified and indicated to the said plan the said works to be executed so that no unnecessary demage shallbe done to the said lands and that upon the completion of the works the surface shall at the cost of the Licensee be restored to its present condition or as near thereto as shall be masonably possible.

(c) The liberty from time to time during the continuance of this licence to enter on the said lands for the purpose of exercising the rights and liberties hereby granted and with the previous permission in writing of the Revenue Divisional Officeror Tahsildar for the time being in charge of the said canal but not otherwise to open up the said pipes and sluices for the purposes of removing repairing and cleaning the same as occasion may require, doing no unnecessary damage to the said lands and restoring the surface at the cost of the ideensee whenever opened up as soon as may be.

To hold and enjoy the said rights and liberties hereby granted unto the Licenses for the term of ten years from the first day of November 1979, subject to determination as hereinafter mentioned.

2. The Licensee shall and will yield and pay to the Government in advance before the 10th day of April in each year the charges for water estimated to be required by the Licensee during the year ending on the 31st day of March following at the following rates:

The charges for water drawn for Industrial purposes directly from Government either by hand or by mechanical contrivance will be as follows:

FOR MADRAE CEMENTS LTD.,

COLLECTOR

i) For consumptive use for non-agricultural purpose other than domestic water supply:

0

At M. 30/= per 1000 cubic metres subject to Caboti a minimum of b. 3,000/- per annum.

- 11) For Cooling Purpose : Water taken for cooling purposes and returned undiminished to Government sources shall be charged # b, 10/= per 1000 cubic metres subject to a minimum of &. 300/per annum. For the rest of water consumed full charges of h. 30/- per 1000 cubic metres subject to a minimum of R. 3,000/= per annum.
  - 111) If water is supplied from special Governmant Schemes, for the purposes mentioned in (i) and (11) above, the cost of operation of much schemes such as pumping, capital charges towards depreciation and interest on the cost of installation will be charged in addition.

If in any year the Licensee shall require any water in excess of the quantity paid for in advance and if the Government agree to supply such excess water, the Licensee shall and will also yield and pay to the Government the charges at the rate of B. 30/for every 1000 cubic metres of water to be removed by pipes or sluices or otherwise. The charges for the excess water shall be paid before the excess water is actually removed by the Licenson subject to adjustment of accounts when the actual quantities / of supply are assertained, provided that the Odernment shall be at liberty to revive the above rate periodically and the Licensee is bound to pay at the revised rate from the date of revision.

2.0. The Licensee shall pay to the Government in advance, before the 10th day of April in each year, an annual rent as fixed by the Superintending Engineer for Water Moters or other measuring device to measure the quantity of water taken from the canal through pipes, plumes, sluices, channels or in any other manner except by hand.

FOR MADRAS CEMENTS LTD.

apecified by the Superintending Engineer as a Security Deposit which may be reduced or increased during the currency of the License at the discretion of the Executive Engineer. This security deposit may be drawn upon to meet the cost of repairing or replacing may damage to the Meter or measuring device. After the repairs are carried out and the cost determined, the Superintending Engineer may sall upon the Licensee to make up the deposit to the original or an increased amount. The opinion of the Executive Engineer in regard to the nature of the damage and the cost recoverable shall be final and binding on the Licensee.

- 3. The Licenses comments with the Governor as follows, namely, that the Licenses -
- (a) will pay the said yearly sums hereinbefore stipulated to be so paid without any deduction and within the periods hereinbefore appointed for payment thereof respectively.
- (b) will do all works and things hereby authorised to be done by him upon or affecting the said lands or the said canal in a good and workman like manner and so as to cause no unnocessar, damage or disturbance to the said lands or the said canal or the bed or banks thereof.
- of such pipes or sluices or otherwise except by hand at the Licensee's own cost, suitable Neters willbe installed by Government and maintained at Government cost at or near the point of intake. The said Neters or gauges shall be opened at all time to the inspection of any officer of the P.W.D. or Revenue Department of the Government for sorrectly measuring the quantity of water taken from the said canal to the said pipes or sluices or otherwise as aforesaid. The Licensee will pay an annual rent hereinbefore stipulated to be so paid and within the periods hereinbefore mentioned for the payment thereof and will be responsible for

FOR MADRAS CEMENTS LTD.

COLLECTOR.

the proper housing, watch and mafe customy of the meter or other measuring device installed and should report without avoidable delay to the Revenue Divisional Officer or the Collector concerned any defect in the working of the meter or its efficiency that might occur and immediately such a defect is observed.

(d) will not take from the seid canal in any period of 24 hours measured from midnight to midnight a greater quantity of water than as hereinafter mentioned namely.

cannal any water in excess of the amounts paid for in advance of the current year except with the previous permission in writing of the Collector to be applied for when the Licensee is about to exhaust the quantity so paid for in advance.

- (e) will maintain and keep at the said factory proper books of account in which shall be entered daily the quantities of water removed from the said canal under the rights and liberties hereby granted distinguishing such as shall be removed by pipes or sluices or otherwise (except by hand) from such as shall be removed by hand and shall whenever required allow such books to be inspected and the entries thereon to be copied by any officer of the Public Works or Revenue Department aforesaid of the Government of Tamil Nadu.
- charged into the canal any water of less purity
  than the water in the said canal for the time being
  or any substance or matter (fluid or solid) which
  shall prejudiciably affect the said canal or the
  water therein or render such water in any way unfit
  for domestic purposes or which shall be or cause a
  nuisance or annayance to the Government or to any
  person.

FOR MACRAIS CEMENTS LTD.

COLLECTOR

- (g) will keep the Government indomnified against all actions, claims and demands that may be brought or made against them by reasons of anything done by the Licensee in exercise or in purported exercise of the rights and liberties hereby granted.
- (h) will keep the pipes and sluices and other works of the Licensee which shall be laid or constructed on the said lands in good repair.
- (i) will at the expiry of the term of these presents or sooner determination of the said term or within thirty days thereafter at the cost of the Licensee remove the said pipes and works and restore the said lands or such part thereof as may have been opened disturbed or damaged by the Licensee to the same or as good a state and condition as they were immediately before the date hereof;
- (j) will use such water for the purposes of the said factory alone and for no other purposes.
- (k) will at all reasonable times allow the officers of the Public Works and Revenue Department aforesaid to inspect the said factory and surrounding premises of the Licenses.
- In case any sum hereby made payable shall be in agreers and unpaid for the space of thirty days after the same shall have become payable, or if there shall be any breach or non-observance of any of the covenants on the part of the Licensee other than the Government for payment of said sums or of the conditions herein contained, then and in any such case it shall be lawful for the Government by notice in writing under the hand of the Collector served on or posted to the Licensee, at his factory address, to determine these presents and the Licence hereby granted shall immediately upon such service cease and determine but without projudice to any claim or right or action or remedy of the Government in respect of any previous breach of any covenant on the part of the Licensee herein contained or in the alternative to cut off the

FOR MADRAS CEMENTS LTD.

ADMINISTRATIVE MANAGER,

COLLECTOR,

the arrears shall have been paid in full together with the expenses that may be incurred by the Government on account of such cutting off or as the case may be, until such time as the breach or non-observance of the covenants on the part of the licensee shall have been made good by paying to the Government such sum as the Collector may fix as compensation for the loss or damage caused to the Government by such breach of or non observance together with the expenses that may be incurred by the Government on account of such cutting off and the Licensee shall not be entitled to the refund of any portion of the said annual sum paid in advance or to claim any damages from the Government.

- 5. All sums due to the Government from the Licensee shall be recovered from him as if they are arrears of land Revenue.
- 6. The Governor covenants with the Licensee that the Licensee paying the said annual sums end performing and observing the covenants and conditions on his part to be performed and observed may peaceably exercise and enjoy the rights and liberties hereby granted during the said term without any interruption save as herein provided on the part of the Government or any person claiming through under or in trust for the Government.
- Provided always and it is hereby agreed and declared as follows:
- (a) That in case water shall be taken by the Licensee from the said canal by means of a pipe or masonry sluice no portion of such pipe or sluice shall project into the water way of the said canal and that the head of each pipe or sluice shall be built in a small masonry wall to be approved by the Executive Engineer and to be constructed at the cost of the Licensee and that no pump shall be exected on the said lands.
- (b) That it shall be lawful for the Collector at any time on giving one month's previous notice in

FOR MADRAS CEMENTS LTD.

COLLECTOR,

writing and in cases of emergencies as to which the decision of the Collector shall be final and conclusive without any notice at all to cut off the supply of such water to the said factory for any length of time and in the later case only such part of the said annual sum as ushall exceed the value at the rate hareinbefore mentioned of the water removed during the year in which the supply shall have been so cut off, shall be repaid to the Licensee but the Licensee shall not be entitled to any furthr or other compensation in respect thereof.

- (c) That the Licensee shallnot be entitled to the refund of any portion of the said annual sum paid in advance or to claim demage either on the ground that the Licensee has not taken the maximum quantity of water hereinbefore mentioned or on the ground that the Licensee has not been able to take such maximum quantity owing to deficient water in the said canal consequent on early or sudden closure of the said canal for repairs or otherwise.
- (d) That the Licensee may be exempted by the Collector from payment of the said annual sum in respect of any one or more complete years during the term of the License if he intimates in advance to the Collector that he does not propose to take water during such year or years.
- (e) That in addition to any rights and remedies reserved unto the Government under this agreement and without prejudice thereto the Licensee shall if he fails to comply with any one or more of the provisions of this agreement be liable for and pay to the Government, in respect of all water taken by him after such failure charges at such increased rates as the Gollector may deem fit and reasonable.

ADMINISTRATIVE MANAGES

COLLECTOR A

- The consumer should instal separate meters/ 1. measuring devices at their cost for measuring the water consumed and should maintain the same in good working condition always and should send the consumption report yearly both to the Dist. Collector and to Exc. Engineer, P.W.D., Virudhunagar Division, Virudhunagar every year promptly. They should always keep with them spare meters in ready stock.
- 44 236 -The present rate of recovery of water charges as per G.O. Ms. No. 1446, dated 4-10-1975 (with effect from 1-4-75) is b. 30/= per 1000 cubic meters subject to a minimum of b. 3,000/= per annum which should be remitted in advance every year. The levy of water charges is subject to variation from time to time according to the rate fixed by Government then and there and hence the consumer should be prepared to pay the rate fixed by Government from time to time.
- The Dist. Collector at his discretion on behalf of the Govt. at any time if need be, due to unavoidable circumstances, may issue orders for cancellation of Agt, sither temporarily or permanently, after giving notice to the consumer.

INWITNESS WHEREOF THE Collector Ramanathapuram acting on behalf of and by the order and direction of the Governor of Tamil Madu and the Licensee have hereunto set their respective signature and seals the day month and year first above written.

SIGNED, Sealed and delivered by the Collector of Ramanathapuram

In the presence of RESHAUMPAN) (FA 14) R 20 - Manhares) a dogs but dritting the books it is a specimen SIGNED, Sealed and delivered by the Licensee FOR MADRAS CEMENTS LTD. ADMINISTRATIVE MANAGER.

1) CARVAGARA Estate office, Medican Comity int

2) PREngance Ha Raja Dro & S. Peren Caja St. Abot. Kands madras Coments Hel-









पर्यावरण, वन और जलवायु परिवर्तन मंत्रालय

MINISTRY OF ENVIRONMENT, FOREST &CLIMATE CHANGE

एकीकृत क्षेत्रीय कार्यालय/Integrated Regional Office

1"Floor, Additional Office Block for GPOA, Shastri Bhawan, Haddows Road Nungambakkam, Chennai – 600034; Email: ro.moefecc/@gov.in

F.No. EP/12.1/867/TN/353

Dated: 18.03.2024

To

PROFESSION CHARGE

The Senior Vice President, The Ramco Cements Limited, 5th Floor Auras Corporate Centre, 98 A Dr Radhakrishnan Road, Mylapore, Chennai – 60004.

Subject: Modernisation & Expansion of Ramasamy Raja Nagar Cement Plant (Proposed Production Clinker 1.44 MTPA & Cement 2.70 MTPA) by M/s The Rameo Cements Limited, Ramasamy Raja Nagar, Virudhunagar Taluk & District-Issuance of CCR - Regarding.

Ref: MoEF F. No. J-11011/119/2009, IA. II (I) dated 25.10.2021 (EC Identification No. EC21A009TN169325 dated 25.10.2021)

Sir.

With reference to the subject and letter under reference, undersigned is directed to submit that MoEF&CC accorded environmental Clearance to M/s. The Ramco Cements Limited for Proposed Modernisation & Expansion of Ramasamy Raja Nagar Cement Plant (Proposed Production Clinker 1,44 MTPA & Cement 2.70 MTPA) Virudhunagar Taluk & District, Tamil Nadu. Project Authority fetter no. RCL/MoEF&CC/06/2023-24 dated 15.11 2023 requested the Regional Office to issue certified compliance report for the existing EC. This project was monitored by undersigned during 20.02.2024. Monitoring Report is submitted herewith for further necessary action.

This has the approval of the Competent Authority vide diary No. E-234182 dated 11.03.2024.

(Dr. E. Arockia Lenin) Scientist 'D'

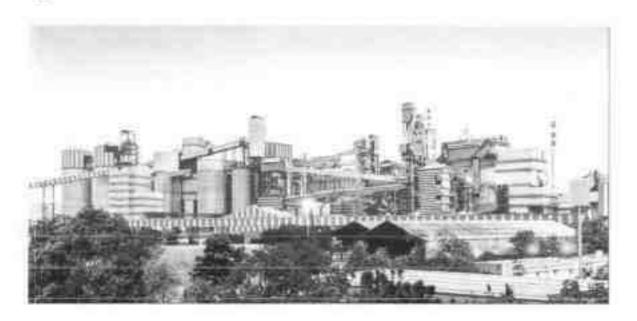
### SUMMARY NOTE

#### PART-II

Subject Proposed Modernization & Expansion of Ramasamy Raja Nagar

Cement Plant (Proposed Production Clinker 1.44 MTPA &

Cement 2.70 MTPA)


Reference : F. No. J-11011/119/2009 JA JH(I) dated 25.10.2021

(EC Identification No. EC21A009TN169325 dated 25.10.2021)

Monitoring Date:

20.02.2024 Present Status of the Plant is in operation

Project



Environmental Clearance: Project Authority (PA) obtained Environmental clearance from MoEF&CC for Proposed Modernization & Expansion of Ramasamy Raja Nagar Cement Plant (Proposed Production Clinker 1.44 MTPA & Cement 2.70 MTPA) vide letter no. J-11011/119/2009.IA.II(1) dated 25:10:2021

CTE & CTO: PA obtained Consent to Establish for present Expansion vide Tamil Nadu Pollution Control Board (TNPCB) vide order no. 2206241656739 (Air Act) and 2206141656739 (Water Act) dated 17.02.2022 and Consent to Operate vide order no. 2307249733843 (Air Act) and 2307149733843 (Water Act) dated 27.02.2023 which are valid till 31:03:2024.

Present status of project: The Project Authority (PA) established the expansion activities of their Ramasamy Raja Nagar Cement Plant and operating for Clinker production of 1.44 MTPA & Cement production of 2.70 MTPA from 1<sup>st</sup> March 2023. The production of Line-1 and Line-3 were in operation during the site visit. Line-2 was not in operation. Captive Power Plant of 25 MW was in operation. Railway Wagon Tippler was established.

Manufacturing products & Process: The Plant is producing Ordinary Portland Cement. Portland Pozzolana Cement, Composite Cement, etc., by Dry Process. The manufacturing process included stages such as quarry, raw material preparation, clinkerisation, finish grinding and packing. Raw grinding Crushed limestone brought from the Mines crushing plant by wagon tippler and unloaded in to the receiving hopper, then it has been transported by Samson feeder and stored in the stock pile. The piled limestone and additives are reclaimed from the stockpile and transported to the feed hoppers from where they are fed to the raw mill through weigh feeders in the required proportion. The grinding is carried out in raw grinding section and stored in raw meal siles. Clinkerisation (Pyro Process) is the sintering or fusing of the calcined raw meal at high temperatures around 1450 °C. Calcination of raw meal is the removal of CO: from raw meal and converting it into free lime. Raw meal powder is extracted from raw meal siles in a systematic way for a uniform quality, stored in kiln feed bin and fed to the pre heater. Coal/Pet coke used as a feel for the burning process in the kiln. In the kiln system, the raw meal is calcined, and combines with iron and alumina and converted into clinker and then quickly cooled to about 120 °C, before sending to clinker storage. Clinker is stored in silos.

Coal mill Coal/Pet coke received from port has been unloaded by wagen tippler in to the receiving hopper, transported and stored in the stock pile. Raw coal/pet coke transferred from coal yard to intermediate hoppers by belt conveyor, extracted from intermediate hoppers and stored in mill feed hopper for grinding. Coal is pulverized by coal mills and stored in fine coal bins separately for each kiln. Pulverized coal from fine coal bins is pumped to kiln and precalciner by FK pumps. The hot air required for drying is met from cooler exit gases.

Cement Grinding Cement mills are used to grind Clinker, gypsum and fly ash. The ground materials transported to high efficiency dynamic separator to separate fine, intermediate and coarse materials. The coarse material and intermediate material are fed back to the mill for further grinding. The fines were collected in bag filter and conveyed to the cement silos by mean of air slides and elevator. Packing Cement is packed in bags of 50 kg capacity by means of electronic packing machines and dispatched by trucks and bulkers.

Implementation of Environmental Protection Measures: The pollution control equipment and online monitoring equipment are installed in Main Stacks, Real time emissions of PM, SO<sub>2</sub> & NOx from Kilns | & 3, PM from Coal Mills, Coolers & Cement Mill are connected to Online Care Air Centre of TNPCB & CPCB Servers. Details of pollution control systems attached online monitoring are given under.

- Raw Mill/Kiln-1: Reverse Air Bug House
- Coal Mill-1: Bag Filters
- Cooler-1: ESP
- Cement Mills 1 & 2: Bag Filters
- Raw Mill/Kiln-3: Reverse Air Bag House
- Coal Mill-3: Bag Filters
- Cooler-3: ESP
- Low NOx burners are provided to Kilns 1 & 3 to control NOx emissions.

All material transportations are carried out by fully closed/covered conveyors. PA has installed dust collection and extraction systems at all material transfer points to control the fugitive emissions. Pneumatic system is in place for transporting fly ash from bulkers/tankers to silos and mechanical dosing for adding fly ash to the cement mill.

Periodical monitoring of stack emissions (from all 7 main stacks), ambient air quality (8 locations), fugitive emissions (3 locations), Noise Levels (10 locations) etc. are being carried out once in a month by third party Laboratory approved by NABL. The fugitive emissions at raw material storage areas viz limestone, coal yard, gypsum yard, etc. were found to be in compliance with CREP guidelines/Norms. A separate lorry yard is allocated for the vehicle parking and is concretized.

Fresh water demand is about 1000 KLD being met from Arjuna River source with the approval from local body. No ground water is withdrawn for project activities. There is no trade effluent from the Cement Plant. Trade Effluents of 20 KLD from CPP & Workshop are treated in a neutralization tank and the treated effluent is pumped to the Cement Plant for equipment cooling (where it is evaporated fully).

STP of 350 KLD capacity is in operation to treat the domestic effluents generated from the Cement Plant (25KLD), CPP (9 KLD), Township( 221 KLD) and canteen (25KLD). The treated Sewage has been used for Green Belt. Zero Effluent Discharge is adopted. In addition, 50 KLD of STP is provided in the Labour Colony.

The total Green Belt Area over 64.50 Ha in the total extent of 191.434 Ha with 33.69% coverage. Totally 1.61,250 Tree saplings planted with a density of 2500 trees per hectate with a survival rate of 95-98%. Adequate Green Belt was noticed in the eastern, northern and northwestern boundaries of the Plants and also in the Colony. Green Belt is being raised in the vacant areas of southern parts. Housekeeping was maintained and it requires some improvement in Line-1 areas and southern parts of the Plant.

Rain water harvesting ponds of 6 Nos, are developed with a total capacity to store 9700 m<sup>3</sup> of rain water and one abandoned mines pit in Thammanaickkanpatti village was utilized as a rainwater storage reservoir with a capacity to store 3,28,680 m<sup>3</sup> of rain water and two ground water recharge pits are developed.

Occupational Health Centre with all required facilities are made available for labours in the Campus. Ambulance and Fire Tenders were in place. Inspection Photographs are given in (Plates A-H, page 27). Point wise compliance status of EC conditions is given in Part III.

No court cases and show cause notices are pending against M/s. Ramco Cements Limited

(Dr. E. Arockia Lenin)

Scientist 'D'

## PART-III

A. Specific Conditions

| SI, No. | EC Conditions                                                                                                                                                                                                                                                                                                                                                                                                                    | Compliance Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E       | Project proponent shall obtain<br>Environmental Clearance from the<br>Competent Authority for proposed<br>township expansion.                                                                                                                                                                                                                                                                                                    | Complied  PA dropped the expansion proposal of the township.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| D.      | The 800 KLD water requirement for<br>the project shall be met from ground<br>water resource and 1000 KLD of<br>water shall be met from Arjuna river.<br>In the next three years from the date of<br>issues of this EC. PP shall switch over<br>to use of treated sewage and harvested<br>rain water to meet 100% of its ground<br>water requirement as committed.<br>Thereafter, no ground water<br>withdrawal will be permitted | Complied.  Before the Expansion, they were permitted to draw 800 KLD ground water for industrial use with permitted horewells and dugwells within the premises. They stopped the draw of ground water from the Plant premises Expanded Plant raw water demand is 1000 KLD. The raw water demand of the Complex is met with Arjuna River source as permitted by State PWD vide GO 1446/PWD dated (44.10.1975; Also, treated sewage of 350 KLD with harvested Rainwater of 230 KLD (total 500 KLD) are supplementing the raw water demand of the Complex. |
| HL      | Waste oil generated from the existing and proposed cement plant expansion shall not be used as fuel in Kiln. It shall be handed over to the authorized recyclers in compliance to the provisions specified in Hazardous and Other Waste (M&TM) Rules, 2016.                                                                                                                                                                      | Complied.  The Plant is authorized vide TNPCE Authorization No. 23HPC42009117 dates 07.06.2023 with validity till 31.03.2028 to handle 94.62 TPA used/Spent Oil (Category 5.1) from the Old Line-I & New Line-I (Annexure 1). The used oil is not used at fact in the Kilns. The Plant generated 15.90 Tons Used/Waste Oil and the entire quantity was sold to TNPCB authorized recycler M/Shri Saihya Sai Lubricants, Combatore vide Form-10 dated 21.07.2023 (Annexure-2).                                                                            |

| Sl. No.      | EC Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                                                                                                                                                                                                                                                                                                                   | ompliance Stat                                                                                                                                                                                                                                                                               | ius                                                                                                                                                 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| iv           | 64.50 ha of land shall be developed into green belt with a tree density of 2500 trees per ha in a time frame of three years from date of grant of EC. This shall also include (i) land scape development without disturbing the natural stream and green beit development in southern part of the project site wherein two blocks are discontinued by a natural stream and (ii) green belt development with a width of 30 meters within the project site towards the villages namely Thammanaickenpatti (0.2 km in N), Vaehchakarapatti (0.2 km in NNE) and Tulukkappatti (0.5 km in SE). In addition to this, gop filling shall be done in existing green belt developed area where tree density is only 1906 trees per ha. | Complied It was observed Green Belt was 33,00 Ha with Trees/Ha & St Expansion, add developed as de Period  EIA Stage End of 2021-22 2022-23 2023-24 till Jan. 24 Total  Plant Area Green Belt Co Green Belt Co Green Belt De As on date, su 98%. Green Belt scape develop natural stream as well as Green than mannicke Thankapatti | d that before smaintained of the 62,910 Transitual Rate of ditional Green etailed below:  GB Extent, Ha  33,00  12,00  18,00  1,50  64,50  1,191,  everage: 33,69  ensity: 2500  rvival rate is in elt development without in southern parties the will enparti. Vacheling in Gap filling in | the Expansion, ver an extent of rees @ 1,906 (* 85-90%). On Belt has been **  **No. of Trees 62,910    28,624    64,865    4,851    1,61,250    434 |
| ( <b>Y</b> 4 | Particulate matter emissions from the existing and revamped production units shall be less than 20 mg/Nm <sup>3</sup> as committed by proponent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | existing and re<br>maintained wit<br>Continuous En                                                                                                                                                                                                                                                                                  | ner (PM) emis<br>evamped produ<br>hin 20 mg/Nn<br>mission Monito                                                                                                                                                                                                                             | sions from the action units are to as reported, as reported, as are provided at time data are                                                       |

| SI, No. | EC Conditions                                                                                                                                                                                                             | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mpliance Stati                                                           | 118                                                                                            |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                                                                           | transmitted to 0<br>as well as CPC<br>attached as Ann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B Servers Tre                                                            |                                                                                                |
| VI.     | Pet coke dosing shall be controlled automatically to control SO <sub>2</sub> emission from chimney within the prescribed limits                                                                                           | Complied Line+3 is common Petcoke used of Kilns. Pet continuous automatically but a least on installed at a continuous co | was 124342 Toke dosing<br>by Solid Flow I<br>Weigh Systemston of Rs 10.0 | onnes in both<br>is controlled<br>reeder in Line-<br>em in Line-3<br>00 Lakhs, SO <sub>2</sub> |
| VII.    | Co-processing of paint sludge and<br>Oily sludge as done presently shall be<br>continued. Dioxin and furans shall be<br>monitored twice a year and report<br>shall be submitted to the Regional<br>Office of the MoEF&CC. | Complied. No Paint sludg during the Perio monitoring of required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | od 01,03,2023-                                                           | 31.01.2024 and                                                                                 |
| viii.   | Project proponent shall develop<br>rainwater harvesting system as per the<br>action plan submitted in order to                                                                                                            | Complied  Six Rain water barvesting ponds are create in the Complex as detailed below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                                                                                                |
|         | achieve the gradual shifting of ground<br>water usage in next three years from                                                                                                                                            | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dimension<br>(Dia. X<br>Depth) in m                                      | Holding<br>Capacity,<br>KL                                                                     |
|         | the date of issue of this EC                                                                                                                                                                                              | Near<br>Materials<br>Gate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 x 2                                                                   | 3,930                                                                                          |
|         |                                                                                                                                                                                                                           | Near STP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 x 2                                                                   | 1,410                                                                                          |
|         |                                                                                                                                                                                                                           | Near CPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 x 2                                                                   | 1,410                                                                                          |
|         |                                                                                                                                                                                                                           | Near Ramco<br>Vidyalaya<br>School<br>South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 x 2                                                                   | 900                                                                                            |
|         |                                                                                                                                                                                                                           | Near Ramco<br>Vidyalaya<br>School<br>North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 x 2                                                                   | 900                                                                                            |
|         |                                                                                                                                                                                                                           | Near Sriram<br>School in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27 × 2                                                                   | E.150                                                                                          |

| SI, No.      | EC Conditions                                                                                                                                                              | Compliance Status                                                                                                                                                                                                                                                                      |                                                                                            |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                            | Colony Total Capacity  Also, abandoned Mine Thammanaickkanpatti village utilized to harvest the rainwate the water holding capacity of per Annum. RWH Ponds ar Photographs, The normal rainfa About 230 KLD harvested Ra these RWH Structures is supplement water demand of the Comple | er which has<br>3.28,680 KI<br>or shown in<br>It is 895 mm<br>inwater from<br>ementing the |
| ASSESSED VAL | ral Conditions:-                                                                                                                                                           |                                                                                                                                                                                                                                                                                        |                                                                                            |
| Te           | Statutory Compliance                                                                                                                                                       | 110-                                                                                                                                                                                                                                                                                   |                                                                                            |
| 411.67       | standards/conditions to be followed under any other Acts/Rules/Subordinate legislations, etc., as may be applicable to the project.                                        | PA has obtained Consent to E-TNPCB vide order no. 2206241<br>Act) and 2206141656739 (Wate 17.02.2022 and Consent to Corder no. 2307249733843 (A 2307149733843 (Water 2 27.02.2023 which are valid till 3                                                                               | (Ai)                                 |
| 11.          | Air quality monitoring and preserva                                                                                                                                        | tion                                                                                                                                                                                                                                                                                   |                                                                                            |
|              | The project proponent shall install<br>24x7 Continuous Emission<br>Monitoring System (CEMS) at<br>process stacks to monitor stack<br>emission as well as 4 Nos. Continuous | Continuous Emission Monito                                                                                                                                                                                                                                                             | nain proces<br>& NOx wen                                                                   |

| St. No.  | EC Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                    | Compliance Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7942.502 | Ambient Air Quality Station (CAAQS) for monitoring AAQ parameters with respect to standards prescribed in Environment (Protection) Rules 1986 as amended from time to time. The CEMS and CAAQMS shall be connected to SPCB and CPCB online servers and calibrate these systems from time to time according to equipment supplier specification through labs recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories. | cmissions were monitored for Coolers 1&3.  Cement Mills 1&2 All CEMS Real time data were connected to TNPCB Care Air Centre & CPCB Servers. All CEMS are recently calibrated by NABL Approved Laboratory on 25-11-2623. Four numbers Continuous Ambient Air Quality Stations (CAAQMS) were installed at (i) Laboratory building near Main Gate (ii) Ramco Vidhyalaya School (iii) Near River Bed & (iv) Plant South side near Wagon Tippler Area. The real time data are being transmitted to TNPCB Care Air Centre & CPCB Server. CAAQMS are calibrated on 20.09.2023. In addition, Ambient Air Quality Monitoring were monitored at 8 locations (Annexure 5) once in a month by engaging a NABL Accredited Laboratory. The latest submitted to RO, MoEF&CC, Chennai is 01.12.2023. |
| 311.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fugitive emissions in the raw materials<br>storage areas are being regularly monitored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| SI, No. | EC Conditions                                                                                                                                                                                                                                                                      | Compliance Status                                                                                                                                                                                                                                                                                                        |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iv      | The project proponent shall provide<br>leakage detection and mechanized bag<br>cleaning facilities for better<br>maintenance of bags.                                                                                                                                              | Complied.  All Bag Houses & Bag Filters are with in- built Leakage detection & mechanized bag cleaning systems.                                                                                                                                                                                                          |
| v       | The project proponent shall ensure covered transportation and conveying of one, coal and other raw material to prevent spillage and dust generation: Use closed bulkers for earrying fly ash.                                                                                      | All inward raw materials, additives and fuels were received through rail and road networks.  All wagons and trucks were covered with tarpaulin during transportation. Lime stone from captive mines are covered with tarpaulin. Fly ash is transported through fully covered. Bowsers and pumped to siles pneumatically. |
| vi.     | The project proponent shall provide<br>wind shelter fence and chemical<br>spraying on the raw material stock<br>piles.                                                                                                                                                             | Complied.  Wind shelter is crected along the castern boundary at 10 m above the compound wall.  Water sprinklers are provided at coal stock piles to control the fugitive emissions.                                                                                                                                     |
| vii.    | Ventilation system shall be designed<br>for adequate air changes as per the<br>prevailing norms for all tunnels, motor<br>bouses, and cement bagging plants.                                                                                                                       | Complied.  All tunnels, motor houses, and cement bugging operations are provided with suitable ventilation systems.                                                                                                                                                                                                      |
| 111.    | Water quality monitoring and presen                                                                                                                                                                                                                                                | rvation                                                                                                                                                                                                                                                                                                                  |
| L       | The project proponent shall install 24=7 continuous effluent monitoring system with respect to standards prescribed in Environment (Protection) Rules 1986 vide G.S.R. No. 612 (E) dated 25th August, 2014 (Cement) and subsequent amendment dated 9th May, 2016 (Cement) and 10th | Complied.  There is no trade effluent generation from the Cement Plant. Online Continuous Effluent Monitoring System is installed in the STP and it is connected to the TNPCE Water Watch Centre. The OCEMS is lastly enlibrated on 20.09.2023. The treated sewage quality was complying with TNPCB Normal               |

| SI. No. | EC Conditions                                                                                                                                                                                                                                                                                                                                                                                                              | Compliance Status                                                                                                                                                                                                                                                                                                                 |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | May, 2016 (in case of Co-processing Cement) as amended from time to time: S.O. 3305 (E) dated 7 <sup>th</sup> December 2015 (Thermal Power Plants) as amended from time to time) and connected to SPCB and CPCB online servers and calibrate these system from time to time according to equipment supplier specification through labs recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories | for On-land Irrigation. Raw and Treated Sewage samples are analyzed once in a month by a NABL Laboratory and monthly reports are submitted to TNPCB regularly (Annexure-7).                                                                                                                                                       |
| III.    | The project proponent shall regularly monitor ground water quality at least twice a year (pre- and post-monsoon) at sufficient numbers of piezometers/sampling wells in the plant and adjacent areas through labs recognized under Environment (Protection) Act, 1986 and NABL accredited laboratories                                                                                                                     | Complied.  Ground water quality is monitored at 3 locations in the Plant vicinity once in six months by engaging NABL accredited Laboratory. Monitored parameters were within prescribed limits (Annexure-8).  One piezometer has been installed in the Plant vicinity to monitor the water level (Annexure-9).                   |
| iii.    | Sewage Treatment Plant shall be provided for treatment of domestic wastewater to meet the prescribed standards                                                                                                                                                                                                                                                                                                             | Complied.  STP of 350 KLD capacity is in operation to treat the domestic effluents generated from the Cement Plant (25KLD), CPP (9 KLD). Township(221 KLD) and canteen (25KLD). The treated Sewage has been used for Green Belt. Zero Effluent Discharge is adopted. In addition, 50 KLD of STP is provided in the Labour Colony. |

| SL No.   | EC Conditions                                                                                                                                                                                                                                             | Compliance Status                                                                                                                                                                                                                                                                                                      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iv       | Garland drains and collection pits<br>shall be provided for each stock pile to<br>arrest the run-off in the event of heavy<br>rains and to check the water pollution<br>due to surface run off.                                                           | Complied.  All stock piles are stored in the elevated areas and garland drains are also provided to collect the surface runoffs.                                                                                                                                                                                       |
| N.       | Water meters shall be provided at the inlet to all unit processes in the cement plant.                                                                                                                                                                    | Complied.  Flow meters are installed in Prehenter.  Cooler and Cement mill sections in the Process.                                                                                                                                                                                                                    |
| VĪ.      | The project proponent shall make<br>efforts to minimize water consumption<br>in the cement plant complex by<br>segregation of used water, practicing<br>cascade use and by recycling treated<br>water                                                     | Complied.  The project proponent taken efforts to minimize water consumption in the cement plant complex by segregation of used water practicing minimal use and by recycling treated water. All the treated effluent from the cement plant is recycled and reused for cooling, dust suppression and green development |
| IV.      | Noise monitoring and prevention                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                        |
| <b>*</b> | Noise quality shall be monitored as<br>per the prescribed Noise Pollution<br>(Regulation and Control) Rules, 2000<br>and report in this regard shall be<br>submitted to Regional Officer of the<br>Ministry as a part of six-monthly<br>compliance report | Complied.  Noise levels are being monitored at 10 locations on monthly basis. Monitored parameters were within prescribed limits. The latest report submitted to RO MoEF&CC, Chemai on 21.12.2023 (Annexure-10).                                                                                                       |
| ν.       | Energy Conservation measures                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                        |
| ±        | Waste heat recovery system shall be<br>provided for kiln and cooler                                                                                                                                                                                       | Complied.  PH Boiler HP steam generation of 7.5 TPH (28 kg/cm <sup>2</sup> , 320 °C) & LP steam generation of 4.05 TPH (5.5 kg/cm <sup>2</sup> , 220 °C) and AQC Boiler HP steam generation of 4.3 TPH (25)                                                                                                            |

| St. No. | EC Conditions                                                                                                                                                                                                                                       | Compliance Status                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                                                                                                     | kg/cm <sup>2</sup> , 320 °C) & LP steam generation of 2.25 TPH (5.5 kg/cm <sup>2</sup> , 220 °C) are utilized in Line-1. The steam being generated is connected to existing CPP.  The existing WHR from Line-1 & proposed WHR from Line-3 will be combined for producing about 10 MW by a dedicated Turbine Generator. Order has aiready been placed on M/s.ISGES, Noida for Rs.81.81 Crores on 04.01.2024 (Annexure-11). |
|         | The project proponent makes efforts to achieve power consumption less than 85 units/ton for Portland Pozzolona Cement (PPC) and 85 units/ton for Ordinary Portland Cement (OPC) production and thermal energy consumption of 670 Keal/Kg of clinker | Complied.  Power consumption achieved for both PPC and OPC for the year 2022-23 is 83.6 units/ton. The thermal energy for the production of cement achieved is 667 Keal/Kg of clinker for the same period.                                                                                                                                                                                                                |
| Hi.     | Provide solar power generation on<br>roof tops of buildings, for solar light<br>system for all common areas, street<br>lights, parking around project area and<br>maintain the same regularly                                                       | Complied.  Totally 72 Nos. of solar lights have been installed in the colony premises and nearby Villages and one 30 KW solar panel installed in Ramco Vidyalaya school premises. The installed lights are maintained regularly.                                                                                                                                                                                          |
| īy.     | Provide the project proponent for LED<br>lights in their offices and residential<br>areas                                                                                                                                                           | Complied.  LED lights are provided in the office and residential areas.                                                                                                                                                                                                                                                                                                                                                   |
| VI.     | Waste management                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ŀ       | Used refractories shall be recycled as far as possible                                                                                                                                                                                              | Complied.  There was no generation of refractories in the new and existing kiln so far. PA assured that it will be recycled at the fime of                                                                                                                                                                                                                                                                                |

| Sl. No. | EC Conditions                                                                                                                                                                                                 | Compliance Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                                                               | generation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VII.    | Green Belt                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | The project proponent shall prepare<br>GHG emissions inventory for the plant<br>and shall submit the program for<br>reduction of the same including<br>carbon sequestration by trees in the<br>plant premises | PA submitted plan for reduce the GHC emission from the plant,  CO <sub>2</sub> emission due to 1.44 MTPA clinke manufacturing is about 5,76,000 TPA. The PA is utilizing 5 MW wind power generated through their wind mills, CO <sub>2</sub> reduction due to wind power generation is about 42,120 TPA and through 30 KW solar panel it is 40 TPA. There are 1,61,281 trees in the campus with CO <sub>2</sub> absorption to the extent of 2950 TPA. This is the existing scenario in this complex. |
| VIII.   | Public hearing and Human health iss<br>Emergency preparedness plan based<br>on the Hazard identification and Risk<br>Assessment (HIRA) and Disaster<br>Management Plan shall be<br>implemented                | Complied.  PA is implementing an Emergency                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 31.     | The project proponent shall carry out<br>heat stress analysis for the workmen<br>who work in high temperature work<br>zones and provide personal protection<br>equipment (PPE) as per the norms               | Complied.  Heat stress analysis is being covered under occupational health surveillance program and necessary personal protection equipment (PPE) are provided to all employees as per the norms.                                                                                                                                                                                                                                                                                                    |
| tii.    | Occupational health surveillance of<br>the workers shall be done on a regular<br>basis and records maintained                                                                                                 | Complied.  Occupational health surveillance for the employees including contract workers are being done on regular basis and records                                                                                                                                                                                                                                                                                                                                                                 |

| Sl. No. | EC Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compliance Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | maintained in the OHC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| IX.     | Environment Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| E.      | The project proponent shall comply with the provisions contained in this Ministry's OM vide F. No. 22-65/2017-1A.III dated 30/09/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Complied.  A budget of Rs.35,00 Lakhs was allotted as Capital Cost for addressing the issues raised in the Public Hearing and Rs.23.84 as Recurring Cost additionally (Annexure-13) All the commitments made are being implemented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|         | The company shall have a well laid down environmental policy duly approve by the Board of Directors. The environmental policy should prescribe for standard operating procedures to have proper checks and balances and to bring into focus any infringements /deviation/ violation of the environmental / forest / wildlife norms / conditions. The company shall have defined system of reporting infringements / deviation / violation of the environmental / forest / wildlife norms / conditions and / or shareholders / stake holders. The copy of the board resolution in this regard shall be submitted to the MoEF&CC as a part of six-monthly report | PA has the well laid down Safety, Health and Environmental (SHE) Policy approved by the CMD. The units are having their Integrated Management System (IMS) Policy. The Environmental Management Plan (EMP) Cell is functioning under the Unit Head and Corporate Social Responsibility (CSR) Committee is functioning under the Corporate Office (Annexure-14). There is a Hierarchical System in the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions. Any non-compliance/violations of environmental norms and the corrective actions taken are reported by the Unit Heads to CEO and by CEO to the Chairman, the Board and the Shareholders. Periodic Internal Audits were done to identify the non-compliances as part of Environmental Management System. |  |  |  |  |  |

| SL No. | EC Conditions                                                                                                                                                                                                                                                                                                                                                                                                               | Compliance Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| iii.   | A separate Environmental Cell both at<br>the project and company head quarter<br>level, with qualified personnel shall be<br>set up under the control of senior<br>Executive, who will directly to the<br>head of the organization                                                                                                                                                                                          | Complied  A separate Environmental Cell has been established with qualified personnel under the control of senior executive, who is directly reporting to unit head Apart from this, FRCL is also having a Corporate Environmental Cell at Chennal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| X.     | Miscellaneous                                                                                                                                                                                                                                                                                                                                                                                                               | United Control Const. And Service Const. Con |  |
|        | The project proponent shall make public the environmental clearance granted for their project along with the environmental conditions and safeguards at their cost by prominently advertising it at least in two local newspapers of the District or State, of which one shall be in the vernacular language within seven days and in addition this shall also be displayed in the project proponent's website permanently. | Complied.  Advertisements were made in the local newspapers about issuance of Environmental Clearance i.e. (a) The New Indian Express' (English). (b) Dinamani (Tamii) Newspapers on 01.11.2021 (Annexure-15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| II.    | The copies of the environmental clearance shall be submitted by the project proponents to the Heads of local bodies; Panchayats and Municipal Bodies in addition to the relevant offices of the Government who in turn has to display the same for 30 days from the date of receipt                                                                                                                                         | Copy of the EC was submitted to Panchaya of Tulukkapatti, Thammanaickenpatti ar Vachakampatti (Annexure-16).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| iii.   | The project proponent shall upload the status of compliance of the stipulated environment elearance conditions.                                                                                                                                                                                                                                                                                                             | Complied.  The status of compliance of the stipulated environmental conditions including results of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

| St. No. | EC Conditions                                                                                                                                                                                                                                                                                                                               | Compliance Status                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | including results of monitored data on<br>their website and update the same on<br>half-yearly basis                                                                                                                                                                                                                                         | monitored data were uploaded in the company website www.ramcocements.in.                                                                                                                                                                                                                                                                                         |  |  |  |
| îv.     | The project proponent shall monitor the criteria pollutants level namely; PM <sub>10</sub> , SO <sub>2</sub> , NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the projects and display the same at a convenient location for disclosure to the public and put on the website of the company | Complied.  PM10, SO2 and NOx levels (in ambient as well as in stack) were regularly monitored manually as well as by CEMS & CAAQMS Monitored parameters of CEMS and CAAQMS were displayed through electronic display board at the main entrance for the public and reports were uplouded in the website of the company along with half yearly compliance report. |  |  |  |
| v,      | The project proponent shall submit<br>six-monthly reports on the status of<br>the compliance of the stipulated<br>environmental conditions on the<br>website of the ministry of<br>Environment, Forest and Climate<br>Change, at environment clearance<br>portal                                                                            | The latest six monthly report submitted by PA on 01.12.2023. PA is submitting the six monthly reports on the status of the compliance of the stipulated environments conditions in the Ministry's Parivesh Portal.                                                                                                                                               |  |  |  |
| TVE     | The project proponent shall submit the environmental statement for each financial year in Form-V to the concerned State Pollution Control Board us prescribed under the Environment (Protection) Rules, 1986, as amended subsequently and put on the website of the company                                                                 | Company's website:                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| vii     | The project proponent shall inform the<br>Integrated Regional Office as well as<br>the Ministry, the date of financial                                                                                                                                                                                                                      | The financial closure of the project t                                                                                                                                                                                                                                                                                                                           |  |  |  |

| Sl. No. | EC Conditions                                                                                                                                                                                                                              | Compliance Status                                                                                                                           |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | closure and final approval of the<br>project by the concerned authorities,<br>commencing the land development<br>work and start of production operation<br>by the project                                                                  | 28.02.2023 and the production commenced on 01.03.2023.                                                                                      |  |  |  |
| viii.   | The project proponent shall abide by<br>all the commitments and<br>recommendations made in the<br>EIA/EMP report, commitment made<br>during public hearing and also that<br>during their presentation to the Expert<br>Appraisal Committee | Complied.  All commitments and recommendations made in the EIA/EMP report and commitments made in the public hearing are being implemented. |  |  |  |
| in.     | No further expansion or modifications<br>in the plant shall be carried out<br>without prior approval of the Ministry<br>of Environment, Forests and Climate<br>Change (MoEF&CC).                                                           | PA is proposing to increase the Plant<br>operational days so as to increase the Clinker                                                     |  |  |  |
| N.      | Concealing factual data or submission of false/fabricated data may result in revocation of this environmental elearance and attract action under the provisions of Environment (Protection) Act, 1986                                      | Informed to PA during site visit as stipulated                                                                                              |  |  |  |
| NI.     | The Ministry may revoke or suspend<br>the clearance, if implementation of<br>any of the above conditions is not<br>satisfactory                                                                                                            |                                                                                                                                             |  |  |  |
| XIII    | The Ministry reserves the right to<br>stipulate additional conditions if found<br>necessary. The Company in a time<br>bound manner shall implement these                                                                                   | Informed to PA during site visit as stipulated.                                                                                             |  |  |  |

| Sl. No.                                                                                                                                                                                                                   | EC Conditions                                                                                                                                                                                       | Compliance Status                                                            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                           | conditions                                                                                                                                                                                          |                                                                              |  |  |
| shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / information/monitoring reports |                                                                                                                                                                                                     |                                                                              |  |  |
| xiv,                                                                                                                                                                                                                      | Any appeal against this EC shall lie<br>with the National Green Tribunal, if<br>preferred, within a period of 30 days<br>as prescribed under Section 16 of the<br>National Green Tribunal Act, 2010 | There was no appeal against this EC within the stipulated period of 30 days. |  |  |

This has the approval of the Competent Authority vide diary No. E-234182 dated 11.03.2024.

(Dr. E. Arockia Lenin) Scientist 'D'



### TAMILNADU POLLUTION CONTROL BOARD

Advanced Environmental Laboratory, Madurai

# STACK MONITORING SURVEY - REPORT OF ANALYSIS

## Report F.No.VDR - 01/AEL/TNPCB/MDU/AAQS/2024-25, Dated:09.12.2024

| 1. | Name of the Industry    | 9 | M/s, Ramco Cements Limited.,                                                                                            |  |
|----|-------------------------|---|-------------------------------------------------------------------------------------------------------------------------|--|
| 2. | Address of the Industry | * | SE.No.231/2,233/7,234/8,241/2,<br>228/1,2,3,229/1,3,4,5,etc.,<br>R.R.Nagur,<br>Thulukkapatti,<br>Virudhunagar District. |  |
| 3. | Date of survey          | 2 | 26,11,2024 & 27,11,2024                                                                                                 |  |
| 4. | Type of Industry        | 8 | Cement                                                                                                                  |  |

### Stack Monitoring Survey Results

| SL<br>No. | Stack attached to       | Stack Temp. °C | Velocity in<br>(m/sec) | Discharge rate in (Nm³/Hr) | Pollutants Concentration<br>(mg/Nm <sup>3</sup> ) |                 |     |
|-----------|-------------------------|----------------|------------------------|----------------------------|---------------------------------------------------|-----------------|-----|
|           |                         |                |                        |                            | PM                                                | SO <sub>2</sub> | NOs |
| t         | Kile - 3                | 126            | 11.02                  | 470932                     | 19.4                                              | 2.6             | 148 |
| 2         | Conf Mill - 3           | 60             | 8.04                   | 58534                      | 16.0                                              | lė:             | -   |
| 3         | Cooler-3                | 231            | 12.09                  | 141803                     | 16.4                                              | E               |     |
| 4         | Kiln-1 ESP              | 165            | 11.12                  | 119049                     | 16.4                                              | 4.8             | 152 |
| 3         | Cemer: Mill 1 & 2       | 65             | 8.00                   | 179266                     | 14.0                                              |                 | - 3 |
| 6         | Electronic Packer 1 & 2 | 60             | 11.00                  | 26685                      | 20.4                                              | <u>+</u> 2      | :   |
| 7         | Cooler + 1 ESP          | 260            | 10.00                  | 110903                     | 20.0                                              | -               | :   |

| Test Performed  | Test Method                                                 |  |  |  |
|-----------------|-------------------------------------------------------------|--|--|--|
| PMH             | IS 5132: (Part23) - 2006                                    |  |  |  |
| SO <sub>2</sub> | Modified west - Gracke / IS 5182 : (Part 2) - 2001 RA: 2012 |  |  |  |
| NO <sub>2</sub> | Jucobs - Hochheiser / IS 5182; (Part 6) - 2006 RA: 2012     |  |  |  |

Environ nental Scientist

Deputy Chief Scientific Officer (a/c),
AEL, TNPCB, Madurai.



#### Advanced Environmental Laboratory, Madurai

## Report F.No.VDR - 01/AEL/TNPCB/MDU/AAQS/2024-25, Dated:09.12.2024

| Į. | Name of the Industry       | 130 | M/s. Ramco Cements Limited,                                                                                             |  |
|----|----------------------------|-----|-------------------------------------------------------------------------------------------------------------------------|--|
| 2. | Address of the Industry    | 6   | SF.No.231/2,233/7,234/8,241/2,<br>228/1,2,3,229/1,3,4,5,etc.,<br>R.R.Nagar,<br>Thulukkapatti,<br>Virudhunagar District. |  |
| 3. | Pollution Category         | 33  | Red/Large                                                                                                               |  |
| 4. | Date of survey             | :   | 26.11.2024 & 27.11.2024                                                                                                 |  |
| 5, | Predominant Wind Direction |     | NE to SW                                                                                                                |  |

#### STATUS OF POLLUTANTS LEVEL

## I. AMBIENT AIR QUALITY:-

Total No. of AAC stations monitored : (6x3)=18 (24 Hours)

2. No. of AAQ stations in which Pollutants

Level exceeded the Boards standards

#### Maximum and minimum value of Pollutants Level observed:

| SL  |                                                              | Values in n | nicrogram/m <sup>3</sup> | Board's Standard       |  |
|-----|--------------------------------------------------------------|-------------|--------------------------|------------------------|--|
| No. | Pollutant                                                    | Minimum     | Maximum                  | (as per consent order) |  |
| 1.  | Respirable Suspended Particulate<br>Matter: PM <sub>10</sub> | 35.7        | 75.7                     | 100                    |  |
| 2   | Gaseous Pollutants:-  (i) SO <sub>2</sub>                    | 6.4         | 10.3                     | 80                     |  |
|     | (ii) NO <sub>2</sub>                                         | 8.3         | 14.5                     | 80                     |  |

#### IL STACK MONITORING:

1. Total No. of Stacks Monitored

: 07

No. of Stacks in which Pollutants

NIL

Level exceeded the Boards standards

Environmental Scientist

Deputy Chief Scientific Officer (a/c), AEL, TNPCB, Madurai.



## Advanced Environmental Laboratory, Madurai

## AMBIENT AIR QUALITY SURVEY - REPORT OF ANALYSIS

## Report F.No.VDR - 01/AEL/FNFCB/MDU/AAQS/2024-25, Dated: 09.12.2024

| 1  | Name of the Industry    | 8   | Mrs. Ramco Cements Limited.                                                                                             |   |
|----|-------------------------|-----|-------------------------------------------------------------------------------------------------------------------------|---|
| 2. | Address of the Industry | -   | SE.No.231/2,233/7,234/8,241/2,<br>228/1,2,3,229/1,3,4,5,etc.,<br>R.R.Nagar,<br>Thulukkapatti,<br>Virudh magar District. |   |
| 3. | Date of survey          | 100 | 26.11.2024 & 27.11.2024                                                                                                 |   |
| 4. | Duration of survey      | E   | 24 Hours                                                                                                                |   |
| 5. | Category/Classification | -   | Red/Large                                                                                                               | - |
| 6. | Land use Classification | 9   | Industry                                                                                                                | _ |

#### Meteorological Conditions

| A 65                          | Min       | Max    |                            | Min     | Max |  |
|-------------------------------|-----------|--------|----------------------------|---------|-----|--|
| Ambient<br>Temperature (°C)   | 23.3 27.1 |        | Relative<br>Humidity (%)   | 64.2 76 |     |  |
| Weather Condition             | Clea      | ır Sky | Rainfall (mm)              | NIL     |     |  |
| Predominant Wind<br>Direction | NE to SW  |        | Mean Wind<br>Speed (Em/hr) | 7.05    |     |  |

#### Ambient Ai- Quality Survey Results

| Sl. | Location                                             | • щ       | Approximate<br>Distance *<br>(m) | Height from<br>GL (m) | Concentration in μg/m <sup>3</sup> PM <sub>10</sub> |    |    |      |  |
|-----|------------------------------------------------------|-----------|----------------------------------|-----------------------|-----------------------------------------------------|----|----|------|--|
| No  |                                                      | Direction |                                  |                       | Ī                                                   | n  | m  | AVG. |  |
| 1   | On house top of Mr.Selvam, Mukku<br>Road, R.R. Nagar | NE        | 330                              | 5                     | 88                                                  | 90 | 49 | 75.7 |  |
| 2   | On house top of<br>Mr.Ramar,Subbiayapuram            | Ε         | 950                              | 5                     | 63                                                  | 66 | 40 | 56.3 |  |
| 3   | On house top of Mr.Ganesan,Rajiv<br>Gandhi Nagar     | SE        | 750                              | 25                    | 69                                                  | 44 | 34 | 49.0 |  |
| 4   | On house top of<br>Mr. Suresh, Karuppanasari patti   | SW        | 500                              | 5                     | 61                                                  | 56 | 36 | 51.0 |  |
| 5   | On top of Community<br>Hall, Ethilappanaickam patti  | W         | 380                              | 5                     | 62                                                  | 24 | 21 | 35.7 |  |
| 6   | On house top of Mr.Palraj, R.R.Nagar                 | NW        | 530                              | 5                     | 94                                                  | 83 | 21 | 66,0 |  |

Note: \*with respect to major emission sources.

The analytical results are restricted to the sampling period only.

| Test Performed   | Test Method                                                 |  |  |  |  |
|------------------|-------------------------------------------------------------|--|--|--|--|
| PM <sub>10</sub> | 18 5182: (Part23) - 2006                                    |  |  |  |  |
| SO <sub>2</sub>  | Modified west - Gracke / IS 5182 : (Part 2) - 2001 RA: 2012 |  |  |  |  |
|                  | Jacobs - Hochheiser / 15 5182: (Part 6) - 2005 RA: 2012     |  |  |  |  |



Deputy Chief Scientific Officer (a/c),
AEL, TNPCB, Madurai.



## Advanced Environmental Laboratory, Madurai

## AMBIENT AIR QUALITY SURVEY - REPORT OF ANALYSIS

## Report F.No. VDR - G1/AEL/TNPCB/MDU/AAQS/2024-25, Dated: 09.12.2024

| L. | Name of the Industry    | 12 | M/s. Ramco Cements Limited.,                                                                                             |  |  |
|----|-------------------------|----|--------------------------------------------------------------------------------------------------------------------------|--|--|
| 2. |                         |    | SF.No.231/2,233/7,234/8,241/2,<br>228/1,2,3,229/1,3,4,5,etc.,<br>R.R.Nogar,<br>Thulukkapatti,<br>V.::udhunagar District. |  |  |
| 3. | Date of survey          | 32 | 26 11 2024 & 27 11 2024                                                                                                  |  |  |
| 4. | Duration of survey      | 1  | 24 Hours                                                                                                                 |  |  |
| 5. | Category/Classification | *  | Red/Large                                                                                                                |  |  |
| 6. | Land use Classification |    | Industry                                                                                                                 |  |  |

#### Meteorological Conditions

| Ambient<br>Temperature (°C)   | Min                | Max  |                            | Min      | Max |
|-------------------------------|--------------------|------|----------------------------|----------|-----|
|                               | 23,3               | 27,1 | Relative<br>Humidity (%)   | 64.2 76. |     |
| Weather Condition             | Clear Sky NE to SW |      | Rainfall (mm)              | N        | IL. |
| Predominant Wind<br>Direction |                    |      | Mean Wind<br>Speed (Km/hr) | 7.05     |     |

#### Ambient Air Quality Survey Results

| SL | Location                                             |           | Approximate<br>Distance * | Height from<br>GL.(m) | Concentration in µg/m <sup>3</sup> SO <sub>2</sub> |      |      |      |  |
|----|------------------------------------------------------|-----------|---------------------------|-----------------------|----------------------------------------------------|------|------|------|--|
| No |                                                      | Direction |                           |                       | 1                                                  | п    | m    | AVG. |  |
| t  | On house top of Mr.Selvam, Mucku<br>Road, R.R. Nagar | NE        | 330                       | 5                     | 7.4                                                | 8,4  | 4.8  | 6,9  |  |
| 2  | On house top of<br>Mr.Ramar,Subbinyapura n           | E         | 950                       | 5                     | 6.2                                                | 6,5  | <2.0 | 6.4  |  |
| 3  | On house top of Mr.Ganesan,Rajiv<br>Gandhi Nagar     | SE        | 750                       | 3                     | 6.5                                                | 10.0 | 7.0  | 7.8  |  |
| 4  | On house top of<br>Mr.Suresh,Karuppanasari patti     | SW        | 500                       | 5                     | 12.4                                               | 11.0 | 4.4  | 9.3  |  |
| 5  | On top of Community Hall, Ethilappanaickam parti     | W         | 380                       | 5                     | 9.3                                                | 5.6  | 11   | 8.6  |  |
| 6  | On house top of Mr.Palrij,R.R.Nagar                  | NW        | 530                       | 5                     | 14.6                                               | 12.2 | 4.0  | 10.3 |  |

Note: \*with respect to major emission sources.

The analytical results are restricted to the sampling period only.

| Test Performed   | Test Method                                                 |  |  |  |  |  |
|------------------|-------------------------------------------------------------|--|--|--|--|--|
| PM <sub>10</sub> | IS 5182: (Part23) - 2006                                    |  |  |  |  |  |
| SO <sub>2</sub>  | Modified west - Gracke / IS 5182 : (Part 2) - 2001 RA: 2012 |  |  |  |  |  |
| NO <sub>2</sub>  | Jacobs - Hochheiser / IS 5182: (Part 6) - 2006 RA: 2012     |  |  |  |  |  |



Deputy Chief Scientific Officer (a/c), AEL, TNPCB, Madurai.



Advanced Environmental Laboratory, Madurai

## AMBIENT AIR QUALITY SURVEY - REPORT OF ANALYSIS

#### Report F.No.VDR - 01/AEL/TMPCB/MDU/AAQS/2024-25, Dated: 09.12.2024

| I. | Name of the Industry    | 3    | M's. Enmco Cements Limited.,                                                                                            |  |
|----|-------------------------|------|-------------------------------------------------------------------------------------------------------------------------|--|
| 2. | Address of the Industry | (44) | SF.Nc 231/2,233/7,234/8,241/2,<br>228/1,2,3,229/1,3,4,5,etc.,<br>R.R.Nagar,<br>Thuluskapatti,<br>Värudhunagar District. |  |
| Ł  | Date of survey          | 13   | 26.11.2024 & 27.11.2024                                                                                                 |  |
| 4. | Duration of survey      | 1    | 24 Hours                                                                                                                |  |
| 5. | Category/Classification | 1    | Red/Large                                                                                                               |  |
| 6. | Land use Classification | 4    | Industry                                                                                                                |  |

#### Meteorological Conditions

|                               | Min       | Max |                            | Min      | Max |
|-------------------------------|-----------|-----|----------------------------|----------|-----|
| Ambient<br>Temperature (°C)   | 23.3 27.1 |     | Relative<br>Humicity (%)   | 64.2 76. |     |
| Weather Condition             | Clear Sky |     | Rainfall (mm)              | N        | IL. |
| Predominant Wind<br>Direction | NE to SW  |     | Mean Wind<br>Speed (Km/hr) | 7.05     |     |

#### Ambient Air Quality Survey Results

| SI. | Location                                            | nate        |                                  | t from<br>(m)         | Concentration in µg/m3 NO2 |      |     |      |
|-----|-----------------------------------------------------|-------------|----------------------------------|-----------------------|----------------------------|------|-----|------|
| No. |                                                     | Direction * | Approximate<br>Distance *<br>(m) | Height from<br>GL (m) | 1                          | u    | m   | AVG. |
| 1   | On house top of Mr.Selvam, Mukka<br>Road, R.R.Nagar | NE          | 330                              | 5                     | 12,6                       | 14.6 | 6.9 | 11.4 |
| 2   | On house top of<br>Mr.Ramar, Subbiayapuram          | E           | 950                              | 5                     | 10.6                       | 11.4 | 3   | 8.3  |
| 3   | On house top of Mr.Ganesan,Rajiv<br>Gandhi Nagar    | SE          | 750                              | 5                     | 10.6                       | 14.0 | 8.6 | 11.1 |
| 4   | On house top of<br>Mr.Suresh,Karuppanasari patti    | SV          | 500                              | 5                     | 18.6                       | 14.7 | 8.1 | 13.8 |
| 5   | On top of Community<br>Hall, Ethilappanaickam patti | W.          | 380                              | 5                     | 14.4                       | 7.4  | 15  | 12.3 |
| 6   | On house top of Mr.Palraj,R.R.Nagar                 | NW          | 530                              | 5                     | 22.4                       | 14.0 | 7.2 | 14.5 |

Note: \*with respect to major emission scurces.

The analytical results are restricted to the sampling period only.

| Test Performed   | Test Method                                                |  |  |  |
|------------------|------------------------------------------------------------|--|--|--|
| PM <sub>10</sub> | IS 5182: (Part23) - 2306                                   |  |  |  |
| SO <sub>2</sub>  | Modified west - Gracke / IS 5182 : (Part 2: -2001 RA: 2012 |  |  |  |
| NO <sub>2</sub>  | Jacobs - Hochheiser * 13 5182: (Part 6) - 2006 RA: 2012    |  |  |  |

Environmental Scientist

Deputy Chief Scientific Officer (a/c),
AEL, TNPCB, Madurni.



MABL According as per (\$017025-2017 , Cardinal as per 150 9001-2011 & 150 45001-2018

## TEST REPORT



Report No. 1 EN24070528

#### ULR NO: TC8582240000065278F

Name of the Client

: The Raroco Cementu Limited

: Collected by Lab Representative

Address of the Client

: Ramaranny Raja Nagar, Virudhonagar - 626204.

Sample Name

z. Stack Emission.

Sampling Dute

: 09-Jul-2024

Sample Description

: Stack Eminden

Received Date

: 11-Jul-2024

: Cooler-03

Commenced On 1 11-Jul-2024

Sampling Location Sample Submission Type

Completed On

: 15-Jul-2024

Sample Condition

: Fit for Analysia

Report Date

17-Jul-2024

Sampling Finn and Method : GL/EN/SOP/111

#### Test Results

| S. No.   | Parameters             | Units   | Results<br>Obtained | Test Method             | Limitas Per<br>EC/CTO<br>Norms |
|----------|------------------------|---------|---------------------|-------------------------|--------------------------------|
| Discipli | net Chemical           |         |                     |                         |                                |
| Group:   | Atmospheric Pollution  |         |                     |                         |                                |
| 1        | Stuck Temperature      | K       | 302.0               | 15 11355 (Fee 3) : 3018 | NA.                            |
| 2        | Vilosity               | the wat | 15.00               | IVA milled 1-3          | KA                             |
| 3        | Garrens Descharge      | Nn3-lu  | 188547.0            | 15 11255 (Part 3) 2018  | KA:                            |
| 4        | Osygonus O2            | 36      | 20.7                | CIL/EN 1/09/140         | NA.                            |
| 5        | Carbon Momentals at CO | Cmigan  | BLO(LOQ : 1:14)     | guanuscer) ni           | MA                             |
| n        | Carbon Diomide as CO2  | 3.      | 0.2                 | GILANCESCHOT DE         | NA .                           |
| 7        | Particular Maso        | mg/Nm3  | 14.90               | 082E94949413            | 20                             |
| 11.      | Moidure Content        | 16:     | 1.9                 | KPA Mithod 1-3          | NA:                            |

Note:- HLQ - Below the Limit of Quantification, LOQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

Authorized 5 E. PRITHIVIRAJAN LAB MANAGER

BURGANOVETTO AND PACK PROLEMENT OF AN ARCHITECTURE OF AN ARCHITECTURE OF A PROPERTY OF THE ROLL AND DESCRIPTION OF THE PARTY OF THE

#### Terms and Conditions:

- " The test results related only to the items texted.
- \* The text report shall not be reproduced in full or part without the written approval of Glera.
- \* The test have will not be retained for more than 12 days from the date of test report except in the sum or required by the applicable regulations.
- \* The importancy's responsibility under this report is limited to presen willul negligence and will in no case be more than the inner of amount.
- A Solinfactory test report in no way limplies that the product tested is approved by NABL.
- \* Laboratory is not responsible for the authenticity of the photocopied test reports.

# G Lens\_\_

## GLens Innovation Labs Pvt Ltd.

NABLAccordinal as per ISO17635:3017, Certified as per ISO 9001-3015 & ISO 65001-3018

## **TEST REPORT**

Commenced On 1 11-Jul-2024



Report No.: EN24070529

#### ULB NO: TC858224000005279F

Name of the Client : The Ramoo Cements Limited

Address of the Client Rammanny Raja Nagar, Virudhunagar - 626264.

Sample Name : Stack Emission Sampling Date : 09-Jul-2024 Sample Description : Stack Emission Received Date : 11-Jul-2024

Sampling Location : Coal Mill-03

Sample Submission Type : Collected by Lab Representative Completed On : 15-Jul-2024

Sample Condition : Fit for Avalysis Report Date : 17-Jul-2024

Sampling Plan and Mathed : GL/EN:SOF/111



#### Test Results

| S. No.  | Parameters            | Units   | Results<br>Obtained | Test Method             | Limit as Per<br>EC/CTO<br>Norms |
|---------|-----------------------|---------|---------------------|-------------------------|---------------------------------|
| Discipi | ner Chemical          |         |                     |                         |                                 |
| Genup:  | Atmospheric Pollution |         |                     |                         |                                 |
| 1       | Stack Temperature     | к       | 345.0               | 85 (1253 Chrt 3) : 2618 | NA.                             |
| 2       | Velocity              | m/sec   | 8.70                | SPA moked 1-5           | NA.                             |
| 3       | Outrous Discharge     | NinAhr  | 60615.0             | 45 31255 (Fan 3) : 3918 | NA.                             |
| 4       | Oxygen as O2          | 36      | 29.8                | GLENOCHTES              | NA.                             |
| 5       | Carbos Monoside as CO | mg/Nni3 | 6.6                 | GUSSIGNAR               | NA.                             |
| 6.      | Cartion Divide as COZ | 56      | 11,4                | GLASSOCIAN              | NA.                             |
| 7       | Particulate Matter    | mutim3  | 6.14                | GI/EN WINTLE            | 20                              |
| *       | Manage Contain        | 35      | 2.9                 | EPA Michol Lil          | NA.                             |

Note: HLQ + Below the Limit of Quantification, LOQ + Limit of Quantification.

\*\*\*End of Report\*\*\*

Authorized Signature
E. PRITHIVIRAJAN
LAB MANAGER

SERVING STOREGIST AND SERVING SERVING

#### Terms and Conditions.

Page 3 of 1

<sup>\*</sup> The test results related only to the items tested.

<sup>\*</sup> The test report shall not be reproduced in full or part without the switten approval of Glass.

<sup>\*</sup> The test flums will not be retained for more than 13 days from the date of Issue of test report except in the case as required by the applicable regulations.

<sup>\*</sup> The Laboratory's responsibility under this report is limited to proven within negligence and will in an case be more than the invoiced emount.

<sup>\*</sup> A Selisfectory test report in so way implies that the product tested is approved by NAML.

<sup>\*</sup> Laboratory is not responsible for the notheroicity of the photocopied text reports.



NASIL Accomplised as per (50170)/5.2017 , Certified as per (50 9001-2015 & (50 85001-2016

#### TEST REPORT



Report No. | EN24070530

#### ULR NO: TC#58224000005280F

Name of the Client

The Ramco Cements Limited

Address of the Client

Bameumy Raja Nagur, Virudinnagur - 626204.

Sample Name

Stack Emission

Sampling Date

10-Jul-2014

Sample Description

: Stack Ernission

Received Date

= 11-Jul-2024

Stimpling Location

: Cement Mril-01 & 02

Commenced Cin

: 11-Jul-2024

Sample Submission Type

Collected by Lab Representative

Completed On

: 15-Jul-2024

Sample Condition

Fit for Analysis

Report Date

1.07-011-2024

Sampling Plan and Method : GL/EN/SOP/311

#### Test Results

| S. No.   | Parameters            | Units   | Results<br>Obtained | Test Method                  | Limit as Per<br>EC/CTO<br>Norms |
|----------|-----------------------|---------|---------------------|------------------------------|---------------------------------|
| Discipli | ner Chemical          |         |                     |                              |                                 |
| Group:   | Atmosphetic Pollution | 172 19  |                     |                              | - V                             |
| 1        | Stark Tengerature     | R       | 354.0               | 38 ) 125E (Pair 3) (3018     | NA.                             |
| 2        | Veluciry              | miles   | 6:40                | SPA milled 1-3               | NA:                             |
| 3        | Granus Discharge      | Nestdar | 135657.0            | 28 3 (255 (254 ) 37 ) (2010) | NA:                             |
| 4        | Oxygen as CU          | 46      | 20.8                | GLENGSON/148                 | NA.                             |
| 3        | Carton Movemble as CO | mg/m3   | BLQ(L0Q+1.14)       | GE/EN/BOR14W                 | NA:                             |
|          | Carton Dioxide as CO2 | 16      | 0.1                 | GE/EN/SOP/149                | NA:                             |
| 77       | Parsonine Mater       | mgNed   | 11.30               | GL/ ENSORTE                  | 30                              |
| - 6      | Mounting Content      | 196     | 2.9                 | EEA Method 1-3               | NA:                             |

Note: BLQ - Below the Limit of Quantification, LQQ - Limit of Quantification,

\*\*\*End of Report\*\*\*



BARK IND STOKES PARE ROLL S. F. SPURCO HAR MARKET THAT BY SUBJECT BOOK AND A CONC.

#### Terms and Conditions

- " The text results released only to the items revised.
- \* The test report shall not be reproduced in full or part without the written approval of Glenu.
- \* The test flams will not be retained for more than 15 days front the date of lame of last report except in the case as required by the applicable regulations.
- \* The Laboratory's responsibility under this report is limited to proven willful angligance and will in no case be more than the insulessi assume.
- \* A Satisfactory tent report in no way implies that the product tented is approved by NAIL.
- \* Laboratory is not responsible for the witherricity of the photocopied test reports.

# G Lens

## GLens Innovation Labs Pvt Ltd.

NABLAccredited as per ISUL7015:2017 , Cartified as per ISO 9001:2015 & ISO 65001:1018

#### TEST REPORT



Report No. 1 EN24070532

#### ULR NO: TC#58224000005282F

Name of the Client The Rainco Cementa Limited

Address of the Client Ramanumy Raja Nagar, Virudhumagur - 626204.

Sample Name Stack Emission Sampling Date : 10-Jul-2024
Sample Description : Stack Emission Received Date : 11-Jul-2024
Sampling Location : Cement Mill-03 Commenced On : 11-Jul-2024

Sample Submission Type Collected by Lab Representative Completed On : 12-Jul-2024

Sample Condition | Fit for Analysis | Report Date | 07-08-2024

Sampling Plan and Method : CIL/EN/SOP/111



#### Test Results

| S. No.   | Parameters            | Units    | Results<br>Obtained | Test Method               | Limitas Per<br>EC/CTO<br>Norms |
|----------|-----------------------|----------|---------------------|---------------------------|--------------------------------|
| Discipli | ne: Chemical          |          |                     |                           |                                |
| Group:   | Atmospheric Pullution | - 0      |                     |                           | W                              |
| 0        | Stack Temperature     | ×        | 348.0               | 18 (1295 (Part 3) (2018)  | NA.                            |
| 2        | Velocity              | more     | 9310                | EPA method E3             | 2800                           |
| 3        | Danous Discharge      | Nm3/hr   | 35893.0             | 10.1 (255 (Pail 3) (2010) | NA                             |
| 14       | Охудев на ОР          | - 16     | 20.9                | OT/1845/hOIA149           | SIA                            |
| 5        | Curbos Manazide sa CO | ing/m3   | BEGGOO: ENG         | CIL/RH/SOP/140            | NA:                            |
| 6        | Carboe Dioxide as CO2 | 36       | 0.2                 | GE/EDVSON1W               | NA.                            |
| 7        | Purticulate Matter    | img/Nim3 | 10.36               | GL/BOSOWITE               | 20                             |
| 9        | Moisture Content      | - 56     | 2.6                 | IIPA Method 1-3           | NA                             |
|          |                       |          |                     |                           |                                |

None - HLQ - Helow the Limit of Quantification, LDQ - Limit of Quantification.

\*\*\* find of Report\*\*\*

Authorized Signature

E PRITHIVIRAJAN

LAB MANAGER

REBETHOUSTON DUT MUST RELEBELLE MOUNT ON THE MISSISSE THEIR SEASON FROM THE COMMENSATION OF THE SEASON FROM TH

#### Terms and Conditions:

- \* The test results related only to the from tested.
- \* The test report shall not be reproduced in fell or part without the written approval of Glans.
- \* The test items will not be retained for room than 15 days from the date of lasts report enlique in the case as required by the applicable regulations.
- \* The Laboratory's responsibility under this report is limited to proven will'd negligence and will in no case be more than the involced amount.
- \* A Shrivingtory text report in no way implies that the product tested is approved by NABL.
- \* Universitary is not responsible for the authoritieity of the photocopied test reports.



NABL According as per MO17025:3017 , Certified at per ISO 9001:3015 & ISO 45001:2018

#### TEST REPORT



Report No. : EN24070531

#### ULR NO: TC858224000005281F

Name of the Client

: The Ramco Coments Limited

: Collected by Lab Representative

Address of the Client

1 Rammuny Raja Nagar, Virudhongar + 626294.

Sample Name

2 Stack Emission

Sampling Date : 10-Jul-2024

Sample Description

: Stack Emission

Commenced On : 11-Jul-2024

Sampling Location

Received Date ± 11-Jul-2024

Sample Suhmission Type

: Packer stack

Completed On

: 15-Jul-2024

Sample Condition

Fit for Analysis

Report Date

: 17-Jul-2024

Sampling Plan and Method GL/EN/SOP/111

#### Test Results

| S. No.   | Parameters             | Uaits    | Results<br>Obtained | Test Method              | Limit as Per<br>EC/CTO<br>Norms |
|----------|------------------------|----------|---------------------|--------------------------|---------------------------------|
| Discipli | ine: Chemical          |          |                     |                          |                                 |
| Group:   | Atmospheric Pollution  |          |                     |                          |                                 |
| 1        | Scali Temperature      | K.       | 319.8               | (5:11235 (Part 3) : 2018 | NA:                             |
| 3        | Volumby                | m/set    | 22.16               | 6PA molloid 1-3          | NA.                             |
| 1        | Course Distance        | No.3/hr  | 55301,0             | (\$11255 (Pat 3): 2018   | NA                              |
| 4        | Oxygon as CO2          | %        | 20.6                | OLABOSOP149              | NA.                             |
| 3        | Carbon Monuside qu (C) | Egrigati | #EQ10Q: EM)         | GLESSON IN               | NA.                             |
| 6        | Carbon Director as CO2 | 98       | 0.2                 | GLESSHEET 49             | NA                              |
| 7        | Particulate Matter     | rog/Nm3  | 6.65                | GL/EN/90#913             | 20                              |
| 1        | Mulishing Content      | 15       | 80.00.02:180        | EPA Method 1-3           | NA.                             |

Nose:-BLQ - Below the Limit of Quartification, LOQ - Limit of Quartification.

\*\*\*End of Report\*\*\*

E PRITHIVIRAJAN LAB MANAGER

BITH HOCUSTOS DESPECTS WITH SHOW, SO JANCON JOS MANAGES COME. BA

Three and Geoditions

<sup>\*</sup> The test results related only to the herry beneat.

<sup>&</sup>quot; The text rapact shall not be reproduced in full or part without the written approval of Glems.

<sup>\*</sup> The best flams will not be relained for more than 15 days from the date of issue of test report conset in the case as required by the applicable regulations.

<sup>\*</sup> The Laboratory's responsibility under this report is limited to proven withit negligence and will in no case be more than the involved amount.

<sup>&</sup>quot; A Setisfactory test report in no way implies that the product tested is approved by NASI.

<sup>\*</sup> Laboratory is not responsible for the authorities of the photocopied test reports.



NAM: According as per (SO17425-2017), Certified as per ISO 9002-2015 & ISO 45003-2018

## TEST REPORT



Report No. : EN24070533

#### ULR NO: TC858224000005283F

Name of the Client : The Ranco Cements Limited

Address of the Client : Ramanany Raja Nagar, Virudinmagar - 626204.

Sample Name Stack Emission Sampling Date : 10-Jul-2014
Sample Description Stack Emission Received Date : 11-Jul-2014

Sampling Location : Ceoler-01 Commenced On : 11-Jui-2024

Sample Salmiksian Type : Collected by Lub Representative Completed On : 15-Jul-2024

Sample Condition : Pit for Analysis Report Date : 17-Jul-2024

Sampling Plun and Method : GL/EN/SOP/111

#### Test Results

| S. No.   | Parameters            | Units  | Results<br>Obtained | Test Method             | Limit as Per<br>EC/CTO<br>Norms |
|----------|-----------------------|--------|---------------------|-------------------------|---------------------------------|
| Discipli | ne: Chemical          |        |                     |                         |                                 |
| Groupe   | Atmospheric Pollution |        |                     |                         |                                 |
| 1        | Stock Temperature     | K      | 436.0               | 25 17255 (Pwt 5): 2011  | NA.                             |
| 2        | Velocity              | missi  | 15.10               | EPA-milled (-3)         | NA.                             |
| 3        | Gaussia Discharge     | Nml/he | 89557,0             | 75 11255 (Part.3); 2018 | NA.                             |
| 4        | Orygen in O2          | 16:    | 20.7                | GL/Bit/Cit/(49          | NA.                             |
| 5        | Curbon Monorade as CO | mg/m3  | HLQ6,692 1.545      | GL/Enchon/149           | NA.                             |
| 6        | Carton Dioxide at CO2 | 16     | 0.2                 | GLIEN WORKSAW           | NA.                             |
| 7        | Particulate Muner     | mg/hm3 | 10.80               | GU EN SUVI O            | 70                              |
| *        | Moistant Content      | 16     | 6.5                 | EPA Mirto4 (-3          | NA.                             |

Note: Ht.Q - Helow the Limit of Quantification, LOQ + Limit of Quantification.

\*\*\*End of Report\*\*\*

Authorized Sentrum

E. PRITHIVIRAJAN

LAB MANAGER

SENDED FOR THE MALERIAN MALERIAN STORY OF MALERIAN DELICATION OF THE ANALYSIS CHARGE WELL

#### Terms and Conditions:

\* The test results related only to the items turned.

\* The test report shall not be reproduced to full or part without the written approved of Glens.

\* The sest lients will not be retained for more than LS days from the siete of insue of test report except in the case as required by the applicable regulations.

\* The Laboratory's responsibility under this report is limited to prover wilful negligence and will in no case he more than the invoked amount.

\* A Selisfactory test report in no way implies that the product tested is approved by NASS.

\* Laboratury is not responsible for the authenticity of the photocopied text reports.

Page t of 1



MASIL Accredited as per INC17025-2017 , Certified as per ISO 9001-3011 & ISO 45001-2018

#### TEST REPORT



Report No.: EN24070534

ULR NO: TC858224000005284F

Name of the Client

: The Ramoo Coments Limited

Address of the Cliest

Rammany Raja Nagar, Virudhumanar + 626264.

Sample Name

: Stack Emission

Sampling Date

: 10-Jul-2034

Sample Description

: Stack Emission

Received Date:

: 11-Jul-2024

Sampling Location

: Kiln Stack-01

Commenced On

11-Jul-2024

Sample Submission Type : Collected by Lab Representative

Completed On

: 15-Jul-2024

Sample Condition

: Fit for Analysis

Report Date

: 17-Jul-2024

Sampling Plan and Method : GL/EN/SOP/111

#### Test Results

| 5. No.  | Parameters                | Units    | Results<br>Obtained | Test Method             | Limit as Per<br>EC/CTO<br>Norms |
|---------|---------------------------|----------|---------------------|-------------------------|---------------------------------|
| Discipl | ne: Chemical              |          |                     |                         | - Colum                         |
| Group:  | Atmospheric Polluties     |          |                     |                         |                                 |
| 10      | Stack Temperature         | K        | 409.0               | 75 (1255 (Part.T): 2018 | NA.                             |
| 2       | Velocity                  | He/hou   | 13.90               | EPA mothed to 3         | NA.                             |
| 35      | Gasoner Discharge         | Nm3/hr   | 157036.0            | 15.11255 (Part.2) 2018  | NA.                             |
| 4       | Ovygen us 62              | 76       | 10.4                | GLADIOCE/149            | NA.                             |
| 31      | Curbon Monovade as CO     | Emittem  | 19.6                | GLADVICE/149            | NA.                             |
| 6       | Carbon Dimide as CO2      |          | 19.0                | GLEN-SOWIES             | NA.                             |
| 7       | Particulate Matter        | rsg/Nin3 | 11.50               | OL/ENSORID              | 20                              |
| N       | Oxidirs of Nibugor as NOX | mg/20m2  | 536.0               | BLENISORG49             | 600                             |
| 9       | Sulpher Divide as SCII    | mg/Nm3   | HL0(1,00:37)        | EPA Montal 6            | 300                             |
| 10      | Molettery Contract        | 96       | 3.8                 | EPA.56-0-4 1-3          | NA.                             |

Note: BLQ - Below the Limit of Quantification, LOQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

E. PRITHIVIRAJAN LAB MANAGER

BUSINESS AND RESERVED BY THE REAL PROPERTY OF THE PARTY O

Terms and Conditions:

" The test results related only to the Items tested.

\* The test report shall not be reproduced in full or part without the written approval of Giens,

- \* The test items will not be retained for more than 15 days from the data of layor of tast report on agt in the case as required by the applicable regulations.
- \* The Laboratory's responsibility under this report is limited to proven within negligence and will in ne case be more than the involved amount.
- A Satisfactory was report in no way implies that the product tested is approved by NABL.
- \*Leboratory is not responding for the authenticity of the phytosopied last reports.

# 6 Lens

## GLens Innovation Labs Pvt Ltd.

MADE Accredited as per ISO 17035/2017, Certified as per ISO 9001-2015 & ISO 45001-2018

#### TEST REPORT

Commenced On

: 11-Jul-2024



Report No. : EN24070535

ULR NO: TC858224000005285F

Name of the Client : The Ramco Cements Limited

Address of the Client : Rammany Raja Nagar, Virodhumgar - 626204.

Sample Name : Stack Emission Sampling Date : 09-Jul-2024
Sample Description : Stack Emission Received Date : 11-Jul-2024

Sampling Location : Kilm Stack-03

Sample Submission Type : Collected by Lab Representative Completed On : 15-Jul-2024

Sample Condition : Fit for Analysis Report Date : 17-Jul-2024

Sampling Flam and Method : GL/EN/SOP/111



#### Test Results

| S. No.   | Parameters                | Units    | Results<br>Obtained | Test Method              | Limit as Per<br>EC/CTO<br>Norms |
|----------|---------------------------|----------|---------------------|--------------------------|---------------------------------|
| Discipli | ne: Chemical              |          |                     |                          | - 300                           |
| Groap:   | Atmospheric Poliution     |          |                     |                          |                                 |
| - 5      | Stack Temperature         | K.       | 416.0               | 25 11255 (Part.1) ; 2038 | NA.                             |
| 2        | Valority                  | mace     | 10.46               | EPA molecularia          | NA:                             |
| 1        | Otroms Discharge          | Nm3/lie  | #18913.0            | (8 11215 (Fart.I) : 2018 | NA.                             |
| 4        | Oxygen as CO              | - 16     | 13.39               | GE/ES/SCH149             | NA:                             |
| \$       | Carlon Monocide as CO     | 4m5figur | 22                  | OLIENSON149              | :NA                             |
| 0        | Carfust Disvide as CO2    | *        | 13.8                | Obtactionals             | NA.                             |
| 7        | Particulate Marter        | mg/km)   | 9.03                | Tal./ Els scipilità      | 20                              |
|          | Oxides of Nitrogen as NOX | mg/Nm3   | 571.0               | Q1,40 (>00) 49           | ,600                            |
| 9        | Sulphur Divvide at 502    | mg/Nm3   | BLQ(LOG-3.F)        | TPA Model dis            | 100                             |
| 10       | Moisture Content          | 26       | 3.8                 | APX Minhod Lib           | NA.                             |

Note: BLQ + Below the Limit of Quantification, LOQ + Limit of Quantification.

\*\*\* End of Report\*\*\*

E PRITHIVIRAJAN LAB MANAGER

Authorize

ADMINISTRATION OF THE PERSON O

Terms and Conditions:

"The sest regults entated poly to the items tested.

\* The test report shall not be repreduced in full or part without the written approval of Glens.

- "The text items will not be retained for more than 15 days from the date of issue of text report except in the case as required by the applicable regulations,
- \* The Laboratory's responsibility under this report is finited to proven will disapliance and will in an one be more than the involved amount.
- \* A Sotinfectory test regard in our way longities that the product tested is approved by NAME.
- \* Laboratory is not responsible for the authenticity of the photocopied test reports.



NASI, According as per (SO17025-2017 , Cartified as per (NO 9001-2019 & 150 45001-2018

### TEST REPORT



ULR NO: TC858224000005286F

Name of the Client The Ramco Concests Limited-Thornal Powerplant

Address of the Client Ramanny Paja Nagar, Virudhanagar - 626204.

Sample Name : Stack Emission Sampling Date : 10-Jul-2024 Sample Description : Stack Emission Received Date : 11-Jul-2924

Sampling Location : Boiler 110 TPH Stack Commenced On : 11-Jul-2024

Sample Submission Type Collected by Lub Representative Completed Du : 15-Jul-2024

Sample Condition : Fit for Analysis Report Date : 17-Jul-2024

Sampling Plan and Method : GL/EN/SOP/111



Report No. : EN24870536

#### Test Results

| S. No.  | Parameters                 | Units    | Results<br>Obtained | Test Method             | Limit as per CPCi<br>Standard |
|---------|----------------------------|----------|---------------------|-------------------------|-------------------------------|
| Discipi | Inc: Chemical              |          |                     |                         |                               |
| Groups  | Atmospheric Pollution      |          |                     |                         |                               |
| 21      | Stank Temperature          | ×        | 414.0               | (\$11255 (Part 7) 2618  | NA.                           |
| 12      | Velocity                   | m/ww     | 13.10               | EPA method Lid          | NA NA                         |
| 3       | Garcina Discharge          | Nodar    | 101386-0            | 25 11255 (Part 3): 35)8 | NA NA                         |
| 14      | Ovygunus O2                | 16       | 16.43               | GUENI SORDAR            | NA.                           |
| :5      | Cartico Mosocide as CO     | mg*fm3   | 68.0                | GLmzescen149            | NA.                           |
| 36      | Carbon Dineide as CCQ.     | %        | 4.0                 | GL05/50(149             | NA.                           |
| 7       | Particulate Matter         | mg/748(3 | 40.30               | GL/ENGGRA13             | 50                            |
| 38      | Oxides of Nitrogen as NOX. | mg/Ned   | 412.0               | GIZEN/SORV) in          | 450                           |
| 79      | Sulphur Direcide as 50/2   | mg/Net   | 966.0               | HPA Method 6            | 600                           |
| 10      | Moliture Conunt            | 34       | 29                  | EPA 24-G-1-5            | NA.                           |
| 73      | Mercury in Hg              | mg/m3    | Biriding loss       | EPA surfeed-20          | 0.03                          |

Note: HLQ - Below the Limit of Quantification, LOQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

E PRITHIVIRAJAN LAB MANAGER

CERCUSCOSTORUE MADERATURA SOLDERAN SOLD

Terms and Conditions:

\* The test moults related only to the literus sessed.

"The test report shall out be reproduced in full or part without the switten approval of Glass.

\* The last items will not be retained for more than 13 days from the date of jasue of text report except in the case as required by the applicable regulations.

"The Laboratory's responsibility under this report is Smiled to proven will'd regisprose and will in no cope be more than the Invoked arround.

\* A Satisfactory test report in as way implies that the product tested is approved by MARL.

\* Laboratory is not responsible for the authenticity of the photocopied test reports.

NASE Accessified as per ISO17(QS:0017 , Contilled as per ISO 9001:2015 & ISO 45001:2018

#### TEST REPORT

ULR NO: TC858224000006078F



Report No.: EN24080839

Name of the Client

: The Rumon Cements Limited

Address of the Client

: Remanday Enja Nagar, Virusibunagar - 626204.

Sample Name

: Stock Embolou

Sampling Date: 20-Aug-2024

Sample Description

: Stack Emission

Received Date : 23-Aug-2024

Sampling Location

: Kiln Stock-J

Commenced On : 23-Aug-2024

Sample Submission Type : Collected by Lab Representative

Completed On

= 20-Aug-2024

Sample Condition

: Fit for Analysis

Sampling Plan and Method : GL/EN/SOP/111

Report Date

: 31-Aug-2024

#### Test Results

| S. No.  | TEANANTA SOLS             | Linits     | Results<br>Obtained | Test Method              | Limit as Per EC/CTO<br>Norms |
|---------|---------------------------|------------|---------------------|--------------------------|------------------------------|
| Discipl | nut Chemical              |            |                     |                          | Norms                        |
| Groupe  | Atmospheric Pullution     | 101        |                     |                          |                              |
| 10      | Curbon Monoside at CO     | mg/Nm3     | 0.6                 | GUENSONT#F               | NA.                          |
| 4:      | Carbon Dioxide as CO2     | 36         | 153                 | GD459509149              | NA                           |
| 1       | Gmoone Discharge          | Nm3.fie    | 363219.0            | 19 11255 (Part 3) - 2018 | NA.                          |
| 040     | Oxides of Nitragon at NO2 | mg/Nm3     | 252.0               | GL/EN/SON149             | 600                          |
| 3       | Окуши в О2                | - 54       | 17:27               | GL/EN/50((19)            | ) NA                         |
| .6.1    | Stack Temperature         | - K        | 419                 | 19 (125) (Part 7) - 2016 | NA NA                        |
| 72      | Velocity                  | misec      | 9.6                 | EPA method t-3           | (NA                          |
| 180     | Mosslant Conton!          | 96         | 3.8                 | EPA Method CJ            | .NA                          |
| 19.7    | Sulpluz Dienide as NO2    | Emp/Norial | BLO(L0Q-18)         | EPA Method 6             | 100                          |
| 100     | Particulate Matter        | Emil/ham   | BEQG.00:3'0)        | GLEN/SOWID               | 20                           |

will of Quantification, LOQ + Limit of Quantification;

\*\*\*End of Report\*\*\*



E PRITHIV LAB M2

REDISTRIBUTION DASES: HE MYSS REFOR STRUCKING WITH SALES FOR RES

Territaine Conditions:

<sup>\*</sup> The test results related only to the livery tested.

<sup>\*</sup> The test report shall not be reproduced in full or part willbout the written approval of Giora.

<sup>\*</sup> The test itsus will not be retained for more than \$5 days from the date of issue of less report except in the case as required by the applicable regulations.

<sup>\*</sup> The Laboratory's responsibility under this report is limited to preven will it negligence and will in on case be more than the involved empored.

<sup>\*</sup> A Satisfectory test report in no way implies that the product tested is approved by NASL.

<sup>&</sup>quot; Inhoratory is our responsible for the authorality of the photocrapied last reports.

NABL Accordited as per (5017)25-2017 , Certified us per ISO 5001-2015 & ISO 45001-2018

## TEST REPORT

ULR NO: TC858224000006079#



Report No.: EN24080840

Name of the Client

: The Ramco Consents Limited

Address of the Client

: Rama 100y Raja Nagar, Virudhinagur - 626204.

Sample Nume

2 Stack Emmoion

Sampling Date | II-Aug-2024

Sample Description

: Stack Embesion

Received Date

23-Aug-2024

Sampling Lecation

: Kiln Stack - DI

Commenced On

: 23-Ams-2024

Sample Summission Type

Collected by Lab Representative

Completed On

: 30-Aug-2024

Sample Condition

1 Fit for Analysia

Report Date

: 31-Aug-2024

Sampling Plan and Mediod | GL/EN/SOP/111

Total Describe

|          |                           |         | Lest Results        |                          |                     |
|----------|---------------------------|---------|---------------------|--------------------------|---------------------|
| S. Na.   | Parameters                | Units   | Results<br>Obtained | Test Method              | Limit ns Per EC/CTO |
| Discipli | ne: Chemical              |         |                     |                          | Norms               |
| Group:   | Atmospheric Pollution     |         |                     |                          |                     |
| - 6      | Carbon Monoxide as CO     | mg/Nn3  | 96.3                | GL/99/509/149            | NA.                 |
| 2        | Carbon Direide as CO2     | - 5     | 17,77               | GL/EH/FOHELIV            | NA NA               |
| (3)      | Carroon Discharge         | Next/hr | 18893E0             | 15 11255 (Part 3) : 2018 | NA NA               |
| 4:       | Oxides of Nitrogen as NO2 | matimat | 545.0               | SILENSON DE              | 2600                |
| (\$0)    | Oxygen as O2              | 16      | 10.25               | OLEN SON OF              | NA.                 |
| 6        | Stuck Telegoramer         | X       | -806                | (E11255 (Part 3) - 3(18  | NA                  |
| 1        | Velocity                  | Mines.  | 16.6                | EPW method 1-3           | NA:                 |
| #        | Moisture Comune           | 16      | 3.79                | IPA Motor 1-3            | NA:                 |
| 9        | Solphur Dioxide zu SQ2    | mg/Nost | 81-0(1/00-188)      | TPM Milhod 6             | 100                 |
| 100      | Particulate Matter        | mg/Nm3  | 7.56                | GL/ENSOWITS              | 30                  |

Note: - BLQ - Below the Limit of Quantification, LOQ - Limit of Quantificating

\*\*\*End of Report\*\*\*

E PRITHIVIRAJAN LAB MANAGER

COMPANY OF STREET AND STREET AND STREET AND STREET ASSESSMENT ASSE

Territorand Coodifions:

\* The test results related only to the literas tested.

The test report shall not be reproduced in full or part without the willian approval of Glens.

\* The test items will not be retained for more than AS days from the date of town of instruport except in the case as required by the epole while regulations.

\* The Laboratory's responsibility under this report is limited to groven will all regispers and will in no case be more than the involved amount.

A Setimentary lest report in no way implies that the product tested is approved by NABL.

\* Exhanatory is not responsible for the authenticity of the phatocopied test reports.



MRISt Accessible of major ISO17028(2017), Cartified as per ISO 8001:2015 & 250 45001:2018

## TEST REPORT

ULR NO: TC858224000006080F



Report No.: EN24088841

Name of the Client

: The Ramco Coments Limited

Address of the Client

: Rame any Raja Nagar, Virudhunagar - 626204.

Nample Name

Stack Monitoring

Sampling Date 20-Aug-2024

Sample Description

: Stack Monitoring

Sampling Location

Received Date

1 23-Aug-2014

Sample Submirdon Type

Coat Mill-3

Commenced On

23-Aug-2024

2 Collected by Lab Representative

Completed On

30-Aug-2024

Satopie Condition

: Fit for Analysis

Report Data

31-Aug-2024

Sampling Plan and Method | GL/EN/SOP/111

#### Test Results

| S. No.   | 01/01/01/05/05/05     | Units     | Results<br>Obtained | Test Method              | Limit as Per EC/CTO |
|----------|-----------------------|-----------|---------------------|--------------------------|---------------------|
| Discipli | ne: Chemical          |           |                     |                          | Norms               |
| Grnapt   | Aimorpheric Pollution |           |                     |                          |                     |
| 1        | Carbon Monocide as CO | mg/Nm3    | 28.4                | GLENSOPTIO               | NA:                 |
| 3        | Carbon Divide in CD2  | 96        | 0.3                 | CLOPA SOLUTION           |                     |
| 9        | Carrows Discharge     | Nim3/hr   | 6767.0              | 15 11355 (Fan 7) : 2016  | NA.                 |
| 4        | Ospigen m O2          | 296       | 70.8                | GL/ES SOPCE              | NA:                 |
| 5        | Particulate Matter:   | 100/23003 | 3.20                | OVEN-SORIII              | NA:                 |
| 6        | Stack Temperature     | ĸ         | 342                 | AND DESTROYER            | 20                  |
| 7.       | Velocity              | m/sec     | 94                  | 28 11255 (Part 7) ; 2018 | NA                  |
| 8.       | Meinture Cisioni      |           | 100                 | EZA partied I-J          | NA:                 |
| 20       | Nomina Commit         | 24        | 3.1                 | 87A Mislod 1-0           | N/A                 |

t of Quantification, LOQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

E PRITHIVIBAJAN LAB MANAGER

SARRE AND CHARLES FROM ANY LIST OF SHEW CONTINUES TO SHEW THAT IS NOT THE OWNER. Terms and Cossillions:

" The test results related only to the items tested.

\* The test report shall not be reproduced in full or part without the written appropriate of Grenz.

\* The test items will not be retained for enoce than 13 days from the data of table of test report except to the case as required by the applicable regulations.

\* The taboratory's responsibility under this report is limited to proven wilful negligeness and will in no case be more than the leveled amount.

\* A Satisfactory test report in no way implies that the product tested is approved by NAM.

\* Laboratory is not responsible for the authoritidity of the photocopied tool reports.

MARL Accredited as per ISO17025:2017 , Certified as per ISO 8001/2015 & ISO 85081:2018

## TEST REPORT

ULR NO: TC858224000006081F



Report No.: EN24080842

Name of the Client

: The Ramco Centents Limited

Address of the Client

Remaining Rola Nagar, Virishmagar - 626204.

Sample Name

2 Stack Emission

Sempling Date

: 20-Aug-2024

Sample Description

: Stack Emilision

Received Date

23-Ang-2024

Sampling Location

: Cooler Stack-3

Communeed On

23-Aug-2024

Sample Submission Type

: Collected by Lab Representative

Completed On

30-Aug-2024

Sample Condition:

Fit for Analysis

Report Dute.

: 31-Aug-2024

Sampling Plan and Method : GL/EN/SOP/111

#### Test Results

| S. No.   | 4,00003418             | Units  | Results<br>Obtained | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit as Per EC/CTO |
|----------|------------------------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Discipli | ne: Chemical           |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Norms               |
| Group:   | Atmospheric Poliution  |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 1        | Curbon Merovoido as CO | mg/ad3 | BL0500: 1.H)        | GLTD-SOPT 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA.                 |
| 2        | Certion Dink Maran CO2 | 96     | 0.1                 | CZ-EN-SOP-LID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| 3        | Governs Discharge      | North  | 184728.0            | 18 11157 (Part 3) : 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA:                 |
| 4        | Chargen as CO          | 96     | 20.8                | GLAN LEYTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA.                 |
| 3        | Particulate Matter     | mg/Nn3 | 11.60               | GIJ EN/SCHATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA:                 |
| 6        | Stack Temperature      | K      | 400                 | 15 (1259 (Pet.3) ; 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                  |
| 7        | Velocity               | mbee   | 14.9                | THE SECTION OF THE PARTY OF THE | NA:                 |
|          | Melitur Contact        |        | 1000                | RPA restort Lift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA:                 |
| 8        | COTTON OF STREET       | . 56   | 1.9                 | EPA Method 5-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA:                 |

Below the Limit of Quantification, LOQ - Limit of Quantification.

\*\*\*Eind of Report\*\*\*

E. PRITHIVIRAJAN LAB MANAGER

SERVICE CONTRACTOR OF THE PROPERTY OF THE PROP

#### Terms and Conflitione:

- " The test results related only to the flores tested.
- \* The test report shall not be reproduced in full or part without the written approval of Gless.
- \* The test flume will not be retained for more than 15 days from the date of local of just report except in the case as required by the applicable regulations.
- \* The Luburarory's responsibility under this report is limited to proven within negligence and will in an ease be more than the involved amoons.
- A Setimentary test report in no way implies that the product tested is approved by NASS.
- \* Estimatory in not responsible for the nuthenticity of sixe photocopied test reports.



RABL Accredited as per ISO3 P025(2017), Certified as per ISO 8003(2015 & ISO 4508); 2018

## TEST REPORT

ULR NO: TC858224000006082F



Report No.: EN24086844

Nusse of the Client.

: The Ramou Cements Limited

Address of the Client

: Ramanany Raja Nagar, Virudhunagar - 626204.

Sample Name

: Stack Emission

Sampling these

2T-Aug-2024

Sample Description

. Stack Emission

Received Date

: 23-Aug-2024

Sumpling Location

: Cooler Stack-1

Commenced On

: 23-Aug-2024

Sample Submission Type:

: Collected by Lab Representative

Completed On

: 30-Aug-2024

Sample Condition

: Fit for Analysis

Report Date

: 31-Ang-2024

Sampling Flor and Method | GL/EN/SOP/111

#### Test Results

| S, No.   | (7/22/2000)               | Units   | Results Obtained | Test Method                 | Limit as Per EC/CTO<br>Norms |
|----------|---------------------------|---------|------------------|-----------------------------|------------------------------|
| Discipli | ne: Chemical              |         |                  |                             | (101303                      |
| Groupt   | Atmospheric Pollution     |         |                  |                             |                              |
| J.       | Curlinii Minimidde jas EO | mg/m3   | 8LQ100; 130)     | GUAN FORTH                  | NA.                          |
| 2        | Carbon Direcide as CO2    | **      | 0.2              | GLENSON 48                  | NA:                          |
| 3        | Generous Discharge        | Nm3/fiz | #9250 d          | 25 (11255 (Part. Tr) - 2019 | NA.                          |
| <b>W</b> | Очудов в ОО:              | (54     | 20.7             | GL42/506/148                | NA:                          |
| 5        | Particulus Messe          | ma/74m3 | 11.50            | GL(ENSONI)                  | 20                           |
| 6        | Stack Temperature         | K       | 439              | 45.77255 (Part 3) ; 2016    | NA.                          |
| 7        | Velocity                  | ni/sec  | 152              | EPA modera 1.3              |                              |
| 8        | 56-Value Chinori          | 36      | 1,9              | RPA Minhod No               | NA:                          |

te - BLQ - Below the Limit of Quantification, LCQ - Limit of Quantification.

seeEnd of Reporters

E PRITHIVIRAJAN LAB MANAGER

RESIDENCE VATORICES NOTES MODIFIED PLANTS OF THE ORIGINAL PROPERTY.

Taxon and Conditions:

\* The test results rolated only to the figns noted.

\* The test report shall not be reproduced in full or part willbout the written approved of Giros.

\* The test items will not be estuded for more than 13 days from the days of hour of test report except in the case as required by the applicable regulations.

\* The Laboratory's responsibility under this report is limited to proven withir negligence and will in no case be more than the involved emount.

\* A Satisfactory text report in no way implies that the product tested is approved by NAMI.

"Laboratory is not responsible for the authenticity of the photocopied text reports.

NABLAzzredhed as par ISC17025:3017 , Cartifled as par ISO 9001;2015 & 190 45001:3018

## TEST REPORT

ULR NO: TC858224000006083F



Report No.: EN24050845

Name of the Client

: The Ramor Centers Limited

Address of the Client

: Rammany Paja Nagar, Virodhinagar - 626204.

Sample Name

5 NOOK Eminores

Sampling Date | | 21-Aug-2024

Sample Description:

Stack Emission

Received Date

: 23-Aug-2024

Sampling Location

: Cement Mill - 1 & 2

Commenced On

23-Amt-2024

Sample Submission Type

: Collected by Lab Representative

Completed On

: 30-Aug-2024

Sample Condition

: Fit for Analysis

Report Date

: 31-Aug-2024

Sampling Plan and Method : GL/EN/SOP/111

#### Test Results

| S. No.   | Parameters              | Units   | Results<br>Obtained | Test Method              | Limit as Per EC/CTO<br>Norms |
|----------|-------------------------|---------|---------------------|--------------------------|------------------------------|
| Discipli | ne: Chemical            |         |                     |                          | 1191100                      |
| Groups   | Atmospheric Pollution   |         |                     |                          |                              |
| 1        | Carbon Monoxide pr CCI  | mg/013  | #EQ(10Q:1.14)       | OLIOVACION IN            | NA                           |
| 2        | Ciation Director as CO2 | 79-     | 0.2                 | 61.57/50/119             | NA                           |
| 3        | Caspour Ofschurge       | Nm3/hr  | 17495E0             | DE 11.255 (Part.3): 2018 | NA.                          |
| 4        | Oxygen as CO            | 14      | 20.8                | OLIDA SALAD              | NA                           |
| 5        | Particulate Matter      | #5/7/m3 | 926                 | 01/10/90MID              | 20                           |
| 6        | Stack Temperatura       | X       | 363                 | 15 11255 (Part 7): 2018  | NA.                          |
| 7        | Velocity                | Tirige  | 8.4                 | EBN method 1.1           | NA                           |
| it       | Milisture Control       | - 5     | 2.8                 | EPA Mrmof 3-3            | NA                           |

None: BEQ - Below the Limit of Quantification, EDQ - Limit of Quantification.

\*\*\* End of Report \*\*\*

E. PRITHIVIRAJAN LAB MANAGER

BLEASWAD (ATTIMITATE PARTY PARTY STATE, SELLAR CONDUCTIONS

#### Ferror and Conditions

- \* The test results related only to the Berns tested.
- \* The test report shall not be reproduced in full or part without the written approval of Glans.
- \* The test flams will not be retained for more than 15 days from the date of lone of lense as report except in the case as required by the applicable regulations.
- "The Laboratory's empowelishly under this report is limited to proven within negligance and will in no case be more than the involved emount.
- \* A Septementary test report in no way implies that the product tested is approved by NARL.
- \* Letteratory is set responsible for the authentialty of the photocopied test reports.



MARL According to pay (SO) 2025-2017, Certified as per ISO 9001-2018 & ISO 65601-2018

## TEST REPORT

ULR NO: TC858224000006084F



Report No.; EN24090846

Name of the Cliest The Ramco Cements Limited

Address of the Client : Rammany Raja Nagar, Virudhunagar - 626204.

Sample Name : Stack Emission Sampling Date : 21-Aug-2024
Sample Description : Stack Emission Received Date : 23-Aug-2024

Sampling Location : Cement Mill - 3 Commenced On : 23-Aug-2024

Sample Submission Type : Collected by Lab Representative Completed On : 30-Aug-2024

Sample Condition : Fit for Analysis Report Date : 31-Aug-2024

Sampling Plan and Method : GL/EN/SGP/ETI



#### Test Results

| S. No.   | Parameters              | Units  | Results<br>Obtained | Test Method              | Limit as Per EC/CTO<br>Norms |
|----------|-------------------------|--------|---------------------|--------------------------|------------------------------|
| Discipli | ne: Chemical            |        |                     |                          | 1                            |
| Groups   | Atmospheric Pollution   |        |                     |                          |                              |
| 1        | Cartina Monocide as CO  | ropum3 | #EQ6LOQ: 1.74)      | GDENSON149               | NA                           |
| 1        | Cartrin Direcide as CO2 | - %    | 0.1                 | GL/ENSOR149              | NA:                          |
| 7        | Gastroni Discharge      | Nm2/hr | 56244.0             | 15 (125) (Eur.2); 2013   | NA:                          |
| 4        | Organia CO.             | - %    | 20.8                | GLEN TON149              | NA:                          |
| 3        | Paraculate Matter       | mg/Mm3 | 9.41                | GL/HN/Scoveta            | 20                           |
| 0        | Stock Temperature       | - K    | 352                 | IS 1 (255 (Par.7) , 2018 | NA NA                        |
| 7        | Velocity                | m/sec. | 9.3                 | EPA method 1-3           | NA:                          |
| 8.       | Maidure Content         | :%:    | 3.8                 | 1974 Mellind 1-3         | NA:                          |

Note: BLQ - Below the Limit of Quantification, LOQ - Limit of Quantification.

\*\*\*End of Repon\*\*\*

Authoricessimum E. PRITHIVIRAJAN LAB MANAGER

SERVICE OF THE PARTY OF THE PAR

Terms and Conditions:

\* The test results related only to the Home tested.

\* The test report shall not be reproduced in full or part without the written approval of Glors.

\* The text herrs will not be retained for more than 15 days from the date of impe of hest report average in the case as required by the applicable required one.

"The Laboratory's responsibility under this report is limited to proven will of negligence and will in no case he more than the involved amount.

" A Swittfactory test report in neway implies that the product tested is approved by NAM.

Laboratory is not responsible for the authoriticity of the photocopied test reports.

# G Lens

## GLens Innovation Labs Pvt Ltd.

NABL According as per 150127025/2017 , Certified as per ISO 9001-2015 & ISO 45001-2018

### TEST REPORT

ULR NO: TC858224000006085F



Report No.: EN24089847

Name of the Client

: The Ramco Coments Limited

Address of the Client

: Ramasany Raja Nagar, Virudhanagar - 626204.

Nample Nume

Nack Imposion

Sampling Date

C 22-Attg-2024

Sample Description

: Stack Emission

Received Date

23-Aug-2024

Sampling Location

Packer Stack

Commenced On

23-Aug-2024

Sample Submission Type

: Collected by Lab Representative

Completed On

: 30-Ang-2034

Sample Condition

: Fit for Analysis

Report Date

: 31-Aug-2024

Sampling Plan and Method

GL/EN/SOP/111

#### Test Results

| S. No.   | Parameters             | Units    | Results Obtained | Test Method             | Limit as Per EC/CTO<br>Norms |
|----------|------------------------|----------|------------------|-------------------------|------------------------------|
| Discipli | ner Chemical           |          |                  |                         |                              |
| Groupt   | Atmospheric Pollution  |          |                  |                         |                              |
| 1        | Carbon Monorrish an CO | mg/m3    | BEQ0.0Q: 1,10    | GL/99c5G97M9            | NA NA                        |
| 2        | Carbon Director as CCC | - 5      | 0.1              | GL/6N/509/J49           | NA.                          |
| 3        | Guerra Discharge       | 56m3/bir | 57725.0          | 25 11255 (Pan 3) ; 2918 | NA.                          |
| 4        | Ovygon as 02           | .94      | 30.9             | GL/EN-500:149           | NA NA                        |
| \$       | Particulate Market     | Instyn   | 5,49             | GL/IONSCOVERS           | 20                           |
| 6        | Stark Temperature      | K        | 221              | (ST125) (Pat 3) ; 2019  | NA.                          |
| 7        | Velocity               | m/see    | 23.4             | SPA mehat 13            | NA:                          |
| 8        | Moisburg Circuit       | 26       | BLOSCO: 179      | KPA Method I-3          | NA:                          |

Note - BLO - Below the Limit of Quantification, LOO - Limit of Quantification.

\*\*\* End of Report\*\*\*



Company of the Party of the Par

Terms and Conditions:

\* The test results related only to the items tested.

\* The test report shall not be reproduced in full or port without the written approval of Chars.

\* The test from will not be retained for more than 15 days from the date of issue of test report except in the case as required by the applicable regulations.

\* The Lebonstory's responsibility water this report is finited to proven within negligence and will in no case be more than the implied amount.

\* A Satisfactory said support in no way implies that the product basted is approved by NAIL.

\* Laboratory is not responsible for the mathemicity of the protocopied but reports.

NABL Acres ited as per ISO37025/2017 , Certified as per ISO 9001-2015 & ISO 45001-2018

#### TEST REPORT

ULR NO: TC858224000006086F



Report No.: EN24050555

Name of the Client

: The Ramoo Cements Limited - TPP

Address of the Client.

: Ramasany Ruja Nagar, Virudhunagar - 626204.

Sample Name

: Stack Emission

Sampling Date

21-Aug-2014

Sample Description.

: Stack Emission

Received Date 23-Aug-2024

Sampling Location

: Boller 110 TPH Stack

Commenced On | 23-Aug-2024

Sample Submission Type

: Callected by Lab Representative

Completed On

: 31-Ann-2024

Sample Condition

: Fit for Analysis

Report Duic

: 31-Aug-2024

Sampling Plan and Method : GL/EN/SOP/111

#### Test Results

| 5. No.   | Parameters                | Units    | Results<br>Obtained | Test Method             | Limit as per CPCE<br>Standard |
|----------|---------------------------|----------|---------------------|-------------------------|-------------------------------|
| Discipli | ne: Chemical              |          |                     |                         |                               |
| Greeps   | Atmospheric Pullation     |          |                     |                         |                               |
| - 1      | Carbon Monecide as CO     | mg/Nm3   | 97.5                | CELEBUSOPUSP            | NA.                           |
| 2        | Carbon Devoide as CO2     | - 5      | 9.6                 | GE/2014-2015   49       | NA.                           |
| 3        | Osseros Dhicharge         | Nm5hr    | 112261.0            | 85 (1255 (Part 3): 2018 | NA:                           |
| 4        | Oxides of Nitrogen as NO2 | me/film3 | 433.0               | CIETATA NASTA           | 459                           |
| 3        | Oroganias O2              | *        | 9.92                | CIL/E9/308/149          | NA.                           |
| 6        | Particulate Matter        | mg/Nm3   | 26.90               | CL-ESOWITE              | 50                            |
| 1        | Stock Temperature         | 1 16     | 407                 | 85 11255 (Port.1): 2018 | NA.                           |
|          | Velicity.                 | m/esc    | 14.3                | EEA method 1-3          | NA.                           |
| 9        | Monary as Hg              | mg/m3    | BECHERRY: 0.053     | ETA nothada 29          | 0.03                          |
| 10       | Mosture Circuit           | **       | 5.8                 | EPA Midhid 1-3          | NA                            |
| 11       | Sulphur Dire-ide as SO2   | mething  | 555,000             | EPA Mellerin            | 600                           |

Note: - 8LQ - Below the Linut of Quantification, LOQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

PRITHIVIRAJAN LAS MANAGER

RESIDENCE TO SECRETARIES MALIBERS, STUMON PROPERTY OF Tenns and Conditions:

\* You test results related only to the iteras tested. \* The text report shall not be reproduced in full or part without the willton approval of Glena.

\*The test itums will not be retained for more than 13 days from the state of issue of test report except in the case as required by the applicable regulations.

\* The Laboratory's responsibility under this report is limited to preven will all negligation and will in an once be more than the involved amount.

\* A Satisfactory test report in no way implies that the product tested is approved by 1925.

\* Laboratory is not responsible for the authenticity of the photocopied test reports.



NABLACIDES and IN part ISO32015:2017 , Carolford as part 150 9001-2015 & 150 45001:2018

## TEST REPORT

ULR NO: TC858224000006575F



Report No.: EN24090688

Name of the Client

: The Ramoo Cements Limited

Address of the Client

: Rammanny Raja Nagar, Virudhunagar - 626204.

Sample blume

: Stack Emission

Sampling Date:

1 20-Sep-70324

Sample Description

: Stack Emission

Received Dute

± 27-Sep-2934

Sampling Location

: Kim Stock-3

Commenced On 27-Sep-2024

Sample Submission Type

: Collected by Lob Representative

Completed On

- 07-Oct-2024

Sample Condition

1 Fit for Analysis

Report Date

: 07-Oct-2024

Sampling Plan and Method : GL/EN/SOP/111

#### Test Results

| S. No.   | Parameters                | Units     | Results<br>Obtained | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit as Per EC/CTO<br>Norms |
|----------|---------------------------|-----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Disciple | ne: Chemical              |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|          | Atmospheric Pollution     |           |                     | South and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1997                         |
| 1        | Carbin Mississide at CO   | mg/Nm)    | 3,7                 | GL/EN/SOR/146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA NA                        |
| 2        | Carlore Disside as CO2    | .760      | 15.1                | CITEMPONTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA.                          |
| 3        | Gracous Discharge         | New3/fir  | 424797.0            | W 13215 (Feet 3) (2094)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA.                          |
| +        | Oxides of Nitrogan in NO2 | mg/Nm3.   | 475.0               | OE/0368/08/149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 600                          |
|          | Okygon in O2              | :%/       | 12.60               | GL/IDWSC#:548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                           |
| . 5      |                           | 1K:       | 410                 | 25 11255 (7an 3) 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                           |
|          | Stack Temperature         |           | 10,7                | EPA method Lik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA.                          |
| -7       | Velocity                  | mistr.    |                     | CONTRACTOR OF THE PERSON OF TH | NA.                          |
|          | Moleture Continue         | 1390      | 3.8                 | RPA, NAMES 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000                         |
| · ii     | Sulphur Dioxide au SO2    | 010/2/00  | BLQ0.0Q (7/0)       | EPA Molecula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                          |
| 10       | Parsiculate Matter        | .mg/bind. | 6.011               | GL/55/509/103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                           |

Note: BLQ - Below the Limit of Quantification, LOQ - Limit of Quantification.

\*\*\* End of Report\*\*\*

Authorized Signature

S. Sankar Senior Chemist

BUILD BROWN ON LOTHWICH MATERIAL TOP- IN STEELING CONTINUES MANAGEMENT

Terres and Conditions.

\* The test results related only to the liures tested.

\* The test report shall not be reproduced in full or part salibour the written approval of Glara.

\* The test items will not be retained for more than 15 days from the date of lique of best report except in the case as required by the applicable regularisms.

\* The laboratory's responsibility under this report is limited to proven will a negligeness and will in to case he more from the involced amount.

\* A Society treat report in on way implies that the product bested is approved by failer.

\* Laboratory is not responsible for the authenlicity of the plactompled test reports.





NABL Accredited as per ISU37URS-2027 , Certified as per ISO 3001 (2015 & ISO 45001, 2018

## TEST REPORT

ULR NO: TC858224000006576F



Report No.: EN24090689

Name of the Client

. The Ramon Cements Limited

Address of the Client

Ramanuny Raja Nagar, Virtalhunngar - 626204.

Sample Name

: Stack Emission

Sampling Date

: 21-Sep-2024

Sample Description

: Stock Embedon

Received Date

: 27-Sep-2024

Sampling Location

: Kiln Stack - 01

Commonced Do

± 27-Sep-2024

Sample Submission Type

: Collected by Lub Representative

Completed On

: 07-Oct-2024

Sample Condition

: Fit for Analysis

Report Date

07-Oct-2024

Sampling Plan and Method : CIL/EN/SCP/111

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | Test Results        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118800000                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| S. No.   | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units    | Results<br>Obtained | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit as Per EC/CTO<br>Norms |
| Discipli | ne: Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|          | Atmospheric Pullstian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                     | - AND AND AND ADDRESS OF THE PARTY OF THE PA | 'NA                          |
| 1        | Carten Monovide as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/Nm3   | 86.5                | GLES/509/109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
|          | Curton Dirwide as CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26       | 17.2                | GL/SN/SOW149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA.                          |
| 2.       | CONTRACTOR OF THE PARTY OF THE | bini3/br | 196358.0            | IS 11355 (Part 3): 3018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                           |
| -3       | Gascow Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mp/Sim3  | 520.0               | GL/5703-C8149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 600                          |
| 4        | Ocides of Nilringen as NCQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                     | 00.000.000149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                           |
| 3        | Oxygen as CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 367      | 10.6                | 11/2/2-11/11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                           |
| 6        | Suck Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38       | 602:                | 26 11295 (Fort 3) : 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| +        | Vélocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water    | 17.09               | EVA settled 7-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA.                          |
| - 1/     | Heyer Commencer of the | 26       | 3.8                 | EPA Motod 1-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA.                          |
| *.       | Maister Centent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | BUQ(UQQ (3.0)       | EPA AA.dud 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                          |
| 9        | Salphur Divivitle as 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing/Nm3  |                     | CLIENSOWITZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                           |
| 10       | Particulate Matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/Nm3   | (8.99)              | ESSECCIONAL D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |

Note: HLQ - Below the Limit of Quantification, LDQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

Authorized Signature

S. Sankar Senior Chemist

BUDGETHIOLOGY OF BANDERS AND STREET OF STREET

The text report shall not be reproduced in full or part without the written approval of Gleos.

\* The test home will not be retained for more than 15 days from the date of littue of rest report except in the case as required by the applicable regulations.

\* The Laboratory's responsibility under this report is limited to proven wiful magazine and will to be case he more than the involved amount.

\* A Satisfactory text report in my way implies that the product tested is approved by NASIL.

\* Laboratory is not responsible for the authenticity of the photosopied test reports.

Tarms and Conditions

<sup>\*</sup> The test results retard only to the frems touted.



NABLAccreditation per (SQL/928.0EL7 , Cartified as per ISO 9001:2015 & ISO 45001:2018

# TEST REPORT ULR NO: TC858224000006577F



Report No.: EN24090690

Name of the Client

: The Ramco Cements Limited

Address of the Client

Ramusamy Raja Nagar, Virudhunagar - 626204

Sample Name:

- Stack Monitoring

Sampling Date

: 20-Sep-2024

Sample Description

Stack Monitoring

Received Date

: 27-Sep-2024

Sampling Location

: Coal Mill-3

Commenced On

: 27-Sap-2024

Sample Submission Type

Collected by Lab Representative

Completed On

- 07-Oct-2024

Sample Condition

: Fit for Analysis

Report Date

07-Ort-2924

Sampling Plan and Method 3 GL/EN/SOP/111

#### Test Results

| s. No.     | Parameters             | Units   | Results<br>Obtained | Test Method             | Limit an Per EC/CTG<br>Norms |
|------------|------------------------|---------|---------------------|-------------------------|------------------------------|
| Discipitio | ne: Chemical           |         |                     |                         | "                            |
|            | Atmospheric Pullution  |         |                     |                         | NA:                          |
| 1          | Carbon Mooreside as CO | mg/Nes3 | 31.7                | QLdOvinon149            |                              |
| 2          | Carbon Direcide in CO2 | 76      | 6.3                 | GURSHOPLES              | NA:                          |
| -          | Concess Discharge      | Nm3/hr  | 65463.0             | 25 11355 (Part 3): 2018 | NA:                          |
| -          |                        | 10%     | 20.8                | CEL/00E/SOR(149         | NA:                          |
| 4          | Окуден из ОХ           |         | 6,5,5,6             | QUENSO(03)              | 20:                          |
| 3          | Particulary Matter     | mg/Nm3  | 7.50                |                         | NA                           |
|            | Stack Temperature      | K:      | 341                 | 65:11225 (Part 3): 3018 |                              |
| 7          | Velocity               | noice   | 9,36                | EPA method 1-3          | NA NA                        |
|            | Moistag Contaut        | 56      | 3.8                 | HPA Milliosi 1-3        | NA.                          |

Note: - BLQ - Below the Limit of Quantilization, LOQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

S. Sankar Senior Chemist

GEAS INTO A TOTAL TOTAL METAL METAL AND A STATE OF THE PARTY OF THE PA

Yerms and Conditions:

\* The test results retimed only to the hams tested.

\* The fest report shall not he reproduced in full or part without the written approperlyf Glens.

\* The test frame will not be retained for more than 15 days from the date of lesse of last report except in the case as required by the applicable regulations.

"The Laboratory's responsibility under this report is limited to proven will all negligeness and will in our case be more than the Involved amount.

\* A Satisfactory test report in no way implies that the product sected is approved by NAM.

\* Ligareners is not responsible for the authorities of the processing test reports.



NABL Accredited as per ISO33025(2017), Certified as per ISO 8001(2015 & ISO 45001(2018

## TEST REPORT

ULR NO: TC858224000006578F



Report No.: EN24090691

Name of the Client

The Ramor Cements Limited

Address of the Client

: Ramsusay Raja Nagar, Virudhunggar - 626204

Sample Name

Stack Emission

: 20-Sep-2024 Sampling Dute

Sample Description

Stock Emission

: 27-Sep-2074 Received Date

Sampling Lecation

± Cooler Stack-3

Commenced On 27-Sep-2024

Sample Subathalan Type

: Cellected by Lab Representative

Completed On

Report Date

± 07-Oct-2024 = 07-Oct-2924

Sample Condition

: Fit for Analysis



Sampling Plan and Method | GL/EN/SOP/U11

#### Test Results

| S. No.    | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Units  | Results<br>Obtained | Test Method            | Limit as Per EC/CTO<br>Norms |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|------------------------|------------------------------|
| Discipito | ne: Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                     |                        |                              |
| Groupt    | Atmospheric Pollution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                     | DL/89/300/149          | NA:                          |
| 1         | Curbon Movemble as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/m3  | m.gr.og. 1.14)      | 01/E/S08149            | NA.                          |
| 2         | Carton Director as CCQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,947  | 0.2                 |                        | NA.                          |
| 3         | Gaucous Dischlage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Neidhr | 184495.0            | (S 13253 (Part 5) 2011 |                              |
| -         | Chaygon as CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2%     | 20.7                | CILIBUSCINIAN          | NA.                          |
|           | CONTRACTOR DESIGNATION OF THE PARTY OF THE P | ma/Nm3 | 19.10               | QL/10450(H12           | 30                           |
| 5         | Particulate Matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 494                 | 85 11255 (Not 1): 2018 | 18A                          |
| - 6       | Souk Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K      |                     | EPA washed 1-1         | NA:                          |
| 7         | Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m/mt   | 15.05               |                        | NA:                          |
| -         | Mandan Crestal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16     | 1,9                 | EPA Motivid 1-7        | 1                            |

Note: BLQ - Below the Limit of Quantification, LOQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

Authorized Signature

S. Sankar Senior Chemist

NAME OF THE PROPERTY OF THE PARTY OF THE PAR

Terres and Conditions:

" The test results related only to the forms tested.

\* The rest report shell not be reproduced in full or part without the written approval of Gloric. \* The test items will not be required for much then 15 days from the date of intue of test report to ego in the case as required by the applicable regulations.

\* The Laboratory's compossibility under this report is limited to proven will of negligence and will in no case be more than the brooked amount.

\* A Satisfactory test report in ne way largibes that the product second is approved by NASI.

\* Laboratory is not expossible for the explanationy of the photocopies text reports

NABLAccredited as per ISO17925;2017 , Curtified as per ISO 9021/2015 & ISO 45001/2018

## TEST REPORT

ULR NO: TC858224000006579F



ReportNo.: EN24090692

Name of the Climit

: The Ranco Cements Limited

: Collected by Lab Representative

Address of the Client

: Ramasarny Itaja Nagar, Virudhanogur - 626204.

Sample Name

Stack Emission

Sampling Date

± 21+Sep-2024

Sample Description

- Stack Emission

Received Date

1.27-Sep-2024

Commenced On

: 27-Sep-2024

Sampling Location Sample Submission Type : Cooler Stack-1

Completed On

: 07-Oct-2024

Sample Condition

Fit for Analysis

Report Date

± 07-Om-2024


Sampling Plan and Method | GL/EN/SOP/111

#### Test Results

| S. No.    | Parameters             | Units     | Results<br>Obtained | Test Method              | Limit as Per EC/CTO<br>Norms |
|-----------|------------------------|-----------|---------------------|--------------------------|------------------------------|
| Disciplin | ner Chemical           |           |                     |                          |                              |
| Groupi    | Atmospheric Pollution  |           |                     |                          | 1000                         |
| 10        | Circles Monocide us CO | Em/gar    | m.gg.0Q:4.14)       | GL/FF43099149            | NA.                          |
| 2         | Carbon D8+H86 as CO2   | 16        | 0.3                 | GUEWSOE148               | NA.                          |
| 3         | Giscom Discharge       | Nec2/let: | 91006.0             | 29 11255 (Fjet 3) - 2018 | NA.                          |
| 4         | Ovygenus OZ            | .54       | 20.7                | GLASSWAN                 | NA.                          |
|           | Particulate Matter     | mg/Nm3    | 12.49               | GL/ ENGOSVIS             | 20                           |
| 6         | Stack Temperature      | K         | 437                 | 19 11255 (Furt.5) ; 2018 | NA.                          |
| 9:        | Velocity               | (11/300)  | 15.99               | \$26.metrof 1-3          | NA:                          |
| 1         | Misinfage Contout      | :16       | 1.5                 | BFA Milled 1-3           | NA NA                        |

Note: BLQ - Below the Limit of Quantification, LOQ - Limit of Quantification.

\*\*\*End of Report\*\*\*



S. Sankar Sanior Chemist

BEING BUSINESS AND ASSESSED FOR A SERVICE AND ANY CONTROL MANUE.

Terror and Confidence

\* This host repulls related only to the Items tested.

\* The test report shall not be regraduced in full or part without the written approval of Glanc.

\* The test licins will out be relatived for more than 15 days from the date of large of test report except in the case as required by the applicable regulations.

\* The Leboratory's responsibility under this report is Smited to proven withit negligence and will in secree be more than the involved smount.

A Satisfactory test report in no way implies that the product tested is approved by NASI.

\* Latinnatory is not responsible for the authernicity of the photocopied test reports.

Page tof 1

NASIL According to per ISS117525:1017, Certified as per ISO 900112015 & ISO 45001:2018

## TEST REPORT

ULR NO: TC858224000006580F



Report No.: EN24090693

Name of the Client

The Ramco Cements Limited

Address of the Client

1 Ramanimy Raja Nagar, Viriallumagar - 626204.

Sample Name

- Stack Emission

Sampling Date

: 21-Sep-2974

Sample Description

Stack Emission

Received Date

: 27-Sep-2024

Sampling Location

Coment Mill - 1 & 2

Catuminged On

: 27-Sep-2024

Sample Submission Type

: Collected by Lab Representative

Completed On

: 07-Oct-2024

Sample Condition

: Fit for Analysis

Report Date

: 07-Dut-2024

Sampling Plus and Method : GL/EN/SOP/111

#### Test Results

| S. No.    | Parameters              | Units  | Results<br>Obtained | Test Method              | Limit as Per EC/CTO<br>Norms |
|-----------|-------------------------|--------|---------------------|--------------------------|------------------------------|
| Disciplia | ne: Chemical            |        |                     |                          |                              |
| Greeps    | Atmospheric Pullation   |        |                     |                          |                              |
| 1         | Cartion Moneraide as CO | mg/m3  | m.12,000,13m        | GL/IDN-SOP/Let           | NA.                          |
| 2         | Carbon Dioreide as CO2  | 29     | 0.3                 | Q1/EN-309/127            | NA.                          |
| 3         | Gracous Discharge :     | Nm3/hr | 190547.0            | 25 (3235 (Pan 3) , 2016  | NA.                          |
| 4         | Oxygen at O2            | .3%    | 20.0                | GL02NSOP(149)            | NA.                          |
| 5         | Particulate Monter      | mg/Nm3 | 10.10               | GI/184509H13             | 20                           |
| 36        | Stack Temperature       | к      | 365                 | 15 11255 (Part 5) ; 2018 | NA.                          |
| 2         | Vende                   | n/sec  | 9.28                | EPA method (-3           | NA.                          |
|           | Mointag Clarifort       | .54    | 2.0                 | EPA Merlind 1-5          | NA.                          |

Note:- BLQ - Helow the Limit of Quantification, LOQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

Authorized Signature

S. Sankar Senior Chemist

SCHOOLSON WAS ENDER MAKE THE WAY TO SELECT THE WAY THE WAY TO SELECT THE WAY THE WAY THE WAY THE WAY T

#### Turns and Conditions:

" The test results related only to the Items terrind.

\* The test report shall not be regraduced in full of part without the written approval of Gluns.

- \* The test Herns will not be retained for more than 25 days from the date of lapse of test report ascept in the case as required by the applicable regulations.
- \* The Luboratory's responsibility under this report is limited to proven will in negligence and will in no case be seen than the insolved omnuse.
- \* A Salisfactory test report to real way implies that the product tested is approved by MASS.
- Leboralary is not responsible for the authenricity of the photocopies best reports.



NABL Accredited as per ISO 27025 2017 , Curtified as per ISO 3001-2015 & ISO 45001:2018

# TEST REPORT ULR NO: TC858224000006581F



Report No.: EN24090694

Name of the Client

: The Ramco Cements Limited

Address of the Client

: Ramanamy Roja Nagar, Virallbunagar - 626264.

Sample Name

Smck Emirror

Sampling Dide

: 23-Sop-2004

Sample Description

: Stack Emission

Received Date

27-Sep-2024

Sampling Location

: Cement Mill - 3

Commenced On

: 27-Sep-2024

Sample Sulminion Type

: Collected by Lab Representative

Completed On

: 07-Det-2024

Sample Condition

: Fit for Analysis

Report Date

= 07-Oct-2024

Sampling Plan and Method : GL/EN/SOP/111

#### Test Results

| S. No.   | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Units  | Results<br>Obtained | Test Method                             | Limit us Per EC/CTO<br>Norms |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|-----------------------------------------|------------------------------|
| Discipli | ne: Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                     |                                         |                              |
| Group:   | Atmospheric Pollution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                     | THE SUMMERS OF                          | NA NA                        |
| 1        | Carbon Monocide as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/m3  | BT-0(2005:1110      | GL/EN/SORT#                             |                              |
| 2        | Carbon Disside as CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26     | 0.1                 | GUIDESORT#8                             | NA.                          |
| 5        | Concess Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nm3/hr | n1699,0             | 18 11235 (Pun 5) : 2018                 | NA.                          |
| 4        | Oxygen as OZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29     | 29.8                | ELECTION 140                            | NA                           |
| -        | The state of the s | mg/Nm3 | 11.30               | GU300509V113                            | 20                           |
| 3        | Particulate Matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | К      | 352                 | 15 (1225 (Part 5) : 2018                | NA NA                        |
| 9        | Stack Temperation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                     | EPA pulled \$-3                         | NA.                          |
| 7        | Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m/sec  | 10.16               | 100000000000000000000000000000000000000 |                              |
| 3        | Mulmer Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .74    | 3.8                 | EPA Mellod I+5                          | NA                           |

Note:- HEQ - Relow the 1 mit of Quantification, LOQ -1 limit of Quantification.

\*\*\*End of Report\*\*\*

Authorized Signatus

S. Sankar Senior Chemist

BENDRING AND AND AND MICH. MICH. SHARE SHARE SHARE WAS

Terrors and Conditions:

" The test results reliated only to the Horse tested.

\* The test report shall not be reproduced in full or peri without the written appreciat of Gloca.

\* The test items will not be relatived for more than 15 days from the date of laste of test report except in the case as required by the applicable regulations.

\* The Laboratory's responsibility under this report is limited to proven will of negligance and will in so case be more than the involved senture.

\* A Setimentary test report is no way implies that the product tested is approved by NABL.

" Laboratory is out responsible for the numbers bits of the photocopied test reports.



NASIL According as per (SQ1) 025(2017), Cartifical on per ISO 9001(2015 & ISO 45401)(2018

## TEST REPORT

ULR NO: TC858224000006582F



Report No.: EN24090695

Name of the Client

: The Ramoe Cements Limited.

- Collected by Lab Representative

Address of the Client

: Ramanany Raja Nagar, Viradhunagar - 626204.

Sample Name

: Stack Emission

Sampling Date

: 23-Sep-2024

3 Stack Embelon

Received Date

Sample Description

27-Scp-2024

Sampling Location

Commenced On

: 27-Sep-2024

: Packer Stock

Completed On

07-Dct-2024

Sample Confittion

Fit for Analysis

Report Date

: 07-Der-2024

Sampling Plan and Method : GL/EN/SOP/III

Sample Submission Type

#### Test Results

| S. No.   | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Units   | Results Obtained | Test Method                                                                                                     | Limit as Per EC/CTO<br>Norms |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|
| Discipli | ner Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                  |                                                                                                                 |                              |
| Groupt   | Atmospheric Pollution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                  | G(2004/00)18                                                                                                    | NA.                          |
| 1        | Cartino Monacide as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/m3   | BEQUOQ:3.10      | 76                                                                                                              | NA                           |
| 2        | Carlon Dis vide es CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96      | 0.3              | GLASSOWIAN                                                                                                      |                              |
| 3        | Graceus Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.37ir | 58306.0          | 25 E1255 (Pert 2) : 2018                                                                                        | NA.                          |
| 3        | THE STATE OF THE S | 96      | 20.9             | GLIDGI OPTAN                                                                                                    | NA NA                        |
| .4       | Oxygen as OX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                  | GUERISOWES                                                                                                      | 20                           |
| 5        | Particulate Matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/NmJ  | 6.20             | 18 11255 (Far 5): 2018                                                                                          | NA.                          |
| 6        | Stack Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ж.      | 1322             | 200 NA | NA.                          |
| 7        | Volocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100500  | 23.68            | EPA.motio#1+3                                                                                                   |                              |
| -        | Moisture Contest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94      | #L00L0Q:1/0      | SERA Method 3-3                                                                                                 | NA                           |

Note: - BLQ - Below the Limit of Quantification, LDQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

Authorized Signature

S. Sankar Senior Chemist

CONTROL OF THE REAL PROPERTY OF THE PROPERTY O Terms and Conditions

\* The test results retained only to the items bested.

\* The test report shall not be reproduced in full or part without the written expressed of Glona.

\* The lest throng will not be required for more than 15 days from the date of insua of test report except in the case as required by the applicable regulations.

\* The Laboratory's responsibility under this report is limited to proven will'ul negligation and will in no cose be more than the involved amount.

\* A Satisfactory test report in no way implies that the product tested is approved by NAM.

\* Laboratory is not responsible for the authentisty of the photocopied test reports.



NABLAccreffied as per ISOX7925:2017 , Certified as per ISO 3000; 2015 & ISO 45001:2018

## TEST REPORT

ULR NO: TC858224000006583F



Report No.: EN24090696

Name of the Client

: The Ramco Comouts Limited - TFP

Address of the Client

Ramanany Raja Nagar, Viradhanagar - 626204.

Sample Name

Stack timerrow

Numphing Date

± 21-865-2024

Received Date

Sample Description

: Stock Emission

: 27-Sep-2024

Sampling Location

: Boller 110 TPH Stack

: Collected by Lab Representative

Commenced On Completed On

: 27-Sep-2024 : 07-Oct-2024

Sample Submission Type Sample Condition

: Fit for Analysis

= 07-Oct-2024

Sampling Plan and Method : GL/EN/SOP/111

Report Date

### Test Results

| S. No.    | Parameters                | Units   | Results<br>Obtained | Test Method              | Limit as per CPCB<br>Standard |
|-----------|---------------------------|---------|---------------------|--------------------------|-------------------------------|
| Disciplin | ne: Chemical              |         |                     |                          |                               |
| Groups    | Atmospheric Pollution     |         |                     |                          | 1 800                         |
| 1         | Carbon Monosida ni CO     | mg/Nm3  | 100.0               | QUEN-SORGER              | NA.                           |
| 2         | Carbon Directes in CO2    | 36      | 9.7                 | GL/mvsom:49              | NA.                           |
| 3         | Cancinas Dissharge        | Nm3/lir | 115441.0            | Di 11235 (Part 7) - 2018 | NA.                           |
| 4         | Oxides of Nitrogen as NO2 | mg/Nm3  | 395.0               | GL409/SOF(149            | 450                           |
|           | Окурен ві С2              | 34      | 8.92                | \$7LBN/509/149           | HA                            |
| 6         | Particulate Matter        | mg/Nm3  | 25.10               | GL/ENG/WHIT              | 50                            |
| 2         | Starts Temperatum         | - K     | 414                 | 26 11255 (Part 2): 31118 | NA.                           |
| 8         | Videoky                   | 20/100  | 14,92               | BVA without total        | NA                            |
| 4         | Massey as Hg              | mg/m3   | #EQ(LOQ:00))        | 82A milliot-29           | 0.03                          |
| 10        | Molding Content.          | 76      | 3.8                 | IDA Midled Int.          | NA.                           |
| 41        | Sulphur Discoide as 500:  | mg/Nm3  | 482.0               | EPA Minhoto              | 600                           |

Note: HLQ - Below the Limit of Quantification, LOQ - Limit of Quantification.

\*\*\*End of Report\*\*\*

a.000

Authorized Signature

S. Sankar Senior Chemist

BEBUS SHADOS TO COMPANY OF A STATE OF S

Terms and Conditions:

\* The test results related only to the forms sested.

\* The lest report shall not be reproduced in full or part without the sertion approval of Gloos. \* The last items will not be retained for more than 15 days from the date of imag of text report except to the case as required by the applicable regularizant.

\* The Enhanceury's responsibility under this report is limited to proven within negligence and will in no case be more than the involved amount.

\* A Solisfectory tast report in ms way implies that the product tested is approved by NAM.

\* Laboratory is not responsible for the authemicity of the photocopied test reports.

Page t of 1

#### <u>Document-IV Linkage Documents</u> Petcoke : Sale Agreement (Excerpts)

CO SEABULK INTERNATIONAL TRADING LIC

PURCHASE AND SALE AGREEMENT.

This Agreement No. 20240627 is made the day of 27° June 2024 and between

THE RAMCO CEMENTS LIMITED,
"Auras Corporate Centre",
V Floor, 98-A, Dr. Radhakrishnan.
Road, Mylapore,
Chennal — 600 004, India.

(herminafter called the "Buyer; And

SEABULE INTERNATIONAL TRADING LLC LEL, SUILDING NO 8364, PLOT NO 697-0, AL KARAMA, DUBAI, UAE

(Nennin after called the "Seller)

Each of the Ruyer and the Seller shall be referred to herein individually as a "Perty" and together as the "Parties".

The Seller herewith agrees to sell and deliver to the Buyer and the Buyer herewith agrees to purchase and take delivery from the Seller subject to the lollowing terms and conditions.

#### 1. DESCRIPTION AND QUANTITY

DESCRIPTION: Venezuela Origin Green Delayed Pytroleum Coke (Non - Calcined) Inbulk

QUANTITY: One shipment of \$5,000 MT ± 10 percent at Seller's option. No Part shipment or Co-Shipment stallowed in the contract.

#### 2. DELIVERY

Load Part / Disport leycan: Loading leycan shall be within June 24. 93. Date shall not be later than 30.04.3024. The sessetshall arrive at Karokal port by 15th Aug 2024. For deviation is allowed in the contract.

#### 1. SPECIFICATION

The goods will have the following typical specifications and rejection limits, in accordance with ASTM standards:

| Description                                             | basis       | MON     | Guaranteed | Penalty / Rejection                                      |
|---------------------------------------------------------|-------------|---------|------------|----------------------------------------------------------|
| Total Mointure<br>CincludingRige water<br>compensations | AND         | PCT     | 8.50% /    | Above 3.5%, penalty<br>applicable as per Clause 5<br>[A] |
| Ash                                                     | DIR         | PCT     | 0.2%-0.85% |                                                          |
| Voiatile Matter                                         | 06          | PCT     | 11% - 14%  |                                                          |
| Sulphor                                                 | DR:         | PCE     | 550        | >5.5%, penalty applicable<br>as<br>per Clause 5 (II)     |
| Net Calorific Value                                     | ARB         | Ecol/kg | 2500       | Below 7250, Cargo is<br>under<br>floiention              |
| HGI                                                     | Index Point |         | 56-70      | 1,417                                                    |
| Size 0-SOMM                                             |             | PCT     | 90%        | -                                                        |





NUMBER OF THE PROPERTY OF THE

atherwise transferred by either the Buyer or the Seller to any third party without the other Party's prior written consent, which consent shall not be unresponding withheld. Despite the foregoing, either Party it allowed in precipile to essign its rights and obligations to an affiliated company, provided the creditworthiness of the affiliated company is acceptable to the other party. Also, Seller is allowed to transfer the receivable(s) arising under this Agreement to a financial auditation.

#### 23. LANGUAGE

All communications between the Buyer and the Seller with regard to this Agreement shall be in the English lengisage

#### 24. DOMICILIUM

All communications and/or nutices under this Agreement shall be deemed to have been duly given in brown of this Agreement if they are sent by mail, enail, facsimile or teles transmission to either Party at their following addresses:

THE BUYER:

THE RAMCO CEMENTS LIMITED,
"Auras Corporate Centre",
V Floor, SS-A, Or: Radhakrishnen Read,
Mylapere, Chennal — 600 004
Contact Ferson: Mr. V.
Myralisharan Tel. +91 44

MicrolisharunTel +91 44 28479666 Fax + 91 4426478676

Email: mural@remuserments.co.in

THE SELLER

SEABULK INTERNATIONAL TRACKING LLC 161, BUILDING NO R364, PLDT NO 697-0, AL KARAMA, DUBAILIAE

Or at such other addresses as either Party may from time to time designate in writing.

THE BUYER:

THE RAMCO CEMENTS LIMITED

Name 5 VAITHIVANATHAN TITLE CHIEF FINANCIAL DEFICER

Name: VMURRUDHRAN Thie: S GM: MATERIALS THE SELLEN

SEABLUK INTERNATIONAL

TRADITIO

Nume: NISHANT KHETAN

Tale: Director





#### **Imported Coal: Sale Agreement (Excerpts)**



#### PURD HIS AND SALE AGRESANT

The Agreement No. 20240405 is made the day of 53° April 2024 and between

THE RANCO COMENTS LEATED,
"Auras Corporate Certre",
V Fonc, 66 A, Dr. RachastrehnerRoast, Mylapore,
Chemia — 600 004/mile.

Personal er saled the Topics

Amt

VISA RESOURCES PTE LTD. 6 Shenton Way, #20-09 OUE Domntown 2. Singapore \$68809

Remarater called the Tellert

Each of the Buyer and the Selec shall be referred to heres exhibitually so a "buy" and tagether as the Texture.

the Select hereadth agrees to sell and olders to the Buyer and the Buyer hereadth agrees to positions and take delivery from the Seller solders to the following forms and conditions:

1. QUANTITY

One deprese of 55,000 kill is 30 process at Salar's option Seam Vain Catego Cool of Information Diges to Bulk. No Part abundant on Co-Shipment is allowed in the contract.

2. DELIVERY

Load Port bay can - Between Olst May 2024 and 20th May 2024, Deviations in the Layoun strictly not ellowable.

1. SPECIFICATION

The goods will have the following opposit specifications and rejection lends, on an law shielf being except for total receive, GCV decreases in accordance sets (ACM standards).

| Description          | Hasin      | LOWER   | Typical<br>Specification | Rejection<br>Limits@ars Load<br>part report and/ |
|----------------------|------------|---------|--------------------------|--------------------------------------------------|
| Total Modure         | 48 /       | PCT     | 40%                      | No Rejection                                     |
| Arbert Montare       | AEG        | PCf     | 18% Appe                 | No Rejection                                     |
| Adh                  | ASB.       | FCT:    | 7% /                     | Absove 10%                                       |
| Voluble Matter       | ADIS       | PCT     | 40%                      | No Registers                                     |
| Fixed Carton         | ACI0       | PCT     | By difference            | No Spector                                       |
| Sibha                | 109        | FC1     | 1.0%                     | Above 1.0%                                       |
| Crest Calcelle Value | NS /       | Ecil/Re | 3430                     | Below 3100 #                                     |
| HG                   | Index Ford | 14.5    | 55 Arons                 | Nin Rejection                                    |
| Sict 10:50 NAC       | E-         | PCT     | 190%                     | No Reporter                                      |







Cortact Person Mr. V. Macalettanon Tel: +92: 44 28475500 Fair + 01: 44

20170676

Email: musel@concurrents.co.m

THE SOLERY

VISA RESOURCES PTE LTD. 6 SHENTON WAY, #29-49 DUE DOWNTOWN 2 . SINGAPORE 068889

CONTACT PERSON: TIL: +E5 64250000

TWI. MID 5405-5001

In all such other addresses as after Party may from time to time designate in writing the BONDS:

THE NAMED COMBATS LIMITED

VIA RISOURCE PIE CITS

Name: S. VATHERMATION

Title: CHEF FRANCIAL OFFICER

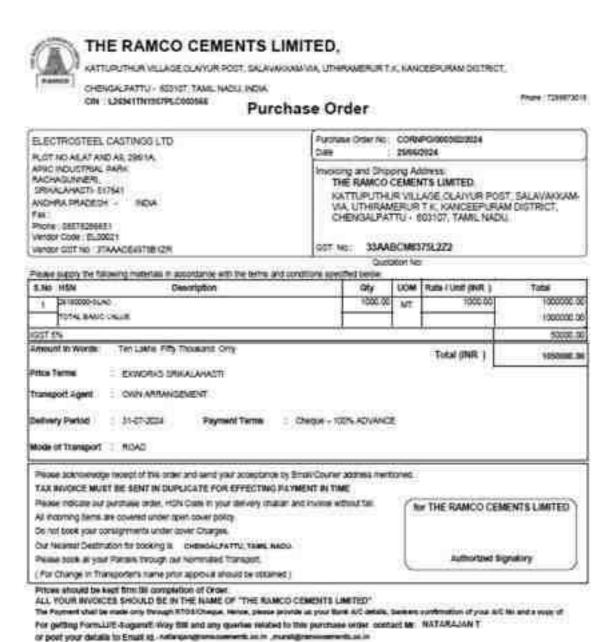
Name: Burg 59Jan

Title: divisional manager

Nine: V MATULEHAAN

Title

Title SIDM - MATERIALS


652

70

#### **Gypsum: Purchase Order**



#### **Slag: Purchase Order**





#### Fly Ash: Purchase Order



\*\*



# THE RAMCO CEMENTS LIMITED

RAMASAMYRAJA NAGAR.

# Occupational Health Centre

# 2024 PME RECORD

|                  | PME EMPLOYEE'S DETAILS |
|------------------|------------------------|
| Employee No      | M01963                 |
| Name of Employee | NAGARAJAN C            |
| Age              | 57 Yrs                 |
| Designation      | Machinery Attendant    |
| Department       | Cement Mill            |

Factory Medical Officer:

Dr.Maj.VIJAY ANAND.R, M.B.B.S., AFIH. FDM (Diabetology)

DGM - M&OHS

Record Maintain By :

S.SUBBIAH,

Asst. Manager - Paramedical



Primex Healthcare and Research Pvt. Ltd., 30/1, Bazuliah Road, T.Nagar, Chennal - 600 017 www.primexhealthcare.in



\* MRI = CT SCAN \* DIGITAL X-RAY \* 4D ULTRASOUND = ECG \* ROUTINE & SPECIALIZED BLOOD TESTS

# **Health Summary**

| Name      | NAGARAJAN C             | Height   | 165             |
|-----------|-------------------------|----------|-----------------|
| Age       | 57                      | Weight   | 74              |
| Gender    | Male                    | BIVII    | - Starte        |
| Emp ID    | M01963                  | BP       | 27.18<br>140/90 |
| Date      | 04.04.2024              | 5902     | 99              |
| Corporate | The Ramco Coments Ltd., | Location | R.R.Nagar.      |

#### Laboratory Investigations

| Haemoglobin          | Platelet Count            | Glucose Fasting      |
|----------------------|---------------------------|----------------------|
| 13.1                 | 3.17                      | 87                   |
| Within Normal Limits | Within Normal Limits      | Within Normal Limits |
| Urea                 | Creatinine                | Cholesterol (Tatal)  |
| 18.4                 | 0.8                       | 236                  |
| Within Normal Limits | Within Normal Limits      | Borderline           |
| ther Modalities      | AND DOCK POSTOR AND STATE |                      |

| ECG                  | PFT                  | Audiometry                      |
|----------------------|----------------------|---------------------------------|
| WITHIN NORMAL LIMITS | WITHIN NORMAL LIMITS | NORMAL HEARING IN BOTH<br>EARS. |

| Category                              | 8MI (8 | g/m²) |
|---------------------------------------|--------|-------|
|                                       | From   | To    |
| Very severely underweight revert      |        | 15    |
| Severely underweight                  | 15     | 16    |
| Underweight                           | 16     | 18.5  |
| Normal (Healthy weight)               | 18.5   | -25   |
| Overweight                            | 25     | 30    |
| Obese Class I (Moderately obese)      | 30     | 35    |
| Obese Class II (Severely obese)       | 35     | 40    |
| Obese Class III (Very severely obese) | 40     |       |

#### **BMI Advice**

A BMI of 25 - 30 indicates that you are slightly overweight. You may be advised to lose some weight for health reasons. You are recommended to talk to your Doctor or a dietician for advice

Recommendation / Advice (To be filled by consulting physician )

\*\*END OF REPORT\*\*

For Ambulance / Home collection @ 9600 1919 44









Primex Healthcare and Research Pvt. Ltd., 30/1, Sezullah Road, T.Nager, Channai - 600 017, www.primexhealthcare in



\* MRI \* CT SCAN \* DIGITAL X-RAY \* 4D ULTRASOUND \* ECG \* ROUTINE & SPECIALIZED BLOOD TESTS

# PERFORMA FOR MEDICAL FITNESS CERTIFICATE

(FOR THE YEAR 2024)

It is to certify that Shri/Smt/Miss NAGARAJAN C employed with The Ramco Cements Ltd., R.R.Nagar. Had undergone medical tests; on 04.04.2024. His / Her vision was found normal and was found free of tuberculosis; skin and other communicable and contagious disease on clinical examination with the investigations listed herein, and the person is Fit for work in the above mentioned establishment.

P - Ba 2 - E Dr. BALU ANAND MBBS., AFIH,

> TMC:90784 AFIH:01990

#### \*Medical Examinations conducted:

- 1. BMI & Blood Pressure
- 2. Oxygen Saturation (Spo2)
- 3. Complete Blood Count
- 4. Glucose Fasting
- 5. Urea
- Creatinine
- 7. Cholesterol (Total)
- 8. Bilirubin Total
- 9 ECG
- 10. PFT
- 11. Audiometry
- 12. Eye Examination.













Primes Healthcare and Research Pvt. Ltd., 30/1, Bazullah Road, T.Nagar, Chennal - 600 017. www.primexhealthcare.in



\* MRI \* CT SCAN \* DIGITAL X-RAY \* 4D ULTRASOUND \* ECG \* ROUTINE & SPECIALIZED BLOOD TESTS

Name

I NAGARAJAN C

Age/Gunder

Referred by

: 57 years /M

: THE RAMCO CEMENTS LTD.

ld.

: T38370E

Lab Ref

:52477

Ordered On

: 04/04/2024

Sample Collected On

1 04/04/2024

Reported On

17/04/2024



SPECIMEN

TIST NAME

RESULT

REFERENCE RANGE

#### RAMCO CEMENTS - FACTORY - ANNUAL CHECK-UP - FASTING

#### DEPARTMENT OF HAEMATOLOGY

#### COMPLETE BLOOD COUNT

| (Jetta ) DOLLIE ELENN  | Hammoglobin - Hill<br>(Pitotometric)                                 | 2132                   | 13.0 - 17.0 g/m/%       |
|------------------------|----------------------------------------------------------------------|------------------------|-------------------------|
| ANITATION (Car)        | Hematocrit - HCT<br>(Calculutes)                                     | 49,4                   | 40.0 - 50.0 %           |
| WHOLE SLOOD ( EDTA )   | Red Blood Cells Count (RBC)<br>(Electrical Impediance)               | 4.63                   | 45-55 Millions/cumm     |
| WHOLE BLOOD ( BETTA )  | Mean Corpuscular Volume (MCV)<br>(Electrical Impediance)             | 1067                   | 83.0 - 101.0 ft         |
| WHERE BEIODO ( BUTA )  | Moan Corpuscular Haemoglobin (MCH)<br>(Calculated)                   | 28.4                   | 27.0 - 52.0 pg          |
| 9401 H000 ( (UK)       | Mean Corpuscular Haemoglobin<br>Concentration (MCHC)<br>(Calculated) | 26.6                   | 32.0 - 36.0 %           |
| WHOLE BIOTID ( FOTA )  | (Calculated)                                                         | 16.4                   | 11.6+14.0               |
| WHOLE REDOK ( \$200.)  | Total WBC Count - TC<br>(Electrical impedance)                       | \$520                  | 4000 - 10000 Gelis/cumm |
|                        | Differential Count - DC<br>(Light Scottering)                        |                        | 5544cm6wi               |
| WHITE ROOM (WIN)       | Polymorphic                                                          | 46.3                   | 37.0 - 70.0 %           |
| WHILESONIEM            | Lymphocytes                                                          | 38.1                   | 20.0 - 45.0 %           |
| HARRY BUDGE ( \$10 k.) | Epsinophilis                                                         | 8.9                    | 2.0 - 6.0 W             |
| WHENE BLOOD ( \$579.)  | Migroscytas                                                          | 63                     | 2,0 - 10.0 %            |
| WHOLE MODE ( KUTK)     | Basophils                                                            | 0.2                    | <1.0 %                  |
| VHOLENGON (IIII)       | Platelet count<br>(Electrical impedance)                             | 3.17                   | 15-41 likhs/cumm        |
|                        |                                                                      | STMENT OF BIOCHEMISTRY |                         |

DEPARTMENT OF BIOCHEMISTRY

Glucose Fosting (GOD POO)

70-115 mg/di

Page 1 of 2

For Ambulance / Home collection @ 9600 1919 44











Primex Heelthcare and Research Pvt. Ltd., 30rf, Bazulish Road, T.Nagar, Chernai - 600 017. www.primexhealthcare.in



= MRI + CT SCAN = DIGITAL X-RAY = 4D ULTRASOUND = ECG = ROUTINE & SPECIALIZED BLOOD TESTS

Name Age/Gender Referred by

I NAGARAJAN C 57 years /M

THE RAMCO CEMENTS LTD.

Lab Ref

Ordered On Sample Collected On Reported On

: 52477 04/04/2024 : 04/04/2024 : 17/64/2624

: T383706

| TEST NAME                       | RESULT                                                                                                                                  | REFERENCE RANGE                                                                                                                                                                                          |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Virginia SEEN)                 | 28.6                                                                                                                                    | 16.6-43.2 mg/dl                                                                                                                                                                                          |
| Creatinine (Sommine Oxidual)    | 0.3                                                                                                                                     | 0.8-1.3 mg/dL                                                                                                                                                                                            |
| Cholesterol (Total) (CHOC- (AF) | 235                                                                                                                                     | Normal < 200 mg/dL<br>Norderline: 201 - 239 mg/dL<br>High: > 240 mg/dL                                                                                                                                   |
| Billiruble Total                |                                                                                                                                         |                                                                                                                                                                                                          |
| (Olamatienal maffamilic ocid)   |                                                                                                                                         |                                                                                                                                                                                                          |
| Milination Total                | 0.5                                                                                                                                     | 0.1-1.2 mg/di                                                                                                                                                                                            |
| Billirubin Direct               | 6.2                                                                                                                                     | < 0.8 mg/dL                                                                                                                                                                                              |
| Billinglije Indirect            |                                                                                                                                         | < 1.0 mg/st.                                                                                                                                                                                             |
|                                 | Chartenine (Christian) Cholesterol (Total) I CHOIS- PAP) Billiouble Total (Manutimal sufferills acid) Billiouble Total Billiouble Total | Unea (Mrime SETH)  Creatinine (Malei)  Cholesterol (Total) 235  (CHOD-MIN)  Billicubin Total  (Olamateral sulfanilic ocid)  Billicubin Total  Billicubin Total  Billicubin Total  Billicubin Direct  0.2 |

- End of the Report -

Dr. Divys Shavent, H M.Sc. Ph.d

Quality Manager & Biochemist

Dr. Srikanth.K M.B.B.S M.D (Pathology) Pathologist

Lab Director

Page 2 of 2



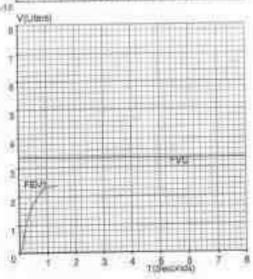




52477 - NAGARAJAN C

57 Years / Mais / Ht 165 Crms /74 Kgs / Non-Smoler

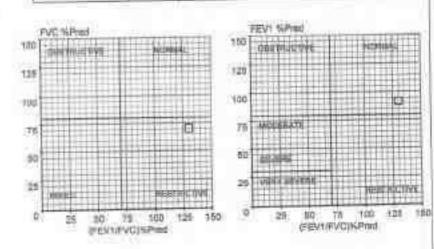
FVC TEST Date: 04-04-2024 (T1)


Pred Eqn : CLARITY Ref by : NONE

Eth.Corr : 100

Temp 0'0




| te I    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 14      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11111111111 |
| 12      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 1111    | PERSONAL TOTAL PROPERTY OF THE PERSON NAMED IN COLUMN TO THE PERSO | 1996        |
|         | (DELEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| 1 125   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| # TTT   | DEFERROR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 4       | Sell III III III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| 0       | Vanagrasu .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| 2 1111  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|         | L EVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| 41111   | 1 1 3 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 1 1 1     |
| 1113    | MO <del>N</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|         | 1344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| 4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 5 III   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 0.004   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 4 0 111 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |



- Pre Medication Report Spremetery shows Mid Restriction as PVC'II. < 80 A. ## FEV1/FVC% > 70

- Pre COPD Severity Report. COPD Severity within Normal range

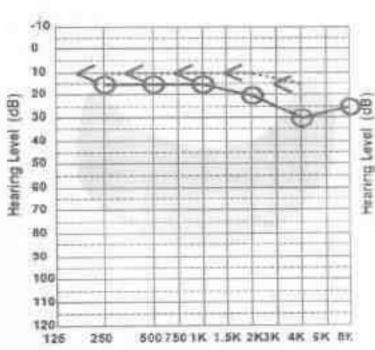
| Parameter | 4     | Pred  | Pre    | Profit   | Post    | Post%    | Ampt 94 |
|-----------|-------|-------|--------|----------|---------|----------|---------|
| PVC.      | 11    | 2.95  | 2 00   | 70       | -       | 2        | G2'     |
| FEV1      | _     | 2.27  | 2.09   | 92       | =       | 2        | · 6     |
| FEVA      | BJ    | -     | 1.72   | -        | 5-0     | je.      | 00      |
| FEV3      | -     | 2.87  | -      |          |         | ÷ .      | in:     |
| FEVS      | 13.7  | _     |        | -        | -       | -        | -       |
| PRESI     | Itis  | 7.90  | 5.68   | 74       | -       | _        | -00     |
| PEF15-75  | Lin   | 2.08  | 3.57   | 316      | eu.     | 1 =      | 100     |
| FEF75-85  | Life  | -     | 1,61   | 100      | 30      |          | -       |
| FEF 2-12  | Tire  | 5.40  | 4,63   | 81       | 77      | -        | -       |
| FEF25%    | JUN   | 7.37  | 6.96   | 81       | (2V)    | <u> </u> | -       |
| PEP80%    | [L/N  | 4.00  | 2.78   | 76       | -       | -        | 8       |
| PERMIN    | [Link | 1.00  | 2.08   | 1.07     |         | -        | н.      |
| FEV.6/FVC | [36]  | 2     | 02.45  | -        | -       | -        | π.      |
| FEVT/FVC  | 136   | 75.74 | 100.00 | 130      | and the | -        | -       |
| FEVO/FVC  | 154   | 97.00 | -      | 14       | -       | -        | =       |
| FEVRIFVC  | 196   | 3)    | -      | -        | -       | <b>#</b> | -       |
| FEVT/FEVS | 176   | -     | -      | -        | -       | -        | -       |
| FET       | 15    | -     | 1.16   | -        | -       | (E)      | -       |
| Expilime  | 151   | 2.5   | 0.09   |          | -       | -        | -       |
| LungAge   | [7]   | 52.00 | 62:00  | 109      | -       | (H)      | *       |
| FIVC      | (14)  |       | 1.82   | -        | (e)     | -        | *       |
| PIFR      | Duni  | - 40  | 3.17   | -        | 177     | -        | 2       |
| FIF25%    | 0.4   | -     | 0.63   | 15       | 196     | -6       | =       |
| FIFOOTS   | 11/4  | -90   | 4.97   | -        | -       | -        | 77      |
| FIF75%    | [L/s] |       | 3.55   | -        | 25      | - m.:    | =       |
| FTV.5     | Į.    | -     | 1.09   | 77       | -       |          | -       |
| FTV1      | (L    | -     | -      | <u>a</u> | (2)     | -        | -       |
| FIVS      | 1     | 22    | (a)    | =        | -       | Sec      | -       |
| PIV.SFTVC | PS.   | -     | 67.32  | H        | E       | (4)      | -       |
| FIVE      | 1%    |       | :=:2   | -        | -       | -        | -       |



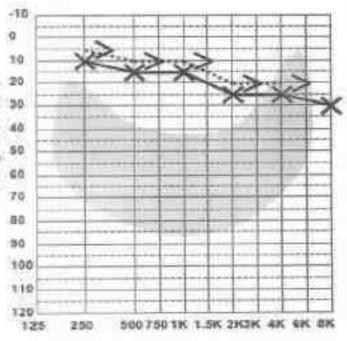
within normal limits

H MID OTCO

### PRIMEX SCANS AND LABS 30/1 BAZULLAH ROAD T NAGAR CHENNAI-500017


Name NAGARAJAN C

Age: 57


SEX: MALE Date: 04.04.2024

LIS ID: 52477

### RIGHT EAR



### LEFT EAR



Frequency (Hz)

Frequency (Hz)

| Freq. 525 | 250   | 500 | 760    | 1000 | 1.68 | JK. | 3X     | 44   | 600 | BK         |
|-----------|-------|-----|--------|------|------|-----|--------|------|-----|------------|
| MICTOR .  | 1 10  | 15  |        | 15   |      | 26  |        | 26   |     | 34         |
| L(M)      | -     |     |        | 4.0  |      | -20 |        | 700  | н   | -          |
| BCL.      | 8     | 118 | _      | 10   |      | 26. | -      |      | -   |            |
| MARKET IN | sies. | 19  | TALARI | USV  |      | 312 | A-BION | 1000 |     | (809,1%,29 |

| Arra Ord - Laure |     |      |     | ries. |      |      | ALTERIOR CONTRACTOR |    |       |    |    |
|------------------|-----|------|-----|-------|------|------|---------------------|----|-------|----|----|
| Frest.           | 125 | 255  | 500 | TIO.  | 1998 | 1.5% | 78                  | 36 | 466   | 44 | 84 |
| est de           |     | 1.55 | 1.5 |       | 10   |      | 211                 |    | 30    |    | 26 |
| RING             |     | 1352 |     |       | -7   |      | - 10                | -  | +7225 | -  | -  |
| DCR:             |     | 90   | 10  |       | 10   |      | - 59                | -  | 1.15  | -  | ᄪ  |

PTA (R) = 1866

PTA-MIRE -

PTA-BCM(R) -

(600,110,290)



AUDICLOGICAL DIAGNOSIS:

NORMAL HEARING IN BOTH EARS.



| egena       | е.  | 1  |
|-------------|-----|----|
| Air         | 0   | ×  |
| Add Masked  | Δ   |    |
| Bone        | <   | >  |
| Bone/Masked | E   | J  |
| MOL         | 14  | M  |
| JCL-        | 177 | m  |
| Free Field  | 0   | ×  |
| PF Promusis | ٨   | A  |
| Birtaural   |     | В. |
| No Response |     | 4  |



Primex Healthcare and Research Pvt. Ltd., 30/1, Bezuliah Road, T.Nagar, Chempal - 600 017. www.primexheelthcare.in



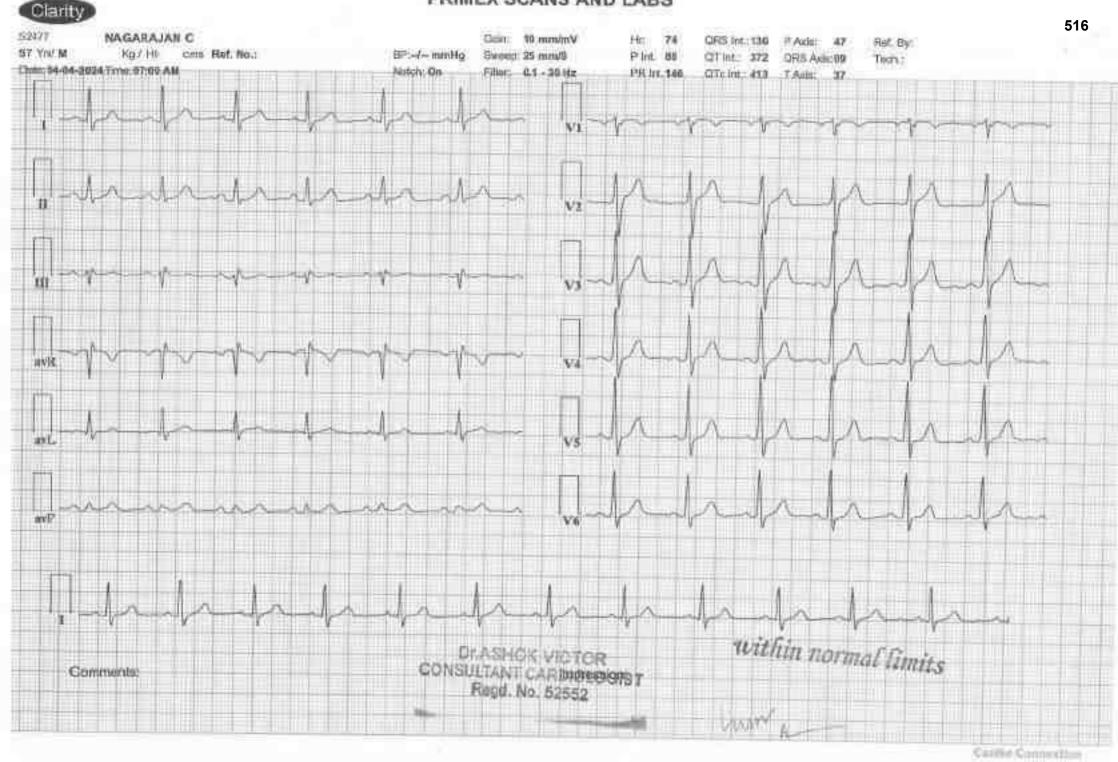
\* MRI \* CT SCAN \* DIGITAL X-RAY \* 40 ULTRASOUND \* ECG \* ROUTINE & SPECIALIZED BLOOD TESTS

#### EYE SCREENING

| Name | NAGARAJAN C | EMP ID | M01963 | Age    | 57   |
|------|-------------|--------|--------|--------|------|
| Date | 04.04.2024  | LISTO  | 52477  | Gender | Male |

| VISION CHECKUP              | RIGHT LYE            | DV          | NV                 |  |  |
|-----------------------------|----------------------|-------------|--------------------|--|--|
|                             | MORITIE              | 6/6 with PG | N6 with PG         |  |  |
|                             | LEFT EYE             | DV          | NV                 |  |  |
|                             | LEFFETE              | 6/6 with PG | N6 with PG         |  |  |
| ANTERIOR SEGMENT EVALUATION | Normal               | Atmorraal   | Not oble to Assess |  |  |
| Color Vision                | Normal               |             |                    |  |  |
| Diagnosis                   | Continue the same PG |             |                    |  |  |
| Impression                  | Continue the same PG |             |                    |  |  |

M. Clemant, (Consultant Optometrist), Reg No: 159330016.


For Ambulance / Home collection @ 9600 1919 44







## PRIMEX SCANS AND LABS

