DRAFT OF ENVIRONMENTAL IMPACT ASSESSMENT

AND

ENVIRONMENT MANAGEMENT PLAN FOR OBTAINING

Environmental Clearance under EIA Notification – 2006

Schedule Sl. No. 1 (a) (i): Mining Project

"B1" CATEGORY – MINOR MINERAL – CLUSTER – NON-FOREST LAND

CLUSTER EXTENT = 26.03.7 hectares

ROUGHSTONE AND GRAVEL QUARRY

At

Anjur Village, Pugalur Taluk, Karur District,

Tamil Nadu State

ToR Letter No. SEIAA-TN/F.No.9905/SEAC/ToR-1440/2023 Dated:10.05.2023.

NAME AND ADDRESS OF THE PROPOSED PROJECT PROPONENT

Name and Address	Extent & S.F.No.
Mr.S.Kuppusamy	
S/o. Samiappagounder,	
Door.No.95, Saliankattupallam,	4.82.7 ha &
Thotiyapalayam,	764/3, 765/3, 766/1,
Muthur,	766/2, 766/3A, 767/1, 767/2A
Kangeyam Taluk,	
Tiruppur – 638 105.	

ENVIRONMENTAL CONSULTANT

GEO TECHNICAL MINING SOLUTIONS

No: 1/213-B, Ground Floor, Natesan Complex Oddapatti, Collectorate Post office, Dharmapuri-636705. Tamil Nadu. E-mail: <u>info.gtmsdpi@gmail.com</u>, Website: <u>www.gtmsind.com</u> NABET ACC. NO: NABET/EIA/2124/SA 0184 Valid till: Dec 31, 2023

ENVIRONMENTAL LAB

ACCURACY ANALABS AND ENVIRO FARMERS LABS & TECHNOLOGIES Baseline Study Period – March through May 2023

TERMS OF REFERENCE (ToR) COMPLIANCE

ToR issued vide Lr.No.SEIAA-TN/F.NO.9905/SEAC/ToR-1440/2023 Dated:10.05.2023

for S. Kuppusamy Rough stone & Gravel Quarry

	SPECIFIC CON	DITIONS
1	As per Metalliferous Mines Regulation 1961,	The modified production and development
	under Chapter XI, 106(2) (a) "the face shall	plan is attached in the Annexure III. And
	be benched and the sides shall be sloped at an	discussed in Section 2.5 under Chapter II, pp-
	angle of not more than 60 degrees from the	19.
	horizontal. The height of any bench shall not	The details regarding slope stability will be
	exceed six meters and the breadth thereof shall	given in the final EIA report.
	not be less than the height," Hence, the project	
	proponent shall furnish the revised mining plan	
	approved by the competent authority,	
	incorporating the slopes stability action plan by	
	maintaining benches on both sides with	
	appropriate bench geometry in accordance with	
	the provisions of Reg.106 of MMR 1961 and by	
	maintaining the depth of 50m BGL.	
2	Restricting the maximum depth of mining from	The modified production and development
	62m to 50m considering the environmental	plan is attached in the Annexure III. And
	impacts due to the mining, safety of the	discussed in Section 2.5 under Chapter II, pp-
	working personnel and following the principle	19.
	of the sustainable mining and consequently the	
	revised quantity is spelt out in the 'modified	
	production and development Plan' to be	
	submitted during the EIA appraisal.	
3	Also, the original letter of approval obtained for	The letter for the approval is attached in the
	the revised mining plan prepared for the mine	Annexure II.
	shall be furnished during the EIA appraisal.	
4	The structures within the radius of (i)50 m,	The report about the structures within the
	(ii)100 m, (iii)200 m, (iv) 300 m shall be	radius of 50 m, 100 m, 200 m, 300 m will be
	enumerated with details such as dwelling	attached with final EIA report.
	houses with number of occupants, whether it	

industries, factories, sheds, etc.industries, factories, sheds, etc.5The Proponent shall carry out Bio-diversity study through reputed Institution and the same shall be included in EIA Report.The details of Bio di provided in Section 3.5 pp.72-92.6The proponent shall furnish photographs of Photographs of adequate	under Chapter III, fencing, green belt
study through reputed Institution and the same shall be included in EIA Report.provided in Section 3.5 pp.72-92.	under Chapter III, fencing, green belt
shall be included in EIA Report. pp.72-92.	fencing, green belt
6 The proper shall furnish photographs of Dhotographs of adaquate	
6 The proponent shan turnish photographs of Photographs of adequate	be included in final
adequate fencing, green belt along the periphery of the project area will be	
including replantation of existing trees & safety EIA report.	
distance between the adjacent quarries & water	
bodies nearby provided as per the approved	
mining plan.	
7 In the case of proposed lease in an existing (or Slope stability report will	be included in final
old) quarry where the benches are not formed EIA report.	
(or) partially formed as per the approved	
Mining plan, the project proponent (PP) shall	
prepare and submit an 'Action plan' for	
carrying out the realignment of the benches in	
the proposed quarry lease after it is approved by	
the concerned Asst. Director and mining during	
the time of appraisal for obtaining the EC.	
8 The PP shall furnish the affidavit stating that The affidavit for blasting	will be submitted in
the blasting operation in the proposed quarry is the final EIA report.	
carried out by the statutory competent person as	
per the MMR 1961 such as blaster, mining	
mate, mine foreman, II/I Class mines manager	
appointed by the proponent.	
9 The PP shall present a conceptual design for A conceptual design of	blasting has been
carrying out only controlled blasting operation given in Section 2.6 under	er Chapter II, pp.22-
involving line drilling and muffle blasting in the 30.	
proposed quarry such that the blast-induced	
ground vibrations are controlled as well as no	
fly rock travel beyond 30 m from the blast site.	
10 The EIA Coordinators shall obtain and furnish Photographic evidences	and video showing

	the	details of quarry/quarries operated by the	mining activities of the project proponent will
	pro	ponent in the past, either in the same	be attached with final EIA report.
	loca	ation or elsewhere in the State with video	
	and	photographic evidences.	
11	If t	he proponent has already carried out the mir	ning activity in the proposed mining lease area
	afte	r 15.01.2016, then the proponent shall furnish	the following details from AD/DD, mines.
	a.	What was the period of the operation and	
		stoppage of the earlier mines with last	
		work permit issued by the AD/DD mines?	
	b.	Quantity of minerals mined out.	
	c.	Highest production achieved in any one	
		year	
	d.	Detail of approved depth of mining.	
	e.	Actual depth of the mining achieved	All the documents will be attached with final
		earlier.	EIA report.
	f.	Name of the person already mined in that	
		leases area.	
	g.	If EC and CTO already obtained, the copy	
		of the same shall be submitted.	
	h.	Whether the mining was carried out as per	
		the approved mine plan (or EC if issued)	
		with stipulated benches.	
12	All	corner coordinates of the mine lease area.	All corner coordinates of the mine lease area
	sup	erimposed on a High-Resolution	have been superimposed on a high-resolution
	Ima	ngery/Topo sheet, topographic sheet,	Google Earth Image, as shown in Figure 2.4,
	geo	morphology, lithology and geology of the	p.14 under Chapter II.
	min	ing lease area should be provided. Such an	
	Ima	agery of the proposed area should clearly	
	sho	w the land use and other ecological features	
	oft	he study area (core and buffer zone).	
13	The	e PP shall carry out Drone video survey	Drone video and photographs showing
	cov	ering the cluster, green belt, fencing etc.,	fencing and greenbelt development will be

		included in the final EIA report. The drone
		video will be submitted during the final EIA
		report appraisal.
14	The PP shall furnish the revised manpower	Details of manpower required for this project
	including the statutory & competent persons as	have been given in Table 2.14 under Chapter
	required under-the provisions of the MMR 1961	II, p.31.
	for the prosed quarry based on the volume of	
	rock handled & area of excavation.	
15.	The proponent shall furnish photographs of	Photographs showing fencing, green belt
	adequate fencing, green belt along the periphery	photographs of water bodies will be attached
	including replantation of existing trees & safety	in the final EIA report.
	distance between the adjacent quarries & water	
	bodies nearby provided as per the approved	
	mining plan.	
16	The Project Proponent shall provide the details	The mineral reserves of the project have been
	of mineral reserves and mineable reserves,	discussed in Section 2.5 under Chapter II, pp-
	planned production capacity, proposed working	19. The anticipated impact of mining on land,
	methodology with justifications, the anticipated	air, noise, water, soil, biology, and socio
	impacts of the mining operations on the	economy is discussed under Chapter IV,
	surrounding environment and the remedial	pp.103-131.
	measures for the same.	
17	The Project Proponent shall provide the	Details of manpower required for this project
	Organization chart indicating the appointment	have been given in Table 2.14 under Chapter
	of various statutory officials and other	II, p.31.
	competent persons to be appointed as per the	
	provisions of Mines Act, 1952 and the MMR,	
	1961 for carrying out the quarrying operations	
	scientifically and systematically in order to	
	ensure safety and to protect the environment.	
18	The Project Proponent shall conduct the hydro-	Detailed hydrogeological study was carried
	geological study considering the contour map of	out. The results have been discussed Section
	the water table detailing the number of ground	3.2 under Chapter III, pp.44-56.
	water pumping & open wells, and surface water	

	bodies such as rivers, tanks, canals, ponds etc.	
	within 1 km (radius) along with the collected	
	water level data for both monsoon and non-	
	monsoon seasons from the PWD/ TWAD so as	
	to assess the impacts on the wells due to mining	
	activity. Based on actual monitored data, it	
	may clearly - be shown whether working will	
	intersect groundwater, Necessary data and	
	documentation in this regard may be provided.	
19	The proponent shall furnish the baseline data	The baseline data were collected for the
	for the environmental and ecological	environmental components including land,
	parameters with regard to surface water/ground	soil, water, air, noise, biology, socio-
	water quality, air quality, soil quality &	economy, and traffic and the results have
	flora/fauna including traffic/vehicular	been discussed under Chapter III, pp. 32-102.
	movement study.	
20	The Proponent shall carry out the Cumulative	Results of cumulative impact study due to
	impact study due to mining operations carried	mining operations are given in Section 7.4
	out in the quarry specifically with reference to	under Chapter VII, pp.145-151.
	the specific environment in terms of soil health,	
	biodiversity, air pollution, water pollution,	
	climate change and flood control & health	
	impacts. Accordingly, the Environment	
	Management plan should be prepared keeping	
	the concerned quarry and the surrounding	
	habitations in the mind.	
21	Rain water harvesting management with	The rainwater harvesting management plan
	recharging details along with water balance	will be submitted along with the final EIA
	(both monsoon & non-monsoon) be submitted.	report.
22	Land use of the study area delineating forest	Land use of the study area delineating forest
	area, agricultural land, gazing land, wildlife	area, agricultural land, grazing land, wildlife
	sanctuary, national park, migratory routes of	sanctuary, national park, migratory routes of
	fauna, water bodies, human settlements and	fauna, water bodies, human settlements and
	other ecological features should be indicated.	other ecological features has been discussed

	Land use plan of the mine lease area should be	in Section 3.1, pp.33-43 under Chapter III.
	prepared to encompass preoperational,	The details of surrounding sensitive
	operational and post operational phases and	ecological features have been provided in
	submitted. Impact, if any, of change of land use	Table 3.39 under Chapter III, p.100. Land use
	should be given.	plan of the project area showing pre-
		operational, operational and post-operational
		phases are discussed in Table 2.8 under
		Chapter II, p.25.
23	Details of the land for storage of	This condition is not applicable to this project
	Overburden/Waste Dumps (or) Rejects outside	because no dumps have been proposed
	the mine lease. such as extent of land area,	outside the lease area.
	distance from mine lease' its land use, R&R	
	issues. If any, should be provided.	
24	Proximity to Areas declared as 'Critically	This condition is not applicable to this project
	Polluted' (or) the Project areas which attracts	because this project is not located in
	the court restrictions for mining operations,	proximity to the areas of areas declared as
	should also be indicated and where so required'	'Critically Polluted' (or) the project areas
	clearance certifications from the prescribed	which attracts the court restrictions for mining
	Authorities, such as the TNPCB (or) Dept. of	operations.
	Geology and Mining should be secured and	
	furnished to the effect that the proposed mining	
	activities could be considered.	
25	Description of water conservation measures	Details about rainwater harvesting structures
	proposed to be adopted in the Project should be	will be included in the final EIA report.
	given. Details of rainwater harvesting proposed	
	in the Project, if any, should be provided.	
26	Impact on local transport infrastructure due to	Details regarding the impact of the project on
	the Project should be indicated.	traffic are given in Section 3.7 under Chapter
		III, pp.97-99.
27	A tree survey study shall be carried out (nos.,	A detailed tree survey was caried out within
	name of the species, age, diameter etc,) both	300 m radius and the results have been
	within the mining lease applied area & 300m	discussed in Section 3.5 under Chapter III,
	buffer zone and its management during mining	pp.72-92.

	activity.	
28	A detailed mine closure plan for the proposed	A progressive mine closure plan has been
	project shall be included in EIA/EMP report	attached with the approved mining plan report
	which should be site-specific.	in Annexure III. The budget details for the
		progressive mine closure plan are shown in
		Table 2.9 under Chapter II, p.25.
29	Public Hearing points raised and commitments	The comments made in public hearing
	of the Project Proponent on the same along with	meeting will be updated in the final EIA
	time bound Action Plan with budgetary	report after public hearing meeting.
	provisions to implement the same should be	
	provided and also incorporated in the final	
	EIA/EMP Report of the Project and to be	
	submitted to SEIAA/SEAC with regard to the	
	Office Memorandum of MoEF & CC	
	accordingly.	
30	The Public hearing advertisement shall be	Details of advertisement will be updated in
	published in one major National daily and one	the final EIA report.
	most circulated vernacular daily.	
31	The PP shall produce/display the EIA report,	The Tamil version of EIA report, executive
	Executive summary and other related	summary and other related information will
	information with respect to public hearing in	be incorporated in this report.
	Tamil Language also.	
32	As a part of the study of flora and fauna around	The EIA coordinator and the FAE for ecology
	the vicinity of the proposed site, the EIA	and biodiversity visited the study area and
	coordinator shall strive to educate the local	educated the local students about the
	students on the importance of preserving local	importance of protecting the biological
	flora and fauna by involving them in the study,	environment.
	wherever possible.	
33	The purpose of green belt around the project is	A detailed greenbelt development plan has
	to capture the fugitive emissions, carbon	been provided in Section 4.6 under Chapter
	sequestration and to attenuate the noise	IV, pp.121-127.
	generated, in addition to improving the	
	aesthetics A wide range of indigenous plant	

appendix-I in consultation with the DFO, State Agriculture University and local school/college authorities. The plant species with	
authomitics. The plant encodes with	
authorities. The plant species with	
dense/moderate canopy of native origin should	
be chosen. Species of small/medium/tall trees	
alternating with shrubs should be planted in a	
mixed manner.	
34 Taller/one year old Saplings raised in The FAE of ecology and biodiversity	has
appropriate size of bags, preferably eco-friendly advised the project proponent that saplin	gs of
bags should be planted as per the advice of one year old raised in the eco-friendly	bags
local forest authorities, botanist/Horticulture should be purchased and planted with	n the
with regard to site specific choices. The spacing of 3 m between each plant arour	d the
proponent shall earmark the greenbelt area with proposed project area as per the advi	ce of
GPS coordinates all along the boundary of the local forest authorities/botanist.	
project site with at least 3 meters wide and in	
between blocks in an organized manner.	
35 A Disaster management plan shall be prepared A disaster management plan for the p	roject
and included in the EIA/EMP Report for the has been provided in Section 7.3	under
complete life of the proposed quarry (or) till the Chapter VII, pp.141-144.	
end of the lease period.	
36 A Risk Assessment and management plan shall A risk assessment plan for the project	t has
be prepared and included in the EIA/EMP been provided in Section 7.2 under Ch	apter
Report for the complete life of the proposed VII, pp.138-140.	
quarry (or) till the end of the lease period.	
37 Occupational Health impacts of the Project Occupational health impacts of the p	roject
should be anticipated and the proposed and preventive measures have been disc	ussed
preventive measures spelt out in detail. Details in detail in Section 4.8 under Chapte	r IV,
of pre-placement medical examination and pp.128 & 129.	
periodical medical examination schedules	
should be incorporated in the EMP. The project	
specific occupational health mitigation	
measures with required facilities proposed in	

	the mining area may be detailed.	
38	Public health implications of the Project and	No public health implications are anticipated
	related activities for the population in the	due to this project. Details of CSR and CER
	impact zone should be systematically evaluated	activities have been discussed in Sections 8.6
	and the proposed remedial measures should be	and 8.7 under Chapter VIII, pp.156-157.
	detailed along with budgetary allocations.	
39	The Socio-economic studies should be carried	No negative impact on socio-economic
	out within a 5 km buffer zone from the mining	environment of the study area is anticipated
	activity. Measures of socio-economic	and this project shall benefit the socio-
	significance and influence to the local	economic environment by offering
	community proposed to be provided by the	employment for 29 people directly as
	Project Proponent should be indicated. As far as	discussed in Section 8.1 under Chapter VIII,
	possible, quantitative dimensions may be given	p.155.
	with time frames for implementation.	
40	Details of litigation pending against the project,	No litigation is pending in any court against
	if any, with direction /order passed by any	this project.
	Court of Law against the Project should be	
	given.	
41	Benefits of the Project if the Project is	Benefits of the project details have been given
	implemented should be spelt out. The benefits	under Chapter VIII, pp.155-157.
	of the Project shall clearly indicate	
	environmental, social, economic, employment	
	potential, etc.	
42	If any quarrying operation were carried out in	CCR will be submitted during appraisal of
	the proposed quarrying sile for which now the	final EIA.
	EC is sought, the Project Proponent shall	
	furnish the detailed compliance to EC	
	conditions given in the previous EC with the	
	site photographs which shall duly be certified	
	by MoEF & CC, Regional Office, Chennai (or)	
	the concerned DEE/TNPCB.	
43	The PP Shall prepare the EMP for the entire life	A detailed environment management plan has
	of mine and also Furnish the sworn affidavit	been prepared following the suggestion made

	starting to Ahide the EMD for the article life of	by SEAC, as shown in Chapter X, pp.159-	
	starting to Abide the EMP for the entire life of		
	mine.	176.The sworn affidavit stating to abide the EMP for the entire life of mine will be	
		submitted along with final EIA	
44	Concealing any factual information or	The EIA report has been prepared keeping in	
	submission of false/fabricated data and failure	mind the fact that concealing any factual	
	to comply with any of the conditions mentioned	information or submission of false/fabricated	
	above may result in withdrawal of this Terms of	data and failure to comply with any of the	
	Conditions besides attracting penal provisions	conditions mentioned above may lead to	
	in the Environment (Protection) Act' 1986.	withdrawal of this terms of reference besides	
		attracting penal provisions in the Environment	
		(Protection) Act, 1986.	
	The proposal was placed in the 616th Authority n	neeting herd on 10.05.2023. the authority noted	
	that this proposal was placed for appraisal in th	e 369 th meeting of SEAC held on 20.04.2023.	
	After detailed discussions, the Authority accepts the recommendation of SEAC and decide		
	grant Terms of Reference (ToR) along with public Hearing under cluster for undertaking the		
	combined Environment Impact Assessment study and preparation of separate Environme		
	Management plan subject to the conditions as recommended by SEAC & normal conditions in		
	addition to the condition to the conditions in 'An	nexure B' of this minute.	
	In addition to that the PP shall study about the following,		
1.	Detailed study shall be carried out in regard to impact of mining around the proposed mine lease		
	area covering the entire mine lease period as per precise area communication order issued from		
	reputed research institutions on the following		
	b) Soil health	Soil health have been discussed in Section	
		3.1, under Chapter III, pp.33-43.	
	c) Climate Change	Climatic condition of the proposed project	
		area has been discussed in Section 3.3 under	
		Chapter III, pp.56-68.	
	d) Rise in Temperature	The information will be updated in the final	
		EIA report.	
	e) Water Table and Drainage Pattern	The details regarding drainage pattern and	
		the water table is discussed in the Section	
		3.1.4 and Section 3.2 under Chapter III, p-36.	

		& pp. 44-54.
	f) Agriculture	The result has been discussed in Section
	I) Agriculture	
		3.5.1 under Chapter III, pp.74-75.
2.	The PP shall obtain a letter from the Concerned	The letter will be attached in the final EIA
	Director of Agriculture stating that proposed	report.
	mining activity has no impact on the	
	surrounding Agriculture.	
	Annexu	ire 'B'
1	Cluster Management Committee shall be	A cluster management committee including
	framed which must include all the proponents	all the proponents of the rough stone
	in the cluster as members including the existing	quarrying projects within the cluster of 500
	as well as proposed quarry.	m radius will be constituted for the effective
		implementation of green belt development
		plan, water sprinkling, blasting, etc.
2	The members must coordinate among	The members of the cluster management
	themselves for the effective implementation of	committee will be instructed to carry out EMP
	EMP as committed including Green Belt	in coordination.
	Development Water sprinkling, tree plantation,	
	blasting etc.,	
3	The List of members of the committee formed	The list of members of the committee formed
	shall be submitted to AD/Mines before the	will be submitted to AD/Mines before the
	execution of mining lease and the same shall be	execution of mining lease.
	updated every year to the AD/Mines.	
4	Detailed Operational Plan must be submitted	All the information has been discussed in
	which must include the blasting frequency with	Section 2.6 & 2.7 under Chapter II, pp.22-31.
	respect to the nearby quarry situated in the	
	cluster, the usage of haul roads by the	
	individual quarry in the form of route map and	
	network.	
5	The committee shall deliberate on risk	It will be informed to the committee.
	management plan pertaining to the cluster in a	

	holistic manner especially during natural	
	calamities like intense rain and the mitigation	
	measures considering the inundation of the	
	cluster and evacuation plan.	
6	The Cluster Management Committee shall form	It will be advised to the cluster management
	Environmental Policy to practice sustainable	committee to practice sustainable mining in a
	mining in a scientific and systematic manner in	scientific and systematic manner in
	accordance with the law. The role played by the	accordance with the law. The role played by
	committee in implementing the environmental	the committee in implementing the
	policy devised shall be given in detail.	environmental policy devised will be given in
		detail.
7	The committee shall furnish action plan	A proper action plan regarding the restoration
	regarding the restoration strategy with respect	will be followed by the committee.
	to the individual quarry falling under the cluster	
	in a holistic manner.	
8	The committee shall furnish the Emergency	The committee will submit the emergency
	Management plan within the cluster.	management plan to the respective authority
		in the stipulated time period.
9	The committee shall deliberate on the health of	The information on the health of the workers
	the workers/staff involved in the mining as well	and the local people will be updated
	as the health of the public.	periodically.
10	The committee shall furnish an action plan to	A proper action plan with reference to water,
	achieve sustainable development goals with	sanitation & safety will be devised and
	reference to water, sanitation & safety.	submitted by the committee to the respective
		authority.
11	The committee shall furnish the fire safety and	The committee will submit the fire safety and
	evacuation plan in the case of fire accidents.	evacuation plan as discussed in Section 7.3
		under Chapter VII, pp.141-144.
	Impact study	y of Mining
12	Detailed study shall be carried out in regard to in	npact of mining around the proposed mine lease
	area covering the entire mine lease period as per precise area communication order issued from	
	reputed research institutions on the following	

	a)	Soil health & soil biological, physical land	
	,	chemical features.	
	b)	Climate change leading to Droughts,	
	,	Floods etc.	
	c)	Pollution leading to release of Greenhouse	
	,	gases (GHG), rise in Temperature, &	
		Livelihood of the local People.	
	d)	Possibilities of water contamination and	
	,	impact on aquatic ecosystem health.	The study is under process. The results will be
	e)	Agriculture, Forestry, & Traditional	updated in the final EIA report.
		practices.	
	f)	Hydrothermal/Geothermal effect due to	
		destruction in the Environment.	
	g)	Bio-geochemical processes and its foot	
		prints including environmental stress.	
	h)	Sediment geochemistry in the surface	
		streams.	
		Agriculture & Ag	gro-Biodiversity
13	Imp	act on surrounding agricultural fields	There shall be negligible air emissions or
	arou	and the proposed mining area.	effluents from the project site. During loading
			the truck, dust generation will be likely. This
			shall be a temporary effect and not anticipated
			to affect the surrounding vegetation
			significantly, as shown in Section 4.6 under
			Chapter IV, pp.121-127
14	Imp	act on soil flora & vegetation around the	The details on flora have been provided in
	proj	ect site.	Section 3.5 under Chapter III, pp.72-92.
			There is no schedule I species of animals
			observed within study area as per Wildlife
			Protection Act, 1972 and no species falls in
			vulnerable, endangered or threatened category
			as per IUCN. There is no endangered red list

		species found in the study area.
1.5		1 V
15	Details of type of vegetations including no. of	
	trees & shrubs within the proposed mining area	been provided in Section 3.5 under Chapter
	shall be given and if so, transplantation of such	III, pp.72-92. Details about transplantation of
	vegetations all along the boundary of the	plants have been provided in Section 4.6
	proposed mining area shall committed	under Chapter IV, pp.127-127.
	mentioned in EMP.	
16	The Environmental Impact Assessment should	The ecological details have been provided in
	study the biodiversity, the natural ecosystem,	Section 3.5 under Chapter III, pp.72-92 and
	the soil micro flora, fauna and soil seed banks	measures have been provided in Section 4.6
	and suggest measures to maintain the natural	under Chapter IV, pp.121-127.
	Ecosystem.	
17	Action should specifically suggest for	All the essential environmental protective
	sustainable management of the area and	measures will be followed by the proponent to
	restoration of ecosystem for flow of goods and	manage the surrounding environment and
	services.	restore the ecosystem, as discussed in Chapter
		IV, pp.103-131.
18	The project proponent shall study and furnish	The impact of project on the land
	the impact of project on plantations in adjoining	environment has been discussed in Section
	patta lands, Horticulture, Agriculture and	4.1 under Chapter IV, p.104.
	livestock.	
	Fore	ests
19	The project proponent shall study on impact of	The project proponent shall do barbed wire
	mining on Reserve forests free ranging wildlife.	fencing work and develop a green belt around
		the lease area to prevent wildlife from
		entering the site.
20	The Environmental Impact Assessment should	The impacts of the project on ecology and
	study impact on forest, vegetation, endemic,	biodiversity have been discussed in Section
	vulnerable and endangered indigenous flora and	4.6 under Chapter IV, pp.121-127.
	fauna.	
21	The Environmental Impact Assessment should	The impacts of the project on standing trees
	study impact on standing trees and the existing	and the existing trees have been discussed in

	trees should be numbered and action suggested	Section 4.6 under Chapter IV, pp.121-127.
	for protection.	
22	The Environmental Impact Assessment should	There are no protected areas, National Parks,
	study impact on protected areas, Reserve	Corridors and Wildlife pathways near project
	Forests, National parks, corridors and wildlife	site. The list of environmentally sensitive
	pathways, near project site.	areas within 10 km radius has been provided
		in Table 3.39 under Chapter III, pp.100.
	Water Env	
23	Hydro-geological study considering the contour	Detailed hydrogeological study was carried
23	map of the water table detailing the number of	
	ground water pumping & open wells, and	3.2 under Chapter III, pp.44-56.
	surface water bodies such as rivers, tanks,	
	canals, ponds etc. within 1 km (radius) so as to	
	assess the impacts on the nearby waterbodies	
	due to mining activity. Based on actual	
	monitored data, it may clearly be shown	
	whether working will intersect groundwater.	
	Necessary data and documentation in this	
	regard may be provided, covering the entire	
	mine lease period.	
24	Erosion control measures.	Garland drainage structures will be
		constructed around the lease area to control
		the erosion, as discussed in Section 4.3 under
		Chapter IV, pp.105-107.
25	Detailed study shall be carried out in regard to	The matter has been discussed under Chapter
	impact of mining around the proposed mine	IV, pp.103-131.
	lease area on the nearby villages,	
	waterbodies/rivers & any ecological fragile	
	areas.	
26	The project proponent shall study impact on	An analysis for food chain in aquatic
	fish habitats and the food WEB/food chain in	ecosystem is under process and report will be
	the water body and Reservoir.	added to the final EIA report.
L		

27	The project proponent shall study and furnish	The impacts of the proposed project on the
	the details on potential fragmentation impact on	surrounding environment have discussed in
	natural environment, by the activities.	Chapter IV, pp.103.131.
28	The project proponent shall study and furnish	The impact of the proposed project on aquatic
	the impact on aquatic plants and animals in	plants and animals in water bodies has been
	water bodies and possible scars on the	discussed in Section 4.6 under Chapter IV,
	landscape, damages to nearby caves, heritage	pp.121-127.
	site, and archaeological sits possible land form	
	changes visual and aesthetic impacts.	
29.	The Terms of Reference should specifically	The impact of mining on soil environment has
	study impact on soil health, soil erosion, the soil	been discussed in Section 4.2 under Chapter
	physical, chemical components and microbial	IV, pp.104-105.
	components.	
30	The Environmental Impact Assessment should	The impacts on water bodies, streams, lakes
	study on wetlands, water bodies, rivers streams,	have been discussed in Section 4.3 under
	lakes and farmer sites.	Chapter IV, pp.105-107.
	Energy	7
31	The measures taken to control Noise, Air,	The measures taken to control noise, air,
	water, Dust control and steps adopted to	water, and dust have been given under
	efficiently utilise the Energy shall be furnished.	Chapter IV, pp.103-131.
	Climate Ch	ange
32	The Environmental Impact Assessment shall	The carbon emission and the measures to
	study in detail the carbon emission and also	mitigate carbon emission have been discussed
	suggest the measures to mitigate carbon	in Section 4.6 under Chapter IV,pp.121-127.
	emission including development of carbon	
	sinks and temperature reduction including	
	control of other emission and climate mitigation	
	activities.	
33	The Environmental Impact Assessment should	The information will be included in the final
	study impact on climate change, temperature	EIA report.
	rise, pollution and above soil & below soil	
	carbon stock.	

	Mine Closure Plan	
34	Detailed Mine closure plan covering the entire	A progressive mine closure plan has been
	mine lease period as per precise area	attached with the approved mining plan report
	communication order issued.	in Annexure III. The budget details for the
		progressive mine closure plan are shown in
		Table 2.9 under Chapter II, p.25.
	EM	(P
35	Detailed Environment Management plan along	A detailed Environment Management plan
	with adaptation, mitigation & remedial	has been given under Chapter X, pp.159-176.
	strategies covering the entire mine lease period	
	as per precise area communication order issued.	
36	The Environmental Impact Assessment should	A detailed Environment Management plan
	hold detailed study on EMP with budget for	has been given in Tables 10.9 & 10.10 under
	green belt development and mine closure plan	Chapter X, pp.170-176.
	including disaster management plan.	
	Risk Asso	essment
37	To furnish risk assessment and management	The risk assessment and management plan for
	plan including anticipated vulnerabilities during	this project has been provided in Section 7.2
	operational and post operational phases of	under Chapter VII, pp.138-140.
	Mining.	
	Disaster Mana	gement Plan
38	To furnish disaster management plan and	The disaster management plan for this project
	disaster mitigation measures in regard to all	has been provided in Section 7.3 under
	aspects to avoid/reduce vulnerability to hazards	Chapter VII, pp.141-144.
	& to cope with disaster/untoward accidents in	
	& around the proposed mine lease area due to	
	the proposed method of mining activity & its	
	related activities covering the entire mine lease	
	period as per precise area communication order	
	issued.	
	Othe	ers
39.	The project proponent shall furnish VAO	The VAO certificate of 300 m radius will be

	certificate with reference to 300 m radius regard	attached with Annexure IV.
	to approved habitations, schools,	
	Archaeological sites, structures, railway lines,	
	roads, water bodies such as streams, odai, vaari,	
	canal, river, lake pond, tank etc.	
40	As per the MoEF & CC office memorandum	The concerns raised during the public
	F.No.22-65/2017-IA.III dated: 30.09.2020 and	consultation and all the activities proposed
	20.10.2020 the proponent shall address the	will be updated in the final EIA report.
	concerns raised during the public consultation	
	and all the activities proposed shall be part of	
	the Environment Management plan.	
41	The project proponent shall study and furnish	The matter on plastic waste management has
	the possible pollution due to plastic and	been given in Section 7.5 under Chapter VII,
	microplastic on the environment. The	p.151-152.
	ecological risks and impacts of plastic &	
	microplastics on aquatic environment and fresh	
	water systems due to activities, contemplated	
	during mining may be investigated and	
	reported.	
	STANDARD TERMS O	
1.	Year-wise production details since 1994 should	
	be given, clearly stating the highest production	category project. This proposal falls under B1
	achieved in any one year prior to 1994. It may	category.
	also be categorically informed whether there	
	had been any increase in production after the	
	EIA Notification 1994 came into force, w.r.t.	
	the highest production achieved prior to 1994.	
2.	A copy of the document in support of the fact	The proposed site for quarrying is a private
	that the proponent is the rightful lessee of the	land. A copy of the document showing that
	mine should be given.	the proponent is the rightful lessee has been
		enclosed along with the approved mining plan
		in Annexure III.
3.	All documents including approved mine plan,	All the documents related to mining plan, EIA

	EIA and Public Hearing should be compatible	and public hearing are compatible to each
	with one another in terms of the mine lease	other and have been provided in the annexure
	area, production levels, waste generation and its	part.
	management, mining technology etc. and	putt
	should be in the name of the lessee.	
4.	All corner coordinates of the mine lease area,	All corner coordinates of the mine lease area
4.		
	superimposed on a High-Resolution Imagery/	have been superimposed on a high-resolution
	toposheet, topographic sheet, geomorphology	Google Earth Image, as shown in Figure 2.4,
	and geology of the area should be provided.	p.14 under Chapter II.
	Such an Imagery of the proposed area should	
	clearly show the land use and other ecological	
	features of the study area (core and buffer	
	zone).	
5.	Information should be provided in Survey of	Toposheets of Survey of India have been used
	India Toposheet in 1:50,000 scale indicating	for showing sampling locations of air, soil,
	geological map of the area, geomorphology of	water, and noise, as shown in Chapter III.
	land forms of the area, existing minerals and	
	mining history of the area, important water	
	bodies, streams and rivers and soil	
	characteristics.	
6.	Details about the land proposed for mining	The lease area was inspected by the officers
	activities should be given with information as to	of Department of Geology along with revenue
	whether mining conforms to the land use policy	officials and found that the land is fit for
	of the State; land diversion for mining should	quarrying under the policy of State
	have approval from State land use board or the	Government.
	concerned authority.	
7.	It should be clearly stated whether the	The proponent has framed Environmental
	proponent Company has a well laid down	Policy and the same has been discussed in
	Environment Policy approved by its Board of	Section 10.1 under Chapter X, p.159-160.
	Directors? If so, it may be spelt out in the EIA	
	Report with description of the prescribed	
	operating process/ procedures to bring into	
	focus any infringement/ deviation/ violation of	

oposed safeguard measures in each case ould also be provided. The study area will comprise of 10 km zone bund the mine lease from lease periphery and the data contained in the EIA such as waste neration etc., should be for the life of the time / lease period.	and width of the bench will be maintained as 5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental Clearance. The study area considered for this study is of 5 km radius for air, soil, water, and noise level sample collections, while the study area is 10 km radius for ecology and biodiversity studies and all data contained in the EIA report such as waste generation etc., is for the life of the mine / lease period. Land use of the study area delineating forest area, agricultural land, grazing land, wildlife
ould also be provided. ne study area will comprise of 10 km zone bund the mine lease from lease periphery and e data contained in the EIA such as waste neration etc., should be for the life of the time / lease period.	5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental Clearance. The study area considered for this study is of 5 km radius for air, soil, water, and noise level sample collections, while the study area is 10 km radius for ecology and biodiversity studies and all data contained in the EIA report such as waste generation etc., is for the life of the mine / lease period.
ould also be provided. ne study area will comprise of 10 km zone bund the mine lease from lease periphery and e data contained in the EIA such as waste neration etc., should be for the life of the	5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental Clearance. The study area considered for this study is of 5 km radius for air, soil, water, and noise level sample collections, while the study area is 10 km radius for ecology and biodiversity studies and all data contained in the EIA report such as waste generation etc., is for the
ould also be provided. ne study area will comprise of 10 km zone bund the mine lease from lease periphery and e data contained in the EIA such as waste neration etc., should be for the life of the	5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental Clearance. The study area considered for this study is of 5 km radius for air, soil, water, and noise level sample collections, while the study area is 10 km radius for ecology and biodiversity studies and all data contained in the EIA
ould also be provided. ne study area will comprise of 10 km zone bund the mine lease from lease periphery and e data contained in the EIA such as waste neration etc., should be for the life of the	5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental Clearance. The study area considered for this study is of 5 km radius for air, soil, water, and noise level sample collections, while the study area is 10 km radius for ecology and biodiversity
ould also be provided. ne study area will comprise of 10 km zone bund the mine lease from lease periphery and e data contained in the EIA such as waste	5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental Clearance. The study area considered for this study is of 5 km radius for air, soil, water, and noise level sample collections, while the study area
ould also be provided. ne study area will comprise of 10 km zone bound the mine lease from lease periphery and	5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental Clearance. The study area considered for this study is of 5 km radius for air, soil, water, and noise
ould also be provided.	5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental Clearance.
ould also be provided.	5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental Clearance.
	5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from DGMS after obtaining Environmental
	5m with 90 ⁰ bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate. Necessary permissions will be obtained from
	$5m$ with 90^0 bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines Manager, Mines Foreman and Mining Mate.
	$5m$ with 90^0 bench angles. Quarrying activities will be carried out under the supervision of Competent Persons like Mines
	5m with 90^{0} bench angles. Quarrying activities will be carried out under the
	5m with 90° bench angles. Quarrying
1 0 1 1 1	
asting study etc. should be detailed. The	compact and homogeneous body. The height
d slope study in case of open cast mining,	method. The rough stone formation is a hard,
bsidence study in case of underground mining	operation proposed to operate in Manual
sues relating to Mine Safety, including	It is an open cast semi mechanized quarrying
e EIA Report.	
keholders at large, may also be detailed in	
the Company and/or shareholders or	
vironmental norms to the Board of Directors	
porting of non-compliances / violations of	
nditions may also be given. The system of	
sues and for ensuring compliance with the EC	
·	
th ue	

	fauna, water bodies, human settlements and	fauna, water bodies, human settlements and
	other ecological features should be indicated.	other ecological features has been discussed
	Land use plan of the mine lease area should be	in Section 3.1, pp.33-43 under Chapter III.
	prepared to encompass preoperational,	The details of surrounding sensitive
	operational and post operational phases and	ecological features have been provided in
	submitted. Impact, if any, of change of land use	Table 3.39 under Chapter III, p.100. Land use
	should be given.	plan of the project area showing pre-
		operational, operational and post-operational
		phases are discussed in Table 2.8 under
		Chapter II, p.25.
11.	Details of the land for any over burden dumps	It is not applicable as no dumps have been
	outside the mine lease, such as extent of land	proposed outside the lease area. The entire
	area, distance from mine lease, its land use,	quarried out rough stone will be transported to
	R&R issues, if any, should be given	the needy customers.
12.	Certificate from the Competent Authority in the	It is not applicable as there is no forest land
	State Forest Department should be provided,	involved within the proposed project area.
	confirming the involvement of forest land, if	The details have been discussed in Table 3.39
	any, in the project area. In the event of any	under Chapter III, p.100.
	contrary claim by the Project Proponent	
	regarding the status of forests, the site may be	
	inspected by the State Forest Department along	
	with the Regional Office of the Ministry to	
	ascertain the status of forests, based on which,	
	the Certificate in this regard as mentioned	
	above be issued. In all such cases, it would be	
	desirable for representative of the State Forest	
	Department to assist the Expert Appraisal	
	Committees.	
13.	Status of forestry clearance for the broken-up	It is not applicable as the proposed project
	area and virgin forest land involved in the	area does not involve any forest land.
	Project including deposition of net present	
	value (NPV) and compensatory afforestation	

	(CA) should be indicated. A copy of the	
	forestry clearance should also be furnished.	
14.	Implementation status of recognition of forest	Not Applicable.
14.	Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.	Not Applicable. The project doesn't attract Recognition of Forest Rights Act, 2006 as there are neither forests nor forest dwellers / forest dependent communities in the mine lease area. There shall be no forest impacted families (PF) or people (PP). Thus, the rights of Traditional Forest Dwellers will not be compromised on account of the project.
15.	The vegetation in the RF / PF areas in the study	No Reserve Forest is found within the study
	area, with necessary details, should be given.	area. The matter has been discussed Table
		3.39 under Chapter III, pp.100.
16.	A study shall be got done to ascertain the	There is no any wildlife/protected area within
	impact of the Mining Project on wildlife of the	10 km radius from the periphery of the project
	study area and details furnished. Impact of the	area. Information regarding the same has been
	project on the wildlife in the surrounding and	given in Table 3.39 under Chapter III, p.100.
	any other protected area and accordingly,	
	detailed mitigative measures required, should	
	be worked out with cost implications and	
	submitted.	
17.	Location of National Parks, Sanctuaries,	There are No National Parks, Biosphere
	Biosphere Reserves, Wildlife Corridors,	Reserves, Wildlife Corridors, and
	Ramsar site Tiger/ Elephant Reserves/(existing	Tiger/Elephant Reserves within 10 km radius
	as well as proposed), if any, within 10 km of the	from the periphery of the project area.
	mine lease should be clearly indicated,	Information regarding the same has been
	supported by a location map duly authenticated	given in Table 3.39 under Chapter III, p.100.
	by Chief Wildlife Warden. Necessary	
	clearance, as may be applicable to such projects	
	due to proximity of the ecologically sensitive	
	areas as mentioned above, should be obtained	

	from the Standing Committee of National	
	Board of Wildlife and copy furnished	
18.	A detailed biological study of the study area	A detailed biological study was carried out in
	[core zone and buffer zone (10 KM radius of	both core and buffer zones and the results
	the periphery of the mine lease)] shall be	have been discussed in Section 3.5 under
	carried out. Details of flora and fauna,	Chapter III, pp.72-92.
	endangered, endemic and RET Species duly	
	authenticated, separately for core and buffer	
	zone should be furnished based on such primary	
	field survey, clearly indicating the Schedule of	
	the fauna present. In case of any scheduled-I	
	fauna found in the study area, the necessary	
	plan along with budgetary provisions for their	
	conservation should be prepared in consultation	
	with State Forest and Wildlife Department and	
	details furnished. Necessary allocation of funds	
	for implementing the same should be made as	
	part of the project cost.	
19.	Proximity to Areas declared as 'Critically	Not Applicable.
	Polluted' or the Project areas likely to come	Project area / Study area is not declared in
	under the 'Aravalli Range', (attracting court	'Critically Polluted' Area and does not come
	restrictions for mining operations), should also	under 'Aravalli Range.
	be indicated and where so required, clearance	6
	certifications from the prescribed Authorities,	
	such as the SPCB or State Mining Department	
	should be secured and furnished to the effect	
	that the proposed mining activities could be	
	considered.	
20.	Similarly, for coastal Projects, A CRZ map duly	Not Applicable
	authenticated by one of the authorized agencies	The project doesn't attract the C.R.Z.
	demarcating LTL. HTL, CRZ area, location of	Notification, 2018.
	the mine lease w.r.t CRZ, coastal features such	
	as mangroves, if any, should be furnished.	
-		

	Note: The Mining Projects falling under CP7	
	(Note: The Mining Projects falling under CRZ	
	would also need to obtain approval of the	
	concerned Coastal Zone Management	
	Authority).	
21.	R&R Plan/compensation details for the Project	Not Applicable.
	Affected People (PAP) should be furnished.	There are no approved habitations of SCs/STs
	While preparing the R&R Plan, the relevant	and other weaker sections in the lease area.
	State/National Rehabilitation & Resettlement	Therefore, R&R Plan / Compensation Plan for
	Policy should be kept in view. In respect of SCs	the Project Affected People (PAP) are not
	/STs and other weaker sections of the society in	provided.
	the study area, a need-based sample survey,	1
	family-wise, should be undertaken to assess	
	their requirements, and action programmes	
	prepared and submitted accordingly, integrating	
	the sectoral programmes of line departments of	
	the State Government. It may be clearly brought	
	out whether the village(s) located in the mine	
	lease area will be shifted or not. The issues	
	relating to shifting of village(s) including their	
	R&R and socio-economic aspects should be	
	discussed in the Report.	
22.	One season (non-monsoon) [i.e., March-May	Baseline data were collected for the period of
	(Summer Season); October-December (post	March-May 2023 as per CPCB notification
	monsoon season); December-February (winter	and MoEF & CC Guidelines. Primary
	season)] primary baseline data on ambient air	baseline data and the results have been
	quality as per CPCB Notification of 2009, water	included in Sections 3.1-3.8 under Chapter
	quality, noise level, soil and flora and fauna	III, pp. 33-102.
	shall be collected and the AAQ and other data	
	so compiled presented date-wise in the EIA and	
	EMP Report. Site-specific meteorological data	
	should also be collected. The location of the	
	monitoring stations should be such as to	
	represent whole of the study area and justified	
<u> </u>		

	water for the project should be provided.	water for dust suppression, greenbeit development and domestic use will be sourced from accumulated rainwater/seepage water in mine pits and purchased from local water vendors through water tankers on daily
25.	Necessary clearance from the competent Authority for drawl of requisite quantity of	Not Applicable. Water for dust suppression, greenbelt
	Fresh water requirement for the project should be indicated.	
24.	availability and source should be furnished. A detailed water balance should also be provided.	availability and source have been provided in Table 2.11 under Chapter II, p.29.
24.	location of sensitive receptors, if any, and the habitation. The wind roses showing pre- dominant wind direction may also be indicated on the map. The water requirement for the project, its	The water requirement for the project, its
23.	within 500 m of the mine lease in the pre- dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given. Air quality modelling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modelling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site,	Air quality modelling for prediction of incremental GLCs of pollutants was carried out using AERMOD view 11.2.0. The model results have been given in Section 4.4 under the Chapter IV, pp.107-116.
	keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station	

		sourced from the approved water vendors.
26		
26.	Description of water conservation measures	Part of the working pit will be allowed to
	proposed to be adopted in the Project should be	collect rain water during the spell of rain. The
	given. Details of rainwater harvesting proposed	water thus collected will be used for greenbelt
	in the Project, if any, should be provided.	development and dust suppression. The mine
		closure plan has been prepared for converting
		the excavated pit into rain water harvesting
		structure and serve as water reservoir for the
		project village during draught season.
27.	Impact of the Project on the water quality, both	Impact studies and mitigation measures of
	surface and groundwater, should be assessed	water environment including surface water
	and necessary safeguard measures, if any	and ground water have been discussed in
	required, should be provided.	Section 4.3 under Chapter IV, pp. 105-107.
28.	Based on actual monitored data, it may clearly	Not Applicable.
	be shown whether working will intersect	The ground water table is found at the depth
	groundwater. Necessary data and	of 65-70 m below ground level. The ultimate
	documentation in this regard may be provided.	depth of quarry is 50 m BGL. Therefore, the
	In case the working will intersect groundwater	mining activity will not intersect the ground
	table, a detailed Hydro Geological Study should	water table. Data regarding the occurrence of
	be undertaken and Report furnished. The	groundwater table have been provided in
	Report inter-alia, shall include details of the	Section 3.2 under Chapter III, pp.44-56.
	aquifers present and impact of mining activities	Section 2.2 and chapter in, pp. 1 201
	on these aquifers. Necessary permission from	
	Central Ground Water Authority for working	
	below ground water and for pumping of ground	
	water should also be obtained and copy	
	furnished.	
29.	Details of any stream, seasonal or otherwise,	Not Applicable.
	passing through the lease area and modification	There are no streams, seasonal or other water
	/ diversion proposed, if any, and the impact of	bodies passing within the project area.
	the same on the hydrology should be brought	Therefore, no modification or diversion of
	out.	water bodies is anticipated.
		water obties is unterpated.

30.	Information on site elevation, working depth,	The highest elevation of the project area is
	groundwater table etc. Should be provided both	190 m AMSL. Ultimate depth of the mine is
	in AMSL and BGL. A schematic diagram may	50 m BGL. Depth to the water level in the
	also be provided for the same.	area is 65-70 m BGL.
31.	A time bound Progressive Greenbelt	Greenbelt development plan has been given in
	Development Plan shall be prepared in a tabular	Section 4.6 under Chapter IV, pp.121-127.
	form (indicating the linear and quantitative	
	coverage, plant species and time frame) and	
	submitted, keeping in mind, the same will have	
	to be executed up front on commencement of	
	the Project. Phase-wise plan of plantation and	
	compensatory afforestation should be charted	
	clearly indicating the area to be covered under	
	plantation and the species to be planted. The	
	details of plantation already done should be	
	given. The plant species selected for green belt	
	should have greater ecological value and should	
	be of good utility value to the local population	
	with emphasis on local and native species and	
	the species which are tolerant to pollution.	
32.	Impact on local transport infrastructure due to	Traffic density survey was carried out to
	the Project should be indicated. Projected	analyse the impact of transportation in the
	increase in truck traffic as a result of the Project	study area as per IRC guidelines 1961 and it
	in the present road network (including those	is inferred that there is no significant impact
	outside the Project area) should be worked out,	due to the proposed transportation from the
	indicating whether it is capable of handling the	project area. Details have been provided in
	incremental load. Arrangement for improving	Section 3.7 under Chapter III, p.97 & 99.
	the infrastructure, if contemplated (including	
	action to be taken by other agencies such as	
	State Government) should be covered. Project	
	Proponent shall conduct Impact of	
	Transportation study as per Indian Road	
	Congress Guidelines.	

33.	Details of the onsite shelter and facilities to be	Infrastructure & other facilities will be
	provided to the mine workers should be	provided to the mine workers after the grant
	included in the EIA Report.	of quarry lease and the same has been
	-	discussed in Section 2.6.6.1 under Chapter II,
		p.29.
34.	Conceptual post mining land use and	Progressive mine closure plan has been
	Reclamation and Restoration of mined out areas	prepared for this project and is given in
	(with plans and with adequate number of	Section 2.6.4 under Chapter II, p.25.
	sections) should be given in the EIA report.	
35.	Occupational Health impacts of the Project	Occupational health impacts of the project
	should be anticipated and the proposed	and preventive measures have been explained
	preventive measures spelt out in detail. Details	in detail in Section 4.8 under Chapter IV,
	of pre-placement medical examination and	pp.128-129.
	periodical medical examination schedules	
	should be incorporated in the EMP. The project	
	specific occupational health mitigation	
	measures with required facilities proposed in	
	the mining area may be detailed.	
36.	Public health implications of the Project and	No public health implications are anticipated
	related activities for the population in the	due to this project. Details of CSR and CER
	impact zone should be systematically evaluated	activities have been discussed in Sections 8.6
	and the proposed remedial measures should be	and 8.7 under Chapter VIII, pp.156 & 157.
	detailed along with budgetary allocations.	
37.	Measures of socio-economic significance and	No negative impact on socio-economic
	influence to the local community proposed to	environment of the study area is anticipated
	be provided by the Project Proponent should be	and this project shall benefit the socio-
	indicated. As far as possible, quantitative	economic environment by offering
	dimensions may be given with time frames for	employment for 29 people directly as
	implementation.	discussed in Section 8.1 under Chapter VIII,
		p.155.
38.	Detailed environmental management plan	A detailed Environment Management Plan
	(EMP) to mitigate the environmental impacts	has been prepared and provided in Tables
	which, should inter-alia include the impacts of	10.9 & 10.10 under Chapter X, pp.170-176.
	change of land use, loss of agricultural and	

44.	Besides the above, the below mentioned genera	l points are also to be followed:
	potential, etc.	
	environmental, social, economic, employment	
	of the Project shall clearly indicate	
	implemented should be spelt out. The benefits	under Chapter VIII, pp.155-157.
43.	Benefits of the Project if the Project is	Benefits of the project details have been given
	·· ···· ···· ···· ····	Chapter VII, pp.141-144.
-	and included in the EIA/EMP Report.	has been provided in Section 7.3 under
42	A disaster management Plan shall be prepared	The disaster management plan for this project
		pp.170-176.
		Tables 10.9 & 10.10 under Chapter X,
		years will be Rs. 27135695 as shown in
		inflation per year, the overall EMP cost for 5
		proposed project. After the adjustment of 5%
		considering present market scenario for the
		proposed considering present market price
		as Rs.3484988 as recurring cost/annum is
	out.	Rs.7714818 as capital cost and recurring cost
	out.	protection measures, an amount of
	implementation of EMP should be clearly spelt	In order to implement the environmental
41	recurring cost) as well as the cost towards	CER Cost is Rs. 5,00,000/-
41	The cost of the Project (capital cost and	Project Cost is Rs. 1,13,87,000/-
	given.	
	Court of Law against the Project should be	
т U .	if any, with direction /order passed by any	this project.
40.	Details of litigation pending against the project,	No litigation is pending in any court against
	provided and also incorporated in the final EIA/EMP Report of the Project.	
	provisions to implement the same should be	
	time bound Action Plan with budgetary	
	of the Project Proponent on the same along with	updated in the final EIA/EMP report.
39.	Public Hearing points raised and commitment	The outcome of public hearing will be
20	proposed Project.	
	impacts besides other impacts specific to the	

a)	Executive Summary of the EIA/EMP Report	Executive summary has been enclosed as a
,		separate booklet.
b)	All documents to be properly referenced with	All the documents have been properly
	index and continuous page numbering.	referenced with index and continuous page
		numbering.
c)	Where data are presented in the Report	List of tables and source of the data collected
	especially in Tables, the period in which the	have been mentioned.
	data were collected and the sources should be	
	indicated.	
d)	Project Proponent shall enclose all the	Original Baseline monitoring reports will be
	analysis/testing reports of water, air, soil, noise	included in the final EIA report.
	etc. using the MoEF & CC/NABL accredited	
	laboratories. All the original analysis/testing	
	reports should be available during appraisal of	
	the Project	
e)	Where the documents provided are in a	All the documents provided here are in
	language other than English, an English	English language.
	translation should be provided.	
f)	The Questionnaire for environmental appraisal	The questionnaire will be enclosed along with
	of mining projects as devised earlier by the	final EIA/EMP report.
	Ministry shall also be filled and submitted.	
g)	While preparing the EIA report, the instructions	Instructions issued by MoEF & CC O.M. No.
	for the Proponents and instructions for the	J-11013/41/2006-IA. II (I) dated 4th August,
	Consultants issued by MoEF & CC vide O.M.	2009 have been followed while preparing the
	No. J-11013/41/2006-IA. II(I) dated 4th	EIA report.
	August, 2009, which are available on the	
	website of this Ministry, should be followed.	
h)	Changes, if any made in the basic scope and	No changes are made in the basic scope and
	project parameters (as submitted in Form-I and	the project parameters.
	the PFR for securing the TOR) should be	
	brought to the attention of MoEF & CC with	
	reasons for such changes and permission should	
	be sought, as the TOR may also have to be	
	altered. Post Public Hearing changes in	
	structure and content of the draft EIA/EMP	

	(other than modifications arising out of the P.H.	
	process) will entail conducting the PH again	
	with the revised documentation.	
i)	As per the circular no. J-11011/618/2010-IA.	The certified report of the status of
	II(I) Dated: 30.5.2012, certified report of the	compliance of the conditions will be
	status of compliance of the conditions stipulated	submitted along with final EIA report.
	in the environment clearance for the existing	
	operations of the project, should be obtained	
	from the Regional Office of Ministry of	
	Environment, Forest and Climate Change, as	
	may be applicable.	
j)	The EIA report should also include (i) surface	All the plans including surface & geological
	plan of the area indicating contours of main	plans, and progressive closure plan have been
	topographic features, drainage and mining area,	included in Annexure III.
	(ii) geological maps and sections and (iii)	
	sections of the mine pit and external dumps, if	
	any, clearly showing the land features of the	
	adjoining area.	

TABLE OF CONTENTS	
--------------------------	--

S No.	TITLE	PAGE No.
Ι	Introduction	1-8
1.0	Preamble	1
1.1	Purpose of the report	2
1.2	Environmental clearance	3
1.3	Terms of reference (Tor)	5
1.4	Post environment clearance monitoring	5
1.5	Transferability of environmental clearance	5
1.6	Generic structure of EIA document	5
1.7	Identification of the project proponent	6
1.8	Brief description of the project	6
1.9	Scope of the study	8

1.10	References	8
II	PROJECT DESCRIPTION	9-31
2.0	General introduction	9
2.1	Description of the project	9
2.2	Location and accessibility	10
2.3	Leasehold area	13
2.3.1	Corner Coordinates	13
2.4	Geology	13
2.5	Quantity of reserves	19
2.6	Mining method	22
2.6.1	Magnitude of operation	24
2.6.2	Extent of mechanization	24
2.6.3	Progressive quarry closure plan	25
2.6.4	Progressive quarry closure budget	25
2.6.5	Conceptual mining plan	29
2.6.6	Infrastructures	29
2.6.6.1	Other Infrastructure Requirement	29
2.6.7	Water requirement	29
2.6.8	Energy requirement	29
2.6.9	Capital requirement	30
2.7	Manpower requirement	31
2.8	Project Implementation Schedule	31
III	DESCRIPTION OF THE ENVIRONMENT	32-102
3.0	General	32
3.1	Land environment	33
3.1.1	Geology and Geomorphology	33
3.1.2	Land Use/Land Cover	36
3.1.3	Topography	36
3.1.4	Drainage pattern	36
3.1.5	Seismic sensitivity	36
3.1.6	Soil	39
3.2	Water Environment	44
3.2.1	Surface Water Resources and Quality	44
3.2.2	Ground water Resources and Quality	45
3.2.3	Hydrogeological Studies	45
3.2.3.1	Groundwater level and flow direction	45

3.2.3.2	Electrical resistivity investigation	55
3.3	Air Environment	56
3.3.1	Meteorology	56
3.3.1.1	Climatic Variables	56
3.3.1.2	Wind Pattern	58
3.3.2	Ambient Air Quality Study	62
3.4	Noise Environment	68
3.5	Biological Environment	72
3.5.1	Flora	74
3.5.2	Fauna	88
3.6	Socio-Economic environment	92
3.6.1	Objectives of the Study	92
3.6.2	Scope of work	93
3.6.3	Socio-Economic status of Study area	93
3.6.4	Recommendation and Suggestion	97
3.6.5	Summary and Conclusion	97
3.7	Traffic density	97
3.8	Site Specific Features	100
IV	ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES	103-131
4.0	General	103
4.1	Land Environment	104
4.1.1	Anticipated Impact	104
4.1.2	Common Mitigation Measures from Proposed Project	104
4.2	Soil Environment	104
4.2.1	Anticipated Impact on Soil Environment	105
4.2.2	Common Mitigation Measures from Proposed Project	105
4.3	Water Environment	105
4.3.1		
т.Ј.1	Anticipated Impact	105
4.3.2	Anticipated Impact Common Mitigation Measures from Proposed Project	105 106
4.3.2	Common Mitigation Measures from Proposed Project	106
4.3.2 4.4	Common Mitigation Measures from Proposed Project Air Environment	106 107
4.3.2 4.4 4.4.1	Common Mitigation Measures from Proposed Project Air Environment Anticipated impact from Proposed Project	106 107 107
4.3.2 4.4 4.4.1 4.4.2	Common Mitigation Measures from Proposed Project Air Environment Anticipated impact from Proposed Project Emission Estimation	106 107 107 107

6.1	Methodology of Monitoring Mechanism	133
6.0	General	133
VI	ENVIRONMENTAL MONITORING PROGRAM	133-137
54	Analysis of Alternative Technology	132
5.3	Factors behind Selection of Proposed Technology	132
5.2	Analysis of Alternative Site	132
5.1	Factors behind the Selection of Project Site	132
5.0	Introduction	132
V	ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE)	132
4.10.1.3	Biological Stability	131
4.10.1.2	Chemical Stability	130
4.10.1	Physical Stability	130
4.10.1	Mine Closure Criteria	130
4.10	Mine Closure	130
4.9	Mine Waste Management	130
4.8.4	Occupational Health Survey	129
4.8.3	Physical Hazards	129
4.8.2	Noise	129
4.8.1	Respiratory Hazards	128
4.8	Occupational Health and Safety	128
4.7.1	Projects Common Mitigation Measures for Proposed Project	128
	Anticipated Impact from Proposed and Existing	128
4.0.4	Species Socio Economic Environment	124
4.6.4	Measures for Protection and Conservation of Wildlife	124
4.6.2	Mitigation Measures on Flora Anticipated Impact on Fauna	121
4.6.1	Impact on Ecology and Biodiversity	121
4.6	Ecology And Biodiversity	121 121
4.5.3.1	Common Mitigation Measures	120
4.5.3		119
4.5.2	Common Mitigation Measures Ground Vibrations	118
4.5.1	Anticipated Impact	117
4.5	Noise Environment	116
4.4.3	Common Mitigation Measures	116

6.2	Implementation Schedule of Mitigation Measures	135
6.3	Monitoring Schedule and Frequency	135
6.4	Budgetary provision for Environment Monitoring Program	137
6.5	Reporting schedules of monitored data	137
VII	ADDITIONAL STUDIES	138-154
7.0	General	138
7.1	Public Consultation for Proposed Project	138
7.2	Risk Assessment for Proposed Project	138
7.3	Disaster Management Plan for Proposed Project	141
7.3.1	Roles and Responsibilities of Emergency Team	142
7.3.2	Emergency Control Procedure	143
7.3.3	Proposed Fire Extinguishers	144
7.3.4	Alarm System	144
7.4	Cumulative Impact Study	145
7.4.1	Air Environment	147
7.4.1	Cumulative Impact of Air Pollutants	148
7.4.2	Noise Environment	149
7.4.3	Socio Economic Environment	150
7.5	Plastic Waste management Plan for Proposed Project	151
7.5.1	Objective	152
7.6	Post Covid health management Plan for Proposed Project	152
7.6.1	Post-Covid follow-up Protocol	153
VIII	PROJECTS BENEFITS	155-157
8.0	General	155
8.1	Employment Potential	155
8.2	Socio-Economic Welfare Measures Proposed	155
8.3	Improvement in Physical Infrastructure	155
8.4	Improvement in Social Infrastructure	156
8.5	Other Tangible Benefits	156
8.6	Corporate Social Responsibility	156
8.7	Corporate Environment Responsibility	157
IX	ENVIRONMENTAL COST BENEFIT ANALYSIS	158
X	ENVIRONMENTAL MANAGEMENT PLAN	159-176
10.0	General	159

10.1	Environmental Policy	159
10.1.1	Description of the Administration and Technical setup	159
10.2	Land Environment Management	160
10.3	Soil Management	161
10.4	Water Management	161
10.5	Air Quality Management	161
10.6	Noise Pollution Control	162
10.7	Ground Vibration and Fly rock control	163
10.8	Biological Environment Management	164
10.8.1	Green Belt Development Plan	164
10.9	Occupational Safety & Health Management	165
10.9.1	Medical Surveillance and Examinations	165
10.9.2	Proposed Occupational Health and Safety Measures	166
10.9.3	Health and Safety Training Program	168
10.9.4	Budgetary Provision for Environmental Management	169
10.10	Conclusion	176
XI	SUMMARY AND CONCLUSION	177-187
11.0	Introduction	177
11.1	Project Description	177
11.2	Description of the Environment	178
11.2.1	Land Environment	178
11.2.2	Soil Characteristics	178
11.2.3	Water Environment	179
11.3	Air Environment	179
11.4	Noise Environment	180
11.5	Biological Environment	180
11.6	Socio-Economic Environment	180
11.7	Anticipated Environmental Impacts and Mitigation Measures for Proposed Project	181
11.8	Analysis of Alternatives	185
11.9	Environmental Monitoring Program	185
11.10	Additional Studies	185
11.11	Project Benefits for Proposed Project	186
11.12	Environment Management Plan	187
11.13	Conclusion	187
XII	DISCLOSURE OF CONSULTANT	188-192

TABLE	CONTENTS	DACE N-
No.	CONTENTS	PAGE No.
1.1	Details of Quarries within the cluster area of 500 m radius	2
1.2	Details of project proponent	6
1.3	Brief description of the project	6
2.1	Site connectivity to the project area	13
2.2	Corner coordinates of proposed project	13
2.3	Estimated resources and reserves of the project	19
2.4	Year-wise production details	19
2.5	Conceptual Blasting Design	23
2.6	Operational details for proposed project	24
2.7	Machinery details	24
2.8	Land use data at present, during scheme of mining, and at the	25
2.8	end of mine life	
2.9	Mine closure budget	25
2.10	Ultimate pit dimension	29
2.11	Water requirement for the project	29
2.12	Fuel requirement details	30
2.13	Capital requirement details	30
2.14	Employment potential for the proposed project	31
2.15	Expected time schedule	31
3.1	Monitoring attributes and frequency of monitoring	32
3.2	LULC statistics of the study area	36
3.3	Soil sampling locations	39
3.4	Soil quality of the study area	42
3.4a	Assigning Scores to soil Quality Indicators	43
3.5	Water sampling locations	44
3.6	Ground Water Quality Result	47
3.6a	Surface water Quality Result	48
3.7	Pre-monsoon water level of Open wells within 2 km radius	49

LIST OF TABLES

3.8	Post-monsoon water level of Open wells within 2 km radius	49
3.9	Pre-monsoon water level of bore wells within 2 km radius	50
3.10	Post-monsoon water level of bore wells within 2 km radius	50
3.11	Vertical electrical sounding data	55
3.12	Onsite Meteorological Data	57
3.13	Methodology and Instrument used for AAQ analysis	62
3.14	National ambient air quality standards	62
3.15	Ambient air quality (AAQ) monitoring locations	63
3.16	Summary of AAQ result	65
3.17	Noise Monitoring Locations	68
3.18	Ambient Noise Quality Result	69
	Calculation of density, frequency (%), dominance, relative	
3.19	density, relative frequency, relative dominance & important	73
	value index	
3.20	Calculation of Species Diversity by Shannon – Wiener Index,	74
5.20	Evenness and Richness	/4
3.21	Flora in 300-meter radius	76
3.22	Calculation of Species Diversity in 300-meter radius	78
3.23	Species Richness (Index) in 300-meter radius	78
3.24	Flora in Buffer Zone	79
3.25	Calculation of Species Diversity in buffer Zone	82
3.26	Species Richness (Index) in Buffer Zone	83
3.27	Aquatic Vegetation	87
3.28	Methodology applied during survey of fauna	88
3.29	Fauna in Core Zone	89
3.30	Fauna in buffer zone	90
3.31	Kuppam village Population Facts	93
3.32	Population and literacy data of study area	94
2.22	Details on Educational Facilities & Water & Drainage	0.5
3.33	Facilities Data of Study Area	95
3.34	Workers Profile in the Study Area	96

3.35	Traffic survey locations	98
3.36	Existing traffic volume	98
3.37	Rough stone transportation requirement	98
3.38	Summary of traffic volume	98
3.39	Details of environmentally sensitive ecological features in the study area	100
4.1	Empirical formula for emission rate from overall mine	107
4.2	Estimated emission rate	108
4.3	Incremental & Resultant GLC of PM2.5	109
4.4	Incremental & Resultant GLC of PM10	109
4.5	Incremental & resultant GLC of SO ₂	114
4.6	Incremental & resultant GLC of NO _X	114
4.7	Activity and noise level produced by machinery	117
4.8	Predicted noise incremental values	117
4.9	Predicted PPV Values due to Blasting	120
4.10	Predicted PPV Values due to Blasting at 100-500 radius	120
4.11	Carbon Released During Five Years of Rough Stone and Gravel Production	121
4.12	CO ₂ Sequestration	122
4.13	Recommended Species for Greenbelt Development Plan	122
4.14	Greenbelt development plan	123
4.15	Budget for greenbelt development plan	123
4.16	Ecological Impact Assessments	125
4.17	Anticipated Impact of Ecology and Biodiversity	126
6.1	Implementation schedule for proposed project	135
6.2	Proposed monitoring schedule post EC for the proposed quarry	136
6.3	Environment monitoring budget	137
7.1	Risk assessment& control measures for proposed project	139-140
7.2	Proposed teams for emergency situation	142
7.3	Proposed fire extinguishers at different locations in (P1)	144
7.4	Salient Features of Proposed Projects Site (P2)	145

7.5	Salient Features of the Proposed Project P2	146	
7.6	Cumulative Production Load of Rough Stone		
7.7	Cumulative Production Load of Gravel	148	
7.8	Cumulative Impact Results from 3 proposed project	148	
7.9	Cumulative Impact of Noise from 3 Proposed Quarries on	149	
7.9	Nagappalayam Habitation	149	
7.10	Cumulative impact of Noise from 3 proposed quarries on	149	
7.10	Vellaiyankattu pudur Habitation	149	
7.11	Cumulative Effect of Ground Vibrations Resulting from 3	150	
/.11	Mines on Habitation of Nagappalayam	150	
7.12	Cumulative Effect of Ground Vibrations resulting from 3	150	
/.12	Mines on Habitation of Vellaiyankattu pudur	150	
7.13	Socio Economic Benefits from 3 Mines	150	
7.14	Employment Benefits from 3 Mines	151	
7.15	Greenbelt Development Benefits from Mine		
7.16	Action Plan to Manage Plastic Waste		
8.1	CER – action plan	157	
8.2	Project Benefits to the state Government	157	
10.1	Proposed controls for land environment	160	
10.2	Proposed controls for water management	161	
10.3	Proposed controls for air environment	162	
10.4	Proposed controls for noise environment	162	
10.5	Proposed controls for ground vibrations & fly rock	163	
10.6	Proposed greenbelt development plan	165	
10.7	Medical examination schedule	166	
10.8	List of periodical trainings proposed for employees		
10.9	EMP budget for proposed project	170-175	
10.10	Estimation of overall EMP budget after adjusting 5% annual	176	
10.10	inflation	1/0	
	IIIIation		

FIGURE	TITLE	PAGE NO.
NO.		
1.1	Location of the proposed and existing rough stone	4
2.1	quarries in the cluster of 500m radius	10
2.1	Overall view of proposed project site	10
2.2	Key map showing location of the project site	11
2.3	Site Connectivity to the Lease Area	12
2.4	Google earth image showing lease area with pillars	14
2.5	Mine Lease Plan	15
2.6	Surface and Geological Plan	16
2.6a	Geological Sections	17
2.6b	Geological Sections	18
2.7	Year wise Development and Production Plan	20
2.7a	Year wise Production Section	21
2.8	Mine layout plan and land use pattern	26
2.9	Conceptual Plan	27
2.9a	Conceptual Sections	28
3.1	Geology Map of 5Km Radius from proposed project	34
5.1	site	51
3.2	Geomorphology Map of 5Km Radius from proposed project site	35
3.3	LULC map of 5km radius from the proposed project site	37
3.4	Drainage map of 5 km radius from the proposed project site	38
3.5	Toposheet showing soil sampling location within 5 km radius around the proposed project site	40
3.6	Soil Erosion map within 5 km Radius around the Proposed Project Site	41
3.7	Toposheet showing water sampling locations within 5 km radius around the proposed project site	46
3.8	Open well static groundwater elevation map showing the direction of groundwater flow during pre-monsoon	51

LIST OF FIGURES

	season	
	Open well static groundwater elevation map showing	
3.9	the direction of groundwater flow during post-monsoon	52
	season	
	Borewell static groundwater elevation map showing the	
3.10	direction of groundwater flow during pre-monsoon	53
	season	
	Borewell static groundwater elevation map showing the	
3.11	direction of groundwater flow during post-monsoon season	54
	Graph showing occurrence of water bearing fracture zones at	
3.12	the depth range of 50 m below ground level in proposed	56
	project	
3.13	Long-term monthly average rainfall vs monthly rainfall	58
3.14	Windrose Diagram for 2019 and 2020 (March to May)	59
3.14(a)	Windrose Diagram for 2021 and 2022 (March to May)	60
3.15	Onsite Wind Rose Diagram	61
3.16	Toposheet showing ambient air quality monitoring station locations around 5 km radius from the proposed project site	64
	Bar chart showing maximum, minimum, and the	
3.17	average concentrations of $PM_{2.5}$ measured from the	66
	nine air quality monitoring stations within 5 km radius	
	Bar chart showing maximum, minimum, and the	
3.18	average concentrations of PM_{10} measured from the	66
	nine air quality monitoring stations within 5km radius	
	Bar chart showing maximum, minimum, and the	
3.19	average concentrations of SO ₂ measured from the nine	67
	air quality monitoring stations within 5 km radius	
	Bar chart showing maximum, minimum, and the	
3.20	average concentrations of NO2 measured from the	67
	nine air quality monitoring stations within 5km radius	
3.21	Bar chart showing maximum, minimum, and the average concentrations of pollutants in the atmosphere within 5km radius	68

	Toposheet showing noise level monitoring station	
3.22	locations around 5 km radius from the proposed project site	70
3.23	Bar Chart Showing Day Time Noise Levels Measured in Core and Buffer Zones	71
3.24	Bar Chart Showing Night Time Noise Levels Measured in Core and Buffer Zones	71
3.25	Quadrates sampling methods of flora	72
3.26	Crop Patterns in Pugalur Taluk	75
3.27	Floral diversity species Richness (Index) in buffer zone and 300m radius	
3.28	Flora in Core and buffer Area	87
3.29	Traffic Density Map	99
3.30	Field Study Photographs	102
4.1	Predicted incremental concentration of PM _{2.5}	110
4.2	Predicted incremental concentration of PM ₁₀	111
4.3	Predicted incremental concentration of SO ₂	112
4.4	Predicted incremental concentration of NO _X	113
6.1	Proposed environmental monitoring chart	134
7.1	Disaster management team layout for proposed project	141
10.1	Personal protective equipment to the mine workers	167

LIST OF ANNEXURES

Annexure No.	Contents	Page No.
Ι	Copy of ToR letter	193-217
II	Copy of 500 m radius letter	218-220
III	Approved mining plan along with mining plan AD/DD letter/original mining plan plates	221-366
IV	VAO 300m radius letter	367-368
IV	NABET certificate of EIA consultant	369

CHAPTER I

INTRODUCTION

1.0 PREAMBLE

Environmental Impact Assessment (EIA) study is a process used to identify the environmental, social and economic impacts of a project prior to decision-making. EIA systematically examines both beneficial and adverse consequences of the proposed project and ensure that these impacts are considered during the project designing. According to the Ministry of Environment and Forests, Govt. of India, EIA notification S.O. 1533(E) of 14th September 2006 and its subsequent amendments as per Gazette Notification S.O. 3977 (E) of 14th August 2018, all the mining projects are broadly classified into two categories, i.e., category A and category B, based on the spatial extent of the projects. The category B projects are further divided in to B1 and B2 on the basis of the guidelines issued of the Ministry of Environment and Forests. All mining projects included in category B1 require an EIA report for obtaining environmental clearance from the State Environment Impact Assessment Authority (SEIAA). As the proposed project falls within the cluster of quarries of overall extent of greater than 5 ha and less than 50 ha in the case of non-coal mine lease, the proposed project falls under the category B1 and the project requires preparation and submission of an EIA report after public consultation to SEIAA for obtaining environmental clearance as per the order dated 04.09.2018 & 13.09.2018 passed by Hon'ble National Green Tribunal, New Delhi in O.A. No. 173 of 2018 & O.A. No, 186 of 2016 and MoEF & CC Office Memorandum F. No. L-11011/175/2018-IA-II (M) Dated: 12.12.2018.

In compliance with ToR obtained vide Lr No.SEIAA-TN/F.No.9905/SEAC/ToR-1440/2023 Dated:10.05.2023, this EIA report has been prepared for the project proponent, Mr.S.Kuppusamy applied for rough stone and gravel quarry lease in the Patta land falling in S.F.No.764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A over an extent of 4.82.70 ha in Anjur Village, Pugalur Taluk, Karur District and Tamil Nadu. This EIA report takes into account the rough stone quarries within the cluster of 500 m radius from the periphery of the proposed project site. The cluster contains three proposed projects known as P1, P2 and P3 and four Expired project EX1, EX2, EX3 and EX4. All the projects mentioned above have been taken for cluster extent calculation as per MoEF & CC Notification S.O. 2269 (E) Dated 1st July 2016. The total extent of all the quarries is 26.03.7 ha, also known as the cluster extent. The quarries involved in the calculation of cluster extent are shown in Figure 1.1.

	Proposed Quarries					
Code	Name of the Owner	S.F. No	Village	Extent (ha)	Status	
P1	Thiru.S.Kuppusamy	764/3, 765/3, 766/1, 766/2, 766/3A, 767/1, 767/2A	Anjur	4.82.70	Proposed Area	
P2	Thiru.P.Sampathkumar	759/2(P), 761/2(P), 761/3(P), 762/2, 762/3, 763/2, 763/3	Anjur	4.81.50	Applied Area	
Р3	Thiru.V.Arunprashath	767/3	Anjur	1.24.0	Applied Area	
		Existing Quarry				
		Nil				
		Expired Quarries	_	-		
EX1	Thiru.P.Duraisamy	762/4, 763/4, 764/1, 765/1	Anjur	1.59.5	07.08.2017 to 06.08.2022	
EX2	Tvl.Kowsick & Co Blue Metals	770/2B(P), 778/3B2, 778/3B1(P)	Anjur	4.98.0	07.08.2017 to 06.08.2022	
EX3	Thiiru.P.Ravi	759/3, 759/4, 763/5, 764/2, 765/2	Anjur	4.18.0	07.08.2017 to 06.08.2022	
EX4	Thiru.P.Ravi	775/1E (P), 776/3, 777/1, 778/1A, 807/2B, 807/2C2	Anjur	4.40.0	21.02.2018 to 20.02.2023	
	Total	Cluster Extent		26.03.7		

Table 1.1 Details of Quarries within the cluster area of 500 m radius

Source:

DD Letter - Rc.No.300/Mines/2022, Dated:09.03.2023.

Note: Cluster area is calculated as per MoEF & CC Notification - S.O. 2269 (E) Dated:

01.07.2016.

1.1 PURPOSE OF THE REPORT

The purpose of the report is to study baseline environmental conditions in and around the proposed project area for the period of **March-May 2023** according to the provisions of MoEF & CC Office Memorandum dated 29.08.2017 and MoEF & CC Notification, S.O. 996 (E) dated 10.04.2015, to analyse impacts and provide mitigation measures.

1.2 ENVIRONMENTAL CLEARANCE

The Environmental Clearance process for the project will comprise of four stages. These stages are screening, scoping, public consultation & appraisal.

Screening

Screening is the first stage of the EIA process. In this stage, the State level Expert Appraisal Committee (SEAC) examined the application of EC made by the proponent in Form 1 through online (Proposal No. SIA/TN/ MIN/ 421900/2023, dated 13.03.2023) and decided that the project requires detailed environmental studies for the preparation of EIA report. Therefore, the proponent submitted application for Terms of Reference (ToR) on 16.03.2023. *Scoping*

The proposal was placed in the 369th meeting of SEAC on 20.04.2023. Based on the presentation and documents furnished by the project proponent, SEAC decided to recommend the proposal for the grant of Terms of Reference (ToR) and the recommendation for ToR is subjected to the outcome of the Honourable NGT, Principal Bench, New Delhi (O.A No.186 of 2016 (M.A.No.350/2016) and O.A. No.200/2016 and O.A.No.580/2016 (M.A.No.1182/2016) and O.A.No.102/2017 and O.A.No.404/2016 (M.A.No. 758/2016, M.A.No.920/2016, M.A.No.1122/2016, M.A.No.12/2017 & M.A. No. 843/2017) and O.A.No.405/2016 and O.A.No.520 of 2016 (M.A.No. 981/2016, M.A.No.982/2016 & M.A.No.384/2017).

Public Consultation

In this stage, an application along with the draft of EIA and EMP report will be made to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing ensuring public participation at the project site or in its close proximity in the district. During public hearing, an opportunity will be given to the people living nearby the project site to express their opinions about the impact of the proposed project on the environment. The outcome of the public hearing meeting will be updated in the final EIA report for appraisal.

Appraisal

In this stage, an application along with final EIA report including the outcome of the public consultations will be made to the SEIAA. The application thus made will be scrutinized by the SEAC. Then, the SEAC will make recommendations to grant EC or reject the application to the SEIAA.

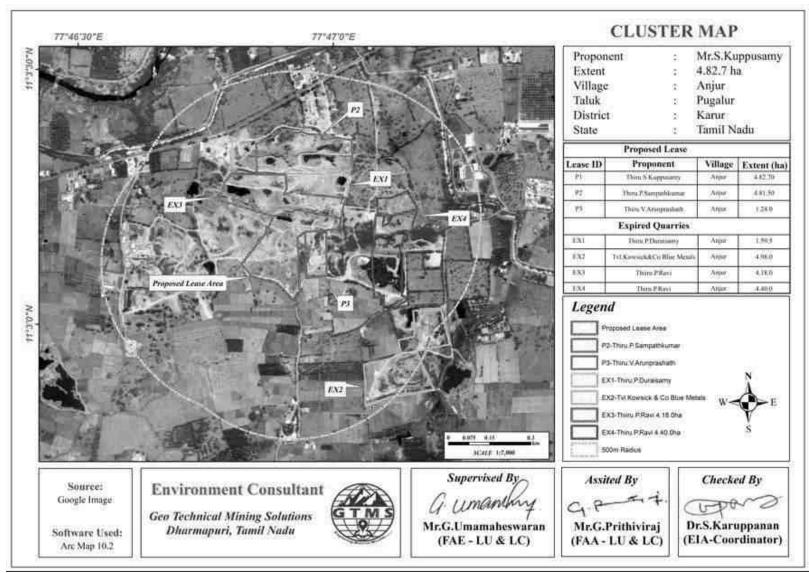


Figure 1.1 Location of the proposed and existing rough stone quarries in the cluster of 500m radius

1.3 TERMS OF REFERENCE (ToR)

The SEAC framed a comprehensive Terms of Reference (TOR) based on the information provided in the Form 1 and information collected from the proposed project site visit and issued TOR to the proponent vide Letter No: SEIAA-TN/F.No.9905/SEAC/ToR-1440/2023 Dated:10.05.2023.

1.4 POST ENVIRONMENT CLEARANCE MONITORING

For category B projects, irrespective of its clearance by MoEF/SEIAA, the project proponent shall prominently advertise in the newspapers indicating that the project has been accorded environmental clearance and the details of MoEF website where it is displayed.

After obtaining EC, the project proponent will submit a half-yearly compliance report of stipulated environmental clearance terms and conditions to MoEF & CC Regional Office & SEIAA on 1st June and 1st December of every year.

1.5 TRANSFERABILITY OF ENVIRONMENTAL CLEARANCE

A prior environmental clearance granted for a specific project or activity to an applicant may be transferred during its validity to another legal person entitled to undertake the project or activity on application by the transferor or the transferee with a written "no objection" by the transferor, to, and by the regulatory authority concerned, on the same terms and conditions under which the prior environmental clearance was initially granted, and for the same validity period (EIA Guidance Manual for Mining of Minerals, 20).

1.6 GENERIC STRUCTURE OF EIA DOCUMENT

The overall contents of the EIA report follow the list of contents prescribed in the EIA Notification 2006 and the "Environmental Impact Assessment Guidance Manual for Mining of Minerals" published by MoEF & CC. The generic structure of the EIA document should be as under:

- Introduction
- Project Description
- Description of the Environment
- Anticipated Environmental Impact & Mitigation Measures
- Analysis of Alternatives (Technology & Site)
- Environmental Monitoring Program
- Additional Studies
- Project Benefits
- Environmental Cost Benefit Analysis
- Environmental Management Plan (EMP)

- Summary & Conclusion
- Disclosure of Consultants engaged.

1.7 IDENTIFICATION OF THE PROJECT PROPONENT

The profile of the project proponent who has involved in this quarrying project has been given in Table 1.2.

Name of the Project Proponent	Mr. S. Kuppusamy	
	S/o. Samiappagounder,	
	Door.No.95, Saliankattupallam,	
A 11	Thotiyapalayam,	
Address	Muthur,	
	Kangeyam Taluk,	
	Tiruppur – 638 105.	
Status	Proprietor	

Table 1.2	Details	of Proied	ct Proponent
1 4010 1.4	Detunis		ce i i oponene

1.8 BRIEF DESCRIPTION OF THE PROJECT

The proposed project deals with excavation of rough stone and gravel which is primarily used in construction projects. The method adopted for rough stone and gravel excavation is Open Cast Semi Mechanized mining method involving formation of benches with 5 m height and 5 m width. The proposed project site is located in Anjur Village, Pugalur Taluk, Karur District, and Tamilnadu State. Some of the important features of the proposed project have been provided in Table 1.3.

Name of the Querry	Mr. S. Kuppusamy		
Name of the Quarry	Rough Stone and Gravel Quarry		
Type of Land	Patta Land		
Extent	4.82.7 Ha		
S.F.No	764/3, 765/3, 766/1,		
5.1.10	766/2, 766/3A, 767/1, 767/2A		
Toposheet No	58-E/16		
Logation of Project Site	11° 3'2.77"N to 11° 3'13.51"N		
Location of Project Site	77°46'49.20"E to 77°47'0.88"E		
Highest Elevation	190 m AMSL		

 Table 1.3 Salient Features of the Proposed Project

	Pit	Length	Width	Depth	
	Level	(m)	(m)	(m)	
	1	53	22	3	
	2	20	45	4	
	3	8	60	6	
Existing Pit Dimensions	4	15	95	7	
	5	25	20	10	
	6	71	61	12	
	7	48	140	13	
	8	82	58	15	
	9	62	76	16	
Ultimate depth of Mining		50 m B	GL		
Gaalagiaal Basauraas	Rough St	one in m ³	Grave	l in m ³	
Geological Resources	2610	5836	370	692	
Mineable Reserves	Rough St	one in m ³	Grave	l in m ³	
Mineable Reserves	799	894	312	31276	
	Rough Stone in m ³		Gravel in m ³ /1 year		
Proposed reserves for five years	747	747425		31276	
Method of Mining	Open-Cast Semi Mechanized mining			nining	
Topography		Flat Top	ography		
	Jack Hammer			5	
Machinery proposed	Com	Compressor		3	
Machinery proposed	Tipper		10		
	Exc	avator	2		
	The quarrying operation is proposed to carried				
	out by ope	n cost, using	g jack hamr	ner drilling	
Blasting Method	followed by manual breaking will be adopted to				
	release the rough stone and nonel blasting is				
	proposed in this lease area.				
Proposed Manpower Deployment		29 1			
Project Cost	Rs.1,13,87,000/-				
CER Cost @ 2% of Project Cost	Rs. 5,00,000/-				
Proposed Water Requirement		8.0 k	KLD		

1.9 SCOPE OF THE STUDY

The main scope of the EIA study is to quantify the cumulative impact of the quarries in the cluster on the study area and formulate the effective mitigation measures for each individual lease. A detailed account of the emission sources, emissions control equipment, background air quality levels, meteorological measurements, dispersion model and all other aspects of pollution like effluent discharge, and dust generation has been provided in this report. The baseline monitoring study has been carried out during the period of **March-May 2023** for various environmental components such as land, soil, air, water, noise, ecology, etc. to assess the anticipated impacts of the cluster quarry projects on the environment and suggest suitable mitigation measures for likely adverse impacts due to the proposed project. The sampling methodologies for the various environmental parameters required for the study, frequency of sampling, method of sample analysis, etc., are given in Table 3.1 in chapter III.

1.10 REFERENCES

The report has been prepared using the following references:

- Guidance Manual of Environmental Impact Assessment for Mining of Minerals, Ministry of Environment and Forests, February, 2010
- ✤ EIA Notification, 14th September, 2006
- ✤ Terms of Reference (ToR) issued by SEIAA.
- ✤ Approved Mining Plan of this Project.
- The Water (Prevention and Control of Pollution) Act, 1974
- The Air (Prevention and Control of Pollution) Act, 1981
- The Environment (Protection) Act, 1986
- The Forest (Conservation) Act, 1988
- ✤ The Wildlife (Protection) Act, 1972.

CHAPTER II

PROJECT DESCRIPTION

2.0 GENERAL INTRODUCTION

The open cast mining method, also known as open-pit mining has been proposed to extract the mineral deposit. It is the most commonly used surface mining method all over the world and is generally suitable for mining low-grade mineral deposits that are found close to the surface of the earth and distributed uniformly over a large area. Open pits are also termed quarries when the pits are used for the extraction of building materials and dimension stones.

Opencast mining starts with the development of benches, the widths of which will be determined in such a way to accommodate the use of heavy machinery. The walls of open pits will be dug at an angle that will be decided based on well-established industry standards to provide safety. In some cases where the walls are composed of weak material such as soil and highly weathered rocks, dewatering holes will be drilled horizontally to relieve the water pressure to avoid wall collapse inside the mine site.

The required mine-related infrastructures will be established close to the open pit. The mining infrastructures may include an administration building, a maintenance garage, and a warehouse. The materials mined from open pits will be brought to the surface using trucks. The waste rocks will be piled up in a suitable location, usually close to the open pit. The structure produced by the waste rock pile is known as a waste dump. The dimension of the waste dump will be determined based on industrial safety standards to prevent the rocks from falling into the surrounding area.

2.1 DECSCRIPTION OF THE PROJECT

The proponent, **Mr. S. Kuppusamy** is involved in the undertaking of establishment, construction, development, and closure of opencast mines. He, through the exploration phase, identified the proposed project site as the one that has a great potential of producing an economically viable quantity of rough stone and gravel. Therefore, the proponent had applied for quarry lease on 28.06.2022 to extract rough stone. The precise area communication letter was issued by Department of Geology and Mining, Karur vide Rc.No.300/Mines/2022 Dated:14.02.2023. Based on the precise area communication letter, mining plan was prepared. The mining plan thus prepared was approved by Deputy Director Department of Geology and Mining, Karur Rc.No.300/Mines/2022, dated:01.03.2023. The overall view of the project site is shown in Figure 2.1.

Figure 2.1 Overall View of Proposed Project Site

2.2 LOCATION AND ACCESSIBILITY

The proposed quarry project is located in Anjur Village, Pugalur Taluk, Karur District, as shown in Figure 2.2 & 2.3. The area lies between Latitudes from 11°3'2.77"N to 11°3'13.51"N and Longitudes from 77°46'49.20"E to 77°47'0.88"E. The maximum altitude of the project area is 190 m AMSL. Accessibility details to the proposed project site have been given in Table 2.1.

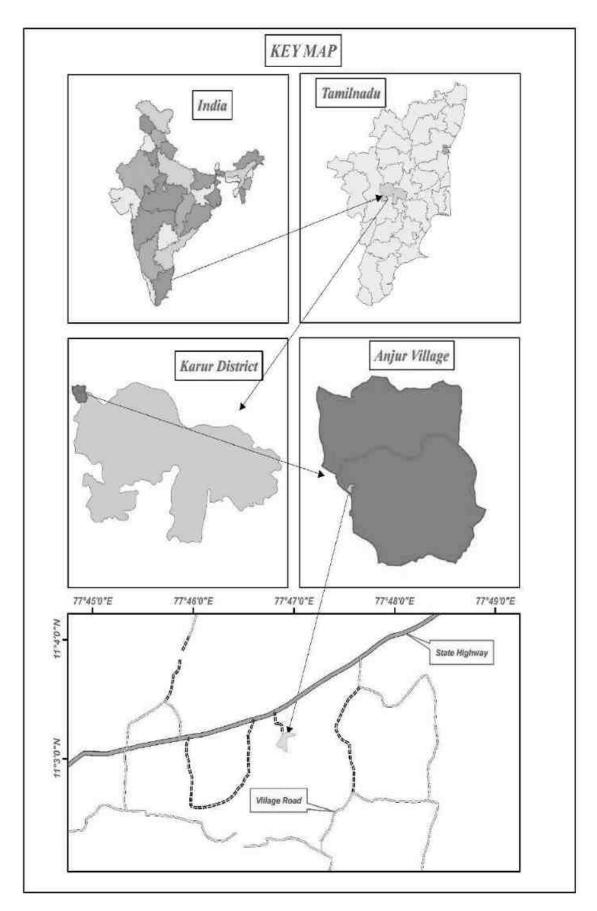


Figure 2.2 Key Map Showing Location of the Project Site

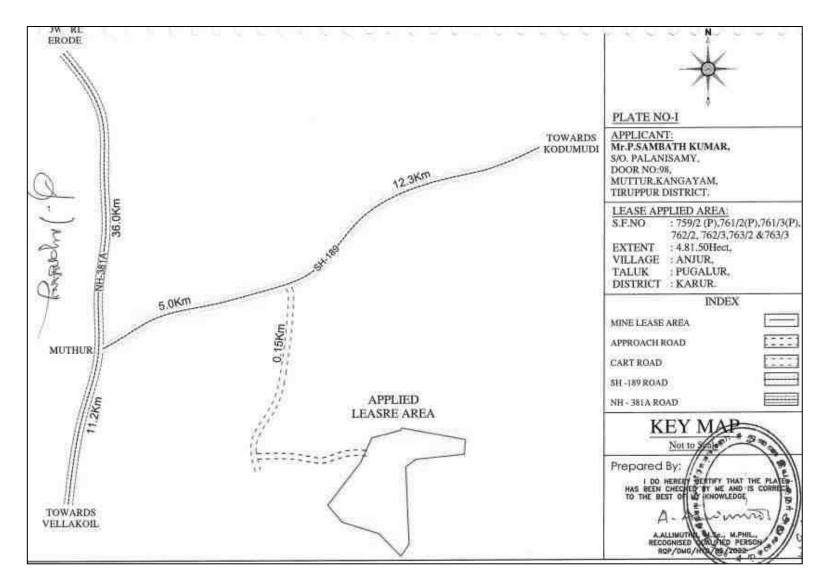


Figure 2.3 Site Connectivity to the Project Area

Noorost Doodways	(SH-189) Kangayam - Kodumudi	0.33 km N
Nearest Roadways	(NH – 381A) Kangayam - Kodumudi	4.55km W
Nearest Town	Muthur	4.72 km W
Nearest Railway Station	Kodumudi	11.58 km NE
Nearest Airport	Coimbatore	84.4 km W
Nearest Seaport	Tuticorin	254.0 km S
	Karattan kattupudur	1.61 km N
Nearest Villages	Kolantapalaiyam	0.68 km E
	Pillapalayam	1.3km SE
	Thottipalaiyam	1.36 km W

Table 2.1 Site Connectivity to the Project Area

2.3 LEASEHOLD AREA

- The extent of the proposed project site is 4.82.70 ha.
- ✤ The proposed project is site specific.
- * There is no mineral beneficiation or processing proposed inside the project area.
- There is no forest land involved in the proposed area and is devoid of major vegetation and trees.

2.3.1 Corner Coordinates

The boundary corner geographic coordinates are given in Table 2.2 and the proposed project site with boundary coordinates has been shown in Figure 2.4 & 2.5.

Pillar ID	Latitude	Longitude	Pillar ID	Latitude	Longitude
1	11°3'12.47''N	77°47'0.88''E	8	11°3'5.67''N	77°46'50.44''E
2	11°3'11.23''N	77°47'0.78''E	9	11°3'7.10''N	77°46'49.20''E
3	11°3'10.88''N	77°46'56.70''E	10	11°3'10.66''N	77°46'52.00''E
4	11°3'10.25''N	77°46'55.81''E	11	11°3'12.70''N	77°46'52.97''E
5	11°3'3.77"'N	77°46'56.05''E	12	11°3'13.32''N	77°46'55.42''E
6	11°3'2.77"N	77°46'55.36''E	13	11°3'13.51''N	77°46'55.49''E
7	11°3'4.69''N	77°46'53.49''E			

2.4 GEOLOGY

The lease area geologically occurs Hornblende–Biotite Gneiss. The Charnockite, commercially called as Roughstone occurs within the migmatite rock. Also, the lease area geomorphologically occurs pediment pediplain complex.

	77"46'50"E	77"46'55"E	77*47'0"E	PILL	AR LOCATIO	ONS MAP
	The T	N Baser	· · ·	Proponer	nt : Mr.S	Kuppusamy
法国 电位	13	P12 P13	a harder and have	Extent	: 4.82	1999 CONTRACTOR (1997)
		P11		Village	: Anju	
		Park N		Taluk	i Puga	
	a the	-	1 D2	District	1 464	
and a	S VALEP	10 P3	P2	WARDER AND	: Karu	
- 1947 ()	E Contraction	P4		State	· Tam	l Nadu
		1/2 3 1		Pillar No	Latlitude	Longitude
1000	A ···	1 Barrish	A State of the second	1	11° 03'12.47"N	77°47'00.88"E
State of	a free		191. Old * al Skind	2	11° 03'11.23"N	77°47'00.78"E
100	11000	Sol and the second	1 2 30 02 30 30	3	11° 03'10.88"N	77°46'56.70"E
ALC: NO.	P9		1 1005	4	11° 03'10.25"N	77°46'55.81"E
307	Charles .	Real Property in the second	Los Sale State Oral	5	11° 03'03.77"N	77°46'56.05"E
11 11 11	PB	STATES IN 1972		6	11° 03'02.77"N	77°46'55.36"E
- 10 mg	0	A CONTRACTOR OF		7	11° 03'04.69"N	77*46'53.49"8
	A CONTRACTOR	P7		8	11° 03'05.67"N	77*46'50.44"8
and the second		P5	10 3 00000	9	11° 03'07.10"N	77*46'49.20"E
	the second			10	11* 03'10.66"N	77°46'52.00"E
and all and a second		P6		11	11° 03'12.70"N	77°46'52.97"8
	and the second	* 4		12	11* 03'13.32"N	77°46'55.42"E
and the second second		and the second second second	La ser	13	11° 03'13.51"N	77°46'55.49"E
	10		Charles and Party			455 14 104/20
Source:	Environme	nt Consultant	Supervised By	Assited	1 By	Checked By
Google Imagery		(-Due	a umaning	GP	- +. C	FPA-2
Software Used		fining Solutions	Mr.G.Umamaheswaran	Mr.G.Pr	ithiviraj D	r.S.Karuppannar
Arc Map 10.2	unarmupuri	iuma ruun	(FAE - LU & LC)	(FAA - L		IA - Coordinator

Figure 2.4 Google Earth Image Showing Lease Area with Pillars

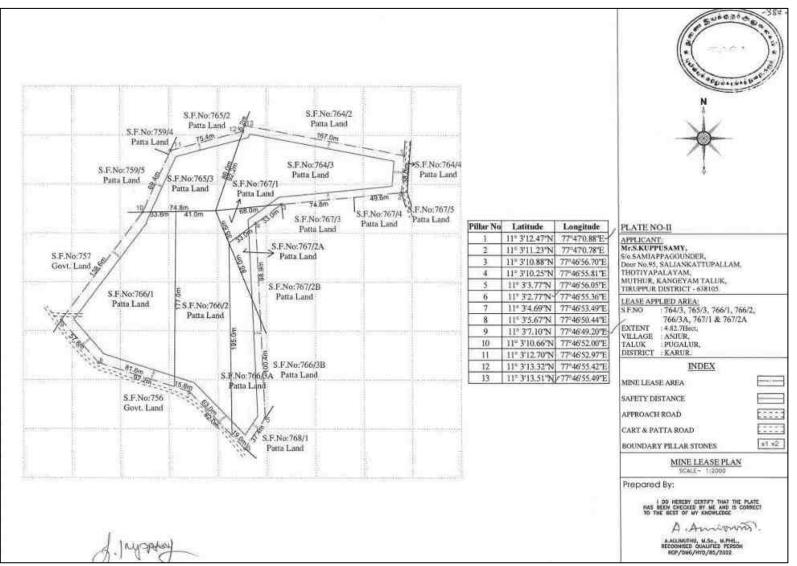


Figure 2.5 Mine Lease Plan

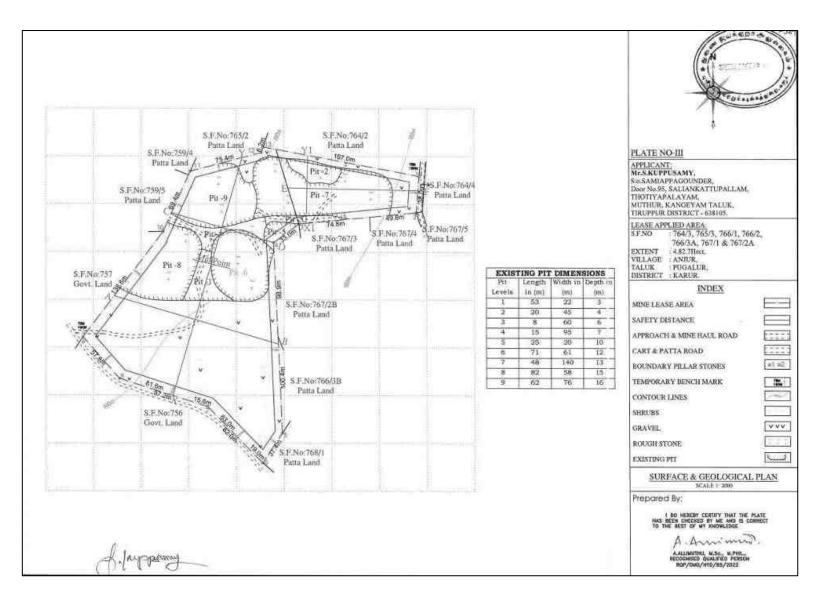


Figure 2.6 Surface and Geological Plan

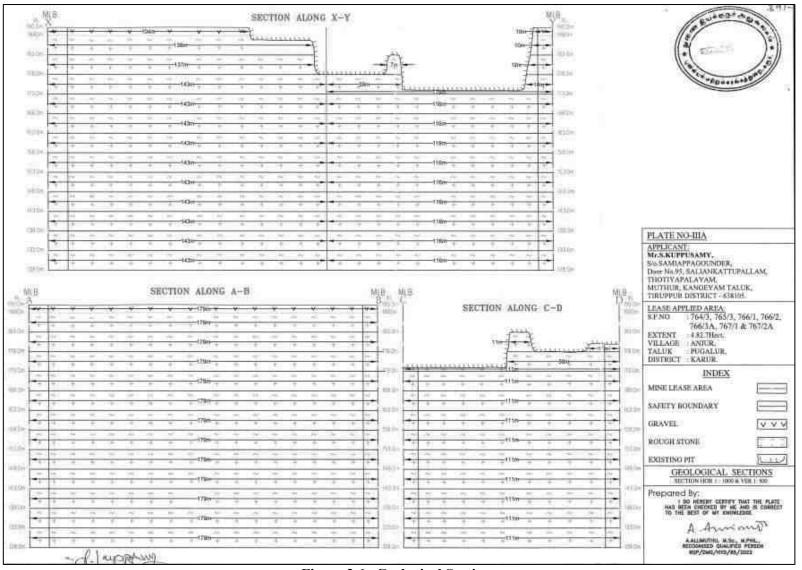
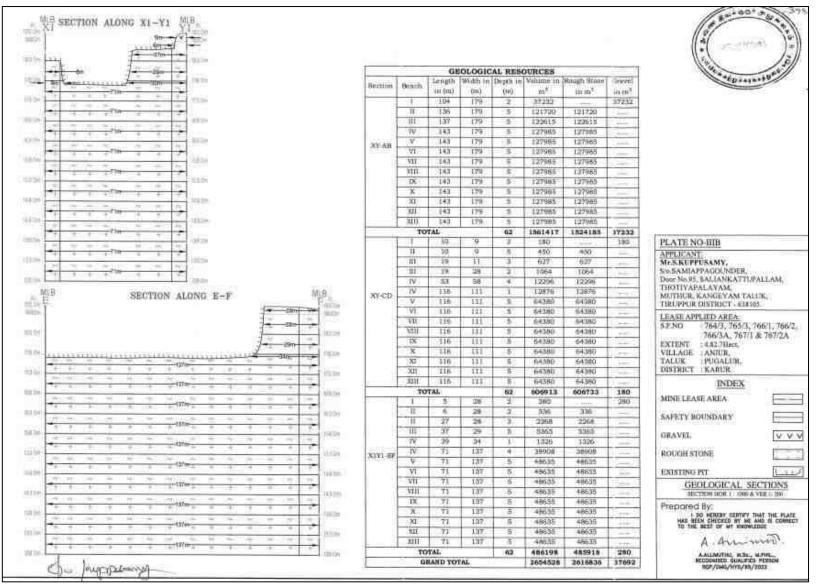



Figure 2.6a Geological Sections

Figure 2.6b Geological Sections

2.5 QUANTITY OF RESERVES

The Resources and Reserves of Rough Stone were calculated based on cross-section method by plotting sections to cover the maximum lease area for the proposed project. Based on the availability of geological resources, the mineable reserves are calculated by considering excavation system of bench formation and leaving essential safety distance of 7.5m and 10m safety distance as per precise area communication letter and deducting the locked-up reserves during bench formation (also called as Bench Loss). The mineable reserves are calculated up to the depth of 50m considering there is no waste / overburden / side burden (100% Recovery anticipated) for the proposed project. The plate used for reserve estimation has been shown in Figure 2.6,2.6a and 2.6b results of geological resources and reserves have been shown in Table 2.3.

Resource Type	Rough Stone in m ³	Gravel in m ³
Geological Resource in m ³	2616836	37692
Mineable Reserves in m ³	799894	31276
Proposed production for 5 years m ³	747425	31276

Table 2.3 Estimated Resources and Reserves of the Project

Based on the year wise development and production plan and sections, the year wise production results have been given in Table 2.4 & Figure 2.7 and Figure 2.7a.

Table 2.4 Year-Wise Production Details

Year	Rough Stone in (m ³)	Gravel in (m ³) / 1 year	
Ι	150230	31276	
II	147804		
III	159995		
IV	156505		
V	132891		
Total	747425	31276	

Source: Approved Mining Plan & Tord

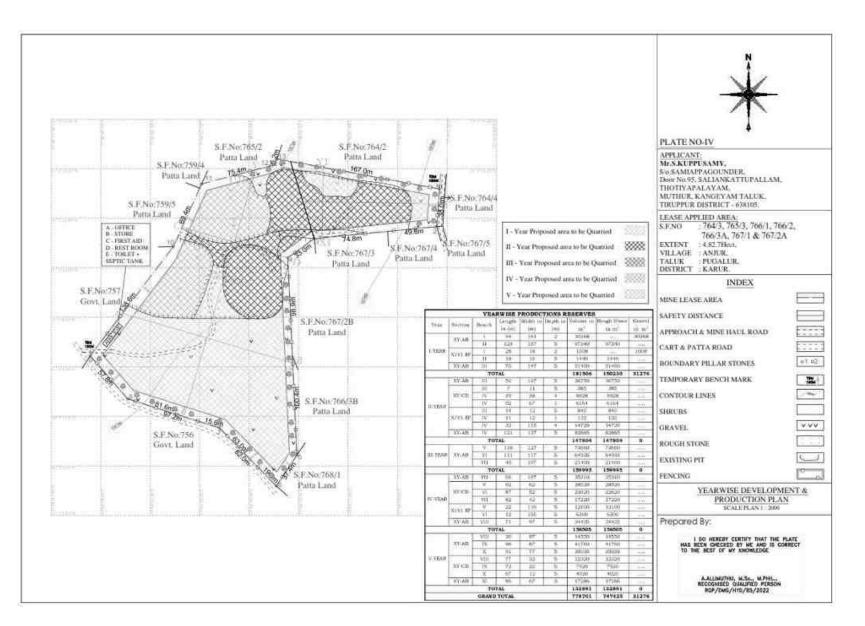


Figure 2.7 Yearwise Development & Production Plan



Figure 2.7a Year wise Production Sections

2.6 MINING METHOD

The Quarrying operation is proposed to be carried out by open cast semi-mechanized mining method with the bench height and width of 5 m each. The open cast semi-mechanized method involving drilling and blasting is proposed to extract rough stone and gravel. The extracted rough stone will be loaded manually to the trucks for dispatch to the customers. In this project, NONEL blasting will be adopted to extract rough stone.

Conceptual Blasting Design

In this project, NONEL blasting will be employed to win rough stone. This method will involve closed spaced perimeter holes to reduce the overbreak/backbreak on a blast. The objective of the blasting design is to prevent fly rocks from damaging the nearby structures.

Rules of Thumb for Blast Design

Based on practical experience and technical information, a set of rules for blasting have been provided as below (<u>Chapter8 (nps.gov</u>)). These rules will be applied to blast rocks in the proposed project.

Rule 1: The detonation velocity (VOD) of the explosive should be close to the same value of the sonic velocity (VSO) of the rock to be blasted.

The sonic velocity of a rock is considered to be a reliable indicator of its structural integrity and resistance to fragmentation. As the VOD of the explosive approaches close to the VSO of the rock, the blasting would result in relatively smaller size of fragmentation with uniformity. There is no value in using an explosive that has a VOD greatly in excess of the VSO of the rock, since there is little or no improvement in fragmentation above the VSO. When selecting an explosive to match up the VSO of a rock mass, variance of <10% in the velocities is acceptable.

Rule 2: Generally, select the densest explosive possible.

When the density of explosives is higher, the potential energy of the explosives can be greater and the more of it can be placed within a borehole of a given size.

Rule 3: Select explosives according to the characteristics of the rock formation to be blasted.

When planes of separation in the rock are smaller than the degree of fragmentation required, the rock can often be blasted by using lower density and lower detonation velocity explosives.

Rule 4: When using slurry or water gel explosives, always determine the critical temperature below which the explosive will fail to reliably detonate.

Almost all slurry explosives have a critical temperature below which they may not detonate, or may not sustain detonation in elongated columns. The explosives should not be used when the temperature of the explosive at time of loading is below that critical temperature. **Rule 5: The distance between holes (spacing) should not be greater than one-half the depth of the borehole.**

When the distance between holes in a row is greater than one-half the depth of the hole, the angles of breakage intersect above the bottom of the holes. This causes both a great deal of vertical throw and a very uneven bottom.

Rule 6: Stemming should be equal to the burden.

Stemming is useful to confine and maximize efficient use of the explosive's energy. It also reduces noise as much as possible. If the stemming is greater than the burden, the rock at the top of the borehole will have less cracking from reflection and refraction of compressive and tensile waves. Therefore, stemming should be equal to burden. Drill fines can be used for loading the borehole.

Rule 7: Subdrill (if necessary) should be between 0.3 and 0.5 of spacing/burden.

Subdrill should be equal to 0.3 of burden. It will work when there is row-for-row delay. In blasts where the delay system is both row-for-row and hole-for-hole, the subdrill should be determined by the largest dimension, which can be the spacing or the burden. An average subdrill of 0.4 of spacing is best to use for planning purposes. Based on the above-mentioned rules, blasting design has been conceptualized and has been provided in Table 2.5.

Blasthole Diameter (D) in mm	32
Burden (B) in m	1.5
Spacing (S) in m	1.30
Subdrill in m	0.45
Charge length (C) in m	0.64
Stemming	1.5
Hole Length (L) in m	2.6
Bench Height (BH) in m	2.1
Mass of explosive/hole in g	400
Stemming material size in mm	3.2
Burden stiffness ratio	1.43

 Table 2.5 Conceptual Blasting Design

Blast volume/hole in m ³	4.16
Production of rough stone/day in m ³	554
Number of blastholes/day	133
Blasthole pattern	Staggered
Mass of explosive /day in kg	53.27
Powder factor in kg/m ³	0.10
Loading density	0.63
Type of explosives	Slurry
Diameter of packaging in mm	25
Initiation system	NONEL
Fly rock distance in m	19

2.6.1 Magnitude of Operation

Based on the results of estimated production for the 5 years, details about the size of operation have been provided in Table 2.6.

	Rough Stone in m ³	Gravel in m ³
	5 years	1 year
Proposed production for 5 years	747425	31276
Number of Working Days /Annum	270	270
Production of /Day (m ³)	554	116
No. of Lorry Loads	92	19

Table 2.6 Operational Details for Proposed Project

2.6.2 Extent of Mechanization

List of machineries proposed for the quarrying operation is given in Table 2.7.

Table 2.7 Machinery Details

S. No.	Туре	No of Unit	Size /Capacity	Make	Motive Power
1	Jack Hammers	5	Hand held		Diesel Drive
2	Compressor	3	Air		Diesel Drive
3	Hydraulic Excavator	2	$2.9-4.5 \text{ m}^3$		Diesel Drive
4	Tipper	10			Diesel Drive

2.6.3 Progressive Quarry Closure Plan

The progressive quarry closure plan (Figure 2.8) of the proposed project shows past, present, and future land use statistics. According to the land use results, as shown in Table 2.8 At Present about 2.40.7 ha of land is used for quarrying, 2.38.0 ha of land is unutilized, Whereas, at the end of the mine life, about 0.10.7 ha of land is unutilized; about 0.60.5 ha of land is used for green belt and 0.15.0 will be used for roads and 0.02.0 is used for infrastructure.

Description	Present Area (ha)	Area at the end of life of quarry (ha)
Area under quarry	2.40.7	3.94.5
Infrastructure	Nil	0.02.0
Roads	0.04.0	0.15.0
Green Belt & Dump	Nil	0.60.5
Drainage & Settling Tank	Nil	Nil
Unutilized area	2.38.0	0.10.7
Total	4.82.7	4.82.7

Table 2.8 Land use data at present, during scheme of mining, and at the end of mine life

2.6.4 Progressive Quarry Closure Budget

As the proposed project has the enormous potential for continuous operations even after the expiry of lease period, mine closure plan is not proposed for now. Based on the progressive mine closure plan for the scheme period, the mine closure cost is given in Table 2.9.

Activity	Capital Cost	Recurring Cost/Annum
965 plants inside the lease area	193080	28962
1448 plants outside the lease area	434430	43443
Wire Fencing (4.82.7 ha)	965400	48270
Renovation of Garland Drain (4.82.7 ha)	48270	24135
Total	16,41,180	1,44,810

 Table 2.9 Mine Closure Budget

Source: Environment Management Plan

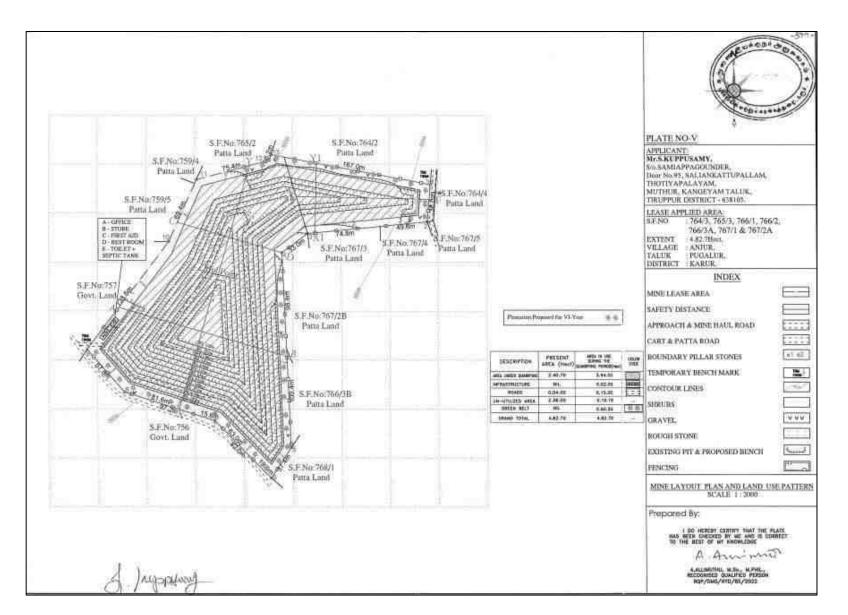
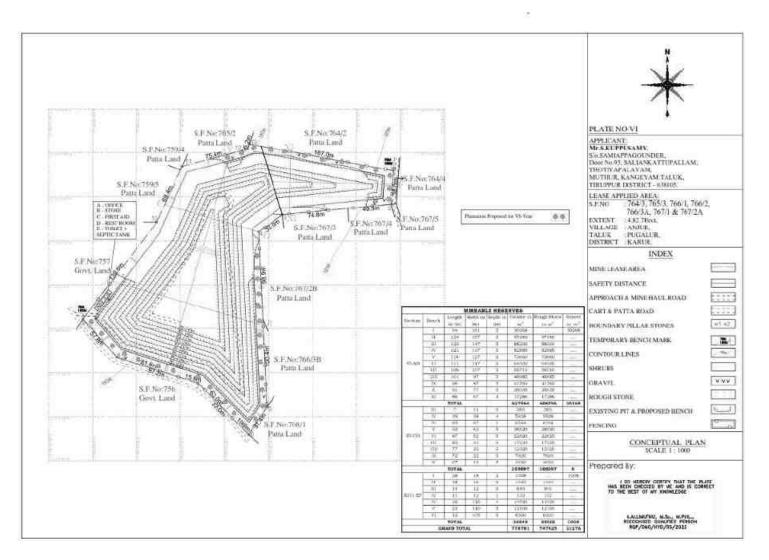



Figure 2.8 Mine Layout Plan and Land Use Pattern

Figure 2.9 Conceptual Plan

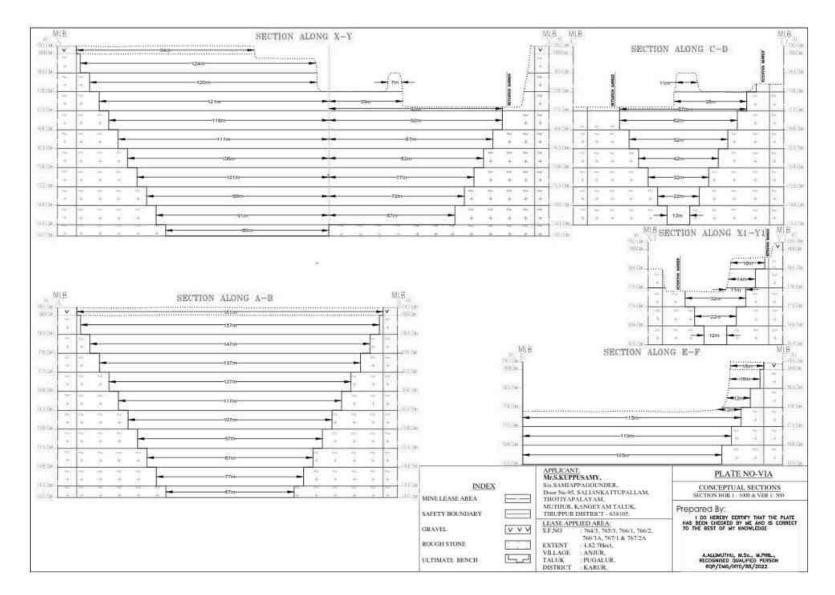


Figure 2.9a Conceptual Sections

2.6.5 Conceptual Mining Plan

The ultimate pit size is designed based on certain practical parameters such as economical depth of mining, safety zones, permissible area, etc. Details of ultimate pit dimensions have been derived from given in Table 2.10, Figure 2.9 & 2.9a.

Pit	Length (m)	Width (m) (Max)	Depth (m)
Ι	124	161	50

Table 2.10 Ultimate Pit Dimension

Source: Approved Mining Plan & ToR

2.6.6 Infrastructures

Infrastructures like mines office, temporary rest shelters for workers, latrine and urinal facilities have been proposed as per the mine rule and will be established after the grant of quarry lease. There is no proposal for the mineral processing or ore beneficiation plants in this project.

2.6.6.1 Other Infrastructure Requirement

No workshops are proposed inside the project area. Hence, there will not be any process effluent generation from the proposed lease area. Domestic effluent from the mine office will be discharged to septic tank and soak pit. As there is no toxic effluent expected to generate in the form of solid, liquid or gaseous form, there is no requirement of waste treatment plant.

2.6.7 Water Requirement

Detail of water requirement in KLD is given in Table 2.11.

Purpose	Quantity	Source
Dust Suppression	2.0 KLD	Existing bore wells nearby the lease area
Green Belt development	2.5 KLD	Existing bore wells nearby the lease area
Drinking & Domestic	3.5 KLD	Existing bore wells and approved water vendors
Total	8.0 KLD	

Table 2.11 Water Requirement for the Project

Source: Prefeasibility Report

2.6.8 Energy Requirement

High speed Diesel (HSD) will be used for quarrying machineries. As per the data shown in Table 2.12, Around 32,70,643 litres of HSD will be used for rough stone and gravel extraction during this 5 years plan period. The diesel will be brought to the site from nearby diesel pumps.

Fuel Requirement for Excavator						
Details	Rough Stone	Gravel	Total Diesel			
	(747425 m ³)	(31276 m ³)	(litre)			
Average Rate of Fuel Consumption (l/hr)	16	10				
Working Capacity (m ³ /hr)	20	60				
Time Required (hours)	37371	521				
Total Diesel Consumption for 5 years (litre)	597940	5213	603153			
Fuel Requirement	t for Compresso	r	<u> </u>			
Average Rate of Fuel Consumption/hole (litre)	0.4					
Number of Drillholes/day	133					
Total Diesel Consumption for 5 years (litre)	71820	7182				
Fuel Requirem	ent for Tipper		<u> </u>			
Average Rate of Fuel Consumption/Trip (litre)	20	20				
Carrying Capacity in m ³	6	6				
Number of Trips / days	92	4*				
Number of Trips / 5 years	124571 5213					
Total Diesel Consumption for 5 years (litre)	2595670					
Total Diesel Consumption by Excavator,	Compressor an	d Tipper	3270643			

Table 2.12 Fuel Requirement Details

* Number of truck loads for gravel has been normalized for 5 years.

2.6.9 Capital Requirement

The project proponent will invest **Rs. 1,13,87,000**/- to the project. The breakup summary of the investment has been given in Table 2.13.

S. No.	Description	Cost (Rs.)				
1	Fixed Asset Cost	38,60,000/-				
2	Machinery cost	30,00,000/-				
3	EMP Cost	45,27,000/-				
	Total Project Cost1,13,87,000/-					

Table 2.13 Capital Requirement Details

Source: Approved Mining Plan

2.7 MANPOWER REQUIREMENT

The skilled, competent qualified statutory persons will be engaged for quarrying operation, preference will be given to the local community. Number of employees required for this project have been provided in Table 2.14.

S. No.	Category	Role	Nos.		
		Mine manager	1		
1.	Highly Skilled	Mine Engineer	1		
1.		Mine Geologist	1		
		Blaster	1		
2.	Unskilled	Musdoor/ Labours	25		
	Total				

Table 2.14 Employment Potential for the proposed project

Source: Prefeasibility Report

2.8 PROJECT IMPLEMENTATION SCHEDULE

The commercial operation will commence after the grant of Environmental Clearance. CTO and CTE will be obtained from the Tamil Nadu State Pollution Control Board. The conditions imposed during the environmental clearance will be compiled before the start of mining operation. Expected time schedule for the quarrying operation is given Table 2.15.

 Table 2.15 Expected Time Schedule

S. No.	Particulars		Time Schedule (in Months)			Remarks if any		
		1 st	2 nd	3 rd	4 th	5 th	-	
1	Environmental							
	Clearance							
2	Consent to Establish						Project Establishment	
							Period	
3	Consent to operate						Production starting period.	
Time lin	Time line may vary; subjected to rules and regulations /& other unforeseen circumstances							

Source: Anticipated based on Timelines framed in EIA Notification & CPCB Guidelines

CHAPTER III

DESCRIPTION OF THE ENVIRONMENT

3.0 GENERAL

This chapter presents a regional background to the baseline data at the very onset, which will help in better appreciation of micro-level field data, generated on several environmental and ecological attributes of the study area. The baseline status of the project environment is described section wise for better understanding of the broad-spectrum conditions. The baseline environment quality represents the background environmental scenario of various environmental components such as land, water, air, noise, biological and socio-economic status of the study area. Field monitoring studies to evaluate the base line status of the project site were carried out covering **March through May 2023** with CPCB guidelines. Environmental baseline data were collected by an NABL accredited and MoEF notified **Enviro Farmers Labs & Technologies and Accuracy Analabs**, for the environmental attributes including soil, water, air, and noise and by FAEs for ecology and biodiversity, traffic, and socio-economy. *Study Area*

The study area has been divided into two zones: core zone and buffer zone. Core zone is considered as lease area and buffer zone as 5 km radius from the periphery of the cluster, except for ecological study, which considers 10 km as buffer zone. Both core and buffer zones are taken as the study area. The data was collected from the study area to understand the existing environment conditions of the above-mentioned environmental components. Sampling methodologies for the various environmental parameters, including frequency of sampling, method of sample analysis, etc., are briefly given in Table 3.1.

Attribute	Parameters	Frequency of Monitoring	No. of Locations	Protocol
Land Use/ Land Cover	Land-use Pattern within 5 km radius of the study area	Once during the study period	Study Area	Satellite Imagery & Primary Survey
*Soil	Physico- Chemical characteristics	Once during the study period	7 (1 in core & 6 in buffer zone)	IS 2720 Agriculture Handbook - Indian Council of Agriculture Research, New Delhi

 Table 3.1 Monitoring Attributes and Frequency of Monitoring

*Water Quality	Physical, Chemical and Bacteriological Parameters	Once during the study period	10 (4 surface water & 6 ground water)	IS 10500& CPCB Standards
Meteorology	Wind speed Wind direction Temperature Cloud cover Dry bulb temperature Rainfall	1 hourly continuous mechanical/automatic weather station	1	Site specific primary data & secondary data from IMD Station
*Ambient Air Quality	PM ₁₀ PM _{2.5} SO ₂ NO _X Fugitive dust	24 hours, twice a week	9 (1 core & 8 buffer)	IS 5182 Part 1-23 National Ambient Air Quality Standards, CPCB
*Noise Levels	Ambient noise	Hourly observation for 24 hours per location	12 (1 core & 11 buffer zone)	IS 9989 As per CPCB Guidelines
Ecology	Existing flora and fauna	Through field visit during the study period	Study area	Primary Survey by Quadrate & Transect Study Secondary Data – Forest Working Plan
Socio Economic Aspects	Socio- economic characteristics, Population statistics and existing infrastructure in the study area	Site visit & Census Handbook, 2011	Study area	Primary Survey, census handbook & need based assessments.

*All monitoring and testing have been carried out as per the Guidelines of CPCB and MoEF & CC.

3.1 LAND ENVIRONMENT

3.1.1 Geology and Geomorphology

Study area is mainly composed of hornblende-biotite genesis and phroxene granulite, as shown in Figure 3.1. The lease area occurs in migmatite terrain.

Among the geomorphic units, shallow weathered/buried pediment and pediplain dominate the study area, as shown in Figure 3.2. The lease area occurs in shallow weathered/buried pediplain terrain.

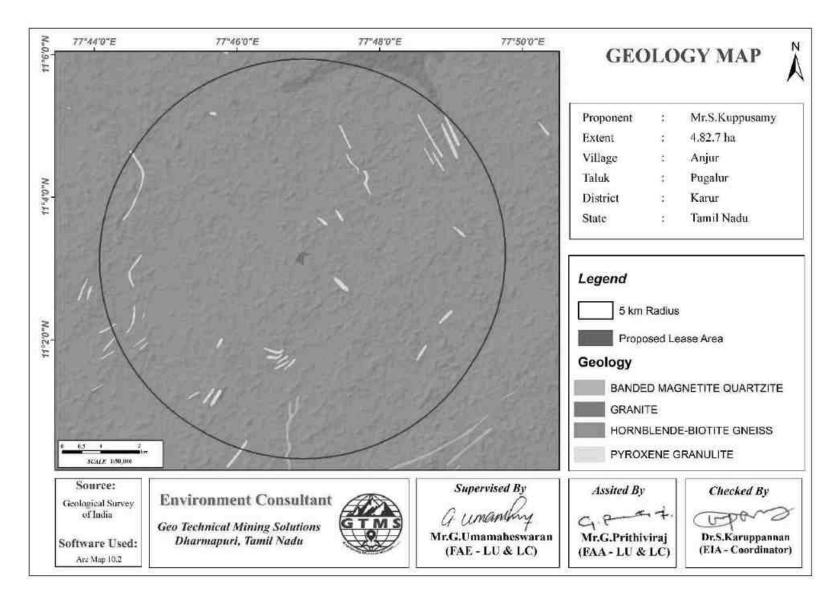


Figure 3.1 Geology Map of 5 km Radius from Proposed Project Site

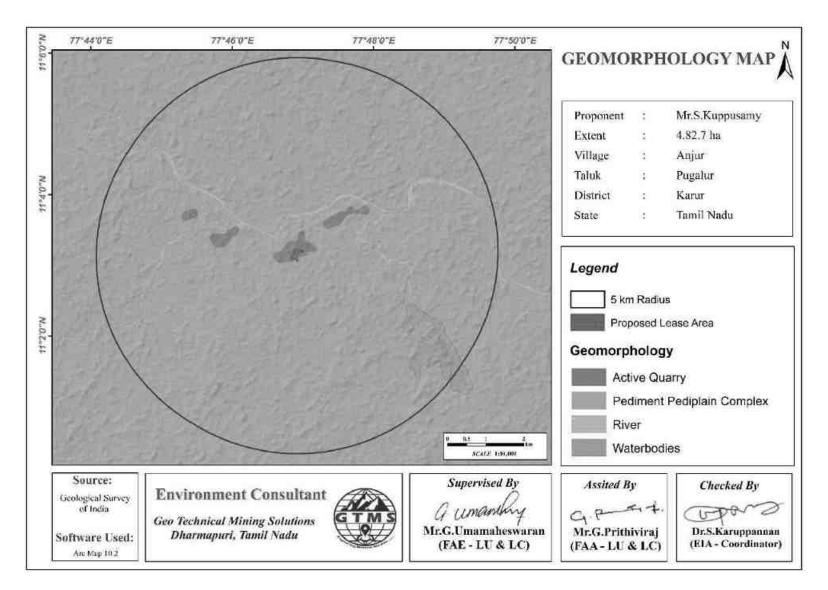


Figure 3.2 Geomorphology Map of 5 km Radius from Proposed Project Site

3.1.2 Land Use/ Land Cover

Land Use and Land Cover (LULC) map, as shown in Figure 3.3 was prepared using Sentinel II image for the study area of 5 km radius to provide a baseline status of the study area covering 5 km radius around the proposed mine site. Totally, 7 LULCs were mapped. The areal extent of each LULC is provided in Table 3.2. Of the total area, mining area covers only 82.95 ha accounting for 1.05 %, of which lease area of 4.82.7 ha contributes only about 0.057 %. This small percentage of mining activities shall not have any significant impact on the land environment.

S. No.	Classification	Area (ha)	Area (%)
1	Crop Land	4767.28	60.57
2	Dense Forest	12.27	0.16
3	Fallow Land	770.21	9.79
4	Mining/Industrial lands	82.95	1.05
5	Plantations	1983.74	25.20
6	Settlements	65.47	0.83
7	Water Bodies	189.29	2.40
I	Total	7871.21	100.0

Table 3.2 LULC Statistics of the Study Area

Source: Sentinel II Satellite Imagery

3.1.3 Topography

The proposed lease area is located in a flat terrain with an altitude range of 190 m AMSL.

3.1.4 Drainage Pattern

Drainage pattern is the pattern formed by the streams, rivers, and lakes in a particular drainage basin over time that reveals characteristics of the kind of rocks and geological structures in a landscape. The proposed area shows dendritic drainage pattern indicating uniform lithology beneath the surface, as shown in Figure 3.4.

3.1.5 Seismic Sensitivity

The proposed lease area is situated in a Seismic Zone II, as defined by National Center for Seismology (<u>Official Website of National Centre of Seismology</u>). The Zone II is defined as the region where only minor damage is expected from seismic events. In this respect, the proposed lease area is located in a low earthquake hazard area.

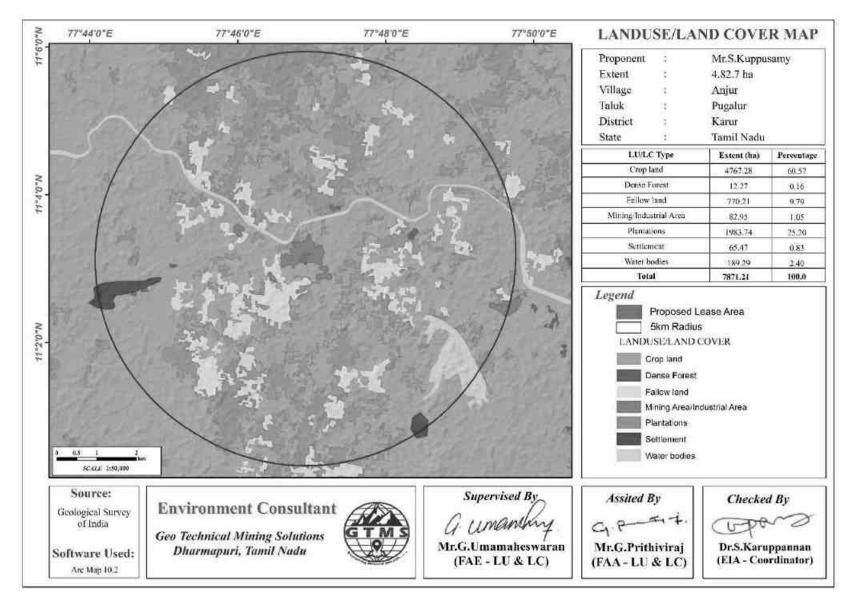


Figure 3.3 LULC Map of 5 km Radius from Proposed Project Site

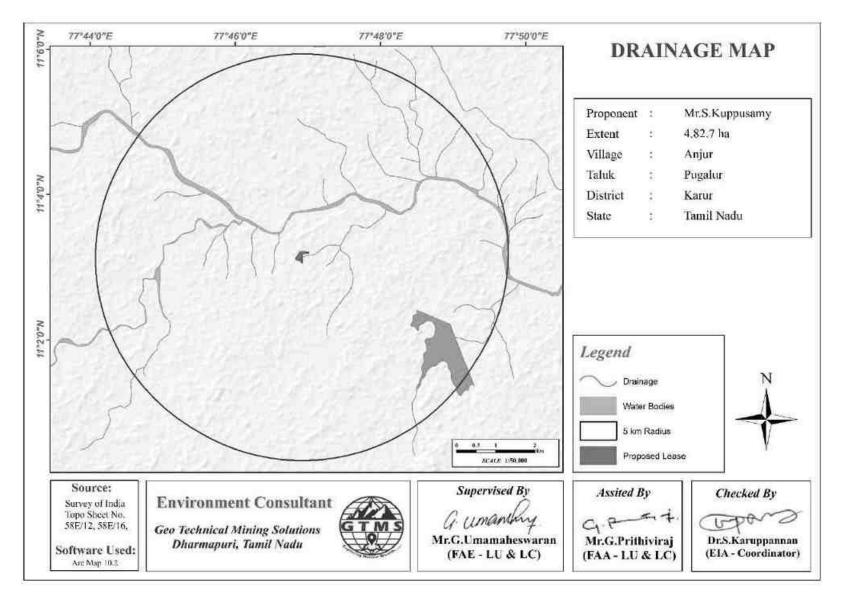


Figure 3.4 Drainage Map of 5 km Radius from Proposed Project Site

3.1.6 Soil

Composite soil samples were collected from 7 locations of the study area to determine the baseline soil characteristics of the soil. The locations were selected for soil sampling based on soil types, vegetative cover, and industrial & residential activities including infrastructure facilities. Soil samples were collected up to 90 cm depth, filled in polythene bags, coded and sent to laboratory for analysis. The locations of the sampling sites are shown in Table 3.3 and Figure 3.5. The samples thus collected were analysed for physical and chemical characteristics. The physical and chemical characteristic results of soil samples are provided in Table 3.4.

S. No.	Sampling ID	Location	Distance (km)	Direction	Coordinates
1	S01	Core			11° 3'4.84"N 77°46'55.22"E
2	S02	Sambathkumar Lease	0.130	S	11° 3'21.43"N 77°46'59.51"E
3	S03	Valayapalayam	3.17	Е	11° 3'15.90"N 77°48'41.23"E
4	S04	Aathupalayam Dam	3.90	SE	11° 2'5.39"N, 77°48'49.62"E
5	S05	Muthur	3.07	SW	11° 2'2.13"N 77°45'45.79"E
6	S06	Siluvampalayam	2.75	NE	11° 4'46.51"N 77°47'26.65"E
7	S07	Poolavalasu	4.0	NW	11° 4'41.32"N 77°45'15.53"E

Table 3.3 Soil Sampling Locations

Source: On-site monitoring/sampling Enviro Farmers Labs & Technologies, Accuracy Analabs in association with GTMS.

Physical Characteristics

The soil samples in the study area show loamy textures varying between silty clay loam, silty loam and sandy loam. pH of the soil varies from 6.94 to 8.2 indicating slightly acidic to slightly alkaline nature. Electrical conductivity of the soil varies from 3.91 to 4.8 dsm⁻¹. Bulk density ranges between 0.79 and 0.95 g/cm³.

Chemical Characteristics

Nitrogen ranges between 0.96 and 2.4 %. Potassium ranges between 1.69 and 5.22 %. Calcium ranges between 3.13 and 6.23 mg/kg. Organic matter content ranges between 20. and 30.2 %. Manganese ranges between 1553 and 2653 mg/kg.

Soil Quality Assessment

Soil quality is the foundation of sustainable crop production. Soil quality assessment helps to understand soil conditions and adopt suitable production practices. It can be done using physical, chemical, and biological properties of soil. For this assessment, four soil quality parameters including PH, EC, OM, and BD were taken into account. The soil quality score for each sample has been provided in Table 3.4.

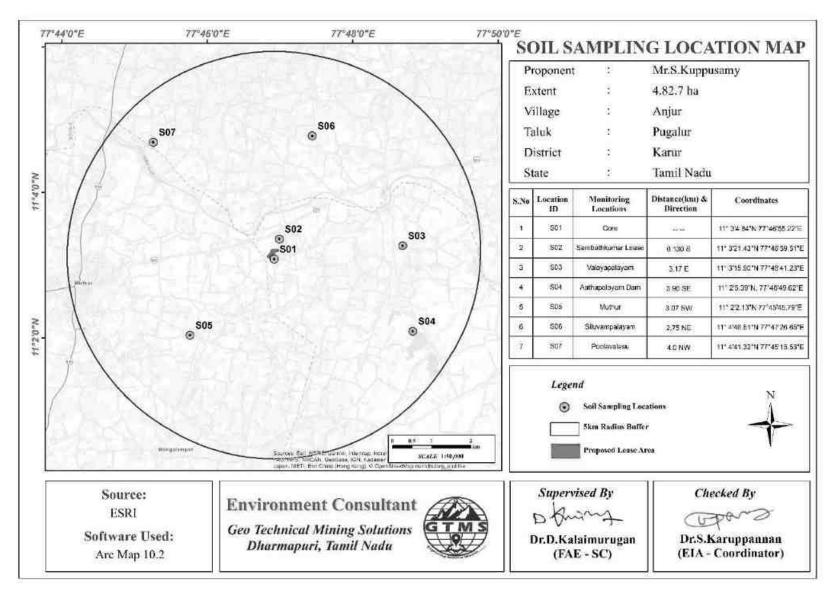


Figure 3.5 Toposheet Showing Soil Sampling Locations within 5 km Radius around Proposed Project Site

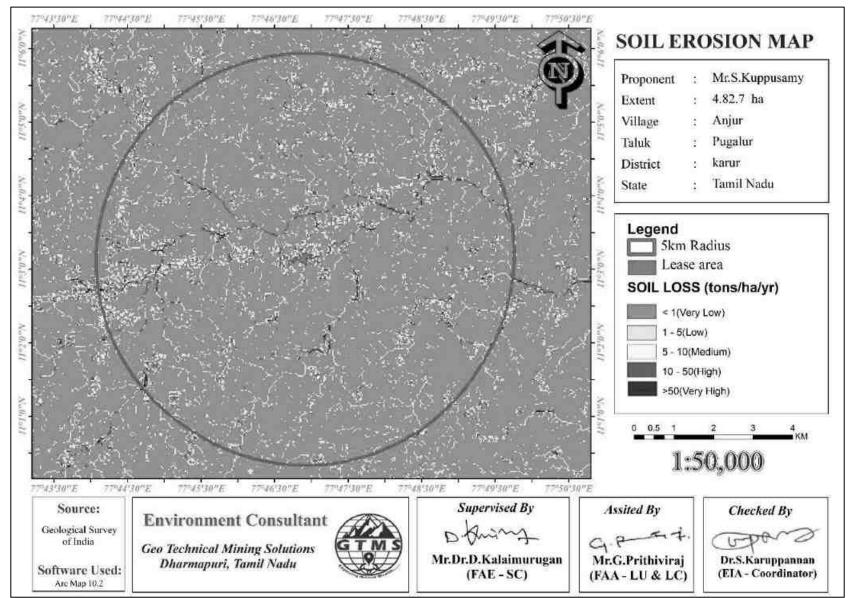


Figure 3.6 Soil Erosion map within 5 km Radius around the Proposed Project Site

S. No	Parameters	Unit	S01 Core zone	Minimum	Maximum	Average
1	Colour	-	Brown colour	Brown colour	Brown colour	Brown colour
2	Odour		No foul odour	No foul odour	No foul odour	No foul odour
3	Moisture @ 105 ^o C	%	31.2	18.3	20.3	19.23
4	Bulk Density	g/cm ³	0.79	0.79	0.95	0.90
5	pH @ 25 ⁰ C in 5% Solution	-	6.93	6.94	8.2	7.44
6	Specific EC @ 25 ⁰ C	dsm ⁻¹	4.29	3.91	4.8	4.16
7	Total Nitrogen (N)	%	1.92	0.96	2.4	1.96
8	Total phosphorus (P)	%	3.33	2.05	3.62	2.98
9	Potassium (K)	%	4.03	1.69	5.22	4.07
10	Total Organic carbon	%	23.6	20.6	30.2	27.00
11	C: N Ratio	-	23.613.2:1	12.2:1	18.4:1	15.12:1
12	Arsenic (As)	mg/kg	BDL [DL 0.1]	BDL [DL 0.1]	BDL [DL 0.1]	BDL [DL 0.1]
13	Mercury (Hg)	mg/kg	BDL [DL 0.001]	BDL [DL 0.001]	BDL [DL 0.001]	BDL [DL 0.001]
14	Lead (Pb)	mg/kg	33.1	23.5	39.1	31.47
15	Cadmium (Cd)	mg/kg	0.45	0.39	0.63	0.54
16	Chromium (Cr)	mg/kg	16.1	22.7	30.2	25.77
17	Copper (Cu)	mg/kg	29.15	64.2	75.6	71.95
18	Zinc (Zn)	mg/kg	356.1	196.1	327.9	292.12

Table 3.4 Soil Quality of the Study Area

19	Nickel (Ni)	mg/kg	BDL [DL 0.1]	BDL [DL 0.1]	BDL [DL 0.1]	BDL [DL 0.1]
20	Calcium (Cr)	mg/kg	2351.0	2056	3956	3075.50
21	Manganese (Mn)	mg/kg	1759.0	1553	2653	2056.67
22	Porosity	%	1.11	0.85	3.34	2.49
23	Water retention	Inch of water/foot of soil	1.32	1.36	2.42	2.05
24	Salinity	PPT	9.55	6.27	14.2	9.34
25	SAR Value	-	2.90	2.6	4.5	3.40
26	Texture	-	Clay Lom	С	lay Lom, sandy clay Lor	n
27	Sand	%	43.31	12.56	44.31	31.00
28	Clay	%	32.25	27.42	66.2	40.83
29	silt	%	24.44	18.9	42.29	27.13

Source: Sampling Results by Enviro Farmers Labs & Technologies and Accuracy Analabs, in association with GTMS.

					Soil Quality Scor	·e
S. No.	OM	BD	PH	EC	Total Score	Recommendation
S01	33	13	13	11	71	The Soil Requires Major and Immediate Treatment
S02	56	13	13	2	84	The Soil Deguine Mederate Treatment
S03	56	13	13	2	84	The Soil Requires Moderate Treatment
S04	56	13	13	2	84	
S05	33	13	13	11	71	
S06	33	13	13	11	71	The Soil Requires Major and Immediate Treatment
S07	33	13	20	11	78	

Table 3.4a Assigning Scores to Soil Quality Indicators

OM (Organic Matter) BD (Bulk Density) PH (Potential of Hydrogen) EC (Electrical Conductivity)

3.2 WATER ENVIRONMENT

The water resources, both surface and groundwater play a significant role in the development of the area. The purpose of this study is to assess the baseline quality of surface and ground water.

S. No	Sampling ID	Location	Distance (km)	Direction	Coordinates
1	SW01	Noyyal River, Anjur	0.59	NW	11° 3'25.94"N 77°46'32.39"E
2	SW02	Noyyal River, Korakkattupudur,	3.82	NE	11° 4'12.99"N 77°48'54.85"E
3	SW03	Noyyal River, Muthur	4.35	NW	11° 4'40.73"N 77°44'52.65"E
4	SW04	Aathupalayam Dam	4.72	SE	11° 1'44.40"N 77°49'5.42"E
5	OW01	Siluvampalayam	2.66	NE	11° 4'45.46"N 77°47'14.21"E
6	OW02	Nagapalayam	2.69	SE	11° 1'52.43"N 77°47'19.26"E
7	OW03	Athupalayam	4.43	SW	11° 1'35.61"N, 77°48'51.55"E
8	BW01	Poondipalayam	4.77	SSE	11° 0'30.59"N, 77°47'26.56"E
9	BW02	Salliyankattupalayam	0.53	W	11° 3'9.46"N 77°46'35.52"E
10	BW03	Mangalapatti	3.18	SW	11° 1'53.88"N 77°45'48.30"E

Table 3.5 Water Sampling Locations

Source: On-site monitoring/sampling by **Enviro Farmers Labs & Technologies,** in association with GTMS.

3.2.1 Surface Water Resources and Quality

Noyyal River is the prominent surface water resources present in the study area. This river was ephemeral in nature, which convey water only after rainfall events. The proposed project area is located 0.59 km NW of Noyyal River, as shown in Table 3.5 and Figure 3.7. Four surface water sample, known as SW01 were collected from the Noyyal River (Anjur, 0.59 km NW), SW02 were collected from the Noyyal River (Korakkattupudur, 3.82 NE), SW03 were collected from the Noyyal River (Muthur, 4.35 NW), to assess the baseline water quality. Table 3.6a summarizes surface water quality data of the collected sample.

Result for surface water sample in the Table 3.6a indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

3.2.2 Ground Water Resources and Quality

Groundwater in the study area occurs in the crystalline rocks of Archaean age and recent alluvium. The movement of the groundwater is controlled by the intensity of weathering and fracturing of crystalline rocks. Dug wells and bore wells are the most common ground water abstraction structures in the area. However, in dry season, people in the study area heavily rely on bore wells for their domestic and agriculture purpose.

Six groundwater samples, known as OW01, OW02, OW03, BW01, BW02 and BW03, were collected from bore wells and open wells were analysed for physico-chemical conditions, heavy metals and bacteriological contents in order to assess baseline quality of ground water. Ground water sampling locations and their distance and direction from the lease area are provided in Table 3.5 and the spatial occurrence of water sampling locations is shown in Figure 3.7. Table 3.6 summarizes ground water quality data of the nine samples.

Results for ground water samples in the Table 3.6 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

3.2.3 Hydrogeological Studies

The area within 2 km radius consists of numerous open wells and deep wells. Groundwater level data were collected both from open wells and bore wells for two monsoon seasons as discussed in the following section.

3.2.3.1 Groundwater Levels and Flow Direction

Data regarding depth to groundwater levels are essential to infer the direction of groundwater movement within the study area. Knowledge of groundwater flow direction is must in choosing location for background groundwater quality monitoring well and in locating recharge and discharge areas. Therefore, data regarding groundwater elevations were collected from 9 open wells and 9 bore wells at various locations within 2 km radius around the proposed project sites for the period from March through May 2023 (Pre-Monsoon Season) and from October through December 2022, (Post Monsoon Season).

The open well water level data thus collected onsite are provided in Tables 3.7 and 3.8. According to the data, average depths to the static water table in open wells range from 20.6 to 23.5 m BGL in pre monsoon and 11.5 to 16.3 m BGL in post monsoon. The bore well data thus collected onsite are provided in Tables 3.9 and 3.10. The average depths to static potentiometric surface in bore wells for the period of October through December (Post-Monsoon Season) vary from 62.3 to 65.8 m and from 63.8 to 67.6 m for the period of March through May, (Pre-Monsoon Season). Data on the depths to static water table and potentiometric surface were used to draw contour lines connecting groundwater elevation (also known as equipotential hydraulic head) to determine the groundwater flow direction perpendicular to the contour lines.

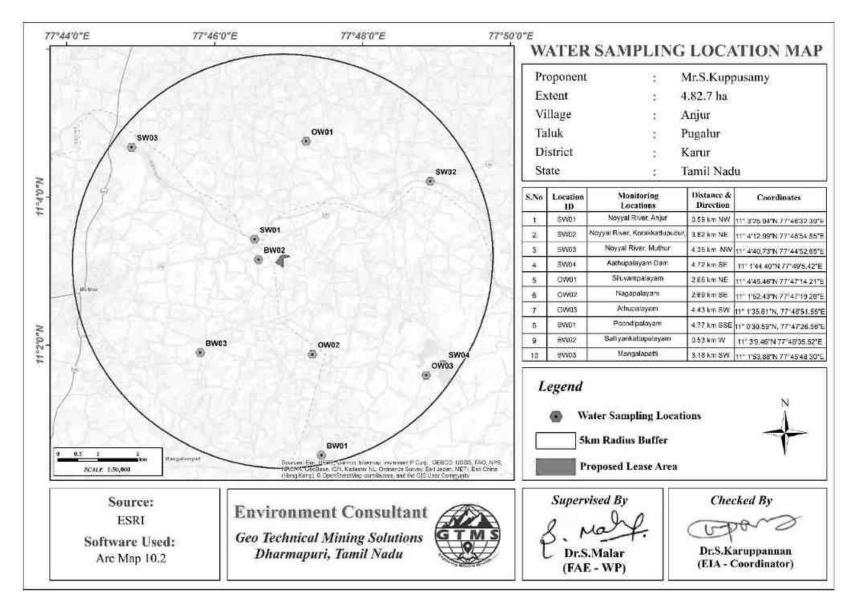


Figure 3.7 Toposheet Showing Water Sampling Locations within 5 km Radius around Proposed Project Site

			nu mutti Quui	ity mesure		
Daramators	Unite	R	esult of Ground	Acceptable	Permissible Limits As Per	
rarameters	Units	Minimum	Maximum	Average	- Ellints As per IS10500:2012	IS 10500:2012
Colour	Hazen	<0	6	3	5	15
Odour	Odourless	Odourless	Odourless	Odourless	Agreeable	Agreeable
рН@ 25°С	-	7.46	7.9	7.73	6.5 - 8.5	No relaxation
TDS @ 180 ⁰ C	mg/l	403	1717	1381.3	500	2000
Total Hardness (as CaCO ₃)	mg/l	192	392	334.66	200	600
Calcium Hardness	mg/l	140	260	221.3	-	-
Magnesium Hardness	mg/l	52	132	113.3	-	-
Calcium (as Ca)	mg/l	56	104	88.6	75	200
Magnesium (as Mg)	mg/l	13	32.1	27.51	30	100
Chloride (as Cl)	mg/l	86	516	387	250	1000
Total Alkalinity (as CaCO ₃)	mg/l	120	310	245.6	200	600
Sulphate (as SO ₄)	mg/l	43	180	142	200	400
Turbidity	NTU	<1.0	<1.0	<1.0	1.0	5
1		BIOLO	GICAL REPOR	RT	1	1
E. coli	MPN/100ml	7	17	11.8	-	1600
Coliform	MPN/100ml	9	16	16	-	1600
	Odour pH@ 25°C TDS @ 180 ⁰ C Total Hardness (as CaCO ₃) Calcium Hardness Magnesium Hardness Calcium (as Ca) Magnesium (as Mg) Chloride (as Cl) Total Alkalinity (as CaCO ₃) Sulphate (as SO ₄) Turbidity E. coli	ColourHazenOdourOdourlesspH@ 25°C-TDS @ 180° Cmg/lTotal Hardness (as CaCO3)mg/lCalcium Hardnessmg/lMagnesiummg/lHardnessCalcium (as Ca)mg/lMagnesium (as Mg)mg/lChloride (as Cl)mg/lTotal Alkalinity (as CaCO3)mg/lSulphate (as SO4)mg/lE. coliMPN/100ml	ParametersUnitsRColourHazen<0	ParametersUnitsResult of GroundMinimumMaximumColourHazen <0 6OdourOdourlessOdourlessOdourlesspH@ 25°C- 7.46 7.9 TDS @ 180° Cmg/l4031717Total Hardness (as CaCO ₃)mg/l192392Calcium Hardnessmg/l140260Magnesium Hardnessmg/l52132Calcium (as Ca)mg/l56104Magnesium (as Mg)mg/l1332.1Chloride (as Cl)mg/l86516Total Alkalinity (as CaCO ₃)mg/l120310Sulphate (as SO4)mg/l43180TurbidityNTU<1.0	Minimum Maximum Average Colour Hazen <0 6 3 Odour Odourless Odourless Odourless Odourless pH@ 25°C - 7.46 7.9 7.73 TDS @ 180° C mg/l 403 1717 1381.3 Total Hardness (as CaCO ₃) mg/l 192 392 334.66 Calcium Hardness mg/l 140 260 221.3 Magnesium Hardness mg/l 52 132 113.3 Calcium (as Ca) mg/l 56 104 88.6 Magnesium (as Mg) mg/l 13 32.1 27.51 Chloride (as Cl) mg/l 120 310 245.6 Sulphate (as SO ₄) mg/l 43 180 142 Turbidity NTU <1.0	ParametersUnitsResult of Ground WaterAcceptable Limits As per IS10500:2012ColourHazen <0 635OdourOdourlessOdourlessOdourlessOdourlessOdourlesspH@ 25°C-7.467.97.736.5 - 8.5TDS @ 180°Cmg/l40317171381.3500Total Hardness (as CaCO ₃)mg/l192392334.66200Calcium Hardnessmg/l140260221.3-Magnesium Hardnessmg/l5610488.675Magnesium (as Ag) (as CaCO ₃)mg/l1332.127.5130Chloride (as CI) (as CaCO ₃)mg/l120310245.6200Sulphate (as SO ₄)mg/l43180142200TurbidityNTU<1.0

Table 3.6 Ground Water Quality Result

Source: Sampling Results by Accuracy Analabs, in association with GTMS

S.No.	Parameters	Units	R	esult of Surface	Acceptable – Limits As per	Permissible Limits As Per	
5.110.	rarameters	Units	Minimum	Maximum	Average	- Ellints As per IS10500:2012	IS 10500:2012
1	Colour	Hazen	10	10	10	5	15
2	Odour	Odourless	Odourless	Odourless	Odourless	Agreeable	Agreeable
3	рН@ 25°С	-	7.31	8.12	7.69	6.5 - 8.5	No relaxation
4	TDS @ 180 ⁰ C	mg/l	1300	1322	1293	500	2000
5	Total Hardness (as CaCO ₃)	mg/l	344	360	351	200	600
6	Calcium Hardness	mg/l	226	240	231.5	-	-
7	Magnesium Hardness	mg/l	115	122	119	-	-
8	Calcium (as Ca)	mg/l	83	96	89.5	75	200
9	Magnesium(as Mg)	mg/l	21	31	26	30	100
10	Chloride (as Cl)	mg/l	425	454	438.5	250	1000
11	Total Alkalinity (as CaCO ₃)	mg/l	306	325	312.7	200	600
12	Sulphate (as SO ₄)	mg/l	108	140	123	200	400
13	Turbidity	NTU	1	5	2.7	1.0	5
	1	1	BIOLO	GICAL REPOR	RT	1	1
14	E. coli	MPN/100ml	8	14	11.25	-	1600
15	Coliform	MPN/100ml	13	14	13.75	-	1600

Table 3.6a Surface Water Quality Result

Source: Sampling Results by Accuracy Analabs, in association with GTMS

From the maps of open well groundwater flow direction shown in Figures 3.7-3.8, it is understood that most of the open well groundwater for the post- and pre-monsoon seasons flows towards the open well number 2 located in northeastern direction of the proposed project site. The groundwater flow maps in Figures 3.9-3.10 show that most of the bore well groundwater for the post- and pre-monsoon seasons flow towards the bore well number 5 and 1. It is located in northeastern direction of the proposed project site. On the basis of the groundwater flow information, both open wells and bore wells mentioned above can be chosen for water quality monitoring purpose as the wells may get easily affected by the contaminants resulting from the mining activities of the sites in future.

Station	Depth (to Static Wat	ter Table BC		_	
ID	Mar- 2022	Apr-2022	May- 2022	Average	Latitude	Longitude
DW01	21.5	22.7	23.0	22.4	11° 0'32.45"N	77°56'15.88"E
DW02	22.0	23.5	24.6	23.3	11° 0'6.43"N	77°56'3.20"E
DW03	21.0	22.5	23.5	22.3	11° 1'5.46"N	77°56'31.22"E
DW04	20.5	21.0	22.5	21.3	11° 1'20.56"N	77°56'38.90"E
DW05	22.5	23.7	24.5	23.5	11° 1'9.31"N	77°55'54.57"E
DW06	20.5	21.7	22.5	21.5	11° 0'32.94"N	77°56'57.09"E
DW07	22.0	23.5	24.7	23.4	11° 0'39.89"N	77°57'14.82"E
DW08	19.5	20.5	21.8	20.6	11° 0'6.95"N	77°56'55.96"E
DW09	21.5	22.7	23.5	22.5	11° 0'34.82"N	77°55'44.25"'E

Table 3.7 Pre-Monsoon Water Level of Open Wells within 2 km Radius

Source: Onsite monitoring data

Table 3.8 Post-Monsoon Water Level of Open Wells within 2 km Radius

Station ID	Depth	to Static Wat	Latitude	Longitude		
	Oct-2022	Nov- 2022	Dec-2022	Average	Latitude	Longhuut
DW01	10.4	11.9	12.5	11.6	11° 0'32.45"N	77°56'15.88"E
DW02	11.0	12.5	13.4	12.3	11° 0'6.43"N	77°56'3.20"E
DW03	10.5	11.5	12.7	11.5	11° 1'5.46"N	77°56'31.22"E
DW04	12.0	13.5	14.5	13.3	11° 1'20.56"N	77°56'38.90"E
DW05	11.5	12.4	13.7	12.5	11° 1'9.31"N	77°55'54.57"E
DW06	13.0	14.5	15.5	14.3	11° 0'32.94"N	77°56'57.09"E
DW07	14.0	15.5	16.5	15.3	11° 0'39.89"N	77°57'14.82"E
DW08	15.0	16.5	17.5	16.3	11° 0'6.95"N	77°56'55.96"E
DW09	14.0	15.5	16.5	15.3	11° 0'34.82"N	77°55'44.25"E

Source: Onsite monitoring data

Station	Depth to	o Static Pote	entiometric Su	urface		
Station ID		BGL	Latitude	Longitude		
	Mar-2022	Apr-2022	May- 2022	Average		
BW01	62.0	63.5	64.5	63.3	11° 0'37.43"N	77°56'47.13"E
BW02	61.0	62.5	63.5	62.3	11° 0'24.89"N	77°57'24.02"E
BW03	63.0	64.0	65.5	64.1	11° 0'37.83"N	77°56'16.07"E
BW04	64.5	66.0	67.0	65.8	11° 0'7.10"N	77°55'42.38"E
BW05	64.0	64.5	66.5	65	11° 0'28.51"N	77°55'47.14"E
BW06	63.0	64.5	66.0	64.5	11° 0'50.33"N	77°56'2.82"E
BW07	61.0	62.5	63.5	62.3	11° 1'24.10"N	77°56'11.59"E
BW08	62.0	63.5	66.0	63.8	11° 0'0.72"N	77°56'48.56"E
BW09	62.5	64.0	65.5	64	11° 1'14.53"N	77°56'48.43"E

Table 3.9 Pre-Monsoon Water Level of Bore Wells within 2 km Radius

Source: Onsite monitoring data

Station	Depth	to Static Pote	entiometric S	urface		
ID		BGI	L(m)		Latitude	Longitude
ID	Oct-2022	Nov-2022	Dec-2022	Average		
BW01	64.0	65.5	66.5	65.3	11° 0'37.43"N	77°56'47.13"E
BW02	63.5	64.0	65.5	64.3	11° 0'24.89"N	77°57'24.02"E
BW03	65.0	66.5	67.5	66.3	11° 0'37.83"N	77°56'16.07"E
BW04	66.5	67.5	69.0	67.6	11° 0'7.10"N	77°55'42.38"E
BW05	66.0	67.5	68.5	67.3	11° 0'28.51"N	77°55'47.14"E
BW06	64.0	65.5	66.5	65.3	11° 0'50.33"N	77°56'2.82"'E
BW07	62.0	63.5	66.0	63.8	11° 1'24.10"N	77°56'11.59"E
BW08	65.0	66.5	67.5	66.3	11° 0'0.72"N	77°56'48.56"E
BW09	63.5	65.0	67.5	65.3	11° 1'14.53"N	77°56'48.43"E

Source: Onsite monitoring data

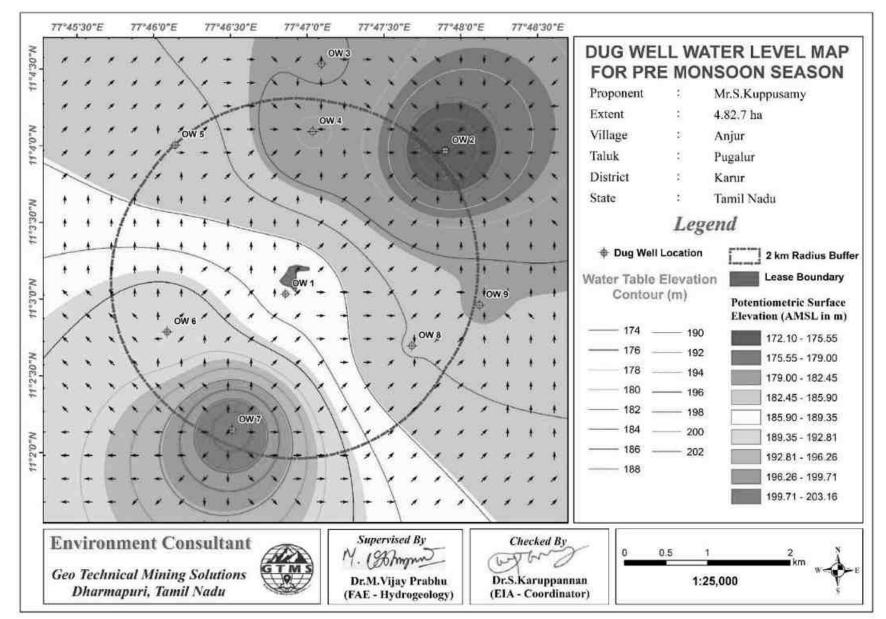


Figure 3.8 Open Well Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Pre-Monsoon Season

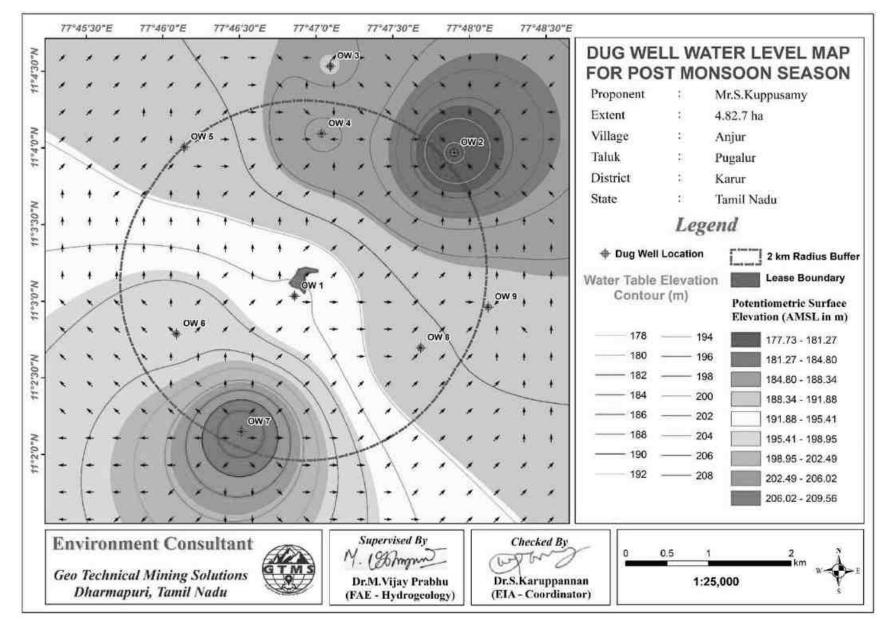


Figure 3.9 Open Well Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Post-Monsoon Season



Figure 3.10 Borewell Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Pre-Monsoon Season

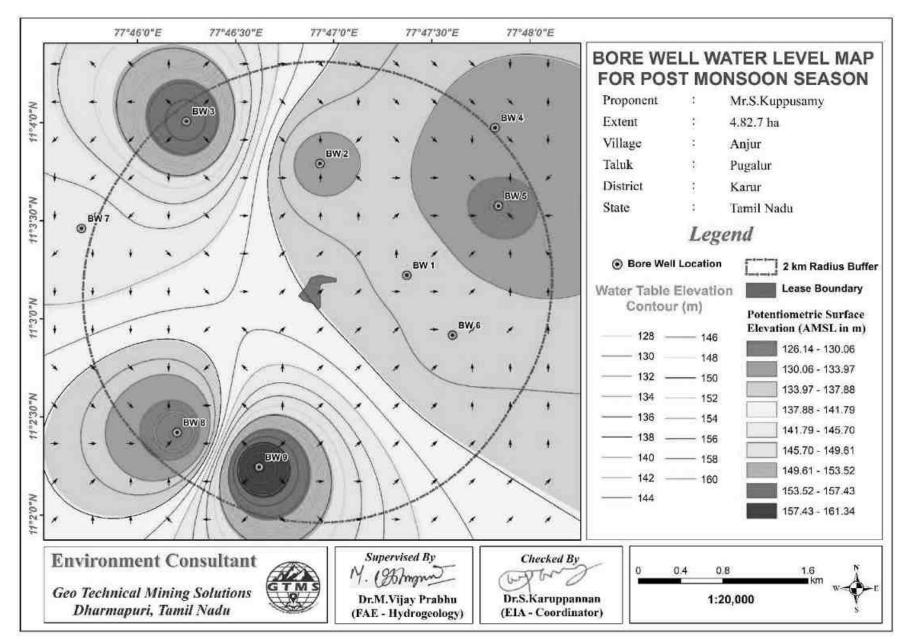


Figure 3.11 Borewell Static Groundwater Elevation Map Showing Direction of Groundwater Flow during Post-Monsoon Season

3.2.3.2 Electrical Resistivity Investigation

Electrical resistivity investigation is especially useful in the areas where there are no adequate exploratory well data about the aquifer conditions. The present study makes use of vertical electric sounding (VES) to delineate earth's subsurface layers. The electrical resistivity investigation uses four electrodes set up where current is sent through outer electrodes into the ground and the inner electrodes measure the potential difference.

Result

The Geophysical VES data obtained from the project site have been shown in Table 3.11. The field data obtained from a detailed geophysical investigation were plotted using excel spreadsheet for interpretation. The plot for the purpose of interpretation has been shown in Figure 3.12.

	Location Coordinates - 11° 0'44.46"N 77°56'40.43"E								
S. No.	AB/2	MN/2	Geometrical	Resistance in	Apparent				
5. INU.	(m)	(m)	Factor (G)	Ω	Resistivity in Ωm				
1	2	2	11.78	13.248	156.06				
2	4	2	49.46	6.127	303.04				
3	6	5	112.26	3.937	441.97				
4	8	5	200.18	2.798	560.10				
5	10	5	75.36	8.997	678.01				
6	15	10	173.49	5.188	900.07				
7	20	10	310.86	3.558	1106.04				
8	25	10	487.49	2.603	1268.94				
9	30	10	274.75	5.001	1374.02				
10	35	10	376.8	3.883	1463.11				
11	40	10	494.55	3.16	1562.78				
12	45	10	628	2.683	1684.92				
13	50	10	777.15	1.943	1510.00				
14	65	20	453.6	2.213	1003.82				
15	70	20	989.1	2.651	2622.10				
16	80	20	1256	2.196	2758.18				
17	90	20	1554.3	1.846	2869.24				
18	100	20	1653.6	2.213	3659.42				

 Table 3.11 Vertical Electrical Sounding Data

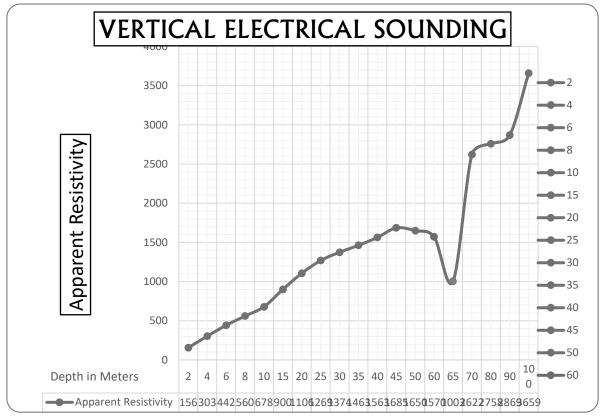


Figure 3.12 Graph Showing Occurrence of Water Bearing Fracture Zones at the Depth of 65 m Below Ground Level in Proposed Project

The rock formation of low resistivity values indicates occurrence of water at the depth of about 65-70 m below ground level. The maximum depth proposed for the proposed project is 50 m below ground level. Therefore, the mining operation will not affect the aquifer throughout the entire mine life period.

3.3 AIR ENVIRONMENT

The baseline studies on air environment include identification of specific air pollutants and their existing levels in ambient air. The sources of air pollution in the region are mostly due to vehicular traffic, dust arising from unpaved village road and domestic & agricultural activities.

3.3.1 Meteorology

3.3.1.1 Climatic Variables

A temporary meteorological station was installed at the project sites by covering cluster quarries. The station was installed at a height of 3 m above the ground level as there are no obstructions facilitating flow of wind, wind speed, wind direction, humidity and temperature. Meteorological data obtained from the onsite monitoring station are provided in Table 3.12.

According to the onsite data, the temperature in March,2023 varied from 16.70 to 39.93°C with the average of 28.46°C; in April, 2023 from 23.18 to 41.15°C with the average of 31.32°C; and in May,2023 from 22.62 to 36.18°C with the average of 27.99°C. In March,2023, relative humidity ranged from 15.06 to 95.56 % with the average of 53.56%; in April, 2023, from 12.50 to 89.94 % with the average of 47.23 %; and in May,2023, from 37.50 to 97.38 % with the average of 75.95 %. The wind speed in March,2023 varied from 0.18 to 6.42 m/s with the average of 2.64 m/s; in April, 2023 from 0.05 to 7.07 m/s with the average of 2.70 m/s; and in May,2023 from 0.044 to 6.64 m/s with the average of 3.42 m/s. In March,2023, wind direction varied from 0.00 to 359.03° with the average of 42.05°; in April, 2023, from 4.19 to 358.19° with the average of 158.66°; and in May,2023, 0.00 to 343.10° with the average of 96.16 kPa; in April, 2023, from 95.24 to 96.68 kPa with the average of 96.20 kPa; and in May,2023, from 96.12 to 97.03 kPa with the average of 96.57 kPa

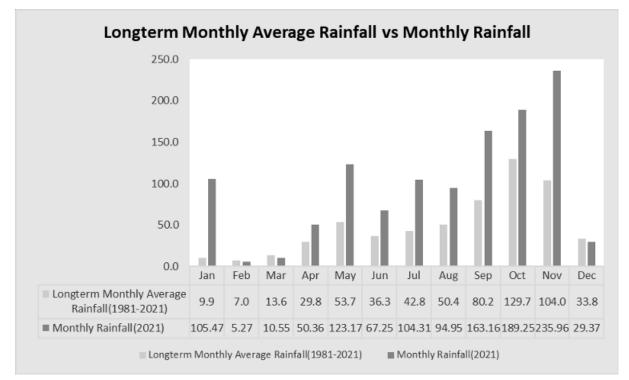
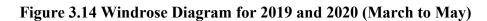
S. No.	Parameters		MARCH,2021	APRIL,2022	MAY,2022
		Min	16.70	23.18	22.62
1	Temperature (⁰ C)	Max	39.93	41.15	36.18
		Avg	28.46	31.32	27.99
	Relative Humidity	Min	15.06	12.50	37.50
2	(%)	Max	95.56	89.94	97.38
	(70)	Avg	53.56	47.23	75.95
		Min	0.18	0.05	0.44
3	Wind Speed (m/s)	Max	6.42	7.07	6.64
		Avg	2.64	2.70	3.42
	Wind Direction	Min	0.00	4.19	0.00
4	(degree)	Max	359.03	358.19	343.10
	(degree)	Avg	142.05	158.66	245.49
	Surface	Min	95.38	95.24	96.12
5	Pressure(kPa)	Max	96.74	96.68	97.03
	r ressure(kr a)	Avg	96.16	96.20	96.57

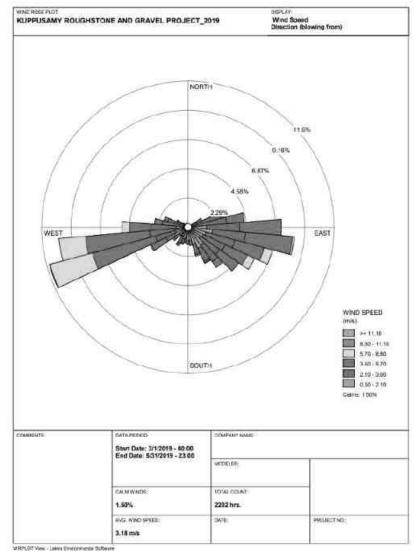
 Table 3.12 Onsite Meteorological Data

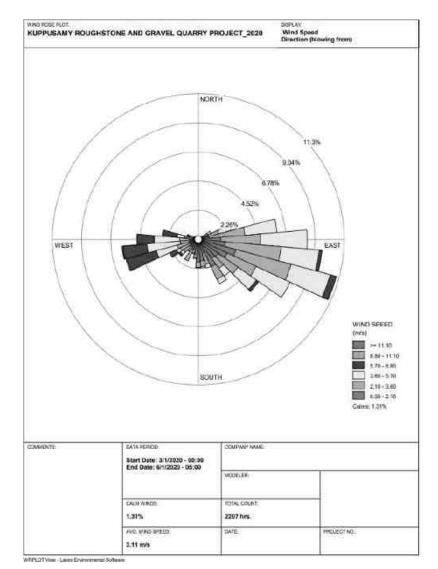
Source: On-site monitoring/sampling by Accuracy Analabs in association with GTMS

Rainfall

Rainfall data for the study area were collected for the period of 1981-2021(<u>POWER</u>] <u>Data Access Viewer (nasa.gov)</u>). Long term monthly average rainfall was estimated from the data of 1981-2021 and compared with the monthly rainfall for the year 2021, shown in Figure 3.10. The Figure 3.13 shows that rainfall is generally high in the months of September through November in every year. Particularly, rainfall in September through November of 2021 is higher than the previous years.


Figure 3.13 Long-Term Monthly Average Rainfall Vs Monthly Rainfall


3.3.1.2 Wind Pattern

Wind pattern will largely influence the dispersion pattern of air pollutants and noise from the proposed project site. Analysis of wind pattern requires hourly site-specific data of wind speed and direction. Two types of wind rose were generated: historical seasonal wind rose for the period of March through May of the years from 2019 to 2022 and the seasonal wind rose for the study period of March through May 2023. The wind rose diagrams thus produced are shown in Figures 3.14-3.14a. Figure 3.15 reveals that:

- The measured average wind velocity during the study period is 2.97 m/s.
- Predominant wind was dominant in the directions ranging from Southwest to Northeast.

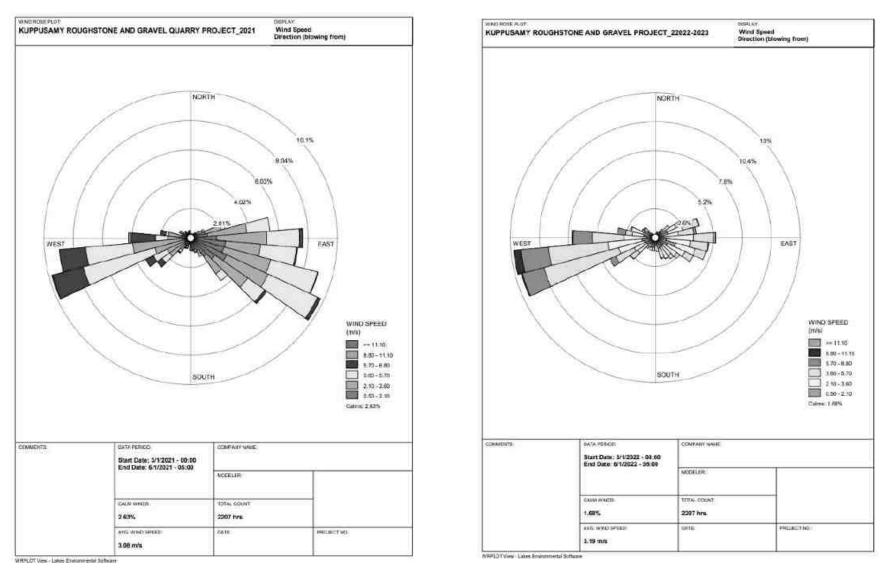
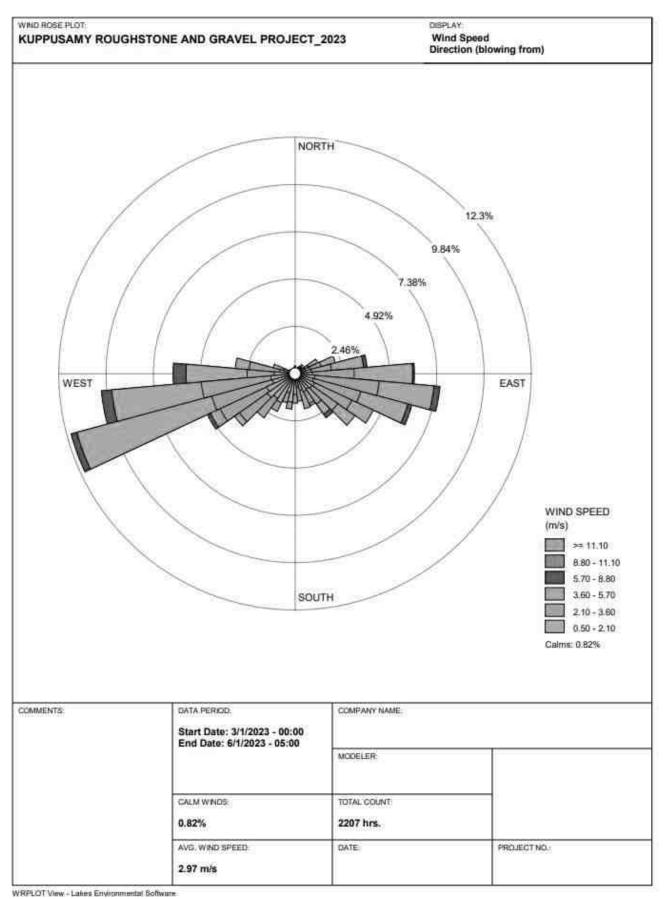
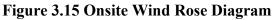




Figure 3.14a Windrose Diagram for 2021 and 2022 (March to May)

3.3.2 Ambient Air Quality Study

The baseline ambient air quality is studied through a scientifically designed ambient air quality monitoring network considering the followings

- Meteorological condition on synoptic scale
- Topography of the study area
- * Representatives of regional background air quality for obtaining baseline status
- Location of residential areas representing different activities
- ✤ Accessibility and power availability

Table 3.13 Methodology and Instrument Used for AAQ Analysis

Parameter	Method	Instrument
PM _{2.5}	Gravimetric method	Fina Particulata Samplar
F 1 v1 2.5	Beta attenuation method	Fine Particulate Sampler
Gravimetric method		Respirable Dust Sampler
PM_{10}	Beta attenuation method	
SO ₂	IS-5182 Part II	Respirable Dust Sampler with gaseous
\mathbf{SO}_2	(Improved West & Gaeke method)	attachment
	IS-5182 Part II	Respirable Dust Sampler with gaseous
NOx	(Jacob & Hoch heiser modified	attachment
	method)	attachment
Free Silica	NIOSH – 7601	Visible Spectrophotometry

Source: Sampling Methodology based Accuracy Analabs & CPCB Notification

Table 3.14 National Ambient Air Quality Standards

	Pollutant		Concentration in ambient air		
		Time	Industrial,	Ecologically	
S. No.		Weighted	Residential,	Sensitive area	
		Average	Rural & other	(Notified by	
			areas	Central Govt.)	
1	SO ₂ (µg/m ³)	Annual Avg.*	50.0	20.0	
		24 hours**	80.0	80.0	
2	$NO_x (\mu g/m^3)$	Annual Avg.	40.0	30.0	
		24 hours	80.0	80.0	
3	PM ₁₀ (µg/m ³)	Annual Avg.	60.0	60.0	
		24 hours	10°.0	10°.0	
4	PM _{2.5} (μg/m3)	Annual Avg.	40.0	40.0	
		24 hours	60.0	60.0	

Source: NAAQS CPCB Notification No. B-29016/20/90/PCI-I Dated: 18th Nov 2009

Methodology

Ambient air quality monitoring was carried out with a frequency of two samples per week at nine (09) locations, adopting a continuous 24 hourly (3 shift of 8-hour) schedule for the period March-May, 2023 as per the CPCB, MoEF guidelines and notifications.

It was ensured that the equipment was placed preferably at a height of at least 3 ± 0.5 m above the ground level at each monitoring station for negating the effects of wind-blown ground dust. The equipment was placed at space free from trees and vegetation which otherwise act as a sink of pollutants resulting in lower levels in monitoring results. The baseline data of ambient air were generated for PM_{2.5}, PM₁₀, sulphur dioxide (SO₂) and nitrogen dioxide (NO_x). The sampling locations are shown in Figure 3.16 and average concentrations of air pollutants are summarized in Tables 3.15 and are shown in Figures 3.16-3.20.

S.	Location		Distance		
No.	Code	Monitoring Locations	(km)	Direction	Coordinates
1	AAQ1	Near Core	0.31	Ν	11° 3'23.73"N 77°46'55.97"E
2	AAQ2	Ramanathapuram	1.68	NNW	11° 4'3.84"N 77°46'33.73"E
3	AAQ3	Pillapalayam	1.20	SE	11° 2'53.39"N 77°47'35.80"E
4	AAQ4	Poolavalasu	4.15	NNW	11° 4'58.88"N 77°45'28.10"E
5	AAQ5	Nallasellipalayam	3.93	NE	11° 4'36.66"N 77°48'38.35"E
6	AAQ6	Thottiyapalayam	1.42	W	11° 3'9.32"N 77°46'2.55"E
7	AAQ7	Muthur	4.46	W	11° 2'48.78"N 77°44'23.53"E
8	AAQ8	Oodayam	2.69	S	11° 1'35.50"N 77°47'1.12"E
9	AAQ9	Nadupalayam	2.82	NNE	11° 4'32.47"N 77°47'46.37"E

Table 3.15 Ambient Air Quality (AAQ) Monitoring Locations

Source: On-site monitoring/sampling by Accuracy Analabs in association with GTMS *Results*

As per the monitoring data, $PM_{2.5}$ ranges from 18.1 µg/m³ to 22.7 µg/m³; PM_{10} from 36.7 µg/m³ to 41.6 µg/m³; SO_2 from 6.0 µg/m³ to 8.9µg/m³; NO_x from 17.8µg/m³ to 23.2g/m³. The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

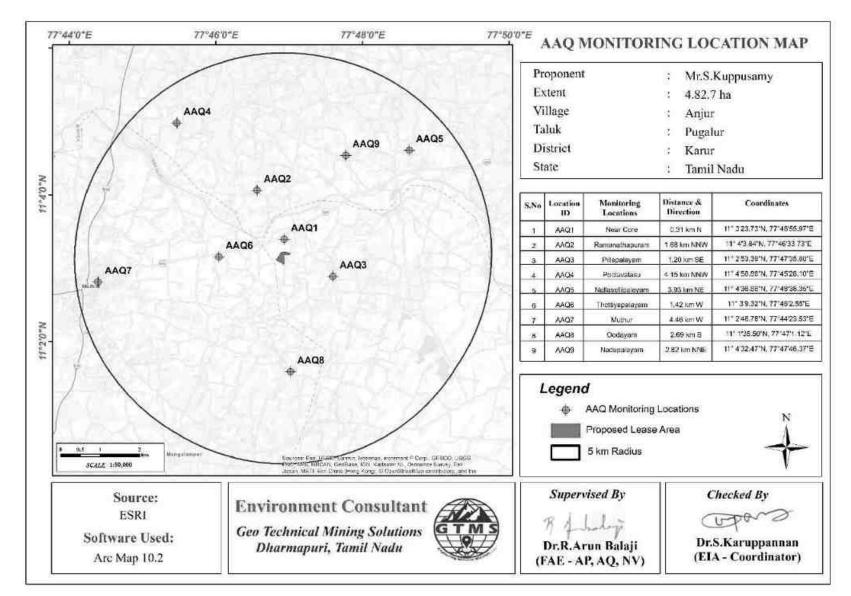


Figure 3.16 Toposheet Showing Ambient Air Quality Monitoring Station Locations Around 5 km Radius from Proposed Project Site

		PM2.5			PM10						
Station ID	Max	Min	Mean	98 th Percentile	Max	Min	Mean	98 th Percentile			
AAQ1	26.6	23.5	25.0	26.6	47.9	43.1	45.2	47.9			
AAQ2	24.8	18.0	21.6	24.8	39.9	34.7	37.5	39.9			
AAQ3	23.1	14.2	18.8	21.9	38.1	28.9	33.1	38.1			
AAQ4	21.5	14.9	16.9	21.4	37.1	30.3	33.4	36.8			
AAQ5	21.9	18.0	19.3	21.3	39.4	35.8	37.4	39.3			
AAQ6	22.4	19.3	21.0	22.2	43.9	40.1	42.2	43.7			
AAQ7	24.3	22.1	23.0	24.1	45.9	43.2	45.1	45.9			
AAQ8	18.9	16.8	17.9	18.9	39.7	36.9	38.3	39.6			
AAQ9	20.6	15.9	18.5	20.2	42.7	37.1	39.6	42.7			
		SO ₂		1	NO _x						
AAQ1	9.9	7.5	8.6	9.8	26.9	24.2	25.9	26.9			
AAQ2	11.0	6.6	8.4	10.8	26.8	8.9	17.8	25.8			
AAQ3	10.4	6.3	8.2	9.3	18.4	12.5	15.4	18.2			
AAQ4	8.2	5.0	6.6	8.2	17.6	10.5	13.9	17.6			
AAQ5	7.1	5.5	6.5	7.0	22.5	20.1	21.2	22.2			
AAQ6	8.3	5.2	6.6	8.1	24.9	21.5	23.2	24.9			
AAQ7	10.9	7.7	9.2	10.6	26.4	23.1	24.7	25.5			
AAQ8	6.9	5.1	5.9	6.8	20.5	18.2	19.1	20.4			
AAQ9	7.8	5.4	6.4	7.6	24.9	21.4	23.5	24.9			

 Table 3.16 Summary of AAQ Result

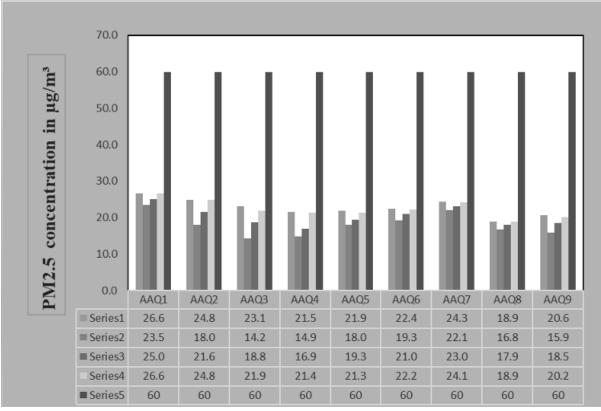


Figure 3.17 Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM_{2.5} Measured from 9 Air Quality Monitoring Stations within 5 km Radius

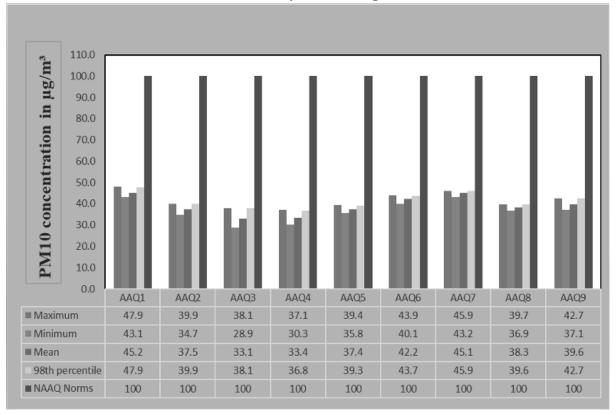


Figure 3.18 Bar Chart Showing Maximum, Minimum, and Average Concentrations of PM₁₀ Measured from 9 Air Quality Monitoring Stations within 5 km Radius

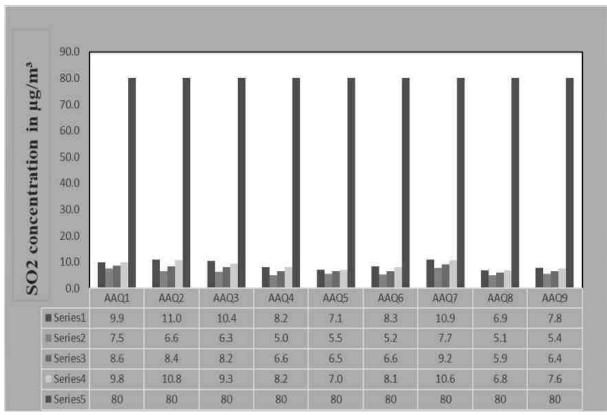


Figure 3.19 Bar Chart Showing Maximum, Minimum, and Average Concentrations of SO₂ Measured from 9 Air Quality Monitoring Stations within 5 km Radius

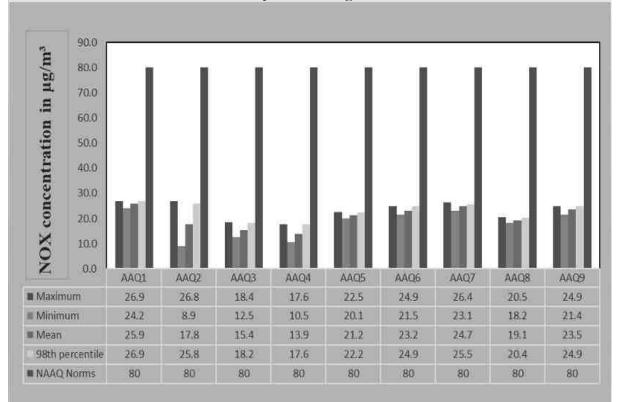
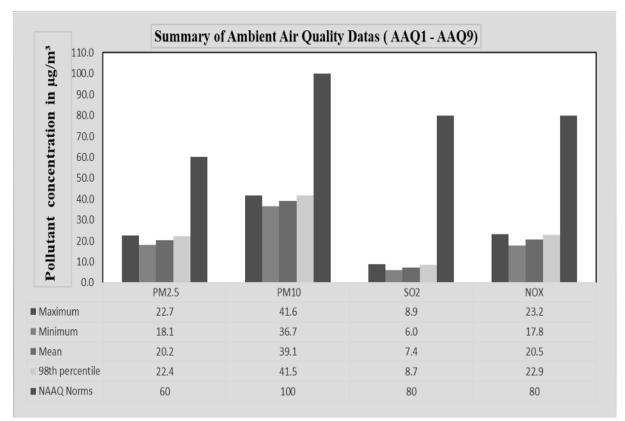



Figure 3.20 Bar Chart Showing Maximum, Minimum, and Average Concentrations of NO_x Measured from 9 Air Quality Monitoring Stations within 5km Radius

Figure 3.21 Bar Chart Showing Maximum, Minimum, And Average Concentrations of Pollutants in Atmosphere within 5 km Radius

3.4 NOISE ENVIRONMENT

The vehicular movement on road and mining activities is the major sources of noise in the study area. The main objective of noise monitoring in the study area is to establish the baseline noise level, which will in turn be used to assess the impact of the total noise expected to be generated during the project operations around the project site. In order to assess the ambient noise levels within the study area, noise monitoring was carried out at twelve (12) locations covering commercial, residential, rural areas within the radius of 5 km. Details of noise monitoring locations are provided in Table 3.17 and spatial occurrence of the locations are shown in Figure 3.22.

	Location	8	Distance	Direction	Coordinates
No	Code	Locations	in km		
1	N1	Sampathkumar Lease	0.28	Ν	11° 3'21.08"N 77°47'1.32"E
2	N2	Core			11° 3'12.09"N 77°47'0.12"E
3	N3	Nagappalayam	0.38	S	11° 2'50.28"N 77°46'55.58"E
4	N4	Vellaiyankattu pudur	0.52	NW	11° 3'18.57"N 77°46'37.06"E
5	N5	Ramanathapuram	1.65	NNW	11° 4'2.34"N 77°46'32.52"E

Table 3.17 Noise Monitoring Locations

6	N6	Pillapalayam	1.20	SE	11° 2'54.66"N 77°47'36.47"E
7	N7	Poolavalasu	4.14	NNW	11° 4'58.49"N 77°45'28.35"E
8	N8	Nallasellipalayam	3.93	NE	11° 4'34.72"N 77°48'39.97"E
9	N9	Thottiyapalayam	1.43	W	11° 3'11.03"N 77°46'2.17"E
10	N10	Muthur	4.38	WSW	11° 2'49.05"N 77°44'25.94"E
11	N11	Oodayam	2.67	S	11° 1'36.03"N 77°47'0.36"E
12	N12	Nadupalayam	2.82	NNE	11° 4'31.98"N 77°47'47.40"E

Source: On-site monitoring/sampling by Accuracy Analabs) Limited in association with GTMS Table 3.18 Ambient Noise Quality Result

Station ID	Location	Environmental setting	Average day noise level (dB(A))	Average night noise level (dB(A))	Day time (6.00 AM – 10.00 PM)	Night time (10.00 PM – 6.00 AM)
					Standar	(-1
					dB(A))
N1	Sampathkumar Lease	Industrial Area	42.8	33.8	75	70
N2	core	industrial Area	43.4	34.4	75	70
N3	Nagappalayam		41.2	36.6	55	45
N4	Vellaiyankattu pudur		44.2	39	55	45
N5	Ramanathapuram		37.9	29.6	55	45
N6	Pillapalayam		39.2	28.2	55	45
N7	Poolavalasu	Residential	39.8	30.2	55	45
N8	Nallasellipalayam	Area	39.2	30.2	55	45
N9	Thottiyapalayam		42.2	30.3	55	45
N10	Muthur		45.6	35.6	55	45
N11	Oodayam		36.9	28	55	45
N12	Nadupalayam		37.5	28.6	55	45

Source: On-site monitoring/sampling by Accuracy Analabs) Limited in association with GTMS

The Table 3.18 shows that noise level in core zone was 43.4 dB (A) Leq during day time and 34.4 dB(A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 36.9 to 45.6dB (A) Leq and during night time from 28.0 to 35.6dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB. The results are also depicted below in Figures 3.23 and 3.24.

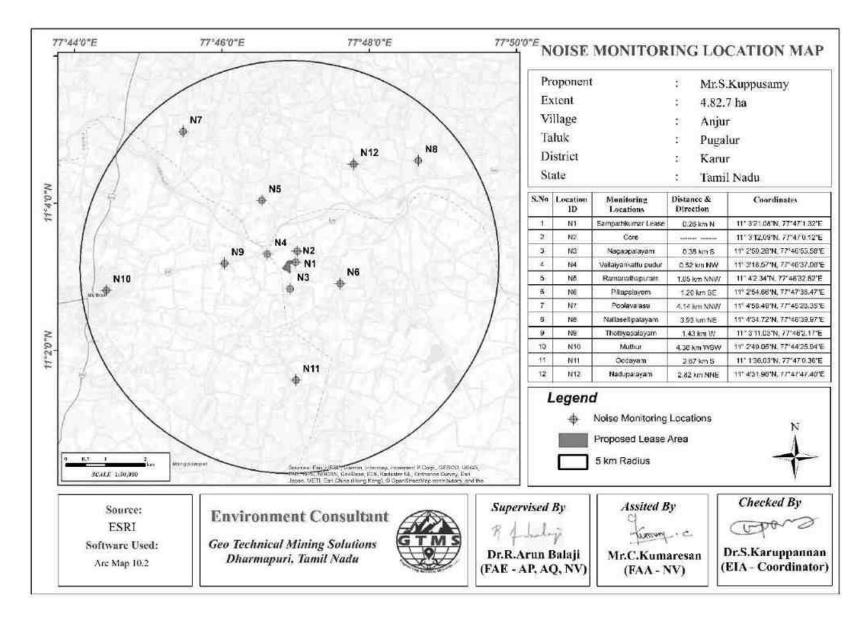


Figure 3.22 Toposheet Showing Noise Level Monitoring Station Locations around 5 km Radius from Proposed Project Site

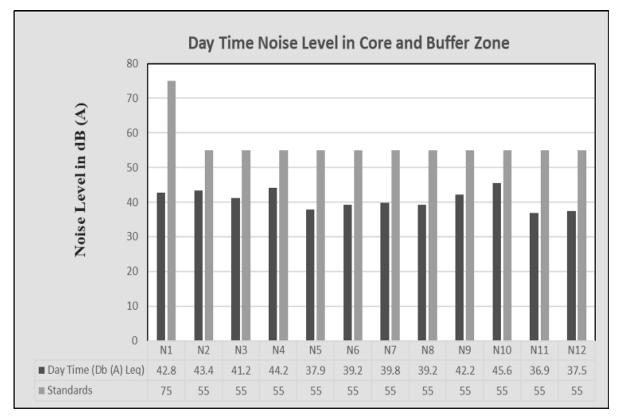


Figure 3.23 Bar Chart Showing Day Time Noise Levels Measured in Core and Buffer Zones

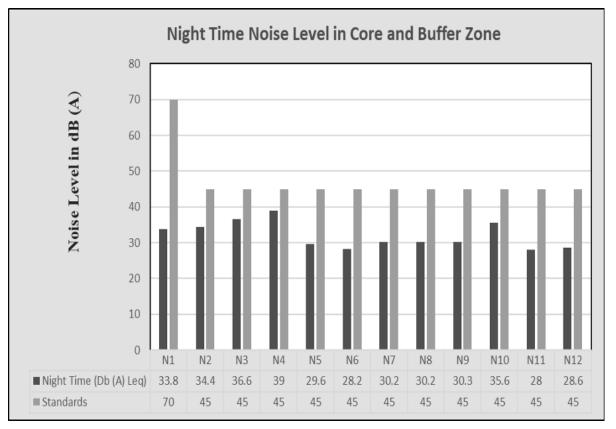


Figure 3.24 Bar Chart Showing Night Time Noise Levels Measured in Core and Buffer Zones

3.5 BIOLOGICAL ENVIRONMENT

An ecological survey was conducted to collect the baseline data regarding flora and fauna in the study area of 10 km radius. Data were collected from different sources, i.e., government departments such as District Forest Office and Government of Tamil Nadu. On the basis of onsite observations as well as forest department records the checklist of flora and fauna was prepared.

Methodology

Sampling locations were selected with reference to topography, land use, vegetation pattern, etc. In this study, quadrats of 25 m \times 25 m were laid down to assess trees and quadrats of 10 m \times 10 m were laid down for shrubs, as shown in Figure 3.25.

Figure 3.25 Quadrates Sampling Methods of Flora

Phyto-Sociological Studies

Phyto sociological parameters, such as *Density, Frequency, Abundance and Importance Value Index* of individual species were determined in randomly placed quadrat of different sizes in the study area, as shown in Table 3.19. Relative frequency, and relative density were calculated and the sum of these three represented Importance Value Index (IVI) for various species. For shrubs, herbs and grasses, *Density, Frequency, Relative Density & Relative Frequency were found*. Sample plots were selected in such a way to get maximum

representation of different types of vegetation and plots were laid out in different part of the study area of 10 km radius. Analysis of the vegetation will help in determining the relative importance of each species in the study area and to reveal if any economically valuable species is threatened in the process.

Table 3.19 Calculation of Density, Frequency (%), Dominance, Relative Density, Relative
Frequency, Relative Dominance & Important Value Index

Parameters	Formula
Density	Total No. of individuals of species/ Total No. of Quadrats used in
	sampling
Frequency (%)	(Total No. of Quadrats in which species occur/ Total No. of Quadrats
	studied)100
Abundance	Total No. of individuals of species/ No. of Quadrats in which they occur
Relative Density	(Total No. of individuals of species/Sum of all individuals of all species)
	* 100
Relative	(Total No. of Quadrats in which species occur/ Total No. of Quadrats
Frequency	occupied by all species) * 100
Important Value	Relative Density + Relative Frequency
Index	

Shannon – Wiener Index, Evenness and Richness

Biodiversity index is a quantitative measure that reflects how many different types of species, there are in a dataset, and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed among those types of species. The value of biodiversity index increases both when the number of types increases and when evenness increases. For a given number of type of species, the value of a biodiversity index is maximized when all type of species is equally abundant. The corresponding formulas are given in Table 3.20.

	Richness											
Description	Formula											
Species diversity –	$\mathbf{H} = \sum [(\mathbf{p}_i)^* \mathbf{In}(\mathbf{p}_i)]$											
Shannon – Wien	Where $p_{i:}$ Proportion of total sample represented by species											
Index	i: number of individuals of species i/ total number											
	samples											
Evenness	H/H max											
	$H_{max} = ln(s) = maximum diversity possible$											
	S=No. of species											
Species Richness by	RI = S-1/ln N											
Margalef	Where $S = Total$ Number of species in the community											
	N = Total Number of individuals of all species in the											
	Community											

Table 3.20 Calculation of Species Diversity by Shannon – Wiener Index, Evenness and Richness

3.5.1 Flora

Flora study was conducted using the above said methodology to inventory the existing terrestrial plants in both core and buffer zones. Details of plants have been described in the succeeding sections. Photographs showing various species are provided in Figure 3.26.

Crop Patterns in Pugalur Taluk

The principal crops of the district are millets, pulses, oilseeds, sugarcane and banana. The major crops like *Sesamum indicum* and *Manihot esculenta* are grown in Anjur Village, Pugalur taluks. In uplands, millets like sorghum, pearl millet pulses such as horse gram and oilseeds such as groundnut are grown both irrigated and rain fed conditions.

Figure 3.26 Crop Patterns in Pugalur Taluk

Flora in mine lease area (core zone)

There are no flora species in mine lease area.

The Flora in lease area and 300 m radius (buffer zone)

There is no agricultural land nearby lease area. It contains a total of 34 species belonging to 21 families have been recorded from the buffer zone. 6 Trees (17%), 5 Shrubs (17%) and 22 Herbs and Climbers, Creeper, Grass & Cactus 20 (64%) were identified. Details of flora with the scientific name details and of diversity species Richness index were mentioned in Table 3.21-3.23 and Figure 3.26. There is no threatened species in 300 m radius.

Flora in 10 km radius buffer zone

Similar type of environment occurs in both core and buffer zone but more floral diversity noticed in buffer zone compared with core zone area. Buffer area contains a total species belonging to 38 families have been recorded. The floral (75) varieties among them 35 Trees (46%), 15 Shrubs (15%) Herbs and Climbers, Creeper, Grass & Cactus, 25 (33%) were identified. Details of flora with the scientific name, species diversity and richness index were mentioned in Table3.24-3.26 and Figure 3.27.

Table 3.21 Flora in 300 m Radius

S.No.	Local Name	Scientific name	Family name	Total No. of species	Total of Quadrants with species	Total No. of Quadrants	Density	Frequency (%)	Abundance	Relative Density	Relative Frequency	IVI	IUCN Conservation Status
				Tre	ees								
1	Karuvealan	Prosopis juliflora	Fabaceae	4	3	5	0.8	60.0	1.3	16.7	16.7	33.3	Not Listed
2	Palm tree	Borassus flabellifer	Fabaceae	3	2	5	0.6	40.0	1.5	12.5	11.1	23.6	Not Listed
3	Vembu	Azadirachta indica	Meliaceae	5	4	5	1.0	80.0	1.3	20.8	22.2	43.1	Not Listed
4	Vealli vealan	Vachellia leucophloea	Babesiae	4	3	5	0.8	60.0	1.3	16.7	16.7	33.3	Not Listed
5	Unjai maram	Albizia amara	Fabaceae	3	2	5	0.6	40.0	1.5	12.5	11.1	23.6	Not Listed
6	Vetpalai	Wrightia tinctoria	Apocynaceae	5	4	5	1.0	80.0	1.3	20.8	22.2	43.1	Not Listed
				Shr	ubs		I					I	
1	Erukku	Calotropis gigantea	Apocynaceae	8	7	10	0.8	70.0	1.1	21.6	21.9	43.5	Not Listed
2	Uumaththai	Datura metel	Solanaceae	6	5	10	0.6	50.0	1.2	16.2	15.6	31.8	Not Listed
3	Thuthi	Abutilon indicum	Meliaceae	7	6	10	0.7	60.0	1.2	18.9	18.8	37.7	Not Listed
4	Avarai	Senna auriculata	Fabaceae	9	8	10	0.9	80.0	1.1	24.3	25.0	49.3	Not Listed
5	Unichadi	Lantana camara	Verbenaceae	7	6	10	0.7	60.0	1.2	18.9	18.8	37.7	Not Listed
			I	Her	rbs		1	1			1	1	
1	Nayuruv	Achyranthes aspera	Amaranthaceae	6	5	15	0.4	33.3	1.2	3.9	3.8	7.7	Not Listed

76 | P a g e

2	Nearunji mull	Tribulus zeyheri Sond	Zygophyllaceae	7	6	15	0.5	40.0	1.2	4.6	4.5	9.2	
3	pill	Cenchrus ciliaris	Poaceae	9	8	15	0.6	53.3	1.1	5.9	6.1	12.0	Not Listed
4	pulapoo	Aerva lanata	Amaranthaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed
5	kapok bush	Aerva javani	Amaranthaceae	6	5	15	0.4	33.3	1.2	3.9	3.8	7.7	Not Listed
6	Rail poondu	Croton bonplandianus	Euphorbiaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed
7	Yanai neariji	pedalium murex	Pedaliaceae	7	6	15	0.5	40.0	1.2	4.6	4.5	9.2	Not Listed
8	Perandai	Cissus quadrangularis	Vitaceae	10	9	15	0.7	60.0	1.1	6.6	6.8	13.4	Not Listed
9	Thumbai chadi	Leucas aspera	Lamiaceae	6	5	15	0.4	33.3	1.2	3.9	3.8	7.7	Not Listed
10	Umathai	Datura metel	Solanaceae	7	6	15	0.5	40.0	1.2	4.6	4.5	9.2	Not Listed
11	Sethamutti	Sida cordata	Malvaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed
12	Kolunji	Tephrosia purpurea	Fabaceae	9	8	15	0.6	53.3	1.1	5.9	6.1	12.0	Not Listed
13	Ishappukol Vitai	Plantago coronopus	Plantaginaceae	6	5	15	0.4	33.3	1.2	3.9	3.8	7.7	Not Listed
14	Vealiparuthi	Pergularia daemia	Apocynaceae	7	6	15	0.5	40.0	1.2	4.6	4.5	9.2	Not Listed
15	Seppu nerinji	Indigofera linnaei Ali	Fabaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed
16	Sapathikalli	Opuntia ficus-indica	Cactaceae	9	8	15	0.6	53.3	1.1	5.9	6.1	12.0	Not Listed
17	Pal kodi	Cynanchum viminale	Apocynaceae	6	5	15	0.4	33.3	1.2	3.9	3.8	7.7	Not Listed
18	Ilia perandai	Cissus rotundifolia	Vitaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed
19	Katralai	Aloe vera	Asphodelaceae	9	8	15	0.6	53.3	1.1	5.9	6.1	12.0	Not Listed
20	Seammulli	Barleria prionitis	Acanthaceae	8	7	15	0.5	46.7	1.1	5.3	5.3	10.6	Not Listed

S.No.	Common name	Scientific name	No. of Species	Pi	In (Pi)	Pi x in (Pi)					
		Trees	~								
1	Karuvealan	Prosopis juliflora	4	0.17	-1.79	-0.30					
2	Palm tree	Borassus flabellifer	3	0.13	-2.08	-0.26					
3	Vembu	Azadirachta indica	5	0.21	-1.57	-0.33					
4	Vealli vealan	Vachellia leucophloea	4	0.17	-1.79	-0.30					
5	Unjai maram	Albizia amara	3	0.13	-2.08	-0.26					
6	Vetpalai	Wrightia tinctoria	5	0.21	-1.57	-0.33					
H (Shannon Diversity Index) =1.77											
		Shrubs									
1	Erukku	Calotropis gigantea	8	0.22	-1.53	-0.33					
2	Uumaththai	Datura metel	6	0.16	-1.82	-0.29					
3	Thuthi	Abutilon indicum	7	0.19	-1.67	-0.32					
4	Avarai	Senna auriculata	9	0.24	-1.41	-0.34					
5	Unichadi	Lantana camara	7	0.19	-1.67	-0.32					
	•	H (Shannon Diversity I	(ndex) = 1.60		1	4					
		Herbs									
1	Nayuruv	Achyranthes aspera	6	0.04	-3.23	-0.13					
2	Nearunji mull	Tribulus zeyheri Sond	7	0.05	-3.08	-0.14					
3	Pill	Cenchrus ciliaris	9	0.06	-2.83	-0.17					
4	pulapoo	Aerva lanata	8	0.05	-2.94	-0.15					
5	kapok bush	Aerva javani	6	0.04	-3.23	-0.13					
6	Rail poondu	Croton bonplandianus	8	0.05	-2.94	-0.15					
7	Mookuthi poondu	pedalium murex	7	0.05	-3.08	-0.14					
8	Perandai	Cissus quadrangularis	10	0.07	-2.72	-0.18					
9	Thumbai chadi	Leucas aspera	6	0.04	-3.23	-0.13					
10	Umathai	Datura metel	7	0.05	-3.08	-0.14					
11	Sethamutti	Sida cordata	8	0.05	-2.94	-0.15					
12	Kolunji	Tephrosia purpurea	9	0.06	-2.83	-0.17					
13	Ishappukol Vitai	Plantago coronopus	6	0.04	-3.23	-0.13					
14	Vealiparuthi	Pergularia daemia	7	0.05	-3.08	-0.14					
15	Seppu nerinji	Indigofera linnaei Ali	8	0.05	-2.94	-0.15					
16	Sapathikalli	Opuntia ficus-indica	9	0.06	-2.83	-0.17					
17	Pal kodi	Cynanchum viminale	6	0.04	-3.23	-0.13					
18	Ilia perandai	Cissus rotundifolia	8	0.05	-2.94	-0.15					
19	Katralai	Aloe vera	9	0.06	-2.83	-0.17					
20	Seammulli	Barleria prionitis	8	0.05	-2.94	-0.15					
		H (Shannon Diversity I	ndex) = 2.98	<u> </u>							

Table 3.22 Calculation of Species Diversity in 300 m Radius

Table 3.23 Species Richness (Index) in 300 m radius

Details	Н	H max	Evenness	Species Richness
Trees	1.77	1.79	0.99	1.57
Shrubs	1.60	1.61	0.99	1.11
Herbs	2.98	3.00	1.00	3.78

Table 3.24 Flora in Buffer Zone

S.No	Local Name	Scientific name	Family name	Total No. of species	Total of Quadrants with species	Total No. of Quadrants	Density	Frequency (%)	Abundance	Relative Density	Relative Frequency	IVI	IUCN Conservation Status
TREES													
1	Vembu	Azadirachta indica	Meliaceae	5	4	10	0.5	40.0	1.3	3.1	3.2	6.3	Not Listed
2	Thekku	Tectona grandis	Verbenaceae	4	3	10	0.4	30.0	1.3	2.5	2.4	4.9	Not Listed
3	Pongam oiltree	Pongamia pinnata	Fabaceae	3	2	10	0.3	20.0	1.5	1.9	1.6	3.5	Not Listed
4	Thennai maram	Cocos nucifera	Arecaceae	4	3	10	0.4	30.0	1.3	2.5	2.4	4.9	Not Listed
5	Manga	Mangifera indica	Anacardiaceae	6	5	10	0.6	50.0	1.2	3.8	4.0	7.8	Not Listed
6	Puliyamaram	Tamarindus indica	Legumes	3	2	10	0.3	20.0	1.5	1.9	1.6	3.5	Not Listed
7	Vadanarayani	Delonix elata	Fabaceae	4	3	10	0.4	30.0	1.3	2.5	2.4	4.9	Not Listed
8	Thenpazham	Muntingia calabura	Tiliaceae	6	5	10	0.6	50.0	1.2	3.8	4.0	7.8	Not Listed
9	Punnai	Calophyllu inophyllum	Calophyllaceae	5	4	10	0.5	40.0	1.3	3.1	3.2	6.3	Not Listed
10	Ilanthai	Ziziphus jujubha	Rhamnaceae	6	5	10	0.6	50.0	1.2	3.8	4.0	7.8	Not Listed
11	Karuvelam	Acacia nilotica	Mimosaceae	4	3	10	0.4	30.0	1.3	2.5	2.4	4.9	Not Listed
12	Nettilinkam	Polylathia longifolia	Annonaceae	3	2	10	0.3	20.0	1.5	1.9	1.6	3.5	Not Listed
13	Arai nelli	Phyllanthus acidus	Euphorbiaceae	5	4	10	0.5	40.0	1.3	3.1	3.2	6.3	Not Listed
14	Panai maram	Borassus flabellifer	Arecaceae	3	2	10	0.3	20.0	1.5	1.9	1.6	3.5	Not Listed
15	Sapota	Manilkara zapota	Sapotaceae	6	5	10	0.6	50.0	1.2	3.8	4.0	7.8	Not Listed
16	Navalmaram	Sygygium cumini	Myrtaceae	7	6	10	0.7	60.0	1.2	4.4	4.8	9.2	Not Listed
17	Alamaram	Ficus benghalensis	Moraceae	3	2	10	0.3	20.0	1.5	1.9	1.6	3.5	Not Listed
18	Vazhaimaram	Musa	Musaceae	4	3	10	0.4	30.0	1.3	2.5	2.4	4.9	Not Listed
19	Karuvelam maram	Vachellia nilotica	Fabaceae	5	4	10	0.5	40.0	1.3	3.1	3.2	6.3	Not Listed
20	Nelli	Emblica officinalis	Phyllanthaceae	3	2	10	0.3	20.0	1.5	1.9	1.6	3.5	Not Listed

79 | Page

21	Eucalyptus	Eucalyptus globules	Myrtaceae	4	3	10	0.4	30.0	1.3	2.5	2.4	4.9	Not Listed
22	Maramalli	Millingtonia hortensis	Bignoniaceae	5	4	10	0.5	40.0	1.3	3.1	3.2	6.3	Not Listed
23	Kuduka puli	Pithecellobium dulce	Mimosaceae	4	3	10	0.4	30.0	1.3	2.5	2.4	4.9	Not Listed
24	Karungali	Acacia sundra	Legumes	3	2	10	0.3	20.0	1.5	1.9	1.6	3.5	Not Listed
25	Nochi	Vitex negundo	Lamiaceae	6	5	10	0.6	50.0	1.2	3.8	4.0	7.8	Not Listed
26	Karimurungai	Moringa olefera	Moraginaceae	5	4	10	0.5	40.0	1.3	3.1	3.2	6.3	Not Listed
27	Pappali maram	Carica papaya L	Caricaceae	6	5	10	0.6	50.0	1.2	3.8	4.0	7.8	Not Listed
28	Poovarasu	Thespesia populnea	Malvaceae	4	3	10	0.4	30.0	1.3	2.5	2.4	4.9	Not Listed
29	Arasanmaram	Ficus religiosa	Moraceae	3	2	10	0.3	20.0	1.5	1.9	1.6	3.5	Not Listed
30	Vilvam	Aegle marmelos	Rutaceae	4	3	10	0.4	30.0	1.3	2.5	2.4	4.9	Not Listed
31	Nuna maram	Morinda citrifolia	Rubiaceae	5	4	10	0.5	40.0	1.3	3.1	3.2	6.3	Not Listed
32	Nettilingam	Polyalthia longifolia	Annonaceae	4	3	10	0.4	30.0	1.3	2.5	2.4	4.9	Not Listed
33	Коууа	Psidium guajava	Myrtaceae	6	5	10	0.6	50.0	1.2	3.8	4.0	7.8	Not Listed
34	Seethapazham	Annona reticulata	Annonaceae	7	6	10	0.7	60.0	1.2	4.4	4.8	9.2	Not Listed
35	Savukku	Casuarina L.	Casuarinaceae	5	4	10	0.5	40.0	1.3	3.1	3.2	6.3	Not Listed
					RUBS								
1	Avarai	Senna auriculata	Fabaceae	9	8	15	0.6	53.3	1.1	7.9	8.1	16.0	Not Listed
2	Sundaika	Solanum torvum	Solanaceae	8	7	15	0.5	46.7	1.1	7.0	7.1	14.1	Not Listed
3	Puramuttai	Chrozophora rottleri	Euphorbiaceae	6	5	15	0.4	33.3	1.2	5.3	5.1	10.3	Not Listed
4	Arali	Nerium indicum	Apocynaceae	7	6	15	0.5	40.0	1.2	6.1	6.1	12.2	Not Listed
5	Seemaiagaththi	Cassia alata	Caesalpinaceae	6	5	15	0.4	33.3	1.2	5.3	5.1	10.3	Not Listed
6	Chemparuthi	Hibiscu rosa-sinensis	Malvaceae	9	8	15	0.6	53.3	1.1	7.9	8.1	16.0	Not Listed
7	Kattamanakku	Jatropha curcas	Euphorbiaceae	8	7	15	0.5	46.7	1.1	7.0	7.1	14.1	Not Listed
8	Chaturakalli	Euphorbia antiquorum	Euphorbiaceae	7	6	15	0.5	40.0	1.2	6.1	6.1	12.2	Not Listed
9	Idlipoo	xoracoc cinea	Rubiaceae	9	8	15	0.6	53.3	1.1	7.9	8.1	16.0	Not Listed
10	Thuthi	Abutilon indicum	Meliaceae	8	7	15	0.5	46.7	1.1	7.0	7.1	14.1	Not Listed
11	Nithyakalyani	Cathranthus roseus	Apocynaceae	7	6	15	0.5	40.0	1.2	6.1	6.1	12.2	Not Listed
12	Uumaththai	Datura metel	Solanaceae	6	5	15	0.4	33.3	1.2	5.3	5.1	10.3	Not Listed
13	Kundumani	Abrus precatorius	Fabaceae	8	7	15	0.5	46.7	1.1	7.0	7.1	14.1	Not Listed

14	Erukku	Calotropis gigantea	Apocynaceae	9	8	15	0.6	53.3	1.1	7.9	8.1	16.0	Not Listed
15	Neermulli	Hydrophila auriculata	Acanthaceae	7	6	15	0.5	40.0	1.2	6.1	6.1	12.2	Not Listed
			Herbs, Cli	mber,	Creepe								
1	Nayuruv	Achyranthes aspera	Amaranthaceae	6	5	25	0.2	20.0	1.2	3.1	3.0	6.1	Not Listed
2	Veetukaayapoondu	Tridax procumbens	Asteraceae	7	6	25	0.3	24.0	1.2	3.6	3.6	7.2	Not Listed
3	Mukkirattai	Boerhaavia diffusa	Nyctaginaceae	8	7	25	0.3	28.0	1.1	4.1	4.1	8.3	Not Listed
4	Kuppaimeni	Acalypha indica	Euphorbiaceae	9	8	25	0.4	32.0	1.1	4.6	4.7	9.4	Not Listed
5	Karisilanganni	Eclipta prostata	Asteraceae	7	6	25	0.3	24.0	1.2	3.6	3.6	7.2	Not Listed
6	Korai	Cyperus rotundus	Cyperaceae	8	7	25	0.3	28.0	1.1	4.1	4.1	8.3	Not Listed
7	Thumbai	Leucas aspera	Lamiaceae	6	5	25	0.2	20.0	1.2	3.1	3.0	6.1	Not Listed
8	Nai kadugu	Celome viscosa	Capparidaceae	8	7	25	0.3	28.0	1.1	4.1	4.1	8.3	Not Listed
9	Parttiniyam	Parthenium hysterophorus	Asteraceae	7	6	25	0.3	24.0	1.2	3.6	3.6	7.2	Not Listed
10	Thulasi	Ocimum tenuiflorum	Lamiaceae	10	9	25	0.4	36.0	1.1	5.2	5.3	10.5	Not Listed
11	Arugampul	Cynodon dactylon	Poaceae	11	10	25	0.4	40.0	1.1	5.7	5.9	11.6	Not Listed
12	Thoiya keerai	Digeria muricata	Amarantheceae	7	6	25	0.3	24.0	1.2	3.6	3.6	7.2	Not Listed
13	Kovai	Coccinia grandis	Cucurbitaceae	8	7	25	0.3	28.0	1.1	4.1	4.1	8.3	Not Listed
14	Perandai	Cissus quadrangularis	Vitaceae	9	8	25	0.4	32.0	1.1	4.6	4.7	9.4	Not Listed
15	Mudakkotan	Cardiospermum helicacabum	Sapindaceae	6	5	25	0.2	20.0	1.2	3.1	3.0	6.1	Not Listed
16	Karkakartum	Clitoria ternatea	Fabaceae	7	6	25	0.3	24.0	1.2	3.6	3.6	7.2	Not Listed
17	Kovakkai	Trichosanthes dioica	Cucurbitaceae	9	8	25	0.4	32.0	1.1	4.6	4.7	9.4	Not Listed
18	Sangupoo	Clitoriaternatia	Fabaceae	10	9	25	0.4	36.0	1.1	5.2	5.3	10.5	Not Listed
19	Siru puladi	Desmodium triflorum	Fabaceae	6	5	25	0.2	20.0	1.2	3.1	3.0	6.1	Not Listed
20	Sithrapaalavi	Euphorbia prostrata	Euphorbiaceae	7	6	25	0.3	24.0	1.2	3.6	3.6	7.2	Not Listed
21	Thumattikai	Cucumis callosus	Cucurbitaceae	8	7	25	0.3	28.0	1.1	4.1	4.1	8.3	Not Listed
22	mookuthi poondu	Wedelia trilobata	Asteraceae	9	8	25	0.4	32.0	1.1	4.6	4.7	9.4	Not Listed
23	Kattu kanchippul	Apluda mutica	Poaceae	8	7	25	0.3	28.0	1.1	4.1	4.1	8.3	Not Listed
24	Musthakasu	Kyllinga brevifolia	Cyperaceae	7	6	25	0.3	24.0	1.2	3.6	3.6	7.2	Not Listed
25	Nagathali	Opuntia dillenii	Cactaceae	6	5	25	0.2	20.0	1.2	3.1	3.0	6.1	Not Listed

81 | P a g e

S.No	Common name	Scientific name	No. of Species	Pi	In (Pi)	Pi x in (Pi)				
Tree										
1	Vembu	Azadirachta indica	5	0.03	-3.47	-0.11				
2	Thekku	Tectona grandis	4	0.03	-3.69	-0.09				
3	Pongam oiltree	Pongamia pinnata	3	0.02	-3.98	-0.07				
4	Thennai maram	Cocos nucifera	4	0.03	-3.69	-0.09				
5	Manga	Mangifera indica	6	0.04	-3.28	-0.12				
6	Puliyamaram	Tamarindus indica	3	0.02	-3.98	-0.07				
7	Vadanarayani	Delonix elata	4	0.03	-3.69	-0.09				
8	Thenpazham	Muntingia calabura	6	0.04	-3.28	-0.12				
9	Punnai	Calophyllu inophyllum	5	0.03	-3.47	-0.11				
10	Ilanthai	Ziziphus jujubha	6	0.04	-3.28	-0.12				
11	Karuvelam	Acacia nilotica	4	0.03	-3.69	-0.09				
12	Nettilinkam	Polylathia longifolia	3	0.02	-3.98	-0.07				
13	Arai nelli	Phyllanthus acidus	5	0.03	-3.47	-0.11				
14	Panai maram	Borassus flabellifer	3	0.02	-3.98	-0.07				
15	Sapota	Manilkara zapota	6	0.04	-3.28	-0.12				
16	Navalmaram	Sygygium cumini	7	0.04	-3.13	-0.14				
17	Alamaram	Ficus benghalensis	3	0.02	-3.98	-0.07				
18	Vazhaimaram	Musa	4	0.03	-3.69	-0.09				
19	Karuvelam maram	Vachellia nilotica	5	0.03	-3.47	-0.11				
20	Nelli	Emblica officinalis	3	0.02	-3.98	-0.07				
21	Eucalyptus	Eucalyptus globules	4	0.03	-3.69	-0.09				
22	Maramalli	Millingtonia hortensis	5	0.03	-3.47	-0.11				
23	Kuduka puli	Pithecellobium dulce	4	0.03	-3.69	-0.09				
24	Karungali	Acacia sundra	3	0.02	-3.98	-0.07				
25	Nochi	Vitex negundo	6	0.04	-3.28	-0.12				
26	Karimurungai	Moringa olefera	5	0.03	-3.47	-0.11				
27	Pappali maram	Carica papaya L	6	0.04	-3.28	-0.12				
28	Poovarasu	Thespesia populnea	4	0.03	-3.69	-0.09				
29	Arasanmaram	Ficus religiosa	3	0.02	-3.98	-0.07				
30	Vilvam	Aegle marmelos	4	0.03	-3.69	-0.09				
31	Nuna maram	Morinda citrifolia	5	0.03	-3.47	-0.11				
32	Nettilingam	Polyalthia longifolia	4	0.03	-3.69	-0.09				
33	Коууа	Psidium guajava	6	0.04	-3.28	-0.12				
34	Seethapazham	Annona reticulata	7	0.04	-3.13	-0.14				
35	Savukku	Casuarina L.	5	0.03	-3.47	-0.11				
		H (Shannon Diversity Ine	dex) = 3.52							
		Shrubs								
1	Avarai	Senna auriculata	9	0.08	-2.54	-0.20				
2	Sundaika	Solanum torvum	8	0.07	-2.66	-0.19				
3	Puramuttai	Chrozophora rottleri	6	0.05	-2.94	-0.15				
4	Arali	Nerium indicum	7	0.06	-2.79	-0.17				
5	Seemaiagaththi	Cassia alata	6	0.05	-2.94	-0.15				
6	Chemparuthi	Hibiscu rosa-sinensis	9	0.08	-2.54	-0.20				

Table 3.25 Calculation of Species Diversity in Buffer Zone
--

7	Kattamanakku	Jatropha curcas	8	0.07	-2.66	-0.19									
8	Chaturakalli	Euphorbia antiquorum	7	0.06	-2.79	-0.17									
9	Idlipoo	xoracoc cinea	9	0.08	-2.54	-0.20									
10	Thuthi	Abutilon indicum	8	0.07	-2.66	-0.19									
11	Nithyakalyani	Cathranthus roseus	7	0.06	-2.79	-0.17									
12	Uumaththai	Datura metel	6	0.05	-2.94	-0.15									
13	Kundumani	Abrus precatorius	8	0.07	-2.66	-0.19									
14	Erukku	Calotropis gigantea	9	0.08	-2.54	-0.20									
15	Neermulli	Hydrophila auriculata	7	0.06	-2.79	-0.17									
		H (Shannon Diversity In	dex) =2.70	•											
Herbs, Climber, Creeper &Grasses															
1	Nayuruvi	Achyranthes aspera	6	0.03	-3.48	-0.11									
2	Veetukaayapoondu	Tridax procumbens	7	0.04	-3.32	-0.12									
3	Mukkirattai	Boerhaavia diffusa	8	0.04	-3.19	-0.13									
4	Kuppaimeni	Acalypha indica	9	0.05	-3.07	-0.14									
5	Karisilanganni	Eclipta prostata	7	0.04	-3.32	-0.12									
6	Korai	Cyperus rotundus	8	0.04	-3.19	-0.13									
7	Thumbai	Leucas aspera	6	0.03	-3.48	-0.11									
8	Nai kadugu	Celome viscosa	8	0.04	-3.19	-0.13									
9	Parttiniyam	Parthenium hysterophorus	7	0.04	-3.32	-0.12									
10	Thulasi	Ocimum tenuiflorum	10	0.05	-2.97	-0.15									
11	Arugampul	Cynodon dactylon	11	0.06	-2.87	-0.16									
12	Thoiya keerai	Digeria muricata	7	0.04	-3.32	-0.12									
13	Kovai	Coccinia grandis	8	0.04	-3.19	-0.13									
14	Perandai	Cissus quadrangularis	9	0.05	-3.07	-0.14									
15	Mudakkotan	Cardiospermum helicacabum	6	0.03	-3.48	-0.11									
16	Karkakartum	Clitoria ternatea	7	0.04	-3.32	-0.12									
17	Kovakkai	Trichosanthes dioica	9	0.05	-3.07	-0.14									
18	Sangupoo	Clitoriaternatia	10	0.05	-2.97	-0.15									
19	Siru puladi	Desmodium triflorum	6	0.03	-3.48	-0.11									
20	Sithrapaalavi	Euphorbia prostrata	7	0.04	-3.32	-0.12									
21	Thumattikai	Cucumis callosus	8	0.04	-3.19	-0.13									
22	mookuthi poondu	Wedelia trilobata	9	0.05	-3.07	-0.14									
23	Kattu kanchippul	Apluda mutica	8	0.04	-3.19	-0.13									
24	Musthakasu	Kyllinga brevifolia	7	0.04	-3.32	-0.12									
21			-												
25	Nagathali	Opuntia dillenii	6	0.03	25NagathaliOpuntia dillenii60.03-3.48-0.11H (Shannon Diversity Index) =3.20										

Details	Н	H max	Evenness	Species Richness
Trees	3.52	3.56	0.99	6.70
Shrubs	2.70	2.71	1.00	2.96
Herbs	3.20	3.22	1.00	4.56

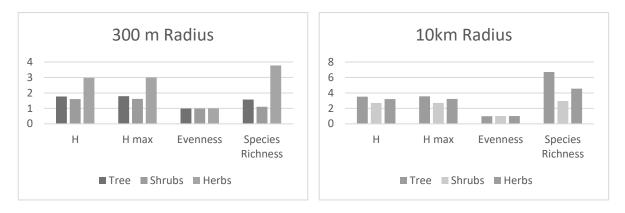
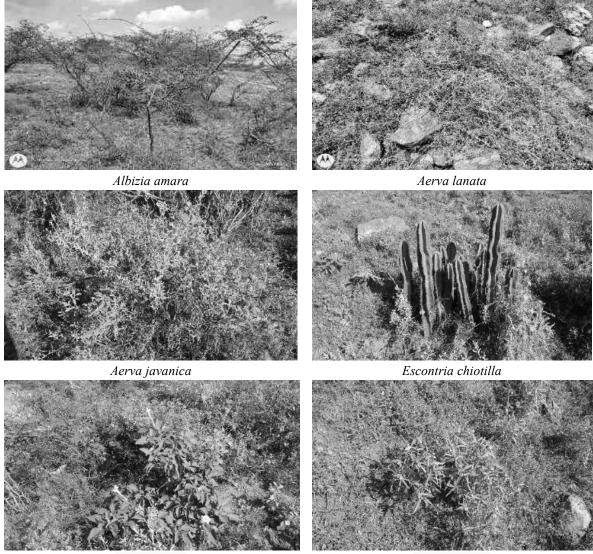
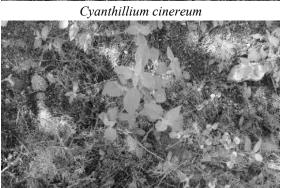



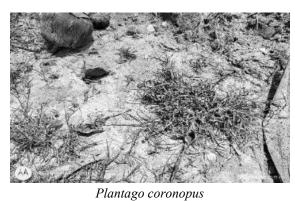
Figure 3.27 Floral Diversity Species Richness (Index) in Buffer Zone and 300 m Radius


Datura metel


Leucas aspera


Calotropis gigantea

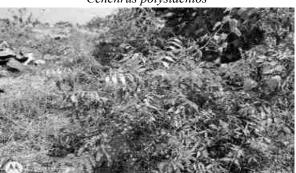
Iva annua


Acalypha indica

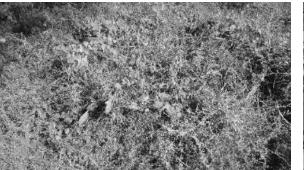
Tephrosia purpurea

Achyranthes aspera

Prosopis juliflora


Senna auriculata

Cenchrus polystachios

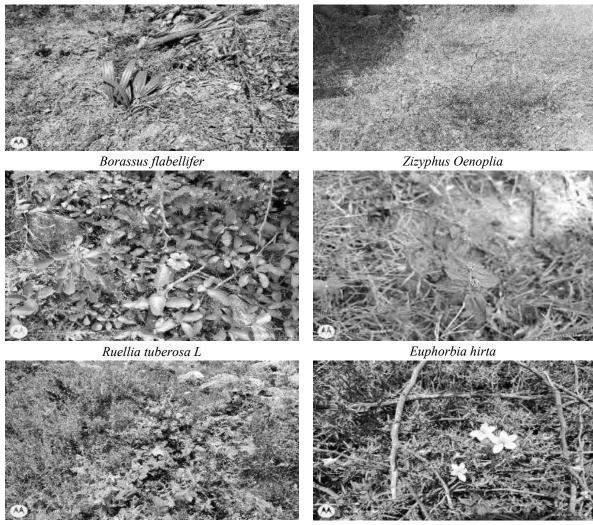


Vachellia leucophloea

Azadirachta indica

Opuntia ficus-indica

Pedalium murex



Wrightia tinctoria

Cynanchum viminale

Cocos nucifera

Xanthium orientale

Barleria prionitis

Figure 3.28 Flora in Core and Buffer Area

Aquatic Vegetation

The field survey for assessing the aquatic vegetation was also undertaken during the study period. The list of aquatic plants observed in the study area is given in Table 3.27.

 Table 3.27 Aquatic Vegetation

S.No.	Scientific name	Common Name	IUCN Red List of Threatened Species
1	Eichornia crassipes	Water hyacinth	NA
2	Aponogetonnatans	Floating lace plant	NA
3	Carex cruciata	Cross Grass	NA
4	Cynodon dactylon	Scutch grass	LC

*LC- Least Concern, NA-Not yet assessed

Forest Vegetation

The biosphere reserves or reserve forest or wildlife sanctuaries or National parks or Important Bird Areas (IBAs), and migratory routes of fauna. There are no 10km radius. The area under study (Mine lease area and the 10 km buffer zone) is not ecologically sensitive. *Endangered and endemic species as per the IUCN Red List*

There are no rare, endangered and endemic species found in the study area. There are no biosphere reserves or wildlife sanctuaries or National parks or Important Bird Areas (IBAs), ecologically sensitive zone.

3.5.2 Fauna

The faunal survey was carried out for Mammals, Birds, Reptiles, Amphibians and Butterflies. There are no rare, endangered, threatened (RET) and endemic species present in core area.

S. No.	Taxa	Method of Sampling	References
1	Insects	Random walk, Opportunistic	Pollard (1977);
	mseets	observations	Kunte (2000)
2	Reptiles	Visual encounter survey (Direct Search)	Daniel J.C (2002)
3	Amphibians	Visual encounter survey (Direct Search)	
4	Mammals	Tracks and Signs	Menon V (2014)
5	Avian	Random walk, Opportunistic	Grimmett R (2011);
		observations.	Ali S (1941)

 Table 3.28 Methodology applied during survey of fauna

Fauna in Core Zone

The 25 varieties of species observed in the core zone. Among them numbers of Insects 8 (32%), Reptiles 3 (12%), Mammals 5 (20%) and Avian 9 (36%). A total of 25 species belonging to 22 families have been recorded from the core mining lease area. Number of species decreases towards the mining area this might be due the lack of vegetation. None of these species are threatened or endemic. There is no Schedule I species and eight species are under schedule IV according to Indian wild life Act 1972. A total eight species of birds were sighted in the mining lease area. There are no critically endangered, endangered, vulnerable and endemic species were observed. Details of fauna in core zone with the scientific name were mentioned in Table. 3.29.

C	C		una in Core Zone		IIICN
S.	Common	Family	Saian4ifia	Schedule	IUCN Ded
No	name/English	Family	Scientific	list wildlife	Red
	Name	Name	Name	Protection act	List
		INI		1972	data
			SECTS		ЪĦ
1	Common Tiger	Nymphalidae	Danaus genutia	NL	NL
2	Red-veined darter	Libellulidae	Sympetrum	NL	LC
		1. 1	fonscolombii		IC
3	Grasshopper	Acrididae	Hieroglyphus sp	NL	LC
4	Blue tiger	Nymphalidae	Tirumala limniace	Schedule IV	LC
5	Stick insect	Lonchodidae	carausius morosus	NL	LC
6	Mottled emigrant	Peridae	Catopsilia	NL	LC
			pyranthe		
7	Striped tiger	Nymphalidae	Danaus plexippus	Schedule IV	LC
8	Acraea violae	Nymphalidae	Acraea violae	NL	LC
	1		PTILES		
1	Garden lizard	Agamidae	Calotes versicolor	NL	LC
2	Common house	Gekkonidae	Hemidactylus	NL	LC
	gecko		frenatus		
3	Fan-Throated	Agamidae	Sitanaponticeriana	NL	LC
	Lizard				
		1	MMALS		
1	Indian Field Mouse	Muridae	Mus booduga	Schedule IV	NL
2	Cow	Bovidae	Bos taurus	NL	NL
3	Common dog	Canidae	Canis lupus familiaris	NL	NL
4	Common cat	Felidae	Felis silvestris catus	NL	NL
5	Squirrel	Sciuridae	Funambulus	NL	NL
			palmarum		
	-	1	VES		
1	Asian green bee- eater	Meropidae	Meropsorientalis	NL	LC
2	Koel	Cucalidae	Eudynamys	Schedule IV	LC
3	Common myna	Sturnidae	Acridotheres tristis	NL	LC
4	Cattle egret	Ardeidae	Bubulcus ibis	NL	LC
5	House crow	Corvidae	Corvus splendens	NL	LC
6	Koel	Cucalidae	Eudynamys scolopaceus	Schedule IV	LC
7	Crow Pheasant	Cucalidae	Centropus sinensis	Schedule IV	LC
8	Indian pond heron	Ardeidae	Ardeola grayii	Schedule IV	LC
9	Grey drongo	Dicruridae	Dicrurus	Schedule IV	LC
			leucophaeus		
*NE	Not Evaluated: LC- Lea	at Concom NT N	1	atonad	

Table 3.29 Fauna in Core Zone

*NE- Not Evaluated; LC- Least Concern, NT –Near Threatened, T-Threatened

Fauna in Buffer Zone

A total of 47 species belonging to 34 families were recorded in the buffer zone. Based on habitat classification the majority of species were Birds 18 (40%), followed by Insects 15 (31%), Reptiles 7 (15%), 4 Mammals (8%) and amphibians 3 (6%). There are 4 schedule II species and 24 schedule IV species according to Indian wild life Act 1972. There are no critically endangered, vulnerable and endemic species observed. List of fauna in the buffer zone is provided in Table 3.30.

S. No.	Common Name/English Name	Family Name			IUCN Red List Data
		INS	SECTS		
1	Blue tiger	Nymphalidae	Tirumala limniace	Schedule IV	LC
2	Milkweed butterfly	Nymphalidae	Danainae	NL	LC
3	Tawny coster	Nymphalidae	Danaus chrysippus	Schedule IV	LC
4	Indian honey bee	Apidae	Apis cerana	Schedule IV	LC
5	Grasshopper	Acrididae	Hieroglyphus sp	NL	LC
6	Red-veined darter	Libellulidae	Sympetrum fonscolombii	NL	LC
7	Lime butterfly	Papilionidae	Papilio demoleus	Schedule IV	LC
8	Ant	Formicidae	Camponotus Vicinus	NL	NL
9	Dragonfly	Gomphidae	Ceratogomphus pictus	Schedule IV	LC
10	Common Tiger	Nymphalidae	Danaus genutia	Schedule IV	LC
11	Common Indian crow	Nymphalidae	Euploea core	Schedule IV	LC
12	Praying mantis	Mantidae	mantis religiosa	NL	NL
13	Striped tiger	Nymphalidae	Danaus plexippus	Schedule IV	LC
14	Lesser grass blue	Lycaenidae	Zizina otis indica	Schedule IV	LC
15	Jewel beetle	Buprestidae	Eurythyrea austriaca	Schedule IV	NA
	•	RE	PTILES	•	
16	Garden lizard	Agamidae	Calotes versicolor	NL	LC
17	Common house gecko	Gekkonidae	Hemidactylus frenatus	NL	LC
18	Indian chameleon	Chamaeleonidae	Chamaeleo zeylanicus	Sch II (Part I)	LC

 Table 3.30 Fauna in Buffer Zone

20 21 22 23	water snake Brahminy skink Rat snake Common skink	Scincidae Colubridae	Eutropis carinata Ptyas mucosa	II) NL	LC
21 22	Rat snake		-		LC
22		Colubridae	Ptyas mucosa		
	Common skink		~	Sch II (Part	LC
	Common skink			II)	
23		Scincidae	Mabuya carinatus	NL	LC
23			MMALS		
23	Indian palm	Sciuridae	Funambulus	Schedule IV	LC
	squirrel		palmarum		
24	Indian hare	Leporidae	Lepus nigricollis	Schedule IV	LC
25	Indian Field Mouse	Muridae	Mus booduga	Schedule IV	LC
26	Asian Small	Herpestidae	Herpestes javanicus	Schedule	LC
	Mongoose			(Part II)	
		I	AVES		
27	Indian pond heron	Ardeidae	Ardeola grayii	Schedule IV	LC
28	Black drongo	Dicruridae	Dicrurus	Schedule IV	LC
			macrocercus		
29	Asian green bee-	Meropidae	Meropsorientalis	NL	LC
	eater				
30	Red-breasted	Psittaculidae	Psittacula alexandri	NL	LC
	parakeet				
31	Common Coot	Rallidae	Fulica atra	Schedule IV	LC
32	Common myna	Sturnidae	Acridotheres tristis	NL	LC
33	Shikra	Accipitridae	Accipiter badius	NL	LC
34	Koel	Cucalidae	Eudynamys	Schedule IV	LC
35	Common Quail	Phasianidae	Coturnix coturnix	Schedule IV	LC
36	Red-vented Bulbul	Pycnonotidae	Pycnonotuscafer	Schedule IV	LC
37	Brahminy starling	Sturnidae	Sturnia pagodarum	Schedule IV	LC
38	Indian golden oriole	Oriolidae	Oriolus kundoo	Schedule IV	LC
39	Rose-ringed parkeet	Psittaculidae	Psittacula krameria	NL	LC
40	Common quail	Phasianidae	Coturnix coturnix	Schedule IV	LC
41	White-breasted	Rallidae	Amaurornis	NL	LC
• •	waterhen	Tunnae	phoenicurus		
42	Two-tailed	Dicruridae	Dicrurus	Schedule IV	LC
	Sparrow	Litranue	macrocercus		20
43	Grey Francolin	Phasianidae	Francolinus	Schedule IV	LC
-	,		pondicerianus		

44	House crow	Corvidae	Corvussplendens	NL	LC						
	AMPHIBIANS										
45	Indian	Dicroglossidae	Sphaerotheca	Schedule IV	LC						
	Burrowing frog		breviceps								
46	Green Pond Frog	Ranidae	Rana hexadactyla	Schedule IV	LC						
47	Tiger Frog	Chordata	Hoplobatrachus	Schedule IV	LC						
			tigerinus (Rana								
			tigerina)								

*NL-Not listed, LC-Least concern, NT-Near threatened. *Results*

Biological assessment of the site was done to identify ecologically sensitive areas and whether there are any rare, endangered, endemic or threatened (REET) species of flora & fauna in the core area as well its buffer zone to be impacted. The study has also been designed to suggest suitable mitigation measures, if necessary, for protection of wildlife habitats and conservation of REET species if any. The study found that there is no endemic, endangered migratory fauna found in the area. This area is not also a migratory path of any faunal species. Hence, this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

3.6 SOCIO ECONOMICS ENVIRONMENT

3.6.0 Introduction

An essential part of environmental study is socio-economic environment incorporating various facts related to socio-economic conditions in the area, which deals with the total environment. Socio economic study includes demographic structure of the area, provision of basic amenities viz., housing, education, health and medical services, occupation, water supply, sanitation, communication, transportation, prevailing diseases pattern as well as feature of aesthetic significance such as temples, historical monuments etc. at the baseline level. This would help in visualizing and predicting the possible impact depending upon the nature and magnitude of the project. Socio-economic study of an area provides a good opportunity to assess the socio-economic condition and possibly makes a change in living and social standards of the particular area benefitted due to the project.

3.6.1Objectives of the Study

The main objectives of the study are as follows:

- To know the current socio-economic condition in the region to cover the sub sectors education, health, sanitation, and water & food security.
- ✤ To recommend practical strategic interventions in the sector.

- ✤ To help in providing better living standards.
- To understand skill sets and plan for employment opportunities which shall be created.

3.6.2 Scope of Work

- \clubsuit To study the socio-economic environment of the area from the secondary sources
- ✤ Data collection & Analysis
- Prediction of project impact
- Mitigation Measures

3.6.3 Socio-Economic Status of Study area

The study area covers 10 villages including Karvazhi, Ichipalayam, Monjanur (West), Murungiyampalayam, Mangalapatti, Vadivullamangalam, Vallipuram, Kollankoil (TP), Muthur (TP) and Sivagiri (TP). As Anjur is the village in which the proposed project site is located, the summary of population facts for the village is exclusively provided in Table 3.31 and for other 10 villages in Tables 3.32 - 3.34.

Anjur	Anjur Village							
Number of Households	935							
Population	3144							
Male Population	1553							
Female Population	1591							
Children Population	230							
Sex-ratio	1024							
Literacy	1933							
Male Literacy	1141							
Female Literacy	792							
Scheduled Tribes (ST) %	0							
Scheduled Caste (SC) %	771							
Total Workers	2067							
Main Worker	835							
Marginal Worker	7							

Table 3.31 Kuppam Village Population Facts

Village	No of Households	Total Population Person	Total Population Male	Total Population Female	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
Karvazhi	427	1319	676	643	823	508	315	496	168	328
Ichipalayam	1682	5615	2770	2845	3733	2114	1619	1882	656	1226
Monjanur (West)	451	1348	662	686	815	482	333	533	180	353
Mangalapatti	1058	3512	1734	1778	2177	1225	952	1335	509	826
Murungiyampalayam	267	826	412	414	545	308	237	281	104	177
Vadivullamangalam	218	663	325	338	397	232	165	266	93	173
Vallipuram	358	1141	563	578	744	421	323	397	142	255
Kollankoil (TP)	2833	9196	4617	4579	6098	3428	2670	3098	1189	1909
Muthur (TP)	3948	13212	6588	6624	8621	3789	4832	4591	2835	1756
Sivagiri (TP)	6796	23040	11641	11399	14535	8206	6329	8630	3413	5217

Table 3.32 Population and Literacy Data of Study Area

Village	Private Primary School (Numbers)	Govt. Vocational Training School/ITI (Numbers)	Primary Health Centre (Numbers)	Tap Water Untreated	River/Canal	Is the Area Covered under Total Sanitation Campaign (TSC)?	Telephone (landlines)	Public Bus Service	Gravel (kutcha) Roads	Commercial Bank	Agricultural Credit Societies	Self - Help Group (SHG)	Nutritional Centres-Anganwadi Centre	Community Centre with/without TV	Power Supply For Domestic Use
Karvazhi	0	2	1	1	2	2	1	1	1	1	1	1	1	1	1
Mangalapatti	0	2	0	1	2	1	1	1	1	2	1	1	1	1	1
Ichipalayam	0	2	1	1	2	2	1	1	1	1	2	1	1	1	1
Monjanur (West)	0	2	0	2	2	1	1	1	1	2	1	1	1	2	1
Murungiyampalayam	0	2	0	1	1	2	1	2	1	2	2	1	1	2	1
Vadivullamangalam	0	2	0	1	2	2	1	2	1	2	2	1	1	2	1
Vallipuram	0	2	0	1	2	1	1	2	2	2	2	1	1	1	1

Table 3.33 Details on Educational Facilities, Water, and Drainage & Health Facilities

Table 3.34 Workers' Profile of Study Area

Village	Total Worker Population Person	Total Worker Population Male	Total Worker Population Female	Main Working Population Person	Main Working Population Male	Main Working Population Female	Main Cultivator Population Person	Main Agricultural Labourers Population Person	Main Other Workers Population Person	Non-Working Population Person
Karvazhi	974	504	470	711	370	341	363	220	114	345
Mangalapatti	3334	1862	1472	3257	1841	1416	958	1788	477	2281
Ichipalayam	955	512	443	949	511	438	390	405	142	393
Monjanur (West)	2296	1237	1059	1605	921	684	470	721	376	1216
Murungiyampalayam	598	305	293	598	305	293	289	188	47	228
Vadivullamangalam	423	246	177	377	235	142	167	145	60	240
Vallipuram	758	396	362	744	390	354	338	357	43	383
Kollankoil (TP)	5430	3121	2309	1137	687	450	1137	1823	1899	3766
Muthur (TP)	1521	923	598	1303	806	206	489	346	450	1652
Sivagiri (TP)	11498	6793	4705	9219	5729	3490	273	4510	4085	11542

3.6.4 Recommendation and Suggestion

- Awareness program should be conducted to make the population aware of education and to get a better livelihood.
- Vocational training programme should be organized to make the people self employed, particularly for women and unemployed youth.
- On the basis of qualification and skills local community may be preferred. Long term and short-term employments should be generated.
- Health care centre and ambulance facility should be provided to the population to get easy access to medical facilities. Apart from that, as these areas are prone to various diseases a hospital with modern facilities should be opened on a priority basis in a central place to provide better health facilities to the villagers around the project.
- While developing an Action Plan, it is very important to identify the population who falls under the marginalized and vulnerable groups. So that special attention can be given to these groups with special provisions while making action plans.

3.6.5 Summary & Conclusion

The socio-economic study in the study area gives a clear picture of its population, average household size, literacy rate and sex ratio etc. It is also found that a part of population is suffering from a lack of permanent job to run their day-to-day life. Their expectation is to earn some income for their sustainability on a long-term basis.

The proposed project will aim to provide preferential employment to the local people there by improving the employment opportunity in the area and in turn the social standards will improve.

3.7 TRAFFIC DENSITY

The traffic survey conducted based on the transportation route of material, the Rough Stone and gravel is proposed to be transported mainly through Village Road and Kangayam to Kodumudi (SH-189) and Erode to Vellakovil (SH-381A) as shown in Table 3.35 and in Figure 3.29. Traffic density measurements were made continuously for 24 hours by visual observation and counting of vehicles under three categories, viz., Heavy motor vehicles, light motor vehicles and two/three wheelers. As traffic densities on the roads are high, two skilled persons were deployed simultaneously at each station. During each shift one person on either direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken. Direction for counting the traffic. At the end of each hour, fresh counting and recording was undertaken.

Station Code	Road Name	Distance and Direction	Type of Road	
TS1	Village Road	0.48 Km-W	Village Road	
TS2	Kangayam to Kodumudi (SH- 189)	1.68 Km-NE	Kangayam to Kodumudi (SH-189)	
TS2	Erode toVellakovil (SH-381A)	4.70 Km-W	Erode toVellakovil (SH-381A)	

Table 3.35 Traffic Survey Locations

Source: On-site monitoring by GTMS FAE & TM

Table 3.36 Existing Traffic Volume

Station code	HMV		LMV		2/3 W	heelers	Total PCU	
	No	PCU	No	PCU	No	PCU		
TS1	41	123	48	48	85	43	214	
TS2	95	285	52	52	94	47	384	
TS2	105	315	65	65	120	60	440	

Source: On-site monitoring by GTMS FAE & TM

* PCU conversion factor: HMV (Trucks and Bus) = 3, LMV (Car, Jeep and Auto) = 1 and 2/3 Wheelers = 0.5

Table 3.37 Rough Stone Transportation Requirement

Transportation of Rough and Gravel per day								
Capacity of trucks	No. of Trips per day	Volume in PCU						
15 tonnes	97	291						

Source: Approved Mining Plan

Table 3.38 Summary of Traffic Volume

Route	Existing traffic volume in PCU	Incremental traffic due to	Total traffic	Hourly Capacity in PCU as per IRC –
	volume in PCU	the project	volume	1960guidelines
Village Road	214	291	505	1200
Kangayam to Kodumudi (SH-189)	384	291	675	1200
Erode toVellakovil (SH-381A)	440	291	731	1200

Source: On-site monitoring analysis summary by GTMS FAE & TM

Due to these projects the existing traffic volume will not exceed the traffic limit. As per the IRC 1960 this existing village road can handle 1,200 PCU in hour and Major district road can handle 1500 PCU in hour. Hence there will not be any conjunction due to this proposed transportatio

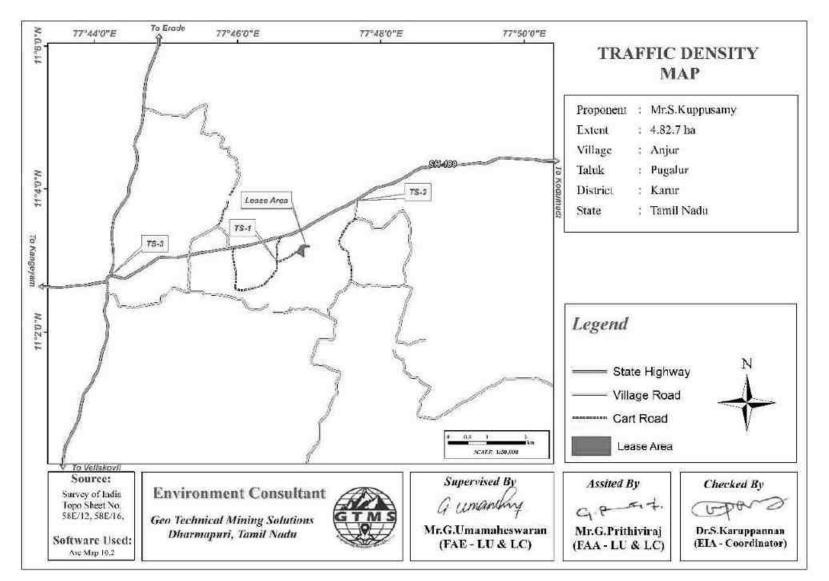


Figure 3.29 Traffic Density Map

3.8 SITE SPECIFIC FEATURES

There are no Wildlife Sanctuaries, Reserve Forest and National Park within 10 km radius. Therefore, there will be no need of acquisition/diversion of forest land. The details related to the environmentally sensitive areas around the proposed mine lease area i.e., 10 km radius and the nearby water bodies are given in the Table 3.39.

S. No.	Sensitive Ecological Features	Name	Areal Distance in km
1	National Park /	None	Nil within 10 km radius
1	Wild life Sanctuaries	None	Nil within 10 km radius
2	Reserve Forest	Arachalur R.F	15.18km NW
2	Keserve Porest	Chennimalai R.F	22.92km NW
		Noyyal Canal	0.40 km NE
3	Lakes/Reservoirs/	Noyyal River	0.63 km NW
5	Dams/Streams/Rivers	Noyyal Dam	2.97 km SE
		Cauvery River	11.85 km NE
4	Tiger Reserve/Elephant Reserve/ Biosphere Reserve	None	Nil within 10 km radius
5	Densely Polluted Areas	Muthur	4.60 km W
6	Mangroves	None	Nil within 10 km radius
7	Mountains/Hills	None	Nil within 10 km radius
8	Centrally Protected Archaeological Sites	None	Nil within 10 km radius
9	Industries/ Thermal Power Plants	TNPL	22.62 km E
10	Defence Installation	None	Nil within 10 km radius

 Table 3.39 Details of Environmentally Sensitive Ecological Features in the Study Area

Source: Survey of India Toposheet

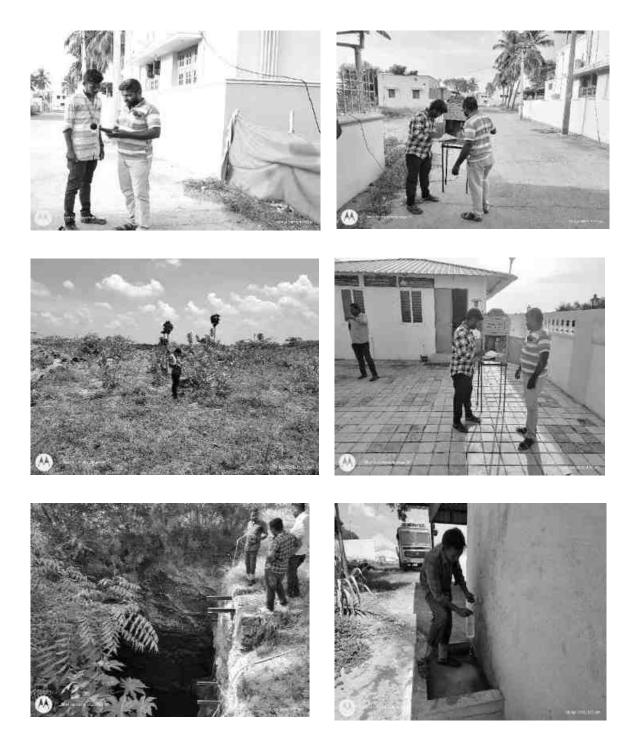


Figure 3.30 Field Study Photographs

CHAPTER IV

ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 4.0 GENERAL

Environmental impacts both direct and indirect on various environmental attributes due to proposed mining activity will be created in the surrounding environment, during the operational and post–operational phases. The occurrence of mineral deposits, being site specific, their exploitation, often, does not allow for any choice except adoption of eco-friendly operation. The methods are required to be selected in such a manner, so as to maintain environmental equilibrium ensuring sustainable development.

In order to maintain the environmental commensuration with the mining operation, it is essential to undertake studies on the existing environmental scenario and assess the impact on different environmental components. This would help in formulating suitable management plans sustainable resource extraction.

Several scientific techniques and methodologies are available to predict impacts of physical environment. Mathematical models are the best tools to quantitatively describe the cause-and-effect relationships between sources of pollution and different components of environment. In cases where it is not possible to identify and validate a model for a particular situation, predictions have been arrived at based on logical reasoning / consultation / extrapolation.

The following parameters are of significance in the Environmental Impact Assessment and are being discussed in detail:

- Land environment
- Soil environment
- Water Environment
- ✤ Air Environment
- Noise Environment
- Socio economic environment
- Biological Environment

Based on the baseline environmental status at the project site, the environmental factors that are likely to be affected are identified, quantified and assessed.

4.1 LAND ENVIRONMENT

4.1.1 Anticipated Impact

- Permanent or temporary change on land use and land cover.
- Change in topography of the mine lease area will change at the end of the life of the mine.
- Problems to agricultural land and human habitations due to dust, and noise caused by movement of heavy vehicles
- Degradation of the aesthetic environment of the core zone due to quarrying
- Soil erosion and sediment deposition in the nearby water bodies due to earthworks during the rainy season
- Siltation of water course due to wash off from the exposed working area

4.1.2 Common Mitigation Measures from Proposed Project

- The mining activity will be gradual confined in blocks and excavation will be undertaken progressively along with other mitigate measures like phase wise development of greenbelt etc.
- Construction of garland drains all around the quarry pits and construction of check dam at strategic location in lower elevations to prevent erosion due to surface runoff during rainfall and also to collect the storm water for various uses within the proposed area.
- Green belt development along the boundary within safety zone. The small quantity of water stored in the mined-out pit will be used for greenbelt
- Thick plantation will be carried out on unutilized area, top benches of mined out pits, on safety barrier, etc.,
- At conceptual stage, the land use pattern of the quarry will be changed into Greenbelt area and temporary reservoir.
- In terms of aesthetics, natural vegetation surrounding the quarry will be retained (such as in a buffer area i.e., 7.5 m safety barrier and other safety provided) so as to help minimize dust emissions.
- Proper fencing will be carried out at the conceptual stage, Security will be posted round the clock, to prevent inherent entry of the public and cattle.

4.2 SOIL ENVIRONMENT

No top soil will be removed in this project. However, some of the common mitigation measures is discussed in the following sections.

4.2.1 Anticipated Impact on Soil Environment

Following impacts are anticipated due to mining operations:

- Removal of protective vegetation cover
- Exposure of subsurface materials which are unsuitable for vegetation establishment

4.2.2 Common Mitigation Measures from proposed project

- Run-off diversion Garland drains will be constructed around the project boundary to prevent surface flows from entering the quarry works areas and will be discharged into vegetated natural drainage lines, or as distributed flow across an area stabilised against erosion.
- Sedimentation ponds Run-off from working areas will be routed towards sedimentation ponds. These trap sediment and reduce suspended sediment loads before runoff is discharged from the quarry site. Sedimentation ponds should be designed based on runoff, retention times, and soil characteristics. There may be a need to provide a series of sedimentation ponds to achieve the desired outcome.
- Retain vegetation Retain existing or re-plant the vegetation at the site wherever possible.
- Monitoring and maintenance Weekly monitoring and daily maintenance of erosion control systems so that they perform as specified specially during rainy season.

4.3 WATER ENVIRONMENT

The total water requirement for this project will be 8.0 KLD. The water will be sourced initially from outside agencies. Later the rainwater collected in the mine pit sump will be used for this purpose. The domestic effluent to be generated from the project will be collected in septic tank with soak pits arrangements. There are no waste dumps in this quarry. Based on the available information and the geophysical investigations the study concluded that the project area is considered to have poor groundwater potential. Besides, the mining area consists of hard compact rock, no major water seepage within the mine is expected.

4.3.1 Anticipated Impact

The major sources of water pollution normally associated due to mining and allied operations are:

- ✤ Generation of waste water from vehicle washing.
- ✤ Washouts from surface exposure or working areas
- Domestic sewage
- Disturbance to drainage course in the project area
- Mine Pit water discharge
- ✤ Increase in sediment load during monsoon in downstream of lease area

- This being a mining project, there will be no process effluent. Waste from washing of machinery may result in discharge of oil & grease, suspended solids.
- ◆ The sewage from soak pit may percolate to the ground water table and contaminate it.
- Surface drainage may be affected due to Mining.
- As the proposed project acquires 8.0 KLD of water from water vendors, it will not extract water by developing abstraction structures in the lease area. Therefore, the project will not deplete aquifer beneath the lease area.

4.3.2 Common Mitigation Measures for the Proposed Project

- Garland drainage system and settling tank will be constructed along the proposed mining lease area. The garland drainage will be connected to settling tank and sediments will be trapped in the settling tanks and only clear water will be discharged to the natural drainage
- Rainwater from the mining pits will be collected in sump and will be allowed to store and pumped out to surface settling tank of 15 m x 10 m x 3 m to remove suspended solids if any. This collected water will be judiciously used for dust suppression and such sites where dust likely to be generated and for developing green belt. The proponent will collect and judicially utilize the rainwater as part of rainwater harvesting system
- Benches will be provided with inner slopes and through a system of drains and channels, rain water will be allowed to descent into surrounding drains to minimize the effects of erosion and water logging arising out of uncontrolled descent of water
- The water collected will be reused during storm for dust suppression and greenbelt development within the mines
- Interceptor traps/oil separators will be installed to remove oils and greases. Water from the tipper wash-down facility and machinery maintenance yard will be passed through interceptor traps/oil separators prior to its reuse
- Flocculating or coagulating agents will be used to assist in the settling of suspended solids during monsoon seasons
- Periodic (every 6 month once) analysis of ground water quality of quarry pit water and ground water of nearby villages will be conducted.
- Domestic sewage from site office and urinals/latrines provided in ML is discharged in septic tank followed by soak pits
- Waste water discharge from mine will be treated in settling tanks before using for dust suppression and tree plantation purposes

- De-silting will be carried out before and immediately after the monsoon season
- Regular monitoring (once every 6 months) and analysing the quality of water in open well, bore wells and surface water.

4.4 AIR ENVIRONMENT

The air borne particulate matter is the main air pollutant by opencast mining. The mining operation will be carried out by jack hammer drilling, excavation, loading and transportation.

4.4.1 Anticipated Impact from proposed project

- During mining at various stages of activities such as excavation, drilling and transportation of materials, particular matter (PM), gases such as sulphur dioxide, oxides of nitrogen from vehicular exhaust are the main air pollutants
- Emissions of noxious gases due to incomplete detonation of explosive may sometimes pollute the air
- The fugitive dust released from the mining operations may cause effect on the mine workers who are directly exposed to the fugitive dust
- Simultaneously, the air-borne dust may travel to longer distances and settle in the villages located near the mine lease area

4.4.2 Emission Estimation

Emission resulting from different mining activities is estimated using relevant empirical formulae developed by Chaulya et al.,2001. The equations used for SPM, SO₂, and NO_X emission estimation have been given in Table 4.1.

	Pollutant	Source	Empirical Equation	Parameters
Overall Mine	SPM	Type Area	E= [u0.4a0.2{9.7+ 0.01p+b/(4+0.3b)}]	u = Wind speed(m/s); p = Mineral production (Mt/yr); b = Overburden handling (Mm ³ /yr); a = Lease area(km ²); E = Emission rate(g/s).
Overall Mine	SO ₂	Area	$E=a0.14 \{u/(1.83+0.93u)\} \\ [\{p/(0.48+0.57p)\} \\ +\{b/(14.37+1.15b)\}]$	u = Wind speed(m/s); p = Mineral production (Mt/yr); b = Overburden handling (Mm ³ /yr); a = Lease area(km ²); E = Emission rate(g/s).
Overall Mine	NO _X	Area	$E=a0.25 \{u/(4.3+32.5u)\}$ [1.5p+{b/(0.06+0.08b)}]	u = Wind speed(m/s); p = Mineral production (Mt/yr); b= Overburden handling (Mm ³ /yr); a = Lease area(km ²); E = Emission rate(g/s).

 Table 4.1 Empirical Formula for Emission Rate from Overall Mine

The emission rate thus calculated using the empirical formula is used as one of the inputs in the AERMOD modelling. As the SPM emission calculation for overall mine is not considering pollution control measures, one-third of the SPM value is taken for derivation of PM_{10} keeping in mind that proper control measures are followed. It is important to note that PM_{10} emission rate is derived from the SPM estimation in the background that PM_{10} constitutes 52% of SPM emission. The $PM_{2.5}$, PM_{10} , SO₂ and NO_X emission results have been given in Table 4.2.

Activity	Pollutant	Calculated Value (g/s)	Lease Area in m ²	Calculated Value (g/s/m ²)
Overall Mine	PM _{2.5}	0.0282721794	48270	5.85709E-07
Overall Mine	PM10	0.0454435883	48270	9.41446E-07
Overall Mine	SO_2	0.0228392611	48270	4.73156E-07
Overall Mine	NO _X	0.0318176695	48270	6.5916E-07

 Table 4.2 Estimated Emission Rate

4.4.2.1 Frame work of Computation and Model Details

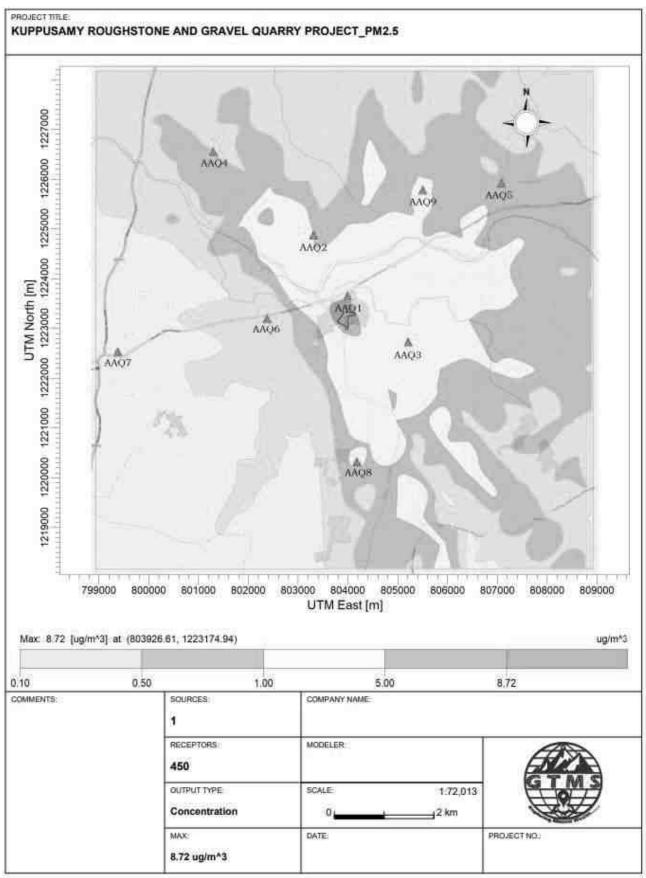
By using the above-mentioned inputs, Ground Level Concentrations (GLC) due to the quarrying activities have been estimated to know the incremental concentration in ambient air quality and impact in the study area. The effect of air pollutants upon receptors are influenced by concentration of pollutants and their dispersion in the atmosphere.

Air quality modelling is an important tool for prediction, planning and evaluation of air pollution control activities besides identifying the requirements for emission control to meet the regulatory standards and to apply mitigation measures to reduce impact caused by quarrying activities. Suspended Particulate Matter (SPM) is the major pollutant occurred during quarrying activities. The prediction includes the impacts of excavation, drilling, loading and movement of vehicles during transportation and meteorological parameters such as wind speed, wind direction, temperature, rainfall, humidity and cloud cover.

The model was used to predict the impact on the ambient air environment at each receptor at various localities within 10km radius around the project site and the maximum incremental GLC at the project site. All the prediction models in Figures 4.1- 4.4 shows the maximum concentrations of PM_{2.5}, PM₁₀, SO₂ and NO_X close to the proposed project site due to low to moderate wind speeds.

4.4.2.2 Modelling of Incremental Concentration

The air borne particulate matter such as PM_{10} and $PM_{2.5}$ generated by quarrying operation, transportation, and wind erosion of the exposed areas and emissions of sulphur dioxide (SO₂) and oxides of nitrogen (NOx) due to excavation and loading equipment's and vehicles plying on haul


roads are the significant air pollutants arising from mining operation, leading to an adverse impact on the ambient air environment in and around the project area. Anticipated incremental concentration and net increase in emissions due to quarrying activities within 500 m around the project area is predicted by open pit source modelling using AERMOD Software and the incremental values of the air pollutants were added to the base line data monitored at the proposed site to predict total GLC of the pollutants, as shown in Tables 4.3-4.6.

4.4.2.3 Model Results

The post project resultant concentrations of PM_{10} , $PM_{2.5}$, $SO_2 \& NO_X (GLC)$ is given in Tables 4.3-4.6.

	0		PM 2.5 cor	ncentratio	ns(µg/m ³)	n y (of ()	ce
Station ID	Distance to core area (km)	Direction	Baseline	Predicted	Total	Comparison against air quality standard (60 µg/m ³)	Magnitude of change (%)	Significance
AAQ1	0.31	Ν	25.0	8.72	33.72		34.88	
AAQ2	1.68	NNW	21.6	5 5	26.6	-	23.15	
AAQ3	1.20	SE	18.8		23.8	Below standard	26.60	Not significant
AAQ4	4.15	NNW	16.9	0.5	17.4	anc	2.96 2.59	ific
AAQ5	3.93	NE	19.3	0.5	19.8	v st	2.59	ign
AAQ6	1.42	W	21.0	0.5	21.5	low	2.38	ot s
AAQ7	4.46	W	23.0	0	23	Be	0.00	ž
AAQ8	2.69	S	17.9	5 5	22.9		27.93	
AAQ9	2.82	NNE	18.5		23.5		27.03	
Г		Ta				nt GLC of PM ₁₀	Ι	
	re		PM10 con	centration	ls(μg/m ³)	_	÷	
n ID	to co (km)	tion	G	q		rison 1st ality ard ¢/m ³)	ide 0 (%)	cance
Station ID	Distance to core area (km)	Direction	Baseline	Predicted	Total	Comparison against air quality standard (100 µg/m ³)	Magnitude of change (%)	Significance
Static	Distance area (N Direct	Baseline 45.2	Predicte 12.8	Total	Сотра again air qu stand (100 µg	Magnitu Change	Signifi
						Compa agair air qu stand (100 µg		Signifi
AAQ1	0.31	N	45.2	12.8	58		28.32	
AAQ1 AAQ2	0.31	N NNW	45.2 37.5	12.8 5	58 42.5		28.32 13.33	
AAQ1 AAQ2 AAQ3	0.31 1.68 1.20	N NNW SE	45.2 37.5 33.1	12.8 5 5	58 42.5 38.1		28.32 13.33 15.11	
AAQ1 AAQ2 AAQ3 AAQ4 AAQ5 AAQ6	0.31 1.68 1.20 4.15 3.93 1.42	N NNW SE NNW NE W	45.2 37.5 33.1 33.4 37.4 42.2	12.8 5 5 1 1 0.5	58 42.5 38.1 34.4 38.4 42.7		28.32 13.33 15.11 2.99 2.67 1.18	
AAQ1 AAQ2 AAQ3 AAQ4 AAQ5 AAQ6 AAQ7	0.31 1.68 1.20 4.15 3.93	N NNW SE NNW NE	45.2 37.5 33.1 33.4 37.4	12.8 5 5 1 1	58 42.5 38.1 34.4 38.4	Compa agair agair air qu air qu stand (100 μg	28.32 13.33 15.11 2.99 2.67	Not significant Signifi
AAQ1 AAQ2 AAQ3 AAQ4 AAQ5 AAQ6	0.31 1.68 1.20 4.15 3.93 1.42	N NNW SE NNW NE W	45.2 37.5 33.1 33.4 37.4 42.2	12.8 5 5 1 1 0.5	58 42.5 38.1 34.4 38.4 42.7		28.32 13.33 15.11 2.99 2.67 1.18	

Table 4.3 Incremental & Resultant GLC of PM_{2.5}

ChUsertiUSER/Desktop/desktop/KUPPUSAMY/PM2/PM2.inc

Figure 4.1 Predicted Incremental Concentration of PM_{2.5}

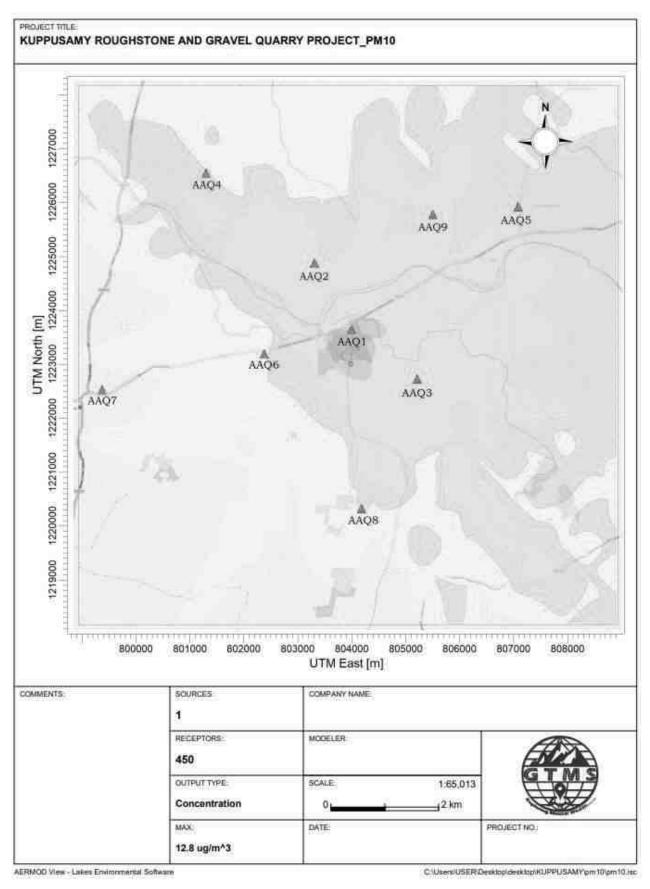


Figure 4.2 Predicted Incremental Concentration of PM₁₀

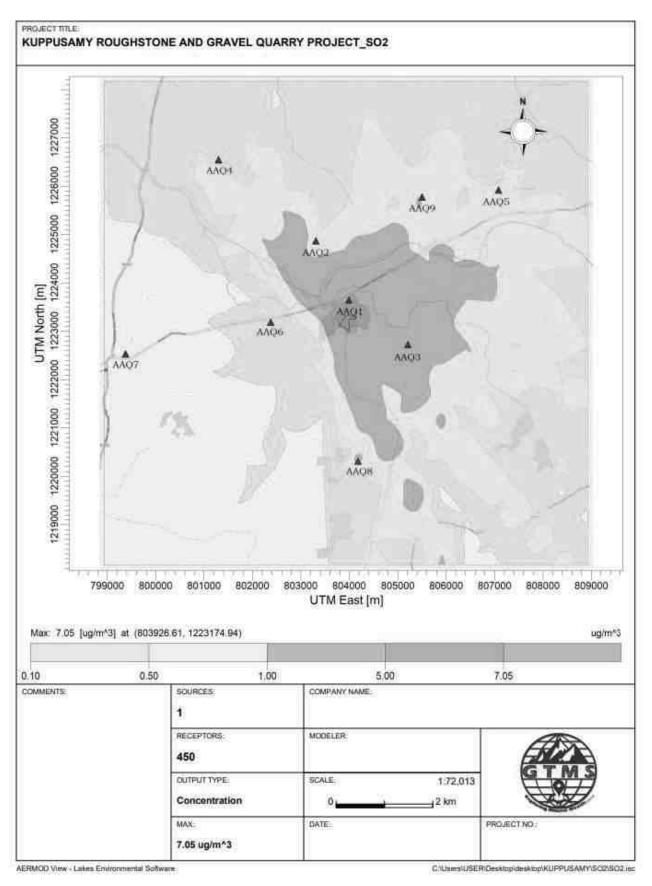
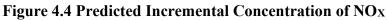



Figure 4.3 Predicted Incremental Concentration of SO₂

	SO ₂ concentrations(µg/m ³)						e	
D	to	n				d ty on	e of %)	ıce
Station ID	Distance to core	Direction	Baseline	Predicted	Total	Comparison against air quality standard (80 μg/m ³)	Magnitude of change (%)	Significance
AAQ1	0.31	N	8.6	7.05	15.65		81.98	
AAQ2	1.68	NNW	8.4	1	9.4		11.90	
AAQ3	1.20	SE	8.2	5	13.2		60.98	LL LL
AAQ4	4.15	NNW	6.6	0.5	7.1	Below standard	7.58	Not significant
AAQ5	3.93	NE	6.5	1	7.5	/ staı	15.38	ignif
AAQ6	1.42	W	6.6	0.5	7.1	elow	7.58	lot si
AAQ7	4.46	W	9.2	0	9.2		0.00	Z
AAQ8	2.69	S	5.9	5	10.9		84.75	
AAQ9	2.82	NNE	6.4	0.5	6.9		7.81	
	I	Τa	able 4.6 Inc	remental &	& Resulta	nt GLC of NOx		
	0	_	NOx conc	entrations	s(μg/m³)		of ()	ce
Station ID	Distance to core	Direction	Baseline	Predicted	Total	Comparison against air quality standard (80 µg/m ³)	Magnitude of change (%)	Significance
AAQ1	0.31	N	25.9	9.81	35.71		37.88	
AAQ2	1.68	NNW	17.8	5	22.8		28.09	
AAQ3	1.20	SE	15.4	5	20.4		32.47	t
AAQ4	4.15	NNW	13.9	1	14.9	ndare	7.19	ican
AAQ5	3.93	NE	21.2	1	22.2	Below standard	4.72	Not significant
AAQ6	1.42	W	23.2	0.5	23.7	elow	2.16	lot s
	1	-		0	24.7	n a	0.00	Z
AAQ7	4.46	W	24.7	0	24./		0.00	
AAQ7 AAQ8	4.46 2.69	W S	24.7 19.1	5	24.7	-	26.18	

Table 4.5 Incremental & Resultant GLC of SO2

The values of cumulative concentration i.e., background + incremental concentration of pollutant in all the receptor locations are still within the prescribed NAAQ limits without effective mitigation measures. By adopting suitable mitigation measures, the pollutant levels in the atmosphere can be controlled further.

4.4.3 Common Mitigation Measures

Drilling

To control dust at source, wet drilling will be practiced. Where there is a scarcity of water, suitably designed dust extractor will be provided for dry drilling along with dust hood at the mouth of the drill-hole collar.

Advantages of Wet Drilling

- In this system dust gets suppressed close to its formation. Dust suppression becomes very effective and the work environment will be improved from the point of view of occupational comfort and health
- ✤ Due to dust free atmosphere, the life of engine, compressor etc., will be increased
- The life of drill bit will be increased
- The rate of penetration of drill will be increased. Due to the dust free atmosphere visibility will be improved resulting in safer working conditions.

Blasting

- Suitable time of blasting will be chosen according to the local conditions and water will be sprinkled on blasting face.
- Blasting will be avoided when temperature inversion is likely to occur and strong wind blows towards residential areas.
- Controlled blasting will be carried out using suitable explosive charge and short delay detonators, adequate stemming of holes at collar zone.
- Solution Blasting will be restricted to a particular time of the day i.e., at the time of lunch hours.
- Before loading of material water will be sprayed on blasted material.
- Dust mask will be provided to the workers and their use will be strictly monitored.

Haul Road and Transportation

- Water will be sprinkled on haul roads twice a day to avoid dust generation during transportation
- Transportation of material will be carried out during day time and material will be covered with tarpaulin
- The speed of tippers plying on the haul road will be limited to < 20 km/hr to avoid generation of dust</p>
- ♦ Water sprinkling on haul roads and loading points will be carried out twice a day
- Main source of gaseous pollution will be from vehicle used for transportation of mineral; therefore, weekly maintenance of machines improves combustion process and reduces pollution

- ✤ The un-metaled haul roads will be compacted weekly before being put into use
- Overloading of tippers will be avoided to prevent spillage
- ✤ It will be ensured that all transportation vehicles carry a valid PUC certificate
- ✤ Haul roads and service roads will be graded to clear accumulation of loose materials

Green Belt

- Planting of trees all along main mine haul roads and regular grading of haul roads will be practiced to prevent the generation of dust due to movement of tractors/tippers
- ✤ Green belt of adequate width will be developed around the project site

Occupational Health

- Dust mask will be provided to the workers and their use will be strictly monitored
- Annual medical checkups, trainings and campaigns will be arranged to ensure awareness about importance of wearing dust masks among all mine workers and tipper drivers
- Ambient air quality monitoring will be conducted every six months to assess effectiveness of mitigation measures proposed

4.5 NOISE ENVIRONMENT

Predictions have been carried out to compute the noise level at various distances around the working pit due to these major noise-generating sources. Noise modelling has been carried out to assess the impact on surrounding ambient noise levels.

Basic phenomenon of the model is the geometric attenuation of sound. Noise at a point generates spherical waves which are propagated outwards from the source through the air at a speed of 1, 100 ft/sec with the first wave making an ever-increasing sphere with time. As the wave spreads the intensity of noise diminishes as the fixed amount of energy is spread over an increasing surface area of the sphere. The assumption of the model is based on point source relationship i.e., for every doubling of the distance the noise levels are decreased by 6 dB (A).

For hemispherical sound wave propagation through homogeneous loss free medium, one can estimate noise levels at various locations at different sources using a mathematical model based on first principle.

$$Lp_2 = Lp_1 - 20 \log (r_2/r_1) - Ae_{1,2}$$

Where,

 Lp_1 & Lp_2 are sound levels at points located at distances r_1 and r_2 from the source

 $Ae_{1,2}$ is the excess attenuation due to environmental conditions.

Combined effect of all sources can be determined at various locations by logarithmic addition.

Lp total = 10 log { $10^{(Lp1/10)} + 10^{(Lp2/10)} + 10^{(Lp3/10)} + \dots$ }

4.5.1 Anticipated Impact

Attenuation due to Green Belt has been taken to be 4.9 dB (A). The inputs required for the model are:

- Source data
- Receptor data
- Attenuation factor

Source data has been computed taking into account of all the machinery and activities used in the mining process. Same has been listed in Table 4.7.

S. No.	Machinery / activity	Impact on environment?	Noise produced in dB(A) at 50 ft from source*
1	Blasting	Yes	94
2	Jack hammer	Yes	88
3	Compressor	No	81
4	Excavator	No	85
5	Tipper	No	84
Total			95.8

Table 4.7 Activity and Noise Level Produced by Machinery

*50 feet from source = 15.24 meters

Source: U.S. Department of Transportation (Federal Highway Administration) – Construction Noise Handbook

The total noise to be produced by mining activity is calculated to be 95.8 dB (A). Generally, most mining operations produce noise between 100-109 dB (A). We have considered equipment and operation noise levels (max) to be approx. 109 dB (A) for noise prediction modelling.

 Table 4.8 Predicted Noise Incremental Values

Noise Monitoring Location	Distance From Project Site(m)	Baseline Noise Level (dBA)m During Day Time	Predicted Noise Level (dBA)	Total (dBA)
Sampathkumar Lease	280	42.8	48.22	49.31
Core	100	43.4	57.16	57.34
Nagappalayam	380	41.2	45.56	46.92
Vellaiyankattu pudur	520	44.2	42.84	46.58

Ramanathapuram	1650	37.9	32.81	39.07	
Pillapalayam	1200	39.2	35.58	40.77	
Poolavalasu	4140	39.8	24.82	39.94	
Nallasellipalayam	3930	39.2	25.27	39.37	
Thottiyapalayam	1430	42.2	34.05	42.82	
Muthur	4380	45.6	24.33	45.63	
Oodayam	2670	36.9	28.63	37.50	
Nadupalayam	2820	37.5	28.15	37.98	
NAAQ Standards	NAAQ StandardsIndustrial Day Time- 75 dB (A) & Night Time- 70 dB (A)Residential Day Time-55 dB (A) & Night Time- 45 dB (A)				

The incremental noise level is found to be 57.16 dB (A) in core zone and ranges between 24.33 and 48.22dB (A) in buffer zone. The noise level at different receptors in buffer zone is lower due to the distance involved and other topographical features adding to the noise attenuation. The resultant Noise level due to monitored values and calculated values at the receptors are based on the mathematical formula considering attenuation due to several factors including ground reflection, atmosphere, wind speed, temperature, trees, and buildings as 35.5 dB (A), the barrier effect. From the above table, it can be seen that the ambient noise levels at all the locations near habitations are within permissible limits of Residential Area (buffer zone) as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000 (The Principal Rules were published in the Gazette of India, vide S.O.123(E), dated 14.2.2000 and subsequently amended vide S.O. 1046(E),dated 22.11.2000, S.O. 1088(E), dated 11.10.2002, S.O. 1569 (E), dated 19.09.2006 and S.O. 50 (E) dated 11.01.2010 under the Environment(Protection) Act, 1986.).

4.5.2 Common Mitigation Measures

The following noise mitigation measures are proposed for control of noise:

- ◆ Usage of sharp drill bits while drilling which will help in reducing noise
- Secondary blasting will be totally avoided and hydraulic rock breaker will be used for breaking boulders
- Controlled blasting with proper spacing, burden, stemming and optimum charge/delay will be maintained
- The blasting will be carried out during favourable atmospheric condition and less human activity timings by using nonelectrical initiation system
- Proper maintenance, oiling and greasing of machines will be done every week to reduce generation of noise

- Provision of sound insulated chambers for the workers working on machines (HEMM) producing higher levels of noise
- Silencers / mufflers will be installed in all machineries
- Greenbelt/Plantation will be developed around the project area and along the haul roads.
 The plantation minimizes propagation of noise
- Personal Protective Equipment (PPE) like ear muffs/ear plugs will be provided to the operators of HEMM and persons working near HEMM and their use will be ensured though training and awareness
- Regular medical check-up and proper training to personnel to create awareness about adverse noise level effects

4.5.3 Ground Vibrations

Ground vibrations due to the proposed mining activities are anticipated due to operation of mining machines like excavators, drilling and blasting, transportation vehicles, etc., however, the major source of ground vibration from the quarry is blasting. The major impact of the ground vibrations is observed on the domestic houses located in the villages nearby the mine lease area. The kutcha houses are more prone to cracks and damage due to the vibrations induced by blasting whereas RCC framed structures can withstand more ground vibrations. Apart from this, the ground vibrations may develop a fear factor in the nearby settlements.

Another impact due to blasting activities is fly rocks. These may fall on the houses or agricultural fields nearby the mining lease area and may cause injury to persons or damage to the structures. Nearest habitation from the proposed project areas is listed in below table. The ground vibrations due to the blasting in the quarry are calculated using the empirical equation.

The empirical equation for assessment of peak particle velocity (PPV) is given below:

$$V = K [R/Q^{0.5}]^{-B}$$

Where,

V = peak particle velocity (mm/s)

$$K = site and rock factor constant (500)$$

Q = maximum instantaneous charge (kg)

B = constant related to the rock and site (usually 1.6)

R = distance from charge (m)

Location	Maximum	Maximum Nearest P		Fly rock	Air Blast	
ID	Charge in kgs	Habitation	PPV in mm/s	distance	Pressure	Sound
	0gege	in m		in m	(kPa)	Level (dB)
P1	53	380	0.893	19	0.31	144

Table 4.9 Predicted PPV Values due to Blasting

Table 4.10 Predicted PPV Values due to Blasting at 100-500 m radius

Location	Maximum	Radial	PPV in	Fly rock	Air Blast	
ID	Charge in kgs	Distance in	mm/s	distance	Pressure	Sound
	Charge in Kgs	m		in m	(kPa)	Level (dB)
		100	7.558		1.54	158
	53	200	2.493	19	0.67	151
P1		300	1.303		0.41	146
		400	0.822		0.29	143
		500	0.575		0.22	141

4.5.3.1 Common Mitigation Measures

- The blasting operations in the cluster quarries are carried out without deep hole drilling and blasting using delay detonators which reduce the ground vibrations
- Proper quantity of explosives, suitable stemming materials and appropriate delay system will be adopted to avoid overcharging and for safe blasting
- Adequate safe distance from blasting will be maintained as per DGMS guidelines
- Blasting shelter will be provided as per DGMS guidelines
- Blasting operations will be carried out only during day time
- The charge per delay will be minimized and preferably a greater number of delays will be used per blasts
- During blasting, other activities in the immediate vicinity will be temporarily stopped
- Drilling parameters like depth, diameter and spacing will be properly designed to give proper blast
- A fully trained explosives blast man (Mining Mate, Mines Foreman, 2nd Class Mines Manager/ 1st Class Mines Manager) will be appointed
- A set of shot firing rules will be drawn up and blasting shall commence outlining the detailed operating procedures that will be followed to ensure that shot firing operations on site take place without endangering the workforce or public

- Sufficient angular stemming material will be used to confine the explosive force and minimise environmental disturbance caused by venting / misfire
- The detonators will be connected in a predetermined sequence to ensure that only one charge is detonated at any one time and a NONEL or similar type initiation system will be used
- The detonation delay sequence shall be designed so as to ensure that firing of the holes is in the direction of free faces so as to minimise vibration effects
- Appropriate blasting techniques shall be adopted in such a way that the predicted peak particle velocity shall not exceed 0.251mm/s
- Vibration monitoring will be carried out every 6 months to check the efficacy of blasting practices.

4.6 ECOLOGY AND BIODIVERSITY

4.6.1 Impact on Ecology and Biodiversity

- There shall be negligible air emissions or effluents from the project site. During loading the truck, dust generation will be likely. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly
- Most of the land in the buffer area is undulating terrain with crop lands, grass patches and small shrubs. Hence, there will be no effect on flora of the region.
- Carbon released from quarrying machineries and tippers during quarrying would be 6493 kg per day, 1753064 kg per year and 8765322 kg over five years, as provided in Table 4.11.

Table 4.11 Carbon Released During Five Years of Rough Stone and Gravel Production

	Per day	Per year	Per five years
Fuel consumption of excavator	447	120631	603153
Fuel consumption of compressor	53.2	14364	71820
Fuel consumption of tipper	1923	519134	2595670
Total fuel consumption in liters	2423	654129	3270643
Co ₂ emission in kg	6493	1753064	8765322

4.6.2 Mitigation Measures on Flora

- During conceptual stage, the top bench will be re-vegetated by planting local /native species and lower benches will be converted into rainwater harvesting structure following completion of mining activities, which will replace habitat resources for fauna species in this locality over a longer time.
- Existing roads will be used; new roads will not be constructed to reduce impact on flora.

Carbon Sequestration

 To mitigate carbon emission due to mining activities, we recommend planting trees around the quarry to offset the carbon emission during quarrying. A tree can sequester 75597 kg of carbon per year. Therefore, we recommend planting large number of trees around the quarry and near school campuses, government wasteland, roadsides etc.

♦ As per the greenbelt development plan as recommended by SEAC (Table 4.13), about 2183 trees will be planted within three months from the beginning of mining. These trees, when grown up would sequester carbon of about 214 kg of the total carbon, as provided in Table 4.12.

Table 4.12 CO ₂ Sequestration			
CO ₂ sequestration in kg	214	57866	289330
Remaining CO ₂ not sequestered in kg	6279	1695198	8475992
Trees required for environmental compensation	70633		
Area required for environmental compensation in hectares	141		

T-11-412 CO 6

Greenbelt Development

The main objective of the green belt is to provide a barrier between the source of pollution and the surrounding areas. In order to compensate the loss of vegetation cover, it is suggested to carry out afforestation program mainly inside and outside of the lease area in different phases. This habitat improvement program would ensure the faunal species to re-colonize and improve the abundance status in the core zone. Greenbelt development plan and budget required for green belt development plan are given in Tables 4.14-4.15. For greenbelt development, species are recommended, as shown in Table 4.13 on the basis of:

- * Natural growth of existing species and survival rate of various species.
- * Suitability of a particular plant species for a particular type of area.
- * Creating of biodiversity.
- Fast growing, thick canopy copy, perennial and evergreen large leaf area. *
- * Efficient in absorbing pollutants without major effects of natural growth.

S. No	Botanical Name of the Plant	Family Name	Common Name	Category	Dust Capturing Efficiency Features	
1	Azadirachta indica	Meliaceae	Neem, Vembu	Tree	Well distinct thick at both the layer	
2	Techtona grandis	Lamiaceae	Teak	Tree	2	
3	Polyalthia longifolia	Annonaceae	Nettilingam	Tree	Well distinct in Palisade & Spongy	
4	Albizia lebbeck	Fabaceae	Vagai	Tree	parenchyma.	
5	Delonix regia	Fabaceae	Cemmayir- konrai	Tree	Spongy parenchyma is	
6	Bauhinia racemose	Fabaceae	Aathi	Tree		

Table 4.13 Recommended Species for Greenbelt Development Plan

7	Cassia fistula	Fabaceae	Sarakondrai	Tree	present at lower
8	Aegle marmelos	Rutaceae	Vilvam	Tree	epidermis Many
9	Pongamia pinnata	Fabaceae	Pungam	Tree	vascular bundles
10	Thespesia populnea	Malvaceae	Puvarasu	Tree	arranged almost parallel series

Table 4.14 Greenbelt Development Plan

	No. of trees proposed for	No. of trees expected to	Area to be
	plantation	survive @ 80%	covered(m ²)
Plantation in the	Number of pla	nts inside the mine lease area	
construction phase (3	965	772	8689
months)	Number of plants outside the mine lease area		
	1448	1158	13033
Total	2414	1931	21722

Table 4.15 Budget for Greenbelt Development Plan

Activity Plantation inside the mine lease area (in safety margins)	Plantation in the construction phase(3Months) 965	Cost Site clearance, preparation of land, digging of pits / trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area and @ 30 per plant maintenance	Capital Cost (Rs.) 193080	Recuring Cost-per annum 28962
Plantation outside the area	1448 Total	(recurring))" Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	434430	43443
	6,27,510	72,405		

Source: EMP budget

After complete extraction of mineral, the excavated pits will be allowed to collect rainwater and seepage water to serve as a reservoir to charge the nearby wells. Fish culture will also be attempted. A bund will be constructed around the pits. In order to minimize the impact of mining on the vegetation outside the mine lease area, it is recommended that adequate protection measures must be implemented. As mining involves movement of vehicles and increased anthropogenic activities, some of the areas can be fenced by involving local people and educating them about increased benefits of such activities.

4.6.3. Anticipated Impact on Fauna

- There is no Wildlife Sanctuary and Biosphere Reserve within 10 km radius of the project site.
- No rare, endemic & endangered species are reported in the buffer zone. However, during the course of mining, the management will practice scientific method of mining with proper Environmental Management Plan including pollution control measures especially for air and noise, to avoid any adverse impact on the surrounding wildlife.
- Fencing around all the proposed mine lease areas will be constructed to restrict the entry of stray animals
- Green belt development will be carried out which will help in minimizing adverse impact on the flora found in the area.

4.6.4 Measures for Protection and Conservation of Wildlife Species

- ✤ All the preventive measures will be taken for growth & development of fauna.
- Creating and development awareness for nature and wildlife in the adjoin villages.
- The workers shall be trained to not harm any wildlife, should it come near the project site. No work shall be carried out after 6.00 pm.
- Undertaking mitigation measures for conducive environment to the flora and fauna in consultation with Forest Department.
- Dust suppression system will be installed within mine and periphery of mine for proposed project
- Plantation around mine area will help in creating habitats for small faunal species and to
- create better environment for various fauna. Creating and developing awareness for nature and wildlife in the adjoining villages.

Aquatic Biodiversity

Mining activities will not disturb the existing aquatic ecology as there is no effluent discharge proposed from the rough stone and gravel quarry. There is no natural perennial surface water body within the mine lease area. Hence, aquatic biodiversity is not observed in the mine lease area.

S. No	Attributes	Assessment		
1	Activities of the project affects the	No breeding and nesting sites were identified		
	breeding/nesting sites of birds and	in the lease area.		
	animals			
2	Located near an area populated by rare	No endangered, critically endangered,		
	or endangered species	vulnerable species were sighted in core area.		
	Proximity to national park/wildlife	• Arachalur, R.F 15.18km, NW		
	sanctuary/reserve forest /mangroves/	• Chennimalai, R.F 22.92km, NW		
3	coastline/estuary/sea	There are no national parks or eco-sensitive		
		zones around 10 km radius.		
4	Proposed project restricts access to	No. The proposed project does not restrict		
	waterholes for wildlife	access to water holes for wildlife.		
5	Proposed mining project impact surface	No scheduled or threatened wildlife animal		
	water quality that also provide water to	were sighted in core area.		
	wildlife			
6	Proposed mining project increase	Surface runoff management system will be		
	siltation that would affect nearby	developed properly. So, there will be no		
7	biodiversity area.	siltation in nearby mining area.		
7	Risk of fall/slip or cause death to wild	Barbed wire fencing will be installed around the lease area. Therefore, wild animals will not		
	animals due to project activities	fall into the quarry pit.		
8	The project release effluents into a	No water bodies were found close to core zone		
0	water body that also supplies water to a	so chances of water becoming polluted will be		
	wildlife	low.		
9	Mining project effect the forest-based	No. The proposed project does not involve any		
	livelihood/ any specific forest product	forestland. Therefore, it will not affect the		
	on which local livelihood depended	livelihood of people depending the forest		
	1	product.		
10	Project likely to affect migration routes	No migration routes were found crossing the		
		lease area.		
11	Project likely to affect flora of an area,	No flora with medicinal values were found in		
	which have medicinal value	the study area.		
12	Forestland is to be diverted, has carbon	As the proposed project does not involve any		
	high sequestration	forestland, there will be no need for diversion.		
		-		
13	The project likely to affect wetlands,	Wetland was not present in and around mining		
	fish breeding grounds, marine ecology	lease area. No fish breeding grounds were		
		present in core area.		

Table 4.16 Ecological Impact Assessments

Site specific N loss of Site possesses common floral (not	_					
loss of Site possesses imm						
1Common floral diversity (Direct impact)trees) species. Clearance of these species will not result in loss of florarequ How Great result in loss of flora1Uprooting of vegetation of lease areaSite specific faunal diversity (Partial impact)Site supports only common species, which use wide variety of habitats of the buffer zone reserve forest area. So, there is no threat of faunal diversity.Less severe and the buffer zone reserve forest area. So, there is no threat of faunal diversityLoss of Habitat (Direct impact)Site does not form Unique / critical habitat structure for unique flora or fauna.Site does not form unique flora or fauna.	No ediate tion uired. vever, enbelt ntation Il be oped in ect site d in hery of project ndary, eh will ve flora fauna rsity of project rea.					
Mining Phase	Mining Phase					

Table 4.17 Anticipated Impact of Ecology and Biodiversity

2	Excavation of mineral using machine and labours, Transportation activities will generate noise.	Site-specific disturbance to normal faunal movements at the site due to noise. (Partial impact)	Site does not form unique / critical habitat structure for unique flora or fauna.	Less severe	Mining activity should not be operated after 5PM. Excavation of dump and transportation work should stop before 7PM. All vehicles
3	Vehicular Movement for transportation of materials will result in generation of dust (SPM) due to haul roads and emission of SO ₂ , NO ₂ , CO etc.	Impact on surrounding agriculture and associated fauna due to deposition of dust and Emission of CO. (Indirect impact)	Impact is less as the agricultural land far from core area.	Less severe	will be certified for appropriate Emission levels. More plantation has been suggested Upgrade the vehicles with alternative fuel such biodiesel, methanol and biofuel around the mining area.

4.7 SOCIO ECONOMIC ENVIRONMENT

4.7.1 Anticipated Impact from Proposed and Existing Projects

- Dust generation from mining activity can have negative impact on the health of the workers and people in the nearby area.
- ✤ Approach roads can be damaged by the movement of tippers
- Increase in Employment opportunities both direct and indirect thereby increasing economic status of people of the region.

4.7.2 Common Mitigation Measures for Proposed Project

- Good maintenance practices will be adopted for all machinery and equipment, which will help to avert potential noise problems.
- Green belt will be developed in and around the project site as per Central Pollution Control Board (CPCB) guidelines.
- Air pollution control measure will be taken to minimize the environmental impact within the core zone.
- For the safety of workers, personal protective appliances like hand gloves, helmets, safety shoes, goggles, aprons, nose masks and ear protecting devices will be provided as per mines act and rules.
- Benefit to the State and the Central governments through financial revenues by way of royalty, tax, duties, etc.., from this project directly and indirectly.
- From above details, the quarry operations will have highly beneficial positive impact in the area

4.8 OCCUPATIONAL HEALTH AND SAFETY

Occupational health and safety hazards occur during the operational phase of mining and primarily include the following:

- ✤ Respiratory hazards
- Noise
- Physical hazards
- Explosive storage and handling

4.8.1 Respiratory Hazards

Long-term exposure to silica dust may cause silicosis the following measures are proposed:

- Cabins of excavators and tippers will be enclosed with AC and sound proof
- Use of personal dust masks will be made compulsory

4.8.2 Noise

Workers are likely to get exposed to excessive noise levels during mining activities. The following measures are proposed for implementation

- No employee will be exposed to a noise level greater than 85 dB(A) for a duration of more than 8 hours per day without hearing protection
- The use of hearing protection will be enforced actively when the equivalent sound level over 8 hours reaches 85 dB(A), the peak sound levels reach 140 dB(C), or the average maximum sound level reaches 110 dB(A)
- Ear muffs provided will be capable of reducing sound levels at the ear to at least 85 dB(A)
- Periodic medical hearing checks will be performed on workers exposed to high noise levels.

4.8.3 Physical Hazards

The following measures are proposed for control of physical hazards

- Specific personnel training on work-site safety management will be taken up;
- Natural barriers, temporary railing, or specific danger signals will be provided along rock benches or other pit areas where work is performed at heights more than 2m from ground level;
- Maintenance of yards, roads and footpaths, providing sufficient water drainage and preventing slippery surfaces with an all-weather surface, such as coarse gravel will be taken up.

4.8.4 Occupational Health Survey

All the persons will undergo pre-employment and periodic medical examination. Employees will be monitored for occupational diseases by conducting the following tests

- General physical tests
- Audiometric tests
- Full chest, X-ray, Lung function tests, Spirometric tests
- Periodic medical examination yearly
- ✤ Lung function test yearly, those who are exposed to dust
- Eye test

Essential medicines will be provided at the site. The medicines and other test facilities will be provided at free of cost. The first aid box will be made available at the mine for immediate treatment. First aid training will be imparted to the selected employees regularly. The lists of first aid trained members shall be displayed at strategic places.

4.9 MINE WASTE MANAGEMENT

No waste is anticipated from any of the proposed quarries.

4.10 MINE CLOSURE

Mine closure plan is the most important environmental requirement in mining project. The mine closure plan should cover technical, environmental, social, legal and financial aspects dealing with progressive and post closure activities. The closure operation is a continuous series of activities starting from the decommissioning of the project. Therefore, progressive mine closure plan should be specifically dealt with in the mining plan and is to be reviewed along with mining plan. As progressive mine closure is a continuous series of activities, it is obvious that the proposals of scientific mining have included most of the activities to be included in the closure plan. While formulating the closure objectives for the site, it is important to consider the existing or the premining land use of the site; and how the operation will affect this activity.

The primary aim is to ensure that the following broad objectives along with the abandonment of the mine can be successfully achieved:

- To create a productive and sustainable after-use for the site, acceptable to mine owners, regulatory agencies, and the public
- ✤ To protect public health and safety of the surrounding habitation
- ✤ To minimize environmental damage
- ✤ To conserve valuable attributes and aesthetics
- ✤ To overcome adverse socio-economic impacts.

4.10.1 Mine Closure Criteria

The criteria involved in mine closure are discussed below:

4.10.1.1 Physical Stability

All anthropogenic structures, which include mine workings, buildings, rest shelters etc., remaining after mine decommissioning should be physically stable. They should present no hazard to public health and safety as a result of failure or physical deterioration and they should continue to perform the functions for which they were designed. The design periods and factors of safety proposed should take full account of extreme events such as floods, hurricane, winds or earthquakes, etc. and other natural perpetual forces like erosion, etc.,

4.10.1.2 Chemical Stability

The solid wastes on the mine site should be chemically stable. This means that the consequences of chemical changes or conditions leading to leaching of metals, salts or organic compounds should not endanger public health and safety nor result in the deterioration of environmental attributes. If the pollutant discharge likely to cause adverse impacts is predicted in

advance, appropriate mitigation measures like settling of suspended solids or passive treatment to improve water quality as well as quantity, etc., could be planned. Monitoring should demonstrate that there is no adverse effect of pollutant concentrations exceeding the statutory limits for the water, soil and air qualities in the area around the closed mine.

4.10.1.3 Biological Stability

The stability of the surrounding environment is primarily dependent upon the physical and chemical characteristics of the site, whereas the biological stability of the mine site itself is closely related to rehabilitation and final land use. Nevertheless, biological stability can significantly influence physical or chemical stability by stabilizing soil cover, prevention of erosion/wash off, leaching, etc.,

A vegetation cover over the disturbed site is usually one of the main objectives of the rehabilitation programme, as vegetation cover is the best long-term method of stabilizing the site. When the major earthwork components of the rehabilitation programme have been completed, the process of establishing a stable vegetation community begins. For re-vegetation, management of soil nutrient levels is an important consideration. Additions of nutrients are useful under three situations.

- Where the nutrient level of spread topsoil is lower than material in-situ e.g., for development of social forestry
- Where it is intended to grow plants with a higher nutrient requirement than those occurring naturally.
- Where it is desirable to get a quick growth response from the native flora during those times when moisture is not a limiting factor. For example, development of green barriers

The Mine closure plan should be as per the approved mining plan. The mine closure is a part of approved mine plan and activities of closure shall be carried out as per the process described in mine closure plan.

CHAPTER V

ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE)

5.0 INTRODUCTION

Consideration of alternatives to a proposed project is a requirement of EIA process. During the scoping process, alternatives to a proposed project can be considered or refined, either directly or by reference to the key issues identified. A comparison of alternatives helps to determine the best method of achieving the project objectives with minimum environmental impacts or indicates the most environmentally friendly and cost-effective options.

5.1 FACTORS BEHIND THE SELECTION OF PROJECT SITE

The proposed project is site specific and has the following advantages:

- ✤ The mineral deposit occurs in a non-forest area.
- There is no habitation within the project area; hence no R & R issues exist.
- * There is no river, stream, nallah and water bodies in the applied mine lease area.
- ♦ Availability of skilled, semi-skilled and unskilled workers in this region.
- ✤ All the basic amenities such as medical, firefighting, education, transportation, communication and infrastructural facilities are well connected and accessible.
- The mining operations will not intersect the ground water level. Hence, no impact on ground water environment.
- As the proposed project area falls in seismic zone II, there is no major history of landslides, earthquake, subsidence etc., recorded in the past history.

5.2 ANALYSIS OF ALTERNATIVE SITE

No alternatives are suggested as the mine site is mineral specific.

5.3 FACTORS BEHIND SELECTION OF PROPOSED TECHNOLOGY

Manual open cast mining method with secondary blasting will be applied to extract rough stone and gravel in the area. The proposed mining lease areas have following advantages:

- As the mineral deposition is homogeneous and batholith formation, opencast method of working is preferred over underground method.
- The material will be loaded with the help of excavators into tractors/tippers and transported to the need by customers.
- Semi-skilled labours fit for quarrying operations are easily available around the nearby villages.

5.4 ANALYSIS OF ALTERNATIVE TECHNOLOGY

Open cast mechanized method has been selected for this project. This technology is having least gestation period, economically viable, safest and less labour intensive. The method has inbuilt flexibility for increasing or decreasing the production as per market condition.

CHAPTER VI

ENVIRONMENTAL MONITORING PROGRAMME

6.0 GENERAL

The monitoring and evaluation of environmental parameters indicates potential changes occurring in the environment, which paves way for implementation of rectifying measures wherever required to maintain the status of the natural environment. Evaluation is also a very effective tool to judge the effectiveness or deficiency of the measures adopted and provides insight for future corrections. The main objective of environmental monitoring is to ensure that the obtained results in respect of environmental attributes and prevailing conditions during operation stage are in conformity with the prediction during the planning stage. In case of substantial deviation from the earlier prediction of results, this forms as base data to identify the cause and suggest remedial measures. Environmental monitoring is mandatory to meet compliance of statutory provisions under the Environment (Protection) Act, 1986, relevant conditions regarding monitoring covered under EC orders issued by the SEIAA-TN as well as the conditions set forth under the order issued by Tamil Nadu Pollution Control Board while granting CTE/CTO.

6.1 METHODOLOGY OF MONITORING MECHANISM

Implementation of EMP and periodic monitoring will be carried out by respective project proponents. A comprehensive monitoring mechanism has been devised for monitoring of impacts due to proposed project; Environmental protection measures like dust suppression, control of noise and blast vibrations, maintenance of machinery and vehicles, housekeeping in the mine premises, plantation, implementation of Environmental Management Plan and environmental clearance conditions will be monitored by the respective mine management. On the other hand, implementation of area level protection measures like green belt development, environmental quality monitoring etc., are taken up by a senior executive who reports to their Mine Management.

An Environment monitoring cell (EMC) will be constituted to monitor the implementation of EMP and other environmental protection measures in the proposed quarry. The responsibilities of this cell will be:

- Implementation of pollution control measures
- ✤ Monitoring programme implementation
- Post-plantation care
- ✤ To check the efficiency of pollution control measures taken
- ✤ Any other activity as may be related to environment

✤ Seeking expert's advice when needed.

The environmental monitoring cell will co-ordinate all monitoring programs at site and data thus generated will be regularly furnished to the State regulatory agencies as compliance status reports.

The sampling and analysis report of the monitored environmental attributes will be submitted to the Tamil Nadu Pollution Control Board (TNPCB) at a frequency of half-yearly and yearly by the proposed project proponent. The half-yearly reports are submitted to Ministry of Environment and Forest, Regional Office and SEIAA-TN as well.

The sampling and analysis of the environmental attributes will be as per the guidelines of Central Pollution Control Board (CPCB)/Ministry of Environment, Forest and Climate Change (MoEF & CC). The Environmental Monitoring Cell will be formed for the proposed project. The structure of the cell will be as shown in Figure 6.1.

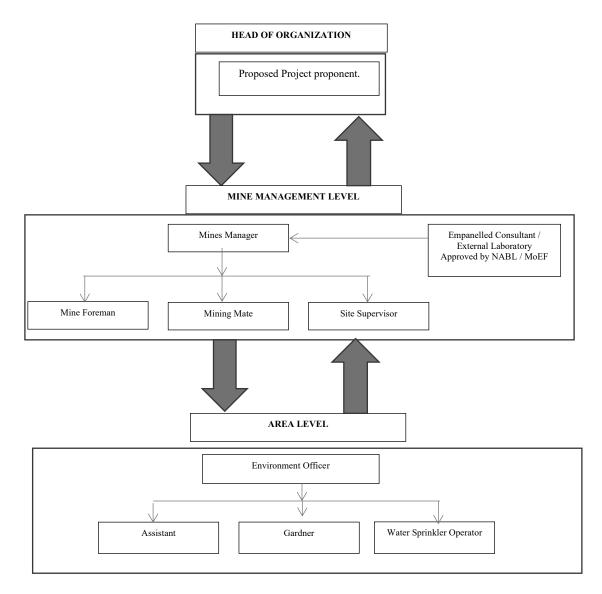


Figure 6.1 Proposed environmental monitoring chart

6.2 IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES

The mitigation measures proposed in chapter IV will be implemented so as to reduce the impact on the environment due to the operations of the proposed project. Implementation schedule of mitigation measures is given in Table 6.1.

S. No.	Recommendations	Time Period	Schedule
1	Land Environment Control Measures	Before commissioning of the project	Immediately after the commencement of project
2	Soil Quality Control Measures	Before commissioning of the project	Immediately after the commencement of project
3	Water Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
4	Air Pollution Control Measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
5	Noise Pollution Control measures	Before commissioning of the project and along with mining operation	Immediately and as project progress
6	Ecological Environment	Phase wise implementation every year along with mine operations	Immediately and as project progress

Table 6.1 Implementation Schedule for Proposed Project

6.3 MONITORING SCHEDULE AND FREQUENCY

Monitoring shall confirm that commitments are being met. This may take the form of direct measurement and recording of quantitative information, such as amounts and concentrations of discharges, emissions and wastes, for measurement against statutory standards. Monitoring may include socio-economic interaction, through local liaison activities or even assessment of complaints.

The environmental monitoring will be conducted in the mine operations as follows:

- ✤ Air quality
- ✤ Water and wastewater quality
- Noise levels

- Soil quality and
- ✤ Greenbelt development

The details of proposed monitoring schedule have been provided in Table 6.2.

S.	Environment	I	Mon	itoring	Parameters	
No.	Attributes	Location	Duration	Frequency	Parameters	
1	Air Quality	2 Locations (1 Core & 1 Buffer)	24 hours	Once in 6 months	Fugitive Dust, PM _{2.5} , PM ₁₀ , SO ₂ and NO _x .	
2	Meteorology	At mine site before start of Air Quality Monitoring & IMD Secondary Data	Hourly / Daily	Continuous online monitoring	Wind speed, Wind direction, Temperature, Relative humidity and Rainfall	
3	Water Quality Monitoring	2 Locations (1SW & 1 GW)	-	Once in 6 months	Parameters specified under IS:10500, 1993 & CPCB Norms	
4	Hydrology	Water level in open wells in buffer zone around 1 km at specific wells	-	Once in 6 months	Depth in m BGL	
5	Noise	2 Locations (1 Core & 1 Buffer)	Hourly – 1 Day	Once in 6 months	Leq, Lmax, Lmin, Leq Day & Leq Night	
6	Vibration	At the nearest habitation (in case of reporting)	_	During blasting operation	Peak particle velocity	
7	Soil	2 Locations (1 Core & 1 Buffer)	_	Once in six months	Physicalandchemicalcharacteristics	
8	Greenbelt	Within the project area	Daily	Monthly	Maintenance	

Table 6.2 Proposed Monitoring Schedule Post EC for the Proposed Quarry

Source: Guidance of manual for mining of minerals, February 2010

6.4 BUDGETARY PROVISION FOR ENVIRONMENT MONITORING PROGRAM

The cost in respect of monitoring of environmental attributes, parameter to be monitored, sampling/monitoring locations with frequency and cost provision against each proposal is shown in Table 6.3. Monitoring work will be outsourced to external laboratory approved by NABL / MoEF. The proposed recurring cost for Environmental Monitoring Programme is Rs **2,95,000** /- per annum for the proposed project site.

S. No.	Parameter	Capital Cost	Recurring Cost per annum
1	Air Quality	-	Rs 60,000/-
2	Meteorology	-	Rs 15,000/-
3	Water Quality	-	Rs 20,000/-
4	Water Level Monitoring		Rs 10,000/-
5	Soil Quality	-	Rs 20,000/-
6	Noise Quality	-	Rs 10,000/-
7	Vibration Study	-	Rs 1,50,000/-
8	Greenbelt	-	Rs 10,000/-
	Total	-	Rs 2,95,000 /-

Table 6.3 Environment Monitoring Budget

Source: Field Data

6.5 REPORTING SCHEDULES OF MONITORED DATA

The monitored data on air quality, water quality, noise levels and other environmental attributes will be periodically examined by the Cluster Mine Management Coordinator and Respective Head of Organization for taking necessary corrective measures. The monitoring data will be submitted to Tamil Nadu State Pollution Control Board in the Compliance to CTO Conditions & environmental audit statements every year to MoEF & CC and Half-Yearly Compliance Monitoring Reports to MoEF & CC Regional Office and SEIAA.

Periodical reports to be submitted to:

- ✤ MoEF & CC Half yearly status report
- TNPCB Half yearly status report
- Department of Geology and Mining: quarterly, half yearly annual reports

Besides the Mines Manager/Agent of respective project will submit the periodical reports to:

- ✤ Director of mines safety
- ✤ Labour enforcement officer
- Controller of explosives as per the norms stipulated by the department.

CHAPTER VII ADDITIONAL STUDIES

7.0 GENERAL

Additional studies deal with:

- Risk Assessment
- Disaster Management Plan
- Cumulative Impact Study
- Plastic Waste Management
- Post-COVID Health Management Plan

7.1 PUBLIC CONSULTATION FOR PROPOSED PROJECT

Application to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district was made and the public opinions on the proposed project will be updated in the final EIA/EMP report.

7.2 RISK ASSESSMENT FOR PROPOSED PROJECT

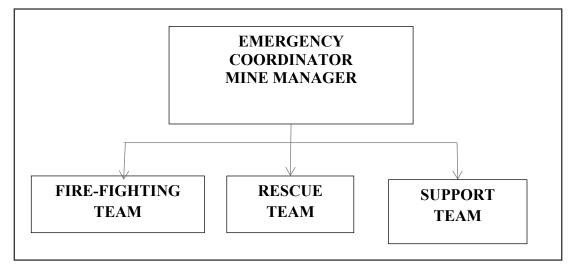
Risk Assessment is all about prevention of accidents and to take necessary steps to prevent it from happening. The methodology for the risk assessment is based on the specific risk assessment guidance issued by the Directorate General of Mine Safety (DGMS), Dhanbad, vide circular No.13 of 2002, dated 31st December, 2002. The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention. Further, mechanisms responsible for these hazards are identified and their control measures, set to timetable are recorded along with pinpointed responsibilities. The whole quarry operation will be carried out under the direction of a Qualified Competent Mine Manager holding certificate of competency to manage a metalliferous mine granted by the DGMS, Dhanbad for proposed project.

Factors of risks involved due to human induced activities in connection with these proposed mining & allied activities with detailed analysis of causes and control measures for the mine is given in Table 7.1.

0	I able 7.1 Risk Assessment & Control Measures for Proposed Project Disk fasters			
S.	Risk factors	Causes of risk	Control measures	
No.				
1	Accidents due	Improper	All safety precautions and provisions of Mine A	ct,
	to explosives	handling and	1952, Metalliferous Mines Regulation, 1961 and	nd
	and heavy	unsafe working	Mines Rules, 1955 will be strictly followed during a	all
	mining	practice	mining operations.	
	machineries.		Workers will be sent to the Training in the near	by
			Group Vocational Training Centre Entry	of
			unauthorized persons will be prohibited.	
			Fire-fighting and first-aid provisions in the min	ne
			office complex and mining area.	
			Provisions of all the safety appliances such as safe	ety
			boot, helmets, goggles etc. will be made available	to
			the employees and regular check for their use.	
			Working of quarry, as per approved plans an	nd
			regularly updating the mine plans.	
			Cleaning of mine faces on daily basis shall be dai	ily
			done in order to avoid any overhang or undercut.	
			Handling of explosives, charging and firing shall	be
			carried out by competent persons only under the	he
			supervision of a Mine Manager.	
			Maintenance and testing of all mining equipment	as
			per manufacturer's guidelines.	
2	Drilling	Improper and	Safe operating procedure established for drilling	ng
		unsafe practices;	(SOP) will be strictly followed.	
		Due to high	• Only trained operators will be deployed.	
		pressure of	No drilling shall be commenced in an area where sho	ots
		compressed air,	have been fired until the blaster/blasting foreman h	as
		hoses may burst;	made a thorough Examination of all places,	
		Drill Rod may	✓ Drilling shall not be carried on simultaneously on t	he
		break;	benches at places directly one above the other.	
L				

Table 7.1 Risk Assessment & Control Measures for Proposed Project

			./	Periodical preventive maintenance and replacement
			v	
				of worn-out accessories in the compressor and drill
				equipment as per operator manual.
			\checkmark	All drills unit shall be provided with wet drilling
				shall be maintained in efficient working in condition.
			✓	Operator shall regularly use all the personal
				protective equipment.
3	Transportation	Potential hazards	✓	Before commencing work, drivers personally check
		and unsafe		the truck/tipper for oil(s), fuel and water levels, tyre
		workings		inflation, general cleanliness and inspect the brakes,
		contributing to		steering system, warning devices including
		accident and		automatically operated audio-visual reversing alarm,
		injuries		rear view mirrors, side indicator lights etc., are in
				good condition.
		Overloading of	\checkmark	Not allow any unauthorized person to ride on the
		material		vehicle nor allow any unauthorized person to operate
				the vehicle.
		While reversal &	\checkmark	Concave mirrors should be kept at all corners
		overtaking of	\checkmark	All vehicles should be fitted with reverse horn with
		vehicle		one spotter at every tipping point
			\checkmark	Loading according to the vehicle capacity
		Operator of truck	\checkmark	Periodical maintenance of vehicles as per operator
		leaving his cabin		manual
		when it is loaded.		
4	Natural	Unexpected	√	Escape Routes will be provided to prevent
	calamities	happenings		inundation of storm water
			\checkmark	Fire Extinguishers & Sand buckets
5	Failure of Mine	Slope geometry,	✓	Ultimate or over all pit slope shall be below 60° and
	Benches and	Geological		each bench height shall be 5m.
	Pit Slope	structure		
		and Proposed by I		0.50


Source: Analysed and Proposed by FAE & EC

7.3 DISASTER MANAGEMENT PLAN FOR PROPOSED PROJECT

Natural disasters like Earthquake, Landslides have not been recorded in the past history as the terrain is categorized under seismic zone II. The area is far away from the sea. Hence, the disaster due to heavy floods and tsunamis are not anticipated. The Disaster Management Plan is aimed to ensure safety of life, protection of environment, protection of installation, restoration of production and salvage operations in this same order of priorities. The objective of the Disaster Management Plan is to make use of the combined resources of the mine and the outside services to achieve the following:

- Rescue and medical treatment of casualties;
- Safeguard other people;
- Minimize damage to property and the environment;
- Initially contain and ultimately bring the incident under control;
- Secure the safe rehabilitation of affected area; and
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency.

In case a disaster takes place, despite preventive actions, disaster management will have to be done in line with the descriptions below. There is an organization proposed for dealing with the emergency situations. Structure of the team has been shown in Figure 7.1.

The emergency organization shall be headed by emergency coordinator who will be qualified competent mines manager. In his absence senior most people available at the mine shall be emergency coordinator till arrival of mines manager. There would be three teams for taking care of emergency situations – Fire-Fighting Team, Rescue Team and Support Team. The proposed composition of the teams is given in Table 7.2.

DESIGNATION	QUALIFICATION					
FIRE-FIGHTING TEAM						
Team Leader/ Emergency Coordinator (EC)	Mines Manager					
Team Member	Mines Foreman					
Team Member	Mining Mate					
RESCUE	ТЕАМ					
Team Leader/ Emergency Coordinator (EC)	Mines Manager					
Team Member/ Incident Controller (IC)	Environment Officer					
Team Member	Mining Foreman					
SUPPOR	Г ТЕАМ					
Team Leader/ Emergency Coordinator (EC)	Mines Manager					
Assistant Team Leader	Environment Officer					
Team Member	Mining Mate					
Security Team Leader/ Emergency Security	Mines Foreman					
Controller	wines i orenian					

Table 7.2 Proposed Teams for Emergency Situation

Once the mine becomes operational, the above table along with names of personnel will be prepared and made easily available to workers for respective proposed quarries. A mobile communication network and wireless shall connect Mine Emergency Control Room (MECR) to control various departments of the mine, fire station and neighbouring industrial units/mines.

7.3.1 Roles and Responsibilities of Emergency Team

(a) Emergency coordinator (EC)

The emergency coordinator shall assume absolute control of site and shall be located at MECR.

(b) Incident controller (IC)

Incident controller shall be a person who shall go to the scene of emergency and supervise the action plan to overcome or contain the emergency. Shift supervisor or Environmental Officer shall assume the charge of IC.

(c) Communication and advisory team

The advisory and communication team shall consist of heads of Mining Departments i.e., Mines Manager

(d) Roll call coordinator

The Mine Foreman shall be Roll Call Coordinator. The roll call coordinator will conduct the roll call and will evacuate the mine personnel to assembly point. His prime function shall be to account for all personnel on duty.

(e) Search and rescue team

There shall be a group of people trained and equipped to carryout rescue operation of trapped personnel. The people trained in first aid and fire-fighting shall be included in search and rescue team.

(f) Emergency security controller

Emergency Security Controller shall be senior most security person located at main gate office and directing the outside agencies e.g., fire brigade, police, doctor and media men etc.,

7.3.2 Emergency Control Procedure

The onset of emergency, will in all probability, commence with a major fire or explosion or collapse of wall along excavation and shall be detected by various safety devices and also by members of operational staff on duty. If located by a staff member on duty, he (as per site emergency procedure of which he is adequately briefed) will go to nearest alarm call point, break glass and trigger off the alarms. He will also try his best to inform about location and nature of accident to the emergency control room. In accordance with work emergency procedure the following key activities will immediately take place to interpret and take control of emergency.

- On site fire crew led by a fireman will arrive at the site of incident with fire foam tenders and necessary equipment.
- Emergency security controller will commence his role from main gate office
- Incident controller shall rush to the site of emergency and with the help of rescue team and will start handling the emergency.
- Site main controller will arrive at MECR with members of his advisory and communication team and will assume absolute control of the site.
- He will receive information continuously from incident controller and give decisions and directions to:
- Incident controller
- Mine control rooms
- Emergency security controller

7.3.3 Proposed Fire Extinguishers

The following type of fire extinguishers has been proposed at strategic locations within the mine, as shown in Table 7.3.

Location	Type of Fire Extinguishers
Electrical Equipment	CO ₂ type, foam type, dry chemical powder type
Fuel Storage Area	CO ₂ type, foam type, dry chemical powder type, Sand bucket
Office Area	Dry chemical type, foam type

Table 7.3 Proposed Fire Extinguishers at Different Locations in P1

7.3.4 Alarm System

On receiving the message of disaster from Site Controller, fire-fighting team, the mine control room attendant will sound siren wailing for 5 minutes. Incident controller will arrange to broadcast disaster message through public address system. On receiving the message of "Emergency Over" from Incident Controller the emergency control room attendant will give "All Clear Signal", by sounding alarm straight for 2 minutes.

The features of alarm system will be explained to one and all to avoid panic or misunderstanding during disaster. In order to prevent or take care of hazard / disasters if any the following control measures have been adopted.

- Fire-fighting and first-aid provisions in the mines office complex and mining area are provided.
- Provisions of all the safety appliances such as safety boot, helmets, goggles, dust masks, ear plugs and ear muffs etc. are made available to the employees and the use of same is strictly adhered to through regular monitoring.
- Training and refresher courses for all the employees working in hazardous premises.
- Working of mine, as per approved plans and regularly updating the mine plans.
- Cleaning of mine faces is regularly done.
- Checking and regular maintenance of garland drains and earthen bunds to avoid any inflow of surface water in the mine pit.
- Provision of high-capacity standby pumps with generator sets with enough quantity of diesel for emergency pumping especially during monsoon.
- Regular maintenance and testing of all mining equipment were carried out as per manufacturer's guidelines.

7.4 CUMULATIVE IMPACT STUDY

The Cumulative Impact is mainly anticipated due to drilling & blasting and excavation and transportation activities in all the quarries within the cluster and major impact anticipated is on Air & Noise Environment and Ground Vibrations due to blasting. For this cumulative study, 3 proposed projects, known as P1, P2, P3 are taken into consideration. The details of P1 have been given in Table 1.2 and the details of P2 and P3 are given in the Table 7.4 and 7.5

Name of the Oyama		Mr.P.Sampathkumar					
Name of the Quarry	Ro	Rough Stone and Gravel Quarry					
Type of Land	Patta Land						
Extent	4.81.5 Ha						
S E No	7	59/2(P), 76	1/2(P),761/3(P	'),			
S.F.No		762/2,762/3	3, 763/2, 763/3				
Toposheet No		58	-E/16				
Location of Project Site		11° 3'	20.14"N				
(Centre Point)		77°46	'56.69"E				
Highest Elevation	186m AMSL						
	Pit	Length	Width (m)	Depth			
	Level	(m)		(m)			
	1	63	53	5			
Existing Dit Dimensions	2	70	42	10			
Existing Pit Dimensions	3	150	50	14			
	4	115	75	15			
	5	160	80	15			
	6	120	55	16			
depth of Mining		45m BGL					
Geological Resources	Rough St	Rough Stone in m ³ Gravel in m ³		in m ³			
	1784	1784581		38			
Mineable Reserves	Rough St	Rough Stone in m ³ Gravel in m ³					
	554	554542		2880			

Table 7.4 Salient Features of the Proposed Project P2

Proposed reserves for five years	Rough Stone in m ³	Gravel in m ³ /1 year	
Troposed reserves for five years	514164	2880	
Method of Mining	Open-Cast Semi N	Aechanized mining	
Topography	Flat Top	oography	
	Jack Hammer	3	
Machinery proposed	Compressor	1	
Widefiniery proposed	Tipper	7	
	Excavator	1	
	The quarrying operation is proposed to carried		
	out by open cost, using jack hammer drilling		
Blasting Method	followed by manual breaking will be adopted to		
	release the rough stone and nonel blasting is		
	proposed in this lease area.		
Proposed Manpower Deployment	19 Nos		
Project Cost	Rs.74,96,500/-		
CER Cost @ 2% of Project Cost	Rs. 5,00,000/-		
Proposed Water Requirement	6.0 KLD		

Table 7.5 Salient Features of the Proposed Project P2

Name of the Quarry	Mr.V.Arunprashath	
Ivanie of the Quarty	Rough Stone and Gravel Quarry	
Type of Land	Patta Land	
Extent	1.24.0 ha	
S.F.No	767/3	
Toposheet No	58-E/16	
Location of Project Site	11° 03'05.42"N to 11° 03'10.93"N	
(Centre Point)	77°46'56.76"E 77°46'59.20"E	
Highest Elevation	186AMSL	

	Pit	Length		Depth	
Existing Pit Dimensions	Level	(m)	Width (m)	(m)	
	Ι	71	61	30	
Ultimate depth of Mining		30m BGL			
Geological Resources	Rough St	one in m ³	Gravel	Gravel in m ³	
Ocological Resources	1308	8418	188	346	
Mineable Reserves	Rough St	one in m ³	Gravel	in m ³	
Willeable Reserves	436	0139	212	.56	
Proposed reserves for five years	Rough St	one in m ³	Gravel in :	m ³ /1 year	
Troposed reserves for five years	436139		212	21256	
Method of Mining	Open	-Cast Semi]	Mechanized n	nining	
	Jack	Hammer		3	
Machinery proposed	Compressor			1	
	Tipper			4	
	Ex	cavator		1	
	The quarrying operation is proposed to carried				
	out by open cost, using jack hammer drilling				
Blasting Method	followed by manual breaking will be adopted to				
	release the rough stone and nonel blasting is				
	proposed in this lease area.				
Proposed Manpower Deployment		12	Nos		
Project Cost	Rs.56,93,500/-				
CER Cost @ 2% of Project Cost	Rs. 5,00,000/-				
Proposed Water Requirement		3.7	KLD		

7.4.1 Air Environment

As the production of rough stone and gravel plays a vital role in affecting the air environment. The data on the cumulative production resulting from the proposed project have been given in Tables 7.6 and 7.7.

Proposed Production Details							
Quanny	5 Years in	Per Year in	Per Day in	Number of Lorry Load			
Quarry	m ³	m ³	m ³	Per Day			
P1	799894	159979	592	99			
P2	554542	110908	411	68			
P3	436139	87228	323	54			
Grand Total	1790575	358115	1326	221			

Table 7.6 Cumulative Production Load of Rough Stone

Table 7.7 Cumulative Production Load of Gravel

Quarry	Production for 1 Year (m ³)	Yearly Production (m ³)	Daily Production (m ³)	Number of Lorry Loads Per Day
P1	31276	31276	116	19
P2	2880	2880	11	2
P3	21256	21256	79	13
Grand Total	55412	55412	206	34

The cumulative study shows that the overall production of rough stone from the quarry is 1326 m³ per day with a capacity of 221 trips of rough stone per day and that production of gravel from the proposed quarry is 206 m³ per day accounting for 34 trips/day.

7.4.1.1 Cumulative Impact of Air Pollutants

The results on the cumulative impact of the 3 proposed projects on air environment of the cluster have been provided in Table 7.8. The cumulative values resulting from the 3 projects for each pollutant do not exceed the permissible limits set by CPCB.

Pollutants	Baseline Data	Incremental Values (µg/m ³)			Cumulative Value
1 0114041105	(µg/m ³)	P1	P2	P3	(µg/m ³)
PM _{2.5}	25.0	8.72	7.69	4.23	45.64
PM10	45.2	12.80	13.20	8.20	79.4
SO ₂	8.6	7.05	5.07	3.26	23.98
NO _x	25.9	9.81	7.67	4.85	48.23

 Table 7.8 Cumulative Impact Results from the 3 proposed projects

7.4.2 Noise Environment

Noise pollution is mainly due to operation like drilling & blasting and plying of trucks & HEMM. Cumulative Noise modelling has been carried out considering blasting and compressor operation (drilling) and transportation activities. Predictions have been carried out to compute the noise level at various distances around the different quarries within the 500 m radius.

Location ID	Distance (m)	Direction	Background Value (Day) dB(A)	Incremental Value dB(A)	Total Predicted dB(A)	Residential Area Standards dB(A)
Habitation Near P1	380	S	41.2	45.5	46.9	
Habitation Near P2	840	S	41.2	38.7	43.1	55
Habitation Near P3	450	S	41.2	44.1	45.8	
Cumulative Noise (dB (A))					50.3	

Table.7.9 Cumulative Impact of Noise from 3 Proposed Quarries onNagappalayam Habitation

Source: Lab Monitoring Data

Table 7.10 Cumulative impact of Noise from 3 proposed quarries on Vellaivankattu pudur Habitation

Location ID	Distance (m)	Direction	Background Value (Day) dB (A)	Incremental Value dB (A)	Total Predicted dB (A)	Residential Area Standards dB (A)
Habitation Near P1	520	NW	44.2	42.8	46.5	
Habitation Near P2	420	W	44.2	44.6	47.4	55
Habitation Near P3	640	NW	44.2	41.0	45.9	
	Cun	51.4				

The cumulative analysis of noise due to 3 proposed projects shows that habitation of Nagappalayam and that of Vellaiyankattu pudur will receive about 50.3 dB (A) and 51.4 dB (A), respectively. The cumulative results for all the villages in consideration do not exceed the limit set by CPCB for residential areas for day time.

Ground Vibrations

Cumulative results of ground vibrations due to mining activities in the all the 3 mines have been shown in Table 7.11-7.12.

Table 7.11 Cumulative Effect of Ground Vibrations Resulting from 3 Mines on

Location ID	Maximum Charge in kgs	Nearest Habitation in m	PPV in mm/s
P1	53	380	0.893
P2	39.5	840	0.202
Р3	6	450	0.119
	Total		1.214

Habitation of Nagappalayam

 Table 7.12 Cumulative Effect of Ground Vibrations resulting from 3 Mines on

Location	Maximum Charge	Nearest Habitation	PPV in	
ID	in (kgs)	in (m)	mm/s	
P1	53	520	0.541	
P2	39.5	420	0.601	
P3	6	640	0.068	
	Total			

Habitation of Vellaiyankattu pudur

Results from the above tables 7.11-7.12 indicate that the cumulative PPV value of each habitation is well below the peak particle velocity of 8 mm/s as per Directorate General of Mines Safety for safe level criteria through Circular No. 7 dated 29/8/1997.

7.4.3 Socio Economic Environment

Socio Economic benefits of the proposed project were calculated and the results have been shown in Table 7.13 the project together will contribute Rs. 15,00,000/-towards CER fund.

 Table 7.13 Socio Economic Benefits from 3 Mines

Location ID	Project Cost	CER Cost @ 2%
P1	Rs.1,13,87,000	Rs. 5,00,000
P2	Rs.74,96,500	Rs. 5,00,000
P3	Rs. 56,93,500/-	Rs. 5,00,000
Grand Total	Rs. 2,45,77,000/-	Rs. 15,00,000

Location ID	Employment
P1	29
P2	19
P3	12
Grand Total	60

Table 7.14 Employment Benefits from 3 Mines

A total of 60 people will get employment due to 3 proposed mines in cluster **7.4.4 Ecological Environment**

Table 7.15 Greenbelt Development Benefits from Mine

Code	Number of Trees proposed	Area to be covered (m ²)	No. of Trees expected to be grown @ 80% survival rate	Species recommended
P1	2414	21722	1931	Azadirachta
Р2	2408	21668	1926	indica, Albizia lebbeck, Delonix regia,
Р3	620	5580	496	Techtona grandis, etc.,
Total	5442	48970	4353	

Cumulative studies show that the proposed project will plant about 5442 native tree species like *Azadirachta indica*, *Albizia lebbeck*, *Delonix regia*, *Techtona grandis*, etc inside and outside the lease area. It is expected that 80 % of trees, i.e., 4353 trees will survive in this green belt development program.

7.5 PLASTIC WASTE MANAGEMENT PLAN FOR PROPOSED PROJECT

All the Project Proponent shall comply with Tamil Nadu Government Order (Ms) No. 84 Environment and Forest (EC.2) Department Dated: 25.06.2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) Act, 1986.

7.5.1 Objective

- ✤ To investigate the actual supply chain network of plastic waste.
- To identify and propose a sustainable plastic waste management by installing bins for collection of recyclables with all the plastic waste
- Preparation of a system design layout, and necessary modalities for implementation and monitoring.

A detailed action plan to manage plastic waste has been provided in Table 7.16.

S. No.	Activity	Responsibility
1	Framing of Layout Design by incorporating provision of the	Mines Manager
	Rules, user fee to be charged from waste generators for plastic	
	waste management, penalties/fines for littering, burning plastic	
	waste or committing any other acts of public nuisance.	
2	Enforcing waste generators to practice segregation of bio-	Mines Manager
	degradable, recyclable and domestic hazardous waste.	
3	Collection of plastic waste.	Mines Foreman
4	Setting up of Material Recovery Facilities.	Mines Manager
5	Segregation of Recyclable and Non-Recyclable plastic waste at	Mines Foreman
	Material Recovery Facilities.	
6	Channelization of Recyclable Plastic Waste to registered	Mines Foreman
	recyclers.	
7	Channelization of Non-Recyclable Plastic Waste for use either	Mines Foreman
	in Cement kilns, in Road Construction.	
8	Creating awareness among all the stakeholders about their	Mines Manager
	responsibility.	
9	Surprise checking's of littering, open burning of plastic waste	Mine Owner
	or committing any other acts of public nuisance.	

Table 7.16 Action Plan to Manage Plastic Waste

Source: Proposed by FAEs and EC

7.6 POST COVID HEALTH MANAGEMENT PLAN FOR PROPOSED PROJECT

COVID – 19 diseases caused by SARS-CoV-2 Coronavirus is relatively a new disease, with fresh information being known on a dynamic basis about the natural history of the disease, especially in terms of post-recovery events.

After acute COVID-19 illness, recovered patients may continue to report wide variety of signs and symptoms including fatigue, body ache, cough, sore throat, difficulty in breathing, etc. As of now there is limited evidence of post-COVID sequalae and further research is required and is being actively pursued. A holistic approach is required for follow up care and well-being of all post COVID recovering patients.

7.6.1 Post-COVID Follow up Protocol

- Continue COVID appropriate behaviour (use of mask, hand & respiratory hygiene, physical distancing).
- ♦ Drink adequate amount of warm water (if not contra-indicated).
- ✤ Make sure your workplaces are clean and hygienic
- Surfaces (e.g., desks and tables) and objects (e.g., telephones, helmet) need to be wiped with disinfectant regularly
- Put sanitizing hand rub dispensers in prominent places around the workplace. Make sure these dispensers are regularly refilled
- Display posters promoting hand-washing
- Make sure that staff, contractors and customers have access to places where they can wash their hands with soap and water
- Display posters promoting respiratory hygiene.
- Brief your employees, contractors and customers that if COVID-19 starts spreading in your community anyone with even a mild cough or low-grade fever (37.3°C or more) need to stay at home. They should also stay home (or work from home) if they have had to take simple medications, such as paracetamol/acetaminophen, ibuprofen or aspirin, which may mask symptoms of infection
- Keep communicating and promoting the message that people need to stay at home even if they have just mild symptoms of COVID-19.
- Consider whether a face-to-face meeting or event is needed. Could it be replaced by a teleconference or online event?
- Could the meeting or event be scaled down so that fewer people attend?
- Pre-order sufficient supplies and materials, including tissues and hand sanitizer for all employees. Have surgical masks available to offer anyone who develops respiratory symptoms.

- It is also suggested by the Ministry of AYUSH that the use of Chyawanprash in the morning (1 teaspoonful) with Luke warm water/milk is highly recommended (under the direction of Registered Ayurveda physician) as in the clinical practice Chyawanprash is believed to be effective in post-recovery period.
- If there is persistent dry cough / sore throat, do saline gargles and take steam inhalation. The addition of herbs/spices for gargling/steam inhalation. Cough medications, should be taken on advice of medical doctor or qualified practitioner of Ayush.
- ♦ Look for early warning signs like high grade fever, breathlessness, Sp $0_2 < 95\%$, unexplained chest pain, new onset of confusion, focal weakness.
- ✤ Avoid smoking and consumption of alcohol.
- Communicate to your employees and contractors about the plan and make sure they are aware of what they need to do – or not do – under the plan. Emphasize key points such as the importance of staying away from work even if they have only mild symptoms or have had to take simple medications (e.g., paracetamol, ibuprofen) which may mask the symptoms.
- The plan should address how to keep your business running even if a significant number of employees, contractors and suppliers cannot come to your place of business - either due to local restrictions on travel or due to illness.

CHAPTER VIII PROJECT BENEFITS

8.0 GENERAL

The proposed project at Anjur Village aims to produce **799894** m^3 of rough stone and **31276** m^3 of gravel over a period of 5 years. This will enhance the socio-economic activities in the adjoining areas and will result in the following benefits:

- ✤ Increase in Employment Potential
- ✤ Improvement in Socio-Economic Welfare
- Improvement in Physical Infrastructure
- ✤ Improvement in Social infrastructure

8.1 EMPLOYMENT POTENTIAL

It is proposed to provide employment to about 29 persons for carrying out mining operations and give preference to the local people in providing employment in this cluster. In addition, there will be an opportunity for indirect employment to the form of contractual jobs, business opportunities, and service facilities etc. Because of this, the economic status of the local people will improve.

8.2 SOCIO-ECONOMIC WELFARE MEASURES PROPOSED

The impact of mining activity in the area will be more positive on the socio-economic environment in the immediate project impact area. The employment opportunities both direct and indirect will contribute to enhanced money incomes to job seekers with minimal skill sets especially among the local communities.

8.3 IMPROVEMENT IN PHYSICAL INFRASTRUCTURE

The proposed quarry project is located in Anjur Village, Pugalur Taluk, Karur District, Tamil Nadu. The area has already well-established communications roads and other facilities. The following physical infrastructure facilities will further improve due to proposed project.

- Road transport facilities
- Communications
- Medical, Educational and social benefits will be made available to the nearby civilian population in addition to the workmen employed in the mine.

8.4 IMPROVEMENT IN SOCIAL INFRASTRUCTURE

Employment is expected during civil construction period, in trade, garbage lifting, sanitation and other ancillary services, Employment in these sectors will be primarily temporary or contractual and involvement of unskilled labour will be more. A major part of the labour force will be mainly from local villagers who are expected to engage themselves both in agriculture and mining activities. This will enhance their income and lead to overall economic growth of the area.

8.5 OTHER TANGIBLE BENEFITS

The proposed mine is likely to have other tangible benefits as given below

- Indirect employment opportunities to local people in contractual works like construction of infrastructural facilities, transportation, sanitation for supply of goods and services to the mine and other community services
- ✤ Additional housing demand for rental accommodation will increase
- Cultural, recreation and aesthetic facilities will also improve
- Improvement in communication, transport, education, community development and medical facilities and overall change in employment and income opportunity
- The State Government will also benefit directly from the proposed mine, through increased revenue from royalties, cess, DMF, GST etc.,

8.6 CORPORATE SOCIAL RESPONSIBILITY

Individual project proponents will take responsibility to develop awareness among all levels of their staff about CSR activities and the integration of social processes with business processes. Those involved with the undertaking of CSR activities will be provided with adequate training and re-orientation.

Under this programme, the project proponents will take-up following programmes for social and economic development of villages within 5 km of the project site. For this purpose, separate budget will be provided every year. For finalization of these schemes, proponent will interact with LSG. The schemes will be selected from the following broad areas –

- Health Services
- Social Development
- ✤ Infrastructure Development
- Education & Sports
- Self-Employment
- CSR Cost Estimation

CSR activities mainly contributing to education, health, training of women self-help groups and infrastructure etc., will be taken up in the Anjur Village. CSR budget is allocated as 2.5% of the profit.

8.7 CORPORATE ENVIRONMENT RESPONSIBILITY

Allocation for Corporate Environment Responsibility (CER) shall be made as per Government of India, MoEF & CC Office Memorandum F.No.22-65/2017-IA.III dated 01.05.2018. As per para 6 (II) of the office memorandum, being a green field project & capital investment is ≤ 100 crores, the proposed project shall contribute 2% of capital investment towards CER as per directions of EAC/SEAC. However, the SEAC has suggested to allocate CER fund on the basis of the extent of the project. Therefore, Rs. 5,00,000 is allocated for CER. The proposed utilization of the budget of CER activities is given in Table 8.1.

S.	Activity	Budget (Rs.in
No.		Lakh)
1	The applicant Indents to involve in corporate environment responsibilities (CER) activities such as renovation of existing toilet, plantation within the school premises, donating environment related books to the nearby school library, etc.	Rs.5,00,000
	Total	Rs.5,00,000

Table 8.1 CER Action Plan

Source: Field survey conducted by FAE in consultation with project proponent

8.8 SUMMARY OF PROJECT BENEFITS

The project would pay about Rs. 5,46,56,219 to the state government through various ways, as provided in Table 8.2.

 Table 8.2 Project Benefits to the State Government

Particulars	Budget for Rough Stone (Rs.)	BudgetforGravel (Rs.)
CER	5,00,000	
Seigniorage @ Rs.59/m ³ of Rough stone/ Rs.33/m ³ of Gravel	4,40,98,075	10,32,108
District Mineral Foundation Tax @ 10% of Seigniorage	44,09,808	103,210
Green Tax @ 10% of Seigniorage	44,09,808	103,210
Total	5,34,17,691	12,38,528

CHAPTER IX

ENVIRONMENTAL COST BENEFIT ANALYSIS

Not Applicable, Since Environmental Cost Benefit Analysis not recommended at the Scoping stage.

CHAPTER X

ENVIRONMENTAL MANAGEMENT PLAN

10.0 GENERAL

Environment Management Plan (EMP) aims at the preservation of ecological system by considering in-built pollution abatement facilities at the proposed site. Good practices of environmental management plan will ensure to keep all the environmental parameters of the project in respect of ambient air quality, water quality, socio economic improvement standards. Mitigation measures at the source level and an overall environment management plan at the study area are elicited so as to improve the supportive capacity of the receiving bodies. The EMP presented in this chapter discusses the administrative aspects ensuring that mitigative measures are implemented and their effectiveness monitored after approval of the EIA.

10.1 ENVIRONMENTAL POLICY

The project proponent is committed to conduct all its operations and activities in an environmentally responsible manner and to continually improve environmental performance. The Proponent Mr. S. Kuppusamy will:

- Meet the requirements of all laws, acts, regulations, and standards relevant to its operations and activities.
- Implement a program to train employees in general environmental issues and individual workplace environmental responsibilities.
- Allocate necessary resources to ensure the implementation of the environmental policy.
- Ensure that an effective closure strategy is in place at all stages of project development and that progressive reclamation is undertaken as early as possible to reduce potential long-term environmental and community impacts.
- Implement monitoring programs to provide early warning of any deficiency or unanticipated performance in environmental safeguards.
- Conduct periodic reviews to verify environmental performance and to continuously strive towards improvement.

10.1.1 Description of the Administration and Technical Setup

The environment monitoring cell discussed under chapter VI will ensure effective implementation of environment management plan and to ensure compliance of environmental statutory guidelines through mine management level of each proposed quarry. The said team will be responsible for:

- Monitoring of the water/ waste water quality, air quality and solid waste generated.
- ✤ Analysis of the water and air samples collected through external laboratory.

- Implementation and monitoring of the pollution control and protective measures/ devices which shall include financial estimation, ordering, installation of air pollution control equipment, waste water treatment plant, etc.
- Co-ordination of the environment related activities within the project as well as with outside agencies.
- Collection of health statistics of the workers and population of the surrounding villages.
- Green belt development.
- Monitoring the progress of implementation of the environmental monitoring program.
- Compliance to statutory provisions, norms of State Pollution Control Board, Ministry of Environment and Forests and the conditions of the environmental clearance as well as the consents to establish and consents to operate.

10.2 LAND ENVIRONMENT MANAGEMENT

Landscape of the area will be changed due to the quarrying operation, restoration of the land by converting the quarry pit into temporary reservoir and the remaining part of the area (unutilized areas, infrastructure, haul roads) will be utilized for greenbelt development. Aesthetic of the environment will not be affected. There is no major vegetation in the project area. During the course of quarrying operation and after completion of the quarrying operation thick plantation will be developed under greenbelt development program. A detailed land environment management plan has been provided in Table 10.1.

Control	Responsibility
Design vehicle wash-down areas so that all runoff water is captured and passed through oil water separators and sediment catchment devices.	Mines Manager
Refueling to be undertaken in a safe location away from vehicle movement pathways & 100m away of any watercourse. Refueling activity to be under visual observation at all times. Drainage of refueling areas to sumps with oil/water separation.	Mine Foreman & Mining Mate
Soil and groundwater testing as required following up a particular incident of contamination.	Mines Manager
At conceptual stage, the mining pits will be converted into Rain Water Harvesting. Remaining area will be converted into greenbelt area.	Mines Manager
No external dumping i.e., outside the project area.	Mine Foreman
Garland drains with catch pits / settlement traps to be provided all around the project area to prevent run off affecting the surrounding lands.	Mines Manager
The periphery of project area will be planted with thick plantation to arrest the fugitive dust, which will also act as acoustic barrier.	Mines Manager
Source: Proposed by FAEs & EIA Coordinator	

Table 10.1 Proposed Controls for Land Environment

10.3 SOIL MANAGEMENT

No top soil will be removed and stored during the mining operation. Therefore, topsoil management plan is not provided here.

10.4 WATER MANAGEMENT

In the proposed quarrying project, no process is involved for the effluent generation, only oil & grease from the machinery wash and domestic sewage from mines office is anticipated. The quarrying operation is proposed up to a depth of 50 m. The water table in the area is at 65-70 m below ground level. Hence, the proposed project will not intersect the ground water table during entire quarry period. A detailed water environment management plan has been provided in Table 10.2.

Control	Responsibility
To maximize the reuse of pit water for water supply	Mines
	Foreman
Temporary and permanent garland drain will be constructed to contain the catchments of the mining area and to divert runoff from undisturbed areas	Mines
through the mining areas	Manager
Natural drains/nallahs/brooklets outside the project area should not be	Mines
disturbed at any point of mining operations	Manager
Ensure there is no process effluent generation or discharge from the	Mines
project area into water bodies	Foreman
Domestic sewage generated from the project area will be disposed in septic	Mines
tank and soak pit system	Foreman
Monthly or after rainfall, inspection for performance of water management	Mines
structures and systems	Manager
Conduct ground water and surface water monitoring for parameters specified by CPCB	Manager Mines

Table 10.2 Proposed Controls for Water Environment

Source: Proposed by FAEs & EIA Coordinator

10.5 AIR QUALITY MANAGEMENT

The proposed quarrying activity would result in the increase of particulate matter concentrations in the ambient air. Daily water sprinkling on the haul roads, approach roads in the vicinity will be undertaken and will be continued as there is possibility for dust generation due to truck mobility. It will be ensured that vehicles are properly maintained to comply with exhaust emission requirements. A detailed ambient air environment management plan is provided in Table 10.3.

Control	Responsibility
Generation of dust during excavation is minimized by daily (twice) water	Mines
sprinkling on working face and daily (twice) water sprinkling on haul road	Manager
Wet drilling procedure /drills with dust extractor system to control dust	Mines
generation during drilling at source itself is implemented	Manager
Maintenance as per operator manual of the equipment and machinery in	Mines
the mines to minimizing air pollution	Manager
Ambient air quality Monitoring carried out in the project area and in	Mines
surrounding villages to access the impact due to the mining activities and	Manager
the efficacy of the adopted air pollution control measures	Wallager
Provision of dust mask to all workers	Mines
	Manager
Greenbelt development all along the periphery of the project area	Mines
	Manager

Table 10.3 Proposed Controls for Air Environment

Source: Proposed by FAEs & EIA Coordinator

10.6 NOISE POLLUTION CONTROL

There will be intermittent noise levels due to vehicular movement, trucks loading, drilling and blasting and cutting activities. No mining activities are planned during night time. A detailed noise environment management plan has been provided in Table 10.4.

Control	Responsibility
Development of thick greenbelt all along the buffer zone (7.5 meters) of	Mines Manager
the project area to attenuate the noise and the same will be maintained	winnes winnuger
Preventive maintenance of mining machinery and replacement of worn-	Mines Foreman
out accessories to control noise generation	
Deployment of mining equipment with an inbuilt mechanism to reduce	Mines Manager
noise	Transfer Transfer
Provision of earmuff / ear plugs to workers working in noise prone zones	Mining Mate
in the mines	
Provision of effective silencers for mining machinery and transport	Mines Manager
vehicles	
Provision of sound proof AC operator cabins to HEMM	Mines Manager

Table 10.4 Proposed Controls for Noise Environment

Sharp drill bits are used to minimize noise from drilling	Mines Foreman
Controlled blasting technologies are adopted by using delay detonators to minimize noise from blasting	Mines Manager
Annual ambient noise level monitoring is carried out in the project area	
and in surrounding villages to access the impact due to the mining	
activities and the efficacy of the adopted noise control measures.	Mines Manager
Additional noise control measures will be adopted if required as per the	
observations during monitoring	
Reduce maximum instantaneous charge using delays while blasting	Mining Mate
Change the burden and spacing by altering the drilling pattern and/or	Mines Manager
delay layout, or altering the hole inclination	winnes wianager
Undertake noise or vibration monitoring	Mines Manager

Source: Proposed by FAEs & EIA Coordinator

10.7 GROUND VIBRATION AND FLY ROCK CONTROL

The rough stone quarry operation creates vibration due to the blasting and movement of heavy earth moving machineries, fly rocks due to the blasting. A detailed ground vibration management plan has been provided in Table 10.5.

 Table 10.5 Proposed Controls for Ground Vibrations & Fly Rock

-	·
Control	Responsibility
Controlled blasting using delay detonators will be carried out to	
maintain the PPV value (below 8Hz) well within the prescribed	Mines Manager
standards of DGMS	-
Drilling and blasting will be carried under the supervision of	Mines Manager
qualified persons	Willes Mallager
Proper stemming of holes should be carried out with statutory	
competent qualified blaster under the supervision of statutory mines	Mines Manager
manager to avoid any anomalies during blasting	
Suitable spacing and burden will be maintained to avoid misfire / fly	Manager Mines
rocks	Wanager Wintes
Number of blast holes will be restricted to control ground vibrations	Manager Mines
Blasting will be carried out only during noon time	Mining Mate
Undertake noise or vibration monitoring	Mines Manager
ensure blast holes are adequately stemmed for the depth of the hole	Mines Foreman
and stemmed with suitable angular material	willes roreman
Source: Proposed by FAEs & FIA Coordinator	

Source: Proposed by FAEs & EIA Coordinator

10.8 BIOLOGICAL ENVIRONMENT MANAGEMENT

The proponent will take all necessary steps to avoid the impact on the ecology of the area by adopting suitable management measures in the planning and implementation stage. During mining, thick plantation will be carried out around the project periphery, on safety barrier zone, on top benches of quarried out area etc. Following control measures are proposed for its management and will be the responsibility of the mines manager.

- Greenbelt development all along the safety barrier of the project area.
- It is also proposed to implement the greenbelt development program and post plantation status will be regularly checked for every season.
- The main attributes that retard the survival of sapling is fugitive dust, this fugitive dust can be controlled by water sprinkling on the haul roads and installing a sprinkler unit near the newly planted area.
- Year wise greenbelt development will be recorded and monitored based on the area of plantation, period of plantation, type of plantation, spacing between the plants, type of manuring and fertilizers and its periods, lopping period, interval of watering, survival rate and density of plantation.
- The ultimate reclamation planned leaves a congenial environment for development of flora & immigration of small fauna through green belt and water reservoir. The green belt and water reservoir developed within the Project at the end of mine life will attract the birds and animals towards the project area in the post mining period.

10.8.1 Green Belt Development Plan

The main objectives of the greenbelt development plan are to:

- Combat the dispersal of dust in the adjoining areas.
- Protect the erosion of the soil and conserve moisture of the soil.
- Increase the rate of recharge of ground water.
- Restore the ecology of the area, restore aesthetic beauty of the locality and meet the requirement of fodder, fuel and timber of the local community. The proposed green belt development plan is given in Table 10.6.

	No. of trees proposed for plantation	No. of trees expected to survive @ 80%	Area to be covered(m ²)	
	Number	of plants inside the mine lease	e area	
Plantation in the construction	965 772 8689			
phase (3 months)	Number of plants outside the mine lease area			
	1448	1158	13033	
Total	2414	1931	21722	

Table 10.6 Proposed Greenbelt Development Plan

Source: Proposed by FAEs & EIA Coordinator

About 2414 saplings will be planted in and around the lease area with the survival rate of 80%. A well-planned green belt of trees with long canopy leaves shall be developed with dense plantations around the boundary and along the haul roads to prevent air, dust noise propagation to undesired places and efforts will be taken for the enhancement of survival rate.

10.9 OCCUPATIONAL SAFETY & HEALTH MANAGEMENT

Occupational safety and health are very closely related to productivity and good employer-employee relationship. The main factors of occupational health impact in quarries are fugitive dust and noise. Safety of employees during quarrying operation and maintenance of mining equipment will be taken care as per Mines Act 1952 and Rule 29 of Mines Rules 1955. To avoid any adverse effect on the health of workers due to dust, noise and vibration sufficient measures have been provided.

10.9.1 Medical Surveillance and Examinations

- Identifying workers with conditions that may be aggravated by exposure to dust & noise and establishing baseline measures for determining changes in health.
- Evaluating the effect of noise on workers.
- Enabling corrective actions to be taken when necessary.
- Providing health education.

The health status of workers in the mine shall be regularly monitored under an occupational surveillance program. Under this program, all the employees are subjected to a detail medical examination at the time of employment. The medical examination covers the following tests under mines act 1952.

- ✤ General Physical Examination and Blood Pressure.
- ✤ X-ray Chest and ECG.
- Sputum Test, Sperm Count Test.

Detailed Routine Blood and Urine Examination.

The medical histories of all employees will be maintained in a standard format annually. Thereafter, the employees will be subject to medical examination annually. The below tests (Table 10.7) keep upgrading the database of medical history of the employees.

S. No.	Activi	ties	1 st	2 nd	3 rd	4 th	5 th
			Year	Year	Year	Year	Year
1	Initial Medical E	xamination (Mi	ne Worke	rs)			
А	Physical Check-u	р					
В	Psychological Te	st					
С	Audiometric Test	;					
D	Respiratory Test						
2	Periodical Medic	al Examination	(Mine Wo	orkers)			
Α	Physical Check –	up					
В	Audiometric Test						
С	Eye Check – up						
D	Respiratory Test						
3	Medical Camp (N	/ine Workers					
	& Nearby Village	ers)					
4	Training (Mine V	Vorkers)					
	l Follow ups: Wor	k force will be o	livided in	to three targ	geted grou	ps age wis	e as
follows	:						
Age Gr	-	PME as per N		es 1955	Special	Examinat	ion
Less the	Less than 25 years Once in a T		ee Years		In case of emergencies		icies
Betwee	Between 25 to 40 Years Once in a Three		ee Years		In case of emergencies		ncies
Above	Above 40 Years Once in a Three		ee Years		In case of emergencies		ncies
Medica	l help on top prior	ity immediately	after diag	nosis/ acci	dent is the	essence of	f
preventive aspects.							

 Table 10.7 Medical Examination Schedule

10.9.2 Proposed Occupational Health and Safety Measures

- The mine site will have adequate drinking water supply so that workers do not get dehydrated.
- ◆ Lightweight and loose-fitting clothes having light color will be preferred to wear.
- Noise exposure measurements will be taken to determine the need for noise control strategies.
- ◆ The personal protective equipment will be provided for mine workers.
- Supervisor will be instructed for reporting any problems with hearing protectors or noise control equipment.
- ✤ At noisy working activity, exposure time will be minimized.

- Dust generating sources will be identified and proper control measure will be adopted.
- Periodic medical examinations will be provided for all workers.
- Strict observance of the provisions of DGMS Acts, Rules and Regulations in respect of safety both by management and the workers.
- The width of road will be maintained more than thrice the width of the vehicle. A code of traffic rules will be implemented.
- In respect of contract work, safety code for contractors and workers will be implemented. They will be allowed to work under strict supervision of statutory person/officials only after they will impart training at vocational training centers. All personal protective equipment's will be provided to them.
- A safety committee meeting every month will be organized to discuss the safety of the mines and the persons employed.
- Celebration of annual mines safety week and environmental week in order to develop safety awareness and harmony amongst employees and co quarry owners.

Figure 10.1 Personal Protective Equipment to the Mine Workers

10.9.3 Health and Safety Training Program

The Proponents will provide special induction program along with machinery manufacturers for the operators and co-operators to run and maintain the machinery effectively and efficiently. The training program for the supervisors and office staffs will be arranged in the Group Vocational Training Centers in the State and engage Environmental Consultants to provide periodical training to all the employees to carry out the mining operation in and eco-friendly manner, as shown in Table 10.8.

Course	Personnel	Frequency	Duration	Instruction
New-Employee Training	All new employees exposed to mine hazards	Once	One week	 ✓ Employee rights, ✓ Supervisor responsibilities ✓ Self-rescue ✓ Respiratory devices ✓ Transportation controls ✓ Communication systems ✓ Escape and emergency evacuation ✓ Ground control hazards ✓ Occupational health hazards ✓ Electrical hazards and First aid Explosives
Task Training Like Drilling, Blasting, Stemming, safety, Slope	Employees assigned to new work tasks	Before new Assignments	Variable	 ✓ Task-specific health &safety procedures and SOP for various mining activity

			✓ Supervised practice
			in assigned work
			tasks.
All employees who received new-hire training	Yearly	One week	 ✓ Required health and safety standards ✓ Transportation controls ✓ Communication systems ✓ Escape ways, emergency evacuations ✓ Fire warning ✓ Ground control hazards ✓ First aid on electrical hazards ✓ Accident prevention ✓ Explosives ✓ Respirator devices
All employees exposed to mine hazards	Once	Variable	 ✓ Hazard recognition and avoidance ✓ Emergency evacuation procedures ✓ Health standards ✓ Safety rules ✓ Respiratory devices
	who received new-hire training All employees exposed to mine	who received new-hire training All employees exposed to mine Once	who received new-hire trainingYearlyOne weekImage: All employees exposed to mineOnceVariable

Source: Proposed by FAEs & EIA Coordinator as per DGMS Norms

10.9.4 Budgetary Provision for Environmental Management

Adequate budgetary provision has been made by the company for execution of Environmental Management Plan. The Table 10.9 gives overall investment on the environmental safeguards and recurring expenditure for successful monitoring and implementation of control measures.

Attribute	Mitigation measures	Provision for Implementation	Capital Cost (Rs.)	Recurring Cost/annum (Rs.)
	Compaction, gradation and drainage on both sides	Rental Dozer & drainage construction on haul road @ Rs. 10,000/- per hectare and yearly maintenance @ Rs. 10,000/- per hectare	48270	48270
	Fixed Water Sprinkling Arrangements + Water sprinkling by own water tankers	Fixed sprinkler installation and new water tanker cost for capital; and water sprinkling (thrice a day) cost for recurring	800000	50000
Air Environment	Air quality will be regularly monitored as per norms within ML area & ambient area	Yearly compliance as per CPCB norms	0	50000
	Muffle blasting – To control fly rocks during blasting	Blasting face will be covered with sand bags / steel mesh / old tyres / used conveyor belts	0	5000

Table 10.9 EMP Budget for Proposed Project

	Wet drilling procedure / latest eco- friendly drill machine with separate dust extractor unit No overloading of	Dust extractor @ Rs. 25,000/- per unit deployed as capital & @ Rs. 2500 per unit recurring cost for maintenance Manual Monitoring through	125000	12500
	trucks/tippers/tractors	Security guard	0	5000
	Stone carrying trucks will be covered by tarpaulin to avoid escape of fines to the atmosphere	Monitoring if trucks will be covered by tarpaulin	0	10000
	Enforcing speed limits of 20 km/hr within ML area	Installation of Speed Governors @ Rs. 5000/- per tipper/dumper deployed	50000	0
	Regular monitoring of exhaust fumes as per RTO norms	Monitoring of Exhaust Fumes	0	12500
	Regular sweeping and maintenance of roads for at least about 200 m from quarry entrance	Provision for 2 labours @ Rs.10,000/labour (Contractual) / hectare	0	96540
	Installing wheel wash system near exit gate of quarry	Installation + Maintenance + Supervision	50000	20000
Noise Environment	Source of noise will be transportation vehicles, and HEMM. For this, proper maintenance will be done at regular intervals.	Provision made in Operating Cost	0	0

	Oiling & greasing of Transport vehicles and HEMM at regular interval will be done.	Provision made in Operating Cost	0	0
	Adequate silencers will be provided in all the diesel engines of vehicles.	Provision made in Operating Cost	0	0
	It will be ensured that all transportation vehicles carry a fitness certificate.	Provision made in Operating Cost	0	0
	Safety tools and implementations that are required will be kept adequately near blasting site at the time of charging.	Provision made in OHS part	0	0
	Line Drilling all along the boundary to reduce the PPV from blasting activity and implementing controlled blasting.	Provision made in Operating Cost	0	0
	Proper warning system before blasting will be adopted and clearance of the area before blasting will be ensured.	Blowing Whistle by Mining Mate / Blaster / Competent Person	0	0
	Provision for Portable blaster shed	Installation of portable blasting shelter	50000	2000
	NONEL Blasting will be practiced to control Ground vibration and fly rocks	Rs. 30/- per 6 tons of blasted material	0	2092790
Water Environment	Water Management	Provision for garland drain @ Rs. 10,000/- per hectare with maintenance of Rs. 5,000/- per annum (4.82.7 ha X 10000)	48270	24135
Waste Management	Waste management (Spent Oil, Grease etc.,)	Provision for domestic waste collection and disposal through authorized agency (capital cost,	25000	20000

172 | Page

		recurring cost for collection /disposal).		
		Installation of dust bins	5000	2000
	Bio toilets will be made available outside mine lease on the land of owner itself	Provision made in Operating Cost	0	0
Implementation of EC, Mining Plan & DGMS Condition	Size 6' X 5' with blue background and white letters as mentioned in MoM Appendix II by the SEAC TN	Fixed display board at the quarry entrance as permanent structure	10000	1000
Occupational Health	Workers will be provided with Personal Protective Equipment	Provision of PPE @ Rs. 4000/- per employee with recurring based on wear and tear (say, @ Rs. 1000/- per employee)	116000	29000
and Safety	Health checkup for workers will be provisioned	IME & PME Health checkup @ Rs. 1000/- per employee	0	29000
	First aid facility will be provided	Provision of 2 Kits per Hectare @ Rs. 2000/-	0	19308
	Mine will have safety precaution signages, boards.	Provision for signages and boards made	10000	2000
	Barbed Wire Fencing to quarry area will be provisioned.	Per Hectare fencing Cost @ Rs. 2,00,000/- with Maintenance of Rs 10,000/- per annum (4.82.7 hectare)	965400	48270

	No parking will be provided on the transport routes. Separate provision on the south side of the hill will be made for vehicles /HEMMs. Flaggers will be deployed for traffic management	Parking area with shelter and flags @ Rs. 50,000/- per hectare project and Rs. 10,000/- as maintenance cost	241350	48270
	Installation of CCTV cameras in the mines and mine entrance	Camera 4 Nos, DVR, Monitor with internet facility	30000	5000
	Implementation as per Mining Plan and ensure safe quarry working	Mines Manager (1 st Class / 2 nd Class / Mine Foreman) under regulation 34 / 34 (6) of MMR, 1961 and Mining Mate under regulation 116 of MMR,1961 @ 40,000/- for Manager & @ 25,000/- for Foreman / Mate	0	780000
Development of Green Belt	Green belt development - 500 trees per hectare (200 Inside Lease Area & 300 Outside Lease Area)	Site clearance, preparation of land, digging of pits /trenches, soil amendments, transplantation of saplings @ 200 per plant (capital) for plantation inside the lease area and @ 30 per plant maintenance (recurring))"	193080	28962
		Avenue Plantation @ 300 per plant (capital) for plantation outside the lease area and @ 30 per plant maintenance (recurring)	434430	43443

Mine Closure	Closure includes 10% of the amount allotted for Greenbelt development, wire fencing, and garland drainage (Rule 27 in MCDR 2017 for Cat B mines will pay 2 lakhs per hectare or minimum amount of financial assurance of 5 lakhs)		0	164118
	G.O.(Ms)No.23, Dated: 28.09.2021	Section IVA of TNMMCR 1959 (@10% of Seigniorage Fee) (Seigniorage Fee for Roughstone = Rs.59 and for Gravel= Rs.33)	4513018	0
	TOTAL		7714818	3484988 (Excel. Mine Closure)

I st Year	II nd Year	III rd Year	IV th Year	V th Year (including Mine Closure Cost)	Total Recurring Cost	Total EMP Cost
3484988	3659237	3842199	4034309	4400143	19420877	27135695

Table 10.10 Estimation of Overall EMP Budget after Adjusting 5% Annual Inflation

In order to implement the environmental protection measures, an amount of **Rs.7714818** as capital cost and recurring cost as **Rs.3484988** as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the overall EMP cost for 5 years will be **Rs. 27135695** as shown in Table 10.10.

10.10 CONCLUSION

Various aspects of mining activities were considered and related impacts were evaluated. Considering all the possible ways to mitigate the environmental concerns Environmental Management Plan was prepared and fund has been allocated for the same. The EMP is dynamic, flexible and subjected to periodic review. For project where the major environmental impacts are associated, EMP will be under regular review. Senior Management responsible for the project will conduct a review of EMP and its implementation to ensure that the EMP remains effective and appropriate. Thus, the proper steps will be taken to accomplish all the goals mentioned in the EMP and the project will bring the positive impact in the study area.

CHAPTER XI SUMMARY AND CONCLUSION

11.0 INTRODUCTION

This EIA report was prepared in compliance with ToR obtained vide Lr.No:SEIAA-TN/F.No.9905/SEAC/ToR-1440/2023 Dated:10.05.2023 by considering 3 proposed quarries in a cluster with the total extent of 26.03.7 hectares in Anjur Village, Pugalur Taluk, Karur District and Tamil Nadu State. Cluster area was calculated as per MoEF & CC Notification S.O. 2269(E) Dated 1st July 2016. Baseline Monitoring studies were carried out during the period of March – May 2023.

11.1 PROJECT DESCRIPTION

The proposed project deals with excavation of rough stone and gravel which is primarily used in construction projects. The method adopted for rough stone and gravel excavation is an open cast semi-mechanized mining method involving drilling, blasting and formation of benches with 5 m height and 5 m width and secondary blasting. The proposed project area is located between latitudes from 11° 3'2.77"N to 11° 3'13.51"N and from longitudes from 77°46'49.20"E to 77°47'0.88"E in Anjur Village, Pugalur Taluk, and Karur District. The project site is a Patta land with the extent of 4.82.7 ha owned by the project proponent. The proponent had applied for quarry lease on 28.06.2022 to extract rough stone and gravel and obtained the precise area communication letter issued by Department of Geology and Mining, Karur vide Rc.No.300/Mines/2022, dated:14.02.2023. Based on the precise area communication letter, mining plan was prepared. The mining plan prepared was approved by Deputy Director of Geology and Mining, Karur Rc.No.300/Mines/2022, dated:01.03.2023.

According to the approved mining plan, about 799894 m³ of rough stone and about 31276 m³ of gravel will be mined up to the depth of 62 m BGL in the first five years. However, the SEAC advised to restrict the ultimate depth to 50 m BGL considering safety point of view. Accordingly, the rough stone reserves have been adjusted to be 747425 m³. It is the quantity that has been mentioned in this EIA report.

To achieve the estimated production, 5 jack hammers, 3 compressor, 2 excavator with bucket/rock breaker, and 10 tippers will be deployed. To operate the machineries and to break the rough stone to preferred dimension, about 29 persons will be employed. At the end of the quarry life, the dimension of the ultimate pit will be 124 m*161 m*50 m and about 2.40.7 ha of land will have been quarried; about 0.60.5 ha of land will be used for green belt development; about 0.10.7 ha of land will be left unutilized; and 0.15.0 will be used for roads and 0.02.0 will

be used for infrastructures. The final mine closure plan shows that about Rs. 16,41,180 with the annual recurring cost of **Rs.1,44,810** will be spent towards mine closure.

11.2 DESCRIPTION OF THE ENVIRONMENT

The baseline monitoring studies were carried out during March through May, 2023 to assess the existing environmental conditions in the study area. For the purpose of the EIA studies, project area was considered as the core zone and area outside the project area up to 5 km radius from the periphery of the project site was considered as buffer zone. Baseline Environmental data has been collected for land, water, air, noise, ecology, socio-economy, and traffic.

11.2.1 Land Environment

Land Use and Land Cover (LULC) map, as shown in Figure 3.3 was prepared using Sentinel II image for the study area of 5 km radius to provide a baseline status of the study area covering 5 km radius around the proposed mine site. Totally, 7 LULCs were mapped. The areal extent of each LULC is provided in Table 3.2. Of the total area, mining area covers only 82.95 ha accounting for 1.05 %, of which lease area of 4.82.7 ha contributes only about 0.057 %. This small percentage of mining activities shall not have any significant impact on the land environment.

11.2.2 Soil Characteristics

Seven soil samples were obtained from the study area and sent to laboratory for analysing physical and chemical characteristics of soil.

Physical Characteristics

The soil samples in the study area show loamy textures varying between silty clay loam, silty loam and sandy loam. pH of the soil varies from 6.94 to 8.2 indicating slightly acidic to slightly alkaline nature. Electrical conductivity of the soil varies from 3.91 to 4.8 dsm-1. Bulk density ranges between 0.79 and 0.95 g/cm3.

Chemical Characteristics

Nitrogen ranges between 0.96 and 2.4 %. Potassium ranges between 1.69 and 5.22 %. Calcium ranges between 3.13 and 6.23 mg/kg. Organic matter content ranges between 20. and 30.2 %. Manganese ranges between 1553 and 2653 mg/kg

11.2.3 Water Environment

Surface Water Resources

Noyyal River is the prominent surface water resources present in the study area. This river was ephemeral in nature, which convey water only after rainfall events. The proposed project area is located 0.59 km NW of Noyyal River, as shown in Table 3.5 and Figure 3.7. Four surface water sample, known as SW01 were collected from the Noyyal River (Anjur, 0.59 km NW), SW02 were collected from the Noyyal River (Korakkattupudur, 3.82 NE), SW03 were collected from the Noyyal River (Muthur, 4.35 NW), to assess the baseline water quality. Table 3.6 summarizes surface water quality data of the collected sample.

Result for surface water sample in the Table 3.6 indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

Ground Water Resources

Six groundwater samples, known as OW01, OW02, OW03, BW01, BW02 and BW03, were collected from bore wells and open wells were analysed for physico-chemical conditions, heavy metals and bacteriological contents in order to assess baseline quality of ground water. Ground water sampling locations and their distance and direction from the lease area. Results for ground water samples indicate that the physical, chemical and biological parameters, and heavy metals are within permissible limits in comparison with standards of IS10500:2012.

11.3 AIR ENVIRONMENT

Site Specific Meteorology

Site specific meteorology during the study period was recorded by an automated weather station. According to the onsite data, the temperature in March,2023 varied from 16.70 to 39.93° C with the average of 28.46° C; in April, 2023 from 23.18 to 41.15° C with the average of 31.32° C; and in May,2023 from 22.62 to 36.18° C with the average of 27.99° C. In March,2023, relative humidity ranged from 15.06 to 95.56 % with the average of 53.56%; in April, 2023, from 12.50 to 89.94 % with the average of 47.23 %; and in May,2023, from 37.50 to 97.38 % with the average of 75.95 %. The wind speed in March,2023 varied from 0.18 to 6.42 m/s with the average of 2.64 m/s; in April, 2023 from 0.05 to 7.07 m/s with the average of 2.70 m/s; and in May,2023 from 0.044 to 6.64 m/s with the average of 3.42 m/s. In March,2023, wind direction varied from 0.00 to 359.03° with the average of 42.05° ; in April, 2023, from 4.19 to 358.19° with the average of 158.66° ; and in May,2023, 0.00 to 343.10° with the average of 245.49° . In March,2023, surface pressure varied 95.38 to 96.74 kPa with the

average of 96.16 kPa; in April, 2023, from 95.24 to 96.68 kPa with the average of 96.20 kPa; and in May,2023, from 96.12 to 97.03 kPa with the average of 96.57 kPa

Ambient Air Quality Results

As per the monitoring data, PM2.5 ranges from $18.1 \ \mu g/m3$ to $22.7 \ \mu g/m3$; PM10 from 36.7 $\mu g/m3$ to 41.6 $\mu g/m3$; SO2 from 6.0 $\mu g/m3$ to $8.9 \ \mu g/m3$; NOx from $17.8 \ \mu g/m3$ to 23.2g/m3. The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

11.4 NOISE ENVIRONMENT

Noise level in core zone was 43.4 dB (A) Leq during day time and 34.4 dB(A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 36.9 to 45.6dB (A) Leq and during night time from 28.0 to 35.6dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB.

11.5 BIOLOGICAL ENVIRONMENT

There is no schedule I species of animals observed within study area as per Wildlife Protection Act 1972 as well as no species is in vulnerable, endangered or threatened category as per IUCN. There is no endangered red list species found in the study area. Hence this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

11.6 SOCIO-ECONOMIC ENVIRONMENT

An attempt has been made to assess the impact of the proposed mining project on Socioeconomic aspect of the study area. The various attributes that have been taken into account are population composition, employment generation, occupational shift, household income and consumption pattern. Implementation of the Proposed Mine Project will generate both direct and indirect employment. Besides, mining operation will be legally valid and it will bring income to the state exchequer. At present seasonal agriculture is the main occupation of the people as more than half of the population depends on it. With the implementation of the proposed mining project the occupational pattern of the people in the area will change making more people engaged in mining-based activities rather in seasonal agriculture.

11.7 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES FOR PROPOSED PROJECT

The summary of anticipated adverse environmental impacts due to the proposed project and mitigation measures are given below:

Impact	Mitigation Measure
Lan	d Environment
 Destruction of natural landscapes Changes in soil characteristics Soil erosion and slope instability 	 Mining will be carried out as per approved mine plan in scientific and systematic way Safety Zone or Buffer area will be maintained and will not be mined and instead plantation will be carried out in the safety zone Barbed wire fencing will be provided all along the proposed mine boundary At conceptual stage, the land use pattern of the quarry will be changed into Greenbelt area and temporary reservoir Construction of garland Construction of garland drains all around the quarry pit and construction of settling traps at strategic location in lower elevations to prevent soil erosion due to surface runoff during rainfall and also to collect the storm water for various
	uses within the proposed area
Wate	er Environment
 Decrease in aquifer recharge and increase in surface runoff; Disturbance to land drainage, overload and erosion of watercourses; Changes to the surface over which water flows; Changes to surface and groundwater resources quantity and quality due to stream blockage and contamination by particulate matter or waste; Contamination of aquifers due to removal of the natural filter medium. 	 Construction of garland drains all around the quarry pit and construction of settling traps at strategic location in lower elevations to prevent soil erosion due to surface runoff during rainfall and also to collect the storm water for various uses within the proposed area De-silting will be carried out before and immediately after the monsoon season and the settling tank and drains will be cleaned weekly, especially during monsoons Domestic sewage from site office & urinals/latrines provided in project area will be discharged through septic tank followed by soak pit system. Tippers & HEMM will be washed in a designated area and the washed water will be routed through drains to a settling tank, which

Table 11.1 Anticipated Impacts & Mitigation Measures

	has an oil & grease trap, only clear water will
Air	
 Ain Generation of Fugitive Dust Dust will be generated mainly during excavation, loading &unloading activities. Gaseous pollutants will by generated mostly by the traffic. Reduction in visibility due to dust plumes. Coating of surfaces leading to annoyance and loss of amenity. Physical and/or chemical contamination and corrosion. Increase in the concentration of suspended particles in runoff water. Coating of vegetation leading to reduced photosynthesis, Inhibited growth, destroying of foliage, degradation of crops; Increase in health hazards due to inhalation of dust. 	 In as an on & grease trap, only clear water with be reused for greenbelt development. Environment Haul roads will be well maintained by sprinkling water twice a day The access road will be cleaned and brushed to ensure that mud and dust deposits do not accumulate. To ensure that dust and debris is minimised on the access road, all the tipper drivers will be instructed to use water spray system on all the tyres and spray water on the loaded material that is provided at the compound area before leaving the site Speed restrictions will be imposed to avoid spillage of loaded materials upon the road and to reduce wear and tear of the road. Weekly inspections of the condition of the access road by competent person employed, and immediate action will be taken to address any potholes or damage to the road surface. Dust wetting agents can be mixed with the water applied to haul roads during hot, dry weather conditions to increase the duration that
inhalation of dust.	 weather conditions to increase the duration that the road surface remains damp. Personal Protective Equipment's will be provided to all workers All drilling rods used will have dust suppression systems fitted which injects water
	into the hole.
	Wet gunny bags will be used as a cover while drilling.
	The blast zone will be kept damp by the
	 application of water from the rain gun fitted to the water tanker prior to each blast to control any fugitive dust emissions that could arise from the surface during detonation. A daily visual inspection shall be conducted by
	A daily visual inspection shall be conducted by the site manager who will keep a daily log of all process operations and site activities and note any malfunctions which could lead to abnormal emissions from the quarry operations.

	 A site speed limit of 20 km/h will be set to minimise the potential for dust generation Weekly maintenance programme to identify machinery due for maintenance, based on the number of hours it has been in operation. Air filters are renewed after every 10°0 hours of use, unless otherwise indicated by an onboard computer system. All site machineries & tippers will be serviced and maintained 6 months once and drivers will report any defects immediately to the site manager to enable repairs to be carried out promptly.
Noi	se & Vibration
 Annoyance and deterioration of the quality of life; Propelling of rocks fragments by blasting. Shaking of buildings and people due to blasting; 	 Usage of sharp drill bits while drilling which will help in reducing noise; Secondary blasting will be totally avoided and hydraulic rock breaker will be used for breaking boulders; Controlled blasting with proper spacing, burden, stemming and optimum charge/delay will be maintained; The blasting will be carried out during favourable atmospheric condition and less human activity timings by using nonelectrical initiation system; Proper maintenance, oiling and greasing of machines will be done every week to reduce generation of noise; Provision of sound insulated chambers for the workers working on machines (HEMM) producing higher levels of noise; Silencers / mufflers will be installed in all machineries; Green Belt/Plantation will be developed around the project area and along the haul roads. The plantation minimizes propagation of noise; Personal Protective Equipment (PPE) like ear muffs/ear plugs will be provided to the operators of HEMM and persons working near HEMM and their use will be ensured though training and awareness.

Biolog	ical Environment
 Direct impacts include land clearance and excavation causing destruction of flora and fauna and loss of habitats; Indirect impacts include habitat degradation due to noise, dust, and human activity. 	 Only some common herbs, shrubs and grass will be cleared. So, there will be no impact on the biodiversity. Green belt development with suitable species will enhance the biodiversity of the project area. The core zone or buffer zone does not encompass any threatened flora or fauna species.
Socio-Eco	onomic Environment
 Health and safety of workers and the general public; Increase in traffic volumes and sizes of road vehicles; Economic issues, including the increase in employment opportunities; 	 The mining activity puts negligible change in the socio-economic profile. Around 88 local workers will get employment opportunities along with periodical training to generate local skills. New patterns of indirect employment/ income will generate. Regular health check-up camp. Assistance to schools and scholarship to abildree will be previded.
Qaannati	children will be provided.
 Exposure to Dust 	 A structure of the structure of
 Noise and Vibration Exposure Physical Hazards Respiratory hazards due to Dust exposure 	 with amenities like drinking water etc. All safety measures like use of safety appliances, such as dust masks, helmets, shoes, safety awareness programs, awards, posters, slogans related to safety etc. Training of employees for use of safety appliances and first aid in vocational training centre. Weekly maintenance and testing of all equipment as per manufacturers' guidelines. Pre placement and Yearly Medical Examination of all workers by a medical Officer First Aid facility will be provided at the mine site. Close surveillance of the factors in working environment and work practices which may affect environment and worker's health by the mine's manager employed.

11.8 ANALYSIS OF ALTERNATIVES

There are no alternatives suggested as the proposed mining area has the following advantages:

- ✤ The mineral deposit occurs in a non-forest area.
- * There is no habitation within the applied lease area; hence no R & R issues exist.
- There is no river, stream, nallas and water bodies in the or passing through the applied mine lease areas.
- ♦ Availability of skilled, semi-skilled and unskilled workers in this region.
- All the basic amenities such as medical, firefighting, education, transportation, communication and infrastructural facilities are accessible.
- ✤ Mine connectivity through road and rail is good.
- The proposed mining operations do not intersect the ground water level. Hence, no impact on ground water environment.

11.9 ENVIRONMENTAL MONITORING PROGRAM

Environmental Monitoring program will be conducted for various environmental components such as air quality, meteorology, water quality, water level monitoring, soil quality, noise level, vibration, and greenbelt as per conditions stipulated in Environmental Clearance Letter issued by SEIAA & Consent to Operate issued by TNPCB. For this environmental monitoring program, Rs **2,95,000** /- per annum will spent by the project proponent. The monitored data on air quality, water quality, noise levels and other environmental attributes will be periodically examined by the cluster mine management coordinator and Respective Head of Organization and submitted to Tamil Nadu State Pollution Control Board in the Compliance to CTO Conditions & environmental audit statements every year to MoEF & CC and Half-Yearly Compliance Monitoring Reports to MoEF & CC Regional Office and SEIAA.

11.10 ADDITIONAL STUDIES

Public Consultation

Application to the Member Secretary of the Tamil Nadu Pollution Control Board (TNPCB) to conduct Public Hearing in a systematic, time bound and transparent manner ensuring widest possible public participation at the project site or in its close proximity in the district is submitted along with this Draft EIA / EMP Report and the outcome of public hearing proceedings will be detailed in the Final EIA/EMP Report.

Risk Analysis & Disaster Management Plan

The methodology for the risk assessment has been based on the specific risk assessment guidance issued by the Directorate General of Mine Safety (DGMS), Dhanbad vide Circular No.13 of 2002, dated 31st December, and 2002. The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention. Further, mechanisms responsible for these hazards are identified and their control measures set to time table are recorded along with pinpointed responsibilities.

In the unlikely event that a consequence has occurred, disaster management kicks in. This includes instituting procedures pertaining to a number of issues such as communication, rescue, and rehabilitation. These are addressed in the disaster management plan. Both, the RA and DMP, are living documents and need to be updated whenever there are changes in operations, equipment, or procedures Assessment is all about preventing accidents and taking necessary steps to prevent it from happening.

The Disaster Management Plan (DMP) is a guide, giving general considerations, directions, and procedures for handling emergencies likely to arise from planned operations. The DMP has been prepared on the basis of the Risk Assessment and related findings covered in the report.

Cumulative Impact Studies

- The results on the cumulative impact of the four proposed projects on air environment of the cluster do not exceed the permissible limits set by CPCB for air pollutants.
- The cumulative results of noise for the habitation in consideration do not exceed the limit set by CPCB for residential areas for day time.
- PPV resulting from four proposed and one existing projects is well below the permissible limit of Peak Particle Velocity of 8 mm/s.
- The three proposed projects will allocate Rs.15,00,000/- towards CER as recommended by SEAC.
- The three proposed projects will directly provide jobs to about 60 local people.
- The three proposed projects will plant about 5442 saplings in and around the lease area.
- The three proposed projects will add 765 PCU per day to the nearby roads.

11.11 PROJECT BENEFITS FOR PROPOSED PROJECT

Various benefits are envisaged due to the proposed mine and benefits anticipated from the proposed project to the locality, neighbourhood, region and nation as a whole are:

- Direct employment to 60 local people
- Rain water harvesting structures to augment the water availability for irrigation and plantation and ground water recharge
- Creation of community assets (infrastructure) like school buildings, village roads/ linked roads, dispensary & health Centre, community Centre, market place etc.,
- Strengthening of existing community facilities through the Community Development Programme
- Skill development & capacity building like vocational training
- Awareness program and community activities, like health camps, medical aids, sports & cultural activities, plantation etc.,
- CSR activities mainly contributing to education, health, training of women self-help groups and infrastructure etc., will be taken up in the Anjur Village. CSR budget is allocated as 2.5% of the profit.
- ✤ Rs. 5,00,000 will be allocated for CER.

11.12 ENVIRONMENT MANAGEMENT PLAN

In order to implement the environmental protection measures, an amount of **Rs.7714818** as capital cost and recurring cost as **Rs.3484988** as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the overall EMP cost for 5 years will be **Rs. 27135695**

11.13 CONCLUSION

EIA study was performed as per the approved ToR. Various environmental attributes were studied relating with aspects of mining activities. The related impacts were identified and evaluated. Considering all the possible ways to mitigate the environmental concerns Environmental Management Plan was prepared and accordingly fund was allocated. The EMP has been dynamic, flexible and subject to periodic review. CER activities were identified and for its time bound implementation, fund has been allocated.

The project will increase the revenue of the State Govt. as well as it will help in the social upliftment of the local community. The green belt development programme will help in increasing the green cover in the area. Thus, the proposed project is not likely to affect the environment or adjacent ecosystem in an adverse way.

The Mines Management will be responsible for the project review of EMP and its implementation to ensure that the EMP remains effective and appropriate. Thus, the proper steps will be taken to accomplish all the goals mentioned in the EMP and the project will bring the positive impact in the study area.

CHAPTER XII

DISCLOSURES OF CONSULTANT

The Project Proponent, Mr.S.Kuppusamy has engaged **Geo Technical Mining Solutions**, a NABET accredited consultancy for carrying out the EIA study as per the ToR issued.

Address of the consultancy:

No: 1/213B Natesan Complex, Oddapatti, Dharmapuri – 636705, Tamil Nadu, India. Email:<u>info.gtmsdpi@gmail.com</u> Web: <u>www.gtmsind.com</u> Phone: 04342 232777.

The accredited experts and associated members who were engaged in this EIA study are given below:

S.No	Name of the expert	In house/ Empanelled	Sector	Functional Area	Categ ory
	App	proved Functional Area E	xperts & l	EC	
1.	Dr. S. Karuppannan	EIA Coordinator (EC) In-house	1(a)(i)	Mining	В
2.	Dr. M. Vijayprabhu	In-house FAE	1(a)(i)	HG, LU, GEO	В
3.	Dr. J. Rajarajeswari	In-house, FAE	1(a)(i)	EB, SC	В
4.	Dr. G. Prabakaran	In-house, FAE	1(a)(i)	SE	В
5.	Dr. R. Arunbalaji	In-house, FAE	1(a)(i)	AP, AQ, NV	В
6.	J.N. Manikandan	Empanelled FAE	1(a)(i)	RH, SHW, AP	В
7.	Dr. S. Malar	In-house, FAE	1(a)(i)	WP	В
8.	G. Umamaheswaran	In-house, FAE	1(a)(i)	HG, LU, GEO	В
9.	S. Gopalakrishnan	In-house, FAE	1(a)(i)	HG, GEO	В
10.	P. Venkatesh	In-house, FAE	1(a)(i)	AP	В
11.	Dr. D.Kalaimurugan	In-house, FAE	1(a)(i)	SC	В
	A	pproved Functional Area	Associate	S	
12.	G. Prithiviraj	FAA	1(a)(i)	LU, HG	В
13.	C. Kumaresan	FAA	1(a)(i)	NV	В
14.	P. Vellaiyan	FAA	1(a)(i)	HG, GEO	В
15.	S. Vasugi	FAA	1(a)(i)	AQ	В
16.	P. Dhatchayini	FAA	1(a)(i)	AQ	В
17.	V. Malavika	FAA	1(a)(i)	NV, SHW	В

	Abbreviations				
EC	EIA Coordinator	NV	Noise and Vibration		
FAE	Functional Area Expert	SE	Socio Economics		
FAA	Functional Area Associates	HG	Hydrology, ground water and water conservation		
ТМ	Team Member	SC	Soil conservation		
GEO	Geology	RH	Risk assessment and hazard management		
WP	Water pollution monitoring, prevention and control	SHW	Solid and hazardous wastes		
AP	Air pollution monitoring, prevention and control	MSW	Municipal Solid Wastes		
LU	Land Use	ISW	Industrial Solid Wastes		
AQ	Meteorology, air quality modelling, and prediction	HW	Hazardous Wastes		
EB	Ecology and bio-diversity	GIS	Geographical Information System		
	DECLARATION BY EXPERTS CONTRIBUTING TO THE EIA & EMP				

I, hereby, certify that I was a part of the EIA team in the following capacity that

developed the EIA & EMP report.

Signature

	\frown
•	wpanz

Date	:	
Name	:	Dr. S. Karuppannan
Designation	:	EIA Coordinator
Name of the EIA Consultant Organization	:	Geo Technical Mining Solutions
Period of Involvement	:	Till date

We, the FAEs and FAAs hereby declare that information furnished in this EIA/EMP report for Mr.S.Kuppusamy rough stone and gravel quarry project with the extent of 4.82.70 ha situated in the cluster with the extent of 26.03.7 ha in Anjur Village, Pugalur Taluk, Karur District of Tamil Nadu is true and correct to the best of our knowledge.

List of Functional Area Experts Engaged in this Project

S. No.	Functional Area	Involvement	Name of the Experts	Signature
1	AP	 Identification of different sources of air pollution due to the proposed mine activity 	J.N. Manikandan	libert
		 Prediction of air pollution and propose mitigation measures / control measures 	P.Venkatesh	P. Une

7	RH	 Risks and consequences analysis Vulnerability assessment 		liveep
_		• Identification of hazards and hazardous substances	J.N. Manikandan	160.08/
		development.		
		 Suggesting species for greenbelt 		
		• Impact of the project on flora and fauna.		
6	EB	as per IUCN list.	Dr.J. Rajarajeshwari	J. Gyof=
		Rare, Endangered and threatened	Dr.J.	
		 Identification of species labelled as 		
		• Collection of Baseline data of Flora and Fauna.		
		Responsibility.		
1		• Corporate Environment		
5	SE	• Impact Assessment & Preventive Management Plan	Dr. G. Prabhakaran	Fralation
		Census of India, 2011.		A Maria
		• Revision in secondary data as per		
		analysis/description and Stratigraphy/Lithology.	Dr.S. Karuppannan	(pons
		 Geology and Geo morphological analysis/description and 	Prabhu	1. Ophingun
4		geological maps.	Dr.M. Vijay	G. umanthy M. (20mm)
4	GEO	• Preparation of mineral and	G.Uma Maheswaran	G unanthy
		area.	G.Uma	0
		• Field Survey for assessing the regional and local geology of the	G.Gopala Krishnan	& Cop acris 10
		Characteristics	Dr.S. Karuppannan	(pon)
-		• Analysis and description of aquifer	Maheswaran	a unandary
3	HG	propose mitigation measures.	G. Uma	
		• Interpretation of ground water table and predict impact and	Dr.M. Vijay Prabhu	M. (987mm)
		suggesting control measures.		
		environment/water bodies and	21.211.11	
L	VV F	effluent/waste water discharges into the receiving	Dr.S. Malar	g. Mart.
2	WP	• Evaluating probable impacts of effluent/waste water discharges		& mart
		systems, drainage facilities		
		o Suggesting water treatment		

		 Preparation of Emergency Preparedness Plan Management plan for safety. Construction of Land use Map Impact of project on surrounding 	Dr.S. Karuppannan	Opans
8	LU	 land use Suggesting post closure sustainable land use and mitigative measures. 	G.Uma Maheswaran Dr.M. Vijay Prabhu	G. unanihy N. (26mm)
9	NV	 Identify impacts due to noise and vibrations Suggesting appropriate mitigation measures for EMP. 	Dr.R. Arun Balaji	R faladaji
10	AQ	 Identifying different source of emissions and propose predictions of incremental GLC using AERMOD. Recommending mitigations measures for EMP 	Dr.R. Arun Balaji	R f-halip
11	SC	• Assessing the impact on soil environment and proposed mitigation measures for soil conservation	Dr.J. Rajarajeshwari Dr.	J. Cyper=
12	SHW	 Identify source of generation of non-hazardous solid waste and hazardous waste. Suggesting measures for minimization of generation of waste and how it can be reused or recycled. 		lidept

List of Functional Area Associate Engaged in this Project

S.No.	Name	Functional Area	Involvement	Signature
1	G. Prithiviraj	LU, HG	 Site visit with FAE Provide inputs & Assisting FAE for LU and HG 	q.p. s.t.

2	C. Kumaresan	NV	 Assistance to FAE in both primary and secondary data collection Assistance in noise prediction 	fravent c
3	P. Vellaiyan	HG & GEO	modelling • Field visits along with FAE • Assistance to FAE in both primary and secondary data collection	Attornat
4	S.Vasugi	AQ	 Field visits along with FAE Assistance to FAE in both primary and secondary data collection 	31-15
5	P. Dhatchayini	AQ	 Site visit with FAE Assistance to FAE in collection of both primary and secondary data 	P. Shitihajini
6	V. Malavika	NV, SHW	 Site visit along with FAE Assistance in report preparation 	V-flab

DECLARATION BY THE HEAD OF THE ACCREDITED CONSULTANT ORGANIZATION

I, Dr. S. KARUPPANNAN, Managing Partner, Geo Technical Mining Solutions, hereby, confirm that the above-mentioned functional area experts and team members prepared the EIA/EMP report for Mr.S.Kuppusamy rough stone and gravel quarry project with the extent of of 4.82.70 ha situated in the cluster with the extent of 26.03.7 ha in Anjur Village, Pugalur Taluk, Karur District of Tamil Nadu is true and correct to the best of my knowledge.

Signature

wom

Date	:	30.06.2023
Name	:	Dr. S. Karuppannan
Designation	:	Managing Partner
Name of the EIA Consultant Organization	:	Geo Technical Mining Solutions
NABET Certificate No & Issue Date	:	NABET/EIA/2124/SA 0184
Validity	:	Till 31.12.2023

THIRU.DEEPAK S.BILGI, I.F.S. MEMBER SECRETARY

STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY-TAMILNADU

3rd Floor, Panagal Maaligai, No.1, Jeenis Road, Saidapet, Chennai - 600 015. Phone No. 044-24359973 Fax No. 044-24359975

TERMS OF REFERENCE (ToR)

Lr No.SEIAA-TN/F.No.9905/SEAC/ToR-1440/2023 Dated:10.05.2023

To

Thiru.S.Kuppusamy,

S/o. Samiappagounder,

Door No.95,

Saliankattupallam,

Thotiyapalayam, Muthur,

Kangeyam Taluk,

Tiruppur District-638105.

Sir / Madam,

- Sub: SEIAA, Tamil Nadu Terms of Reference,(ToR) with Public Hearing for the Proposed Rough Stone & Gravel lease over an extent of 4.82.70Ha at S.F.No. 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A in Anjur Village, Pugalur Taluk, Karur District, Tamil Nadu by Thiru.S.Kuppusamy - under project category – "B1" and Schedule S.No. 1(a) – ToR issued along with Public Hearingpreparation of EIA report – Regarding.
- Ref:

1. Online proposal No. SIA/TN/MIN/421900/2023 dt 13.03.2023.

- 2. Your application submitted for Terms of Reference dated: 16.03.2023.
- 3. Minutes of the 369th meeting of SEAC held on 20.04.2023.
- 4. Minutes of the 616th meeting of Authority held on 10.05.2023.

MBER SECRÉTA

SEIAA-TN

Page 1 of 25

Kindly refer to your proposal submitted to the State Level Impact Assessment Authority for Terms of Reference.

The proponent, Thiru.S.Kuppusamy has submitted application for ToR, in Form-I, Pre-Feasibility report for the Proposed Rough Stone & Gravel lease over an extent of 4.82.70haHa at S.F.No. 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A in Anjur Village, Pugalur Taluk, Karur District, Tamil Nadu.

Discussion by SEAC and the Remarks:-

Proposed Rough Stone & Gravel lease over an extent of 4.82.70Ha at S.F.No. 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A in Anjur Village, Pugalur Taluk, Karur District, Tamil Nadu by Thiru.S.Kuppusamy -For Terms of Reference (SIA/TN/MIN/421900/2023 dt 13.03.2023).

The proposal was placed in this 369th meeting of SEAC held on 20.04.2023. The details of the project furnished by the proponent are available in the website (parivesh.nic.in).

The SEAC noted the following:

- The Project Proponent, Thiru.S.Kuppusamy has applied for Terms of Reference for the the Proposed Rough Stone & Gravel lease over an extent of 4.82.70haHa at S.F.No. 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A in Anjur Village, Pugalur Taluk, Karur District, Tamil Nadu.
- The proposed quarry/activity is covered under Category "B1" of Item 1(a) "Mining Projects" of the Schedule to the EIA Notification, 2006.
- Quarrying in this lease area was earlier carried out by during earlier lease period from 23.06.2017 to 22.06.2022. Environmental clearance was obtained from SEIAA-TN vide Lr.No.SEIAA-TN/F.No.1426/1(a/EC.No.3848/2015 dated: 30.05.2017 for Rough stone quarrying at SF.No759/5, 764/3, 765/3, 766/1(P), 766/2 & 767/1 in Anjur Village, Aravakurichi Taluk, Karur District, Tamil Nadu over 4.92.5 Ha of the lease area.
- 4. As per the mining plan the lease period is 5 years. The mining plan is for the period of five years & production should not exceed 7,99,894 m³ of Rough Stone &31,276 m³ of Gravel. The annual peak production is 1,85,360 m³ of Rough Stone &31,276 m³ of Gravel. The ultimate depth is 62m BGL.

Based on the presentation made by the proponent, SEAC decided to recommend for grant of Terms of Reference (TOR) with Public Hearing, subject to the following TORs, in addition to

BER SECRETARY SEIAA-TN

the standard terms of reference for EIA study for non-coal mining projects and details issued by the MOEF & CC to be included in EIA/EMP Report:

1. As per Metalliferous Mines Regulation 1961, under Chapter XI, 106 (2) (a)

"..... the face shall be benched and the sides shall be sloped at an angle of not more than 60 degrees from the horizontal. The height of any bench shall not exceed six meters and the breadth thereof shall not be less than the height."

Hence, The Project Proponent shall furnish the revised mining plan approved by the competent authority, incorporating the slope stability action plan by maintaining benches on both sides with appropriate bench geometry in accordance with the provisions of Reg. 106 of MMR 1961 and by maintaining the depth of 50m BGL.

- 2. Restricting the maximum depth of mining from 62m to 50m considering the environmental impacts due to the mining, safety of the working personnel and following the principle of the sustainable mining and consequently the revised quantity is spelt out in the 'modified Production and Development Plan' to be submitted during the EIA appraisal.
- Also, the original letter of approval obtained for the revised Mining Plan prepared for the mine shall be furnished during the EIA appraisal.
- 4. The structures within the radius of (i) 50 m, (ii) 100 m, (iii) 200 m and (iv) 300 m shall be enumerated with details such as dwelling houses with number of occupants, whether it belongs to the owner (or) not, places of worship, industries, factories, sheds, etc.
- The Proponent shall carry out Bio diversity study through reputed Institution and the same shall be included in EIA Report.
- 6. The proponent shall furnish photographs of adequate fencing, green belt along the periphery including replantation of existing trees & safety distance between the adjacent quarries & water bodies nearby provided as per the approved mining plan.
- 7. In the case of proposed lease in an existing (or old) quarry where the benches are not formed (or) partially formed as per the approved Mining Plan, the Project Proponent (PP) shall prepare and submit an 'Action Plan' for carrying out the realignment of the benches in the proposed quarry lease after it is approved by the concerned Asst. Director of Geology and Mining during the time of appraisal for obtaining the EC.

EMBER SECRETARY

Page 3 of 25

- 8. The PP shall furnish the affidavit stating that the blasting operation in the proposed quarry is carried out by the statutory competent person as per the MMR 1961 such as blaster, mining mate, mine foreman, II/I Class mines manager appointed by the proponent.
- 9. The PP shall present a conceptual design for carrying out only controlled blasting operation involving line drilling and muffle blasting in the proposed quarry such that the blast-induced ground vibrations are controlled as well as no fly rock travel beyond 30 m from the blast site.
- 10. The EIA Coordinators shall obtain and furnish the details of quarry/quarries operated by the proponent in the past, either in the same location or elsewhere in the State with video and photographic evidences.
- If the proponent has already carried out the mining activity in the proposed mining lease area after 15.01.2016, then the proponent shall furnish the following details from AD/DD, mines,
 - a. What was the period of the operation and stoppage of the earlier mines with last work permit issued by the AD/DD mines?
 - b. Quantity of minerals mined out.
 - c. Highest production achieved in any one year
 - d. Detail of approved depth of mining.
 - e. Actual depth of the mining achieved earlier.
 - f. Name of the person already mined in that leases area.
 - g. If EC and CTO already obtained, the copy of the same shall be submitted.
 - Whether the mining was carried out as per the approved mine plan (or EC if issued) with stipulated benches.
- 12. All corner coordinates of the mine lease area, superimposed on a High Resolution Imagery/Topo sheet, topographic sheet, geomorphology, lithology and geology of the mining lease area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
- 13. The PP shall carry out Drone video survey covering the cluster. Green belt, fencing etc.,

MEMBER SECRET

Page 4 of 25

- 14. The PP shall furnish the revised manpower including the statutory & competent persons as required under the provisions of the MMR 1961 for the prosed quarry based on the volume of rock handled & area of excavation.
- 15. The proponent shall furnish photographs of adequate fencing, green belt along the periphery including replantation of existing trees & safety distance between the adjacent quarries & water bodies nearby provided as per the approved mining plan.
- 16. The Project Proponent shall provide the details of mineral reserves and mineable reserves, planned production capacity, proposed working methodology with justifications, the anticipated impacts of the mining operations on the surrounding environment and the remedial measures for the same.
- 17. The Project Proponent shall provide the Organization chart indicating the appointment of various statutory officials and other competent persons to be appointed as per the provisions of Mines Act'1952 and the MMR, 1961 for carrying out the quarrying operations scientifically and systematically in order to ensure safety and to protect the environment.
- 18. The Project Proponent shall conduct the hydro-geological study considering the contour map of the water table detailing the number of ground water pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds etc. within 1 km (radius) along with the collected water level data for both monsoon and non-monsoon seasons from the PWD / TWAD so as to assess the impacts on the wells due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided.
- 19. The proponent shall furnish the baseline data for the environmental and ecological parameters with regard to surface water/ground water quality, air quality, soil quality & flora/fauna including traffic/vehicular movement study.
- 20. The Proponent shall carry out the Cumulative impact study due to mining operations carried out in the quarry specifically with reference to the specific environment in terms of soil health, biodiversity, air pollution, water pollution, climate change and flood control & health impacts. Accordingly, the Environment Management plan should be prepared keeping the concerned quarry and the surrounding habitations in the mind.
- 21. Rain water harvesting management with recharging details along with water balance (both

EMBER SECRET

Page 5 of 25

monsoon & non-monsoon) be submitted.

- 22. Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
- 23. Details of the land for storage of Overburden/Waste Dumps (or) Rejects outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be provided.
- 24. Proximity to Areas declared as 'Critically Polluted' (or) the Project areas which attracts the court restrictions for mining operations, should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the TNPCB (or) Dept. of Geology and Mining should be secured and furnished to the effect that the proposed mining activities could be considered.
- 25. Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided.
- 26. Impact on local transport infrastructure due to the Project should be indicated.
- 27. A tree survey study shall be carried out (nos., name of the species, age, diameter etc.,) both within the mining lease applied area & 300m buffer zone and its management during mining activity.
- A detailed mine closure plan for the proposed project shall be included in EIA/EMP report which should be site-specific.
- 29. Public Hearing points raised and commitments of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project and to be submitted to SEIAA/SEAC with regard to the Office Memorandum of MoEF& CC accordingly.
- 30. The Public hearing advertisement shall be published in one major National daily and one most circulated vernacular daily.
- 31. The PP shall produce/display the EIA report, Executive summary and other related

MEMBER SECRETA SELAA-T

Page 6 of 25

information with respect to public hearing in Tamil Language also.

- 32. As a part of the study of flora and fauna around the vicinity of the proposed site, the EIA coordinator shall strive to educate the local students on the importance of preserving local flora and fauna by involving them in the study, wherever possible.
- 33. The purpose of Green belt around the project is to capture the fugitive emissions, carbon sequestration and to attenuate the noise generated, in addition to improving the aesthetics. A wide range of indigenous plant species should be planted as given in the appendix-I in consultation with the DFO, State Agriculture University and local school/college authorities. The plant species with dense/moderate canopy of native origin should be chosen. Species of small/medium/tall trees alternating with shrubs should be planted in a mixed manner.
- 34. Taller/one year old Saplings raised in appropriate size of bags, preferably eco-friendly bags should be planted as per the advice of local forest authorities/botanist/Horticulturist with regard to site-specific choices. The proponent shall earmark the greenbelt area with GPS coordinates all along the boundary of the project site with at least 3 meters wide and in between blocks in an organized manner
- 35. A Disaster Management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.
- 36. A Risk Assessment and Management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.
- 37. Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 38. Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
- 39. The Socio-economic studies should be carried out within a 5 km buffer zone from the mining activity. Measures of socio-economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible,

EMBER SECRET.

Page 7 of 25

quantitative dimensions may be given with time frames for implementation.

- 40. Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project should be given.
- Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.
- 42. If any quarrying operations were carried out in the proposed quarrying site for which now the EC is sought, the Project Proponent shall furnish the detailed compliance to EC conditions given in the previous EC with the site photographs which shall duly be certified by MoEF&CC, Regional Office, Chennai (or) the concerned DEE/TNPCB.
- 43. The PP shall prepare the EMP for the entire life of mine and also furnish the sworn affidavit stating to abide the EMP for the entire life of mine.
- 44. Concealing any factual information or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this Terms of Conditions besides attracting penal provisions in the Environment (Protection) Act, 1986.

MEMBER SECRET. SEIAA-TN

200

No	Scientific Name	Tamil Name	Tamil Name
1	Acele marmelos	Vilvam	QUAL .
	Adenamifiera pavenina	Manjadi	மதாம். ஆனைக்குற்றன்
1	Albuna letitori	Vaagai	OVT-STAL
1	Affrecia amora	Uat	LÉN
-	Baulunia purpurat	Manthara:	公为在1 475
6	Eaching a scorrota	Auth	-386
7	E-automa tomentor	Inuvatiu	3.5anal
8	Buchanams avillaris	Kattuma	#10. gun
9	Borneeus flabellifor	Parva	0.01400
10	Butes memosphering	Murukkamaram	UP SAAKON
11	Boban ceiba	Ilava, Sevulava	300
12	Calophython: maphython	Purana	1000
13	Cassia fistula	Sarakondra	FILGEIGEN
14	Cassia reaburgia	Sengondrai	Gargarang
B	Chiloroxylon montema	Porasamaram	13# W14
16	Сосвяюрестия нейстояния	Kongu, Manjalllavu	Sarag ugen
17	Cordan dichetorina	Narovili	agent
18	Cretiroa adarisem	Mavalingum	and where
19	Differita indica	Uva, Uzha	6
	D'allema pentaggna	SmuUva, Sitruzha	13 4.41
21	Diespyre sebeniem	Karungali	AGUATE
32	Energy to schlorexylon	Vagana	1415-010
20 21 22 23 24 25 26 27 28 29 30	Ercus amplitations	Kalltchi	- 26; 3 <i>77</i>
34	Holascus tillatootu	Aatropoovarasu	-1320
15	Haydreyckus binata	Aacha	-4F81
26	Holeytetsa ustegrafidist	Aayili	ज्युयान पात्रचा, ज्युप्रीसर्व
10	Lanace revenues delecte	Odhuam	yế lướ
28	Laserstroemus speciess	Poo Marudhu	11 03m
30	Lepisonthus actrophylia	Neikottaimaram	Gan Gantieme und
30	Limona acutizzona	Vila maram	saint with
31	Latses platmen	Pisanpattas	อสมมา มีสัสนะสน
32	Madhuca longifilia	Ширран	ลิยมสาน
33	Manulkara hexandra	UlakhaiPaalai	LASOS UIDK
34	Ministrapo elenies	Maginhamaram	นสัญชาช
35	Mitragyna partifolia	Kadambu	al.du
36	Morrada pubescent	Nuna	Mana
3*	Morinda corritolia	Vellar Nuna	GONDE SOT
38	Photon sparste	Eachai	1444.000
39	Pensenna pinnat	Purspan	្រេចនិល័

Appendix -I List of Native Trees Suggested for Planting

ah MEMBER SECRETARY SEIAA-TN

 \mathbf{v}_{1}

40	Premna mellissima	Manna	ഗ്രങ്ങങ
41	Prenna serratifolia	Narumurutai	33 gasa
42	Prenna tomentosa	Malapoovarasu	nese finite
43	Prosours caneted	Varuri maram	कांडवर्स धार्मक
14	Pterocarpus marsuprum	Vengai	3ละเคร
45	Pterospermum canescens	Vennangu, Tada	வெளனாங்க
46	Pterospermum xylocarpum	Polavu	Q9/34
纺	Putteranjita rozburgin	Karipala	aduren
48	Salvadora persica	Ugaa Maram	DEL TANK
49	Sapındus emarginatus	Manpungan, Soapukai	งสรับประส ชีสาบประสบ
50	Saraca aspea	Asoca	elerer
51	Stroblus asper	Piray maram	ப்ராம மரம்
52	Strychnos nuxcomic	Yetti	#Ú11
53	Strycimos potatorum	Therthang Kottai	SEREIN GEILAL
54	Syrygium cummi	Naval	BTSON:
55	Terminalia belleric	Thandn	£193
50	Terminalia arjuna	Ven marudhu	6000 03B
57	Teona ciliate	Sandhana vembu	ezzar Genty
58	Thespesia populnea	Puttarasn	110070-
54	Walsuraterfoliata	valsara	\$P\$(4)1
60	Wrightia tinctoria	Veppalai	GRALLITEDA.
01	Pathecellobium dales	Kodukkapuli	GETBEETILUT

Discussion by SEIAA and the Remarks:-.

The proposal was placed in the 616th Authority meeting held on 10.05.2023. The Authority noted that this proposal was placed for appraisal in this 369th Meeting of SEAC held on 20.04.2023. After detailed discussions, the Authority accepts the recommendation of SEAC and decided to grant **Terms of Reference (ToR) along with Public Hearing** under cluster for undertaking the combined Environment Impact Assessment Study and preparation of separate Environment Management Plan subject to the conditions as recommended by SEAC & normal conditions in addition to the conditions in 'Annexure B' of this minute.

In addition to that the PP shall study about the following,

- Detailed study shall be carried out in regard to impact of mining around the proposed mine lease area covering the entire mine lease period as per precise area communication order issued from reputed research institutions on the following
 - b) Soil health
 - c) Climate change
 - d) rise in Temperature

KMBER SECRE

Page 10 of 25

- e) Water Table and drainage pattern
- f) Agriculture

The PP shall obtain a letter from the Concerned Director of Agriculture stating that proposed mining activity has no impact on the surrounding Agriculture.

Annexure 'B'

Cluster Management Committee

- Cluster Management Committee shall be framed which must include all the proponents in the cluster as members including the existing as well as proposed quarry.
- The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development, Water sprinkling, tree plantation, blasting etc.,
- The List of members of the committee formed shall be submitted to AD/Mines before the execution of mining lease and the same shall be updated every year to the AD/Mines.
- 4. Detailed Operational Plan must be submitted which must include the blasting frequency with respect to the nearby quarry situated in the cluster, the usage of haul roads by the individual quarry in the form of route map and network.
- 5. The committee shall deliberate on risk management plan pertaining to the cluster in a holistic manner especially during natural calamities like intense rain and the mitigation measures considering the inundation of the cluster and evacuation plan.
- 6. The Cluster Management Committee shall form Environmental Policy to practice sustainable mining in a scientific and systematic manner in accordance with the law. The role played by the committee in implementing the environmental policy devised shall be given in detail.
- The committee shall furnish action plan regarding the restoration strategy with respect to the individual quarry falling under the cluster in a holistic manner.
- 8. The committee shall furnish the Emergency Management plan within the cluster.
- The committee shall deliberate on the health of the workers/staff involved in the mining as well as the health of the public.
- The committee shall furnish an action plan to achieve sustainable development goals with reference to water, sanitation & safety.

IEMBER SECRETARY SELAA-TN

Page 11 of 25

11. The committee shall furnish the fire safety and evacuation plan in the case of fire accidents.

Impact study of mining

- 12. Detailed study shall be carried out in regard to impact of mining around the proposed mine lease area covering the entire mine lease period as per precise area communication order issued from reputed research institutions on the following
 - g) Soil health & soil biological, physical land chemical features .
 - h) Climate change leading to Droughts, Floods etc.
 - Pollution leading to release of Greenhouse gases (GHG), rise in Temperature, & Livelihood of the local people.
 - j) Possibilities of water contamination and impact on aquatic ecosystem health.
 - k) Agriculture, Forestry & Traditional practices.
 - 1) Hydrothermal/Geothermal effect due to destruction in the Environment.
 - m) Bio-geochemical processes and its foot prints including environmental stress.
 - n) Sediment geochemistry in the surface streams.

Agriculture&Agro-Biodiversity

- 13. Impact on surrounding agricultural fields around the proposed mining Area.
- 14. Impact on soil flora & vegetation around the project site.
- 15. Details of type of vegetations including no. of trees & shrubs within the proposed mining area and. If so, transplantation of such vegetations all along the boundary of the proposed mining area shall committed mentioned in EMP.
- 16. The Environmental Impact Assessment should study the biodiversity, the natural ecosystem, the soil micro flora, fauna and soil seed banks and suggest measures to maintain the natural Ecosystem.
- Action should specifically suggest for sustainable management of the area and restoration of ecosystem for flow of goods and services.
- The project proponent shall study and furnish the impact of project on plantations in adjoining patta lands, Horticulture, Agriculture and livestock.

Forests

19. The project proponent shall detailed study on impact of mining on Reserve forests free ranging wildlife.

IEMBER SECRET. SEIAA-TN

- The Environmental Impact Assessment should study impact on forest, vegetation, endemic, vulnerable and endangered indigenous flora and fauna.
- 21. The Environmental Impact Assessment should study impact on standing trees and the existing trees should be numbered and action suggested for protection.
- 22. The Environmental Impact Assessment should study impact on protected areas, Reserve Forests, National Parks, Corridors and Wildlife pathways, near project site.

Water Environment

- 23. Hydro-geological study considering the contour map of the water table detailing the number of ground water pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds etc. within 1 km (radius) so as to assess the impacts on the nearby waterbodies due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided, covering the entire mine lease period.
- 24. Erosion Control measures.
- 25. Detailed study shall be carried out in regard to impact of mining around the proposed mine lease area on the nearby Villages, Water-bodies/ Rivers, & any ecological fragile areas.
- 26. The project proponent shall study impact on fish habitats and the food WEB/ food chain in the water body and Reservoir.
- 27. The project proponent shall study and furnish the details on potential fragmentation impact on natural environment, by the activities.
- 28. The project proponent shall study and furnish the impact on aquatic plants and animals in water bodies and possible scars on the landscape, damages to nearby caves, heritage site, and archaeological sites possible land form changes visual and aesthetic impacts.
- 29. The Terms of Reference should specifically study impact on soil health, soil erosion, the soil physical, chemical components and microbial components.
- The Environmental Impact Assessment should study on wetlands, water bodies, rivers streams, lakes and farmer sites.

Energy

31. The measures taken to control Noise, Air, Water, Dust Control and steps adopted to efficiently utilise the Energy shall be furnished.

EMBER SECRET

Page 13 of 25

Climate Change

- 32. The Environmental Impact Assessment shall study in detail the carbon emission and also suggest the measures to mitigate carbon emission including development of carbon sinks and temperature reduction including control of other emission and climate mitigation activities.
- 33. The Environmental Impact Assessment should study impact on climate change, temperature rise, pollution and above soil & below soil carbon stock.

Mine Closure Plan

34. Detailed Mine Closure Plan covering the entire mine lease period as per precise area communication order issued.

EMP

- 35. Detailed Environment Management Plan along with adaptation, mitigation & remedial strategies covering the entire mine lease period as per precise area communication order issued.
- 36. The Environmental Impact Assessment should hold detailed study on EMP with budget for Green belt development and mine closure plan including disaster management plan.

Risk Assessment

 To furnish risk assessment and management plan including anticipated vulnerabilities during operational and post operational phases of Mining.

Disaster Management Plan

38. To furnish disaster management plan and disaster mitigation measures in regard to all aspects to avoid/reduce vulnerability to hazards & to cope with disaster/untoward accidents in & around the proposed mine lease area due to the proposed method of mining activity & its related activities covering the entire mine lease period as per precise area communication order issued.

Others

39. The project proponent shall furnish VAO certificate with reference to 300m radius regard to approved habitations, schools, Archaeological sites, Structures, railway lines, roads, water bodies such as streams, odai, vaari, canal, channel, river, lake pond, tank etc.

MEMBER SECRETA SEIAA-TN

40. As per the MoEF& CC office memorandum F.No.22-65/2017-IA.III dated: 30.09.2020 and 20.10.2020 the proponent shall address the concerns raised during the public consultation and all the activities proposed shall be part of the Environment Management Plan.

The project proponent shall study and furnish the possible pollution due to plastic and microplastic on the environment. The ecological risks and impacts of plastic & microplastics on aquatic environment and fresh water systems due to activities, contemplated during mining may be investigated and reported.

A. STANDARD TERMS OF REFERENCE

- Year-wise production details since 1994 should be given, clearly stating the highest production achieved in any one year prior to 1994. It may also be categorically informed whether there had been any increase in production after the EIA Notification 1994 came into force, w.r.t. the highest production achieved prior to 1994.
- A copy of the document in support of the fact that the Proponent is the rightful lessee of the mine should be given.
- 3) All documents including approved mine plan, EIA and Public Hearing should be compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and should be in the name of the lessee.
- 4) All corner coordinates of the mine lease area, superimposed on a High Resolution Imagery/ topo sheet, topographic sheet, geomorphology and geology of the area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
- 5) Information should be provided in Survey of India Topo sheet in 1:50,000 scale indicating geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.
- 6) Details about the land proposed for mining activities should be given with information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.
- 7) It should be clearly stated whether the proponent Company has a well laid down Environment Policy approved by its Board of Directors? If so, it may be spelt out in the EIA Report with description of the prescribed operating process/procedures to bring into focus any

MEMBER SECRETARY SELAA-TN

infringement/deviation/ violation of the environmental or forest norms/ conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the Company and/or shareholders or stakeholders at large, may also be detailed in the EIA Report.

- 8) Issues relating to Mine Safety, including subsidence study in case of underground mining and slope study in case of open cast mining, blasting study etc. should be detailed. The proposed safeguard measures in each case should also be provided.
- 9) The study area will comprise of 10 km zone around the mine lease from lease periphery and the data contained in the EIA such as waste generation etc. should be for the life of the mine / lease period.
- 10) Land use of the study area delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
- Details of the land for any Over Burden Dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, R&R issues, if any, should be given.
- 12) Certificate from the Competent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for representative of the State Forest Department to assist the Expert Appraisal Committees.
- 13) Status of forestry clearance for the broken up area and virgin forestland involved in the Project including deposition of Net Present Value (NPV) and Compensatory Afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished.
- 14) Implementation status of recognition of forest rights under the Scheduled Tribes and other

IBER SECRETARY SEIAA-TN

Lr No.SEIAA-TN/F.No.9905/SEAC/ToR-1440/2023 Dated:10.05.2023

Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.

- 15) The vegetation in the RF / PF areas in the study area, with necessary details, should be given.
- 16) A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.
- 17) Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger/ Elephant Reserves/(existing as well as proposed), if any, within 10 km of the mine lease should be clearly indicated, supported by a location map duly authenticated by Chief Wildlife Warden. Necessary clearance, as may be applicable to such projects due to proximity of the ecologically sensitive areas as mentioned above, should be obtained from the Standing Committee of National Board of Wildlife and copy furnished.
- 18) A detailed biological study of the study area [core zone and buffer zone (10 km radius of the periphery of the mine lease)] shall be carried out. Details of flora and fauna, endangered, endemic and RET Species duly authenticated, separately for core and buffer zone should be furnished based on such primary field survey, clearly indicating the Schedule of the fauna present. In case of any scheduled-I fauna found in the study area, the necessary plan along with budgetary provisions for their conservation should be prepared in consultation with State Forest and Wildlife Department and details furnished. Necessary allocation of funds for implementing the same should be made as part of the project cost.
- 19) Proximity to Areas declared as 'Critically Polluted' or the Project areas likely to come under the 'Aravali Range', (attracting court restrictions for mining operations), should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the SPCB or State Mining Department should be secured and furnished to the effect that the proposed mining activities could be considered.
- 20) Similarly, for Coastal Projects, a CRZ map duly authenticated by one of the authorized agencies demarcating LTL. HTL, CRZ area, location of the mine lease with respect to CRZ, coastal features such as mangroves, if any, should be furnished. (Note: The Mining Projects falling under CRZ would also need to obtain approval of the concerned Coastal Zone Management Authority).

Member Secre

Page 17 of 25

21) R&R Plan/compensation details for the Project Affected People (PAP) should be furnished. While preparing the R&R Plan, the relevant State/National Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs /STs and other weaker sections of the society in the study area, a need based sample survey, family-wise, should

be undertaken to assess their requirements, and action programmes prepared and submitted accordingly, integrating the sectoral programmes of line departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area will be shifted or not. The issues relating to shifting of village(s) including their R&R and socioeconomic aspects should be discussed in the Report.

- 22) One season (non-monsoon) [i.e. March-May (Summer Season); October-December (post monsoon season); December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.
- 23) Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of Vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The wind roses showing pre-dominant wind direction may also be indicated on the map.
- 24) The water requirement for the Project, its availability and source should be furnished. A detailed water balance should also be provided. Fresh water requirement for the Project should be indicated.
- 25) Necessary clearance from the Competent Authority for drawl of requisite quantity of water for

MEMBER SECRETARY

Page 18 of 25

the Project should be provided.

- 26) Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided.
- 27) Impact of the Project on the water quality, both surface and groundwater, should be assessed and necessary safeguard measures, if any required, should be provided.
- 28) Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. In case the working will intersect groundwater table, a detailed Hydro Geological Study should be undertaken and Report furnished. The Report inter-alia, shall include details of the aquifers present and impact of mining activities on these aquifers. Necessary permission from Central Ground Water Authority for working below ground water and for pumping of ground water should also be obtained and copy furnished.
- 29) Details of any stream, seasonal or otherwise, passing through the lease area and modification / diversion proposed, if any, and the impact of the same on the hydrology should be brought out.
- 30) Information on site elevation, working depth, groundwater table etc. Should be provided both in AMSL and bgl. A schematic diagram may also be provided for the same.
- 31) A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution.
- 32) Impact on local transport infrastructure due to the Project should be indicated. Projected increase in truck traffic as a result of the Project in the present road network (including those outside the Project area) should be worked out, indicating whether it is capable of handling the incremental load. Arrangement for improving the infrastructure, if contemplated (including action to be taken by other agencies such as State Government) should be covered. Project Proponent shall conduct Impact of Transportation study as per Indian Road Congress

MEMBER SECRETARY SELAA-T

Guidelines.

- 33) Details of the onsite shelter and facilities to be provided to the mine workers should be included in the EIA Report.
- 34) Conceptual post mining land use and Reclamation and Restoration of mined out areas (with plans and with adequate number of sections) should be given in the EIA report.
- 35) Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
- 36) Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
- 37) Measures of socio economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.
- 38) Detailed Environmental Management Plan (EMP) to mitigate the environmental impacts which, should inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project.
- 39) Public Hearing points raised and commitment of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project.
- 40) Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project should be given.
- 41) The cost of the Project (capital cost and recurring cost) as well as the cost towards implementation of EMP should be clearly spelt out.
- 42) A Disaster management Plan shall be prepared and included in the EIA/EMP Report.
- 43) Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.

MEMBER SECRETARY SEIAA-TN

Page 20 of 25

Lr No.SEIAA-TN/F.No.9905/SEAC/ToR-1440/2023 Dated:10.05.2023

- 44) Besides the above, the below mentioned general points are also to be followed:
 - a) Executive Summary of the EIA/EMP Report
 - b) All documents to be properly referenced with index and continuous page numbering.
 - c) Where data are presented in the Report especially in Tables, the period in which the data were collected and the sources should be indicated.
 - d) Project Proponent shall enclose all the analysis/testing reports of water, air, soil, noise etc. using the MoEF&CC/NABL accredited laboratories. All the original analysis/testing reports should be available during appraisal of the Project.
 - e) Where the documents provided are in a language other than English, an English translation should be provided.
 - f) The Questionnaire for environmental appraisal of mining projects as devised earlier by the Ministry shall also be filled and submitted.
 - g) While preparing the EIA report, the instructions for the Proponents and instructions for the Consultants issued by MoEF&CC vide O.M. No. J-11013/41/2006-IA.II(I) dated 4th August, 2009, which are available on the website of this Ministry, should be followed.
 - h) Changes, if any made in the basic scope and project parameters (as submitted in Form-I and the PFR for securing the TOR) should be brought to the attention of MoEF&CC with reasons for such changes and permission should be sought, as the ToR may also have to be altered. Post Public Hearing changes in structure and content of the draft EIA/EMP (other than modifications arising out of the P.H. process) will entail conducting the PH again with the revised documentation.
 - As per the circular no. J-11011/618/2010-IA.II(I) dated 30.5.2012, certified report of the status of compliance of the conditions stipulated in the Environment Clearance for the existing operations of the project, should be obtained from the Regional Office of Ministry of Environment, Forest and Climate Change, as may be applicable.
 - j) The EIA report should also include (i) surface plan of the area indicating contours of main topographic features, drainage and mining area, (ii) geological maps and sections and (iii) sections of the mine pit and external dumps, if any, clearly showing the land features of the adjoining area.

MEMBER SECRET SEIAA-T

Page 21 of 25

In addition to the above, the following shall be furnished:-

The Executive summary of the EIA/EMP report in about 8-10 pages should be prepared incorporating the information on following points:

- 1. Project name and location (Village, District, State, Industrial Estate (if applicable).
- Process description in brief, specifically indicating the gaseous emission, liquid effluent and solid and hazardous wastes.
- 3. Measures for mitigating the impact on the environment and mode of discharge or disposal.
- 4. Capital cost of the project, estimated time of completion.
- The proponent shall furnish the contour map of the water table detailing the number of wells located around the site and impacts on the wells due to mining activity.
- 6. A detailed study of the lithology of the mining lease area shall be furnished.
- 7. Details of village map, "A" register and FMB sketch shall be furnished.
- Detailed mining closure plan for the proposed project approved by the Geology of Mining department shall be shall be submitted along with EIA report.
- 9. Obtain a letter /certificate from the Assistant Director of Geology and Mining standing that there is no other Minerals/resources like sand in the quarrying area within the approved depth of mining and below depth of mining and the same shall be furnished in the EIA report.
- EIA report should strictly follow the Environmental Impact Assessment Guidance Manual for Mining of Minerals published February 2010.
- Detail plan on rehabilitation and reclamation carried out for the stabilization and restoration of the mined areas.
- 12. The EIA study report shall include the surrounding mining activity, if any.
- 13. Modeling study for Air, Water and noise shall be carried out in this field and incremental increase in the above study shall be substantiated with mitigation measures.
- 14. A study on the geological resources available shall be carried out and reported.
- 15. A specific study on agriculture & livelihood shall be carried out and reported.
- 16. Impact of soil erosion, soil physical chemical and biological property changes may be assumed.
- 17. Site selected for the project Nature of land Agricultural (single/double crop), barren, Govt/ private land, status of is acquisition, nearby (in 2-3 km.) water body, population, with in 10km

MBER SECRETARY SEIAA-TN

other industries, forest, eco-sensitive zones, accessibility, (note - in case of industrial estate this information may not be necessary)

- Baseline environmental data air quality, surface and ground water quality, soil characteristic, flora and fauna, socio-economic condition of the nearby population
- Identification of hazards in handling, processing and storage of hazardous material and safety system provided to mitigate the risk.
- 20. Likely impact of the project on air, water, land, flora-fauna and nearby population
- 21. Emergency preparedness plan in case of natural or in plant emergencies
- 22. Issues raised during public hearing (if applicable) and response given
- 23. CER plan with proposed expenditure.
- 24. Occupational Health Measures
- 25. Post project monitoring plan
- The project proponent shall carry out detailed hydro geological study through intuitions/NABET Accredited agencies.
- 27. A detailed report on the green belt development already undertaken is to be furnished and also submit the proposal for green belt activities.
- 28. The proponent shall propose the suitable control measure to control the fugitive emissions during the operations of the mines.
- A specific study should include impact on flora & fauna, disturbance to migratory pattern of animals.
- 30. Reserve funds should be earmarked for proper closure plan.
- 31. A detailed plan on plastic waste management shall be furnished. Further, the proponent should strictly comply with, Tamil Nadu Government Order (Ms) No.84 Environment and forests (EC.2) Department dated 25.06.2018 regarding ban on one time use and throw away plastics irrespective of thickness with effect from 01.01.2019 under Environment (Protection) Act, 1986. In this connection, the project proponent has to furnish the action plan.

Besides the above, the below mentioned general points should also be followed:-

a. A note confirming compliance of the TOR, with cross referencing of the relevant sections / pages of the EIA report should be provided.

EMBER SECRET

Page 23 of 25

- All documents may be properly referenced with index, page numbers and continuous page numbering.
- c. Where data are presented in the report especially in tables, the period in which the data were collected and the sources should be indicated.
- d. While preparing the EIA report, the instructions for the proponents and instructions for the consultants issued by MoEF& CC vide O.M. No. J-11013/41/2006-IA.II (I) dated 4th August, 2009, which are available on the website of this Ministry should also be followed.
- e. The consultants involved in the preparation of EIA/EMP report after accreditation with Quality Council of India (QCI)/National Accreditation Board of Education and Training (NABET) would need to include a certificate in this regard in the EIA/EMP reports prepared by them and data provided by other organization/Laboratories including their status of approvals etc. In this regard circular no F. No.J -11013/77/2004-IA-II(I) dated 2nd December. 2009, 18th March 2010, 28th May 2010, 28th June 2010, 31st December 2010 & 30th September 2011 posted on the Ministry's website http://www.moef.nic.in/ may be referred.
 - After preparing the EIA (as per the generic structure prescribed in Appendix-III of the EIA Notification, 2006) covering the above mentioned points, the proponent willtake further necessary action for obtaining environmental clearance in accordance with the procedure prescribed under the EIA Notification, 2006.
 - The final EIA report shall be submitted to the SEIAA, Tamil Nadu for obtaining Environmental Clearance.
 - The TORs with public hearing prescribed shall be <u>valid for a period of three years</u> from the date of issue, for submission of the EIA/EMP report as per OMNo.J-11013/41/2006-IA-II(I)(part) dated 29th August, 2017.

MEMBER SECRET

SEIAA-TN

Page 24 of 25

Copy to:

- The Additional Chief Secretary to Government, Environment & Forests Department, Govt. of Tamil Nadu, Fort St. George, Chennai - 9
- The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD Cum-Office Complex, East Arjun Nagar, New Delhi 110032.
- The Member Secretary, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai-600 032.
- The APCCF (C), Regional Office, MoEF& CC (SZ), 34, HEPC Building, 1st& 2nd Floor, Cathedral Garden Road, Nungambakkam, Chennai -34.
- Monitoring Cell, IA Division, Ministry of Environment, Forests & CC, Paryavaran Bhavan, CGO Complex, New Delhi 110003
- 6. The District Collector, Karur District.
- 7. Stock File.

From Dr.P.Jayapal M.Sc., Ph.D., Deputy Director, Geology and Mining, Karur.

То

Thiru.S.Kuppusamy, S/o.Samiappagounder, Door No.95, Saliankattupallam, Thotiyapalayam, Muthur, Kangeyam Taluk, Tiruppur District - 638 105.

Rc.No.300/Mines/2022, Dated:09.03.2023

Sir,

- Sub: Mines and Minerals - Minor Mineral - Karur District - Pugalur Taluk - Anjur Village - S.F.Nos.764/3 (1.14.00 hectares), 765/3(0.48.00 hectares), 766/1(1.34.50 hectares). 766/2(1.14.00 hectares), 766/3A(0.47.35 hectares). 767/1(0.11.50 hectares) and 767/2A (0.13.35 hectares) Over an extant 4.82.70 hectares- Quarry lease application for Rough Stone and Gravel - Preferred by Thiru.S.Kuppusamy - Mining for the details of Existing/ Plan approved - requested Proposed/Expired/Abandoned quarries situated within 500 mts radial distance - furnished - Regarding.
- Ref:

 Quarry lease application for Rough stone and Gravel preferred by Thiru.S.Kuppusamy, S/o.Samiappagounder, Door No.95, Saliankattupallam, Thotiyapalayam, Muthur, Kangeyam Taluk, Tiruppur District - 638 105, dated: 28.06.2022.

- 2. Pricise Area Communication Notice Rc.No.300/Mines/2022, Dated:14.02.2023.
- 3 Mining Plan submitted by Thiru.S.Kuppusamy, Letter dated: 20.02.2023.
- The Deputy Director, Geology and Mining, Karur Mining Plan approved letter Rc.No. 300/Mines/2022, Dated:01.03.2023.
- 5. Thiru.S.Kuppusamy letter dated:06.03.2023.

In the reference 1^{st} cited, Thiru.S.Kuppusamy have applied quarry lease for quarrying Rough stone and Gravel in S.F.Nos.764/3 (1.14.00 hectares), 765/3(0.48.00 hectares), 766/1(1.34.50 hectares), 766/2(1.14.00 hectares), 766/3A(0.47.35 hectares), 767/1(0.11.50 hectares) and 767/2A (0.13.35 hectares) Over an extant 4.82.70 hectares of patta lands in Anjur Village, Pugalur Taluk, Karur District. The Deputy Director of Geology and Mining, Karur had issued precise area letter to the proposed lease area vide reference 2^{nd} cited.

Accordingly, the applicant has submitted the 3 copies of draft Mining Plan and the same was approved by the Deputy Director, Geology and Mining, Karur vide reference 4th cited.

In the reference 5th cited, the applicant has requested the Deputy Director of Geology and Mining, Karur to provide the details of existing, proposed and abandoned quarries situated within 500 meter radial distance from subject area and same has been furnished as follows:-

I. Existing Quarries: -

Sl	Name of the	Name of the	Taluk &	S.F.No.	Extent	Lease
No.	lessee/firm it holder	Mineral	Village		(hect)	Period
1			Nil			

II. Proposed Quarries: -

Sl No.	Name of the lessee/firm it holder	Name of the Mineral	Taluk & Village	S.F.No.	Extent (hect)	Lease Period
1	Thiru.S.Kuppusamy, S/o.Samiappagounder, Door-No.95, Saliankattupallam, Thotiyapalayam, Muthur, Kangeyam Taluk, Tiruppur District - 638 105.	Rough Stone and Gravel	Pugalur, Anjur (Patta land)	764/3 765/3 766/1 766/2 766/3A 767/1 767/2A (Patta land)	4.82.70	Proposed Area
2	Thiru.P.Sampathkumar, S/o.Palanisamy, Door No.98, Saliankattupallam, Muthur, Kangeyam Taluk, Tiruppur District - 639 105	Rough Stone and Gravel	Pugalur, Anjur	759/2(P) 761/2(P) 761/3(P) 762/2 762/3 763/2 763/3 (Patta land)	4.81.50	Applied Field
3	Thiru.V.Arunprashath, S/o.Vadivel, Door No.60, Perumalkovilputhur, Ichipalayam, Kodumudi T.K., Eorde District	Rough Stone and Gravel	Pugalur, Anjur	767/3 (Patta land)	1.24.0	Applied Field

III. Lease Expired Quarries : -

Sl No.	Name of the lessee/firm it holder	Name of the Mineral	Taluk & Village	S.F.No.	Extent (hect)	Lease Period	
1	Thiru.P.Duraisamy S/o.PeriyasamyGounder ThatharakaduThottam, Anjur Village Erode Taluk & District.	Rough Stone	Pugalur, Anjur	762/4 763/4 764/1 765/1 (Patta land)	1.59.5	07.08.2017 to 06.08.2022	
2	Tvl.Kowsick& Co Blue Metals Door No.24A Housing Unite Kollampalaym, Kasipalayam, Erode Taluk & District.	Rough Stone	Pugalur, Anjur	770/2B (P) 778/3B2 778/3B1(P) (Patta land)	4.98.0	07.08.2017 to 06.08.2022	
3	Thiru.P.Ravi S/o.Palanisamy Chinnakangeyam palayam Mankalappatti post Kangeyam Taluk, Tiruppur District.	Rough Stone	Pugalur, Anjur	759/3 759/4 763/5 764/2 765/2 (Patta land)	4.18.0	07.08.2017 to 06.08.2022	
4	Thiru.P.Ravi, S/o.Palanisamygounder, Saliyangkaddupallam, Muthur village, Kangeyam Taluk, Karur District.	Rough Stone	Pugalur, Anjur	775/1E(P) 776/3 777/1 778/1A 807/2B 807/2C2 (Patta land)	4.40.0	21.2.2018 to 20.2.2023	

III. Abandoned Quarries : -

SI	Name of the	Name of the	Taluk &	S.F.No.	Extent	Lease
No.	lessee/firm it holder	Mineral	Village		(hect)	Period
1	Thiru.P.Sundara moorthy, S/o. Palanisamy, No.A. 37 Velayuthampalayam, Pandilingapuram (Post), Aravakurichi T.K., Karur	Rough Stone	Pugalur, Anjur	837 (Poramboke land)	1.26.5	04.05.2010 to 03.05.2015

Deputy Director, Geology and Mining, Karur.

69/03/2023

220

FOR ANJUR VILLAGE ROUGH STONE AND GRAVEL MINING LEASE WITH AND

PROGRESSIVE QUARRY CLOSURE PLAN

Patta- Ryotwari land/Opencast-Semi Mechanized mining/ Non- Forest/Non - Captive Use -

"B2' Category

Lease period 5 Years from the date of lease execution

(Prepared under rule 41 (3) (i) and submitted under rule 41 (8) (i) of Tamil Nadu Minor Mineral Concession Rules, 1959)

LOCATION OF THE LEASE AREA

STATE	:	TAMILNADU
DISTRICT	:	KARUR
TALUK	:	PUGALUR
VILLAGE	:	ANJUR
S.F. NO'S	•	764/3, 765/3, 766/1, 766/2, 766/3A,
		767/1 & 767/2A
EXTENT	\mathbf{a}	4.82.7 HECTARES

ADDRESS OF THE APPLICANT

Mr.S.Kuppusamy, S/o.Samiappagounder,

Door No.95, Saliankattupallam,

Thotiyapalayam, this Mining Plan is approved subject Muthur, Kangeyam Taluk, to the conditions/stipulations Tiruppur District - 638105.indicated in the Mining Plan approval Letter No: 200(min4) 2022

PREPARED BY

Dated: 01/03/2023

A.ALLIMUTHU., M.Sc., M.Phil.,

RQP/DMG/HYD/85/2022 D.No.1/231, Pattakaranavalavu, Chinnamuthiyampatti, Puduppalayam – Post, Edapaddi Taluk, Salem District, Tamil Nadu State, India Pincode – 636306 Mob.No. +91 9788636242, 8870254313 Email I'd: <u>allimuthu1973@gmail.com</u>

10 protony

221

JAGBA

0 5 9. ms 6

Bui GBA JOS - 143-63 * Baue Bas wat the CONTENTS Page No. Description S. No 5-8 . Certificates 9 Introductory notes -12 1.0 General 14 2.0 Location and Accessibility PART-A 3.0 Geology and Mineral reserves 17 22 4.0 Mining 29 5.0 Blasting 31 6.0 Mine drainage 31 7.0 Stacking of mineral rejects and disposal of waste 8.0 Uses of mineral 32 32 9.0 Others 10.0 33 Mineral processing/Beneficiations 4 PART-B 35 11.0 Environmental management plan Progressive quarry closure plan 40 12.0 Financial assurance 43 13.0 43 Certificates 14.0 43 15.0 Plan and section, etc 43 16.0 Any other details intend to furnish by the applicant 17.0 CSR expenditure 44 , Molstoni

 \odot

XD)

222

145-

ANNEXURES

Sl. No.	Description	Annexure No.
1.	Copy of precise area communication letter	I
2.	Copy of previous lease particularsa.Environmental Clearanceb.Proceeding Letterc.Lease execution deedd.Copy of TNPCB CTO certificate	п
3.	Copy of FMB (Field Measurement book)	Ш
4.	Copy of combined sketch	IV
5.	Copy of "A" registered	v
6.	Copy of computer Chitta & adangal	VI
7.	Photocopy of the proposed lease area	VII
8.	VIII	
9.	Copy of ID Proof of the authorized signature	IX
10.	Copy of RQP certificate	X

J. Jayopsony

(1)

 \mathbb{C}

Æ.

1.5

223

A Buisomi A Buisomi A Buison

LIST OF PLATES

S. No	Description	Plate No.	Scale	
1	Key map	I	Not to scale	
2	Location plan	I-A	Not to scale	
3	Toposheet map	I-B	Scale 1:1,00,000	
4.	Satellite imagery map	I-C	Scale 1: 5,000	
5.	Environmental plan	I-D	Scale 1: 5,000	
6.	Mine lease plan	п	Plan Scale: 1:2000	
7.	Surface & Geological plan	ш	Plan scale: 1:2000	
8.	Geological sections	IIIA	Section: HOR 1:1000	
		IIIB	VER 1:500	
9.	Year wise development & production plan	IV	Plan scale: 1:2000	
10.	Year wise development & production sections	IVA	Section: HOR 1:2000 VER 1:500	
11.	Mine layout plan and land use pattern	v	Plan scale: 1:2000	
12.	Conceptual plan	VI	Plan scale: 1:2000	
13.	Conceptual sections	VIA	Section: HOR 1:2000 VER 1:500	

Ju Jardobrand

(E)) (-)

Mr.S.Kuppusamy,

S/o.Samiappagounder,

Door No.95, Saliankattupallam,

Thotiyapalayam,

Muthur, Kangeyam Taluk,

Tiruppur District - 638105.

CONSENT LETTER FROM THE APPLICANT

The Mining Plan for rough stone and gravel quarry lease in S.F.No's: 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A over an extent of 4.82.7hectares, Anjur Village, Pugalur Taluk, Karur District, Tamil Nadu State has been prepared by

A.ALLIMUTHU., M.Sc., M.Phil., (Regn. No. RQP/DMG/HYD/85/2022)

I request the **Deputy Director**, **Department of Geology and Mining, Karur District** to make further correspondence regarding modifications of the Mining Plan with the said Recognized Qualified Person on this following address.

A.ALLIMUTHU., M.Sc., M.Phil.,

RQP/DMG/HYD/85/2022 D.No.1/231, Pattakaranavalavu, Chinnamuthiyampatti, Puduppalayam – Post, Edapaddi Taluk, Salem District, Tamil Nadu State, India Pincode – 636306 Mob.No. +91 9788636242, 8870254313

I hereby assure that all modifications so made in the Mining Plan by the Recognized Qualified Person may be deemed to made with my knowledge and consent and shall be acceptable and binding on me in all respects.

Place: Karur, TN

Date: 16/02/2023

Mppsen

nature of the applicant

(S.Kuppusamy)

wasmi .

oppieges!

15) - Bulie & Bri Caller Bulie & Bulie & Bulie & Bulie & Bri Caller Bulie & Bulie & Bulie & Bulie & Bulie & Bri Caller Bulie & Bulie & Bulie & Bulie & Bulie & Bulie & Bri Caller Bulie & Buli

S.Kuppusamy, S/o.Samiappagounder, Door No.95, Saliankattupallam, Thotiyapalayam, Muthur, Kangeyam Taluk, Tiruppur District – 638105.

DECLARATION

.....

The Mining Plan of rough stone and gravel quarry lease in S.F.No's: 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A over an extent of 4.82.7hectares, Anjur Village, Pugalur Taluk, Karur District, Tamil Nadu State have been prepared with my consultation and I have understood the contents and agree to implement the same in accordance with the Mining Laws.

Place: Karur, TN Date: 16 02 2023

of the applicant Signature

(S.Kuppusamy)

153is OBit of ÷ A.ALLIMUTHU., M.Sc., M.Phil., ROP/DMG/HYD/85/2022 Lei philippines D.No.1/231, Pattakaranavalavu, Chinnamuthiyampatti, Puduppalayam - Post Edapaddi Taluk, Salem District, Tamil Nadu State, India Pincode - 636306 Mob.No. +91 9788636242, 8870254313

CERTIFICATE

This is to certify that the provisions of 19(1), 20 and 22 of Tamil Nadu Minor Minerals Concession Rules, 1959 have been observed in the mining plan for the grant of rough stone and gravel quarry lease in S.F.No's: 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A over an extent of 4.82.7hectares, Anjur Village, Pugalur Taluk, Karur District, Tamilnadu State applied to Mr.S.Kuppusamy, Tiruppur District, Tamil Nadu.

Wherever specific permission / exemptions / relaxations or approvals are required the applicant will approach the concerned authorities of State and Central governments for granting such permissions etc.

227

Place: Dharmapuri, TN

Date: 18/02/2023 Si

A. And MMT. Signature of the Recognized Qualified Person

A. ALLIMUTHU, M.Sc., M. Phil., Recognized Qualified Person RQP/DMG/HYD/85/2022

155 -UN OBT O 1 * A.ALLIMUTHU., M.Sc., M.Phil., 5 RQP/DMG/HYD/85/2022 Sterio operio en inte D.No.1/231, Pattakaranavalavu, Chinnamuthiyampatti, Puduppalayam - Post Edapaddi Taluk, Salem District, Tamil Nadu State, India Pincode - 636306 Mob.No. +91 9788636242, 8870254313 -------

CERTIFICATE

I certified that the preparation of Mining Plan for rough stone and gravel quarry lease in S.F.No's: 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A over an extent of 4.82.7hectares, Anjur Village, Pugalur Taluk, Karur District, Tamil Nadu prepared to Mr.S.Kuppusamy, Tiruppur District, Tamil Nadu, covers all the provisions of Mines Act, Rules and Regulations etc. made there in and if any specific permission is required the applicant will approach "The Director General of Mines Safety", Chennai. The standards prescribed by DGMS regarding Mines Health will be strictly implemented.

Place: Dharmapuri, TN

Date: 18/02/2023

A . And more . Signature of the Recognized Qualified Person

A.ALLIMUTHU, M.Sc., M.Phil., Recognized Qualified Person RQP/DMG/HYD/85/2022

FOR ANJUR VILLAGE ROUGH STONE AND GRAVEL MININ

PROGRESSIVE QUARRY CLOSURE PLAN

NING PL

154-

18 OBT OF

Dittin + 1 in + in

Lease period 5 Years from the date of lease execution

(Prepared under rule 41 (3) (i) and submitted under rule 41 (8) (i) of Tamil Nadu Minor Mineral Concession Rules, 1959)

INTRODUCTORY NOTES:

- Introduction: The applicant Mr.S.Kuppusamy S/o.Samiappagounder residing at Door No.95, Saliankattupallam, Thotiyapalayam, Muthur, Kangeyam Taluk, Tiruppur District - 638105, Tamil Nadu State. The applicant was submit application on 28.06.2022 for request to the Deputy Director, Department of Geology and Mining, Karur, renewed to be continued quarrying operation for rough stone and gravel at S.F.No's: 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A, over an extent of 4.82.7hectares of Anjur Village, Pugalur Taluk, Karur District, Tamil Nadu State further the period of 5 years.
- 2) Precise area communication letter particulars: The Deputy Director, Department of Geology and Mining, Karur has directed to the applicant Mr.S.Kuppusamy through his precise area communication letter Rc.No.300/Mines/2022 Dated: 14.02.2023, has recommended quarrying lease for rough stone and gravel quarry lease at Tamil Nadu State, Karur District, Pugalur Taluk, Anjur Village in S.F.No's: 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A, over an extent of 4.82.7 hectares and should be submitted draft mining plan for approval for the period of 90 days the following conditions for a period of five (5) years under Rule 19 (1), 20 & 22 of Tamil Nadu Minor Mineral Concession Rules, 1959.
 - i) A safety distance of 10 meter should be leave for Cart Road which crossing south-north direction in West and Southwest of S.F.No.756 & S.F.No.757 from the applied S.F.No. 766/1, 766/2 and 766/3A and properly excavate without any damage.
 - ii) A safety distance of 10 meter should be left out for patta road which crossing south-north direction in east of S.F.No.764/4 from the applied S.F.No.764/3 and properly excavate without any damage.

fhis Mining Plan is approved subject to the conditions/stipulations 229 Indicated in the Mining Plan approval Letter ND: 300 minus 2022 Dated: 6110212022

9 Page

 iii) A safety distance should be left out nearby the applied area 15 m and 10m of Patta and Poramboke lands as respectively while quarrying activities.

iv) Quarrying operation to be carried out with controlled blasting techniques viz hand-hack-Hammer, Driller for drilling shot holes and use mild explosives substance for blasting the rocks.

159-

JA C DA C

10 | Page

· Mabbaran

- v) To ensure the safety of quarry workers as per Metalliferous Mines Acts should formed wide, safe benches. Inside the quarry in safe manner vehicles come and go, do the quarry work ensuring the safety of the quarry workers.
- vi) To provide quarrying lease by the Deputy Director, Karur, approved mining plan, obtain Environmental Clearance from the competent authority of State Level Environment Impact Assessment Authority-Tamil Nadu (SEIAA) and should be submitted.
- 3) <u>The previous lease particulars</u>: The proposed lease area was previously granted to quarrying of rough stone in favor of Mr.S.Kuppusamy by the District Collector, Karur proceedings vide Rc.D.79/2001, dated 05.06.2001 in S.F.No. 759/5, 764/3, 765/3, 766/2, 767/1 & 767/2 (Part) Karur District, Aravakurichi Taluk, Anjur Village, over an extent of 4.56.5hectares for a period of 5 years and lease period was expired on 18.09.2006.

The 1st renewed application of the same applicant for the lease application and granted vide letter Rc.B/597/G&M/2006, dated 26.02.2007 in 759/5, 764/3, 765/3, 766/2, 767/1 & 767/2 (Part) over an extent of 4.56.5Hectares. The lease was executed 16.03.2007 to 15.03.2012 for a period of 5 years.

The 2nd renewed application of the same applicant for the lease application and granted vide Collr.Ref.No.173/Mines/2012 in S.F.No. 759/5, 764/3, 765/3, 766/1(Part), 766/2 & 767/1 over an extent of 4.92.5Hectares. The applicant got Environmental Clearance from SEIAA-TN vide Lr.no.SEIAA/TN/F.No.1426/1(a)/EC.No.3848/2015, dated 30.05.2017. The lease was executed 23.06.2017 to 22.06.2022 for a period of 5 years.

Now, **3rd Renewal application** for new proposals has submitted to the Deputy Director, Department of Geology and Mining (DDG & M), Karur dated 28.06.2022 and the Deputy Director, recommended to his precise area communication letter Rc.No.300/Mines/2022 Dated: 14.02.2023 for period of five years recommended to favor of Mr.S.Kuppusamy, Karur for quarrying lease rough stone and gravel at Tamil Nadu State, Karur District, Pugalur Taluk, Anjur Village in S.F.No: 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A, over an extent of 4.82.7hectares

230

There is an existing pit was noticed with an average pit dimension as given under the table and the existing pit marked in the surface and geological plan (Ref Plate No's: III).

- 161-

JS OBT O

Existing pit Dimension							
Pit level	Length (m)	Width (m)	Depth(m)				
1	53	22	3				
2	20	45	4				
3	8	60	6				
4	15	95	7				
5	25	20	10				
6	71	61	12				
7	48	140	13				
8	82	58	15				
9	62	76	16				

- 3) <u>Preparation and Submission of Mining Plan</u>: The Mining Plan with progressive quarry closure plan has been prepared under rule 41 (3) (i) and submitted under rule 41 (8) (i) of Tamil Nadu Minor Mineral Concession Rules, 1959, for mining lease as per conditions mentioned in the precise area communication letter Rc.No.300/Mines/2022 Dated: 14.02.2023.
- 4) <u>Geological resources and Mineable reserves</u>: Geological resource of estimated as 2654528m³ including the resources of safety zone, and gravel. Of which, rough stone resources of about 2616836m³ and gravel is about 37692m³. The total mineable reserve is estimated to be 831170m³ by deducting the reserve safety zone, block in benches from the total Geological resources. Of which, rough stone is about 799894m³ and gravel is about 31276m³ up to a depth of 62m below the ground level (R.L.190m-128m) (Refer Plate No. IIIA, IIIB & VIA).
- 5) Proposed production schedule: Total proposed production of 831170m³. Of which, rough stone is 799894m³ and gravel is 31276m³ up to a depth of 62m below the ground level (R.L.190m-128m) for five years plan period. Average production is 159979m³ of rough stone per year. (Refer Plate No. IVA).
- 6) Environmental Sensitivity of the proposed lease area: -
 - Interstate boundary: There is no interstate boundary around 10Km radius periphery of proposed lease area.
 - Wildlife Protection Act, 1972: There is no wild life sanctuary within radius of 10Km from the project site area under the Wildlife (Protection) Act, 1972.

· Mostard

iii. Indian Reserve Forest Act, 1980: No reserved forest situated within radius of 1Km periphery of the proposed site. The Nearest reserve forest is 1. Arcachalur R.F -15.22km - Northwest Side

163-

iv. CRZ Notification, 1991: There is no sea coastal zone found within radius of 10km and this project site doesn't attract CRZ Notification, 1991.

7) Environmental measures to be adopted during the ongoing activity period,

- a) Controlled blasting includes adoption of suitable explosive charge and short delay detonators, adequate stemming of holes at collar zone and restricting blasting to a particular time of the day i.e. at the time lunch hours, controlled charge per hole as well as charge per round of hole
- b) Usage of sharp drill bits while drilling which will help in reducing noise.
- c) Secondary blasting will be totally avoided and hydraulic rock breaker will be used for breaking boulders.
- d) Controlled blasting with proper spacing, burden, stemming and optimum charge/delay will be maintained.
- e) Green Belt/Plantation will be developed around the project area and along the haul roads. The plantation minimizes propagation of noise.
- f) Water will be sprinkled on haul roads twice a day to avoid dust generation during transportation.
- g) Transportation of material will be carried out during day time and material will be covered with tarpaulin.
- h) The speed of tippers plying on the haul road will be limited below 20 km/hr to avoid generation of dust.
- And any other conditions as stipulated by the concerned authorities should be followed to protect the environment.

1.0 GENERAL:

i.	Name of the Applicant	-E	Mr.S.Kuppusamy	
	Applicant address	3	S/o.Samiappagounder, Door No.95, Saliankattupallam, Thotiyapalayam, Muthur, Kangeyam Taluk,	
	District		Tiruppur	
	State	;	Tamilnadu	
	Pin code	1	638105	
	Phone	:		
	Fax	1	Nil	

- Jayportaniz32

12 | Page

IS OBT .

449.00

Gram	-	Nil
Telex	-	NU IIE
E-mail	•	and a second
Status of the Applicant	1	NII Desistanten
Private individual	:	•
Cooperative Association	:	
Private company	ï	Private
Public Company	:	
Public Sector Undertaking	:	***
Joint Sector Undertaking	;	
Other (pl. specify)	:	
Mineral(s) Which are occurring in the area and which the applicant intends to mine	•	Rough stone and gravel quarry lease
Period for which the mining lease granted /renewed/ proposed to be applied	3	The precise area has been communicated to the applicant for quarrying period of five (5) years.
Name of the RQP preparing the Mining Plan	:	A.ALLIMUTHU., M.Sc., M.Phil., RQP/DMG/HYD/85/2022
Address		D.No.1/231, Pattakaranavalavu, Chinnamuthiyampatti, Puduppalayam – Post, Edapaddi Taluk, Salem District, Tamil Nadu State, India Pincode – 636306
Phone	1	+91 9788636242, 8870254313
Fax	1	Nil
e-mail	3	allimuthu1973@gmail.com
Telex	:	Nil
Certificate Number	1	RQP/DMG/HYD/85/2022
Date of grant/renewal	Ē	26.04.2022
Valid upto	:	25.04.2032
Name of the prospecting agency		The commissioner, Department of Geology and mining
Address		Department of Geology and Mining, Thiru Ve Ka Industrial Estate, Guindy, Chennai
Phone	:	044-22501874
g. Reference No. and date of consent letter from the state government		The precise area communication letter was received from the Deputy Director

233

S. I woppland

13 | Page

					Department of Geolog Collectorate, Karur V 2022 Dated: 14.02.202	ide Rc.No	11 * 1		
		O ACCESSIB	ILIT						
Details	1960 M. 1. 18 0. 19	222368		-	Refer plate no: IA & IB	\$			
District	& State	e		:	Karur, Tamil Nadu				
Taluk				1	Pugalur				
Village				1	Anjur				
		ot No./ Block Series etc.							
Survey No.	Sub divi sion	Total Extent in Hect	Patta No.	· · · ·	Name of the Land Owner	Mine lease Applied S.F. No.	Mine lease Applied Area out of total area in hect.		
764	3	1.14.0	123	1		764/3	1.14.0		
765	3	0.48.0	123	1		765/3	0.48.0		
766	1	1.34.5	159	1	Mr.S.Kuppusamy S/o. Samiappagounder	766/1	1.34.5		
766	2	1.14.0	123	1		766/2	1.14.0		
766	3A	0.47.35	228	7		766/3A	0.47.35		
767	1	0.11.5	123	1		767/1	0.11.5		
767	2A	0.13.35	228	8		767/2A	0.13.35		
	Total 4.82.7 Extent				Applied lease ar	4.82.7			
Lease a	area (he	ctares)		***	4.82.7 Hectare				
be in whethe etc)	forest er prot	rea is recorde (please spe tected, reser	ecify	*	No, forest is involved. Land.				
Ownership / Occupancy :				•	This is a Patta land S.F.No. 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A is registered in the name of Mr.S.Kuppusamy S/o. Samiappagounder vides Patta No.1231, 1591, 2287 & 2288. (Ref. Annex. No:VI).				
Existence of Public Road / : Railway line if any nearby and approximate distance				(4) (4)	 ✓ Excavated materia through the app southwest side of th ✓ There is an SH-189 	proach ro he lease apj 9 road are s	ad on the plied area.		

Eq.

 (\cdot)

J- Myppetony 234

Toposheet No. longitude	with latitude a	about the lea ✓ There 5km ra and : SOI Top Latitude	4.55km away from	16 7"N to 51"N- 9.20"E to
Geo-Coordinat	tes of the lease	boundary:	11-11.5-5	
000-000101111	Pillar No	Latitude	Longitude	1 I
	1	11° 3'12.47"N	77°47'0.88"E	
	2	11° 3'11.23"N	77°47'0.78"E	
	3	11° 3'10.88"N	77°46'56.70"E	
	4	11° 3'10.25"N	77°46'55.81"E	
	5	11° 3'3.77"N	77°46'56.05"E	
	6	11° 3'2.77"N√	77°46'55.36"E	
	7	11° 3'4.69"N	77°46'53.49"E	
	8	11° 3'5.67"N	77°46'50.44"E	/
	9	11° 3'7.10"N	77°46'49.20"E	4
	10	11° 3'10.66"N	77°46'52.00"E	
	11	11° 3'12.70"N	77°46'52.97"E	
	12	11° 3'13.32"N		-
Land use	13 pattern (For	11° 3'13.51"N est, : It is an e	77°46'55.49"E existing and renewo	
etc.)) Attach a gene vicinity map boundaries a proposed acc preferred tha marked on a topographical	showing a and existing a cess routs. It at the area to a survey of In	and : Refer pla and : and be adia a	ate no-IA & IB	

area should be shown on an accurate sketch map on scale of 1:5000.

()

i) INFRASTRUCTURE AND COMMUNICATION:

S.No	Description	Place	Distance	Direction
a.	Nearest post office	Muthur	4.7Km	West
b.	Nearest police station	Muthur	4.72km	West
c.	Nearest fire station	Kodumudi	10.0km	NE
d.	Nearest medical facility	Muthur	4.3Km	West
e,	Nearest school	Muthur	3.80Km	West
f.	Nearest railway station	Kodumudi	11.58km	NE
g.	Nearest port facility	Tuticorin	254.0km	South
h.	Nearest airport	Coimbatore	84.4km	West
i.	Nearest DSP office	Kangeyam	24.2m	SW
j.	Nearest villages	Karattan kattupudur	1.61km	North
		Kolantapalaiyam	0.68km	East
		Pillapalaiyam	1.3km	SE
		Thottipalaiyam	1.36km	West

anprovenij236

16 | Page

USOBIA

ARIM

Véuépús

- 171-

\$

会

•

<u>PART – A</u>

3.0 GEOLOGY AND MINERAL RESERVES:

(a) Briefly describe the topography and general geology and local/mine geology top the second second

173-

0

*

(i) Topography	: The proposed lease area exhibits flat topography. The proposed site shows the relief of 1m; the maximum elevation (190m) was observed in North side of the site, while the minimum elevation (189m) was observed east side of the site. The slope is towards eastern side and falls in Toposheet no. 58 E/16.
----------------	---

(ii) a) Geology of the District:

()

3

The Karur district forms part of the Archean complex of peninsular gneiss. The general rock types of this area are Biotite gneiss. Karur District is blessed with good reserves of crystalline limestone known as "Palayam belt" in Varavanai, Thennilai, Gudalur etc., villages in Kulithalai Taluk and the occurrences of good quality of pegmatite veins constituting with glassy quartz and potash feldspar in lensoid patches in Nagampalli and Pungambadi areas in Aravakurichi Taluk. The major mineral such as limestone, quartz and feldspar are exploited in Karur district and utilized in the mineral-based industries.

The Granite gneiss rocks are found to occur in K.Paramathi, Athur, Thennilai, Punnam, Godanthur South, Munnur, Punnam, Anjur villages in Karur and Aravakurichi Taluk are exploited to produce building materials and road metal (Jelly) and over burden soil appear as gray to reddish in colour called as gravel. The commercially known "Coloumbo Zubrana" the unique type in the Multi coloured granite / Granite gneiss category is occurring in Thogamalai, Naganur and Kazhugur Villages in Kulithalai Taluk. These rock type belong to minor mineral category. The arrangement of alternate layers of felsic and mafic minerals in linear pattern and exhibits wavy pattern in the rock and giving very good structure for the rock type. The well-developed gneissic pattern with linear arrangement, the rock type have attracted the granite market and found to be suitable for the exploitation of granite blocks. But in this area the banded gneissic rock has many fractures and foliation in it. So, this is not viable for dimensional stone. **Order of superposition of the proposed lease area**,

NA ODI AN

Age	Group	Rock Formation
ecent to Sub recent		Topsoil (1-2m thick)
roterozoic	Acid intrusive	Pink medium granited granite Granite gneiss
rchaean	Charnockite Group	Pyroxene Granulite, Character (acid to intermediate) / Crystallin limestone / Quartzite

(iii) Local / Mine Geology of the mineral deposit area:

- 3

a) Topography of the proposed lease area:

The proposed lease area exhibits flat topography. The proposed site shows the relief of 1m; the maximum elevation (190m) was observed in North side of the site, while the minimum elevation (189m) was observed east side of the site. The slope is towards eastern side. The applied lease area is existing, with covered gravel and beneath the charnockite rocks found based on existing pit nearby the lease area. Surface plan preparing for contour lines, surface features and Geological mapped the applied lease area.

b) Mode of origin:

The Charnockite series originally was assumed to have developed by the fractional crystallization of silicate magma. Subsequent studies have shown, however, that many, if not all, of the rocks are metamorphic, formed by recrystallization at high pressures and moderately high temperatures.

c) Physiography of the rocks:

General characteristics of the rocks of this series has recorded that the rocks are in general bluish gray or darkish in colour and extremely fresh in appearance with an even grained granular structure.

d) Chemical composition of rocks:

The compositional characteristics of coexisting orthopyroxene, garnet and biotite have established several petrographic varieties within the Charnockites– Enderbites such as the granulite's and gneisses. Plagioclase feldspars, alkali feldspars and quartz are the salic minerals present in this series of rocks.

Order of superposition of rocks in the proposed site:

	Age	Group	Rock Formation
	Recent to Sub recent		Gravel
	Archaean	Charnockite Group	Charnockite.
(iv)	Drainage Pattern	No major river local drainage in the area is	ted within 50m radius. The dendritic in nature.

in the Ra

(b)	with contour should be take	interval of 3 en as the base ready carried	to 10m depen plan for prepu out including	nding upon the top aration of geologica	f 1 :1000 or 1: 2000 ography of the area I plan. The actails of I existence would be	ABUR
	a. Present sta	tus	pit level-1 L20m X W X D6m, pi level-5 is 1 L71m X V W140m X D15m, pit Charnockit	is L53m X W22m X 45m X D4m, pit lev t level-4 is L15m X L25m X W20m X W61m X D12m, pit D13m, pit level-8 i level-9 is L62m X e rocks are well see	ticed by RQP with a X D3m, pit level-2 is el-3 is L8m X W60m X W95m X D7m, pit D10m, pit level-6 is t level-7 is L48m X is L82m X W58m X W76m X D16m. The en in the existing pit over the part of lease	
	b. Surface Pla	n	exposure, a	lan showing elev and accessibility roa 2000, as shown in Pl	d was prepared at the	c
(c)	Geological see be prepared intervals on a 1000 / 1: 2000	at suitable a scale of 1:	were prepa	ared at the horizonta tical scale of 1:500	ological cross sections 1 scale of 1: 1000 and 0, as shown in Plate	
(d)			(32) (31)		oloration, taking into next five years as in	
	Year	No.of boreholes	Total meterage	No.of Pits and Dimensions	No.of Trenches and Dimensions	
	First	N.A		12220	N.A	
	Second	N.A	-	1999	N.A	
	Third	N.A			N.A	
	Fourth	N.A	(444)		N.A N.A	
	Fifth No future pro	N.A	nosed in this a	rea Its massive hom	N.A nogeneous parent rock.	
	Hence explor	ation proposal	is not required	to this mining project	ct.	
(e)	Indicate geol				supported by standard ections (giving split up	

Availability of resources should also be indicated for the entire have hold.

The geological resources were computed by cross section metode with respect to the boundaries of the lease area. In this method, the lease area was divided into three sections (longitudinal and transverse) to calculate the volume of material up to the depth of 62m below ground level. The longitudinal and transverse cross sections were assigned (XY-AB), (XY-CD) & (X1Y1-EF) as respectively. Using the crosssectional method, total reserve is estimated to be 2654528m³ including the resources of safety zone, and gravel. Of which, rough stone is about 2616836m³ and gravel resource of about 37692m³.

179-

2

The gravel is obtained about 2m (R.L.190-188m) from the surface and a rough stone starts from 2 to 62m (R.L.188-128m) below ground level. (Refer plate no.IIIA).

10 N. 12	The second	G	EOLOGIC	CAL RESO	DURCES		
Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume in m ³	Rough Stone in m ³	Gravel in m ³
	I	104	179	2	37232	14.754	37232
	П	136	179	5	121720	121720	
	111	137	179	5	122615	122615	
1	IV	143	179	5	127985	127985	
XY-AB	v	143	179	5	127985	127985	
AI-AB	VI	143	179	5	127985	127985	20000
	VII	143	179	5	127985	127985	
	VIII	143	179	5	127985	127985	
	IX	143	179	5	127985	127985	
	Х	143	179	5	127985	127985	
	XI	143	179	5	127985	127985	
	XII	143	179	5	127985	127985	
	XIII	143	179	5	127985	127985	
	то	TAL		62	1561417	1524185	37232
	1	10	9	2	180		180
	11	10	9	5	450	450	
	III	19	11	3	627	627	
	Ш	19	28	2	1064	1064	
	IV	53	58	4	12296	12296	
WW OD	IV	116	111	1	12876	12876	
XY-CD	V	116	111	5	64380	64380	
	VI	116	111	5	64380	64380	
	VII	116	111	5	64380	64380	
	VIII	116	111	5	64380	64380	1000
	IX	116	111	5	64380	64380	
	X	116	111	5	64380	64380	
	XI	116	111	5	64380	64380	
	XII	116	111	5	64380	64380	
	XIII	116	111	5	64380	64380	
	то	TAL		62	606913	606733	180
	I	5	28	2	280		280
X1Y1-	11	6	28	2	336	336	
EF	II	27	28	3	2268	2268	
	III	37	29	5	5365	5365	

1 mg 020240

20 | Page

SUS BIS

- 181 -

Buiddhidia

	TOT	AND TO	CAT	62	486198 2654528	485918 2616836	280 37692
_	XIII	71	137	5	48635	48635	
	XII	71	137	5	48635	48635	
	XI	71	137	5	48635	48635	
	X	71	137	5	48635	48635	Taska
	IX	71	137	5	48635	48635	
	VIII	71	137	5	48635	48635	
	VII	71	137	5	48635	48635	Disesio
	VI	71	137	5	48635	4865	N
	v	71	137	5	48635	48436	10000
	IV	71	137	4	38908	38908	*****
	· IV	39	34	1	1326	B20	

(f)

Indicate mineable reserves by slice plan / level plan method, as applicable, as per the proposed mining parameters.

The total mineable reserve is estimated to be 831170m3 by deducting the reserve safety zone, block in benches from the total Geological resources up to a depth of 62m (R.L.190-128m) below ground level. Of which, rough stone is about 799894m³ and gravel is about 31276m3. The commercially viable rough stone has been prepared on 1: 2000 scale and sections are prepared in a scale of 1:1000 in horizontal axis and 1:500 as vertical axis (Refer plate no. VIA).

AR AND		I. I.	MINEAB	LE RESE	RVES		San All
Section	Bench	Length in (m)	Width in (m)	Depth in (m)	Volume in m ³	Rough Stone in m ³	Grave in m ³
	I	94 (161 <	/ 2	30268		30268
	п	124 1	157	5	97340	97340	11.11
	III	120	147	5 .	88200	88200	
	IV	121 <	137	5	82885	82885	
5	V	116 <	127	- 5	73660	73660	
WW	VI	111 ~	117	5	64935	64935	
XY- AB	VII	106 (107 (5	56710	56710	
AD	VIII	101	97	5	48985	48985	
	IX	96	87	5	41760	41760	
	х	91 /	77	5	35035	35035	1100
	XI	86 /	67	5	28810	28810	
	XII	81 <	57	5	23085	23085	
	XIII	76 -	47	5	17860	17860	
		TOTAL			689533	659265	30268
	III	7/	11 1	5	385	385	
	IV	39 /	38 -	4	5928	5928	
XY-	IV	92 /	67 .	1	6164	6164	
CD	V	92 /	62 .	5	28520	28520	*****
CD	VI	87 🗸	52	5	22620	22620	
2	VII	82 /	42	5	17220	17220	
	VIII	77	32	5	12320	12320	

5- mpspon241

21 | Page

	IX	72	22	5	7920	19920	
	Х	67	12	5	4020	4020	
		TOTAL	/	1. C.	105097	146097	0
	I	28 /	18 <	2	1008	100	1008
	II	18 /	16 /	- 5	1440	1440	Quet
	ш	14 /	12 🗸	5	840	. 840	
X1Y1- EF	IV	11 /	12 /	1	132	132	(6)6
EF	IV	32 /	115 4	4	14720	14720	
	v	22 /	110	5	12100	12100	
	VI	12	105 /	5	6300	6300	
		TOTAL			36540	35532	1008
	GR	AND TOT.	AL		831170	799894	\$127
					/	1	1

proposed method for developing / working the deposit with all design parameters. (Note: In case of pocket deposits, sequence of development/working may be indicated on the same plan) operation is open - cast, semi-mechanized method are adopted and on single shift basis only. Under the regulation 106 of the Metalliferous Mines Regulations, 1961 in all open cast workings in hard rock, the benches and sides should be properly benched and sloped. The bench height should not exceed 5m and the bench width should not less than the bench height. The slope of the benches should not exceed 45° from horizontal

b. Indicate quantum of development and tonnage and grade of production expected pit wise as in table below.

Total proposed production 831170m³. Of which, rough stone is 799894m³ and gravel is 31276m³ up to a depth of 62m below the ground level (R.L.190m-128m) for five years plan period. Average production is 159979m³ of rough stone per year (Refer Plate No. IV).

						- 185 -		ui GB + 3
Year	Pit No.(s)	Topsoil/Over burden (m ³)	ROM (m ³)	Saleable rough stone (m ³) @	100% Rough stone	rejects(m [*]) Sub grade/ Weathered rock in (m ³)	Saleable ava	Rowelli stone to topsoil ratio
First	. I		181506	15023	0		31276	
Secon	id I	3	147804	14780	4			
Thire	i I		159995	15999	5		- 109	
Fourt	h I		156505	15650	5	02222		
Fifth			185360	18536	_			
Tota	2 10		831170	79989			31276	
clas	e sections ss mines): te plans ai	10 Ch			y lease. se of 'B'	class mine	s):	
	and the second states in				to the second second			
	TRATE-	YEA	RWISE P	RODUCT	FIONS R	ESERVES		
Year	Section	YEA Bench	RWISE P Length in (m)	RODUCT Width in (m)	Depth in (m)	Volume in m ³	Rough Stone in m ³	Gravel in m ³
Year		Bench I	Length	Width in (m) 161 <	Depth	Volume		IN THE PARTICIPATION OF THE PARTY OF THE PAR
	XY-AB	Bench I II	Length in (m) 94 1⁄ 124 1⁄	Width in (m) 161 < 157 -	Depth in (m) 2 <u>(</u> 5 <u>/</u>	Volume in m ³ 30268 97340	Stone in m ³	in m ³ 30268
I-	XY-AB X1Y1-	Bench I II I	Length in (m) 94 1⁄ 124 2⁄ 28 2⁄	Width in (m) 161 < 157 - 18 7/	Depth in (m) 2 (5 / 2 /	Volume in m ³ 30268 97340 1008	Stone in m ³ 97340 	in m ³
I-	XY-AB XIY1- EF	Bench I II II	Length in (m) 94 1⁄ 124 2⁄ 28 2⁄ 18 2⁄	Width in (m) 161 < 157 - 18 % 16	Depth in (m) 2 <u>(</u> 5 <u>/</u> 2 <u>/</u> 5 <u>/</u>	Volume in m ³ 30268 97340 1008 1440	Stone in m ³ 97340 1440	in m ³ 30268
I-	XY-AB X1Y1-	Bench I II II III	Length in (m) 94 1/ 124 / 28 / 18 / 70 /	Width in (m) 161 < 157 - 18 7/	Depth in (m) 2 (5 / 2 /	Volume in m ³ 30268 97340 1008 1440 51450	Stone in m ³ 97340 1440 51450	in m ³ 30268 1008
I-	XY-AB X1Y1- EF XY-AB	Bench I II II III TO	Length in (m) 94 1/ 124 2 28 2 18 2 70 2 TAL	Width in (m) 161 < 157 - 18 7/ 16 147	Depth in (m) 2 <u>(</u> 5 <u>/</u> 2 <u>/</u> 5 <u>/</u> 5 <u>/</u>	Volume in m ³ 30268 97340 1008 1440 51450 181506	Stone in m ³ 97340 1440 51450 150230	in m ³ 30268 1008
I-	XY-AB XIY1- EF	Bench I II II III TO	Length in (m) 94 1/ 124 / 28 / 18 / 70 / FAL 50 /	Width in (m) 161 × 157 - 18 7 16 147 147	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 5 /	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750	Stone in m ³ 97340 1440 51450 150230 36750	in m ³ 30268 1008 31276
I-	XY-AB X1Y1- EF XY-AB XY-AB	Bench I II II III TO III III	Length in (m) 94 1/ 124 / 28 / 18 / 70 / TAL 50 / 7 //	Width in (m) 161 < 157 - 18 7/ 16 147 147 / 147 / 11 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 5 /	Volume in m ³ 30268 97340 1008 1440 51450 51450 181506 36750 385	Stone in m ³ 97340 1440 51450 150230 36750 385	in m ³ 30268 1008 31276
I- ÆAR	XY-AB X1Y1- EF XY-AB	Bench I II II III TO III III IV	Length in (m) 94 1/ 124 / 28 / 18 / 70 / FAL 50 / 7 // 39 //	Width in (m) 161 < 157 - 18 7 16 147 147 147 38	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 5 / 5 / 4 /	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928	Stone in m ³ 97340 1440 51450 150230 36750 385 5928	in m ³ 30268 1008 31276
I- EAR	XY-AB X1Y1- EF XY-AB XY-AB	Bench I II II III III III IV IV	Length in (m) 94 1/ 124 / 28 / 18 70 / TAL 50 / 7 // 39 / 92 /	Width in (m) 161 < 157 - 18 7/ 16 147 147 147 147 67	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 5 / 4 / 1 /	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164	in m ³ 30268 1008 31276
I- ÆAR	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1-	Bench I II II III III III IV IV IV	Length in (m) 94 1/ 124 / 28 / 18 / 70 / TAL 50 / 7 // 39 / 92 / 14 /	Width in (m) 161 < 157 - 18 7/ 16 / 147 / 11 / 38 / 67 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 5 / 4 / 1 / 5 /	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 × 840	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840	in m ³ 30268 1008 31276
I- TEAR	XY-AB X1Y1- EF XY-AB XY-AB XY-CD	Bench I II II III III III IV IV IV IV	Length in (m) 94 1/ 124 2 28 2 18 7 70 7 FAL 50 7 7 7 39 2 92 7 14 7 11 2	Width in (m) 161 < 157 - 18 7/ 16 / 147 / 147 / 147 / 147 / 147 / 147 / 147 / 147 / 147 / 11 / 38 / 67 / 12 / 12 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 5 / 4 / 1 / 5 / 1 /	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132	in m ³ 30268 1008 31276
I- TEAR	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1- EF	Bench I II II III TO III IV IV IV IV IV IV	Length in (m) 94 1/ 124 2 28 2 18 7 70 7 TAL 50 7 7 7 39 2 92 7 14 7 11 2 32 7	Width in (m) 161 < 157 - 18 7/ 16 / 147 / 115 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 5 / 1 / 5 / 1 / 4 /	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132 14720	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132 14720	in m ³ 30268 1008 31276
I- EAR	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1-	Bench I II II III III III IV IV IV IV IV IV I	Length in (m) 94 1/ 124 / 28 / 18 / 70 / FAL 50 / 7 // 39 / 92 / 14 / 11 / 32 / 121 /	Width in (m) 161 < 157 - 18 7/ 16 / 147 / 147 / 147 / 147 / 147 / 147 / 147 / 147 / 147 / 11 / 38 / 67 / 12 / 12 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 5 / 4 / 1 / 5 / 1 /	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132 14720 82885	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132 14720 82885	in m ³ 30268 1008 31276
I- TEAR	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1- EF	Bench I II II III III III IV IV IV	Length in (m) 94 1/ 124 / 28 / 18 / 70 / 71 / 39 / 92 / 14 / 11 / 32 / 121 / FAL	Width in (m) 161 × 157 - 18 7/ 16 / 147 / 115 / 137 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 5 / 5 / 4 / 1 / 5 / 1 / 5 / 2 / 5	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132 14720 82885 147804	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132 14720 82885 147804	in m ³ 30268 1008 31276 31276 0
I- EAR II- EAR III-	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1- EF XY-AB	Bench I I I I I I I I I I I I I I I I I I I	Length in (m) 94 1/ 124 2 28 2 18 7 70 7 TAL 50 7 7 7 39 2 92 7 14 7 11 2 32 7 121 7 FAL 116 2	Width in (m) 161 < 157 - 18 7/ 16 / 147 / 115 / 137 / 127 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 1 / 5 / 1 / 5 / 1 / 5 / 5 / 2 / 5 / 2 / 5 / 2 / 5 / 2 / 5 / 2 / 5 / 2 / 5 / 5 / 2 / 5	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132 14720 82885 147804 73660	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132 14720 82885 147804 73660	in m ³ 30268 1008 31276 31276 0
I- TEAR	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1- EF	Bench I I I I I I I I I I I I I I I I I I I	Length in (m) 94 1/ 124 2 28 2 18 7 70 7 FAL 50 7 7 7 39 2 92 7 14 7 11 2 32 7 121 7 FAL 121 7 FAL	Width in (m) 161 < 157 - 18 7/ 16 / 147 / 147 / 147 / 147 / 147 / 147 / 147 / 147 / 115 / 137 / 127 / 117 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 5 / 1 / 5 / 1 / 5	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935	in m ³ 30268 1008 31276 31276 0 0
I- TEAR II- TEAR III-	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1- EF XY-AB	Bench I I I I I I I I I I I I I I I I I I I	Length in (m) 94 1/ 124 2 28 2 18 7 70 7 TAL 50 7 7 7 39 2 92 7 14 7 111 2 32 7 121 7 TAL 116 2 1111 4 40 2	Width in (m) 161 < 157 - 18 7/ 16 / 147 / 115 / 137 / 127 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 1 / 5 / 1 / 5 / 1 / 5 / 5 / 2 / 5 / 2 / 5 / 2 / 5 / 2 / 5 / 2 / 5 / 2 / 5 / 5 / 2 / 5	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935 21400	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935 21400	in m ³ 30268 1008 31276 31276 31276 0 0
I- TEAR II- TEAR III-	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1- EF XY-AB XY-AB	Bench I II II III III III III IV IV IV IV V VI VII TO'	Length in (m) 94 1/ 124 2 28 2 18 7 70 7 TAL 50 7 7 7 39 2 92 7 14 7 111 2 32 7 121 7 TAL 116 2 111 4 40 7 TAL	Width in (m) 161 < 157 - 18 7/ 16 / 147 / 115 / 137 / 127 / 117 / 107 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 1 / 5	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935 21400 159995	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935 21400 159995	in m ³ 30268 1008 31276 31276 31276 0 0
I- /EAR II- /EAR III- /EAR	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1- EF XY-AB	Bench I II II III III III III IV IV IV IV V VI VII TO'	Length in (m) 94 1/ 124 2 28 2 18 7 70 7 FAL 50 7 7 7 39 2 92 7 14 7 111 2 32 7 121 7 FAL 116 2 111 4 40 7 FAL 66 7	Width in (m) 161 < 157 - 18 7 16 7 147 7 147 7 147 7 147 7 147 7 147 7 147 7 147 7 147 7 117 7 117 7 107 7 107 7	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 1 / 5 / 1 / 5	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935 21400 159995 35310	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935 21400 159995 35310	in m ³ 30268 1008 31276 31276 31276 0 0 0
I- /EAR II- /EAR III- /EAR III- /EAR	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1- EF XY-AB XY-AB	Bench I I I I I I I I I I I I I I I I I I I	Length in (m) 94ν $124 \checkmark$ $28 \checkmark$ $18 \checkmark$ $70 \checkmark$ FAL $50 \checkmark$ $7 \end{pmatrix}$ $92 \checkmark$ $14 \checkmark$ $11 \checkmark$ $32 \checkmark$ $121 \checkmark$ FAL $116 \checkmark$ $111 \checkmark$ $40 \sim$ FAL $66 \checkmark$ $92 \checkmark$	Width in (m) 161 < 157 - 18 7/ 16 / 147 / 12 / 115 / 137 / 107 / 107 / 62 /	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 1 / 5 / 1 / 5	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935 21400 159995 35310 28520	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935 21400 159995 35310 28520	in m ³ 30268 1008 31276 31276 31276 0 0 0
I- /EAR II- /EAR III- /EAR	XY-AB X1Y1- EF XY-AB XY-AB XY-CD X1Y1- EF XY-AB XY-AB	Bench I II II III III III III IV IV IV IV V VI VII TO'	Length in (m) 94 1/ 124 2 28 2 18 7 70 7 FAL 50 7 7 7 39 2 92 7 14 7 111 2 32 7 121 7 FAL 116 2 111 4 40 7 FAL 66 7	Width in (m) 161 < 157 - 18 7 16 7 147 7 147 7 147 7 147 7 147 7 147 7 147 7 147 7 147 7 117 7 117 7 107 7 107 7	Depth in (m) 2 (5 / 2 / 5 / 5 / 5 / 1 / 5 / 1 / 5	Volume in m ³ 30268 97340 1008 1440 51450 181506 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935 21400 159995 35310	Stone in m ³ 97340 1440 51450 150230 36750 385 5928 6164 840 132 14720 82885 147804 73660 64935 21400 159995 35310	in m ³ 30268 1008 31276 31276 31276 0 0 0

J. Morsey 243

ñ.

23 | Page

	EF	VI	12 /	105	X	5 /	6300	6360	
	XY-AB	VIII	71 /	97		5	34435	34415	
		тот	TAL				156505	156505	0
		VIII	30 /	97	1	5 <	14550	14550	10
	XY-AB	IX	96	/ 87	1	5	41760	41760	DRO
		X	91	/ 77		5 .	35035	35035	
V-		VIII	77 ,	32	_	5 /	12320	12320	
EAR	XY-CD	IX	72 /	22		5 (7920	7920	
		X	67	12		5 /	4020	4020	
	-	XI	86 /	67		5	28810	28810	
	XY-AB	XII	81 /	57		5	23085	23085	
		XIII	76	47	1	5 -	17860	17860	
		TOT GRAND					185360 831170	185360 799894	31276
A ++	ach suppo				1	ita ala		ared in this	
	de mineral,			luction	whee	the	nino io 6.1	h developed	and the
Ind	icate prop	osed rate	e of prod					ly developed	l and th
Ind		osed rate	e of prod					ly developed	l and th
Ind	icate prop ected life o	osed rate f the mi	e of prod ne and th	e year	from v	vhich	effected:	<i>ly developed</i> s calculated	
Ind exp	icate prop ected life o	osed rate f the mi	e of prod ne and th	e year	from v	vhich	effected:		
Ind exp	<i>icate prope</i> <i>ected life o</i> At this r low: -	osed rate f the min ate of pr	e of prod ne and th	e year	from v	vhich	effected:		
nd xp	icate propo ected life o At this r	osed rate f the min ate of pr one:	e of prod ne and th oduction,	<i>e year</i> the e	from v	vhich	effected: of quarry is		
Ind exp	<i>icate prope</i> <i>ected life o</i> At this r low: - <u>Rough ste</u> Mineable	osed rate f the min ate of pr one: reserves	e of prod ne and th oduction, of rough	e year the e	from v xpected	which life o 79989	<i>effected:</i> of quarry is 94m ³		
Ind exp	<i>icate propo</i> <i>ected life o</i> At this r low: - <u>Rough ste</u>	osed rate of the min ate of pr one: reserves oduction	e of prod ne and th oduction, of rough of rough	<i>e year</i> the e stone stone	from v xpected = =	vhich I life o	<i>effected:</i> of quarry is 94m ³ 79m ³		
Ind exp	<i>icate prope</i> <i>ected life o</i> At this r low: - <u>Rough ste</u> Mineable Yearly pro	osed rate of the min ate of pr one: reserves oduction	e of prod ne and th oduction, of rough of rough	<i>e year</i> the e stone stone	from v xpected = =	vhich life c 7998! 1599'	<i>effected:</i> of quarry is 94m ³ 79m ³		
Ind exp	<i>icate propo</i> <i>ected life o</i> At this r low: - <u>Rough sta</u> Mineable Yearly pro Monthly p	osed rate of the min ate of pr one: reserves oduction production	e of proa ne and th oduction, of rough of rough on of roug	e year the e stone stone th ston	from v xpected = =	vhich life c 7998! 1599' 1333	<i>effected:</i> of quarry is 94m ³ 79m ³		
Ind exp	<i>icate prope</i> <i>ected life o</i> At this r low: - <u>Rough ste</u> Mineable Yearly pro Monthly p	osed rate of the min ate of pr one: reserves oduction production reserves	e of prod ne and th oduction, of rough of rough on of roug	e year the e stone stone th ston	from v xpected = =	vhich 1 life o 7998 1599 1333	<i>effected:</i> of quarry is 94m ³ 79m ³ 1m ³		
Ind exp	<i>icate prope</i> <i>ected life o</i> At this r low: - <u>Rough ste</u> Mineable Yearly pro Monthly p <u>Gravel:</u> Mineable Monthly p	osed rate of the min ate of pr one: reserves oduction production reserves production	e of prod ne and th oduction, of rough of rough on of roug of gravel	e year the e stone stone th ston	from v xpected = e = =	vhich 1 life o 79989 1599 1333 312 86	<i>effected:</i> of quarry is 94m ³ 79m ³ 1m ³ 276m ³ 58m ³		as given
Ind exp be	icate prope ected life of At this re- low: - <u>Rough ste</u> Mineable Yearly pro Monthly p <u>Gravel:</u> Mineable Monthly p The regul	osed rate of the min ate of pr one: reserves oduction production reserves production reserves	e of prod ne and th oduction, of rough of rough on of roug of gravel on of grav	e year the e stone stone th ston el quarry	from v xpected = e = = v and its	vhich 1 life o 79989 1599 1333 312 312 86 s prod	effected: of quarry is 94m ³ 79m ³ 1m ³ 276m ³ 58m ³ uction dep	a calculated	as given
Ind exp be	<i>licate prope</i> <i>ected life o</i> At this re- low: - <u>Rough ste</u> Mineable Yearly pro Monthly p <u>Gravel:</u> Mineable Monthly p The regul	osed rate of the min ate of pr one: reserves oduction production reserves production reserves production reserves production ket. The	e of prod ne and th oduction, of rough of rough on of roug of gravel on of grav ng of the market i	e year the e stone stone th ston el quarry s alwa	from v xpected = = e = = v and its sys fluc	vhich 1 life o 79989 1599 1333 312 312 86 s prod tuatin	effected: of quarry is 94m ³ 79m ³ 1m ³ 276m ³ 58m ³ uction dep- g and flexi	calculated	as given e deman cordingly
Ind exp be	<i>licate prope</i> <i>ected life o</i> At this re- low: - <u>Rough ste</u> Mineable Yearly pro Monthly p <u>Gravel:</u> Mineable Monthly p The regul	osed rate of the min ate of pr one: reserves oduction production reserves production ar workin ket. The ossibility	e of prod ne and th oduction, of rough of rough on of roug of gravel on of gravel on of grav ng of the market i	e year the e stone stone th ston el quarry s alwa ease	from v xpected = = e = = v and its ys fluc or decr	vhich I life o 79989 1599 1333 312 312 86 s prod tuatin, rease	effected: of quarry is 94m ³ 79m ³ 1m ³ 276m ³ 58m ³ uction dep- g and flexi the produc	ends upon the ble one. Acception. The	as given e deman cordingly
Ind exp be: frc the pro	<i>icate prope</i> <i>ected life o</i> At this relow: - <u>Rough ste</u> Mineable Yearly pro Monthly p <u>Gravel:</u> Mineable Monthly p The regul on the mar ere is a p oduction, an <i>tach a not</i>	osed rate of the min ate of pr one: reserves oduction oroductio reserves oroductio ar workin ket. The ossibility nticipate <i>furnis</i>	e of prod ne and the oduction, of rough of rough on of rough on of gravel on of gravel on of gra	e year the e stone stone stone th ston el quarry s alwa ease uarry poncept up to t	from v xpected = = e = v and its ys fluc or decr etc., are <i>ual mi</i> <i>he life</i>	vhich I life of 79989 1599 1333 312 312 312 86 s prod tuating rease e only <i>ning J</i> of the	effected: of quarry is 94m ³ 79m ³ 1m ³ 276m ³ 276m ³ 58m ³ uction dep- g and flexi the produce a tentative plan for the mine (for	ends upon the ble one. Acc ction. The figure. <i>ae entire lea</i>	as given e deman cordingly year wis
Ind exp be frc the pr <i>At</i> (<i>fd</i> ba	<i>licate prope</i> <i>ected life o</i> At this re- low: - <u>Rough sta</u> Mineable Yearly pro Monthly p <u>Gravel:</u> Mineable Monthly p The regul on the mar ere is a p oduction, an <i>tach a not</i> or B" categ	osed rate of the min ate of pr one: reserves oduction oroduction reserves oroduction reserves oroduction reserves oroduction ar workin ket. The ossibility nuicipate <i>furnish</i> <i>cory min</i> <i>geologic</i>	e of prod ne and th oduction, of rough of rough on of roug of gravel on of grav ng of the market i v to incr d life of c hing a cu es) and i	e year the e stone stone th stone th stone quarry s alwa ease quarry poncept of to t	from v xpected = = = e = v and its ys fluc or decr etc., are <i>ual mi</i> <i>he life</i> <i>enviro</i>	vhich I life of 79989 1599 1333 312 312 80 s prod tuating rease e only ning p of the nmen	effected: of quarry is 94m ³ 79m ³ 1m ³ 276m ³ 276m ³ uction depo g and flexi the product a tentative plan for the mine (for ts consider	ends upon the ble one. Acc ction. The figure. <i>ae entire lea</i>	as given e deman cordingly year wis use perio
Ind exp be fro the pr At (fe ba Ti	icate prope ected life of At this re- low: - <u>Rough ste</u> Mineable Yearly pro Monthly p <u>Gravel:</u> Mineable Monthly p The regul on the mar ere is a p oduction, an tach a not or B" catego sed on the	osed rate of the min ate of pr one: reserves oduction oroduction reserves oroduction reserves oroduction reserves oroduction ar workin ket. The ossibility nticipate <i>fory min</i> <i>geologic</i> f comple	e of prod ne and the oduction, of rough of rough on of rough on of gravel on of gra	e year the e stone stone th stone th stone quarry a alwa ease quarry oncept of to g and ; C	from v xpected = = = e = v and its ys fluc or decr etc., are <i>ual mi</i> <i>he life</i> <i>enviro</i> Conside	which I life of 79989 1599 1333 312 80 s prod tuating rease e only <i>ning p</i> of the <i>nmeni</i> ring th	effected: of quarry is 94m ³ 79m ³ 1m ³ 276m ³ 276m ³ 28m ³ uction depo g and flexi the produce a tentative plan for the plan for the mine (for ts consider the indefinit	ends upon the ble one. Acc tion. The figure. <i>e entire lea</i> <i>"A" catego</i> <i>ations:</i>	as given e deman cordingly year wis use perio ry mine

J. Mpresony

244

7

areas to be covered in the given time frame: Well as from the actual mining practices well as from the actual mining practices are area and with the current trend of rough stone production the quarry may sustain for 5 years. Whether ultimate pit limit has been determined and demarcated on surface and geological plan:- The ultimate pit limit has been determined and demarcated in the conceptual plan ULTIMATE PIT LIMIT-(XY-AB) Bench Bench RL Period Overburden/ L W D II R.L.190-188m Gravel 94 161 2 IV R.L.178-173m Rough stone 124 157 5 Rough stone 121 137 5 Rough stone 121 137 5 Rough stone 120 147 5 VII R.L.168-163m Five years Rough stone 116 127 5 NII R.L.168-163m Five years Rough stone 116 127 5 Rough stone 106 107 5 XII R.L.133-128m Rough stone 110 97 5 XII R.L.133-128m Rough stone 110 97 5 XII R.L.133-128m Rough stone 111 117 5 Rough stone 81 57 5 XII R.L.133-128m Rough stone 81 57 5 XIII R.L.133-128m Rough stone 81 57 5 XIII R.L.133-128m Rough stone 81 57 5 XIII R.L.133-128m Rough stone 31 57 5 XIII R.L.135-148m Rough stone 91 77 3 XIII R.L.138-133m Rough stone 81 57 5 XIII R.L.138-133m Rough stone 81 57 5 XIII R.L.138-135m Rive years Rough stone 31 57 5 XIII R.L.138-135m Rive years Rough stone 31 57 5 XIII R.L.138-135m Rive years Rough stone 92 67 1 V R.L.174-173m Rough stone 92 67 1 V R.L.174-173m Five years Rough stone 12 21 5 X R.L.188-163m Rough stone 12 12 5 VII R.L.188-163m Five years Rough stone 12 12 5 VII R.L.188-163m Rough stone 12 12 15 4 VV R.L.174-173m Rough stone 12 12 15 4 VV R.L.174-173m Rough stone 12 12 15 5 VI R.L.165-163m Rough stone 12 12 10 5 VI R.L.165-163m Rough sto	de	escription	n identified poten	tial	of 6	2m below ground lo	evel (R	1.1900	n-128m)					
given time frame:well as from the actual mining protection is the area and with the current trend of rough stome production the quarry may sustain for 5 years.Whether ultimate pit limit has been determined and demarcated on surface and geological plan:-The ultimate pit limit has been determined and demarcated in the conceptual planBench Bench R.LPeriodULTIMATE PIT LIMIT-(XY-AB)Bench R.L. 190-188mGravelIII R.L.188-183mGravelIII R.L.188-163mFive yearsV R.L.173-168mPeriodVI R.L.168-163mFive yearsVI R.L.168-163mPeriodRough stone121111 R.L.188-183mRough stoneVII R.L.168-163mPeriodVIII R.L.168-163mPeriodVIII R.L.168-133mPeriodRough stone106107 5XII R.L.134-138mRough stone9177 5XIII R.L.133-128mRough stone7647 5WII R.L.168-163mVI R.L.174-178mNU R.L.174-178mNU R.L.174-178mNU R.L.174-178mNU R.L.174-178mNU R.L.174-178mPeriodOverburden/L. 174-178mNU R.L.174-177mNU R.L.174-177mNU R.L.174-177mNU R.L.174-177mNU R.L.174-177mNU R.L.174-177mNU R.L.174-177mNU R.L.174-168mFive yearsRough stone77 12Sench R.L PeriodNough stoneNU R.L.174-168m <td></td> <td>100</td> <td></td> <td></td> <td></td> <td>1223</td> <td>0.20</td> <td>11-1</td> <td>2.1</td> <td></td>		100				1223	0.20	11-1	2.1					
area and with the current trend of rough Stone production the quarry may sustain for 5 years.Whether ultimate pit limit has been determined and demarcated on surface and geological plan:-The ultimate pit limit has been determined and demarcated in the conceptual planULTIMATE PIT LIMIT-(XY-AB)BenchBench R.LPeriodOverburden/LWDIIR.L.190-188mGravel941612IVR.L.188-183mRough stone1201475IVR.L.178-173mRough stone1201475VR.L.178-168mFive yearsRough stone111117VIIR.L.168-163mFive yearsRough stone10197VIIIR.L.168-153mPeriodRough stone101975XIR.L.148-143mRough stone91775XIIR.L.133-128mRough stone86675XIIIR.L.133-128mRough stone81575XIIIR.L.133-128mRough stone7115VIIIR.L.178-174mPeriodOverburden/LWDIIIR.L.178-178mFive yearsRough stone7115VIIIR.L.178-174mRough stone7155VIIIR.L.178-168mFive yearsRough stone7115VIIIR.L.168-163mFive yearsRough stone7255 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td colspan="7"></td>														
area and with the current trend of rough Stone production the quarry may sustain for 5 years.Whether ultimate pit limit has been determined and demarcated on surface and geological plan:-The ultimate pit limit has been determined and demarcated in the conceptual planULTIMATE PIT LIMIT-(XY-AB)BenchBench R.LPeriodOverburden/LWDIIR.L.190-188mGravel941612IVR.L.188-183mRough stone1201475IVR.L.178-173mRough stone1201475VR.L.178-168mFive yearsRough stone111117VIIR.L.168-163mFive yearsRough stone10197VIIIR.L.168-153mPeriodRough stone101975XIR.L.148-143mRough stone91775XIIR.L.133-128mRough stone86675XIIIR.L.133-128mRough stone81575XIIIR.L.133-128mRough stone7115VIIIR.L.178-174mPeriodOverburden/LWDIIIR.L.178-178mFive yearsRough stone7115VIIIR.L.178-174mRough stone7155VIIIR.L.178-168mFive yearsRough stone7115VIIIR.L.168-163mFive yearsRough stone7255 </td <td>gı</td> <td>ven time</td> <td>e frame:</td> <td></td> <td>well</td> <td>as from the actual</td> <td>mining</td> <td>practic</td> <td>Cup the</td> <td>13.8 0</td>	gı	ven time	e frame:		well	as from the actual	mining	practic	Cup the	13.8 0				
Whether ultimate pit limit has been determined and demarcated on surface and geological plan:-The ultimate pit limit has been determined and demarcated in the conceptual planULTIMATE PIT LIMIT-(XY-AB)BenchBench R.LPeriodOverburden/ MineralWWDIIR.L.190-188mGravel941612IIIR.L.188-183mRough stone1201475VIR.L.178-173mRough stone1201475VR.L.173-168mFive yearsRough stone1161275VIR.L.168-163mFive yearsRough stone101975RRRough stone101975XR.L.148-138mRough stone86675XR.L.143-138mRough stone81575XIIR.L.133-128mRough stone81575XIIIR.L.133-128mRough stone76475WIIIR.L.133-178mRough stone7115IVR.L.178-174mFive yearsRough stone39384IVR.L.173-168mFive yearsRough stone92625VIIIR.L.168-163mFive yearsRough stone7115Rough stone938441001001010IIIR.L.178-174mRough stone72125VIIIR.L.168-163m <td></td> <td></td> <td></td> <td></td> <td>area</td> <td>and with the current</td> <td>nt trend</td> <td>of rou</td> <td>gh stone</td> <td>1</td>					area	and with the current	nt trend	of rou	gh stone	1				
geological plan:- The ultimate pit limit has been determined and demarcated in the conceptual plan ULTIMATE PIT LIMIT-(XY-AB) Bench Bench R.L Period Overburden/ L W D I R.L.190-188m Gravel 94 161 2 II R.L.188-183m Rough stone 124 157 5 III R.L.178-173m Rough stone 121 137 5 VI R.L.168-163m Five years Rough stone 101 97 5 VII R.L.168-153m Period Rough stone 101 97 5 XI R.L.148-143m Rough stone 91 77 5 XII R.L.138-133m Rough stone 86 67 5 XIII R.L.133-128m Rough stone 76 47 5 XIIII R.L.138-178m Rough stone 76 47 5 XIIII R.L.174-173m Rough stone 70 11 5 VI R.L.178-174m Rough stone 77					prod	uction the quarry m	ay susta	in for 5	years.					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W	/hether 1	ultimate pit limit	has b	een de	termined and dema	rcated	on surf	face and					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20													
ULTIMATE PIT LIMIT-(XY-AB) Bench Bench R.L Period Overburden/ Mineral W W D II R.L.190-188m Gravel 94 161 2 III R.L.188-183m Rough stone 124 157 5 III R.L.178-173m Rough stone 120 147 5 V R.L.178-168m Five years Rough stone 110 127 5 VI R.L.163-158m Period Rough stone 106 107 5 VIII R.L.138-133m Period Rough stone 101 97 5 XII R.L.138-133m Rough stone 86 67 5 XIII R.L.138-133m Rough stone 81 57 5 XIII R.L.138-133m Rough stone 71 5 VIII R.L.143-138m Rough stone 76 47 5 VIII R.L.178-174m Rough stone 71 5 5 <	0													
Bench Bench R.L Period Overburden/ Mineral L W D (m) I R.L.190-188m Gravel 94 161 2 III R.L.188-183m Rough stone 124 157 5 III R.L.178-173m Rough stone 120 147 5 V R.L.178-168m Period Rough stone 116 127 5 VI R.L.168-163m Period Rough stone 101 97 5 VIII R.L.153-148m Period Rough stone 101 97 5 XII R.L.133-148m Rough stone 91 77 5 XIII R.L.138-133m Rough stone 81 57 5 XIIII R.L.178-148m Rough stone 71 5 5 VIII R.L.178-174m Rough stone 71 5 5 VIII R.L.178-174m Rough stone 71 5 5 VIII <t< td=""><td>1</td><td>I ne uiti</td><td>a sheet of the second second</td><td></td><td></td><td>CONTRACTOR DE CONTRACTOR DE CONTRACTOR</td><td>in the c</td><td>concept</td><td>ual plan</td><td></td></t<>	1	I ne uiti	a sheet of the second second			CONTRACTOR DE CONTRACTOR DE CONTRACTOR	in the c	concept	ual plan					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	Rench					L	w	D					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11	Denen	bench K.L	1.01	100	Care 197 before the taxant of the taxant of	10 10	1	100 C					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		I	R.L.190-188m			a second state of the second se								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			and the second se											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			the same state of the											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			the second se					a second s						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			the second s											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		VI		Five	vears				5					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		and the local data and the	and when the second											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		VIII	R.L.158-153m			The second se	101	97	5	l –				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IX	R.L.153-148m				the second s		5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Х	R.L.148-143m				91	77	5					
XIII R.L.133-128m Rough stone 76 47 5 ULTIMATE PIT LIMIT-(XY-CD) Total 62m Bench Bench R.L Period Overburden/ Mineral L W D III R.L.183-178m Period Overburden/ Mineral L W D IV R.L.178-174m Rough stone 7 11 5 IV R.L.173-168m Five years Rough stone 39 38 4 IV R.L.168-163m Five years Rough stone 92 62 5 VII R.L.163-158m Period Rough stone 87 52 5 VIII R.L.153-148m Rough stone 72 22 5 X R.L.148-143m Rough stone 72 22 5 X R.L.148-143m Rough stone 72 22 5 X R.L.148-143m Gravel 28 18 2 III R.L.183-178m F		XI	R.L.143-138m	(+			86	67	5					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		XII	R.L.138-133m			Rough stone	81	57	5					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		XIII	R.L.133-128m			Rough stone	76	47	5					
Bench Bench R.L Period Overburden/ Mineral L W D III R.L.183-178m Rough stone 7 11 5 IV R.L.178-174m Rough stone 39 38 4 IV R.L.178-174m Rough stone 39 38 4 IV R.L.174-173m Rough stone 92 67 1 V R.L.173-168m Period Rough stone 92 62 5 VI R.L.168-163m Period Rough stone 87 52 5 VII R.L.163-158m Period Rough stone 77 32 5 VIII R.L.153-148m Rough stone 72 22 5 X R.L.148-143m Rough stone 67 12 5 ULTIMATE PIT LIMIT-(X1Y1-EF) ULTIMATE PIT LIMIT-(X1Y1-EF) W D II R.L.190-188m Gravel 28 18 2 III R.L.178-177m <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Total</td><td>62m</td><td></td></t<>								Total	62m					
III R.L.183-178m Rough stone (m) (m) IV R.L.178-174m Rough stone 39 38 4 IV R.L.178-174m Rough stone 39 38 4 IV R.L.174-173m Rough stone 92 67 1 V R.L.173-168m Five years Rough stone 92 62 5 VI R.L.168-163m Period Rough stone 82 42 5 VII R.L.153-158m Period Rough stone 77 32 5 IX R.L.153-148m Rough stone 72 22 5 X R.L.148-143m Rough stone 67 12 5 VIII R.L.188-183m Rough stone 71 12 5 V R.L.190-188m Five years Gravel 28 18 2 III R.L.183-178m Five years Rough stone 14 12 5 IV R.L.178				the second s	the second se	the second se	1 -							
III R.L.183-178m Rough stone 7 11 5 IV R.L.178-174m Rough stone 39 38 4 IV R.L.174-173m Five years Rough stone 92 67 1 V R.L.173-168m Period Rough stone 92 62 5 VI R.L.168-163m Period Rough stone 87 52 5 VII R.L.163-158m Period Rough stone 82 42 5 VIII R.L.153-148m Rough stone 72 22 5 X R.L.148-143m Rough stone 72 22 5 X R.L.148-143m Rough stone 67 12 5 ULTIMATE PIT LIMIT-(X1Y1-EF) Total 40m ULTIMATE PIT LIMIT-(X1Y1-EF) UL W D II R.L.188-183m Five years Gravel 28 18 2 III R.L.178-177m Feriod Gravel 28 18 2 Rough stone 14 12 5		Bench	Bench R.L	Per	100				1 C C C C C C C C C C C C C C C C C C C					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	III	D I 102 170m			and the second sec								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		the second se												
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			the second s	Five	vears									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			the second se			And the second sec								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			the local distance in the second distance in the second distance of			the second se	1000			ł				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$														
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		and the second se	and the second											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						p								
I R.L.190-188m Mineral (m) (m) I R.L.190-188m Gravel 28 18 2 II R.L.188-183m Five years Rough stone 18 16 5 III R.L.178-177m Five years Period Rough stone 11 12 1 IV R.L.177-173m Period Rough stone 32 115 4 V R.L.173-168m Rough stone 22 110 5	10		UL	ΓΙΜΑ΄	TE PIT	LIMIT-(X1Y1-EF)								
I R.L.190-188m Gravel 28 18 2 II R.L.188-183m Rough stone 18 16 5 III R.L.183-178m Five years Period Rough stone 14 12 5 IV R.L.178-177m Period Rough stone 11 12 1 IV R.L.177-173m Rough stone 32 115 4 V R.L.173-168m Rough stone 22 110 5		Bench		the second se	the second s	Overburden/	L	1.	D					
II R.L.188-183m Rough stone 18 16 5 III R.L.183-178m Five years Rough stone 14 12 5 IV R.L.178-177m Period Rough stone 11 12 1 IV R.L.177-173m Rough stone 32 115 4 V R.L.173-168m Rough stone 22 110 5														
III R.L.183-178m Five years Rough stone 14 12 5 IV R.L.178-177m Period Rough stone 11 12 1 IV R.L.177-173m Rough stone 32 115 4 V R.L.173-168m Rough stone 22 110 5			and the first of the data was a second or the second second second second second second second second second se			and the second design of the s	and the second second	-						
III R.L.183-178m Period Rough stone 14 12 5 IV R.L.178-177m Period Rough stone 11 12 1 IV R.L.177-173m Rough stone 32 115 4 V R.L.173-168m Rough stone 22 110 5			and the second state of the se	Five	Veare									
IV R.L.178-17/m Rough stone 11 12 1 IV R.L.177-173m Rough stone 32 115 4 V R.L.173-168m Rough stone 22 110 5														
V R.L.173-168m Rough stone 22 110 5				10	100					1				
		the second se								1				
VI R.L.168-163m Rough stone 12 105 5			and interesting the second											
Total 27m		VI	R.L.168-163m			Rough stone		-						

25 | Page

J. and som

 \odot

ii)	Whether the site for disposal	:	The recovery of rough stone in this quarry is	
)	of waste rock or an un-		100%. There is no waste rock will be proposed	
	saleable material have/ has			-0.
	been examined for adequacy		in this lease area.	A Ment.
	of land and suitability of long-			
	term use in the event of			
	continuation of mining			
	activity: -			
iv)	Whether back filling of pits	100	As the depth of persistence of the deposit may	
	after recovery of mineral up to		likely to continue for further depth, it is	
	techno-economically feasible		proposed not to backfilled the quarry pit.	
	depth envisaged. If so,			
	describe the broad features of			
	the proposal: -			
v)	Whether post mining land use	:	At the end of mining activities over the quarry	
	envisaged: -		pit may be utilized fish culture or storage of	
			rain water reservoir used for irrigation	
~	On an and Minary		purposes.	
g.	<i>Open cast Mines:</i> i). Describe briefly giving		It is an existing quarry lease. The mining	
	salient features of the mode of		operation is open-cast, semi-mechanized	
	working (Mechanized, Semi-		methods are adopted and on single shift basis	
	mechanized, manual)		only. Under the regulation 106 of the	
	moonamzea, manaary		Metalliferous Mines Regulations, 1961 in all	
			open cast workings in hard rock, the benches	
			and sides should be properly benched and	
			sloped. The bench height should not exceed	
			5m and the bench width should not less than	
			the bench height. The slope of the benches	
			should not exceed 45° from horizontal.	
			Machineries like Tractor mounted	
			compressor attached with Jack hammers is	
			proposed to drilling and blasting. Excavators	
			and tipper combination are adapted.	
-	1. Inypose	-		

 \cap

 (\mathbf{i})

13

0

 γ

.)

Ū.

 (\cdot)

193-Wie Spri The rough stone is proposed to get ry at 5m ii) Describe briefly the layout | : bench height & width conventional opencast of mine workings, the layout semi mechanized quarrying openation using of faces and sites for disposal 4.501 drilling with the help of tractor mathematical of overburden /waste, A reference to the plans enclosed compressor attached with jack hammers, nonel under 4(b) and 4(d) will blasting and waste and are removal using suffice Hydraulic excavator and loaded directly to the tippers. Bench height = 5mts. Bench width = 5mts. a. Details of There is no topsoil will be removed. topsoil/ overburden b. Rough stone waste and side The recovery of rough stone in this quarry is burden waste:-100%. Any other waste or side burden dumps are doesn't proposed. h. **Underground Mines:** Not applicable 1 i. Extent of mechanization: Describe briefly including the calculation for adequacy and type of machinery and equipment proposed to be used in different mining operations. (1) Drilling Machines: Drilling of shot holes will be carried out using tractor mounted compressor and jack hammer. Details of drilling equipment's are given below. Details of drilling equipment's are given below. Dia of Motive Туре Nos Size / Capacity Make H.P hole (mm) power Jack Hammer 5 32 mm Hand held Diesel ----Compressor 3 Air Diesel ----------(2) Loading Equipment: Size / Nos Make Motive power H.P. Type Capacity Hydraulic 2 2.9-4.5m³ Diesel -------Excavator

247 Sterr

ē.

5			port Equipment he mining lease		ld:	(* (E	
Ē	Туре	Nos	Size / Capac	ity	Make	Motive power	THP.
t	Tipper	10				Diesel	
			3			mer should be indu a small B2 category	
I)	Transport f	rom mir	he head to the	:	Tipper will	be used for transp	port rough
	destination				stone from customer.	the mine head	to needy
c.	Describe b system (plea	1112000-13 5 71	and the second		for internal		
d.	Ore transpo hired trucks		: own trucks /		Hired truck purposes.	ks for initially	production
e.	Main destin	ation to	which ore is	3	Excavated r	ough stone minera	als directly
	transported distance)	(giving	to and from	8	crusher for 1/3" and 1")	ery of rough sto	1/4", 1/2",
f.	Details of	hauling /	transport equi	pm	ent:		
	Туре	Nos	Size / Capac	city	Make	Motive power	H.P.
			77-				
De of		fly any not cov	allied operatio ered earlier.	ons	The mining	operation is open	cast, semi-
					single shift		
(B) Machinerio	es deplo	yed	:		attached with Jac d to drilling and	

		combination are adapted 4 (i))	(Refer Part-A-							
10000	FING: ad blasting parameters like charg maximum number of holes blaste	Net States of	a aspect							
firing,	etc.									
Blasti	ig pattern:		26 26 57							
1	The quarrying operation is propose		2 25 8 10							
hamm	er drilling followed by manual brea	king will be adopted to r	elease the rough							
stone and nonel blasting is proposed in this lease area.										
	Drilling and Blasting parameters	s are as follows,								
1	Diameter of the hole		32 mm							
2	Spacing between hole		1.2m							
3	Burden for hole		1.0m							
4	Depth of each hole		1.5m							
5	Output per hole = Spacing \times Burde		5.04 Ts							
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
7										
8	Total handling per day (280 worki	ng day)	1600Ts							
9	Nos. of holes per day (1600/5.04 =	= 317)	317 holes							
10	Meterage required per day (317× 5	5.5 = 1744)	1744meters							
11	Charge per hole		0.375 kg							
12	Powder factor (317holes X 0.375)	kg = 119)	119 kg							
13	Sequence of blasting = Cord relay with electric detonators / Nonel									
	Face 5 4 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6	hod of mining								

0

Πr.

.0

 \sim

)

D

U

b) Type of explosives used / to be used:

Following explosives are recommended for efficient blasting with safe practice.

-199 -

wissni a

Small dia. 25mm slurry explosives are proposed to be used for shattering and heaving effect for removal and winning of rough stone. No deep here drilling or

primary blasting is proposed.

c) Measures proposed to minimize ground vibration due to blasting:

The control blasting measures is being adopted for minimizing ground vibration and fly rock. Shallow depths jackhammer drilling and blasting is proposed to be carried out with minimum use of explosive mainly to give hearing effect in rough stone for easy excavation and to control fly rock.

Delay detonators:

Delay blasting permits to divide the shot to smaller charges, which are detonated in a predetermined millisecond sequence at specific time intervals.

The major advantages of delay blasting are:

- Reduction of ground vibration
- Reduction in air blast
- Reduction in over break
- Improved fragmentation
- Better control of fly rock

Blasting program for the production per day

100 NT R.		A 5
No of holes	•	317holes
Yield	:	1600 tons
Total explosive required	:	119kg-Slurry explosives
Charge per hole		0.375kg
Blasting at day time only		12.0p.m-1.0p.m
 d) Powder factor in ore and overburden / waste / development heading / stope 	т	Powder factor is proposed as 0.375kg per holes of explosives
e) Whether secondary blasting is needed, if so describe it briefly		: Irrespective of the method of primary blasting employed, it may be necessary to re-blast a proportion of the rock on the quarry floor so as to reduce it to a size suitable for handling by the excavators and rock breakers.
f) Storage of explosives (like capacity and type of explosive		: 1. The applicant is advised to engage an authorized explosive agency to

Confection

	magazine)	 carry out blasting 2. First Aid Box will be keeping ready at all the time. 3. Necessary precentionary announcement will be carried out before the blasting operation.
6.	MINE DRAINAGE	
	a) Likely depth of water table based . on observations from nearby wells and water bodies	The ground water table is reported as of 75m in rainy season and 80m in summer from the below ground level in the adjacent bore wells of the area.
	b) Workings expected to be . m. above / reach below water table by the year	Proposed ultimate depth of mining is 62m bgl. Now, the present Mining lease will be proposed above the water table and hence, quarrying may not affect the ground water.
	c) Quantity and quality of water likely to be encountered, the pumping arrangements and places where the mine water is finally proposed to be discharged	The ground water may not rise immediately in this type of mining. However, the rain water percolation and collection of water from the seepage will be less than 300 Lpm and it will be pumped out periodically by a stand by diesel powered Centrifugal pump motivated with 7.5 H.P. Motor. The quality of water is potable and doesn't contaminate with any hazardous things.
7. (a)	rejects likely to be generated during the	of top soil, overburden / waste and mineral
(b)	Land chosen for disposal of waste with proposed justification	: There is no waste are proposed.

			203-	See an
(c)	Attach a note indicating the manner of disposal and configuration, sequence of buildup of dumps along with the proposals for the stacking of sub-grade ore, to be indicated year wise.	•	There is no waste or any other mineral dumps are proposed. If rough stone may be unsold will be keep within the lease boundary.	
8.	USE OF MINERAL:			
(a)	Describe briefly the end-use of the mineral (sale to intermediary parties, captive consumption, export, industrial use)	:	The excavated stone materials will be supplied to the consumers like stone pillar, sized stone, etc. For instance, aggregates are mostly used for building, roads and footpaths., etc	
(b)	Indicate physical and chemical specifications stipulated by buyers		Basically, the materials produced at this quarry are rough stone and the same are used for building stone, sized stone materials only, so there are no chemical specifications are specified. Only physical specifications are involved.	
(c)	Give details in case blending of different grades of ores is being practiced or is to be practiced at the mine to meet specifications stipulated by buyers.		Not blending process is involved, after blasting the rough stone will be directly loaded to the needy customer.	
9.	OTHERS			
(a)	Describe briefly the following Site services	:	Infrastructure required for such mines like office, stores, canteen, first aid station, shelter latrine and booth rooms have been provided as per the Metalliferous Mines Regulations, 1961 as a welfare amenity for our quarry laborers.	

J- | ~ y prove 252

(-1)

11

))	Employment potential : As per Mines safety under the provisions of Metalliferous Mines Regulations,										
	1961 and under the Mines Act, 1952, whenever the workers are expressed more										
	than 10, it is preferred to have a qualified mining mate to keep all the production										
	workers directly under his control and supervision. The following man power is proposed for quarrying stone material during the										
		71 - 25 - 26									
	1996	H 9 64	A		Il be utilize for this minin						
		지 않는 것이 같은 것이 같다.	tion and t	0 0	omply the provisions of a	is per the MMR,					
	1961 n		1 * **								
	1.	Highly Skilled	Mines Mine E	_		1No. 1No.					
			Mine C	_		1No.					
			Blaster		-8	1No					
	2.	Unskilled	Musdo	or	/ Labours	25 No's					
					Total =	29 No's					
		RAL PROCESSING	The second second second	_							
)	12.1	essing / beneficiation		2	Excavated rough stone r	ninerals directly					
	and the second second	minerals mined is pla ducted on site or adj	, 영상 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전		will be used by the appl	icant in his own					
	12550	traction area, briefly			crusher for required size $\frac{1}{2}$, $\frac{3}{4}$ and $1\frac{1}{2}$						
			ocessing		inches Jelly which are mainly used in						
	/benefi	ciation. This should	•		road and building construction purpose.						
	size an	nd grade of feed mate	erial and		The recovery of roug						
	concen	to come the second second second	rketable		quarry is 100%.						
	*	t), recovery rate.	1 6	3	. 5 (K)	e					
o)	1.52	n the disposal met		£	No water will be used	•					
		s or waste from the pr			any other processing except drinking						
	plant (quantity and quality o	f tailings		water to be drawn from	public sources.					
	propos	ed to be discharged,	size and		Some stagnation of rain	water in the pit					
	capacit	ty of tailing pond, tox	ic effect		will be used for drilling	ng and spraying					
	of such	n tailings, if any, with	process		haul roads. Therefore, need for tailing						
		d to neutralize any su			dam doesn't arise. But tailing control of						
		their disposal and de			rain water flow during rainy season has						
	excess water from the tailing dam).				to be done by decanting	the SPM in a pit					
					before passing the wat	er in to natural					
					system.						
:)	A flow	v sheet or schematic	diagram	:	Not applicable.						
	of the	processing procedur	e should								
		ched.		1							

 \Box \cap \square ()15) \square \square \Box 0 < 3 \odot \odot D $\chi_{n} \chi$

 \neg

 \neg

 \sim

			201 - Buiss Bridis
(d)	Specify quantity and type of chemicals to be used in the processing plant.		
(e)	Specify quantity and type of chemicals to be stored on site / plant.	•	Not applicable
(f)	Indicate quantity (cu.m. per day) of water required for mining and processing and sources of supply of water. Disposal of water and extent of recycling.		
		/	
	J. laypoon 25	54	34 P a g e

PART - B

11.0 ENVIRONMENTAL MANAGEMENT PLAN : a) Attach a note on the statuts of Baseline information with regard to the colleging is a

Existing land use pattern indicating the area already degraded due to 11.1 quarrying /pitting, dumping, roads, processing plant, workshop, township 2 etc in a tabular form. The present land use pattern is given as below. SI. No. Present area (Hect.) Land Use 2.40.7 Area under mining 1. 2 Infrastructure Nil 0.04.0 Road 3 Nil 4 Green belt & Dump 5 Drainage & Settling Tank Nil Un-utilized area 2.38.0 6 Grand total 4.82.7 11.2 Water Regime Water table in this area is noticed at a depth of 80m in summer and 75m in rainy season from the general ground level and presently the quarrying of rough stone is proposed up to a depth of 62m bgl. Hence, it will not affect the ground water depletion of this area. It is made own borewell for providing uninterrupted supply of RO drinking water, dust suppression and green belt development. 11.3 Flora and Fauna There is no major flora observed in this 1 area and except acacia bushes, no other valuable trees are noticed in the lease area. Further, neither flora of botanical interest nor fauna of zoological interest is noticed in this area. Quality of air, ambient 11.4 Air or dust expected to be generated from 1 drilling process, hauling roads, places of noise level and water excavation etc.., will be suppressed by periodical wetting of land by water spraying. Quarrying of rough stone will be carried out by drilling and blasting by using low power explosives, and hence, noise will be very minimum. However, periodical noise level monitoring will be onpopulation 255

ILE OBIC

207-

0 *

				rried out eve arry site.	ry six mor	hs around the	Bi Si				
11.5	Climati Clima	ic conditions: te:			1	Suce april					
	The district receives the rain under the influence of both Southwest										
	and Northeast monsoons. The Northeast monsoon chiefly contributes to										
	-				17m2						
	A	nfall in the district. N									
	1.120	ic storms caused du		.	- CE	8					
	Southw	vest monsoon rainfa	all is	highly errat	ic and sum	mer rains are					
	negligi	ble. The average ann	ual ra	infall over the	e district va	ries from about	t I				
	620 mr	n to 745 mm.									
	Rainfa	11:									
		The annual rainfall	norme	1 (1970-2000) of Karur	district is 742	,				
				ana (24 9	10. 08. 185. 195.						
		Projections of rainfall			-	5 8 68					
	2040- 3	2070 (2050s) and 20	70-21	00 (2080s) wi	th reference	to the baseline	8				
	(1970-	2000) indicate a ge	eneral	decrease of	4.0%, 3.0	% and 11.0%	0				
	respectively.										
	respect	tively.									
11.6		ively. 1 Settlement:									
11.6	Humar	a Settlement: earest villages are fo	und ii				r				
11.6	Humar The ne	a Settlement: earest villages are fo	und ii	n the buffer z	one with po Distance in Kms	pulation as per Population	r				
11.6	Humar The ne 2011 c	n Settlement: earest villages are fo ensus. Village Karattan kattupudu	0	Direction North	Distance in Kms 1.61km	Population 750	r				
11.6	Humar The ne 2011 c S.N 1 2	n Settlement: earest villages are fo ensus. Village Karattan kattupudu Kolantapalaiyam	0	Direction North East	Distance in Kms 1.61km 0.68km	Population 750 1308	r				
11.6	Humar The ne 2011 c	n Settlement: earest villages are fo ensus. Village Karattan kattupudun Kolantapalaiyam Pillapalaiyam	0	Direction North East SE	Distance in Kms 1.61km 0.68km 1.3km	Population 750 1308 1450	r				
11.6	Humar The ne 2011 c S.N 1 2 3 4	n Settlement: earest villages are fo ensus. Village Karattan kattupudu Kolantapalaiyam	r	Direction North East SE West	Distance in Kms 1.61km 0.68km 1.3km 1.36km	Population 750 1308					
	Humar The ne 2011 c S.N 1 2 3 4 Public	n Settlement: earest villages are fo ensus. Village Karattan kattupudu Kolantapalaiyam Pillapalaiyam Thottipalaiyam buildings, places of	r : N	Direction North East SE West Io infrastructu	Distance in Kms 1.61km 0.68km 1.3km 1.36km re like resid	Population 750 1308 1450 2113 lential building					
	Humar The ne 2011 c S.N 1 2 3 4 Public	n Settlement: earest villages are fo ensus. Village Karattan kattupudu Kolantapalaiyam Pillapalaiyam Thottipalaiyam	r : N p	Direction North East SE West Io infrastructu laces of specia	Distance in Kms 1.61km 0.68km 1.3km 1.36km ire like resid al interest lil	Population 750 1308 1450 2113 lential building ce archeologica					
	Humar The ne 2011 c S.N 1 2 3 4 Public	n Settlement: earest villages are fo ensus. Village Karattan kattupudu Kolantapalaiyam Pillapalaiyam Thottipalaiyam buildings, places of	r : N p n	Direction North East SE West lo infrastructu laces of specia	Distance in Kms 1.61km 0.68km 1.3km 1.36km ire like resid al interest lil anctuaries	Population 750 1308 1450 2113 lential building					
11.7	Humar The ne 2011 c S.N 1 2 3 4 Public worshi	A Settlement: earest villages are for ensus. Village Karattan kattupudur Kolantapalaiyam Pillapalaiyam Thottipalaiyam buildings, places of ip and monuments	r : N p n a	Direction North East SE West lo infrastructu laces of specia nonuments, sa	Distance in Kms 1.61km 0.68km 1.3km 1.36km ire like resid al interest lil anctuaries of adius.	Population 750 1308 1450 2113 lential building ce archeologica etc., are found	5. d				
	Humar The ne 2011 c S.N 1 2 3 4 Public worshi	A Settlement: earest villages are for ensus. Village Karattan kattupudur Kolantapalaiyam Pillapalaiyam Thottipalaiyam buildings, places of ip and monuments	r : N p n a : T	Direction North East SE West lo infrastructu laces of specia nonuments, s round 10km ra he proposed	Distance in Kms 1.61km 0.68km 1.3km 1.36km are like resid al interest lil anctuaries of adius. ambient air	Population 750 1308 1450 2113 lential building ce archeologica etc., are found	l l d r				
11.7	Humar The ne 2011 c S.N 1 2 3 4 Public worshi	A Settlement: earest villages are for ensus. Village Karattan kattupudur Kolantapalaiyam Pillapalaiyam Thottipalaiyam buildings, places of ip and monuments	r : N p n a : T	Direction North East SE West lo infrastructu laces of specia nonuments, s round 10km ra he proposed	Distance in Kms 1.61km 0.68km 1.3km 1.36km are like resid al interest lil anctuaries of adius. ambient air	Population 750 1308 1450 2113 lential building ce archeologica etc., are found	l l d r				
11.7	Humar The ne 2011 c S.N 1 2 3 4 Public worshi	A Settlement: earest villages are for ensus. Village Karattan kattupudur Kolantapalaiyam Pillapalaiyam Thottipalaiyam buildings, places of ip and monuments	r : N p n a : T q	Direction North East SE West lo infrastructu laces of specia nonuments, sa round 10km ra he proposed uality ambien	Distance in Kms 1.61km 0.68km 1.3km 1.36km in 1.36km in	Population 750 1308 1450 2113 lential building ce archeologica etc., are found	d n				
11.7	Humar The ne 2011 c S.N 1 2 3 4 Public worshi	A Settlement: earest villages are for ensus. Village Karattan kattupudur Kolantapalaiyam Pillapalaiyam Thottipalaiyam buildings, places of ip and monuments	r : N P n a : T q a	Direction North East SE West lo infrastructu laces of specia nonuments, sa round 10km ra he proposed uality ambien re periodically	Distance in Kms 1.61km 0.68km 1.3km 1.36km in 1.36km in	Population 750 1308 1450 2113 lential building ce archeologica etc., are found quality, wate	s, ll d r n 6				
11.7	Humar The ne 2011 c S.N 1 2 3 4 Public worshi	A Settlement: earest villages are for ensus. Village Karattan kattupudur Kolantapalaiyam Pillapalaiyam Thottipalaiyam buildings, places of ip and monuments	r : N p n a : T q a n	Direction North East SE West lo infrastructu laces of specia nonuments, si round 10km ra he proposed uality ambien re periodically nonths once) a	Distance in Kms 1.61km 0.68km 1.3km 1.36km in 1.36km in	Population 750 1308 1450 2113 lential building ce archeologica etc., are found quality, wate et and vibration every season (s, ll d r n 6 ie				

256

J. Jan Derand

Terry			- 213 ·	i See
11.9	Does area (partly or fully) fall under notified area under Water (Prevention & Control of Pollution), Act, 1974	1.0	The proposed area not fall inner notified area under water (Prevention & Control of Pollution), Act, 1974	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

b) Attach an Environmental Impact Assessment Statement describing the impact of mining and beneficiation on environment on the following over the next five years (and upto conceptual plan period for 'A' category mines)

i) Land area indicating the area likely to be degraded due to quarrying / pitting, dumping, roads, workshop, processing plant, township etc:

Due to quarrying and exploitation of the rough stone, there will impact in the form i.e. change in the ground profile, pits, and dumps. The details of the land use pattern, during the ensuing plan period and till lease period is shown in the tabular form:

	SI. No.	Land Use	Area in use during the quarrying period (Hect)
	1.	Area under mining	3.94.5
	2	Infrastructure	0.02.0
	3	Road	0.15.0
	4	Green belt	0.60.5
	5	Drainage & Settling Tar	ık Nil
	6	Un-utilized area	0.10.7
		Grand to	otal 4.82.7
iii).	Water quality	excavation periodical v A water sat	ocess, hauling roads, places of etc, will be suppressed by vetting of land by water spraying. mple from the open/bore wells was NABL approved lab to assess
iv).	Noise levels	Quarrying o drilling an explosives, minimum. monitoring	alinity, colour, Specific gravity, etc. of rough stone will be carried out by d blasting by using low power and hence, noise will be very However, periodical noise level will be carried out every six months quarry site.
v).	Vibration level	s No deep l	ole blasting envisaged. Small dia

257

2. Where the

	shot holes are used for breaking boulders. The maximum peak particles exposity will be recoded using mini seismograph deuses as per the guidance of MoEF and EIA Notification. 2006 and also covering DGMS norms.
i). Water regime	No major water bodies like rivers, pond, lake etc., located within a radius of 500m.
vii). Socio-economics	 To provide Employment opportunities of the nearby villagers. For the cultural development of the nearby villagers.
viii). Historical monuments etc.	There are no historical monuments, etc found around 10km radius.

 \mathcal{D}

1

3

1

 $|\gamma\rangle$

 \cap

10)

0

c) Attach an Environmental Management Plan (supported by appropriate plans and sections) defining the time bound action proposed to be taken with sequence & timing in the following areas (or diagrams should be used):

i).	Temporary storage and utilization of topsoil	1.1	There is no topsoil will be removed.
ii).	Year wise proposal for reclamation of land affected by abandoned quarries and other mining activities during first five years (and upto conceptual plan period for 'A' category mines) clarifying the extent of back filling and re-contouring and / or alternative use of unfilled / partially filled excavations / road sides / slopes and mine. In case abandoned quarries/ pits are proposed to be used as reservoir, their size, water holding capacity and proposal for utilization of such water be given.		The present mining is proposed to an average depth of 62m bgl has been envisaged as workable depth for safe & economic mining during the lease period. The mined-out area will be fenced on top of working bench with S1 fencing. No immediate proposals for closure of pit as the rough stone persist still at deeper level.

J.) approximy 258

iii)	Programm	e of afforesta	ion Vaar	wise for	the initial	five when	land unto				
1)	Programme of afforestation, Yearwise for the initial five years (and upto conceptual plan period for 'A' category mines) indicating the number of										
	plants with name of species to be afforested under different areas in										
	hectares.										
	Green Belt Development:										
	Safety barrier, school and nearest panchayat roads has been identified to be utilized for Greenbelt appropriate native species of Neem, Pungan and other										
	51 25				1.50	10 0-0 X					
		ees will be plan									
	Year	Place	Area in Sq.m	No.of Plants	Rate of survival	Rate	Amount in Rs				
	First	Lease Boundary	6050	670	80%		67,000/-				
	Second	Approach road and Nearby Village Road	-	300	80%	@100 Rs Per sapling	30,000/-				
	Third	Schools		300	80%	; ;;;	30,000/-				
						Total	1,27,000/-				
	first five	ent Year wise years (and l plan period nines).	up to								
	20.000	Measures to control erosion / : sedimentation of water courses.			pplicable.	There a	re no major				
v).	sedimentat	don of water cu		dumps	are stabiliz	zed in this	quarry area.				
v). vi).		and disposal of	of water				quarry area. d it does no				
		and disposal of	of water	It will require	not be h	armful an ment befo	2/ /8				
	Treatment	and disposal o	of water	It will require into th	not be h any treati e natural co	armful an ment befo ourses.	d it does no				
vi).	Treatment from mine Measures	and disposal o	imizing	It will require into th There be ver	not be h e any treatu e natural co is no wate y pure and	armful an ment befo ourses. r to be pu portable a	d it does no re discharging mped out wil nd therefore, i				
vi).	Treatment from mine Measures	and disposal o	imizing	It will require into th There be very will	not be h e any treatu e natural co is no wate y pure and not affec	armful an ment befo ourses. r to be pu portable a t any y	d it does no re discharging mped out wil				
vi).	Treatment from mine Measures	and disposal o	imizing	It will require into th There be very will surrou pit wil	not be h e any treatu e natural co is no wate y pure and not affec nding the 1 be protec	armful an ment befo ourses. r to be pu portable a t any y quarry. Th ted with b	d it does no re discharging mped out wil nd therefore, i water regime he worked-ou arbed wire and				
vi).	Treatment from mine Measures	and disposal o	imizing	It will require into th There be very will surrou pit will the mi	not be h e any treatu e natural co is no wate y pure and not affec nding the 1 be protec	armful an ment befo ourses. r to be pu portable a t any y quarry. Th ted with b	d it does no re discharging mped out wil nd therefore, i water regime he worked-ou arbed wire and				
vi).	Treatment from mine Measures	and disposal o	imizing	It will require into th There be very will surrou pit will the mi rain w	not be h e any treati e natural co is no wate y pure and not affec nding the l be protec ned-out pit ater pit.	armful an ment befo ourses. r to be pu portable a t any y quarry. The ted with be t will be u	d it does no re discharging mped out wil nd therefore, i water regime he worked-ou				

J. Mperen 259

•

			levels which improve the mine environment.
viii).	Protective measures for ground vibrations / air blast caused by blasting,		It is a small B2 category process semi mechanized method of mining is sepical and no heavy machinery will be used. The only smooth blasting is proposed, therefore no change for ground vibration or noise from the quarry.
ix).	Measures for protecting historical monuments and for rehabilitation of human settlements likely to be disturbed due to mining activity.		No historical monuments and for rehabilitation of human settlements doesn't to be disturbed during mining activity.
x).	Socioeconomic benefits arising out of mining.	4	The nearest villages are will get employment benefits.

d). Monitoring schedules for different environmental components after the commencement of mining and other related activities. (for 'A' category mines only)

Not applicable. It is B2 category quarry

12.0 PROGRESSIVE QUARRY CLOSURE PLAN:

restoration, reclamation of already mined out area.	average depth of 62m bgl. The mined-out area will be fenced on top of working bench with S1 fencing to arrest the entry of cattle's and public in to the quarry site.
 Measures to be under taken on mine closure as per Act & Rules	 Measures will be taken as per the Acts and Rules. Green belt development at the rate of 670 trees will be proposed in the quarry area. No immediate proposals for closure of pit as the rough stone persist still at deeper level.
Mitigation measures to be undertaken for safety and restoration/ reclamation of the already mined out area	: The quarry lease is an existing mining lease. No mitigation measures adopted.

.4	Mine closure activity	8	The present mining plan s proposed to depth
			of 62m bgl has been enwisaged as workable
			depth for safe & economic anning during the
			lease period. The mined-out and will be
			fenced on top of open cast working with SI
			fencing. No immediate proposals for closure
			of pit as the rough stone persist still at deeper level.
2.5	Safety and security	1	Safety measures implement to the prevent
			access to surface opening excavations will be
			taken as Metalliferous mine regulations, 1961,
			it is a small open cast mining method adopted.
			Safety provisions like helmet, goggles, safety
			shoes, Dust mask, Ear muffs etc have to be
			provided as per the circulars and amendments
		1	made for Mine labours under the guidance of
16	Director and Did.		DGMS being a mechanized operation.
2.6	Disaster management and Risk	1	Open cast semi mechanized method of mining is adopted in this quarry. If the benches are
	Assessment		made with proposed height and with no risk
			will be there. Even then if any minor or major
			accident happens the quarry staffs having
			First aid facilities with first aid box with all
		1	necessary medicine and stretches etc., to give
			first aid treatment at the site and will arrange
			immediately the vehicle to reach nearest
			hospital, if any disaster happens the lessee is
			capable to meet such eventualities. At the
	8		time of any accident during mining activity,
			proposal of first aid facility at quarry and one
0.5			vehicle always ready at quarry site.
2.7	Care and maintenance during	0.0	
	temporary discontinuance		the main entrance of the working place. One

J- Jonggern 261

5

 $\overline{\gamma}$

 \square

		oft	urity purposes also look after the survival
	percussions of : uarry and man uments	cor	ring the five years mining period the ployment potential will be generated, and heral financial status and socio-economic nditions of approx. 29 labors will be proved.
2.9 Reclamation Rehabilitation	and	imp any be rec ent wil	nd degradation is one of the major adverse pacts of open-cast mining activities and v effort to control adverse impacts would incomplete without appropriate land lamation strategy. After the exhaustion of ire mineable rough stone, mined out pit Il be converted in fish culture or storage of n water reservoir purposes.

12.9 Proposed Financial Estimate / Budget for (EMP) Environment Management:

Ł	Fixed Asset Cost:							
	1. Land Cost	*	Rs. 30,00,000/-					
	2. Labour Shed		Rs. 1,50,000/-					
	3. Sanitary Facility	:	Rs. 1,50,000/-					
	4. Fencing	\$	Rs. 2,60,000/-					
	5. Other expenses (Security guard, dust bin, etc)	1	Rs. 3,00,000/-					
	Total	:	Rs. 38,60,000/-					
B	B. Machinery cost	i.	Rs. 30,00,000/- (Hire Basis)					
C	Total Expenditure of EMP cost (for five	year	s)					
	1. Drinking Water Facility	:	Rs. 2,50,000/-					

in the main

203-

J. Jundolston 262

			A BUREDIG	100
	2. Sanitary facility & Maintenance	:	Rs. 1,00,000/-	100
	3. Permanent water sprinkler	:	Rs. 3,00,000/-	
	4. Afforestation and its maintenance		Rs. 1,27,000/-	Nov.
	5. Safety Kits		Rs. 1,00,000/-	
	6. Provision of tyre washing facility	£	Rs. 1,50,000/-	
	7. Blasting materials with blast mat cost	:	Rs. 30,00,000/-	
	8. Environment monitoring		Rs. 5,00,000/-	
	Total		Rs. 45,27,000/-	
)	Total Project Cost (A+B+C)	ŝ	Rs. 1,13,87,000/-	
			· · · · · · · · · · · · · · · · · · ·	

125-

13.0 FINANCIAL ASSURANCE:

Not applicable, it is a small B2 rough stone and gravel quarry.

14.0 CERTIFICATES:

All required certificates are enclosed.

15.0 PLAN AND SECTIONS, ETC:

J- approvy

Plan and Sections are submitted along with mining plan.

16.0 ANY OTHER DETAILS INTEND TO FURNISH BY THE APPLICANT:

- Care and precautionary measures will be taken for the safety of workers as per Rules and Acts.
- (ii) The applicant will endeavor every attempt to quarry the rough stone economically without any wastage and to improve the environment and ecology.
- (iii)The mining plan is prepared by incorporating the conditions stipulated in the precise area communication issued by the Deputy Director of Geology and Mining, Karur vide letter Rc.No.300/Mines/2022 Dated: 14.02.2023.
- (iv)Total proposed production of 831170m³. Of which, rough stone is about 799894m³ and gravel is about 31276m³ up to a depth of 62m below the ground level (R.L.190m-128m) for five years plan period. Average production is 159979m³ of rough stone per year.

17.0 CSR Expenditure:

CSR (Corporate Social responsibility) shall provide by the applicant @ 2.0% of average net profit of the company for the last three financial years to the nearby village on the Ministry has notified the amendments in section 135 of the Act as well in the CSR Rules on 22nd January 2021 as circular no. CSR-05/01/2021-CSR-MCA dated 25th August 2021.

Place: Dharmapuri, TN

Date: 18/02/2023

A.Aminno.

- 227.

uis Ohr a

Signature of the Recognized Qualified Person A.ALLIMUTHU, M.Sc., M.Phil., Recognized Qualified Person RQP/DMG/HYD/85/2022

Letter No: 200 mines 2022

Dated: 01/03/2023

This Mining Plan is approved basedon Incorporation of the particulars specified in clause 7 (iv) of the Commissioner of Geology and Mining Chennai Lr No 3868 / LC / 2012 dt 19-11-2012 and Draft Minor Mineral Conservation & Development Rules 2010 Indicated in the Mining Plan approval

264

Deputy Director of Geology and Mining Karur District

\$ 2023

1. Wille

ந.க.எண். 300/கனிமம்/2022

2291-மாவட்ட ஆட்சியர் ஆன்னலகம், புவியியல் மற்றும் சுரங்கத்துறை

j5ren.14.02.2023.

குறிப்பாணை

பொருள்:

3%

ηl,

C.15

கனிமங்களும் குவாரிகளும் – கரூர் மாவட்டம் – புகளூர் வட்டம் - அஞ்சூர் கிராமம் - பட்டா பல எண்கள்.764/3 (1.14.00 ஹெக்டோ), 765/3(0.48.0 ஹெக்டோ), 766/1 (1.34.50)ஹெக்டோ), 766/2(1.14.00 ஹெக்டோ), 766/3A(0.47.35 ஹெக்டோ),767/1 (0.11.50 ஹெக்டோ) மற்றும் 767/2A(0.13.35 ஹெக்டோ்) ஆகியவற்றின் மொத்தம் 4.82.70 ஹெக்டோ் பரப்பில் - சாதாரணகல் மற்றும் குத்தகை கிராவல் குவாரி உரிமம் Calmile திரு.சா.குப்புசாமி என்பவர் விண்ணப்பம் செய்தது - உரிமம் வழங்க பரிந்துரை செய்யப்பட்டது - தகுதியான நிலப்பரப்பாக கருதி ஏற்பளிக்கப்பட்ட சுரங்க திட்டம் மற்றும் சுற்றுச்சூழல் தாக்க மதிப்பீட்டு ஆணைய இசைவினை பெற்று சமர்பிக்கக் கோருதல் - தொடர்பாக.

பார்வை:

 திரு.சா.குப்புசாமி, த/பெ.சாமியப்பகவுண்டர், கதவு எண்.95, சாலியங்காட்டுபள்ளம், தொட்டிபாளையம், முத்தூர், காங்கேயம் வட்டம், திருப்பூர் மாவட்டம் என்பவரின் விண்ணப்ப நாள்: 28.06.2022.

 வருவாய் கோட்டாட்சியர், கரூர் அவர்களின் கடிதம் ந.க.எண். அ1/4146/2022, நாள்:08.02.2023

 உதவி புவியியலாளர், புவியியல் மற்றும் சுரங்கத்துறை, கரூர் என்பவரது புலத்தணிக்கை அறிக்கை நாள்:10.02.2023

 அரசாணை (பல்வகை) எண். 169, தொழில் (எம்எம்.சி-1) துறை நாள்: 04.08.2020 இணைத்து வரப்பெற்றுள்ளது. (தமிழ்நாடு அரசிதழ் சிறப்பு வெளியீடு எண். 315 நாள்: 04.08.2020).

களூர் மாவட்டம், புகளூர் வட்டம், அஞ்சூர் கிராமம். பட்டா புல எண்கள்.764/3 (1.14.00 ஹெக்டேர்), 765/3(0.48.0 ஹெக்டேர்), 766/1 (1.34.50 ஹெக்டோ), 766/2(1.14.00 ஹெக்டோ), 766/3A(0.47.35 ஹெக்டோ),767/1 (0.11.50 ஹெக்டேர்) மற்றும் 767/2A(0.13.35 ஹெக்டேர்) ஆகியவற்றின் மொத்தம் 4.82.70 ஹெக்டோ் பரப்பு நிலத்திலிருந்து ஐந்து ஆண்டுகளுக்கு சாதாரண கற்கள் மற்றும் கிராவல் வெட்டியெடுக்க திருப்பூர் மாவட்டம், காங்கேயம் வட்டம், சாலியங்காட்டுபள்ளம், கதவு எண்.95 என்ற முகவரியில் உள்ள திரு.சா.குப்புசாமி என்பவர் பார்வை 1-இல் கண்டுள்ளவாறு விண்ணப்பய் செய்துள்ளார்.

.) on botan 265

மேற்படி விண்ணப்பம் தொடர்பாக, வருவாய் கோட்டாட்சியர், கரூர் மன்று உதவி புவியியலாளர், புவியியல் மற்றும் சுரங்கத்துறை, கரூர் ஆகியோ புலத்தணிக்கை மேற்கொண்டு கரூர் மாவட்டம், புகளூர் வட்டம், அஞ்சூர் கிராமம், பட்டா புல எண்கள்.764/3 (1.14.00 ஹெக்டேர்), 765/3(0.48.0 ஹெக்டேர்), 766/1 (1.34.50 ஹெக்டேர்), 766/2(1.14.00 ஹெக்டேர்), 766/3A(0.47.35 ஹெக்டேர்), 767/1 (0.11.50 ஹெக்டேர்) மற்றும் 767/2A(0.13.35 ஹெக்டேர்) ஆகியவற்றின் மொத்தம் 4.82.70 ஹெக்டேர்ல் பரப்பில் தமிழ்நாடு சிறு கனிமச்சலுகை விதிகளில் விதி எண்கள்.19-(1) 20 மற்றும் 22-இன் கீழ் திரு.சா.குப்புசாமி என்பவர் ஐந்து ஆண்டுகளுக்கு சாதாரணக்கல் மற்றும் கிராவல் குவாரி உரிமம் வழங்க கீழ்கண்ட நிபந்தனைகளுக்குட்பட்டு அனுமதி வழங்கலாம் என பார்வை 2 மற்றும் 3-இல் கண்டுள்ளவாறு பரிந்துரை செய்துள்ளனர்.

SWADBI .

231-

- விண்ணப்ப புல எண்.766/1, 766/2 மற்றும் 766/3A -க்கு மேற்கு மற்றும் தென்மேற்கில் உள்ள புல எண்கள். 756 மற்றும் 757-இல் தென்வடலாக செல்லும் வண்டிப்பாதை புறம்போக்கிற்கு 10 மீட்டர் பாதுகாப்பு இடைவெளி விட்டு யாதொரு சேதமுமின்றி முறையாக குவாரிப்பணி செய்ய வேண்டும்.
- விண்ணப்ப புல எண்.764/3-க்கு கிழக்கில் புல எண். 764/4-இல் தென்வடலாக செல்லும் பட்டா மண் பாதைக்கு 10 மீட்டர் பாதுகாப்பு இடைவெளி விட்டு யாதொரு சேதமுமின்றி முறையாக குவாரிப்பணி செய்ய வேண்டும்.
- விண்ணப்ப புலத்திற்கு அருகில் உள்ள பட்டா நிலங்களுக்கு 7.5 மீட்டர் மற்றும் புறம்போக்கு நிலத்திற்கு 10 மீட்டர் பாதுகாப்பு இடைவெளி விட்டு யாதொரு சேதமுமின்றி முறையாக குவாரிப்பணி செய்ய வேண்டும்.
- 4. குத்தகைக்காலத்தில் கைத்துளைப்பான் கருவி கொண்டு பாறைகளை துளையிட்டும், மிதமான வெடிபொருள் பயன்படுத்தியும், பொதுமக்களுக்கோ, பொது சொத்துக்களுக்கோ யாதொரு சேதமுமின்றி விதிமுறைகளின்படி குவாரிப்பணி செய்ய வேண்டும்.
- 5. குவாரித் தொழிலாளர்களின் பாதுகாப்பினை உறுதி செய்ய Mettaliferrous Mines, விதிகளின்படி அகலமானதும், பாதுகாப்பானதுமான Benches அமைத்து பாதுகாப்பான முறையில் குவாரிக்குள் வாகனங்கள் சென்றுவரவும் மற்றும் குவாரி தொழிலாளர்களின் பாதுகாப்பினை உறுதி செய்தும் குவாரிப்பணி செய்ய வேண்டும்.
- 6. குவாரி குத்தகை வழங்க ஏதுவாக துணை இயக்குநர் (சுரங்கம்) அவர்களால் ஏற்பளிக்கப்பட்ட சுரங்கத்திட்டத்தினையும், மாநில அளவிலான சுற்றுச்சூழல் தாக்க மதிப்பீட்டு ஆணையத்தின் (SEIAA) இசைவினை பெற்று மாவட்ட நிர்வாகத்திற்கு விண்ணப்பதாரர் நிறுவனத்தினரால் சமர்ப்பிக்கப்பட வேண்டும்.

எனவே, வருவாய் கோட்டாட்சியர், கரூர் மற்றும் உதவி புவியியலாளர், புவியியல் மற்றும் சுரங்கத்துறை, கரூர் ஆகியோரின் பரிந்துரைகள் மற்றும் நிபந்தனைகளின் அடிப்படையில் கரூர் மாவட்டம், புகளூர் வட்டம், அஞ்சூர் கிராமம், பட்டா புல எண்கள்.764/3 (1.14.00 ஹெக்டேர்), 765/3(0.48.0

266

ஹெக்டேர்), 766/1 (1.34.50 ஹெக்டேர்), 766/2(1.14.00 கொக்டேர்) 766/3A(0.47.35 ஹெக்டேர்),767/1 (0.11.50 ஹெக்டேர்) 767/2A(0.13.35 ஹெக்டேர்) ஆகியவற்றின் மொத்தம் 4.82.70 ஹெக்டேர் பரப்பில் 1959-ஆம் வருட தமிழ்நாடு சிறுகனிம விதிகள், விதி எண். 19(1), 20 மற்றும் 22-இன்படியும் மேலும் மேற்கண்ட நிபந்தனைகளுக்கும் உட்பட்டு 5 (ஐந்து) சாதாரணக்கற்கள் மற்றும் கிராவல் குவாரி உரிமம் திரு.சா.குப்புசாமி என்பவருக்கு அரிதியிட்ட (Precise area) நிலப்பரப்பாக கருதப்படுகிறது.

- 233 .

அதற்கிணங்க, தமிழ்நாடு சிறு கனிம சலுகை விதிகள்-1959 விதி எண்.41-இன்படி குவாரிப்பணி மேற்கொள்வது தொடர்பாக வரைவு சுரங்க திட்டத்தினை 90 தினங்களுக்குள் சமர்ப்பிக்குமாறு திரு.சா.குப்புசாமி என்பவர் கேட்டுக்கொள்ளப்படுகின்றார். மேலும் ஏற்பளிக்கப்பட்ட சுரங்கத்திட்டத்தின் தொடர்ச்சியாக 1959-ஆம் வருடத்திய தமிழ்நாடு சிறுகனிம சலுகை விதிகள், விதி எண்.42-இன்படி சுற்றுச்சூழல் தாக்க மதிப்பீட்டு ஆணையத்தின் இசைவினைப் பெற்று சமர்பிக்கும் பட்சத்தில் மட்டுமே குவாரி உரிமம் வழங்கப்படும் என இதன் மூலம் தெரிவிக்கப்படுகிறது.

2)11/223

WAGBA

c

துணை இயக்குநர், புவியியல் மற்றும் சுரங்கத்துறை, கரூர்.

பெறுநர்

r. .

ים יב ובייבו מיימי מיימי מיימי מיימי מיימי מיימי מיימי

திரு.சா.குப்புசாயி, த/பெ.சாமியப்பகவுண்டர், கதவு எண்.95, சாலியங்காட்டுபள்ளம், தொட்டிபாளையம், முத்தூர், காங்கேயம் வட்டம், திருப்பூர் மாவட்டம். நகல்:- G14/02/2023

 மாநில சுற்றுச்சூழல் தாக்க மதிப்பீட்டு ஆணையம், சென்னை. ஆணையர், புவியியல் மற்றும் சுரங்கத்துறை, கிண்டி, சென்னை.

Dr. H. Walleshappa, I.F.S Member Secretary

STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY 3rd Floor, Panagal Maaligai, No.1 Jeenis Road, Saidapet, Chennai-15 Phone No.044-24359973

235.

ENVIRONMENTAL CLEARANCE

Lr. No.SEIAA-TN/F.No.1426/1(a)/ EC.No: 3848/2015 dated: 30.05.2017

To

Thiru S. Kuppusamy Saliyangattupalam Odaiyam Village, Kangeyam Taluk Tiruppur District - 638 105

Sir,

- Sub: SEIAA-TN Proposed Rough, Stone quarry located at S.F.No 759/5, 764/3, 765/3, 766/1(P), 766/2 & 767/1, Anjur Village, Aravakurichi Taluk, Karur District- issue of Environmental Clearance – Reg.
- Ref: 1. Your Application for Environmental Clearance dt: 14.06.2013
 - 2. Minutes of the 71th SEAC held on 29,12,2015,30.12.2015 & 31.12.2015
 - 3. Minutes of the SEIAA meeting held on 30:05.2017

Details of Minor Mineral Activity:-

This has reference to your application first cited. The proposal is for obtaining environmental clearance for mining/quarrying of minor minerals based on the particulars furnished in your application as shown below.

1	Name of Project Proponent and address	Thiru S. Kuppusamy Odaiyam Village, Kangeyam Taluk Tiruppur District - 638 105
2	Location of the Proposed Activity	
	Survey Number	759/5,764/3,765/3, 766/1(P),766/2 & 767/1
	Latitude and Longitude	11º03'12.12" N to 11º03'3.33" N 77º46'46.82" E to 77º47'0.41"E
	Village	Anjur
	Taluk	Aravakurichi
	District	Karur

1

268

MEMBER SECRETARY SEIAA-TN

1.8

6 Utilities 11 Employees 6 Utilities 11 Employees 6 Utilities water vendors/Existing bore hole 11 Quantity of Water Requirement in KLD: water vendors/Existing bore hole 11 Quantity of Water Requirement in KLD: 0.1KLD 11 Power Requirement: 0.9KLD 11 Project Cost TNEB 11 Rs.28.92 Lakhs Rs.4.05 Lakhs 11 Public Consultation:- Not required as per O.M. dated 24.12.2013 12 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 12 Agenda No: 10	3	Proposed Activity	E wie office
ii. Mining Lease Area 4.92.5 Ha iii. Approved quantity 452.0 cu.m of Rough Wrether Approved Quantity iv. Depth of Mining 16 m v. Type of mining Opencast Semi Mechanised Mining vi. Category(B1/B2) B2 vii. Precise area communication Na.Ka.No.173/Kanimam/2012 Dated:10.04.2013 Assistant Director ix. Mining lease period S Years Viii. Mining lease period S Years Motattracted. Affidavit furnished as amended:- S Man Power requirement per day: 11 Employees I Source of Water : water vendors/Existing bore hole ii. Quantity of Water Requirement in KLD: - a. Domestic 0.1KLD b. Industrial - c. Green Belt & Dust Suppression - j. Power Requirement: - a. Domestic 0.9KLD iii. Public Cost Rs.28.92 Lakhs ii. Project Cost Rs.28.92 Lakhs ii. FMP Cost			
iii. Approved quantity 4.92.5 Ha iii. Approved quantity 45200 cu.m of Rough Vire iv. Depth of Mining 16 m v. Type of mining Opencast Semi Mechanised Mining vi. Category(B1/B2) B2 vii. Precise area communication Na.Ka.No.173/Kanimam/2012 Dated:10.04.2013 Dated:10.04.2013 viii. Mining plan approval Assistant Director ix. Mining lease period S (ears) Veris Mining lease period S (ears) 4 Whether Project area attracts any General conditions specified in the EIA notification, 2006 Not attracted. Affidavit furnished as amended:- 5 Man Power requirement per day: 11 Employees 5 Man Power requirement per day: 11 Employees 6 Utilities 0.1KLD . a. Domestic 0.1KLD . b. Industrial J. 0.9KLD iii. Power Requirement: a. Domestic Purpose TNEB cost i. Project Cost Rs.28.92 Lakhs ii. <t< td=""><td></td><td></td><td>Rough Stone</td></t<>			Rough Stone
iii. Approved quantity 45200 cu.m of Rough three iv. Depth of Mining 16 m v. Type of mining Opencast Semi Mechanised Mining vii. Precise area communication Na.Ka.No.173/Kanimam/2012 viii. Mining plan approval Assistant Director ix. Mining lease period S Years voiii. Mining lease period S Years 4 Whether Project area attracts any General onditions specified in the EIA notification, 2006 as amended:- 5 Man Power requirement per day: 11 Employees 6 Utilities i. Source of Water : water vendors/Existing bore hole ii. Quantity of Water Requirement in KLD: a. Domestic 0.1KLD b. Industrial c. Green Belt & Dust Suppression j.o.gKLD Domestic Purpose TNEB cost i. Project Cost Rs.28.92 Lakhs ii. EMP Cost Rs.4.05 Lakhs Public Consultation:-	-	B couse Area	10050
vi. Category(B1/B2) B2 vii. Precise area communication Na.Ka.No.173/Kanimam/2012 viii. Mining plan approval Assistant Director ix. Mining lease period 5 Years 4 Whether Project area attracts any General conditions specified in the EIA notification, 2006 Not attracted. Affidavit furnished 5 Man Power requirement per day: 11 Employees 6 Utilities It is source of Water : water vendors/Existing bore hole ii. Quantity of Water Requirement in KLD: 0.1KLD a. Domestic 0.1KLD b. Industrial J.0.9KLD iii. Power Requirement: a. a. Domestic Purpose TNEB b. Industrial Purpose TNEB Cost Rs.4.05 Lakhs ii. EMP Cost Rs.4.05 Lakhs public consultation:- Not required as per O.M. dated 24.12.2015 of MEF, Gol. 29.12.2015.30.12.2015 & 31.12.2015 Date of Appraisal by SEAC:- 29.12.2015.30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental c		pproved quality	45200 cum of Pourthe
vi. Category(B1/B2) B2 vii. Precise area communication Na.Ka.No.173/Kanimam/2012 viii. Mining plan approval Assistant Director ix. Mining lease period 5 Years 4 Whether Project area attracts any General conditions specified in the EIA notification, 2006 Not attracted. Affidavit furnished 5 Man Power requirement per day: 11 Employees 6 Utilities It is source of Water : water vendors/Existing bore hole ii. Quantity of Water Requirement in KLD: 0.1KLD a. Domestic 0.1KLD b. Industrial J.0.9KLD iii. Power Requirement: a. a. Domestic Purpose TNEB b. Industrial Purpose TNEB Cost Rs.4.05 Lakhs ii. EMP Cost Rs.4.05 Lakhs public consultation:- Not required as per O.M. dated 24.12.2015 of MEF, Gol. 29.12.2015.30.12.2015 & 31.12.2015 Date of Appraisal by SEAC:- 29.12.2015.30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental c	-		16 m
vii. Precise area communication Na.Ka.No.173/Kanimam/2012 viii. Mining plan approval Assistant Director ix. Mining lease period S Years 4 Whether Project area attracts any General conditions specified in the EIA notification, 2006 Not attracted. Affidavit furnished 5 Man Power requirement per day: 11 Employees 6 Utilities Not attracted. Affidavit furnished 7 ix. Quantity of Water Requirement in KLD: a. Domestic 0.1KLD b. Industrial 0.9KLD iii. Power Requirement: a. a. Domestic 0.1KLD b. Industrial 0.9KLD iii. Power Requirement: a. a. Domestic Purpose TNEB Cost i. Froject Cost Rs.28.92 Lakhs ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2013 of MAEF, Gol. 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 29.12.2015,30.12.2015 & 31.12.2015 Date of Review/Discussion by SEIAA and the Remarks:-			Opencast Sami Mashari Lur
Vii. Precise area communication Na.Ka.No.173/Kanimam/2012 Dated:10.04.2013 Viii. Mining plan approval Assistant Director RC.No.173/Kanimam/2012 Dated:02.05.2013 ix. Mining lease period 5 Years 4 Whether Project area attracts any General conditions specified in the EIA notification, 2006 Not attracted. Affidavit furnished 5 Man Power requirement per day: 11 Employees 6 Utilities 0.1KLD ii. Quantity of Water Requirement in KLD: 0.1KLD a. Domestic 0.1KLD b. Industrial 0.9KLD iii. Power Requirement: a. Domestic Purpose b. TNEB cost Rs.28.92 Lakhs Rs.4.05 Lakhs ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2015 of MCEF, Gol. Date of Appraisal by SEAC:- 29.12.2015.30.12.2015 & 31.12.2015 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006			B2
viii. Mining plan approval Dated:10.04.2013 ix. Mining lease period Assistant Director ix. Mining lease period 5 Years 4 Whether Project area attracts any General conditions specified in the EIA notification, 2006 Not attracted. Affidavit furnished 5 Man Power requirement per day: 11 Employees 6 Utilities 11 Employees 6 Utilities 0.1KLD i. Source of Water : water vendors/Existing bore hole ii. Quantity of Water Requirement in KLD: 0.1KLD a. Domestic 0.1KLD b. Industrial J. c. Green Belt & Dust Suppression 0.90,9KLD iii. Power Requirement: a. Domestic Purpose TNEB b. Industrial Purpose TNEB cost Rs.28.92 Lakhs St.4.05 Lakhs ii. Project Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2015 of MAEF, Gol. 29.12.2015,30.12.2015 & 31.12.2015 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015		vii. Precise area communication	
Nm. Mining plan approval Assistant Director Rc.No.173Mines/2012 Dated:02.05.2013 ix. Mining lease period 5 Years Whether Project area attracts any General conditions specified in the EIA notification, 2006 Not attracted. Affidavit furnished 5 Man Power requirement per day: 11 Employees 6 Utilities 11 Employees 6 Utilities 0.1KLD a. Domestic 0.1KLD b. Industrial 0.9KLD ii. Power Requirement: a. 0.9KLD iii. Power Requirement: a. 0.9KLD iii. Power Requirement: a. 0.9KLD iii. Project Cost ii. Rs.28.92 Lakhs iii. EMP Cost Rs.28.92 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2015 Date of Appraisal by SEAC:- Agenda No: 29.12.2015,30.12.2015 & 31.12.2015 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validitty:<			Dated:10.04.2012
ix. Mining lease period Rc.No.173Mines/2012 Dated:02.05.2013 4 Whether Project area attracts any General conditions specified in the EIA notification, 2006 as amended:- Not attracted. Affidavit furnished 5 Man Power requirement per day: 11 Employees 6 Utilities		viii. Mining plan approval	
4 Whether Project area attracts any General conditions specified in the EIA notification, 2006 Not attracted. Affidavit furnished 5 Man Power requirement per day: 11 Employees 5 Man Power requirement per day: 11 Employees 6 Utilities 11 Employees 6 Utilities 0.1KLD 16 Quantity of Water Requirement in KLD: 0.1KLD 17 a. Domestic 0.1KLD 18 Power Requirement: 0.1KLD 19 c. Green Belt & Dust Suppression 0.9KLD 11 Power Requirement: a. Domestic Purpose 19 b. Industrial Purpose TNEB Cost i. Project Cost Rs.28.92 Lakhs ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2015 Of MoEF, Gol. 29.12.2015,30.12.2015 & 31.12.2015 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the s			
Whether Project area attracts any General conditions specified in the EIA notification, 2006 as amended:- Not attracted. Affidavit furnished 5 Man Power requirement per day: 11 Employees 6 Utilities 11 Employees 7 Water vendors/Existing bore hole 8 Utilities 0.1KLD 9 I. Quantity of Water Requirement in KLD: 0.1KLD 9 I. Quantity of Water Requirement in KLD: 0.1KLD 9 I. Obmestic 0.1KLD 9 I. Mustrial 0.9KLD 111 Power Requirement: 0.9KLD 112 Power Requirement: 0.9KLD 113 Power Requirement: 0.9KLD 114 Power Requirement: 0.9KLD 115 Project Cost Rs.28.92 Lakhs 116 EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2015 116 Gott 29.12.2015,30.12.2015 & 31.12.2015 117-01 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 115 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th	0.21	ix. Mining lease period	5 Venrs
Control of the end of th	4	Whether Project area attracts any General	
Image: Source of Water requirement per day: 11 Employees i. Source of Water : water vendors/Existing bore hole ii. Quantity of Water Requirement in KLD: 0.1KLD a. Domestic 0.1KLD b. Industrial 0.9KLD iii. Power Requirement: 0.9KLD iii. Power Requirement: 0.1KLD a. Domestic Purpose TNEB Cost Industrial Purpose TNEB Cost Rs.28.92 Lakhs ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2015 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the produc		as amended:-	Not attracted. Affidavit furnished
6 Utilities i. Source of Water : water vendors/Existing bore hole ii. Quantity of Water Requirement in KLD: 0.1KLD a. Domestic 0.1KLD b. Industrial 0.9KLD iii. Power Requirement: 0.9KLD iii. Power Requirement: 0.9KLD iii. Power Requirement: TNEB cost i. Project Cost ii. EMP Cost Rs.28.92 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2013 of MoEF, Gol. 29.12.2015,30.12.2015 & 31.12.2015 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 29.12.2015,30.12.2015 & 31.12.2015 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production environmental Clearance is granted to Mining of Rough Stone for the production environment	5	Man Power requirement per day:	11 Feedback
i. Source of Water : water vendors/Existing bore hole ii. Quantity of Water Requirement in KLD: 0.1KLD a. Domestic 0.1KLD b. Industrial . c. Green Belt & Dust Suppression J. iii. Power Requirement: . a. Domestic Purpose TNEB cost I. Rs.28.92 Lakhs ii. Project Cost Rs.24.05 Lakhs ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2013 of MoEF, Gol. Date of Appraisal by SEAC:- 29.12.2015, 30.12.2015 & 31.12.2015 / 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production environment impact Assessment Notification, 2006 as amended.	-		11 Employees
ii. Quantity of Water Requirement in KLD: a. Domestic b. Industrial c. Green Belt & Dust Suppression iii. Power Requirement: a. Domestic Purpose b. Industrial Purpose Cost Industrial Purpose ii. Project Cost ii. EMP Cost Public Consultation:- Not required as per O.M. dated 24.12.2013 of MoEF, Gol. 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 29.12.2015,30.12.2015 & 31.12.2015 The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production environmental Clearance is granted to Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environmental Clearance is granted to Mining of Rough Stone for the production environment Impact Assessment Notification, 2006 as amended.	b	Utilities	
ii. Quantity of Water Requirement in KLD: a. Domestic b. Industrial c. Green Belt & Dust Suppression iii. Power Requirement: a. Domestic Purpose b. Industrial Purpose Cost Industrial Purpose ii. Project Cost ii. EMP Cost Public Consultation:- Not required as per O.M. dated 24.12.2013 of MoEF, Gol. 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 29.12.2015,30.12.2015 & 31.12.2015 The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production environmental Clearance is granted to Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environmental Clearance is granted to Mining of Rough Stone for the production environment Impact Assessment Notification, 2006 as amended.	-	1 0	
ii. Quantity of Water Requirement in KLD: a. Domestic b. Industrial c. Green Belt & Dust Suppression iii. Power Requirement: a. Domestic Purpose b. Industrial Purpose Cost Industrial Purpose ii. Project Cost ii. EMP Cost Public Consultation:- Not required as per O.M. dated 24.12.2013 of MoEF, Gol. Date of Appraisal by SEAC:- Agenda No: 29.12.2015,30.12.2015 & 31.12.2015 The proposal was placed before the SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production encoder		Source of Water :	water vendors/Existing bore hole
a. Domestic 0.1KLD b. Industrial 0.9KLD iii. Power Requirement: a. Domestic Purpose b. Industrial Purpose TNEB Cost i. Project Cost ii. EMP Cost Rs.28.92 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2015 Of MoEF, Gol. 29.12.2015,30.12.2015 & 31.12.2015 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production enough its stipulated in the provision of Environmental Clearance is granted to Mining of Rough Stone for the production enough its stipulated in the provision of Environmental Clearance is granted to Mining of Rough Stone for the production enough its stipulated in the production enough its stipulated in the provision of Environmental Clearance is granted to Mining of Rough Stone for the production enough its stipulated in the production enough its stipulated i		ii. Quantity of Watas Day	
b. Industrial 0.1KLD c. Green Belt & Dust Suppression 0.9KLD iii. Power Requirement: a. Domestic Purpose b. Industrial Purpose TNEB Cost Rs.28.92 Lakhs ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2015 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production enotion		cuantity of water Requirement in KLD:	
b. Industrial 0.1KLD c. Green Belt & Dust Suppression 0.9KLD iii. Power Requirement: a. Domestic Purpose b. Industrial Purpose TNEB Cost Rs.28.92 Lakhs ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2015 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production enotion		a. Domestic	
c. Green Belt & Dust Suppression J0.9KLD iii. Power Requirement: a. Domestic Purpose b. Industrial Purpose TNEB Cost i. Project Cost ii. EMP Cost Rs.28.92 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2013 of MoEF, Gol. Date of Appraisal by SEAC:- Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production available.			0.1KLD
a. Domestic Purpose TNEB b. Industrial Purpose TNEB Cost Rs.28.92 Lakhs i. Project Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2013 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production evention			
a. Domestic Purpose TNEB b. Industrial Purpose TNEB Cost Rs.28.92 Lakhs i. Project Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2013 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production evention		iii. Power Requirement:	- 0.9KLD
b. Industrial Purpose Industrial Purpose Cost Rs.28.92 Lakhs ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2013 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production execution	- 9	a. Domestic Purpose	
Cost Rs.28.92 Lakhs ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2013 Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 Agenda No: 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production question		b. Industrial Purpose	TNEB
ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2013 of MoEF, Gol. Date of Appraisal by SEAC:- Agenda No: 29.12.2015,30.12.2015 & 31.12.2015 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production question	7	Cost	+
ii. EMP Cost Rs.4.05 Lakhs Public Consultation:- Not required as per O.M. dated 24.12.2013 of MoEF, Gol. Date of Appraisal by SEAC:- Agenda No: 29.12.2015,30.12.2015 & 31.12.2015 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production quantity		i. Project Cost	Rs.28.92 Lakhs
Public Consultation:- Not required as per O.M. dated 24.12.2013 of MoEF, Gol. Date of Appraisal by SEAC:- 29.12.2015,30.12.2015 & 31.12.2015 / 71-01 Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production execution.			
Not required as per O.M. dated 24.12.2013 of MoEF, Gol. Date of Appraisal by SEAC:- Agenda No: Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production evention	3	Public Consultations	
Date of Appraisal by SEAC:- Agenda No: Of MoEF, Gol. Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production exercise			Not required as per O.M. dated 24.12.2013
Agenda No: 2.5.12.2015, 30.12.2015 & 31.12.2015 Date of Review/Discussion by SEIAA and the Remarks:- 71-01 The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production exercision)	Date of Appraisal by SEAC	of MoEF, Gol.
Date of Review/Discussion by SEIAA and the Remarks:- The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production exercise		Agenda No:	29.12.2015,30.12.2015 & 31.12.2015
The proposal was placed before the SEIAA in its 212 th Meeting held on 30.05.2017 and the Authority after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. <u>Validity:</u> This Environmental Clearance is granted to Mining of Rough Stone for the production executive			/1-01
Authomy after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production support		The Remarks	5:-
Authomy after careful consideration, decided to grant environmental clearance to the said project Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production support		The proposal was placed before the SEIAA in its 2	12 th Meeting held on 20 of 2017
Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production supportion		Authority after careful consideration deside to	the solution solution solution and the
Mining of Rough Stone subject to terms and conditions stipulated under the provisions of Environment Impact Assessment Notification, 2006 as amended. Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production supportion		Minter Construction, decided to grant	environmental clearance to the said project
Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production exercise		winning of Rough Stone subject to terms and cond	litions stipulated under the provisions of
Validity: This Environmental Clearance is granted to Mining of Rough Stone for the production executive	12	Environment Impact Assessment Notification 2005	the provisions of
This Environmental Clearance is granted to Mining of Rough Stone for the production experime			amended.
This Environmental Clearance is granted to Mining of Rough Stone for the production quantity of 45200 cu.m of Rough stone for the period of 5 Years from the date of execution of the activity		validity:	
of 45200 cu.m of Rough stone for the period of 5 Years from the date of execution of the activity	1	This Environmental Clearance is greated to built	
or 45200 cu.m of Rough stone for the period of 5 Years from the date of execution of the activ		f trace is granted to Mining of	Rough Stone for the production quantity
THE TANK AND	0	or 45200 cu.m of Rough stone for the period of 5 Year	s from the date of execution at the same

). J. M. D. S. Sam 269

MEMBER SECRETARY SEIAA TN

A

Conditions to be Complied before commencing mining operations:-

The project proponent shall advertise in a region, one of which shall be in the vernacular language informing the oblic that 1. The project proponent shall advertise in at least two local newspapers widely circulated in

239.

uis CDr .

8

×

ú

- 11. Copies of clearance letters are available with the Tamil Nadu Pollution Control Board.
- 111. Environmental Clearance may also be seen on the website of the SEIAA.
- IV. The advertisement should be made within 7 days from the date of receipt of the clearance letter and a copy of the same shall be forwarded to the SEIAA.
- The applicant has to obtain land use classification as industrial use before issue/renewal of 2. mining lease.
- 3. NOC from the Standing committee of the NBWL shall be obtained, if protected areas are located within 10 Km from the proposed project site.
- 4. The project proponent shall comply the conditions laid down in the Section V, Rule 36 of Tamil Nadu Minor Minerals Concession Rules 1959.
- 5. A copy of the Environment Clearance letter shall be sent by the proponent to the concerned Panchayat, Town Panchayat / Panchayat union/ Municipal Corporation, Urban Local Body and the Local NGO, if any, from whom suggestions/ representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the proponent and also kept at the site, for the general public to see.
- 6. Quarry lease area should be demarcated on the ground with wire fencing to show the boundary of the lease area on all sides with red flags on every pillar shall be erected before commencement of quarrying.
- 7. The proponent shall ensure that First Aid Box is available at site.
- The excavation activity shall not alter the natural drainage pattern of the area.
- The excavated pit shall be restored by the project proponent for useful purposes.
- 10. The proponent shall quarry and remove only in the permitted areas as per the approved Mining Plan details.
- 11. The quarrying operation shall be restricted between 7AM and 5 PM.
- 12. The proponent shall take necessary measures to ensure that there shall not be any adverse impacts due to quarrying operation on the nearby human habitations, by way of pollution to the environment.
- 13. A minimum distance of 15 mts. From any civil structure shall be kept from the periphery of any excavation area.
- 14. Depth of quarrying shall be 2m above the ground water table /approved depth of mining whichever is lesser to be considered as a safe guard against Environmental Contamination and over exploitation of resources.

- Mygousenu 270

MEMBER SECRÉTAR SEIAA-TN

- 15. The mined out pits should be backfilled where warranted and a earshould be suitably landscaped to prevent environmental degradation. The mine closure plan as furnished in the proposal shall be strictly followed with back filling and tree plantation.
- 16. Wet drilling method is to be adopted to control dust emissions. Delay deconators and show tube initiation system for blasting shall be used so as to reduce vibration and dust in the state of the s
- 17. Drilling and blasting shall be done only either by licensed explosive agent or by the proponent after obtaining required approvals from Competent Authorities.
- The explosives shall be stored at site as per the conditions stipulated in the permits issued by the licensing Authority.
- 19. Blasting shall be carried out after announcing to the public adequate through public address system to avoid any accident.
- 20. A study has to be conducted to assess the optimum blast parameters and blast design to keep the vibration limits less than prescribed levels and only such design and parameters should be implemented while blasting is done. Periodical monitoring of the vibration at specified location to be conducted and records kept for inspection.
- 21. The Proponent shall take appropriate measures to ensure that the GLC shall comply with the revised NAAQ norms notified by MoEF, Gol on 16.11.2009.
- 22. The following measures are to be implemented to reduce Air Pollution during transportation of mineral
 - Roads shall be graded to mitigate the dust emission.
 - Water shall be sprinkled at regular interval on the main road and other service roads to suppress dust
- 23. The following measures are to be implemented to reduce Noise Pollution
 - i. Proper and regular maintenance of vehicles and other equipment
 - Limiting time exposure of workers to excessive noise.
 - iii. The workers employed shall be provided with protection equipment and earmuffs etc.
 - Speed of trucks entering or leaving the mine is to be limited to moderate speed of 25 kmph to prevent undue noise from empty trucks.
- 24. Measures should be taken to comply with the provisions laid under Noise Pollution (Regulation and Control) (Amendment) Rules, 2010, dt: 11.01.2010 issued by the MoE&F, GoI to control noise to the prescribed levels.
- 25. Suitable conservation measures to augment groundwater resources in the area shall be planned and implemented in consultation with Regional Director, CGWB. Suitable measures should be taken for rainwater harvesting.

) Magazan 271

MEMBER SECO SELAA TW

- 26. Permission from the competent authority should be obtained for drawl of ground water, if any, required for this project.
- required for this project.
 27. Topsoil, if any, shall be stacked properly with proper slope with adequate headings and should be used for plantation purpose.
- 28. The following measures are to be adopted to control erosion of dumps:
 - i. Retention/ toe walls shall be provided at the foot of the dumps.
 - Worked out slopes are to be stabilized by planting appropriate shrub/ grass species on the slopes.
- 29. Waste oils, used oils generated from the EM machines, mining operations, if any, shall be disposed as per the Hazardous Wastes (Management, Handling, and trans boundary movement) Rules, 2008 and its amendments thereof to the recyclers authorized by TNPCB.
- 30. Concealing the factual data or failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Environment (Protection) Act, 1986.
- 31. Rain water harvesting to collect and utilize the entire water falling in land area should be provided.
 - 32. Rain water getting accumulated in the quarry floor shall not be discharged directly to the nearby stream or water body. If it is to be let into the nearby water body, it has to be discharged into a silt trap on the surface within the lease area and only the overflow after allowing settling of soil be let into the nearby waterways. The silt trap should be of sufficient dimensions to catch all the silt water being pumped out during one season. The silt trap should be cleaned of all the deposited silt at the end of the season and kept ready for taking care of the silt in the next season.
 - 33. The lease holder shall undertake adequate safeguard measures during extraction of material and ensure that due to this activity, the hydro-geological regime of the surrounding area shall not be affected. Regular monitoring of ground water level and quality shall be carried out around the mine lease area during the mining operation. If at any stage, if it is observed that the groundwater table is getting depleted due to the mining activity; necessary corrective measures shall be carried out. District Collector/mining officer shall ensure this.
 - 34. No tree-felling shall be done in the leased area, except only with the permission from competent Authority.
 - 35. To take up environmental monitoring of the proposed quarry site before, during and after the mining activities including vibration study data, water, air & flora/fauna environment, slurry water generated/disposed and method of disposal, involving a reputed academic Institution.
 - 36. It shall be ensured that the total extent of nearby quarries(existing, abandoned and proposed) located within 500 meter radius from the periphery of this quarry is not exceeding 25 hectares within the mining lease period of this application.
 - 37. It shall be ensured that there is no habitation is located within 500 meter radius from the periphery of the quarry site and also ensure that no hindrance will be caused to the people of the habitation located within 500m radius from the periphery of the quarry site
 - Ground water quality monitoring should be conducted once in 3 Months
 - Transportation of the quarried materials shall not cause any hindrance to the Village people/Existing Village road.
 - Free Silica test should be conducted and reported to TNPCB, Department of Geology and Mining and Regional Director, MoEF, GOI.

Mostan 272

e (_ _ _

Ľ

κù.

6.9

MEMBER SECRET SEIAA-TN

SUAGBI

2113 -

41. Air sampling at intersection point should be conducted and reported to the B, Department of Geology and Mining and Regional Director, MoEF, GOI .. 3

-245.

42. Bunds to be provided at the boundary of the project site.

 \Box

 \bigcirc

0

0

0

0

0

Q

U

0

 \odot

C)

13

0.3

- 43. Ground water quality monitoring should be conducted once in 3 Months species on all side of the lease area at the rate of 400/Ha. Suitable tall tree saplings should be planted on the bunds and other suitable areas in and around the work place.
- 45. At least 10 Neem trees should be planted around the boundary of the quarry site.
- 46. Floor of excavated pit to be levelled and sides to be sloped with gentle slope (Except for granite quarries) in the mine closure phase.
- 47. The Project Proponent shall ensure a minimum of 2.5% of the annual turnover will be utilized for the CSR Activity
- 48. The Project Proponent shall provide solar lighting system to the nearby villages
- 49. The Project Proponent shall comply with the mining and other relevant rules and regulations where ever applicable.
- 50. Rainwater shall be pumped out Via Settling Tank only
- 51. Earthen bunds and barbed wire fencing around the pits with green belt all along the boundary shall be developed and maintained.
- 52. As per MoEF&CC, Gol, Office Memorandum dated 30.03.2015, prior clearance from Forestry & Wild Life angle including clearance from obtaining committee of the National Board for Wild life as applicable shall be obtained before starting the quarring operation, if the project site is located within 10KM from National Park and Sanctuaries.
- 53. The quarrying activity shall be stopped if the entire quantity indicated in the Mining plan is quarried even before the expiry of the quarry lease period and the same shall be monitored by the District Authorities.
- 54. Safety equipments to be provided to all the employees.
- 55. Safety distance of 50m has to be provided in case of railway, reservoir, canal/odai.
- 56. Mining activity should be reviewed by the District Collector after three years and decide for further extension.
- 57. The Proponent shall ensure that the project activity including blasting, mining transportation etc should in no way have adverse impact to the other forests, such as reserve forests and social forests, tree plantation and bio diversity, surrounding water bodies etc.
- 58. The Project Proponent is also directed to strictly adhere to the Sustainable Sand Mining Management Guidelines, 2016, wherever applicable.
- 59. The proponent shall provide Green Belt development at the rate of not less than 400 trees/Hectare. The tree saplings shall be not less than 1m height. WYSEY

MEMBER SECRETARY

SEIAA-TN

A-) apperent 273

General Conditions:

10

0, 3 -0, 0, 0, 0

(.)÷

1. EC is given only on the factual records, documents and the community of turnished in non judities stamp paper by the proponent.

247

Buic Bri

- The Proponent shall obtain the Consent for Establishment the TNPC Board bet commencing the activity.
 No change in mining technology and scope of working should be made when the proponent approved.
- the SEIAA, Tamil Nadu.
- 4. No change in the calendar plan including excavation, quantum of mineral (minor mineral) should be made.
- 5. Effective safeguard measures, such as regular water sprinkling shall be carried out in critical areas prone to air pollution and having high levels of particulate matter such as loading and unloading point and all transfer points. Extensive water sprinkling shall be carried out on haul roads. It should be ensured that the Ambient Air Quality parameters conform to the norms prescribed by the Central Pollution Control Board in this regard.
- 6. Effective safeguards shall be adopted against health risks on account of breeding of vectors in the water bodies created due to excavation of earth.
- 1. J.C. 1 7. A berm shall be left from the boundary of adjoining field having a width equal to at least half the 1.24 S 201 S depth of proposed excavation.
- 8. Mineral handling area shall be provided with adequate number of high efficiency dust extraction system. Loading and unloading areas including all the transfer points should also have efficient dust control arrangements. These should be properly maintained and operated.
- 9. Vehicular emissions shall be kept under control and be regularly monitored. The mineral transportation shall be carried out through the covered trucks only and the vehicles carrying the mineral shall not be overloaded. 1月11日1日1日前午1日前的16日1
- 10. Access and haul roads to the quarrying area should be restored in a mutually agreeable manner where these are considered unnecessary after extraction has been completed.
- 11. All Personnel shall be provided with protective respiratory devices including safety shoes, Masks, gloves etc. Supervisory people, should be provided with adequate training and information on safety and health aspects. Occupational health surveillance program of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.
- 12. Periodical medical examination of the workers engaged in the project shall be carried out and records maintained. For the purpose, schedule of health examination of the workers should be drawn and followed accordingly. The workers shall be provided with personnel protective measures such as masks, gloves, boots etc.
- 13. Workers/labourers shall be provided with facilities for drinking water and sanitation facility for Female and Male separately.
- 14. The project proponent shall ensure that child labour is not employed in the project as per the sworn affidavit furnished.
- 15. The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the Ministry of Environment and Forests and its Regional Office located at Chennai.
- 16. The Environmental Clearance does not absolve the applicant/proponent of his obligation/requirement to obtain other statutory and administrative clearances from other statutory and administrative authorities.

: Jundestown 274

MEMBER SECRETARY SEIAA-1'N

17. This Environmental Clearance does not imply that the other statutory of administrative clearances shall be granted to the project by the concerned authorities. Such authorities would be considering the project on merits and be taking decisions independently of the Environmental Clearance

249-

- 18. The SEIAA, Tamil Nadu may alter/modify the above conditions or stipulate and furt conditions in the interest of environment protection.
- 19. The SEIAA, Tamil Nadu may cancel the environmental clearance granted to this project under the provisions of EIA Notification, 2006, at any stage of the validity of this environmental clearance, if it is found or if it comes to the knowledge of this SEIAA,TN that the project proponent has deliberately concealed and/or submitted false or misleading information or inadequate data for obtaining the environmental clearance.
- 20. Failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of the Environment (Protection) Act, 1986.
- 21. The above conditions will be enforced inter-alia, under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, the Public Liability Insurance Act, 1991, along with their amendments, draft Minor Mineral Conservation & Development Rules, 2010 framed under MMDR Act 1957, National Commission for protection of Child Right Rules, 2006 and rules made there under and also any other orders passed by the Hon'ble Supreme Court of India/Hon'ble High Court of Madras and any other Courts of Law relating to the subject matter.
- 22. Any other conditions stipulated by other Statutory/Government authorities shall be complied
- 23. Any appeal against this environmental clearance shall lie with the Hon'ble National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

MEMBER SECRE SEIAA-TN

us CBn

Copy to:

1. The Secretary, Ministry of Mines, Government of India, ShastriBhawan, New Delhi.

- The Principal Secretary, Environment and Forests Department, Government of Tamil Nadu, Tamil Nadu.
- 3. The Additional Chief Secretary, Industries Department, Government of Tamil Nadu, Tamil Nadu.
- The Additional Principal Chief Conservator of Forests, Regional Office (SZ), 34, HEPC Building, 1st & 2nd Floor, Cathedral Garden Road, Nungambakkam, Chennai 34.
- The Chairman, Central Pollution Control Board, PariveshBhawan, CBD-Cum-Office Complex, East Arjun Nagar, New Delhi-110 032.
- 6. The Chairman, Tamil Nadu Pollution Control Board, 76, Mount Salai, Guindy, Chennai-32
- 7. The District Collector, Karur District
- 8. The Commissioner of Geology and Mines, Guindy, Chennai-32.
- 9. El Division, Ministry of Environment & Forests, ParyavaranBhawan, New Delhi.

10.Spare. J. [mpopulary

PROCEEDINGS OF THE DISTRICT COLLECTOR, KARD

Rc.B/597/G&M/2006.

Sub

Dated \$202.2007.

Mines and Quarries – Karur District – Aravakurichi Taluk Anjur Village – over an extent of 4.56.5 heets., of patta land in S.F.Nos.759/5 (1.40.0 heets.,), 764/3 (1.14.0 heets..), 765/3 (0.48.0 heets..), 766/2 (1.14.0 heets..), 767/1 (0.11.5 heets..) and 767/2 (Part) (0.29.0 heets..) – Quarry lease to quarry roughstone application preferred by Thiru S. Kuppusamy – Orders Issued – Regarding.

251

Ref 1 Quarry lease application preferred by Thiru S. Kuppusamy, Erode District dt:Nil.

- Report of the Special Revenue Inspector (Mines) Karur dt;19.02.2007.
- Report of the Deputy Director (Geology and Mining) Karur, dt:19.02.2007.
- Other connected records.

ORDER:

T,

in D

6

ŧ.

С. ж

1

Thiru S. Kuppusamy, S/o.Samiappa Gounder, Saliangattupallam, Muthur Post, Erode Taluk, Erode District has applied for the grant of quarry lease to quarry roughstone over an extent of 4.56.5 hects., of patta land in S.F.Nos.759/5 (1.40.0 hects.,), 764/3 (1.14.0 hects.,), 765/3 (0.48.0 hects.,), 766/2 (1.14.0 hects.,) 767/1 (0.11.5 hects.,) and 767/2 (Part) (0.24.0 hects..) of Anjur Village, Aravakurichi Taluk, Karur District for a period of five years, vide reference 1st cited.

S = 22

2) The Special Revenue Inspector (Mines) in his report 2nd cited has reported that the area applied for quarry lease i.e., the S.F.Nos.759/5 (1.40.0 hects.,), 764/3 (1.14.0 hects.,). 765/3 (0.48.0 hects.,), 766/2 (1.14.0 hects..) 767/1 (0.11.5 hects.,) stands registered in the name of the applicant, Thiru S. Kuppusamy vide patta No.1231 and the S.F.No.767/2 (1.27.5 hects stands registered in the name Thiru Palanisamy vide patta No.1232 of Anjur Village. The above said pattadar have given no objection

affidavit for the grant of quarry lease in favour of the applicant. Hence, the applicant has surface rights over the area applied for the grant of quarry lease. There are no permanent buildings, temples, monuments in and around the area applied for quarry lease. There is no low tension/ high tension powerline, telephone line running through the area applied for quarry lease. There is no habitation within the radius of 300 metres from the area applied for quarry lease. There is no habitation within the radius of 300 metres from the area applied for quarry lease. The above land is not required for public purposes. The above land is not covered under Land Ceiling Act and Land Acquisition Act. The Village Administrative Officer in his statement has state that there is no objection raised by the public of the village for the grant of quarry lease. Finally, the Special Revenue Inspector (Mines) has recommended for the grant of quarry lease in favour of the applicant.

2

3

63

 \Box

1

, - ²53

wa the the the

y

The Deputy Director (Geology and Mining) Karur in his report
 3rd cited has reported that

1. Previously, the area applied for quarry lease was granted on lease in favour of the applicant for a period of five years vide District Collector's Proceedings Rc.D.79/2001 dt:05.06.2001, and the lease period was expired on 18.09.2006. Now, the applicant has applied for the fresh grant of quarry lease.

2. The area applied for quarry lease is flat terrain. Charnockite is traversed with numerous pegmatite veins. The formation is striking almost North-South and dips almost vertically. The rock type found to occur in this area is suitable for exploitation of roughstones viz., Aralai and jelly. The approximate quantity of the mineral that may be available in this area is calculated as $2,80,000 \text{ M}^3$ or 50,000 Lorry loads

3. approach road is available for the area applied for quarry lease.

one cart track is running on the North eastern side of the area applied for quarry lease.
 the area applied for quarry lease is a plain terrain surrounded by dry lands and there is no thick forest around the applied area. Hence, there is no chance for any destabilization, environmental degradation and ecological imbalance due to the proposed quarrying activities.

Finally, the Deputy Director (Geology and Mining) Karur has stated that the application preferred by Thiru S. Kuppusamy, S/o. Samiappa Gounder, Saliangatupallam, Muthur Post, Erode District for the grant of quarry lease to quarry

J. W. Born

roughstone over an extent of 4.56.5 hects., of patta land in S.F.Nos.759/5 (114.0 hects.), 764/3 (1.14.0 hects.,), 765/3 (0.48.0 hects.,), 766/2 (1.14.0 hects.,) 767/1 (0.11.5 hects.,) and 767/2 (Part) (0.29.0 hects..) of Anjur Village, Aravakurichi Taluk, Karur District may be considered for the grant of quarry lease for a period of 5 years as per Rule 19(1) of Tamil Nadu Minor Mineral Concession Rules, 1959 with usual terms and conditions and also subject to the following special condition that

3

205

- the applicant should leave a safety distance of 10 metres for the cart tract running on the Southern side of the area applied for quarry lease.
- (2) the applicant should leave a safety distance of 10 metres for the Public path in S.F.Nos.759/1 and 764/4.

5) In view of the above, the quarry lease to quarry aralai, jelly and sholing over an extent of 4.56.5 hects., of patta land in S.F.Nos.759/5 (1.40.0 hects.,), 764/3 (1.14.0 hects.,). 765/3 (0.48.0 hects.,), 766/2 (1.14.0 hects.,) 767/1 (0.11.5 hects.,) and 767/2 (Part) (0.29.0 hects.,) of Anjur Village, Aravakurichi Taluk, Karur District is granted in favour of Thiru S. Kuppusamy, S/o. Samiappa Gounder, Saliangattupallam, Muthur Post, Erode District for a period of 5 years as per Rule 19(1) of Tamil Nadu Minor Mineral Concession Rules, 1959 with usual terms and conditions and also subject to the following special conditions that,

- the applicant should leave a safety distance of 10 metres for the cart tract running on the Southern side of the area applied for quarry lease.
- (2) the applicant should leave a safety distance of 10 metres for the Public path in S.F.Nos.759/1 and 764/4.

260225

\$ 55 Bri

for Collector, Karur.

To Thiru S. Kuppusamy, S/c. Samiappa Gounder, Sahangattupallam, Muthur Post, Erode District

000

D,

Ļ

26/02/07 26/200

Copy to the Revenue Divisional Officer, Karur. Copy to the Tahsildar, Aravakurichi. Copy to the Village Administrative Officer, Anjur.

Copy to the Village President, Anjur.

WAGER *Ó@0000

கரூர் மாவட்ட ஆட்சித்தலைவர் அவர்களின் செயல்முறைகள் நக ஆ 59-7/2006 நாள் இ – .200 – இன் இணைப்பு

<u>இதா நிபந்தனைகள்:</u>

 விண்ணப்பதாரர் ரூ..5,000/–ஐ பாதுகாப்புத் தொகையாக செலுத்தி குத்தகை ஒப்பந்தப்பத்திரம் மாவட்ட ஆட்சியரிடம் நிறைவேற்ற வேண்டும்.

3. குத்தகை காலம் குத்தகை ஒப்பந்தப்பத்தாய் நல்நல்பத்துட் நான் குறை (ஐந்து) ஆண்டுகளாகும்.

4. விண்ணப்பதாரர் மேற்கண்ட இடத்தில் குவாரி செய்யும் சாதாரண கற்களான அரளை, ஜல்லி, சோலிங் ஆகியவற்றை மேற்படி இடத்திலிருந்து வெளியில் எடுத்துச் செல்வதற்கு முன்பு அவை ஒவ்வொன்றிற்கும் அவற்றிற்குரிய வீதத்தில் சீனியரேஜ் தீர்வை செலுத்தி இவ்வலுவலகத்தில் பர்பிட் மற்றும் அனுமதி சீட்டு பெற்ற பின்புதான் மேற்படி கனிமங்களை குவாரியிலிருந்து வெளியில் எடுத்துச் செல்ல வேண்டும். சீனியரேஜ் தீர்வை அல்லது டெட்ரெண்ட் இதில் எது அதிகமோ அதனை செலுத்த வேண்டும். சீனியரேஜ் தீர்வை அல்லது டெட்ரெண்ட் மற்றும் பரப்புத்தீர்வை 1959–ஆம் வருடத்திய தமிழ் நாடு சிறு தீர்வை அல்லது டெட்ரெண்ட் மற்றும் பரப்புத்தீர்வை 1959–ஆம் வருடத்திய தமிழ் நாடு சிறு கனிம சலுகை விதிகளின் இணைப்பு–2 இல் அவ்வப்போது அரசால் நிர்ணயிக்கப்படும் வீதத்தில் செலுத்த வேண்டும்.

5. குத்தகை இடத்தில் பெறப்படும் அனைத்து கனிமங்கள் பற்றிய விபரங்கள் அவற்றின் அளவு ஆகியவற்றிற்கு முறையான கணக்கு பதிவேடுகளில் எழுதப்பட்டு அப்பதிவேடுகள் குவாரியில் வைக்கப்பட வேண்டும்.

6. குத்தகை இடத்தில் குவாரி செய்யப்பட்ட கனிமங்களின் அளவு, எடுத்துச் 6. குத்தகை இடத்தில் குவாரி செய்யப்பட்ட கனிமங்களின் அளவு, எடுத்துற்கும், செல்லப்பட்ட கனிமங்களின் அளவு, முதலியவற்றை குறிப்பிட்டு ஒவ்வொரு மாதத்திற்கும், அதற்கு அடுத்த மாதம் 5–ஆம் தேதிக்குள் கரூர், புவியியல் மற்றும் சுரங்கத்துறை உதவி இயக்குநருக்கு மாதாந்திர அறிக்கை அனுப்ப வேண்டும்.

ைப்புகள், கட்டிடங்கள், நீர்நிலைகள், 7. குத்தகை இடத்திற்கு அருகிலுள்ள குடியிருப்புகள், கட்டிடங்கள், நீர்நிலைகள், குளங்களின் கரைகள், மரங்கள், சாலைகள், வண்டிப்பாதைகள், நடைபாதைகள் மற்றும் இதர பொது சொத்துக்களுக்கு பாதகமில்லாமல் குவாரி செய்ய வேண்டும்.

இது பொது சொத்துகையூல்கு பாதல்காமையில் உள்ள பட்டாதாரர்கள் மற்றும் பொது 8. குத்தகை இடத்திற்கு அருகாமையில் உள்ள பட்டாதாரர்கள் மற்றும் பொது மக்களுக்கு பாதகமில்லாமல் குவாரி செய்ய வேண்டும்.

பகைளுக்கு பாதல்கள்கள் இடத்திற்கு அருகிலுள்ள குடியிருப்புகளுக்கு 300 மீட்டரும், ரயில் 9. குத்தகை இடத்திற்கு அருகிலுள்ள குடியிருப்புகளுக்கு 300 மீட்டரும், ரயில் பாதைகள், சாலைகள், மின்சாரம் மற்றும் தொலைபேசி லைன்கள் ஆகியவற்றிற்கு 50 மீட்டரும், நடைபாதைகள், கிராம சாலைகளுக்கு 10 மீட்டரும் பாதுகாப்பு துரரம் விட்டு குவூரி செய்ய வேண்டும்.

MODA and

0

0.0

10. மாவட்ட ஆட்சித்தலைவர் அல்லது அரசால் அதிகாரம் வழங்கப்பட்ட அலுவலரை குத்தகை இடத்தை பார்வையிடவும், குவாரி பதிவேடுகள், ஆவணங்கள் மற்றும் கணக்கை சரிபார்க்கவும் அனுமதிக்க வேண்டும். இது சம்பந்தமாக அவர்கள்கோரும் இனைக்கு விவரங்களையும் வழங்க வேண்டும்.

13

í ľa

0

0

0

1Å

0

0

Q, Q

ł.

wis SBit

2501

11. சுற்றுப்புற சூழ்நிலை பாதுகாப்பு, கனிம பாதுகாப்பு, தொழிலாளா் பாதுகாப்பு ஆகியவற்றை கருத்தில் கொண்டு விஞ்ஞான அடிப்படையில் திறமையுடன் முறையாக குவாரி செய்ய வேண்டும்.

12. மாவட்ட ஆட்சித்தலைவர் மற்றும் புவியியல் மற்றும் சுரங்கத்துறை ஆணையர் ஆகியோரால் அதிகாரம் வழங்கப்பட்ட அலுவலரை மேலே பத்தி (5) மற்றும் (10)ல் குறிப்பிட்டுள்ள நிபந்தனைகள் தொடர்பாகவும் மேற்கண்ட அலுவலர்களின் ஆணையை நிறைவேற்றவும் இடத்தை பார்வையிட அனுமதிக்க வேண்டும்.

நலைதல் பந்தப்பத்திரத்துடன் இணைக்கப்பட்டுள்ள வரைப்டத்தில் காட்டியுள்ள 13. குத்தகை ஒப்பந்தப்பத்திரத்துடன் இணைக்கப்பட்டுள்ள வரைப்டத்தில் காட்டியுள்ள இடத்தில் தான் குவாரி செய்ய வேண்டும்.

இடத்தில் தான் குவியா வழங்கப்பட்ட இடத்தின் புல எண், விஸ்தீரணம், கிராமம், குத்தகை 14. குத்தகை உரிமம் வழங்கப்பட்ட இடத்தின் புல எண், விஸ்தீரணம், கிராமம், குத்தகை காலம், குத்தகைதாரரின் பெயர் ஆகியவற்றைக் காட்டும் அறிவிப்பு பலகை எழுதி குவாரியின் முகப்பில் வைத்து அதனை சரியானபடி பராமரித்து வர வேண்டும்.

தவாரயான முகைப்பல வைத்து அதல்லா சொடைபடி பிட்டர் துரைத்திற்குள் குவாரி செய்யக் 15. குத்தகை இடத்தில் எல்லையிலிருந்து 7.5 மீட்டர் துரரத்திற்குள் குவாரி செய்யக்

கூடாது. 16. பொது சாலையிலிருந்து குத்தகை இடத்திற்கு செல்ல பாதை வசதி குத்தகைதாரர் தம் சொந்த பொறுப்பில் செய்து கொள்ள வேண்டும்.

தம் சொந்த மொறுப்பல் எச்சுது என்னாம் 17. குத்தகை ஒப்பந்தப்பத்திரத்துடன் இணைத்துள்ள வரைபடத்தில் காட்டியுள்ள குத்தகை இடத்தைச் சுற்றியும் எல்லைக் கற்கள் நட்டு அவற்றை சரியானபடி பராமரித்து வர வேண்டும்.

1959–ஆம் வருடத்திய தமிழ் நாடு சிறு கனிம சலுகை விதிகளின் இணைப்பு- XII மற்றும் XIII –இல் உள்ள படிவங்களில், இசைவாணைச்சீட்டு மற்றும் நடைச்சீட்டினை தயார் செய்து அவற்றில் மாவட்ட ஆட்சித்தலைவரால் அதிகாரம் வழங்கப்பட்ட அலுவலரின் கையொப்ப முத்திரை மற்றும் அலுவலக முத்திரைகள் பெற்று குவாரியிலிருந்து சாதாரண கற்களான அரளை, ஜல்லி, சோலிங் ஆகியவற்றை ஏற்றிச் செல்லும் ஒவ்வொரு வாகனமும் அதனை சோதனை செய்வதற்கு அதிகாரம் பெற்ற அலுவலா் சோதனை செய்யும் போது இசைவாணைச் சீட்டு மற்றும் நடைச்சீட்டு நடைச்சீட்டைக் காண்பிக்க வேண்டும். இவற்றிற்கு முறையான கணக்கு நகல்களை குவாரியில் வைத்திருக்க வேண்டும். முறையான இசைவாணைச் சீட்டு மற்றும் நடைச்சீட்டுகள் பராமரித்து வர வேண்டும். இல்லாமல் கனிமங்களை ஏற்றிச் செல்லும் வாகனங்கள் 1959 ஆம் வருடத்திய தமிழ் நாடு சிறு கனிம சலுகை விதிகள் மற்றும் சுரங்கங்கள் மற்றும் கனிமங்கள் (அபிவிருத்தி மற்றும் ஒழுங்குமுறை) சட்டம், 1957–இன் படி கைப்பற்றப்பட்டு உரிய நடவடிக்கை எடுக்கப்படும். குத்தகைதாரா மீதும் நடவடிக்கை எடுக்கப்படும்.

(சுத்தகை இடத்தை சாதாரண கற்களான அரளை, ஜல்லி மற்றும் சோலிங் குவாரி 19. குத்தகை இடத்தை சாதாரண கற்களான அரளை, ஜல்லி மற்றும் சோலிங் குவாரி செய்ய மட்டும். பயன்படுத்த வேண்டும். குத்தகை உரிம ஆணை அல்லது ஒப்பந்தப்பத்திரத்தில் தவறுதலான கனிம விபரம் குறிக்கப்பட்டிருந்தால் அதனை எந்த நேரத்திலும் திருத்துவதற்கு அதிகாரம் உண்டு. குத்தகைதாரர் அதனடிப்படையில் எந்த ஒரு உரிமையும் கோர முடியாது.

J. Jarbosrand

261

மெருகேற்றுவதற்கும், அயல் நாட்டிற்கு ஏற்றுமதி செய்வதற்றும் பயன்படும் கேட்டும் குட்டிக்கு 30 கன சென்டியீட்டர் அளவுக்கு அதிகமான கல் குவாரி செய்யக்கூடாது. வடிவத்தில் கல் குவாரி செய்யக் கூடாது. குறிக்கப்படாத வேறு ஏதாவது கனிமம்

கிடைத்தால் அதனை சம்பந்தப்பட்ட அலுவலரின் அனுமதியைக் பெறாமல், அதற்குரிய புதிய கனிமம் கிடைத்தத விபாத்தை 30. தினங்களுக்குள் தெரிவிக்காவிட்டால், அதற்கு அந்த கனிமத்திற்குரிய சீனியரேஜ் தொகையை செலுத்தாமல் எடுக்கக்கட்டாது. சாதாரண சீனியரேஜ் கட்டணத்தைப் போல் 15 டிடங்கு வரை மாவட்ட ஆட்சித்தலைவரால்

குத்தகை காலம் முடிந்த பிறகு, குத்தகை இடத்திலிருந்து அரளை, ஜல்லி, சோலிங் விதிக்கப்படும்.

0.0.0

 \bigcirc

Ö

Q.

(Das

ŝ

வெளியில் எடுத்துச் செல்ல குத்ததைதாரருக்கு உரிமையில்லை. குத்தகையை வேறு எவருக்கும் உள் குத்தகைக்கு விடக்கூடாது. குவாரி செய்வதில் இழப்பு ஏற்படின் நஷ்ட ஈடு கேட்கக் கூடாது..

குவாரியில் வேலை செய்யும் தொழிலாளர்களுக்கும் மற்றும் இதர நபர்களுக்கும்

விபத்து ஏதாவது ஒன்று ஏற்படின் சகல நஷ்டங்களுக்கும் குத்தகைதாரா பொறுப்பு ஏற்க வேண்டும். இதற்காக விதிக்கப்படும் அபராதமும் செலுத்த வேண்டும். காலத்திற்குள் அவ்வப்போது அரசால் செலுத்த அல்லது அரசுக்கு 24%

அத்தொகை அரசுக்கு செலுத்த வேண்டிய பாக்கித் தொகை தமிழ் நாடு வருவாய் வசூல் சட்டம் நிர்ணயிக்கப்படும் வீதத்தில் வட்டியுடன் வசூலிக்கப்படும்.

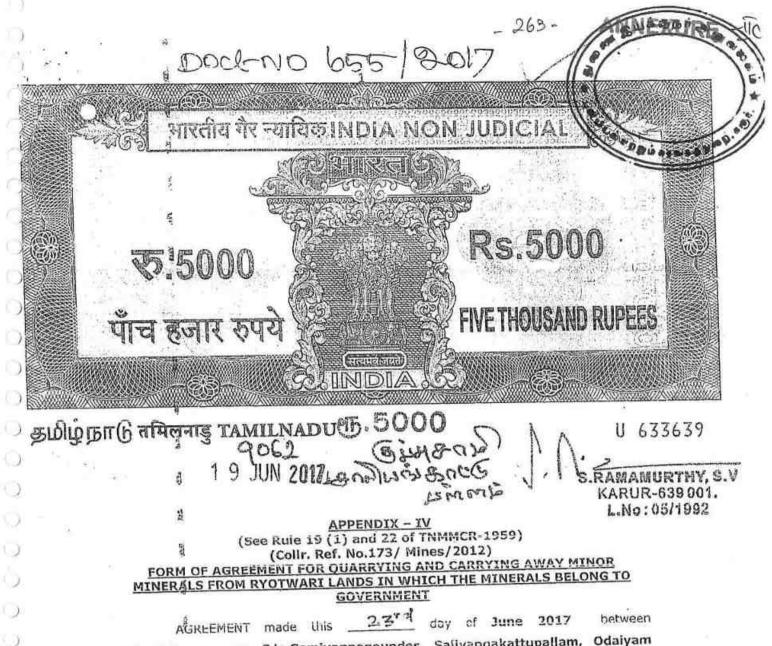
குத்தகை நிபந்தனைகள், 1959–ஆம் வருடத்திய தமிழ் நாடு சிறு கனிம சலுகை விதிகள், அரசு, புவியியல் மற்றும் சுரங்கத்துறை ஆணையர், மாவட்ட ஆட்சியர் ஆகியோரது 1864–இன் கீழ் வசூலிக்கப்படும்.

ஆணைகள் மீறப்படும் மீறலுக்கு அபராதம் விதிப்பதோடல்லாது குத்தகைதாராக்கு நோ விசாரணை வாய்ப்பளித்து, பின்பு குத்தகை உரிமம் ரத்து செய்யப்படும். 30. அரசின் அவ்வப்போதைய ஆணைகளுக்கேற்ப நிபந்தனைகள் மாற்றியமைக்கவோ,,

31. மேற்கூறிய நிபந்தனைகளுடன் 1959–ஆம் வருடத்திய தமிழ் நாடு சிறு கனிம் சலுகை நீக்கவோ,, கூடுதலாக சோக்கவோ அதிகாரமுண்டு. விதிகள், சுரங்கங்கள் மற்றும் கனிமங்கள் (அபிவிருத்தி மற்றும் ஒழுங்குமுறை) சட்டம், 1957, ஆகியோரால்

அரசு,, புவியியல் மற்றும் சுரங்கத்துறை ஆணையர், மாவட்ட ஆட்சியர் அவ்வப்போது பிறப்பிக்கப்படும் ஆணைசகளும் குத்தகைதாரரை கட்டுப்படுத்தும். தொழிலாளர் குத்தகைதாரர் குவாரி / கரங்கங்களுக்கு பொருந்தக்கூடிய சட்டங்களுக்கு கட்டுப்பட்டு குவாரி செய்ய வேண்டும். தவறினால் சம்பந்தப்பட்ட அரசின்

சட்டப்பூர்வமான நடவடிக்கைகளுக்கு குத்தகைதாரர் உள்ளாக வேண்டியிருக்கும்.


f. Imppuson

மாவட்ட ஆட்சித்தலைவருக்காக, களூர்.

26/02/07

Suid OBi

5

Thiru.S.Kuppusamy, S/o.Samiyappagounder, Saliyangakattupallam, Odaiyam Village, Kangeyam Taluk, Trippur District (hereinafter referred to as 'the registered holder / lessee' which term shall include in these presents where the context so admits include also his heirs, executors administrators. legal representatives and assigns) of the one part and the Governor of Tamil Nadu (hereinafter called "the Government" which term shall where the context so admits, include also his successors in office and assigns) of the other part.

0

U

()

L.)

 \odot

WHEREAS, the registered holder holds the lands described in the schedule hereunder written (herein after referred to as the said lands)

AND WHEREAS, the registered holder has made application to the Collector of District of Karur (herein after referred to as "the Collector") seeking grant of quarrying lease for quarrying Rough Stone in the said lands and to deposit mining waste in the said lands and has lodged with the Collector an accurate map or sketch of the said lands.

3 LLECTOR. REGISTERED HOLDER | LESSE .: RARUR.

265. AGAN भारतीय गैर न्यायिक INDIA NON JUDICIAL Rs.5000 ₹.5000 पाँच हजार रुपये FIVE THOUSAND RUPEES सत्यमवलाष्ट्रतो INIDIA தமிழ்நாடு तमिलनाडु TAMILNADU ரு. 5000 U 633640 9063 6 JUH BOD IUN 2017 and was an ered an and MAMURTHY.S.V KARUR-639 001. LNo:05/1992

AND WHEREAS, the Collector acting for and on behalf of the Government has granted a quarrying lease to the registered holder and allowed him to commence quarrying operations for Rough Stone in the said land to deposit mining waste thereon by the registered holder.

AND WHEREAS, as the registered holder has deposited with the Collector, the sum of Rs.5000/- (Chalan No.53, Dated:19.06.2017, State Bank of India, Thanthoni) as security against loss or damage which may be incurred by the Government by reason by any of the said lands being rendered and unfit for cultivation by any mining operations therein of the registered holder or by deposit of mining waste thereon by the registered holder.

Ŭ

Ó

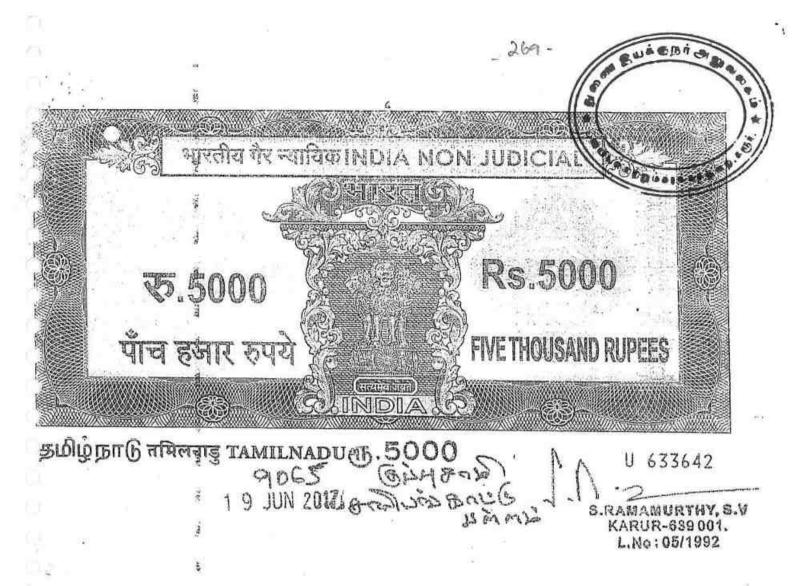
U

 \bigcirc

NOW^BTHESE PRESENTS WITNESS and the registered holder both hereby agree with the Government in the manner following that is to say:

01. The registered holder shall be at liberty at all times during the period of the lease, i.e. for five years from <u>35.6.2017 to 32.6.2022</u> to carry mining operations for Rough Stone in the lands in a proper and workman like manner and to deposit mining waste on the lands and shall at all times the answerable and

REGISTERED HOLDER/LESSE 2.83 DE KARUR.


accountable to the Government for all acts and if default by any of his nominees, servants or agents in carrying on such operations or in making such deposits.

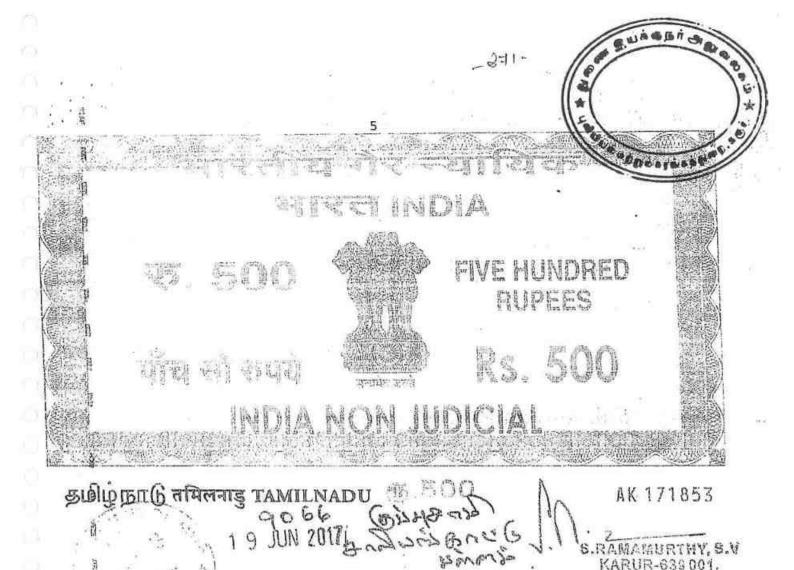
- 02. The registered holder shall pay to the Collector for and on behalf of the Government in addition to the land assessment for the time being payable in respect of the said lands seigniorage on the minor minerals at the rates specified in the Appendix II to the Tamil Nadu Minor Mineral Concession Rules, 1959.
 - 03. The registered holder shall and will keep correct accounts in such form as the Collector shall from time to time require and direct showing the quantities and other particulars of all minerals obtained by the registered holder from the said lands and also the number of persons employed in carrying on the said mining operations therein and shall from time to time when so directed by the Collector prepare and maintain complete and correct plans of all mines and working in the sail lands and shall allow any officer hereunto authorized by the Commissioner / Director of Geology and Mining, Tamil Nadu from time to time and at any time to examine such accounts and any such plans and shall when so required supply and

REGISTERED HOLDER / LESSF

1....

COLLECTOR. KARUR.

furnish all such information and returns regarding all or any of the matter aforesaid as the Government shall, from time to time required and direct.


- 04. The Registered holder shall and will at all times, allow any officer authorized by the Commissioner / Director Geology and Mining, Tamil Nadu in that behalf to enter upon any part of the lands where any mining operations may be carried on for the purpose of inspecting the same.
- 05. The registered holder shall forthwith send to the District Collector a report of any accident, which may occur at or in the said lands and also of the discovery of any mineral other than Rough Stone.
- 06. It shall be lawful for the registered holder at any time to cease mining operations, under these present provided they shall pay to the Collector for and on behalf of the Government land assessment, cess and seigniorage due to the Government and shall restore the said lands or force, or fill in abandoned pits and excavations therein if required by the Collector and upon his so doing these present shall cease and determine.

T COLLECTOR,

KARUR

285REGISTERED HOLDER / LESST

-00

In case the registered holder shall relinquish the whole or any part of the said lands $\frac{1.05/1992}{1.05}$ or in case of the expiry or sooner determination of this agreement then and in any such case, he shall restore the lands so relinquished or so much thereof as the Collector shall require to be restored to a state fit for cultivation o shall securely and permanently fence or fill in all such abandoned pits and excavations therein as the Collector shall require to be so fenced or filled in, and in case the registered holder shall fail or neglect to restore any such land which he shall be required to restore to a state fit for cultivation or to so fence, or fill in any such abandoned pit or excavation which he shall be required to so fence or fill in them in any such case, it shall be lawful for the Collector to so restore any such land, or as the case may be to so fence or fill any such pits or excavation at the expense of the registered holder and to apply the said sum of Rs.5000/- so deposited in or towards the cost of so doing and to deduct from the amount of the said deposit and retain on behalf of the Government a sum equal to thirty times the assessment of the said lands which shall have been rendered unfit for cultivation. If however, the amount of deposit is not sufficient to cover the cost of such restoration or fencing or filling in or to meet thirty times the assessment on the area rendered uncultivable, it shall be lawful for the Government to recover the balance by resort to Civil Court.

1010

- 8

컔

韻

2007

큃

100

춻

The second

明

400

A. Mposhing

ANTER: a jan har 286REGISTERED HOLDER/LESS COLLECTOR. KARUR.

08. The registered holder shall not be entitled to any remission of assessment respect of any of the said lands which shall be rendered unfit for surface cultivation by carrying on of any mining operation or by the deposit of mining waste, unless thirty times the assessment thereon has already been deducted under the preceding clause.

09. The registered holder shall not assign, lease or part with the possession of the said lands or any part thereof for the whole or any part of the said term without previous intimation in writing to the Collector.

- 10. All lands assessment, cess and seigniorage payable under these present shall be recoverable under the provisions of the Tamil Nadu Revenue Recovery Act, 1864, as if they were arrears of land revenue.
- 11. In the event of any breach by the registered by any of the conditions of this agreement, it shall be lawful for the Government to levy enhanced seignlorage or for the Collector give notice in writing to the registered holder of his intension to cancel these presents where upon the same shall stand cancelled but without prejudice to any rights which the Government may have against pattadar in respect of any antecedent claim or breach of covenant or condition.
- 12. Any notice to be given to the registered holder may be addressed to their last known place of abode and where a notice has been so addressed it shall be deemed to have been duly served for the purpose of these presents.
- 13. Should any question or dispute arise regarding the agreement executed in pursuance of these rules or any matter or thing connected therewith or the powers of the registered holder there under, the amount or payment of the seigniorage fee or area assessment made payable thereby, the matter in issue shall be decided by the Director / Commissioner of Geology and Mining. In case the registered holder / lessee is not satisfied with the decision of the Director / Commissioner of Geology and Mining, the matter shall be referred to the State Government for decision.
- 14. The registered holder shall abide by the conditions laid down in the payment of Wages Act 1936, (Central Act IV of 1936), the Mines Act, 1952(Central Act XXXV of 1952) and the Explosives Act, 1884 (Central Act IV of 1884).
- நிபந்தனைகள்:-
 - குத்தகை புலத்தினை அடுத்துள்ள பட்டா நிலங்களுக்கு 7.5 மீட்டர் இடைவெளி அளித்து குவாரிப்பணி புரிய வேண்டும்.
 - பொதுமக்களுக்கோ, பொது சொத்துக்களுக்கோ யாதொரு சேதமும் இன்றி பாதுகாப்பான முறையில் குவாரிப்பணி செய்ய வேண்டும்.
 - 3. பொதுமக்களின் நலன் கருதி பாதுகாப்பான முறையில் குறைந்த அழுத்தமுள்ள வெடிபொருட்கள் பயன்படுத்தியும், கைத்துளைப்பான் கருவி கொண்டு துளையிட்டும், தொழிலாளர்களின் பாதுகாப்பினை உறுதி செய்ய பாதுகாப்பானதும், அகலமான Benches அமைத்து குவாரிப்பணி செய்ய வேண்டும்.

RACT COLLACTOR

6

273-

*

wie Bri .a

4. மாநில சுற்றுச்சூழல் தாக்க மதிப்பீட்டு ஆணையத்தின் பரிந்துரை குடித்த SEIAA,TN/F.No.1426/1(a)/EC.No.3848/2015, நாள்.30.5.2017ல் கண்ட நிபந்தனைகளை முறையாக கடைபிடித்து குவாரிப்பணி செய்வதுடன், *நிழுது* நிபந்தனை 2. ல் கண்டவாறு குவாரிப் பணி ஆரம்பிப்பதற்கு முன்பாக் தமிழ்நாடு மாசுக்கட்டுப்பாட்டு வாரியத்தின் தடையின்மை சான்று பெற்று அதன் பின்னரே குவாரிப்பணி துவங்க வேண்டும். மாசுக்கட்டுப்பாட்டு வாரிய தடையின்மை சான்றினை குறித்த காலங்களில் புதுப்பிக்க வேண்டும்.

WAGBI .

278-

- குத்தகைதாரர் தனக்கு அளிக்கப்பட்ட குத்தகை பகுதியின் எல்லைகளை தெளிவாக காட்டும் வகையில் கல் நட்டு வண்ணம் இட்டு குத்தகை காலம் முழுமைக்கும் பராமரிக்க வேண்டும்.
- 6. குத்தகைதாரர் குவாரியின் அருகே குத்தகைதாரர் பெயர், கிராமத்தின் பெயர், வட்டத்தின் பெயர், புல எண். பரப்பு, குத்தகை ஆணை எண். குத்தகை காலம், கனிமத்தின் பெயர், போன்ற விபரங்கள் குறிக்கப்பட்ட தகவல் பலகையை தமது சொந்த செலவில் வைத்து நன்கு பராமரிக்க வேண்டும்.
- குவாரிக்கு சென்றுவரும் பாதை வசதிகள் குத்தகைதாரர்கள் அவர் தம் சொந்த பொறுப்பிலேயே அமைத்துக் கொள்ள வேண்டும்.
- குத்தகை வழங்கப்பட்ட பாறையில் குண்டுக்கல், ஜல்லி, அரளை கல், வேலிக்கற்கள், போன்ற சிறுகனிமங்கள் உடைத்தெடுக்க மட்டுமே அனுமதியுண்டு. வெளிநாடுகளுக்கு ஏற்றுமதியாகும் மெருகூட்டும் கனவடிவ கற்கள் வெட்டி எடுக்கக் கூடாது.
- குவாரியிலிருந்து கொண்டு செல்லப்படும் மேற்கண்ட வகை கற்களுக்கு 1959ம் ஆண்டு தமிழ்நாடு சிறுகனிம் சலுகை விதிகள் பின் இணைப்பு 2ல் கண்டுள்ளவாறு உரிமவரி செலுத்த வேண்டும். அரசு அவ்வப்போது அறிவிக்கும் உரிமவரி மாற்றங்களுக்கு ஏற்ப எவ்வித ஆட்சேபணை இன்றி செலுத்துதல் வேண்டும்.
- 10. குத்தகை அனுமதி வழங்கப்பட்ட நிலத்திலிருந்து கொண்டு செல்லப்பட்ட கற்களுக்கு முறையான கணக்குகளும், குழிவாயில் பதிவேடும் முறையாக பராமரித்தல் வேண்டும். அவற்றை சம்பந்தப்பட்ட அலுவலர்கள் தணிக்கைக்கு ஆஜர்படுத்த கோரினால் தவறாது சமர்ப்பிக்க வேண்டும்.
- 11. உதவி இயக்குநர் (புவியியல் மற்றும் சுரங்கத்துறை)-ன் அலுவலக முத்திரை, கையொப்ப முத்திரையுடன் கூடிய உரிய அனுப்புகைச் சீட்டை வாகனங்களுக்கு கொடுக்கப்படும் போது அனுப்புகைச் சீட்டில் வாகன எண். தேதி, புறப்படும் நேரம், செலுத்துமிடம் ஆகியவற்றை முறையாகக் குறிப்பிட்டு கையொப்பம் இட்ட பின்னரே, குத்தகைதாரரோ அல்லது அவரது அனுமதி பெற்ற நபரோ கொடுக்க வேண்டும். மேற்கண்டவாறு குறிப்பிடுவதில் ஏதேனும் தவறுகள் இருந்தாலோ, கலங்கள் பூர்த்தி செய்யப்படாமல் இருந்தாலோ முறையற்ற வகையில் கனிமம் எடுத்துச் செல்வதாகக் கருதப்பட்டு வாகனத்தை கைப்பற்றி அபராதம் விதிப்பதோடு, அதற்கு குத்தகைதாரரை பொறுப்பாக்கி கனிம விதிகளின் படி மேல் நடவடிக்கை எடுக்கப்படும்.
- 12. இந்த ஆணையில் குத்தகை அனுமதி வழங்கப்பட்ட புலத்ததை முழுமையாகவோ, பகுதியாகவோ எவருக்கும் உள் குத்தகைக்கு விடுவதோ அல்லது கிரையம் செய்வதோ கூடாது.
- 13. குத்தகைதாரர் ஒவ்வொரு நாளும் குவாரியில் இருந்து எவ்வளவு சிறுகனியங்கள் எடுக்கப்பட்டது என்பதையும் எந்த அளவு கனிமங்கள் வாரி/ வண்டி மூலம்* வெளியே அனுப்பப்பட்டது என்ற விபரத்ததையும் காட்டும் பதிவேட்டினைப் பராமரித்து வரவேண்டும்.

ASTAR'S

19

66

KARUR.

1615

COLLECTOR

REGISTERED MOLDER / LESS!

7

- 14. குத்தகைதாரர், தமக்கு குத்தகை வழங்கப்பட்ட பகுதிக்கு அருகில் ஆர்ர பட்டா நிலத்திற்கு எவ்வித இடையூறும் இல்லாமல் குவாரிப் பணி செய்யப்பட வேண்டும் கேல்லால் குவாரிப் பணி செய்யப்பட வேண்டும்
- 15. வண்டிப்பாதை மற்றும் நடைபாதைகளில் இருந்து 10 மீட்டர் தூரம் தள்ளி குவாரி செய்ய வேண்டும். ரோடுகள், புகைவண்டிப்பாதை, பொதுப்பணித்துறை, வாய்க்கால், பொதுமக்கள் உபயோகத்திற்கான பகுதிகள், மின்சாரம் மற்றும் தொலைபேசி கம்பி செல்லும் பகுதிகள், வழிபாட்டு இடங்கள் மற்றும் பழங்கால சின்னங்கள் உள்ள பகுதிகள் ஆகியவற்றில் இருந்து 50 மீட்டர் பாதுகாப்பு தூரம் விட்டு குவாரி செய்ய வேண்டும்.
- 16. குத்தகைக்கு விடப்பட்டுள்ள விஸ்தீரணத்தில் மட்டுமே குத்தகைதாரர் குவாரி செய்ய வேண்டும். அதற்கான கூடுதலான விஸ்தீரணத்தில் குவாரி செய்வது தெரியவந்தால் அபராத நடவடிக்கை மேற்கொள்வதுடன் குத்தகை இரத்து செய்ய நடவடிக்கை எடுக்கப்படும்.
- 17. குத்தகை நிபந்தனை மீறப்பட்டால் குத்தகை இரத்து செய்யவோ, செய்யப்பட்ட தவறுதலுக்கு அபராத நடவடிக்கை எடுத்து தண்டம் விதிக்கவோ அல்லது கிரியினல் வழக்குத் தொடுக்க மாவட்ட ஆட்சியருக்கு அதிகாரம் உண்டு. குத்தகை ரத்து செய்யப்பட்டால் காப்புத் தொகை உட்பட அனைத்து தொகைகளும் அரசுக்கு ஆதாயமாக்கப்படும்.
- 18. குத்தகைதாரர் தமிழ்நாடு சிறுவகைக்கனிம சலுகை விதிகள் 1959ல் கண்டுள்ள விதிகளுக்கும் மற்றும் அரசு அவ்வப்போது அறிவிக்கும் சட்டதிட்டங்களுக்கும் உட்பட்டு குவாரிப்பணிகள் செய்ய வேண்டும்.
- 19. குவாரி குத்தகை உரிமம் காலாவதியான பின்பு எக்காரணத்தை முன்னிட்டும் மீண்டும் புதுப்பிக்கவோ அல்லது கால நீட்டிப்போ செய்து தரப்பட மாட்டாது.
- 20. வெடிபொருள் சட்டம் 1884ல் தெரிவிக்கப்பட்ட சரத்துக்கள்படி குறைந்த அளவு வெடிபொருளை உபயோகித்து கற்கள் வெளியே சிதறாமலும், சத்தம் அதிகம் ஏற்படாமலும், பொதுமக்களுக்கும், கால்நடைகளுக்கும், எவ்வித பாதிப்பும் இன்றியும் கல்குவாரி பணி செய்யப்பட வேண்டும்.
- 21. வெடிபொருள்கள் அரசு உரிமம் பெற்ற விற்பனைதாரரிடம் மட்டுமே பெற்று வெடிப்பதற்கு உரிமம் / அங்கீகாரம் பெற்ற வெடிப்பாளர்களை (Blaster / Mines mate) கொண்டு கல் குவாரியில் வெடி வைக்க வேண்டும்.
- 22. குழந்தை தொழிலாளர்கள் எவரையும் வேலைக்கு அமர்த்துதல் கூடாது.
- 23. Any other conditions stipulated by other Statutory / Government authorities shall be complied.
- 24. If any illicit quarrying is found in the area in S.F.Nos.759/5 (1.40.0 hects), 764/3 (1.14.0 hects), 765/3 (0.48.0 hects), 766/1 (Part) (0.65.0 hects), 766/2 (1.14.0 hects) and 767/1 (0.11.5 hects) of Anjur Village, Aravakurichi Taluk, Karur District before the date of execution of lease deed this lease deed is liable to be cancelled and criminal action will be initiated.

சிறப்பு நிபந்தனைகள்:-

paraton

C V

> (1) புல எண். 759/1 மற்றும் 764/4 ஆகியவுற்றில் உள்ள பட்டா மண் பாதைக்கு 10 மீட்டர் பாதுகாப்பு இடைவெளியிட்டு குவாரி பணி செய்ய வேண்டும்.

124-1

Ji OBI

273-

a

1. 2. 3. 4. 5.

પેલ કરે

(2)

124

மேற்கூறிப்பிட்ட நிபந்தனைகள், சிறப்பு நிபந்தனைகள் மற்றும் கனிம சப்டப் விதிகளை மீறியுள்ளது உறுதிபடும் தருணத்தில் விதிமுறைகளுக்கு உட்பட்டு குத்தகை இரத்த செய்ய நடவடிக்கை எடுக்கப்படும். மேற்கண்ட நிபந்தனைகள் ஒப்பந்தப் பத்திரத்தில் கண்டுள்ள நிபந்தனைகள், மாநில சுற்றுச் சூழல் தாக்க மதிப்பீட்டு ஆணையத்தின் நிபந்தனைகள் மற்றும 1959-ம் ஆண்டு தமிழ்நாடு சிறுகனிம சலுகை விதிகள் ஆகியவற்றின் அடிப்படையில் குத்தகைதாரர் குவாரிப் பணி புரிய வேண்டும்.

As per the Approved Mining Plan, the total production of Rough stone for five years lease period is 45,200 cubic meter. Hence, based on the approved Mining Plan, for the purpose of calculating stamp duty the anticipated seigniorage fee is Rs.20,34,000/- (Rupees Twenty Lakhs and Thirty Four Thousand Only) for the entire lease period of 5 years.

THE SCHEDULE

Name of the District

- 2. Name of the Taluk
- 3. Name of the Village
- Name of the Sub Registration District
- Lease Period

Aravakurichi 🦿

Karur

24-07-

US CE IE IT ...

: Anjur 🤇

5

6

- : Chinnatharapuram
 - : 05 years '

BOUNDARIES Total Area Survey Extent Assess ment Number Hects. Rs. North By SF South by East by West by No. SF No. SF No. SF No. 759/5 1.40.0 759/4 757 < 765/3 . 759/1 < Rs.2,465/-(Rs.100/~ per hects, 764/3 1.14.0 per year) 764/2 767/1,2,3,4 764/4 765/2,3 765/3 0.48.0 765/2 766/1,2/ 764/3/ 759/4,5 766/1 (Part) 0.65.0 765/3 766/1(P) 766/2 757 766/2 1.14.0 766/3, 765/3 756 766/1 767/1 767/1 0.11.5 764/3 1 767/2 767/2 766/2. 19.10 1 1 1 161814.2 4.92.5 290655

From 23.6.2017 to 22.6.2022

IN WITNESS WHERE OF, Thiru.S.Kuppusamy, S/o.Samiyapuratunder, Saliyangattupallam, Udaiyam Village, Kangeyam Taluk, Trippur District The registered holder / lessee' and Thiru.G.Govindaraj, I.A.S., District Collector, Karu acting for and on behalf of and by the order and direction of the Governor of TamilNadu have hereunto set their hands.

10

Signed by the above named SF in the presence of

1. (-HANDRA JOHARAN) . (-HANDRA JOHARAN) . 1. 12 michadroupe Curts highhanga poron Pro Man D. T.

2. 12-5 R. Ser. UMPAJ) 5796, Michaelauguna 15. Permiting. 100 Maner D.S.

TOR. KARUR.

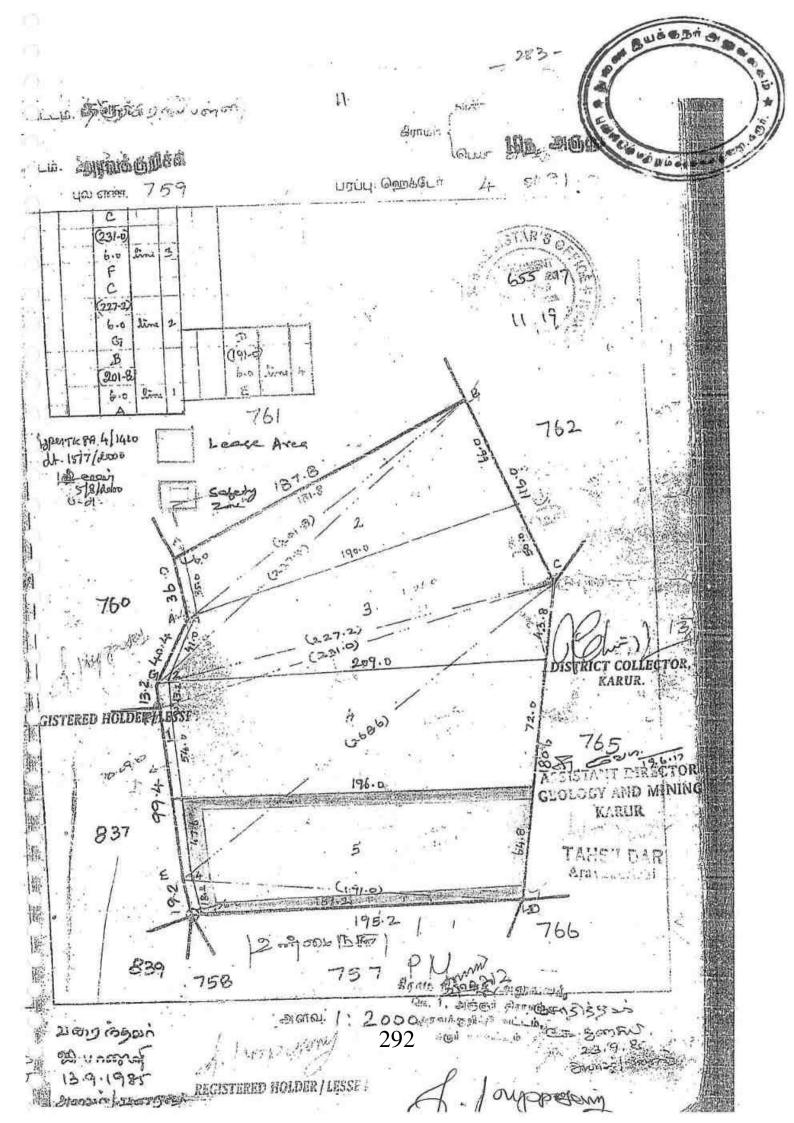
281-

க் கை கா

Signed by the above named in the presence of

1.

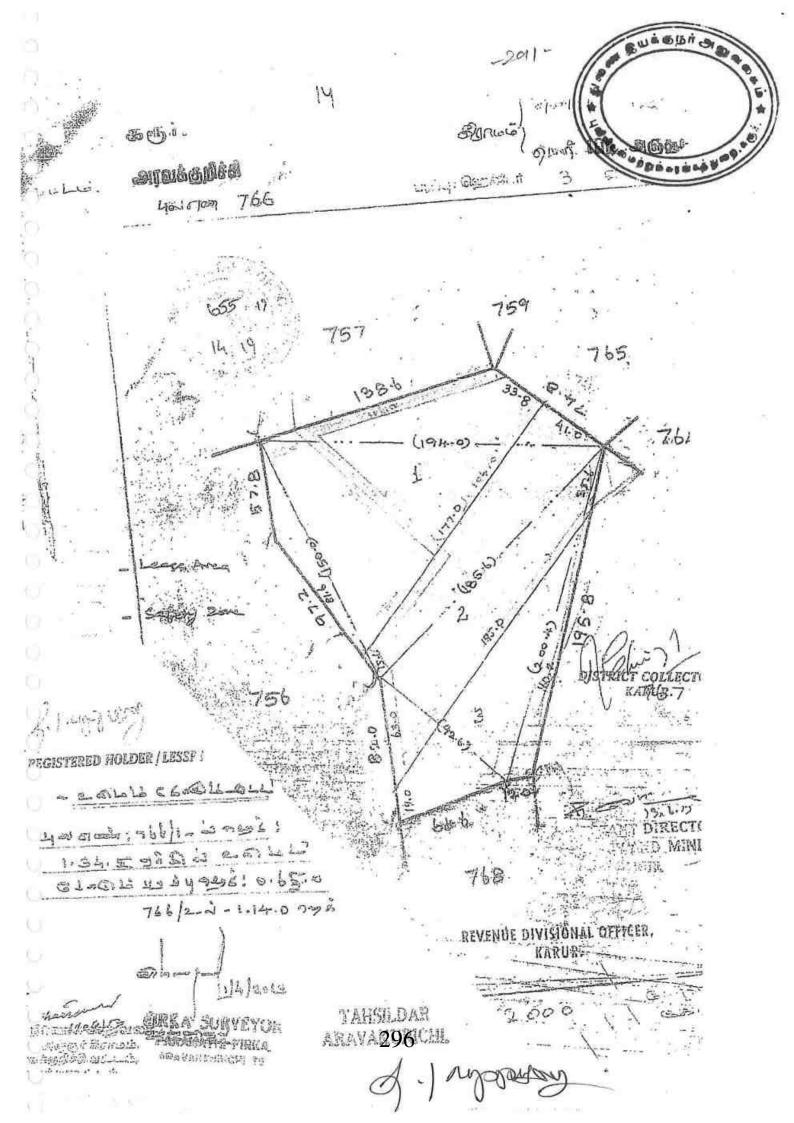

2.

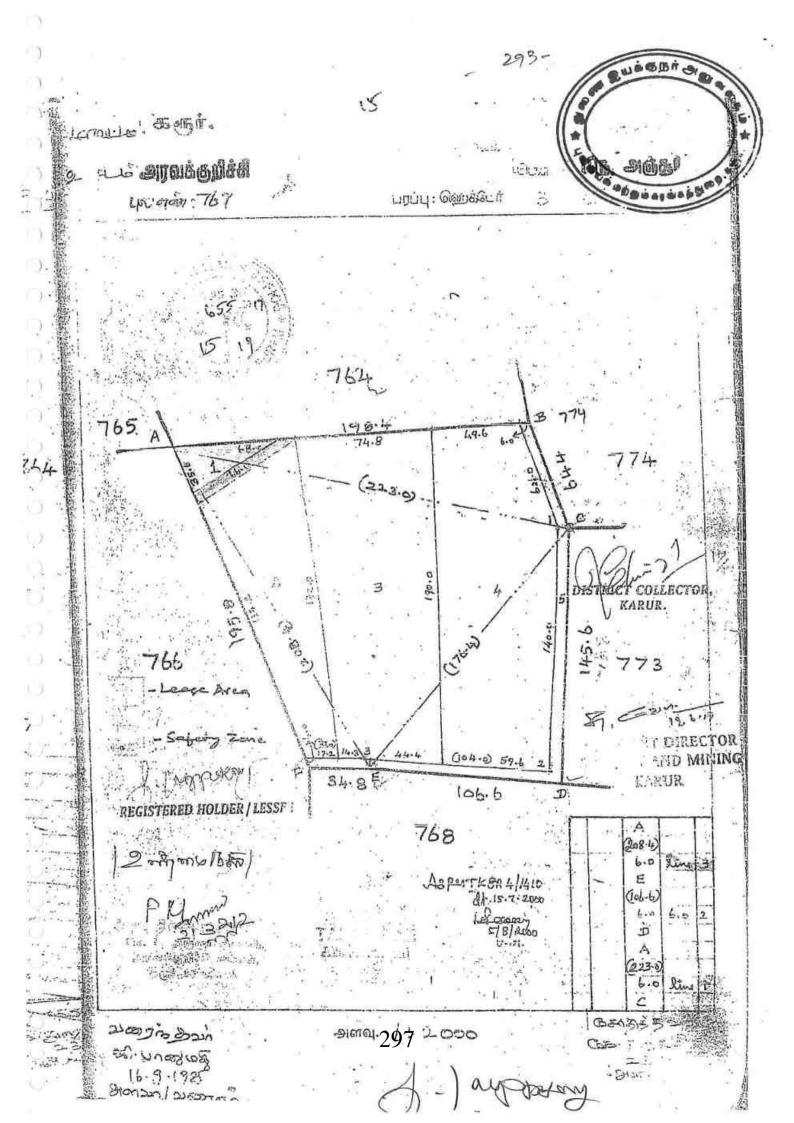

S.VEDIAPPAN)

TX ASSISTANT DIRECTOR GEOLOGY AND MINING KARUR

Special Revenue Inspector (Mines) (Karur.


gan Chrinnathottan Arongapalayan L.NO.A.SortkRR/93 secon





US SIBI 285 14 要越信alga ivonan) 50 கிராமம் 國國自由國際 GLUUT 10. பரப்பு: ஹெக்டோ ojii. - 2 ଧ୍ୱରା ଗଙ୍ଗ୍ୟେ. 762 RUR. 8 Se. 2. 38. 167-15,1 DIRECTO 766 BININ C DSR/LESSI REGIS Tered Ho parte Bhallau di-15/7/2000 1006 M Qacios TOF LOW 9000 3000 90.1. 2000 Agread. द्रणा भारत हो हो है के दिन क COL LESS 00 J mg 201 CHARLESTIC 000 ക്രിണ്ടപ്പും (? 2 Vinena :198 293 Scons planos rag

ui BBA 283-13 如此之后; 骤图管, ologn Caries BUNLAS 如何 196, Job 400 1001.765 , എ: യ്ളാർഗ്, എ ซนํ 14.0 763 762 68 10,100 69.0 57 55 30 。小切开时 et colli karur. REGISTERED HOLDER/LESSE 196.2 759 164 Domono BR) DIRECTOR 1.7 .) MINING 5 2 ASPENTICEA4/1410 dt 15.7. 2000 Sab Blats Sallies On. 1. Action Annual Annascolati milya Dani கஞர் மாலட்ட 518/2000 0.7 A. W. 57 74 766 BILLIO - 294 ·哈子·南方子》 התפהיטה לט הסי ש Batta . Bynd Stad 1985 1. 50. 4 mist

us ofbr a 295 16 \$55/2017/BK1 Presented in the Office of SUB REGISTRAR GRADE I of Chinnadarapuram and fee of between hours of 200 and _____ on 13/07/2017 by 1 Left Thumb f. langousary Additions As per the recitals of the document Execution Admitted by 1 Left Thumb Additions As per the recitals of the document Claim Admitted by I have satisfied my self as to the execution of the Instrument by Thiru Thiru. G.Govindaraj, I.A.S., District Colloctor, Karur, who is exempted from Personal Appearance under Section 88(1) of the Registration Act. Identified by Endorsement Sheet no. 1 of 2

- 29:1 -650 Pandiling Post Anju Karur Aravakur Dt · DOW = = Saliyankattupalan Muthur Via, Kankayam Tk Tiruppur Dt

SUB REGISTRAR GRADE I

S/o Samiyappagounder

Chinnadarapuram

S/G Kumarasamy

Registered as No 655 of 2017 of Book I

3 on SUB REGISTRIAR Chinnadarapuram

Date : 13/07/2017

GRADE I

vame : Sadasivam, K

Name : Palanisamy. S

Endorsement Sheet no. 2 of 2

299

0.0.00

" permit

(

Ô

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

O)

Ó)

is BBn 20,0 18 anaffri angeler ingen temperente AADHAAP இந்திய அரசாங்கம் antileation Authonny. ் 🦂 ் அடையாளத்திர்கான என்று. குடியுரினமக்கு Government of India பற்றோடம் சன்/Enrolment No.: 2189/81706/00950 ு அடையாள என்றை ஆன்னான் ஆதன்டிகேஷல் மூலமாகப் பெறவும். ் இது எலக்ட்ரானிக் செயல்முறை மூலம் தடாரிக்கப்பட்ட To எம்பம் குட்டிகை Samiappan Kuppusamy Thorne S/C Samiappagounder Confidence and Date is a proof of identity, not of citizenship. 95 SALIANKATTUPALAM THOTIYAPALAYAM . To establish identity, authenticate online. 2 06201 This is electronically generated letter. Muthur Tiroppur Muthu Tamil Nadu - 638105 9842955498 ு ப்தார் நாடு முழுவதிலும் செல்லுபடியாகும். ் வருங்காலத்தில் அரசு மற்றும் அரசு சாரா சேவைகளை பயன்படுத்திக் கொள்ள ஆல்ர் உதவிகரமாக இருக்கும் Dates · Padrace is valid throughout the country. Terratory Residences tear and will be helpful in availing Government L'ANDIED and Non-Government services in future உங்கள் ஆக்கர் எண் / Your அன்னை No. : 3901 3161 7273 எனது ஆச்சி, எனது அடையாளம் The second s × .-(iii) இந்திய அரசாங்கம் Thrue scale saturation for the Sec 3 Government of India SEW Unique Identification Authority of India Mid Lüudrişdiyenir Samlappan Kuppusarny (முகவரி: SIO: சுமியர் – கூடிண்டர், 95, Address: S/O: Samlappaguunder, 95 SALIANKAT i UPALLAM. THOTIYAPALAYAM, Muthur. 1555 5Rd/ DOB: 25/11/1958 சாலி பங்காட்டுபன்னம், Skir MALT தொட்டியபாளையம், முக்தார், திருப்பூர், தமிழ் நாடு - 638105 Tiruppur. Tamii Nadu - 638105 3901 3161 7273 3901 3161 7273 எனது ஆத்தி, எனது அடையாளம் TER 2 WAR . www.uidaugov approsters

IS C DA - 301-國 040.00 命国語 gegen approximate 35 1550 - results and the second of the second 15.483 Government of India Unique Identification Authority of India 0/4/1 தாசிலம் துவரசாமி ເພຣລທີ Address: Sadasivam Kumarasamy SC. Gunnamb, 22. S/O: Kumarasamy, 22, PANDILINGAPURAM, ANJUR, ឃិញធ្វីន្ត ត្រាតាំ / DOB : 17/01/1945 பால்ஷவிங்கபுரம், அந்தர், பாண்டிலில்லாறம் போல்லடு. പ്പർസ്ഥാസ് / Mala PANDILINGAPURAM POST, காரவழி, கொடுமுடி, களூர், Karvazhi, Kodumudi, Karur, Tamil தமிழ் நாடு, 638151 Nodu, 638151 9036 6516 1532 9036 6516 1532 - சாதாரண மனிதனின் அதிகாரம் 无论 X 1 **N** 1047 del.ore K. Adnoras भारत सरकार ्यसरतीय विशिध्यः पहचान प्राधिकरण ·注意有**的DESEMP**的INFORM CHARLES AND THE PROPERTY OF INDIA" मा upalland S Palanicany eperault: Addraces: S/D saullenicumojein.i., 90, S/O Samiyappopounder, 93, Saleniuttupalism, srailminnri Quidsmin, Jøjs prå / 008 : 63/08/1053 Thotilyapelayan, Muthar, Tirupper, Tanul Norta, 638105 நொட்டியமானையல், குத்தார். நிடுப்புர், தமிழ் நாடு, 638105 MALE 8505 8167 7478 ஆதார் – எதுரைசை மனிதனின் அதினரம் 1947 1500 305 1947 國際國際 X helpsi wuldal.govin P.O. Box No. 1847, Bengeturu-Seo 001

- 303in Comin 2 2 ch र्साल्टल maturar director सत्यमेव जयते INDI DIA NON JUDICIA தமிழ்நாடு तमिलनाडु TAMILNADU 6050. B 009614 1600TECTTI/AISDUT BUSYBAL) கடை வீத் முத்திரைதான் விட்பணையாளா சின்னதாரஎபுரம், களுர் மாலட்டம் Fronwis Boll in mon B. and: 646/311/92 653 22-5-92 Rs. 4,32,000/-T@TAL SEIGNIORAGE AMOUNT (5 Years) 5,000/-SECURITY DEPOSIT Rs. 2,285/-AREA ASSESSMENT (5 Years) Rs. (Proceedings of the District Collector, Karur Rc.B/597/G&M/2006 dated 26.02.2007) APPENDIX-V (See Rule 33) FORM OF AGREEMENT FOR QUARRYING AND CARRYING AWAY MINOR MINERALS BY LESSEE IN RYOTWARI LANDS IN WHICH THE MINERALS BELONG TO GOVERNMENT. AGREEMENT made this 16th day Manch of 2007 between Thiru S.Palanisamy, S/o. Samiappa Gounder, Saliyankattupallam, Muthur Post, Erode Taluk, Erode District (hereinafter referred as "the registered holder" which term shall where the context so admits include also their heirs, executors, administrators, legal representatives and assigns) the of first part and Correction 7 NA Insertion. Ni DISTRICT COLLECTOR KARUR. STERED HOLDER (LESSEE) REGISTERED HOLDER

T ru S.Kuppusamy S/o. Samiappa Gounder, Saliyankattupallam, Muthur Post, Erode Taluk, Erode District (herein after referred to as "the lessee" which expression shall where the context so admits include his heirs, executors, administrators legal representatives and assigns) of the second part and the Governor of Tanir Madu (hereinafter referred to as "the Government" which expression where the context admits, include also his successors in office and assigns) of the third part.

Whereas the registered holder hold the lands described in the Schedule hereto and intends to lease out to the lessee of the said lands for the purpose of quarrying ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING ONLY in the said lands and to deposit quarrying waste in the said lands and has lodged with Collector the lease and accurate map or sketch of the said lands.

AND WHEREAS the lessee or tenant of the registered holder has made application to the Collector of the District of Karur (hereinafter referred to as "the Collector") seeking grant of quarrying lease for ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING ONLY in the said lands and to deposit quarrying waste in the said lands and has lodged with the Collector an accurate map or sketch of the said lands.

AND WHEREAS the Collector, acting for and on behalf of the Government, has granted a quarrying lease to the lessee or tenant of the registered holder and allowed him to commence quarrying operations for ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING ONLY in the said lands and to deposit quarrying waste thereon by the lessee or tenant of the registered holder

AND WHEREAS the Collector is prepared to allow the said registered holder or lessee to commence quarrying operations and to deposit quarrying waste in or on the said lands described in the Schedule for a period of Five years from 16.

AND WEHREAS the lessee has deposited with the Collector, the sum of Rs.5,000/- (Rupees five thousand only) as Security for the due performance or the covenants, agreements and provisos or damage which may be incurred by the Government by reason of any of the said lands described in the schedule hereto being

Correction 3 NE

 \square

 (\Box)

8) - `

1.01

î.

Y

1°

Thut

DISTRICT COLLECTOR KARUR.

and the second second water with the second second

REGISTERED HOLDER (LESSEE)

phone

REGISTERED HOLDER

_305-

GБń

rendered unfit for cultivation by the quarrying operations therein or by the perosit of quarrying waste thereon by either the registered holder or the lessee.

AND WHEREAS the lessee has at the request of the registered and and in consideration of such approval by the Collector of the quarrying operations as herein before recited agreed to join in these presents for the purpose of entering into covenants, agreements and provisos hereinafter contained as surety for the registered holder.

NOW THESE PRESENTS WITNESS and the registered holder and lessee do hereby jointly and severally and each of them doth individually hereby covenant and agree with the government as follows:

1. To carry on quarrying operations during the said term in a proper and workmen like manner and to deposit quarrying waste on the lands described in the schedule hereto and to answer and to account at all reasonable times to the Government for all acts and defaults committed by any servants, agents or workmen employed by the registered holder or lessee in carrying on such operations or in making such deposit.

 To abide by the rules prescribed by the Government from time to time regarding quarrying of ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING ONLY.

4. To keep correct accounts in such form as the Collector shall from time to time require and direct showing the quantities and other particulars of all minerals obtained by the registered holder or the lessee from the said lands and also the number of persons employed in carrying on the said quarrying operations therein and to prepare and maintain from time to time when so directed by the said Collector complete and correct plans of all mines and working in the said lands and to allow any officer hereunto authorised by the Commissioner and Director of Geology and Mining, Chennai from

Correction : No

3 Ulun

DISTRICT COLLECTOR KARUR.

SISTERED HOLDER

(LESSEE)

REGISTERED HOLDER

3

307

uis OBri

3001-

118 SI51

time to time and at all times to examine such accounts and any such plans and the same supply and furnish when so required all such information and returns regarding all or any of the matter aforesaid as the Government may, from time to time, require and direct :

5. To allow any officer authorised by the Commissioner and Director of Geology and Mining, Chennai in that behalf from time to time and at all times to enter upon any part of the said lands where any mining operations may be carried on for the purpose of inspecting the same.

6. To forthwith send to the Collector a report of any accident which may occur at or in the said lands and also of the discover therein of any mineral other than ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING.

7. Not to claim any remission of assessment in respect of any of the said lands which shall be rendered unfit for surface cultivation by the carrying on of any quarrying operations or by the deposit of quarrying waste unless thirty times of the assessment thereon has been deducted under proviso 2 hereunder ..

PROVIDED ALWAYS and it is hereby further agreed by and between the parties as follows:-

That it shall be lawful for the registered holder or lessee as the case 1. may be at any time to cease quarrying operations under these presents provided the registered holder or lessee shall pay the Government or the Collector the land assessment, cess and seigniorage payable by the registered holder or the lessee under these presents upto the end of the year in which the registered holder or the lessee shall cease such quarrying operations and shall restore the said lands fence or fill in abandoned pits and excavations therein if required by the Collector as next hereinafter provided and upon, the registered holder or the lessee so doing these presents shall cease and determine.

2. That in case the registered holder shall relinquish the whole or part of the said lands in case of the expiry of sooner determination of this agreement then and in any such case. The registered holder in the case of relinquished and the registered holder and the lessee in other cases shall restore said lands or the area relinquished or so much thereof as the Collector shall require to be restored to a state fit for cultivation

Correction " NE

in ha

Insertion,

aller

DISTRICT COLLECTOR KARUR.

S.CO.

REGISTERED HOLDER

READSTERED HOLDER (LESSEE) X12Ken

÷

OBi O

and shall securely and permanently fence or fill in all abandoned pits and excavations therein as the Collector shall require to be so fenced or filled in and in case the registered holder or the lessee shall fail or neglect to restore any such lands with the registered holder or the lessee be required to restore to a state fit for cultivation or to so fence or fill in any such abandoned pit, or excavation which the registered holder or the lessee shall be required to so fence, or fill them and in any such case, it shall be lawful for the Collector to so restore any such lands, or as the case may be, to so fence or fill in any such pit or excavation at the expense of the registered holder and to apply the said sum of Rs.5,000/- so deposited in or towards the cost of so doing and to deduct from the amount of the said deposit and retain on behalf of the Government a sum equal to thirty times the assessment of the said lands which shall have been rendered unfit for cultivation.

If however, the amount of deposit is not sufficient to cover the cost of such restoration of fencing or filling as the case may be or to meet thirty times the assessment in the area rendered uncultivable, it shall be lawful for the Government to recover the balance by resort to Civil Court.

3. That all area assessment, cess and seigniorage payable under these presents shall recoverable under the provisions of the Tamil Nadu Revenue Recovery Act, 1864, or any subsisting statutory modification thereof, as if the same were arrear of land revenue.

4. That in the event of any breach of the registered holder or any of the conditions of these presents it shall be lawful for the Government to levy enhanced seigniorage subject to the maximum of five times of the normal rate or for the Collector to give notice in writing to the registered holder of their intention to cancel these presents whereupon the same shall stand cancelled but without prejudice to any rights which the Government may have against the registered holder in respect of any antecedent claim or breach of covenant or condition.

5. That any notice to be given to the registered holder may be addressed to their last known place of abode and where a notice has been so addressed it shall be deemed to have been duly served for the purpose of these presents.

Correction : NA

3.600

REGISTERED HOLDER

J. Uhr

DISTRICT COLLECTOR KARUR.

BEGISTERED HOLDER (LESSEE)

6. Should any question or dispute arise regarding an agreement executed in pursuance of these rules or any matter or thing connected therewith or the powers of the registered holder thereunder, the amount or payment of the seigniorage fee of area assessment made payable thereby, the matter in issue shall be decided by the Commissioner and Director of Geology and Mining, Chennai. In case the registered holder/lessee is not satisfied with the decision of the Commissioner and Director of Geology and Mining, the matter shall be referred to the State Government.

Wages Act, 1936 (Central Act IV of 1936), the Mines Act, 1952 (Central Act XXXV of 1952) and the Indian Explosives Act, 1884 (Central Act IV of 1884).

OTHER CONDITIONS

2) The lessee should register the agreement deed in the concerned Sub-Registrar Office, at the expense of the lessee within 30 days from the date of execution of the agreement.

3) The lessee shall remove or transport the ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING ONLY from the lease area only after payment of area assessment, seigniorage fee or dead rent whichever is higher at the rates prescribed from time to time in Appendix-II to the Tamil Nadu Minor Mineral Concession Rules, 1959 and after obtaining transport permit and despatch slips from the District Collector or the Officer authorised by him in this behalf.

4) The lessee should keep correct accounts showing the quantities and other particulars of all minerals obtained from the leasehold area and maintain registers at the quarry site.

5) The lessee should send monthly report to the Deputy Director of Geology and Mining, Karur furnishing the particulars of the quantities of Minerals quarried, transported etc., before 5th day of every month.

Correction # NE

à

Insertion: # M

ab UNS

DISTRICT COLLECTOR KARUR.

AEGISTERED HOLDER (LESSEE)

307

REGISTERED HOLDER

313-

us @Br.

6) The lessee shall not disturb nearby habitations. buildings, water course, banks or water tanks, rivers, trees, roads, cart tracks, foot path and the public properties while quarrying in the leasehold area.

7

7) The lessee shall not cause hindrance to the adjoining pattadars public while quarrying in the leasehold area.

8) A safety distance of 500 metres to the nearby habitations, and 50 metres to the roads, railway lines, and electric and Telephone lines and 10 metres to foot paths, village roads should be left while quarrying.

9) The lessee should allow any officer authorised by the District Collector or any officer authorised by him in this behalf or any other officer authorised by the State Government in this behalf to inspect the area and verify records and accounts and furnish such information under the terms as may be required by them.

10) The lessee shall carry out the quarrying operations in skilful, scientific and systematic manner keeping in view of the proper safety of the labour, conservation of minerals and preservation of environmental ecology.

11) The lessee shall allow any officer authorised by the District Collector and Commissioner and Director of Geology and Mining to enter upon the area and inspect for the purpose mentioned to conditions (4) and (10) above and also carry out the directions issued to the satisfaction of the above said authorities.

12) No quarrying and activities connected there to shall be done before the execution of lease deed and its registration at the cost of the lessee.

13) The lessee should restrict his quarrying operation strictly within the permitted area as defined in the sketch.

14) The lessee should maintain at his cost proper sign boards indicating the Survey numbers, Years of the lease, Name of the lessee and the lease period to the satisfaction of the District Collector/Commissioner and Director of Geology and Mining and maintain it at all time at the quarry site.

15) No working shall be made within a distance of 7.5 metres of the boundaries of the permitted area.

16) The lessee should make his own arrangements to form the approach road from the public road to the place of his quarry.

Correction 7 Wi

2 10

Insertion. 3 Ni

2111

COLOR DESCRIPTION OF THE REPORT OF THE REPOR

...............

DISTRICT COLLECTOR KARUR.

Section ?? REGISTERED HOLDER

(LESSEE)

17) The lessee shall, at his own cost, erect boundary marks mund the area shown in the plan annexed to the lease deed and in which he works minerals and at all times maintain and keep such boundary marks in good repair and condition at all times maintain and keep such boundary marks in good repair and transportation

8

31+-

8

US SIDI C

18) The lessee shall remove, or allow removal and transportation ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING from the area where quarrying is permitted only after obtaining bulk transport permit and fascimiled despatch slips in the forms prescribed in Appendices XII and XIII to Tamil Nadu Minor Mineral Concession Rules, 1959 from the officer authorised in this behalf by the District , Collector. The registered holder or his men in turn shall issue the fascimiled despatch slips to the vehicles used for removal or transportation of ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING furnishing the particulars in the despatch slips specifically indicating the vehicle number, the quantity of ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING allowed to be transported by the vehicle by using that despatch slip and the time of issue of the despatch slips to the vehicle. All the vehicles used for transporting ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING from the said . lands shall be in possession of the individual despatch slips for the quantity of the ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING available in the vehicle at all the times of transportation of the ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING by the vehicle. Proper accounts should be maintained for permit and despatch slips obtained, issued etc.

19) The lessee shall use the said lands only for the purpose of quarrying ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING specified in the quarry lease. If any error or wrong description of the mineral is found in the order granting the quarrying lease or in the lease deed, it is liable to be corrected at any time and the lessee shall not claim any right whatsoever based on any such error or wrong description of the minerals found in the order granting quarrying lease or in the lease deed.

20) The lessee should not quarry stones in block which can be used for polishing and export purposes.

21) The lessee should not quarry stones more than 30 Cubic Centimetre in size.

Correction : Nt)

Tollet

DISTRICT COLLECTOR KARUR.

rements in the Constant State of the State o

REGISTERED HOLDER (LESSEE)

3()9

REGISTERED HOLDER

Ses ----

22) If any mineral not specified in the lease deed is discove registered holder shall not win or dispose of such mineral without obtaining the permission of the authority empowered to grant lease for quarrying of the discovered principle minerals and without payment of seigniorage ice. If the registered holder fails to intimate the Collector the discovery of such new minerals within a period of 30 days from the date of discovery of the mineral, the Collector may levy enhanced seigniorage fee upto 15 times of ordinary seigniorage fee.

9

23) The lessee is not entitled to remove the ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING from the said land after expiry of the period of the quarrying lease granted.

24) The lessee shall not sublet the lease to anybody.

25) The lessee shall not claim compensation from the Government for the losses if any incurred by him in quarrying.

26) The lessee shall be held responsible for accidents if any happened to the labourers and others while quarrying and Government shall not be held responsible for this.

27) The lessee shall be held responsible for all losses due to improper working of the quarry during and after the period of lease and he should pay the penalty to be levied for this.

28) Simple interest at the rate of 24% per annum or at the rates prescribed by the Government from time to time shall be levied, if the amount due to Government is not paid within the due date.

29) The arrears of any amount payable shall be recovered under the provisions of the Tamil Nadu Revenue Recovery Act, 1864.

30) In case of breach by the lessee or his transferee or assignee of any of Tamil Nadu Minor Mineral Concession Rules, 1959 or of the conditions of the lease, the Government/the Commissioner and Director of Geology and Mining /the District Collector without prejudice to any other penalty which may be therein imposed in respect of such breach, may cancel the lease after granting an opportunity of hearing to the said person.

Correction 249

Insertion, J M

2 Vlld

1

6 6 16 m

319

DISTRICT COLLECTOR KARUR.

REGISTERED HOLDER (LESSEE)

REGISTERED HOLDER 31) The terms and conditions are also subject to such the modifications, deletion and additions alterations as may be ordered by the Government from time to time.

32) The lessee shall pay seigniorage or dead rent whichever is more in respect of the actual quantity of ROUGH STONE SUCH AS ARALAI, JELLY & SHOLING removed at the rates prescribed from time to time in Appendix-II of the Tamil Nadu Minor Mineral Concession Rules, 1959. Besides seigniorage or dead rent the lessee has to pay area assessment. The lessee has also to pay any other amount prescribed by the Government from time to time.

33) The lessee shall comply with provisions of Labour Laws applicable to stone quarry. Any contravention of the provisions shall attract legal proceedings of the appropriate Government.

34) The lessee should leave a safety distance of 10 metres for the cart track running on the southern side of the area granted for quarry lease.

35) The lessee should leave a safety distance of 10 metres for the public path in SF Nos. 759/1 and 764/4.

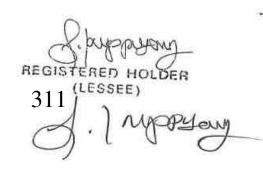
36) Besides the above said conditions, the lessee shall abide by the conditions laid down in Tamil Nadu Minor Mineral Concession Rules, 1959 and Mines and Minerals (Development and Regulation) Act, 1957 and the orders of the Government, Commissioner and Director of Geology and Mining and Collector to be issued from time to time.

THE SCHEDULE

Name of Taluk: Aravakurichi

Name of Village: Anjur

S.F.	Extent in	Assessment	BOUNDARIES				
NO.	Hectares	11	NORTH	SOUTH	EAST	WEST	
759/5	1.40.0	Rs. 100/- per hectare per annum	S.F.No.759/4	S.F.No.757	SF.No.765	S.F.No.759/1	
764/3	1.14.0		S.F.No.764/2	S.F.No.767	SF.No.764/4	S.F.No.765	


Correction ? N

Sem?

REGISTERED HOLDER

July.

OISTRICT COLLECTOR KARUR

- 321

*

ORM

			11		(*) E	47. 105
765/3	0.48.0	5	S.F.No.765/3	S.F.No.766	SF.No.76	6 F.No.759
766/2	:1.14.0	;	S.F.No.766/1	S.F.No.766/3	SF.No.764, 765, 767	and a will a will a w
767/1	0.11.5	gale to	S.F.No.764	S.F.No.767/2	SF.No.767/3	S.F.No.766
767/2(p)	0.29.0	1	S.F.No.767/1	S.F.No.767/5	SF.No.767/3	S.F.No.766
Total	4.56.5					

IN WITNESS Whereof Thiru S.Palanisamy, registered holder and Thiru S.Kuppusamy the lessee, Thiru.T.N.Venkatesh I.A.S., District Collector, Karur acting for and on behalf of and by the order and direction of the Governor of Tamil Nadu have hereunto set their hands.

Signed by the above named

Witness

R. SUNDARAM 12/47. The Maralader. Swagn Goods DT Samerat S.K. Satraman Saligar baling pullary muther Po 608705-(Julling

Signed by the above named Witness

2. (

Signed by the above named

1. Sondrond P-SUNDHROM. 12607. Thatson akander Sinagar, Eoode Di S. D. Babramany Salargaturallan muther po 638703

REGISTERED HOLDER (LESSEE)

and long and

5.32

REGISTERED HOLDER

க்குறா அ

Jule

DISTRICT COLLECTON KARUR.

1.

Witness

DEPUTY DIRECTOR. GEOLOGY AND MINING. KARUR.

2. · 211 SISTANT Office of the Deputy Director, GEOLOGY & MINING. Ser Dis.

312 - Jayportani

TAMILNADU POLLUTION CONTROL BOARD

Category of the Industry :

RED

CONSENT ORDER NO. 2208244919289

DATED: 22/04/2022.

325

PROCEEDINGS NO.F.0803KAR/RS/DEE/TNPCB/KAR/A/2022 DATED: 22/04/2022

- SUB: Tamil Nadu Pollution Control Board RENEWAL OF CONSENT -M/s. S KUPPUSAMY ROUGH STONE QUARRY, S.F.No. 759/5, 764/3, 765/3, 766/1(P), 766/2 & 767/1, ANJUR 2 PARTS village, Pugalur Taluk and Karur District - Renewal of Consent for the operation of the plant and discharge of emissions under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) -Issued- Reg.
- REF: 1. CTO Proc. NO. F.0803KAR/RS/DEE/TNPCB/KAR/W&A/2017 DATED: 16/11/2017. 2. Unit's application for RCO through OCMMS on 14/4/2022. 3. IR.No : F.0803KAR/RS/AEE/KAR/2022 dated 21/04/2022.

RENEWAL OF CONSENT is hereby granted under Section 21 of the Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987 (Central Act 14 of 1981) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Proprietor

M/s.S KUPPUSAMY ROUGH STONE QUARRY, S.F.No. 759/5, 764/3, 765/3, 766/1(P), 766/2 & 767/1, ANJUR 2 PARTS village, Pugalur Taluk, Karur District.

Authorizing the occupier to operate the industrial plant in the Air Pollution Control Area as notified by the Government and to make discharge of emission from the stacks/chimneys.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

1

This RENEWAL OF CONSENT is valid for the period ending June 22, 2022

RAVICHANDRAN KANDASAMY Digitally signed by RAVICHANDRAN KANDASAMY Date: 2022.04.22 18:40:02 +05'30'

Que anis

சுதந்திரத்திருநூள்

அமுகப்பெருவிழா

District Environmental Engineer, Tamil Nadu Pollution Control Board, KARUR

TAMILNADU POLLUTION CONTROL BOARD

SPECIAL CONDITIONS

 This renewal of consent is valid for operating the facility for the manufacture of products (Col. 2) at the rate (Col. 3) mentioned below. Any change in the products and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

SI. No.	Description	Quantity	Unit
	Product Details		
1.	Rough Stone	45200	Cu.m in Five years
	By-Product Details		
1.	Nil	0	
	Intermediate Product Details		
1.	Nil	0	

2. This renewal of consent is valid for operating the facility with the below mentioned emission/noise sources along with the control measures and/or stack. Any change in the emission source/control measures/change in stack height has to be brought to the notice of the Board and fresh consent/Amendment has to be obtained.

11	Point source emission with stack :						
Stack No.	Point Emission Source	Air pollution Control measures	Stack height from Ground Level in m	Gaseous Discharge in Nm3/hr			
n	Fugitive/Noise emission :						
Sl. No.	Fugitive or Noise Emission sources	Type of emission	Control measures				
1.	Top soil removal	Fugitive	Water Sprinklers				
2.	Drilling Operations	Fugitive	Water injection				
З.	Blasting	Fugitive	Good blasting practices and water spray guns				
4.	Loading, unloading and hauling	Fugitive	Water Sprinklers using Tanker lorries &water spray				
5.	Blasting	Noise	Good blasting practices				

314

U,

TAMILNADU POLLUTION CONTROL BOARD

Special Additional Conditions:

The unit shall install the approved retrofit emission control device/equipment with at least 70% Particulate matter reduction efficiency on all DG sets with capacity of 125 KVA and above or otherwise the unit shall be shift to gas based generators within the time frame prescribed in the notification No. TNPCB/Labs/DD(L)02151/2019 dated 10.06.2020 issued by TNPCB.

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

Additional Conditions:

1. The unit shall operate all the APC measures continuously and efficiently so as to achieve the AAQ/Emission standards prescribed by the Board.

2. The unit shall adhere to Ambient Noise level standards prescribed by the Board.

3. The unit shall restrict the quarrying operations between 7 Am and 5 Pm.

4. No change in mining technology or scope of working shall be made without prior permission approval of the SEIAA, Chennai

5. The unit shall comply with the conditions mentioned in the Environmental Clearance obtained from SEIAA vide Lr.No SEIAA/F.No1426/1(a)/EC No 3848/ 2015 dated: 30.05.2017.

6. The unit shall continue to develop green belt all along the boundary of the quarry lease area.

7. The unit shall not use "use and throwaway plastics' such as plastic sheets used for food wrapping, spreading on dining table etc., plastic plates, plastic coated tea cups, plastic tumbler, water pouches and packets, plastic straw, plastic carry bags and plastic flags irrespective of thickness, within the industry premises. Instead unit shall encourage use of eco friendly alternative such as banana leaf, arecanut palm, stainless steel, glass, porcelain plates/cups/cloth bag, jute bag etc.,

RAVICHANDRAN KANDASAMY

Digitally signed by BAVICHANDRAN KANDASAMY Date: 2022.04.22 18:40:59 +05'30'

District Environmental Engineer, Tamil Nadu Pollution Control Board, KARUR

To

ъ.

i.

ii.

The Proprietor,

M/s.S KUPPUSAMY ROUGH STONE QUARRY,

S.Kuppusamy, Saliyangattupalam, Odayam Village, Kangeyam Taluk, Tiruppur District, Pin: 638105

Copy to:

1. The Commissioner, K.PARAMATHI-Panchayat Union, Pugalur Taluk, Karur District .

2. Copy submitted to the Member Secretary, Tamil Nadu Pollution Control Board, Chennai for favour of kind information.

3

 Copy submitted to the JCEE-Monitoring, Tamil Nadu Pollution Control Board, Salem for favour of kind information.

4. File

ryppiony 315

TAMILNADU	POLLUTION	CONTROL	BOARD
3 N.FIAN O STRAWARD 65.	S. CARRIENCO, P. B. M. M. M.	of the north of the set	Prote and at at it in setting

24

Category of the Industry :

R	EI)	

CONSENT	ORDER	NO.	2208144919289	2

2007101-11272

DATED: 22/04/2022.

221-

e upgiasme

ளகந்திரக்கிருநாள் அமுதப்பெருநொள்

PROCEEDINGS NO.F.0803KAR/RS/DEE/TNPCB/KAR/W/2022 DATED: 22/04/2022

- SUB: Tamil Nadu Pollution Control Board RENEWAL OF CONSENT M/s. S KUPPUSAMY ROUGH STONE QUARRY, S.F.No. 759/5, 764/3, 765/3, 766/1(P), 766/2 & 767/1, ANJUR 2 PARTS village, Pugalur Taluk and Karur District - Renewal of Consent for the operation of the plant and discharge of sewage and/or trade effluent under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act 6 of 1974) - Issued- Reg.
- **REF:** 1. CTO Proc. NO. F.0803KAR/RS/DEE/TNPCB/KAR/W&A/2017 DATED: 16/11/2017. 2. Unit's application for RCO through OCMMS on 14/4/2022. 3. IR.No : F.0803KAR/RS/AEE/KAR/2022 dated 21/04/2022.

RENEWAL OF CONSENT is hereby granted under Section 25 of the Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988 (Central Act, 6 of 1974) (hereinafter referred to as "The Act") and the rules and orders made there under to

The Proprietor

()

0

 \bigcirc

O

1.9

M/s.S KUPPUSAMY ROUGH STONE QUARRY, S.F.No. 759/5, 764/3, 765/3, 766/1(P), 766/2 & 767/1, ANJUR 2 PARTS Village, Pugalur Taluk, Karur District.

Authorising the occupier to make discharge of sewage and /or trade effluent.

This is subject to the provisions of the Act, the rules and the orders made there under and the terms and conditions incorporated under the Special and General conditions stipulated in the Consent Order issued earlier and subject to the special conditions annexed.

316

This RENEWAL OF CONSENT is valid for the period ending June 22, 2022

RAVICHANDRAN Digitally signed by RAVICHANDRAN KANDASAMY KANDASAMY Date: 2022.04.22 18:42:18:405:30'

District Environmental Engineer, Tamil Nadu Pollution Control Board, KARUR

TAMILNADU POLLUTION CONTROL BOAR

333

WASBA

40

Dies

SPECIAL CONDITIONS

1.

2.

This renewal of consent is valid for operating the facility for the manufacture of products/byproducts (Col. 2) at the rate (Col 3) mentioned below. Any change in the product/byproduct and its quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

SI. No.	Description	Quantity	Unit
101/100	Product Details	92 161 (1910) S	
1.	Rough Stone	45200	Cu.m in Five years
b e	By-Product Details	L. Destantin	
1.	Nil	0	-
NOT N	Intermediate Product Details	N. ARRANT AND A	
1.	Nil- terms with the second sec	0	
1.04.44	and the second states of the second states and the	والمنافعة والمنافعة والمنافع والمنافع والمنافع والمنافع	the second s

This renewal of consent is valid for operating the facility with the below mentioned outlets for the discharge of sewage/trade effluent. Any change in the outlets and the quantity has to be brought to the notice of the Board and fresh consent has to be obtained.

Outlet No.	Description of Outlet	Maximum daily discharge in KLD	Point of disposal
Effluent Ty	pe : Sewage		andr A. State
1.	Sewage	0.08	On Industrys own land
Effluent Ty	pe : Trade Effluent	and the second s	and a start and a start
1.	NiL	0.0	Nil

317

TAMILNADU POLLUTION CONTROL BOARD

erappoi nel escala nella di contra da la reglazza en accesto nella di contra da la contra malagna este contra da la reglazza este contra da la contra nella contra da la contr

Special Additional Conditions:

The unit shall obtain No Objection Certificate (NOC) from the Tamil Nadu Bio Diversity Board /National Bio Diversity Authority if the unit is using any Biological resources or knowledge associated thereto as per the provisions of Biological Diversity Act 2002.

Additional Conditions:

1. The unit shall not generate trade effluent at any stage of its manufacturing process.

2. The unit shall treat and dispose the sewage generated from their premises through septic tank and soak pit arrangements.

3. The unit shall restrict the quarrying operations between 7 Am and 5 Pm.

4. No change in mining technology or scope of working shall be made without prior permission approval of the SEIAA, Chennai

5. The unit shall comply with the conditions mentioned in the Environmental Clearance obtained from SEIAA vide Lr.No SEIAA/F.No1426/1(a)/EC No 3848/ 2015 dated: 30.05.2017.

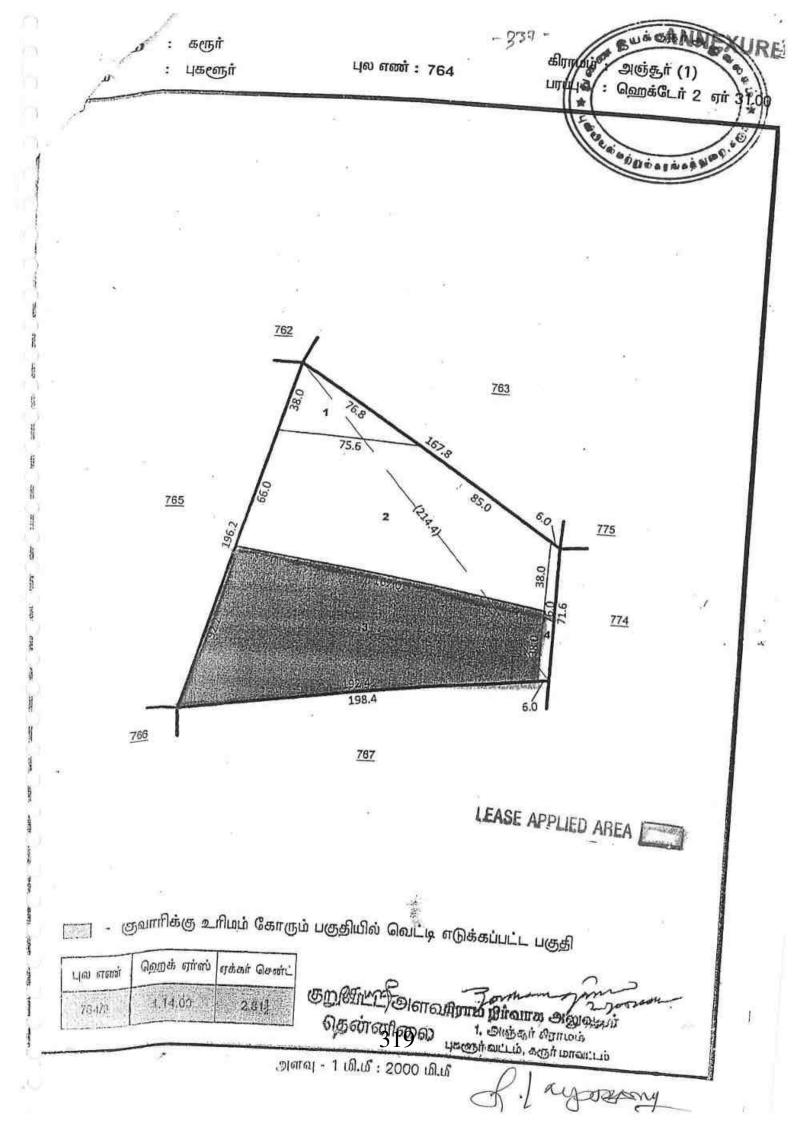
RAVICHANDRAN Digitally signed by RAVICHANDRAN KANDASAMY Date: 2022.04.22 18:42:44 +05'30' District Environmental Engineer, Tamil Nadu Pollution Control Board, KARUR

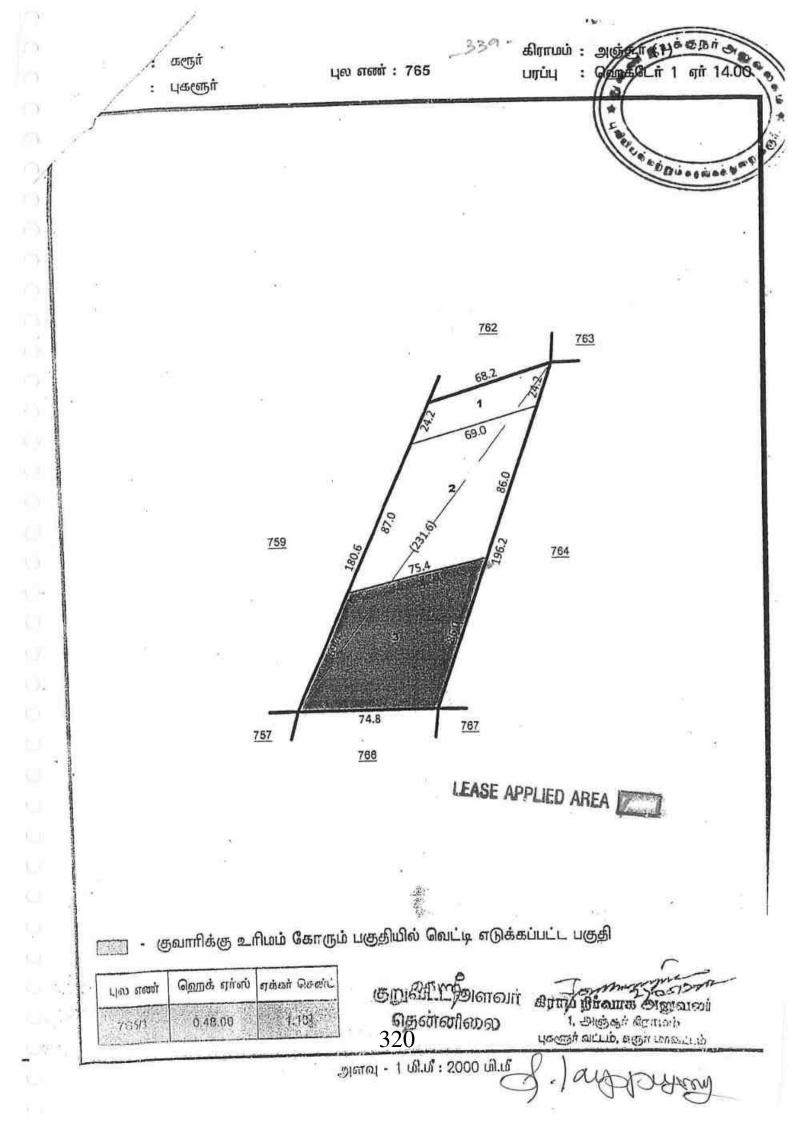
16660

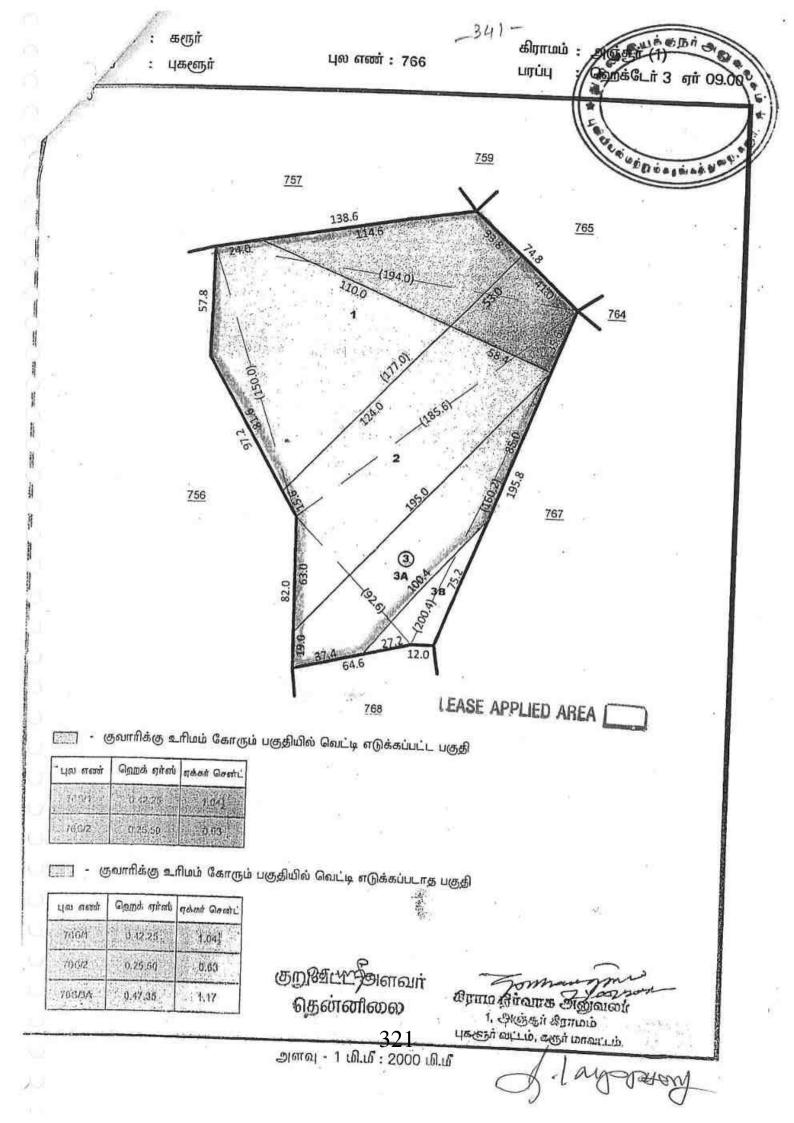
To

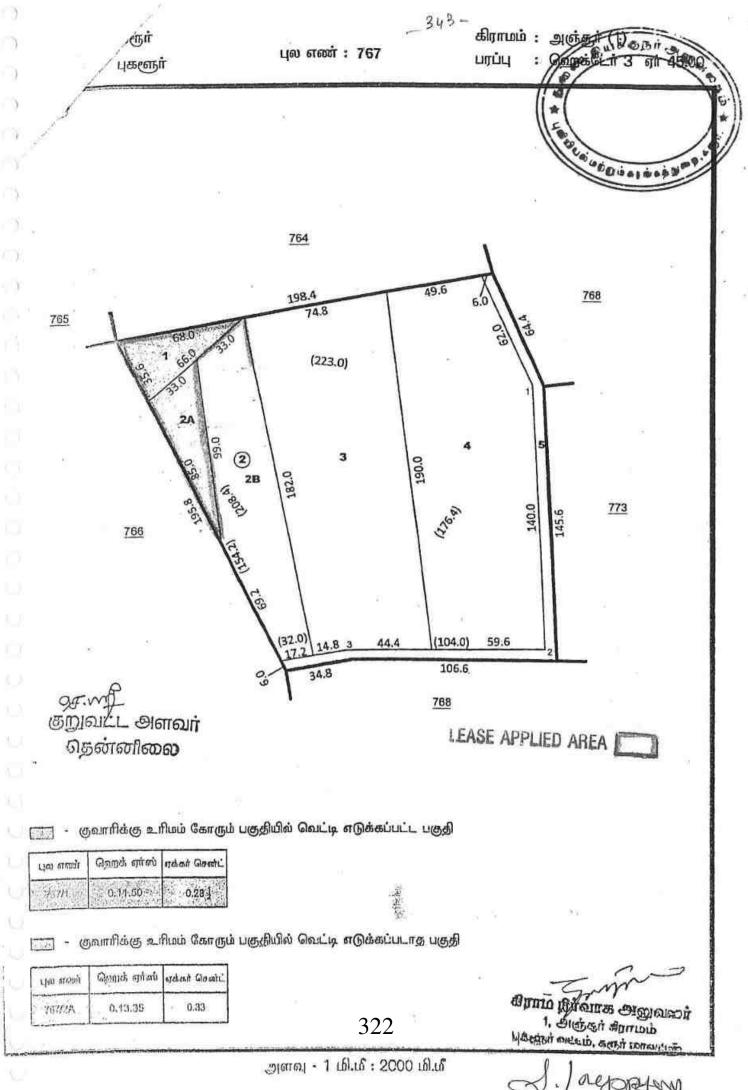
The Proprietor, M/s.S KUPPUSAMY ROUGH STONE QUARRY, S.Kuppusamy, Saliyangattupalam, Odayam Village, Kangeyam Taluk, Tiruppur District, Pin: 638105

Copy to:

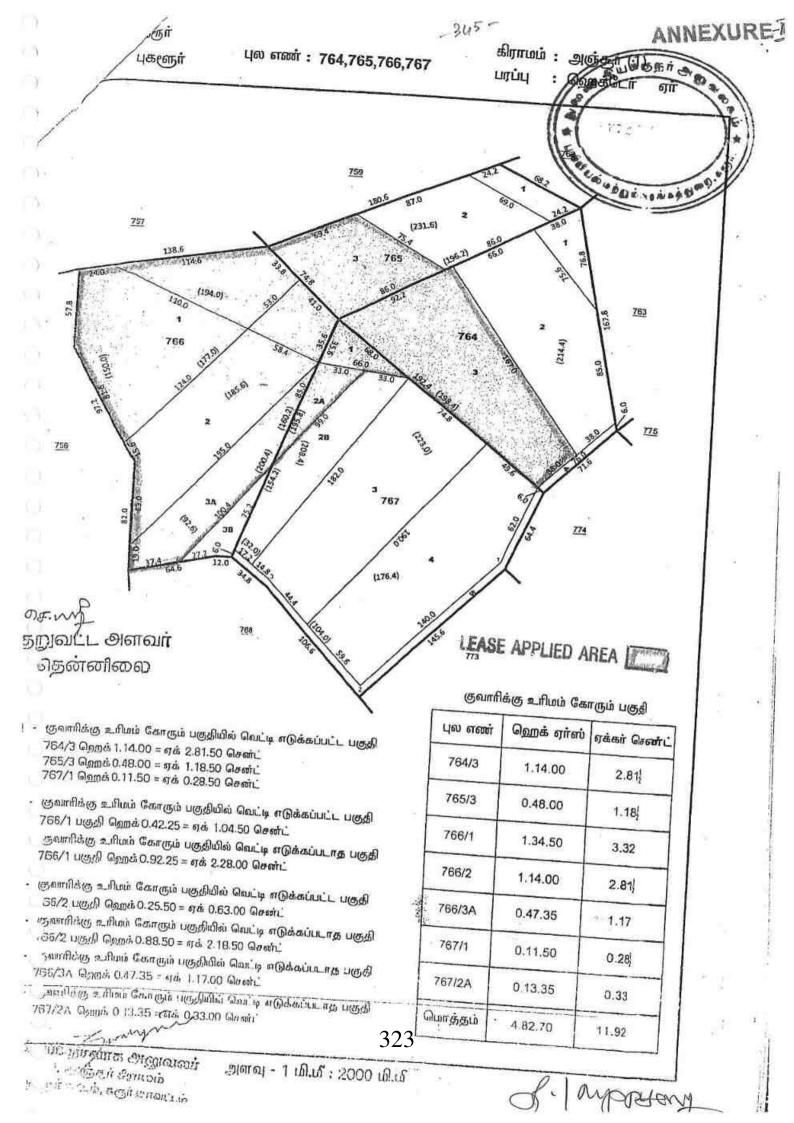

 The Commissioner, K.PARAMATHI-Panchayat Union, Pugalur Taluk, Karur District.
 Copy submitted to the Member Secretary, Tamil Nadu Pollution Control Board, Chennai for favour of kind information.


3. Copy submitted to the JCEE-Monitoring, Tamil Nadu Pollution Control Board, Salem for favour of kind information.


1.110/015


MARCON DESCRIPTION DE MARCON DESCRIPTION DESCRIPTION DESCRIPTION

4. File



Werfer W

		ß						கி, எ	ю́я, 1.	.ey@	ஞ <i>ர்</i> ,		- 3457-	ANNEXURE-
0	k	1	2	3	4	5	6	7	8		9	IC	a Sud	ODI DO
		4	753-4	σ	4		8-5	7	ത്രം അവം 109	ഒഇ 0	. <i>gri</i> rein. 69 • 5	ரு. எப. 0 76	171	40 ×
1		-									19.0	2 29	OLE UD B	i ve a sta Ball
			754	σ	н		8-5	7	1 09	0	24.0	0 26	171 மு. சந்தான கோபாலன்,	
	10		755	ઝ	ЧØ		sans	un		0	43+5		utter s	வண்டிப்பாதை.
	5		756	34	ЧÐ			446		0	84-0		14 1492	வன்டிப்பாதை
	995 20 20		757	-91	புற		***			1	62.5	-0	× too	ഞെങ്ങു.പ്പ~ങള.
			758	ঞ	цø				-	0	87.0		w.	வண்டிப்பாதை.
0.0			759	σ	ч	4 -444	8–5	7	1 09	4	91.0	5 34	(124 உ. வெல்கிட சுப்ரமணிய அய்யர் மற்றும் ஏழு	
Ď	100 S -	» ·	760	σ	ч		8-5	7	1 09	1	23-5	1 34	பேர்களும். + 818 ரா - குமரப்ப கவுண்டர் (1),	
2	Dont	-							a		2		மு. சாமியப்ப . கவுண்டர் (2).	× .
	山 5-15- 马云,	0	761	σ	ч		8-5	7	1 09	1	32-5	1 44	634 வெ, வெங்கிட சுப்பீரமனிய அப்யர்	
		0	762	đ	ų		8-5	7	1 09	-	57-5	1 71	1143 உ, வெங்கிட சுப்பேரமனிய அய்யர்	
			763				8-5	7			·70·0		மற்றும் ஒன்பது போ்சளும். ≉	
		2 ···.		g	4	***	0-0	ľ	1 09	-		4 02	43 உ, வெங்கிட சுப்பேரமணிய அய்யர் மற்றும் ஒன்பத	1
			764	ø	4		8-5	7	1 09	2	31.6	2 51	பேர்களும். ச 1143 உ. வெங்கெட	
										-		5.	சுப்பிர மணிய அய்யர் மற்றும் ஒன்பத புோகளும், +	,
Q					l.ar		Ľ,					* #	ojun negar, m	i Sat
			25			-75	•	ម្បីសុខ	ப்பட்டிய	ត្តលុះ	,Unita	கவும்.		
			* #1				2		2	-	×)
		gene .	1						1	语. '		(2	out rowing the	~ ()
	(法)		36				100 12				4		Samming a	birner

பிராம நீர்வாக அனுவலர் 1. அஞ்சுர் சிராமல் புகளூர் வட்டம், கருர் மாவட்டு

BARRAD

324

	1		_		1	1		104	କ୍ଷ	, ज 	र्लण.	-	<i>اف</i> . 1	-	-	T	<u></u>		19- (10) 1		-);
1	1	2	3	4	5	6	5	7	8	1		9		_	0	-	_		11-2	12			10
A			-		1		1	-3	. 0	nu	ചെ	.91	r siv.	B		1	'n		W.		0019		
765		765	J	4	1.4.2.5	5	8-5	7	1	09	1	14	4-0	1	2	4	14	43 உ சுப் அய்	STIDESTIL	-			
		1																மற்	றும் ஒன்பது ரகளும், *				
	ł	766	a	ч			8-5	7	1	09	3	0	9.0	3	3	б	114	43 ه. جن	வெங்கிட		-	-	
766		100			1	-		į			-				5			LD KR	விய யா மற்றும்				
	i				日日	Test in	ł				į					Ŷ		ទូក Gu	பது ர்களும், +				
767		767	a	4	100		8-5	7	1	09		<u>ş</u> 4	45.6		1	75	u	đ.L	வெங்கிட பிரமனிய				
5											T			T				99	ப்யர் மற்றும் எபது பர்களும், #	3	Solute St		
		768-un	σ	4			8-5	7	i	0		0	15-0		U	16		273 (0)	r. சேமலை		- 1		
768	1	102-011	1						ľ.										ப்ப வுண்டர்.				
	2	- <i>u</i> π	0	4			8-5	7	1	0	9	0	37-0		0	40		138 ¢5 ø	. குப்புசாமி வுண்டர்.				
	3				4	-	8-j	7		0	9	0	17-0		0	19	1	64 (y	, கருப்பண வுண்டர்,				
42	4	-un	r 0		-		8-5	7	1	1 - 0	9	0	29 -	0	0	32		523 @	p, முத்துசாமி வுண்டர்,				
	5	-07		,	4		8-5	7		1 (09	0	15.	0	0	16		64 0	ρ. கருப்பண வுண்டர்.		$(a^{[a]})$		
			-	7	4	5	8-5	7		1	09	0	. 09	5	0	10		1066 (டி. முத்துசாமி	र डाए के		and the second	
	6	-0/																	⊾வுண்டர் மற்றும் நான்கு பேர்களும், ⁰	தினறு-l	8 [4]		
	7	-u	in	σ	4		8-5	7	6	1	09	0	04	.5	0	0	5	138	த, குப்புசாமி கவுண்டர்,			No. 10	
	8			σ	4	(** *	85			Ļ	09	0	27	•0	0	2	9	- Anna	மா, சேமலை யப்ப கவுண்டர்.	÷.,		· ANA	
	9	-6	un	σ	ч		8-5		7	l	09	() 52	• 0	(09	6	603	சே. ராமசாயி நாடார்.		8	23	
	10		л	σ	ч		8-3	5	7	1	09		0 15	.5	1	0 1	9	64	மு. கருப்பன கவுண்டர்,			е е	
	1	- 1	ur	σ	ч		. S-:	5	7	1	09	3	0 1	9.5		0	21	523	மு. முத்துசாமி கவுண்டர்,	14.0			
	6	2 -	uп	σ	ч	-	. 8-	5	7	3	09	No.	04	8-5		0	53	273	மா. சேமலை யப்ப கவுண்டர்.		1.8	A	
	1	3 -	ыr	σ	ц		. 8-	.5	7	1	09			9-0		0	10	273	டமா, சேமலை யம்ப கவுண்டர்,				

大学のない

325

a

1. 马马

(2 roto more N

கராம் நிரவாக திலுகாலர் 1: அஞ்சுர் கிராமத் புக்கூர் வையல், கரூர் மான்டையி

Strew

https://eservices.tn.gov.in/eservicesnew/land/chittaExtrast_ta.html;js...

தமிழக அரசு

வருவாய்த் துறை

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

வட்டம் : புகளூர்

ு எவட்டம் : கரூர்

பட்டா எண் : 1591

குப்புசாமி

வருவாய் இராமம் : அஞ்சூர் உரிமையாளர்கள் பெயர்

சாமியப்பகவுண்டர்

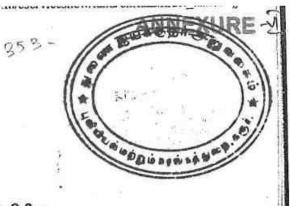
	DICTORATE		•	நன்ெ	சய் சய்	மற்ற	തഖ	குறிப்புரைகள்
เปอง ตระดับ	உட்பிரிவு	புன்வெ	சய				தீர்வை	
		பரப்பு	இர்வை	արնպ	தீர்வை	սրսպ		
		ஹெக் - ஏர்	ന്ദ്ര - വെ	ஹெக் - ஏர்	ന്ത്ര - വെ	ஹெக் • ஏர்	ரு - பை	
766	1 1	1 - 34.50	1.50		••		9 ⁴	12-10-2014
	1	1 - 34.50	1.50		251			1

குறிப்பு2 :

5.13

en an	Įi.
	2
自法帮助批	3

மேற்கண்ட தகவல் / சான்றிதழ் நகல விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் https://eservices.tn.gov.in என்ற இணைய தளத்தில் 14/07/001/01591/10186 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.


மகன்

இத் தகவல்கள் 23-05-2022 அன்று 08:54:07 AM நேரத்தில் அச்சடிக்கப்பட்டது.

.கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணையதளத்தில் சரிபார்க்கவும்

S. Lappeday

HER HAR MOUSE WAY

шрэлгоскущовань дотан

தமிழக அரசு

வருவாய்த் துறை

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

ுாவட்டம் : கரூர்

 \overline{O}

0

ŋ

வருவாய் கிராமம் : அஞ்சூர்

வட்டம் : புகளூர்

பட்டா எண் : 1231

உரிமையாளர்கள் பெயர்

	சாமி	குப்புச்	மகன்			ன்டர்	മിഡப்ப കരും	ភព	
குறிப்புரைகள்	തഖ -	மற்ற	சய்	நன்ெ	ிசய்	புன்	பல எண் உட்பிரிவு புக்		
	தீர்வை	பரப்பு	தீர்வை	பரப்பு	தீர்வை	ուսուս			
	ரூ - பை	ஹெக் - ஏர்	ரு - பை	ஹெக் – ஏர்	ரூ - பை	ஹெக் - ஏர்			
12-10-2014	÷	4			1.55	1 - 34.00	5	759	
12-10-2014			•	- 2 ** -	1.25	1 - 14.00	3	764	
12-10-2014				-	0.55	0 - 48.00	3	765	
12-10-2014	1 <u>411</u>		212		1.25	1 - 14.00	2	766	
12-10-2014				-	0.15	0 - 11.50	1	767	
					4.75	4 - 21.50			

குறிப்பு2 :

		COST TANKARA	No. 19240				1		
767	1	0 - 11.50	0.15					12-10-2014	
		4 - 21.50	4.75						
தறிப்பு2 :				1					
		பெறப்பட் தளத்தில்	டவை. இவ	ற்றை தாங்க	sair https://	கள் மின் பதி 'eservices.t நறிப்பு எண்க	m.gov.in e	ந்த என்ற இனைப்ப டு செய்து உறுதி	
記れの		2. இத் தகவ	ல்கள் 27-04	1-2022 அன்	ຼຸມ 10:53:25 A	м நேரத்தில்	அச்சடிக்கப்	ப்பட்டது.	
i Car	ere Ere			ன்2D barcoc ரிபார்க்கவு		மூலம் படித்	對 3G/GPRS	ഖழി	
1				1.).					
		8	A) · [/	p	tom			
			\mathcal{O}_{l}	ļ * .	-	0		8	
								W ₂	
				,	007				
					327				
1								17-04-2022	, 10:5
					2				

- Josen

					MUREAU	Transmit
Ω	August 1 100	ייישי אמוסן - ממוממ	unhavicaciator	ສ.ພາ.ຽດຄະເພດລະເຈເດດລ	Hew/Iand Bull Of	OR NO
a is -	Journ CE -	1. 19 A. 19		- 355	13	18
0	1		Summer		- Carte	e.
		(Del			1 sel	1.5/
Ce.			治生化		Piper	and the second

கமிழக அரசு

வருவாய்த் துறை

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

வட்டம் : புகளூர்

மாவட்டம் : கரூர்

12.2

பட்டா எண்: 2287

வருவாய் ரொமம் : அஞ்சூர்

ær	ഹിഡപ്പകൽ			நன்வெ	சய்	மற்ற	ത ഖ	குறிப்புரைகள்
ல जळंग	உட்பிரிவு	புன்வ	E ALATER OF STR	Carlo Carlo Carlo	தீர்வை	. սյա	தீர்வை	
P. 4		பரப்பு	தீர்வை	ប្របំផុ		1 Standard	ത്ര - ബ്	
- s	- 14	ஹெக் - ஏர்	ന്ത - ത്വ	ஹெக் - ஏர்	ത്ര - ബ്	ஹைக் - ஏர்		2022/0105
765	. 3A	0 - 47.35	0.52	-	-	210 1		/14/097904-202 /14/07/000051S 29-05-2022
	A CONTRACTOR	0 - 47.35	0.52	1.15	1			

ចញ្ញាប់អុ2 :	
--------------	--

1.மேற்கண்ட தகவல் / சான்றிதழ் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்து பெறப்பட்டவை. இவற்றை தாங்கள் https://eservices.tn.gov.in என்ற இணைய தளத்தில் 14/07/001/02287/20149 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

இத் தகவல்கள் 04-06-2022 அன்று 07:59:13 AM நேரத்தில் அச்சடிக்கப்பட்டது. 2.

3.கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணையதளத்தில் சரிபார்க்கவும்

, Moleton

書

Sille S

தமிழக அரசு

வருவாய்த் துறை

நில உரிமை விபரங்கள் : இ. எண் 10(1) பிரிவு

உரிமையாளர்கள் பெயர்

வட்டம் : புகளூர்

பட்டா எண் : 2288

CITER IN LAND

5 m

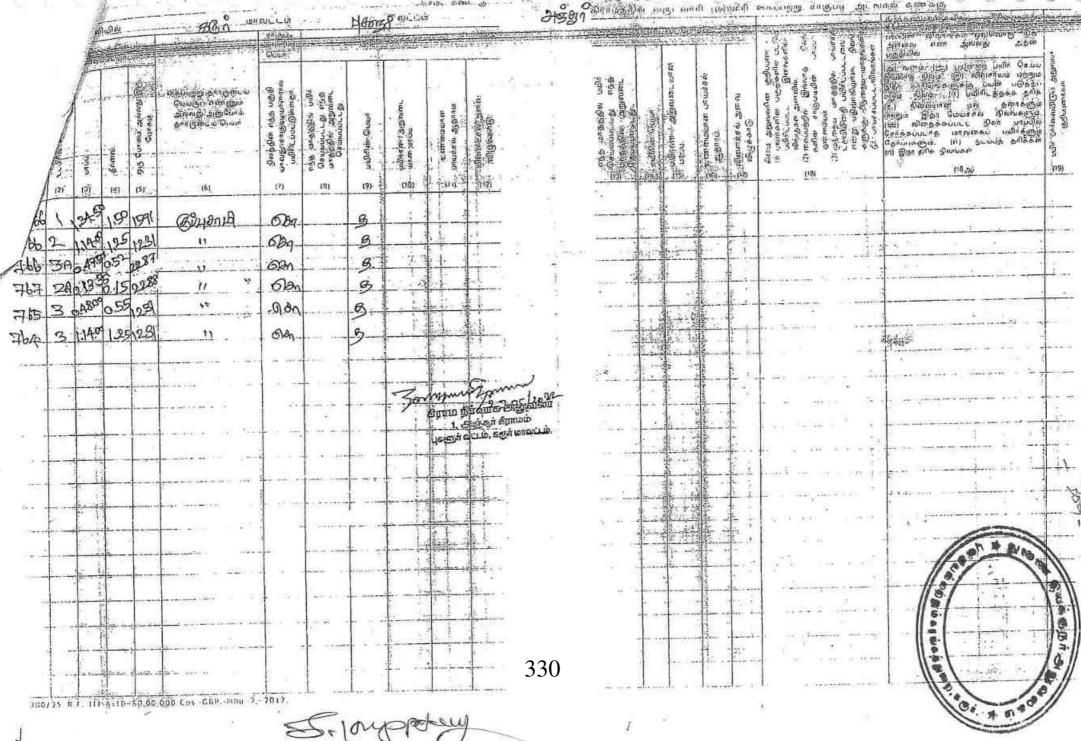
600 i

மாவட்டம் : கரூர்

வருவாய் கிராமம் : அஞ்சூர்

លេ តាល់ថា 🙎	ட்பிரிஷ			the second s	சய்		·····································	100
		132	சுய் தீர்னவ	սյանկ	தீர்வை	սյակ	தீர்வை	
-		பரப்பு ஹொக் -		ஹைக் - ஏர்	ര്ര - വെ	ஹைக் - ஏர்	ரு - பை	
767	2A	ត្វបំ 0 - 13.35	1	-			-	2022/0105 /14/099140202 /14/07/00005251 29-05-2022

குறிப்பு2:


1.மேற்கண்ட தகவல் / சான்றிதம் நகல் விவரங்கள் மின் பதிவேட்டிலிருந்த பெறப்பட்டவை. இவற்றை தாங்கள் https://eservices.tn.gov.in என்ற இணைய தளத்தில் 14/07/001/02288/20150 என்ற குறிப்பு எண்ணை உள்ளீடு செய்து உறுதி செய்துகொள்ளவும்.

இத் தகவல்கள் 04-06-2022 அன்று 08:03:31 AM நேரத்தில் அச்சடிக்கப்பட்டது.

3.கைப்பேசி கேமராவின்2D barcode படிப்பான் மூலம் படித்து 3G/GPRS வழி இணைபதளத்தில் சரிபார்க்கவும்

Aberen

329

PHOTOCOPY OF THE APPLIED LEASE Field photos in respect of rough stone and Gravel quarry lease in S.F.No: 766/2, 766/3A, 767/1 & 767/2A - Patta land – over an extent of 4.82.70 hectares Anjur

Village - Pugalur Taluk - Karur District - Tamil Nadu State belongs to

Mr. S. Kuppusamy.

A. Jongpresony 331

M/S.HANUMAN EXPLOSIVES PVT.LTD.,

Survey No.898, Chinnamaruthur Village, DharapuramTaluk, TIRUPUR (Dt), Tamil Nadu Licence No: E/SC/TN/22/714(E97779), E/SC/TN/22/737(E97783), E/SC/TN/22/734(E97787), E/SC/TN/22/733(E97791), E/SC/TN/22/736(E97794), E/SC/TN/22/735(E97797).

-368

Bublau syman B

To:

S.Kuppusamy,

95.Saliyankattupallam,

Thottipalayam Muthur,

Kangeyam Taluk,

Tiruppur district.

REF : your letter dated.

SUB : regarding blasting work using explosives in your proposed quarry.

Sir,

We have having explosives license I form 22 holding No: E/SC/TN/22/734(E97787) situated in survey SF NO.898, Chinnamaruthur, Pichaikalpatty village, Dharapuram(Tk), Tiruppur(Dt). Our office functions at address 278/J2, Karur main road, Mulanur, Dharapuram(Tk), Tiruppur(Dt), Tamil Nadu.

We are enacting 2 explosives vans for transporting detonators and class 2 separately for our magazine to our work site and well experienced and licensed blasters and shot firer for safe blasting without untoward incident.

We are willing to undertake work on contract basis at your SF NO 764/3(1.14.00Ha), 765/3(0.48.00Ha), 766/1(1.34.50Ha), 766/2(1.14.00), 766/3A(0.47.35), 767/1(0.11.50Ha) and 767/2A(0.13.35) total 4.82.70 in Anjur Village, Pugalur(TK), Karur(DT).

Thanking you.

Date:20-02-2023

ENCLOSURE

1.LICENCE COPY

FOR HANUMAN EXPLOSIVES

FOR MIS HANUMAN EXPLOSIVES FV1. L D.

UTHORISED SIGNATOR

No.278/J2, First floor, Karur main road, Mulanur, Dharapuram(TK), Tiruppur(DT), Tamil Nadu.PIN-638106

Note :- This is system generated document does not physical signature. Applicant may take printout for their records.

Disclaimer : This page gives the latest action taken by this organization on your in the smallene all the information of concerned applicant/licensee is the trappose and the original dischargers based under the and and interface of letroleans & Explosives Safety Organization, shall be the investigate mode to secore this information. However, PESO will not be resonantific for any misuse of the information by unauthorised persons including the backers.

· [noppyent

367-

किसीभीएकसमयमेंलाइसेंसक्षमतानिम्नलिखितवर्गतथामात्रासेअधिकनहींहोगी।

The licence capacity at any one time shall not exceed the kinds and quantities mentioned below.

संख्या	विस्फोटक	वर्ग	प्रभाग	उप-प्रभाग	क्षमता	डकाई	
No	Explosive(s)	Class	Div	Sub Div	Capacity	Unit	
1	Nitrate Mixture	2	0	0	1500	Kg.	
2	Detonating Fuse	6	2	0	15000	Mtrs	
3	Safety Fuse	6	1	0	5000	Mirs	
4	Detonators	6	3	0	30000	Nos.	

किसीएककलैंडरमासमेंखरीदेजानेवालेविस्फोटककीमात्रा (अनुच्छेद 3 (ख) और (ग)

कअधीनअनुशब्तिकेलिएलागू) :15 गुना

Quantity of explosives to be purchased in a calendar month[applicable for licence under article '3(b) and (c)] : 15 times as above.

यहअनुज्ञप्ति दिनांक31 मार्च 2023तकप्रवृत्तरहेगी।

This Licence shall remain valid till31st day of March 2023.

अनुज्ञप्तिकेआगामीनवीकरणहेतुकृपयाविस्फोयटकनियम, 2008 केनियम 112

के अंतर्गतप्रक्रियाकापालनकरें। कृपयापावतीदें।

For further revalidation (if required), please follow the procedure under Rule 112 of Explosives Rules. 2008. Receipt of this letter may please be acknowledged.

भवदीय | Your's faithfully

(पी.सीनीराज | P. SEENIRAJ)

उपमुख्यविस्फोटकनियंत्रक | Deputy Chief Controller of Explosives

कृतेसंयुक्तमुख्यविस्फोटकनियंत्रक | For Joint Chief Controller of

Explosives

दक्षिणांचल, चेन्ने | South Circle, Chennai

प्रतिलिपिप्रेषित | Copy Forwarded to:

- District Magistrate, TIRUPUR, Tamil Nadu with reference to his Noc No: R.Dis No.5846/2017/C2 Dated: 11/12/2017
- 2. Superintendent of Police, TIRUPUR, Tamil Nadu.

कृतेसंयुक्तमुख्यविस्फोटकनियंत्रक | For Joint Chief Controller of Explosives दक्षिणांचल, चेन्नै | South Circle, Chennai

(अधिकजानकारीजैसेआवेदनकीस्थिति, शुल्कआदिकेलिएहमारीवेबसाइट http://peso.gov.in देखें.) (For more information regarding status,fees and other details please visit our website http://peso.gov.in)

Ju nupper

भारतसरकार | Government of India वाणिज्यऔरउद्योगमंत्रालय | Ministry of Commerce & Industry पेट्रोलियमतथाविस्फोटकसुरक्षासंगठन (पेसो) | Petroleum & Explosives Safety Organisation (PESO) पूर्वनाम- विस्फोटकविभाग | Formerly- Department of Explosives ∧ और D - विंग, ब्लॉक 1-8, दूसरातल, शास्त्रीभवन | A & D - Wing, Block 1-8, IInd Floor,

ShastriBhavan

26 हड्डोउसरोड, नुंगम्बक्कमचेन्नै। 26 Haddous Road, Nungambakkam Chennai 600006 फोन (Phone):- 28281023 | फैक्स (Fax):- 28284848

संख्या (No.) F/SC/TN/22/734(E97787) संवाम ; To.

दिनांक (Date): 11/11/2022

M/s.HANUMAN EXPLOSIVES PVT.LTD., NO.278/J2.FIRST FLOOR, KARUR MAIN ROAD.MULANUR, DHARAPURAM. TIRUPPUR, TAMIL NADU-638106, Iown/Village - MULANUR

District-TIRUPUR, State-Tamil Nadu, Pincode - 638106

विषय : Survey No.898 (Magazine-3), ग्रामChinnamaruthur, DharapuramTaluk, जिला TIRUPUR, राज्य Tamil Nadu मॅमेसर्सM/s.HANUMAN EXPLOSIVES PVT.LTD.द्वाराविस्फोटक केमैगजीनमेंउपयोगकेलिएकब्जाहेतुविस्फोटकनियम, 2008 केअंतर्गत LE-3 मेंजारीअनुज्ञप्तिसं E/SC/TN/22/734(E97787) केसंशोधनसंदर्भमें। (विस्फोटककीमात्रा / मासिकखरीदसीमामेंपरिवर्तन)

Subject: Possession for Use of of Explosives from mugazine situated at Survey No.:898 (Magazine-3), Chinnamaruthur, DharapuramTaluk, Dist. TIRUPUR, Tamil Nadu -Licence No.: E/SC/TN/22/734(E97787) granted in Form LE-3 of Explosives

(Amendment of Quantity of Explosives/Monthly Purchase Limit). महोद्य | Sir.

आपकाउपर्युक्तविषयपरपत्रसंख्या ७१९६४ दिनांक ०३/११/२०२२ कासंदर्भग्रहणकरें। Please refer to your letter no. 71964 dated 03/11/2022.

अनुज्ञप्ति संख्या E/SC/TN/22/734(E97787) विस्फोटककीमात्रा / मासिकखरीदसीमामेंपरिवर्तनकेसंदर्भमेंयथासंशोधितकरभेजीजारहीहै। The Licence No.: E/SC/TN/22/734(E97787) is forwarded herewith duly amended in respect of

Quantity of Explosives/Monthly Purchase Limit

J.) nupping

भारत मरकार/Government of India खान अधितियम, 1952/Mines Act, 1952 खनन परीक्षा बोर्ड/Board of Mining Examinations खनन मेट सक्षमता प्रमाण पत्र MINING MATE'S CERTIFICATE OF COMPETENCY (केवल ओपेनकास्ट खानों तक सीमित) (Restricted to mines having opencast workings only) (धात्विकीय खान विनियम, 1961 के अन्तर्गत) (Under the Metalliferous Mines Regulations, 1961)

4

जिनको जन्म तिथि

सुपुत्र

जाय, स्वस्थतां, सदाचार, साक्षरता और धालिकोय खानों में काम करने के विहित अनुभव का सत्तोषजनक प्रमाण प्रस्तुत करने एवं दिनांक को केन्द्र पर आयोजित विहित परीक्षा में उन्नोण होने पर एतद्द्वारा केवल ओपेनकास्ट खानों तक सीमित मेट सक्षमता प्रमाण-पत्र प्रदान किया जाता है।

 Shri
 CHANDRASEKARAN D
 son of
 DURAISAMY

 born on
 0512 MAY, 1976 (SEVENTY SIX)
 having given satisfactory evidence of his age,

 medical fitness, good character, literacy and prescribed experience of working in metalliferous

 mines and having passed the prescribed examination held at
 GVTC, C.N.HALLI, TUMKUR

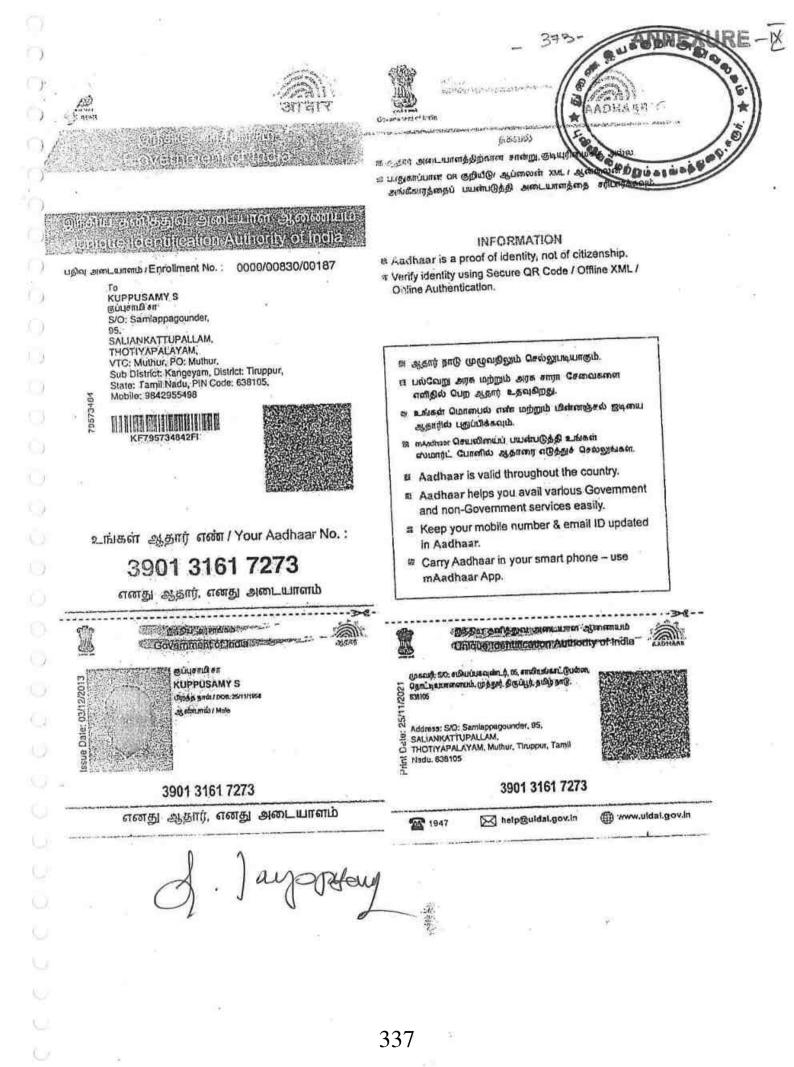
 centre on
 23.03 2015
 is herby granted MINING MATE'S CERTIFICATE OF

 COMPETENCY
 restricted to mines having opencast workings only.

नाए हाथ . तजान I eff hand thumb impression.

Cert No. MR/SZ/592

अंचल सचिव खनन परीक्षा बोर्ड Zonal Secretary Board of Mining Examinations


अच्छल सचित्र हावना परीक्षा सार्ह वाक्षणा अच्छल, जगस्तु Zonal Secretary Reard of Mining Examination Southern Zone, Bengaluru.

Signed and Sealed Date 16/07/2015

. auposson

Radal Gat

अध्यक्ष खनन परीक्षा बोर्ड Chairman Board of Mining Examinations

375 Dinarning

File No.DMG-P/4/2022-DMG

GOVERNMENT OF TELANGANA DEPARTMENT OF MINES AND GEOLOGY

CERTIFICATE OF REGISTRATION AS RECOGNIZED QUALIFIED PERSON TO PREPARE MINING PLAN

[Under Rule 14(2) of Granite Conservation and Development Rules 1999 & Rule 7(B) of Telangana State Minor Mineral Concession Rules, 1966]

* * * * *

Sri A. Allimuthu, S/o Arumugam, D.No.1/231, Pattakarnavalavu, Chinnamuthiyampatti, Puduppalayam Post, Edapaddi Taluk, Salem District, Tamil Nadu-636306 whose photograph and signature is affixed herein above, having given evidence of his qualification and experience is hereby granted recognition under Rule 14(2) of Granite Conservation & Development Rules, 1999 and Rule 7(B) of Telangana State Minor Mineral Concession Rules, 1966 as Recognized Qualified Person (RQP) to prepare Mining Plan.

Registration Number:

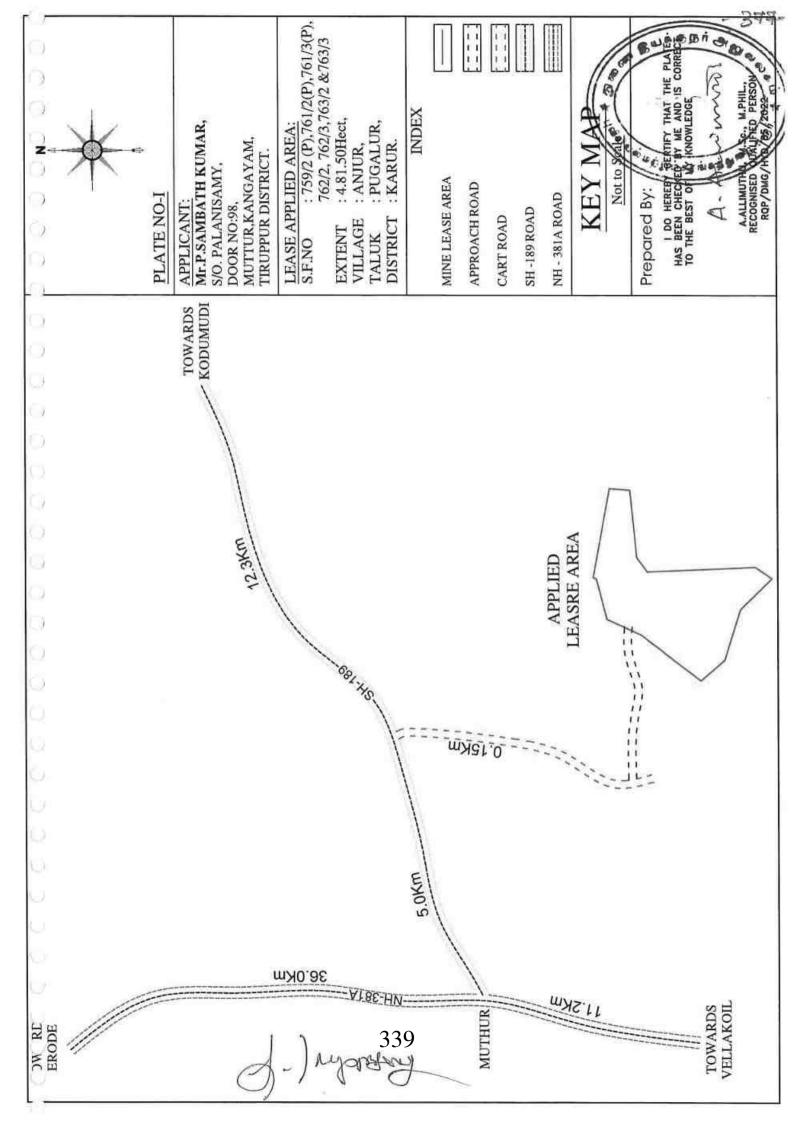
10

64

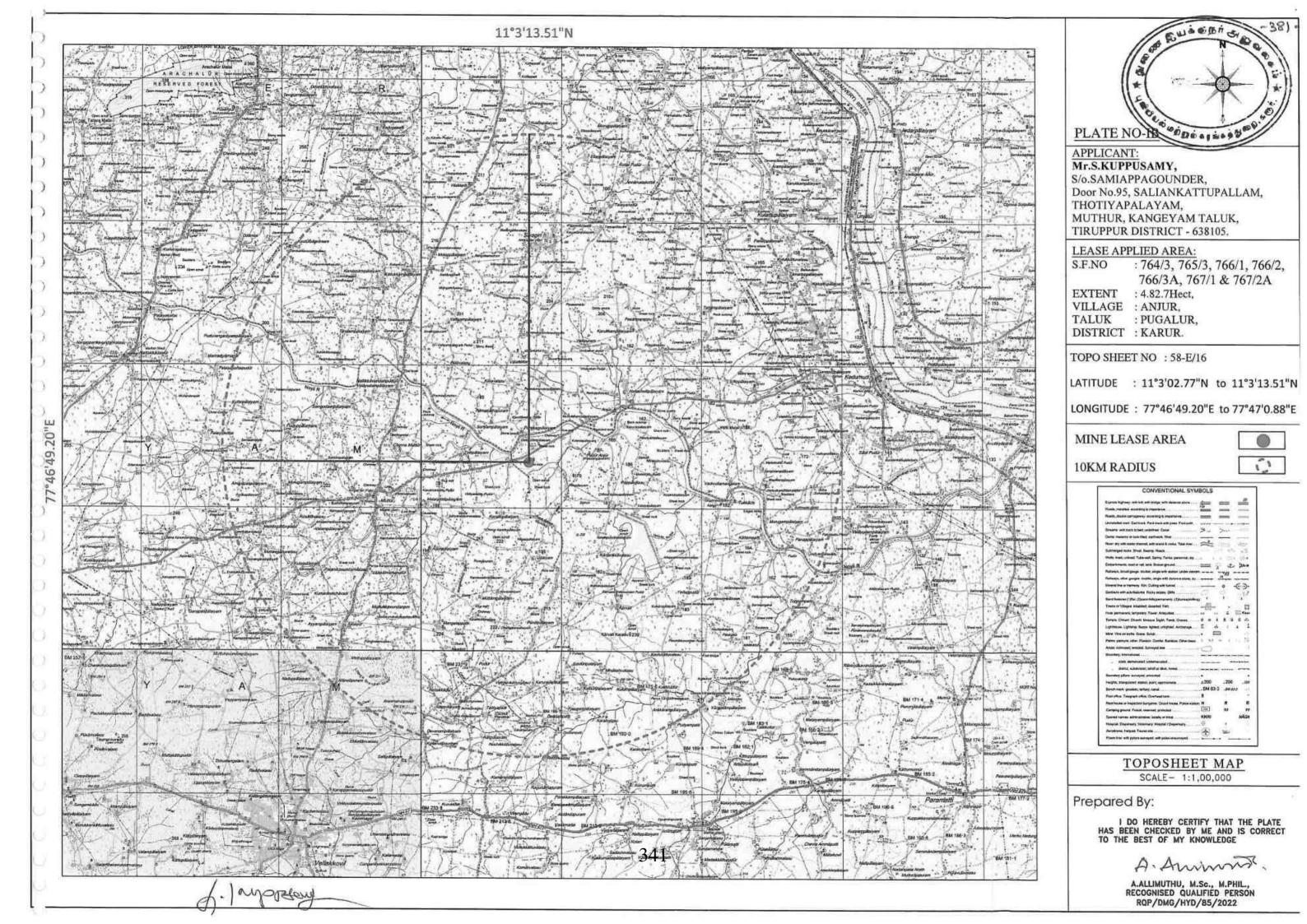
RQP/DMG/HYD/85/2022

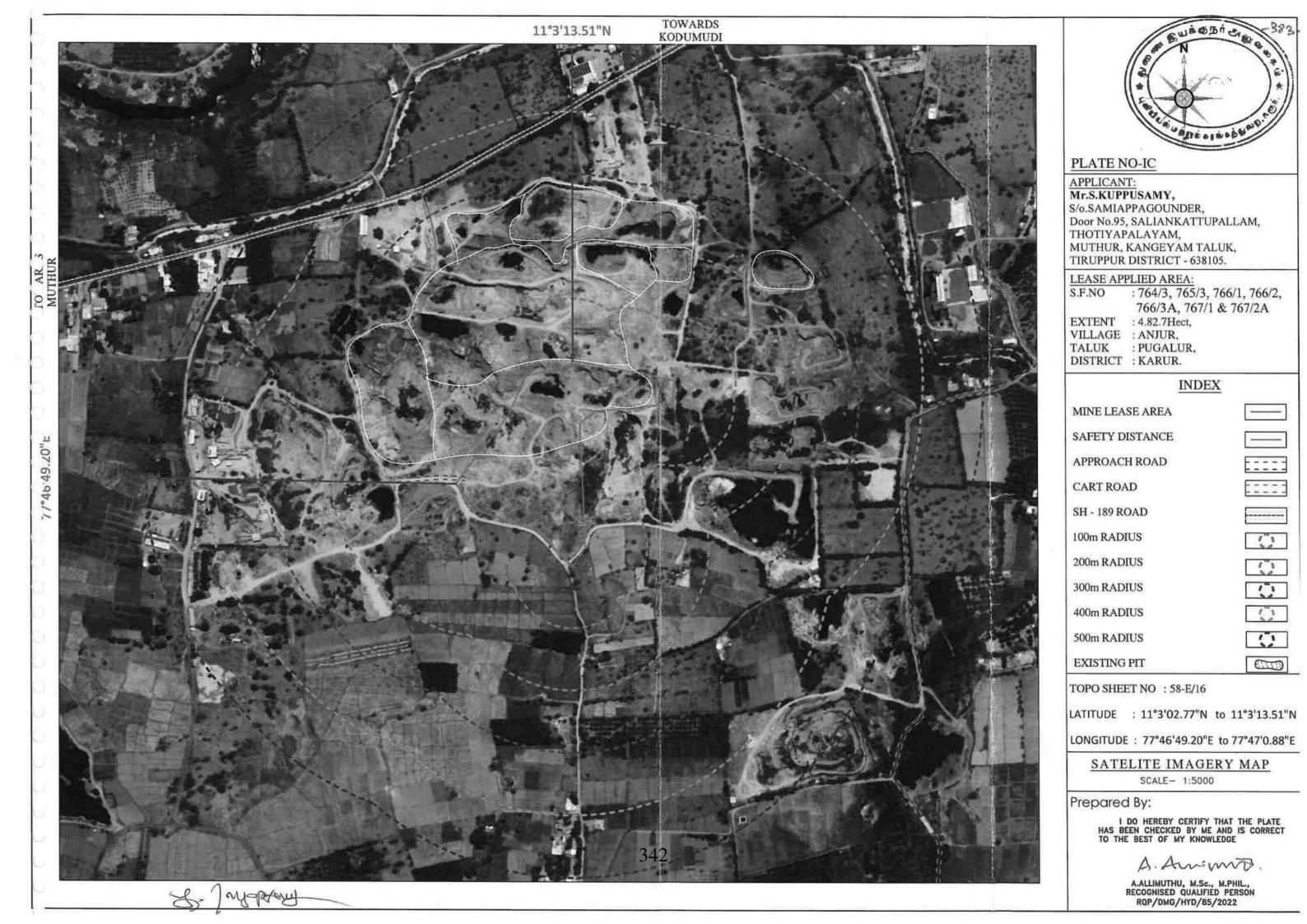
This Recognition is valid for period of (10) years with effect from 26.04.2022.

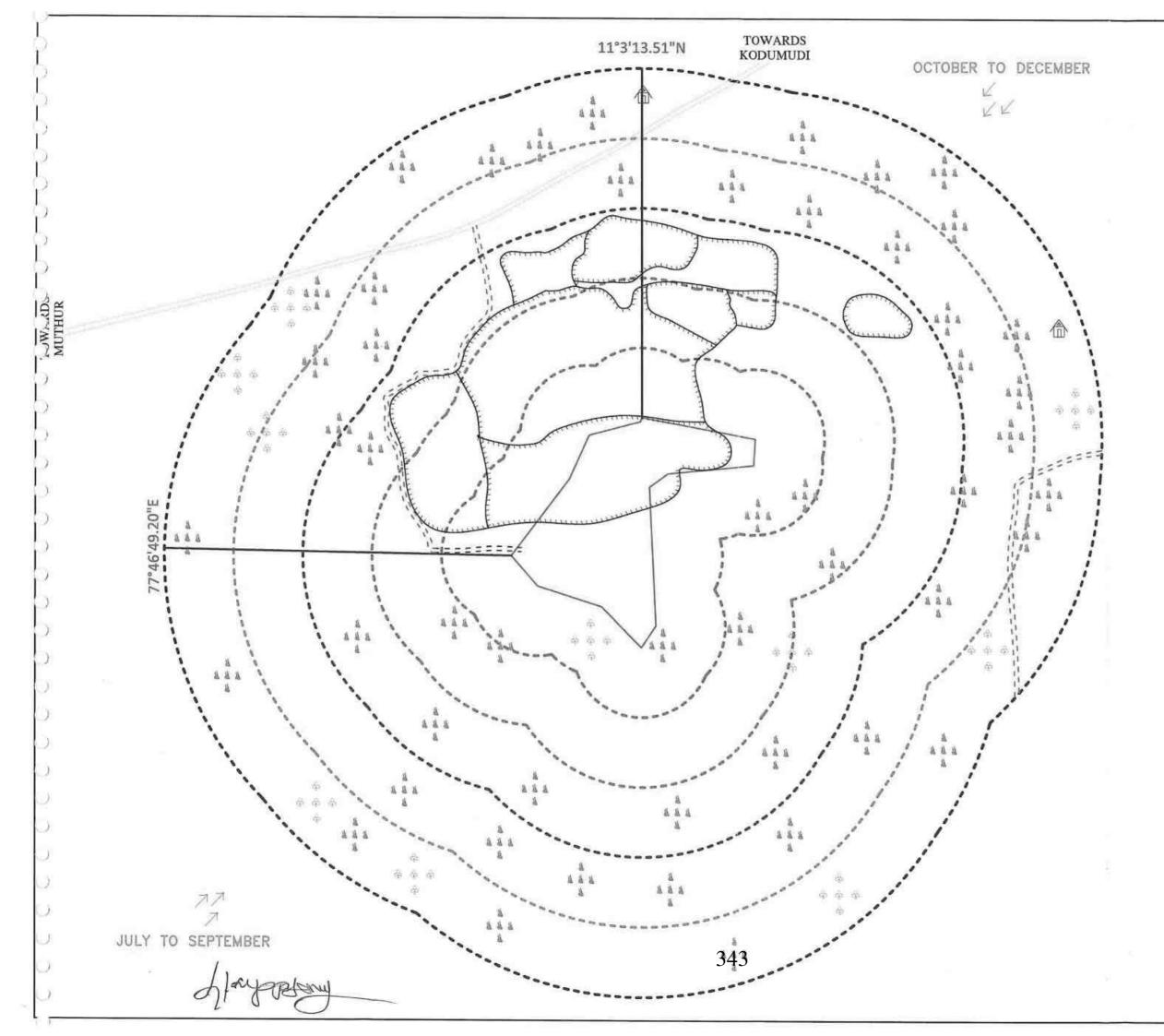
This certificate will liable to be withdrawn/cancelled in the event of furnishing the wrong information/documents in the Mining Plan submitted by the Recognized Qualified Person.

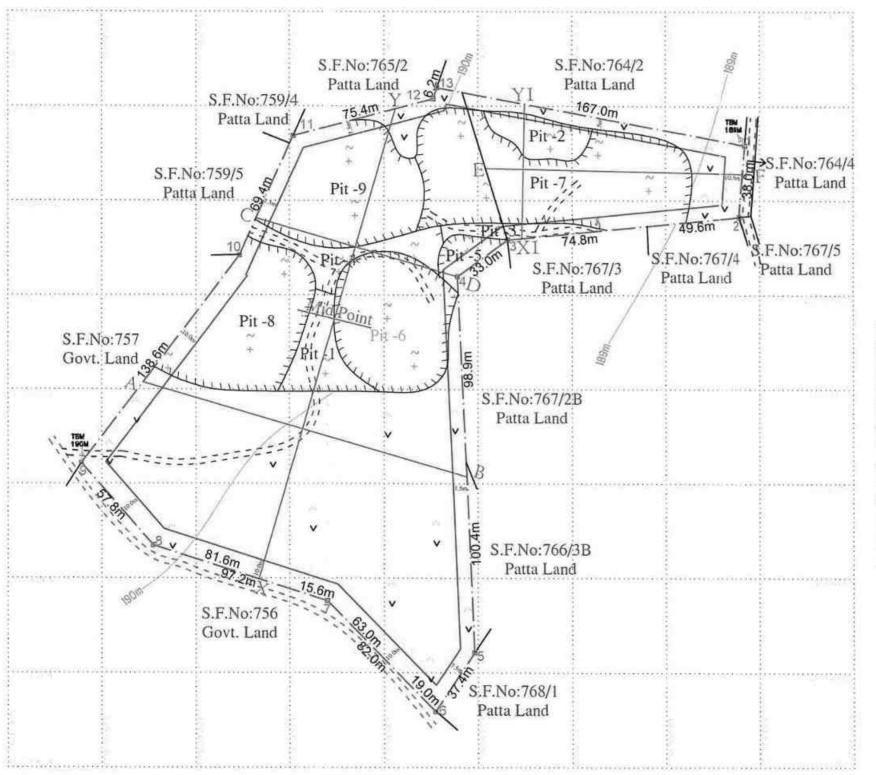

Place: Hyderabad, Date: 26.04.2022.


 (\bigcirc)


DIRECTOR OF MINES AND GEOLOGY


D Ronald Rose 4-2022 09:41:13 pproved


J. Jayporken 338



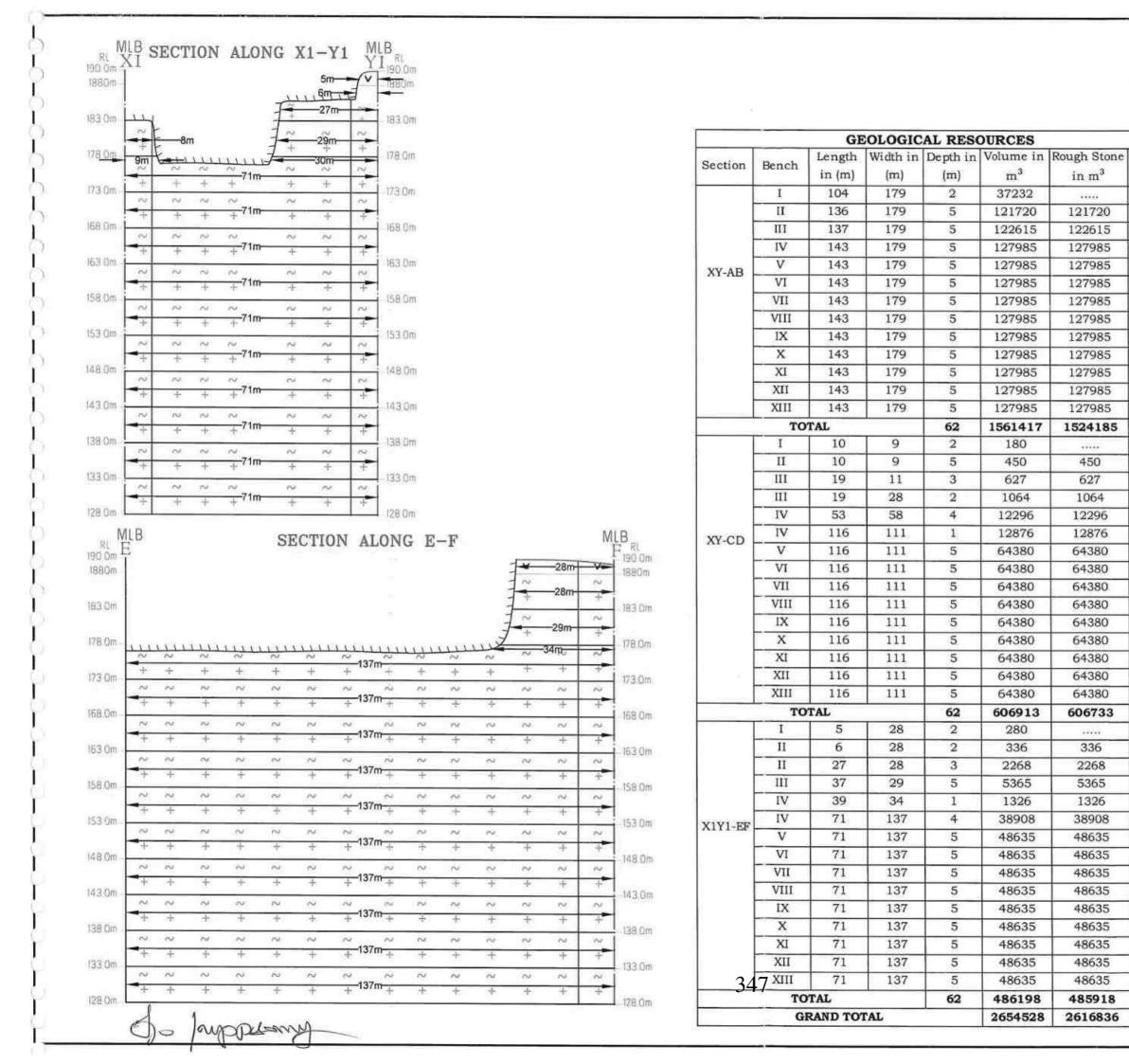
Ι		N.385-
1000	PLATE NO ID APPLICANT Mr.S.KURPUSAMY, S/o.SAMIA PLACOUNDER, Door No.95, SAMANKATTU THOTIY APALA YAM, MUTHUR, KANGE YAM FA TIRUPPUR DISTRICT - 6381 LEASE APPLIED AREA: S.F.NO : 764/3, 765/3, 766/3A, 767/1 EXTENT : 4.82.7Hect, VILLAGE : ANJUR, TALUK : PUGALUR,	PATL AND EUK, 05. 766/1, 766/2,
	DISTRICT : KARUR.	
	INDEX	
	MINE LEASE AREA	
	SAFETY DISTANCE	
	APPROACH ROAD	
	CART ROAD	
	SH - 189 ROAD	
	100m RADIUS	0
	200m RADIUS	0
	300m RADIUS	O
	400m RADIUS	\odot
	500m RADIUS	0
	EXISTING PIT	
	SHRUBS & TREES	1 &
	HABITATION	
	WIND DIRECTION	XX - 22 2 - 22
	TOPO SHEET NO : 58-E/16	
	LATITUDE : 11°3'02.77"N	to 11°3'13.51"N
	LONGITUDE : 77°46'49.20"	E to 77°47'0.88"E
	ENVIRONMENTA SCALE- 1:5000	L PLAN
	Prepared By: I DO HEREBY CERTIFY HAS BEEN CHECKED BY ME TO THE BEST OF MY KNOW	E AND IS CORRECT VLEDGE
	A , Ami A.ALLIMUTHU, M.Sc.	
	RECOGNISED QUALIFI	ED PERSON

RQP/DMG/HYD/85/2022

	N N
le /	PLATE NO-II
3"E 0"E 11"E 5"E	APPLICANT: Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTUPALLAM, THOTIYAPALAYAM, MUTHUR, KANGEYAM TALUK, TIRUPPUR DISTRICT - 638105.
6'E 9'E 4'E 0'E 0'E	LEASE APPLIED AREA: S.F.NO : 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A EXTENT : 4.82.7Hect, VILLAGE : ANJUR, TALUK : PUGALUR, DISTRICT : KARUR.
2"E	INDEX
9"E	MINE LEASE AREA
	SAFETY DISTANCE
	APPROACH ROAD
	CART & PATTA ROAD
	BOUNDARY PILLAR STONES 01 02
	MINE LEASE PLAN SCALE- 1:2000
	Prepared By:
	I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE
	A I.A. M.Sc., M.PHIL, RECOGNISED QUALIFIED PERSON RQP/DMG/HYD/85/2022

EXIS'	TING PIT	DIMEN	SIONS
Pit	Length	Width in	Depth
Levels	in (m)	(m)	(m)
1	53	22	3
2	20	45	4
3	8	60	6
4	15	95	7
5	25	20	10
6	71	61	12
7	48	140	13
8	82	58	15
9	62	76	16

11

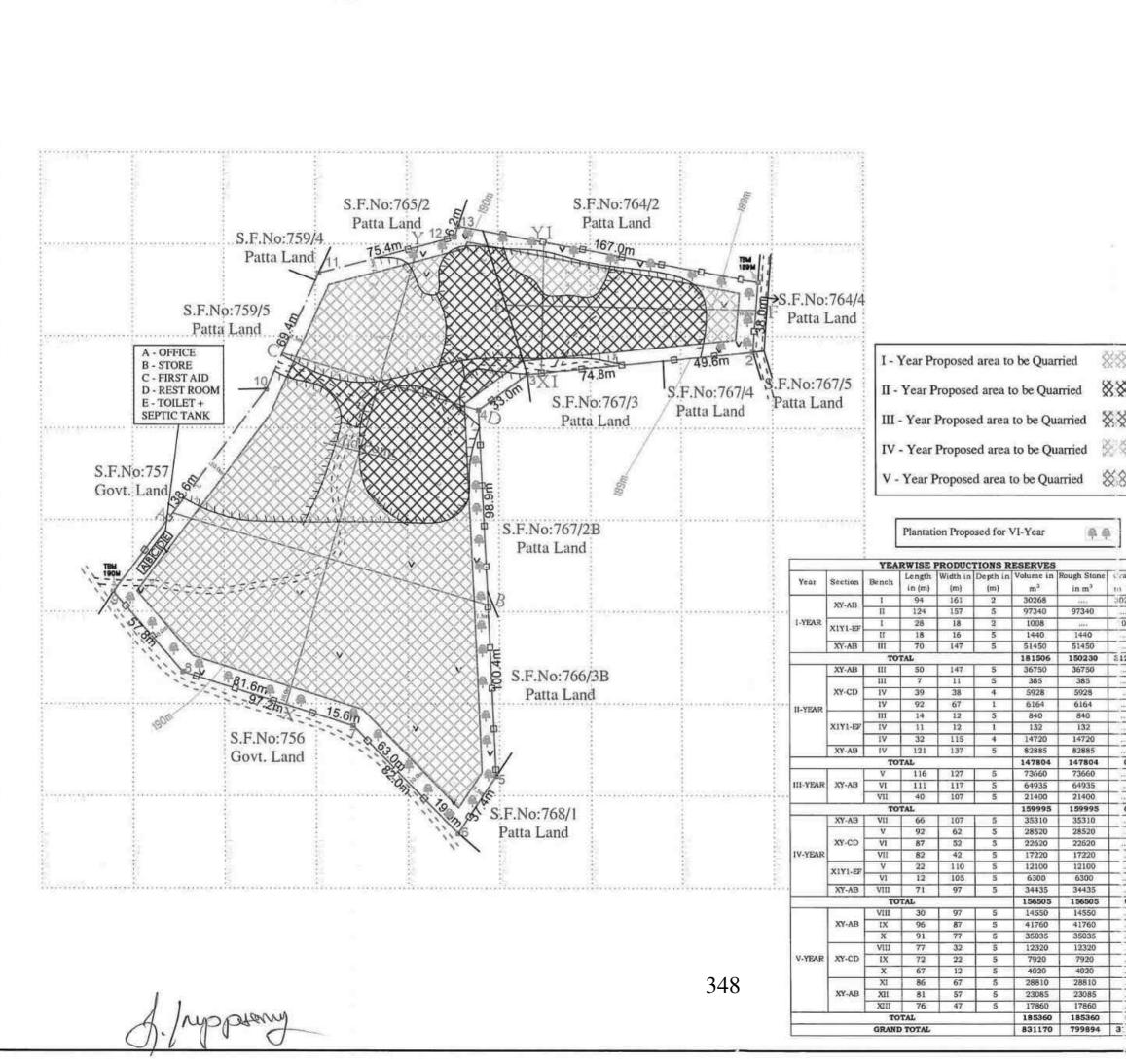

Oblaun

345

en swises	
PLATE NO-III	
APPLICANT: Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTUPALLAM, THOTIYAPALAYAM, MUTHUR, KANGEYAM TALUK, TIRUPPUR DISTRICT - 638105.	
LEASE APPLIED AREA: S.F.NO : 764/3, 765/3, 766/1, 766 766/3A, 767/1 & 767/2A	
EXTENT : 4.82.7Hect, VILLAGE : ANJUR, TALUK : PUGALUR, DISTRICT : KARUR.	
INDEX	
MINE LEASE AREA	
SAFETY DISTANCE	
APPROACH & MINE HAUL ROAD	
CART & PATTA ROAD	[::::
BOUNDARY PILLAR STONES	¤1 ¤2
TEMPORARY BENCH MARK	TBM
CONTOUR LINES	100/
SHRUBS	10.2000
GRAVEL	~~
ROUGH STONE	
EXISTING PIT	لحسينا
SURFACE & GEOLOGICAL SCALE 1: 2000	PLAN
Prepared By:	
I DO HEREBY CERTIFY THAT THE I HAS BEEN CHECKED BY ME AND IS CO TO THE BEST OF MY KNOWLEDGE	PLATE
A. Animin	١,
A.ALLIMUTHU, M.Sc., M.PHIL, RECOGNISED QUALIFIED PERSON	

RQP/DMG/HYD/85/2022

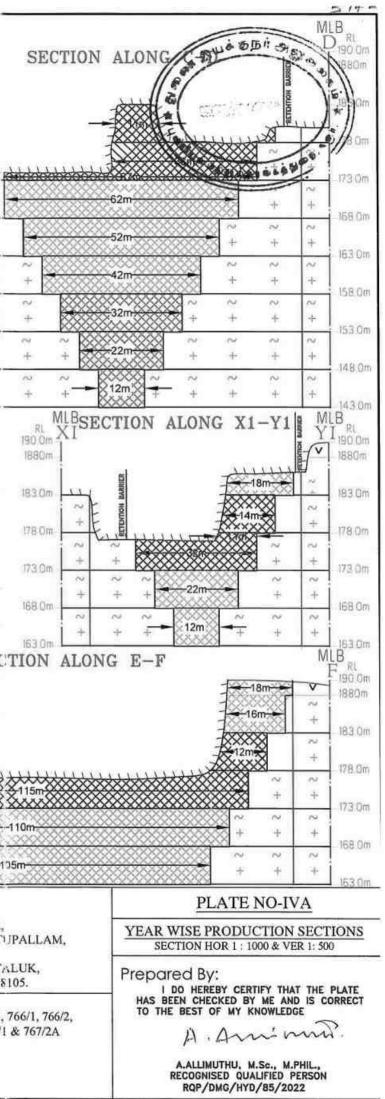
RL 190.0m 1880m 183.0m 178.0m 178.0m 166.0m 163.0m 158.0m 153.0m 148.0m	2 + 2 + 2 + 2 + 2	+ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	+ 2 + 2 + 2 + 2 + 2 + 2 + 5 + 2 + 5	+ 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	+ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	104m 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2		-136r -137r 	m + 43m + 43m + 43m + 43m + 43m + 43m +	+ - + - + - + - + - + - + - + - + - + -	+ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	+ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 * 2	+ ~ + ~ + ~ + ~ + ~ + ~ +		2 2 1 1 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4		NG	-X + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	Y 1234 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	2 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	N+ S S S S S S S S S S	C T C T C T C T C T	+ + + + + + + + + + + + + + + + + + + +	116m 116m 116m 116m	2 + 2 + 2 + 2 +	+ 2 + 2 + 2 + 2 +	2 + 2 +	2 + 2 + 2 + 2 + 2	1 ~	173 0 168 0 163 0 158 0 158 0 158 0	, 1 1 1 1 1								
138:0n 133:0n	2+	2 + 2 + 2	2 + 2 + 2	2 + 2 + 2	- 2 + 2 + 2	2 + 2 + 2	r r	+1 1	43m - 43m -	y + + +	2 + 2 + 2	- 2 + 2 + 2	4		<u>e</u>	2 + 2 + 2 -	2 + 2 + 2	2 + 2 + 2	5 + 5 + 5	6 6 7	- + / /2 / +		+	116m-	+ ~ +	+ ~ +	÷	+ ~ + ~ -	2 + 2 + 2 -	-138.0		1			APP Mr.	ATE NO PLICANT: S.KUPPU		D	
128 On RI 190 Om A 1880m	v	×	•	v	v	s	SEC.	FIOI	N A	LOI	NG	A-1	3	v	v		v	v	v	MI I Y	B RL 190.0m	NLB C			S	ECTI	ON		YG I	128.0 C-D	n		MLE D	3 RL 190 Om 1880m	Doo THO MU TIR	or No.95, S OTIYAPA THUR, KA UPPUR D ASE APPL	ALIANKAT LAYAM, ANGEYAM ISTRICT - 6 IED AREA:	TTUPALL TALUK, 538105.	
183 Om + 178 Om ~	2 + 2 + 2	2 + 2 + 2	2 + 2 + 2	2 + 2 + 2	2 + 2 + 2	5 + 2 + 3	< + < + <	9 + - 	2 + 2 + 2	79m-	2 + 2 + 2	2 + 2 + 2	2 + 2 + 2	2 + 2 + 2	2 + 2 + 2		2 + 2 + 2	2 + 2 + 2	2 + 2 + 2	2 + 2 + 2	- 183 Ora - 178 Ora						11m	~		<u>~ ~</u> ~	11st			183 Om 178 Om	VIL TAI	FENT : LAGE :	PUGALUR	57/1 & 7	
173 Om ~ 168 Om ~	+ 2 + 2 -	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 -	2 + 2 +	+ 2 + 2 +	2 2 2	+	+ ~ + ~ 1	79m-	+ ~ + ~ -	+ 2 + 2 +	+ +	+ ~ + ~ .	+ 2 + 2 +	5	+ 2 + 2	+ 2 + 2 +	+ 2 + 2 -	+ 2 + 2	173.0m 168.0m	2 + 2	24 2 + 2 .	~ ~ ~	~ + ~ ~	1 2 + 2	2 + 2	11m	÷	+ 004 + + + +	4	2 + 2	-	173 Om 168 Om	MI	NE LEASE	INDE: AREA	X	
163 Om ~~ 158 Om ~~	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	1	+ + + 	+ 2 + 2 +	179m	+ + +	+ 2 + 2 +	+ 2 + 2 +	+ > + > +	* * *		+ + +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	163 0m	+ 2 + 2 +	+ 5 + 5 +	+ 2 + 2 +	H 2 + 2 H	+ 2 + 2 +	T (V	11m	÷	+ + + + + + + + + + + + + + + + + + + +	. 4	· ~	-	163.0m 158.0m	GR.	FETY BOU AVEL UGH STO			
153.0m + 148.0m +	2 4 2 4	+ 5 + 5 +	+ 2 + 2 +	T ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	+ 2 + 2 +	+ 2 + 2	-	+ + 	+ 2 + 2 +	179m-	+ 2 + 2 +	+ 2 + 2 +	7 2 + 2 +	+ 2 + 2 +	+ 2 + 2		+ ~ +	+ 2 + 2 +	+ 2 + 2 +	÷ 2 ÷ 2	153.0in 148.0in	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	11m	÷	+ 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	4	× ~ + ~	-	153 Om 148 Om	EX	ISTING PI GEO			
143 0m +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +		+ + + + + + + + + + + + + + + + + + + +	+ -1 ~+	179m	+ ~ + ~ +	+ 2 + 2 +	+ 2 + 2 +	+ > + > +	+ 2 + 2 +	-	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	143 Om 138 Om	+ 2 + 2 +	+ 5 + 5 +	+ 2 + 2 +	+ 2 + 2 +	+ 2 + 2 +	2 + 2	11m	+	+ 2 + 2 +	4	2 4 4 4 4	2 4 2	143.0m 138.0m	Pre	Pared I I DO HAS BEEN TO THE B	Y: HEREBY CER CHECKED BY EST OF MY K	TIFY THAT ME AND I NOWLEDGE	THE PLATE IS CORRECT
133.0m ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ +	+	+	+ + +	+ + PÅ	+ + SM)	8	+ +	+ ~ +	179m-	+ ~ +	+ 2 +	+ ~ +	* 2 +	+		+ ~ +	+ ~ +	+ 2 +	+ ~ +	346	+	+ ~ +	+ ~ +	*	+ ~ +	N	111m	+ ~ +	+ + ~ ^	0	+ + - ^	+**	133.0m 128.0m		A. REC	A . AM ALLIMUTHU, M COGNISED QUA RQP/DMG/HYC	I.Sc., M.PHI	L, SON

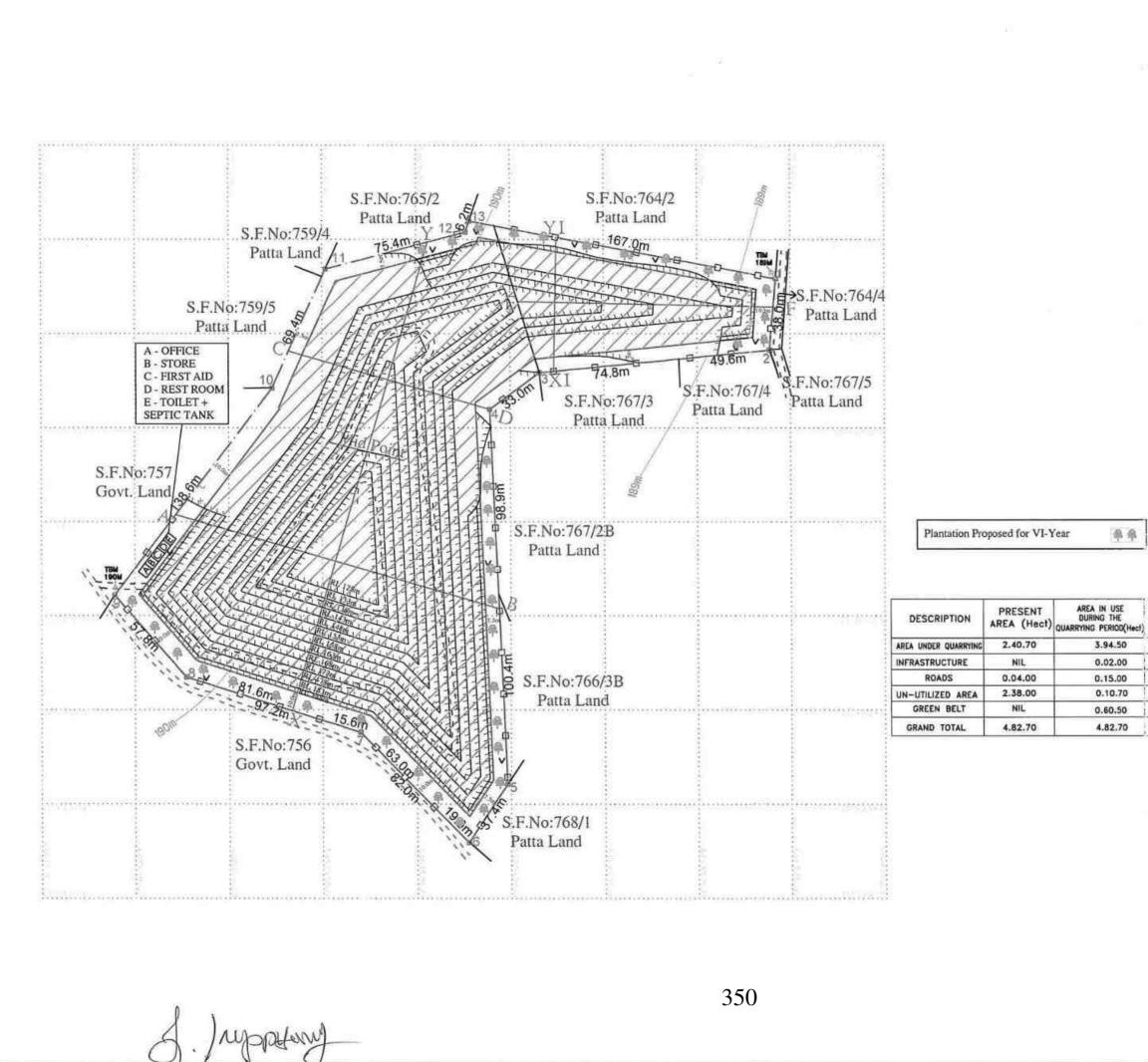

	Buie ODr J. St. 373.
	Course in the set
Gravel	e Dualente.
in m ³	
37232	

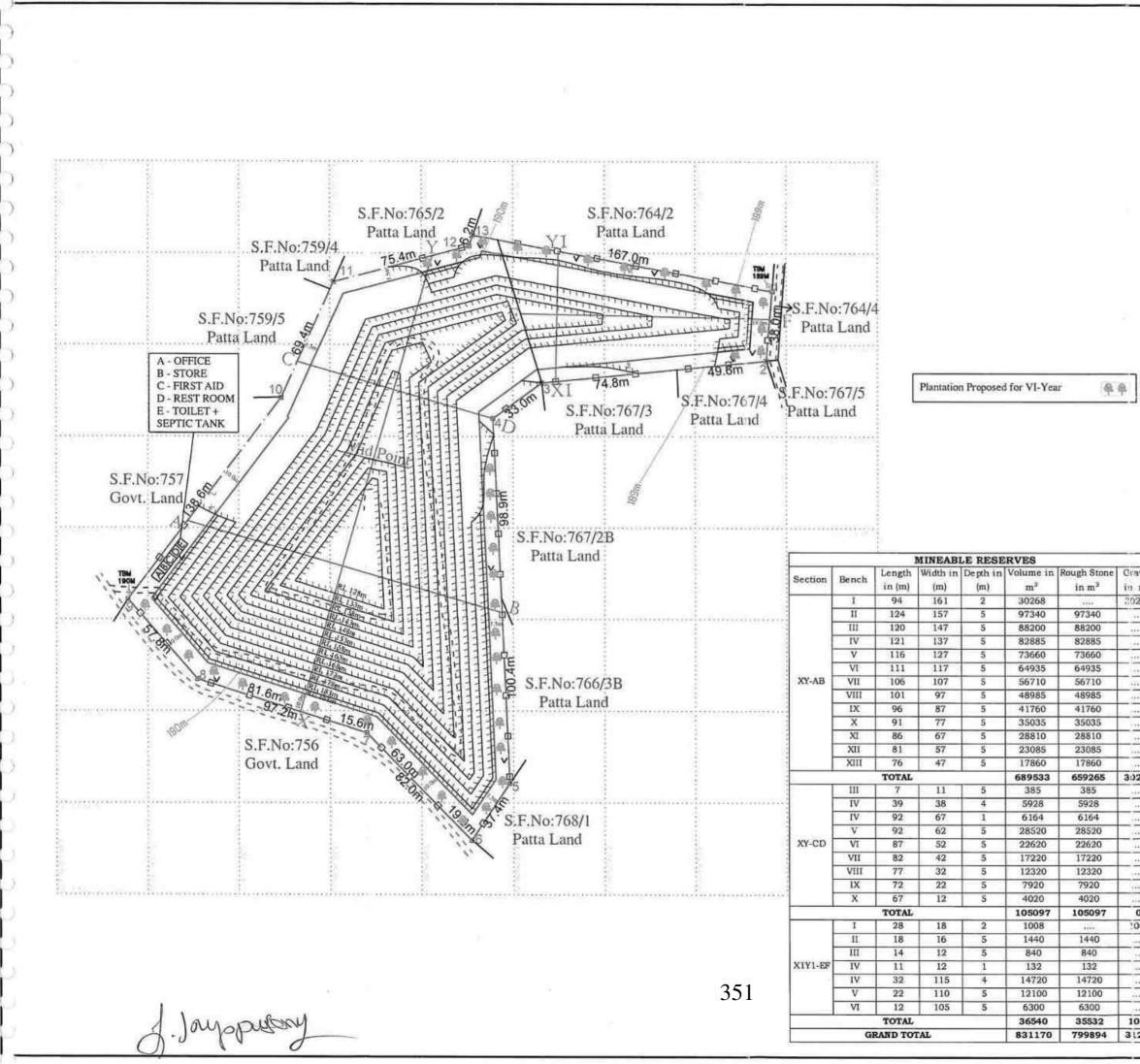
37232	
180	PLATE NO-IIIB
*****	APPLICANT:
*****	Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER,
	Door No.95, SALIANKATTUPALLAM,
*****	THOTIYAPALAYAM,
	MUTHUR, KANGEYAM TALUK,
*****	TIRUPPUR DISTRICT - 638105.
*****	LEASE APPLIED AREA:
****	S.F.NO : 764/3, 765/3, 766/1, 766/2,
*****	766/3A, 767/1 & 767/2A
	EXTENT : 4.82.7Hect,
	VILLAGE : ANJUR,
	TALUK : PUGALUR,
*****	DISTRICT : KARUR.
	INDEX
180	
280	MINE LEASE AREA
	SAFETY BOUNDARY
	SAFETT BOUNDART
	GRAVEL VV
	SKAVEL VV
	ROUGH STONE
	EXISTING PIT
11122	
	GEOLOGICAL SECTIONS SECTION HOR 1 : 1000 & VER 1: 500
	Prepared By:
	I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT
	TO THE BEST OF MY KNOWLEDGE
31111	A. Aminno.
	A. Annon
280	A.ALLIMUTHU, M.Sc., M.PHIL., RECOGNISED QUALIFIED PERSON
37692	RQP/DMG/HYD/85/2022
	KUP/DMG/HTD/85/2022

in m³

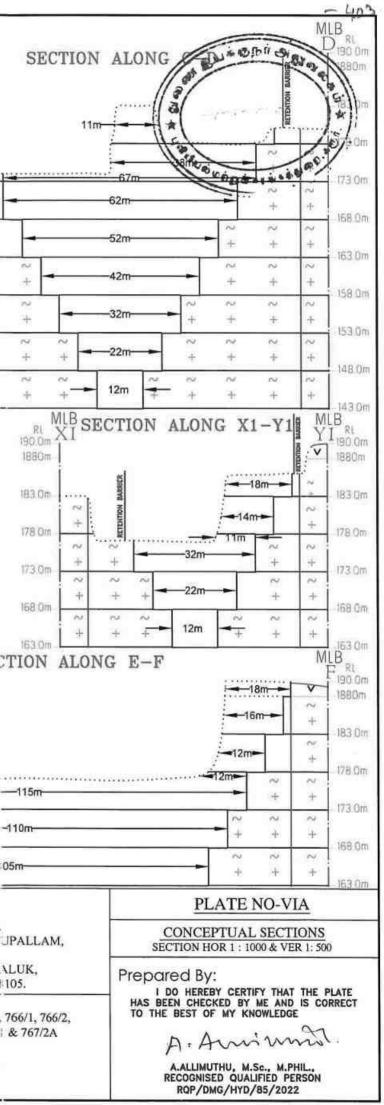
.....


.....


.....


		and the second sec
	A Bulice B.Dr.	-) ⁹ +
PLATE NO-IV		
APPLICANT: Mr.S.KUPPUSAN S/o.SAMIAPPAGO Door No.95, SALI THOTIYAPALAY MUTHUR, KANG TIRUPPUR DISTI	OUNDER, ANKATTUPALLA 'AM, BEYAM TALUK,	ΔМ,
	/3, 765/3, 766/1, /3A, 767/1 & 76 2.7Hect, JUR,	
	INDEX	
MINE LEASE ARI	EA	**
SAFETY DISTAN	CE	
APPROACH & MI	NE HAUL ROAD	
CART & PATTA I	ROAD	
BOUNDARY PILI	LAR STONES	¤1 ¤ 2
TEMPORARY BE	NCH MARK	1904 -
CONTOUR LINES	5	100
SHRUBS		A. M.B.
GRAVEL		v v v
ROUGH STONE		10 10 10 1 1 1 1
EXISTING PIT		فسين
FENCING		
YEA	RWISE DEVELO PRODUCTION SCALE PLAN 1 ::	PLAN
Prepared By:		
HAS BEEN C TO THE BES	EREBY CERTIFY THAT HECKED BY ME AND T OF MY KNOWLEDGE	IS CORRECT
	A. Amim	

RL 190.0m	MLB X	AB	SECTION	ALONG	К-У			CP		MLB M Y RL C	ĻΒ
1880m	> + - +	94m- 124m-	-tunn						71	× 1880m ∼	
183.0m	~ +	+	500			-	En-			~ 183.0m +	DIBM
178.0m	~ +	+ 121							T T	+ 178.0m + 173.0m	
168.0m	2 + 2		6m	<u></u>			92n	•	+ +	~ + 168 Om	2 + 5 5
163.0m	+	+ +	111m				87m-		+ +	~ + ~	2 + 2 + 2 + 2
158.0m	+	+ + + + ******************************	66m	-30m			82m	+	2.01	+ ~ 158.0m	+ + +
153.Qm	*		96m				-72m		+ + ~ +	+ 153.0m	+ + + + + + + + + + + + + + + + + + + +
148.0m	+		91m				67m			~ 148.0m	~ ~ ~ ~ + +
138.0m	2 +				~ +	~ ~ + +	5 + 2 +	* * * * *	+ +	+ 143.0m 1 + 138.0m	
133.0m	2 + 2			-	+	2 + 2	2 + 2	2 + + + 2 2 2	+ +	~ + .133.0m	
() 128.0m RL	+ MLB	+ + + + + + + SECTION	ALONG A-B	+	+	+ +	HLB BI90.0m	+ + + +	+ +	+ -128 Om	
190.0m	A ~		-161m-				B 190`0m ∼ 1860m	II - Year Proposed area III - Year Proposed area III - Year Proposed area	to be Quarried	****	
183 Om	+ ~ +					2222	+ ~ 183.0m +	IV - Year Proposed are V - Year Proposed are	a to be Quarried		
0 ^{178.0m}	~ +		137m		****		178 Om		MLB	00001	SECT
0173.0m			-127m				~ 173 0m + 158 0m		190 0m 13 1880m		
) 163.0m	5 + 5		-117m			+ +	~ + ~ 163.0m		183,0m -		
158.0m	N				+ -	+ +	+ ~ 158.0m				
_) ^{153.0m}	+ ~ +		87m		~ ^	. ~ ·	+ 153.0m		168.Qm		-1
148.0m	~ +			× ~	~ /	v ~ .	~ 148 Om + 143 Om	INDEX	163 Om	APPLICAN	
138.0m	~ +		-67m -	~ ~ +	+	+ +	~ + 138.0m	MINE LEASE AREA	<u> </u>	Door No.95	PPAGOUNDER, 5, SALIANKATTUI
() /33.0m	+		57m	2 + 2	+	+ +	~ + ~ 133.0m	SAFETY BOUNDARY		MUTHUR, TIRUPPUR	PALAYAM, KANGEYAM TAI R DISTRICT - 63810
JIZB Om	+	+ + + + + +	+	+ +			+ 128.0m 349	ROUGH STONE		S.F.NO	PLIED AREA: : 764/3, 765/3, 7 766/3A, 767/1 8
5		f. Jayopany						PROPOSED BENCH EXISTING PIT	[لي الاستا	EXTENT VILLAGE TALUK	: 4.82.7Hect, : ANJUR, : PUGALUR,
17										DISTRICT	: KARUR.



	Provide Calification	10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +	
COLOR	PLATE NO-V		
	APPLICANT: Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTUPALLAM, THOTIYAPALAYAM, MUTHUR, KANGEYAM TALUK, TIRUPPUR DISTRICT - 638105.		
	LEASE APPLIED AREA: S.F.NO : 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A EXTENT : 4.82.7Hect, VILLAGE : ANJUR, TALUK : PUGALUR,	9.2	
	TALUK : PUGALUR, DISTRICT : KARUR.		
	INDEX		
	MINE LEASE AREA		
	SAFETY DISTANCE		
	APPROACH & MINE HAUL ROAD		
	CART & PATTA ROAD		
	BOUNDARY PILLAR STONES	o1 o2	
	TEMPORARY BENCH MARK		
ANCOF	CONTOUR LINES	/=m/	
	SHRUBS	$\alpha \gg \alpha_{\rm c}$	
	GRAVEL	vvv	
	ROUGH STONE	2.4 2.4	
	EXISTING PIT & PROPOSED BENCH	التدرينا	
	FENCING		
	MINE LAYOUT PLAN AND LAND USE PATTERN SCALE 1:2000		
	Prepared By:		
	I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE		
	A.Amima	N	
	A.ALLIMUTHU, M.Sc., M.PHIL, RECOGNISED QUALIFIED PERSON RQP/DMG/HYD/85/2022		

Bus Buis S.Bri	1 + 10 A
PLATE NO-VI	
APPLICANT: Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTUPALLAM, THOTIYAPALAYAM, MUTHUR, KANGEYAM TALUK, TIRUPPUR DISTRICT - 638105.	
LEASE APPLIED AREA: S.F.NO : 764/3, 765/3, 766/1, 766 766/3A, 767/1 & 767/2A EXTENT : 4.82.7Hect, VILLAGE : ANJUR,	
TALUK : PUGALUR.	
DISTRICT : KARUR.	
INDEX	
MINE LEASE AREA	
SAFETY DISTANCE	
APPROACH & MINE HAUL ROAD	[:::]
CART & PATTA ROAD	
BOUNDARY PILLAR STONES	¤† ¤2
TEMPORARY BENCH MARK	190M
CONTOUR LINES	/mas/
SHRUBS	0.00
GRAVEL	vvv
ROUGH STONE	174 174 174
EXISTING PIT & PROPOSED BENCH	Kunst
FENCING	Ľ]
CONCEPTUAL PLAT	N
Prepared By:	
I DO HEREBY CERTIFY THAT THE F HAS BEEN CHECKED BY ME AND IS CO TO THE BEST OF MY KNOWLEDGE	
A. Amimm	\Im
A.ALLIMUTHU, M.Sc., M.PHIL., RECOGNISED QUALIFIED PERSON ROP/DMG/HYD/85/2022	

Net	ILB X											SEC	TION	N AI	LONG	G X-	-Y										ML Y	B M	ιLΒ	
) ^{1880m}	> ? +	-	_		_	-94	m		*******	_					-												× ~ +	190 Om 1880m		
)'83.0m	~ +	~ +	-					12	'0m-						•			5	71	n ! -					BARNER		~ +	183.0m		ACREAM
	~ +	+ 5	-	_					-121m						•	-		39m							RETENDON		~ +	-178 Om		NETEMDOK.
[73,0 <i>m</i>]	2 +	+ 2	~ +	-					-116r	m —										920 920	0				-	~ +	~ +	173 Om	•••••	
() ^{168.0m}	~ +	~ +	~ +	-				_	11	11m	_			_		-								-	~	~	~	168.Om	+ ~ -	+ +
)'63 Om	2.4	5 4	~	5 4	-					106m-					_,									~	+		+	-163.0m	*	~ ~
158 Om	~ -	~	~	2 .	-					—101m	0								-	-77m				+	+	+	+	158.0m	*	+ +
153 Om	5 +	~	+ 2	2	~					3994UM 865					15				-			_	~	+	+	+ ~	+	153.0m ;	+ ~	+ +
148 Qm	*	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					96						-				2m			+	+	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+ 2	+	148.0m	+	+ +
	+ ~	*	+	+	+ 2	~	1				91m			_		~			-67n	~ ~	~	~	+	+	+	+ ~	+	143 Om	+	+ +
)38.0m	+	+	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+ ~	+	+	-		_		86m		_			+	4		÷	+ +	+	+	÷	4	+	+	+	138.0m		
0 133.0m	+	+	+	+	<u>#</u> .)	+	-				-81m				+•	+	4	-	÷	+ +	+	+	~ +	*	~ +	2 +	+	-133 Om		
128.0m	+	+	+	+	2 +	~ +	*	-			76	m	_		~ +	+	+		ł	+ +	+	+	+ 2	2 +	∻ +	2 +	*	128 Om		
RL	1LB						SI	ECTI	ON A	ALO	NG	A-B							N	ILB .										
190.0m 1880m	~	-		00.005-0002000		•••••				-161m-	*******	******					•••••			B 190 0m										
0183.0m	+	-	_							-157m								-	2 +	183.Öm										
0 178.0m	5 +	+								-147m-								+	2 ÷	178 Dm						MLB				SEC
() 173 Om-	2 +	2 +	-						_	-137m-		-				_		~ +	2 +	173 Om					RL 190 Om 1880m	E				510
) 168.0m	2 #	+	2 +	-					_	-127m-					-		2 +	2 +	+ 2						183 Om					
	5 +	2 +	~+	-						-117m	2					-	~+	~ +	2 +	- 168.0m					178 Om					
()163.0m	~ +	~ +	~ +	~+	-					-107m		_				~	~ +	~ +	~ +	153.0m										
158 Dm	2 +	~ +	~ +	~ +	-			_		-97m					-	~ +	~+	2 +	~ +	158.0m					173 Om	-				
153.0m	2 +	~ +	~+	~ +	2 +	-	_			-87m-	_				~	~	~ +	~ +	~ +	153.0m					168 Om	-				-:(
148.0m	2 +	~ +	~ +	N	~					-77m-			_	-	~	2	~	~	~	148.0m					163.0m			PPLICAN		MV
-143 Om	~	~	N	+ ~ .	+ 2 -	2.	-			-67m-				2	+ ~	+~	+	+ ~	+~	143.0m			5.5	NDEX			S/c Do	or No.95	APPAG 5, SAL	IOUNDER. IANKATT
138 Om	+ 2	+ ~	+ ~	+ ~	+ 2	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								+ ~	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+ ~	+ ~	+ 2	138 Dm			AREA				TH	IOTIYAI UTHUR,	PALA KAN	YAM, GEYAM TA
133.0m	+ 2	+	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+~	+ ~	+ 2	2			-57m		_	2	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+ ~	+ ~	+~	+ 2	+ 2	133.0m			UNDAR	.1			LE	EASE AP	PLIED	
128.0m	+	+	+	+	+	÷	+		_	-47m			+	÷	+	÷	÷	+	+	35	>	H STO	NE					F.NO CTENT	76	54/3, 765/3, 6/3A, 767/1 82.7Hect,
υ.			A	.) @	y	pyer	u)	_													1		BENCH	l	G		VI TA	LLAGE LUK STRICT	: A : Pl	NJUR, UGALUR,
		_	0	<u> </u>	N		1											_		_	1	-	-	_	_	_		STRICT	: K	ARUR.

From Dr.P.Jayapal M.Sc., Ph.D., Deputy Director, Geology and Mining, Karur. To Thiru.S.Kuppusamy, S/o.Samiappagounder, Door No.95, Saliankattupallam, Thotiyapalayam, Muthur, Kangeyam Taluk, Tiruppur District - 638 105.

Rc.No.300/Mines/2022, Dated:01.03.2023

Sir,

Sub: Mines and Minerals – Minor Mineral – Karur District – Pugalur Taluk – Anjur Village - S.F.Nos.764/3 (1.14.00 hectares), 765/3(0.48.00 hectares), 766/1(1.34.50 hectares), 766/2(1.14.00 hectares), 766/3A(0.47.35 hectares), 767/1(0.11.50 hectares) and 767/2A (0.13.35 hectares) Over an extant 4.82.70 hectares - Quarry lease application for Rough Stone and Gravel – Preferred by Thiru.S.Kuppusamy - Precise area communicated – mining plan submitted for approval – Approved – Regarding.

Ref:

 Quarry lease application for Rough stone and Gravel preferred by Thiru.S.Kuppusamy, S/o.Samiappagounder, Door No.95, Saliankattupallam, Thotiyapalayam, Muthur, Kangeyam Taluk, Tiruppur District - 638 105, dated: 28.06.2022.

- Order of the Hon'ble Supreme Court of India in I.A.Nos.12-13/2011 in SLP (C) No.19628-19629/2009, dt: 27.02.2012.
- 3. Government of India, Ministry of Environment and Forest Office Memorandum, Dated:18.05.2012.
- The Chairman, State Level Environment Impact Assessment Authority, Tamil Nadu D.O.Lr.No.SEIAA-TN/Minor Minerals/2012, Dated: 17.09.2012.
- The Commissioner of Geology and Mining, Chennai letter Rc.No.3868/LC/2012, dt: 19.11.2012.
- Deputy Director, Geology and Mining, Karur Notice Rc.No.300/Mines/2022, Dated: 14.02.2023.

 Mining Plan submitted by Thiru.S.Kuppusamy letter Dated: 20.02.2023.

& Jayperny

Thiru.S.Kuppusamy applied for quarry lease to quarry Rough Stone and Gravel vide in the reference 1st cited and Precise area communicated to the applicant regarding to submit the mining plan for approval as per rule 41 and also submit the Environmental Clearance as per Rule 42 of Tamil Nadu Minor Mineral Concession Rules

Accordingly Thiru.S.Kuppusamy have submitted three copies of draft mining plan for approval in respect of Rough stone and Gravel quarry lease applied areas, over an extent of 4.82.70 hectares of patta lands in S.F.Nos.764/3 (1.14.00 hectares), 765/3(0.48.00 hectares), 766/1(1.34.50 hectares), 766/2(1.14.00 hectares), 766/3A(0.47.35 hectares), 767/1(0.11.50 hectares) and 767/2A (0.13.35 hectares) of Anjur Village, Pugalur Taluk, Karur District in the reference 7th cited.

The above submitted mining plan for the grant of Rough stone and Gravel quarry lease in S.F.Nos.764/3 (1.14.00 hectares), 765/3(0.48.00 hectares), 766/1(1.34.50 hectares), 766/2(1.14.00 hectares), 766/3A(0.47.35 hectares), 767/1(0.11.50 hectares) and 767/2A (0.13.35 hectares) Over an extant 4.82.70 hectares of patta lands in Anjur Village, Pugalur Taluk, Karur District has been examined in detail.

As per the guidelines/ instructions issued by the Commissioner of Geology and Mining, Chennai vide letter Rc.No.3868/LC/2012, date: 19.11.2012., the mining plan submitted by the applicant is hereby approved, subject to the following conditions:

- (I) The mining plan is approved without prejudice to any other Law applicable to the quarry lease from time to time whether such laws are made by the Central Government, State Government or any other authority.

(Central Act IV of 1884) Minor Mineral Concession and Development Rules, 2010 and the Rules made there under and the Tamil Nadu Minor Mineral Concession Rules, 1959.

(III) The mining plan is approved without prejudice to any other order or direction from any court of competent jurisdiction.

- (IV) As per the Deputy Director, Geology and Mining, Karur notice in Rc.No.300/Mines/2022, Dated.14.02.2023 the following conditions are incorporated in the Mining Plan plates.
- விண்ணப்ப புல எண்.766/1, 766/2 மற்றும் 766/3A -க்கு மேற்கு மற்றும் தென்மேற்கில் உள்ள புல எண்கள். 756 மற்றும் 757-இல் தென்வடலாக செல்லும் வண்டிப்பாதை புறம்போக்கிற்கு 10 மீட்டர் பாதுகாப்பு இடைவெளி விட்டு யாதொரு சேதமுமின்றி முறையாக குவாரிப்பணி செய்ய வேண்டும்.
- விண்ணப்ப புல எண்.764/3-க்கு கிழக்கில் புல எண். 764/4-இல் தென்வடலாக செல்லும் பட்டா மண் பாதைக்கு 10 மீட்டர் பாதுகாப்பு இடைவெளி விட்டு யாதொரு சேதமுமின்றி முறையாக குவாரிப்பணி செய்ய வேண்டும்.
- விண்ணப்ப புலத்திற்கு அருகில் உள்ள பட்டா நிலங்களுக்கு 7.5 மீட்டர் மற்றும் புறம்போக்கு நிலத்திற்கு 10 மீட்டர் பாதுகாப்பு இடைவெளி விட்டு யாதொரு சேதமுமின்றி முறையாக குவாரிப்பணி செய்ய வேண்டும்.
- 4. குத்தகைக்காலத்தில் கைத்துளைப்பான் கருவி கொண்டு பாறைகளை துளையிட்டும், மிதமான வெடிபொருள் பயன்படுத்தியும், பொதுமக்களுக்கோ, பொது சொத்துக்களுக்கோ யாதொரு சேதமுமின்றி விதிமுறைகளின்படி குவாரிப்பணி செய்ய வேண்டும்.
- 5. குவாரித் தொழிலாளர்களின் பாதுகாப்பினை உறுதி செய்ய Mettaliferrous Mines, விதிகளின்படி அகலமானதும், பாதுகாப்பானதுமான Benches அமைத்து பாதுகாப்பான முறையில் குவாரிக்குள் வாகனங்கள் சென்றுவரவும் மற்றும் குவாரி தொழிலாளர்களின் பாதுகாப்பினை உறுதி செய்தும் குவாரிப்பணி செய்ய வேண்டும்.
- 6. குவாரி குத்தகை வழங்க ஏதுவாக துணை இயக்குநர் (சுரங்கம்) அவர்களால் ஏற்பளிக்கப்பட்ட சுரங்கத்திட்டத்தினையும், மாநில அளவிலான சுற்றுச்சூழல் தாக்க மதிப்பீட்டு ஆணையத்தின் (SEIAA) அனுமதி பெற்று மாவட்ட நிர்வாகத்திற்கு விண்ணப்பதாரரால் சமர்ப்பிக்கப்பட வேண்டும்.
- (V) Quarrying shall be done as per the approved Mining Plan and that the mining plan is approved without prejudice to any other law applicable to the quarry lease from time to time whether such laws are made by the Central Government, State Government or any other authority.

J. Wagarand

(VI) If anything is found to be concealed as required by the Mines Act in the contents of the Mining Plan and the proposal for rectification has not been made, the approval shall be deemed to have been withdrawn with immediate effect.

Encl: Two copies of Approved Mining Plan.

Deputy Director, Geology and Mining, Karur.

जन्म कि जिल्लामध्य के प्रतिहे

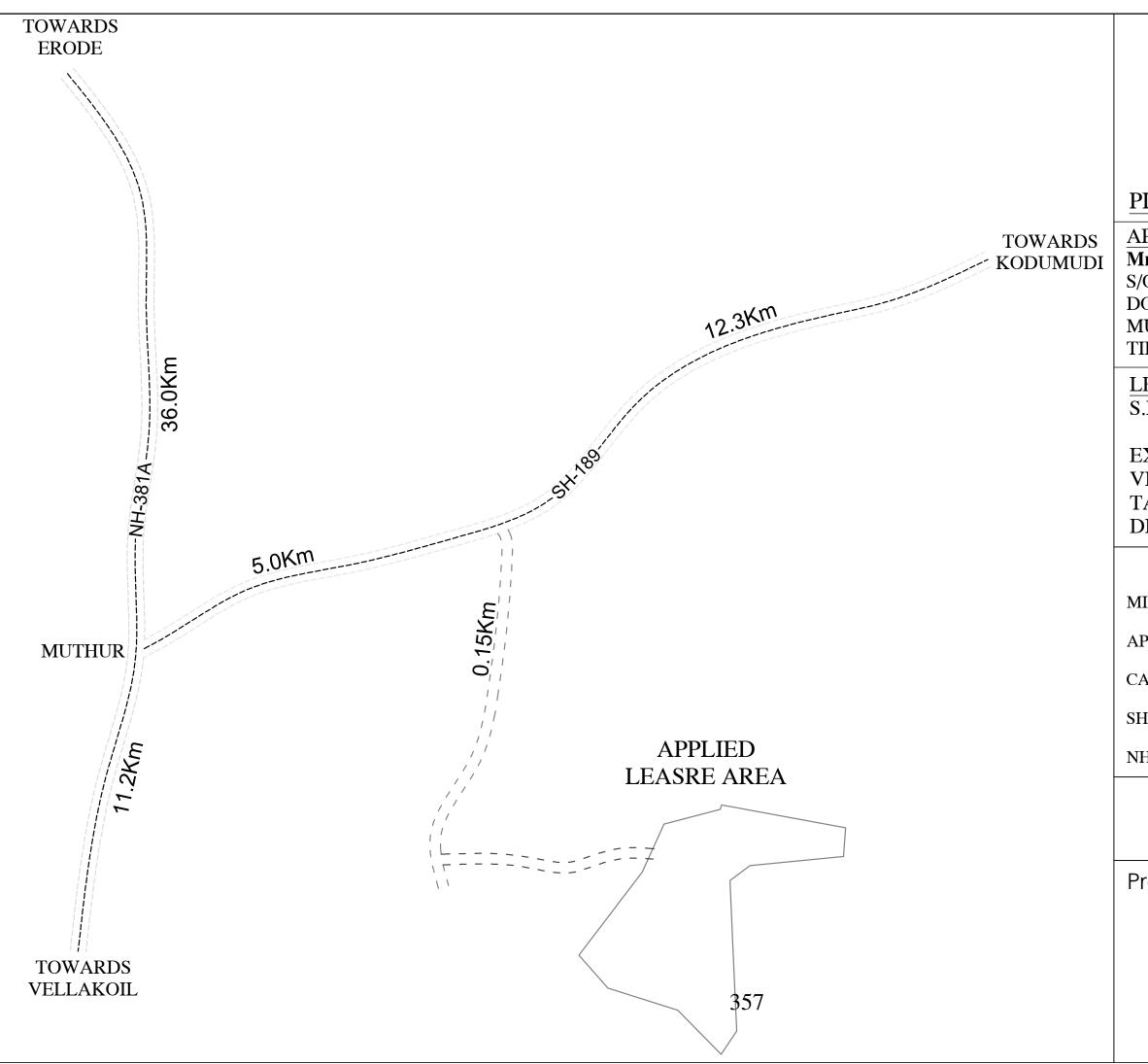
Copy to:

Thiru.A.Allimuthu, M.Sc., M.Phil., RQP/DMG/HYD/85/2022, D.No.1/231, Pattakaranavalavu, Chinnamuthiyampatti, Puduppalayam Post, Edapaddi Taluk, Salem District.

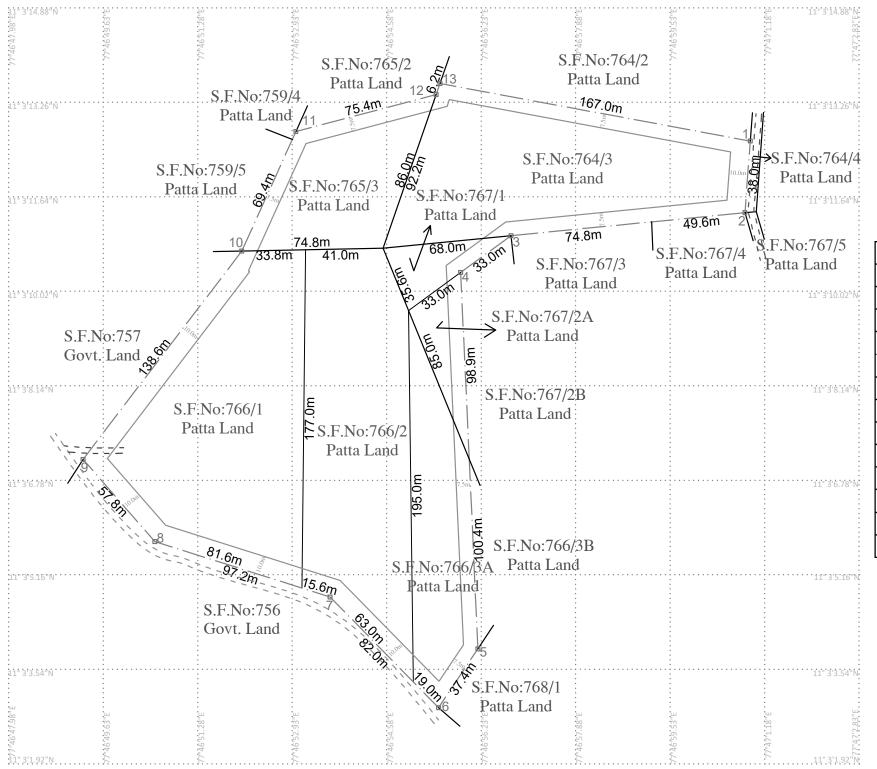
J.) rupptory

医毛肉肉 化合物管理合物合物 化无效量

and dealers of the state

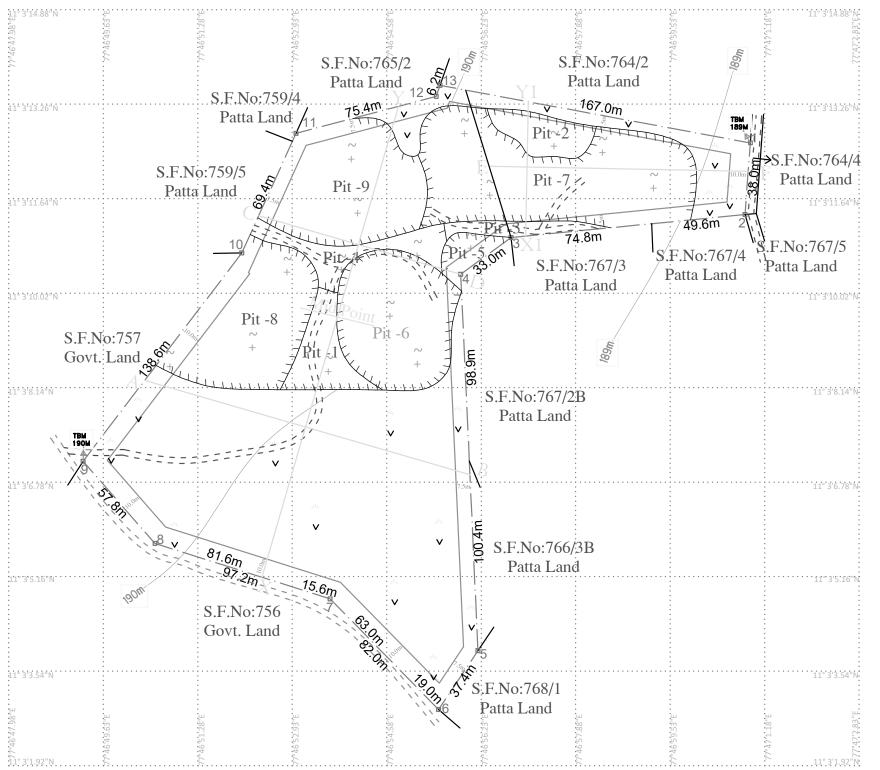

a head and a star of a star failed and a second star of the star

5.8.8


Manager and Manager and Manager

1 72 (344)

ALL MARSON STALLS

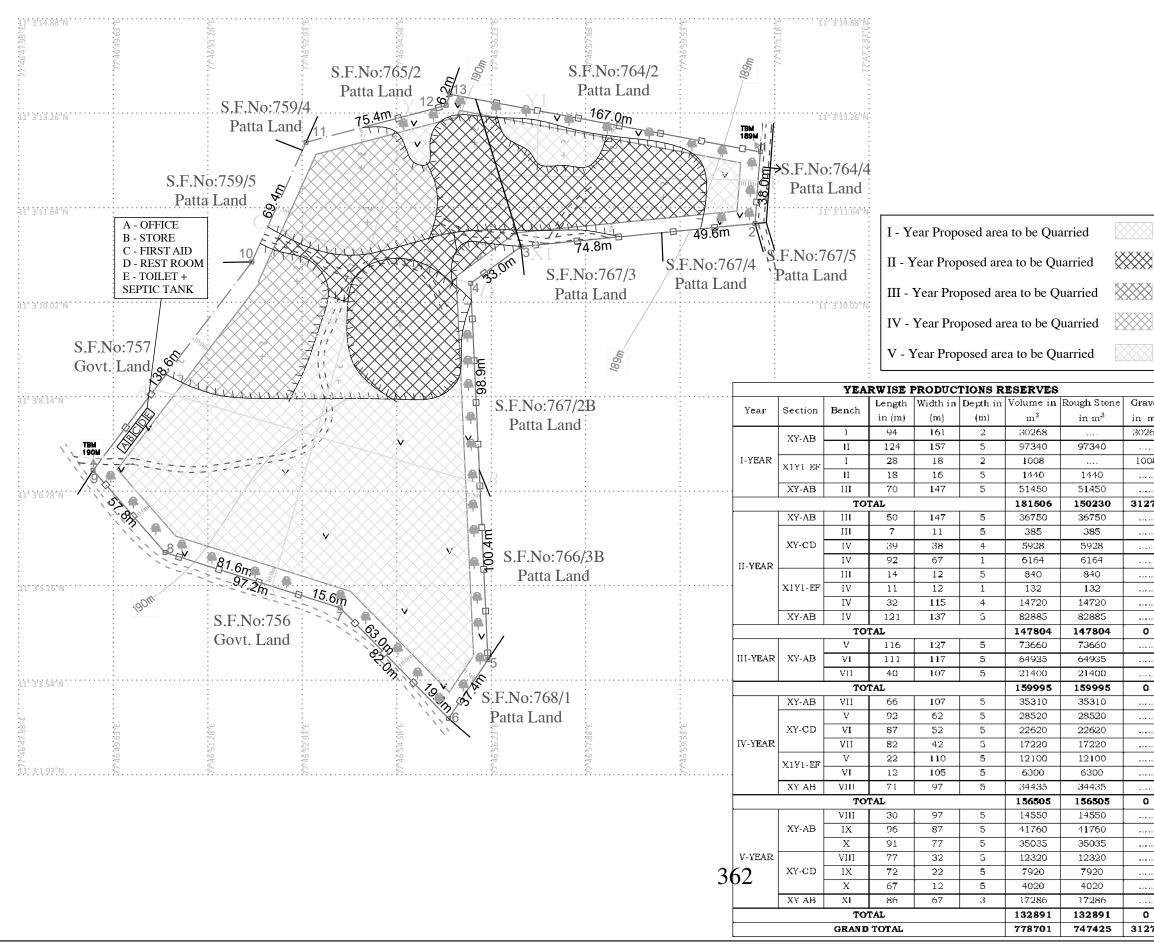


N A A A A A A A A A A A A A A A A A A A	
PLATE NO-I	
APPLICANT: Ir.P.SAMBATH KUMAR, /O. PALANISAMY, OOR NO:98, IUTTUR,KANGAYAM, IRUPPUR DISTRICT.	
LEASE APPLIED AREA: S.F.NO : 759/2 (P),761/2(P),762/2,762/3,763/2 & EXTENT : 4.81.50Hect, VILLAGE : ANJUR, FALUK : PUGALUR, DISTRICT : KARUR.	
INDEX	
IINE LEASE AREA	
PPROACH ROAD	
ART ROAD	
H -189 ROAD	
IH - 381A ROAD	
KEY MAP	
Prepared By:	
I DO HEREBY CERTIFY THAT THE HAS BEEN CHECKED BY ME AND IS O TO THE BEST OF MY KNOWLEDGE	
A.ALLIMUTHU, M.Sc., M.PHIL., RECOGNISED QUALIFIED PERSON RQP/DMG/HYD/85/2022	I

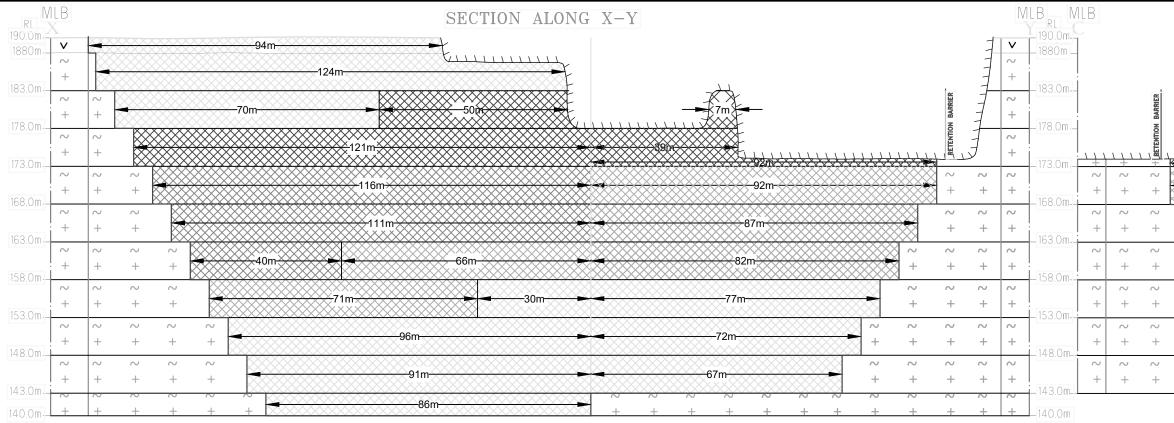
Pillar No	Latitude	Longitude
1	11° 3'12.47''N	77°47'0.88"E
2	11° 3'11.23"N	77°47'0.78"E
3	11° 3'10.88''N	77°46'56.70''I
4	11° 3'10.25"N	77°46'55.81"F
5	11° 3'3.77"N	77°46'56.05"I
6	11° 3'2.77"N	77°46'55.36"I
7	11° 3'4.69"N	77°46'53.49'T
8	11° 3'5.67"N	77°46'50.44"I
9	11° 3'7.10"N	77°46'49.20"I
10	11° 3'10.66''N	77°46'52.00'T
11	11° 3'12.70"N	77°46'52.97"
12	11° 3'13.32"N	77°46'55.42"I
13	11° 3'13.51''N	77°46'55.49"I

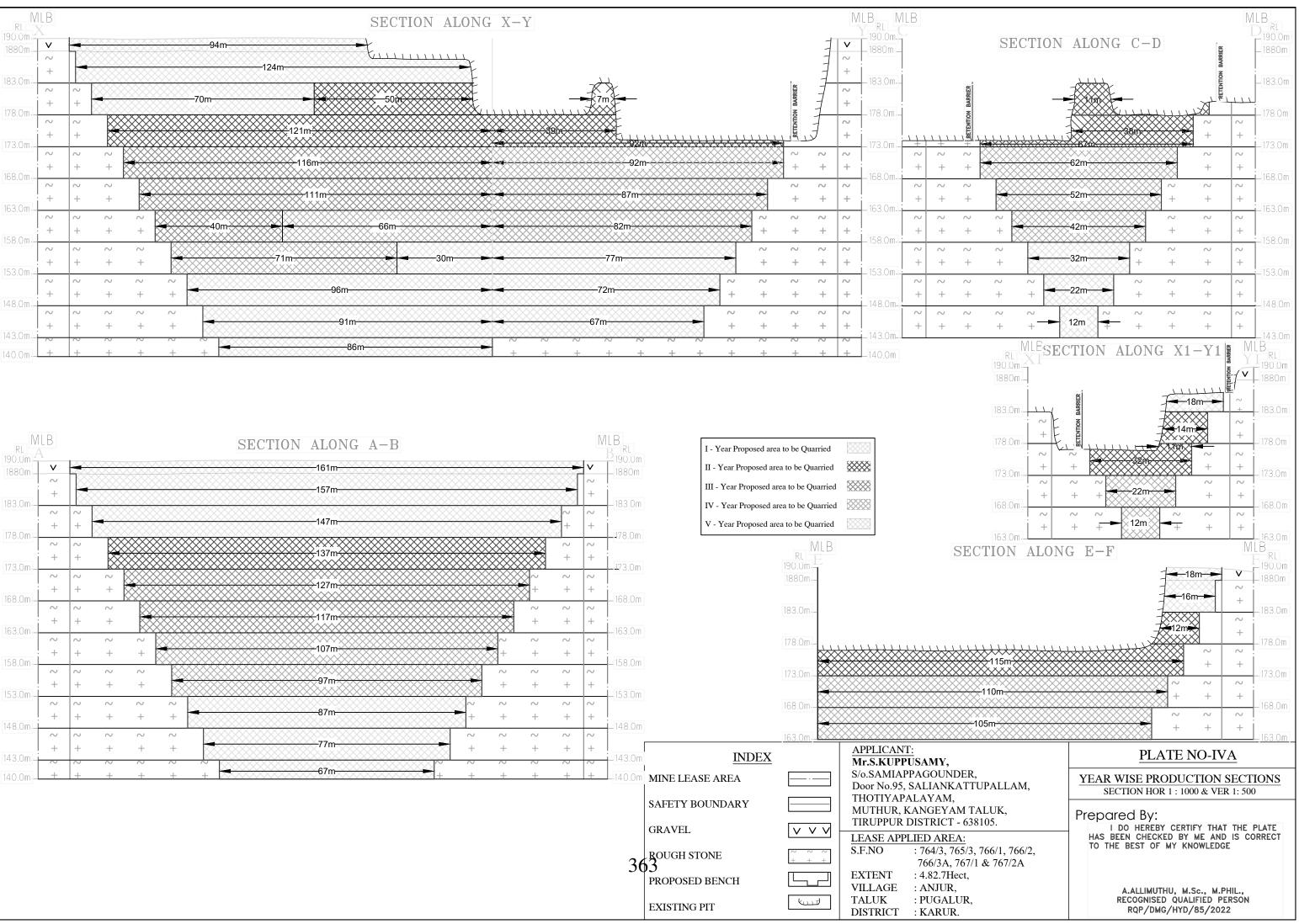
	PLATE NO-II APPLICANT:
	Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTUPALLAM, THOTIYAPALAYAM, MUTHUR, KANGEYAM TALUK, TIRUPPUR DISTRICT - 638105.
	LEASE APPLIED AREA: S.F.NO : 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A EXTENT : 4.82.7Hect, VILLAGE : ANJUR, TALUK : PUGALUR, DISTRICT : KARUR.
<u>.</u>	INDEX
	MINE LEASE AREA
	SAFETY DISTANCE
	APPROACH ROAD
	CART & PATTA ROAD
	BOUNDARY PILLAR STONES
	MINE LEASE PLAN SCALE - 1:2000
	Prepared By:
	I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT TO THE BEST OF MY KNOWLEDGE
	A.ALLIMUTHU, M.Sc., M.PHIL., RECOGNISED QUALIFIED PERSON RQP/DMG/HYD/85/2022

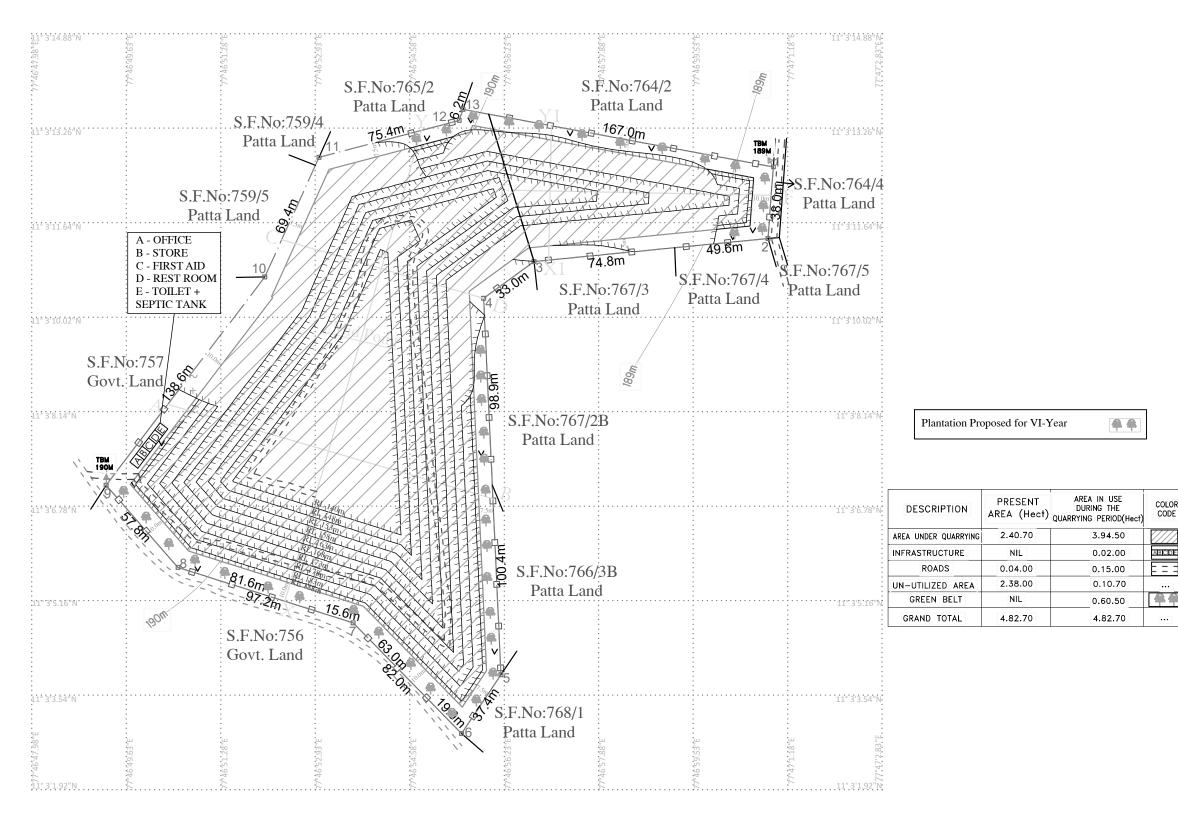
EXIST	TING PIT	DIMEN:	SIONS
Pit	Length	Width in	Depth in
Levels	in (m)	(m)	(m)
1	53	22	3
2	20	45	4
3	8	60	6
4	15	95	7
5	25	20	10
б	71	61	12
7	48	140	13
8	82	58	15
9	62	76	16

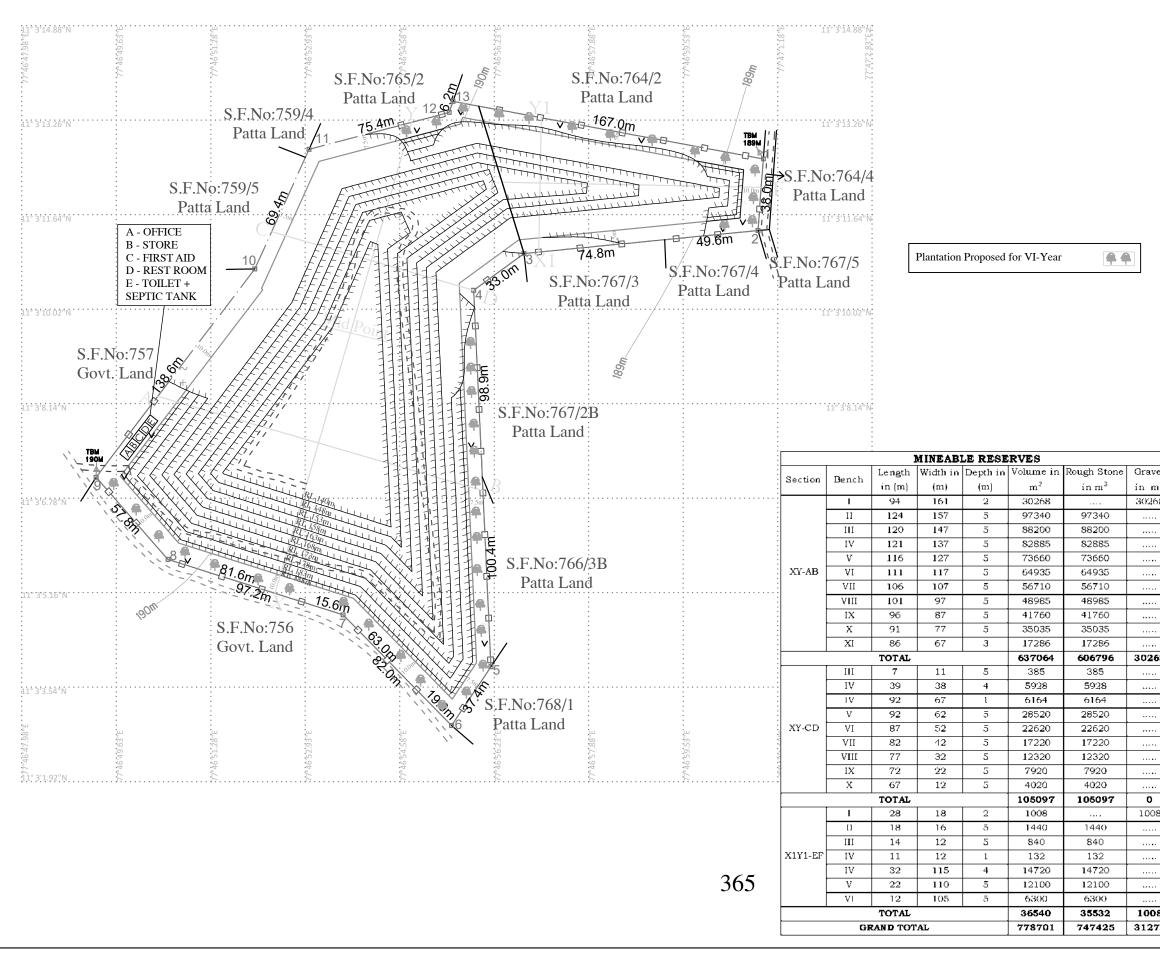

N N N	
PLATE NO-III	
APPLICANT: Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTUPALLAM, THOTIYAPALAYAM, MUTHUR, KANGEYAM TALUK, TIRUPPUR DISTRICT - 638105.	
LEASE APPLIED AREA: S.F.NO : 764/3, 765/3, 766/1, 766/ 766/3A, 767/1 & 767/2A EXTENT : 4.82.7Hect, VILLAGE : ANJUR, TALUK : PUGALUR, DISTRICT : KARUR.	/2,
INDEX	
MINE LEASE AREA	·
SAFETY DISTANCE	
APPROACH & MINE HAUL ROAD	
CART & PATTA ROAD	
BOUNDARY PILLAR STONES	□1 □2
TEMPORARY BENCH MARK	TBM 190M
CONTOUR LINES	-100.0m-
SHRUBS	يراني يراني - يراني -
GRAVEL	V V V
ROUGH STONE	\sim \sim \sim $+$ $+$ $+$
EXISTING PIT	Euro
SURFACE & GEOLOGICAL SCALE 1: 2000	PLAN
Prepared By:	
I DO HEREBY CERTIFY THAT THE PL HAS BEEN CHECKED BY ME AND IS COR TO THE BEST OF MY KNOWLEDGE	
A.ALLIMUTHU, M.Sc., M.PHIL., RECOGNISED QUALIFIED PERSON RQP/DMG/HYD/85/2022	

RL	1LB											SEC	TION	AL	ONG	X-Y	Y										M	V RL
90.0m.4 1880m.4		+ v		~	~~	—104m—	- v		/		- v	-													1()m 🗜	+ ~~	190.0 1880
	\sim	\sim	\sim	\sim	\sim	\sim	\sim	^	\sim	,	\sim (<u>VIII</u>	1111	1111	4										4.0	. 1	\sim	
33.0m	+	+	+	+	÷	÷	+130	ôm─_⊣	- +		÷				Ŧ				1						10)m	+	183.0
	\sim	\sim	\sim	\sim	\sim	\sim	\sim		\sim	,	\sim	\sim	\sim	\sim	Ē			. –	$7 \sim E$						10	7	\sim	
	+	+	+	+	+	+	+13	7m -	- +		+	+	+	+	E				7∰						12n	1	+	178.0
0.011	\sim	\sim	\sim	\sim	\sim	\sim	\sim	~		,	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	~ 1							7.	\sim	
73.0m-	+	+	+	+	+	+	+	143m –	+ +		+	+	+	+	+	+	39r	n	Ŧ		<u>+</u> 116m					J − 1	l4m - ►	173.
/ 0.011-	\sim	\sim	\sim	\sim	\sim	\sim	\sim	~		,	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	~		\sim	~	\sim	\sim	\sim	\sim	- 17 3.
	+	+	+	+	+	+	+	143m ₋	- +		+	+	+	+	+	+	+	+	+	+	—116m	+	+	+	+	+	+	! 168
0.011	\sim	\sim	\sim	\sim	\sim	\sim	\sim	~	· ~	,	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim		\sim	\sim	\sim	\sim	\sim	\sim	- 100
3.0m		+	+	+	+	+	+	143m -	+ +		+	+	+	+	+	+	+	+	+	+	—116m	+	+	+	+	+	+-	163
03.011	\sim	\sim	\sim	\sim	\sim	\sim	\sim	^	· ~	,	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim		\sim	\sim	\sim	\sim	\sim	\sim	- 103
8.0m-	+	+	+	+	+	+	+	143m ₋	- +		+	+	+	+	+	+	+	+	+	+	—116m	+	+	+	+	+	+	- 158
0.011	\sim	\sim	\sim	\sim	\sim	\sim	\sim	~	· ~	1	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim		\sim	\sim	\sim	\sim	\sim	\sim	- 130
0.0	-	+	+	+	+	+	+	143m ₋	- +		+	+	+	+	+	+	+	+	+	+	—116m	+	+	+	+	+	+	150
3.0m	\sim	\sim	\sim	\sim	\sim	\sim	\sim	~	~ ~	,	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim		\sim	\sim	\sim	\sim	\sim	\sim	153.
	-	+	+	+	+	+	+	143m _–	- +		+	+	+	+	+	+	+	+	+	+	—116m	۰ +	+	+	+	+	+-	ł
18.0m-																											──	148
	\sim	\sim	\sim	\sim	\sim	\sim	\sim	143m			\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	—116m	~	\sim	~	~	~	\sim	
	17	+	+	+	+	+	+		- +		+	+	+	+	+	+	+	+	+	+	11011	+	+	+	+	+	+	 143
+ 3.011	\sim	\sim	\sim	\sim	\sim	\sim	\sim	143m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	—116m	\sim	\sim	\sim	~	\sim	~	L 140.
40.0m	+	+	+	+	+	+	+		- +		+	+	+	+	+	+	+	+	+	+	11011	· +	+	+	+	+	+	L.140.


RL	1LB						SE	ECTIO	ON A	LON	G A-	В						N	R SL	MLB										MLB	RL	APPLICANT: Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTU THOTIYAPALAYAM, MUTHUR, KANGEYAM TA TIRUPPUR DISTRICT - 6381	LUK,
190.0m 1880m	- V	V	V	V	V	V	~	V	<u></u> 1	79m 🗸	V	v	V	V	v	V	V	V	190.0m 1880m				SE	CTI	ON A	LONG	C-	D			90.0m 880m	LEASE APPLIED AREA:	
		~	\sim	~	~	~	~	~	~1	~ 79m <u> </u>	~	~	~	~	~	~	~		-i	÷												S.F.NO : $764/3, 765/3,$	
183.0m-	Т	T	Ť	Ŧ	Т	T	Т	Т							Т	T		T	183.0m	_					4	114				18	83.0m	766/3A, 767/1 EXTENT : 4.82.7Hect,	& /0//2A
	~	+	~ +	~ +	~ +	~ +	~ +	~ +	~1	79m - +	~ +	~ +	~ +	~ +	~ +	~ +	~ +	+	-i	ł					11m-=	↓ ↓			~LL			VILLAGE : ANJUR,	
178.0m.	<u> </u>	<u> '</u>					1	1	1			1	1	1		1			178.0m	-					1	' 'k					78.0m	TALUK : PUGALUR,	
	~	~	~	~	~	~	~	~	~ 1	~ 79m <u>⊥</u>	~	~	~	~	~	~	~		-						1	v ~	~	~ -58m	~	~		DISTRICT : KARUR.	
173.0m-	<u> </u>	Γ.	T	T	Т	Т	Т	Т	1		-		T		Т	T						+				n	Т	1	-		73.0m	INDEX	
	~	\sim	~	\sim	~	~	\sim	~	~1	~ 79m <u> </u>	~	\sim	\sim	\sim	~	\sim	~		-	~	\sim	~	\sim	~	~ 111ı	~ m <u>−</u>	\sim	~	~	\sim			
168.0m-		+	Ť	Ť	Ť	Ŧ	Ť	Ŧ	Т	Ŧ	Ť	Ť	Ť	Ť	Ŧ	Ť	Ť	+	168.0m	+	+	÷	÷	÷	Ŧ	Ť	÷	Т	Ŧ		68.0m	MINE LEASE AREA	
	\sim	\sim	~	\sim	\sim	\sim	\sim	\sim	~1	~ 79m 	~	\sim	\sim	\sim	~	\sim	\sim		_	\sim	\sim	\sim	~	\sim	~	~	~	~	~	\sim			
163.0m-	+	+	÷	÷	÷	÷	÷	÷	÷	+	+	÷	÷	÷	÷	÷	÷	+		+	+	÷	÷	÷	÷	÷	÷	÷	÷	16	63.0m	SAFETY BOUNDARY	
	\sim	\sim	\sim	\sim	~	\sim	\sim	\sim	~1	~ 79m <u> </u>	~	\sim	\sim	\sim	\sim	\sim	\sim	\sim	-	\sim	\sim	\sim	\sim	~	~	~ n <u> </u>	\sim	\sim	~	\sim			
158.0m	· +	+	+	+	+	+	+	+	+ .	+	+	+	+	+	+	+	+	+	158.0m	+	+	+	+	+	+	+	+	+	+	+	58.0m	GRAVEL	\vee \vee \vee
	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	~1	~ 79m	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim		\sim	\sim	\sim	\sim	\sim	~	~ m	\sim	\sim	\sim	\sim		DOUGUETONE	\sim \sim \sim
153.0m-	+	+	+	+	+	+	+	+	+	3m +	+	+	+	+	+	+	+	+	153.0m	+	+	+	+	+	+ ' ' '	·· +	+	+	+	+	53.0m	ROUGH STONE	+ + +
100.011	\sim	~	\sim	~	~	\sim	\sim	\sim	\sim	2	\sim	\sim		\sim	\sim	\sim	2	\sim	\sim	\sim	\sim	\sim	\sim	~	50.0m	EVICTING DIT							
148.0m-	+	+	+	+	+	+	+	+	+	'9m +	+	+	+	+	+	+	+	+	1 1/18.0m	+	+	+	+	+	+	n +	+	+	+	+	48.0m	EXISTING PIT	
140.0111	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	140.011	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	~	40.0III	GEOLOGICAL S	
143.0m-	+	+	+	+	+	+	+	+	+1	/9m +	+	+	+	+	+	+	+	+	1 142.0m	+	+	+	+	+		m +	+	+	+	+	12.0m	SECTION HOR 1 : 1000 &	v VER 1: 500
143.0111-	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	~1	79m ~	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim			\sim	\sim	\sim	\sim		n ~	\sim	10	\sim		43.UIII	Prepared By:	
140.0m-	<u> </u> +	1+	+	+	+	+	+	+	+ .	<u>+</u>	+	+	+	+	+	+	+	1+	140.0m	<u> </u> +	+	+	+	+	+	<u> + </u>	+	+	+	+ 12	40.0m	I DO HEREBY CERTIFY HAS BEEN CHECKED BY ME TO THE BEST OF MY KNOW	AND IS CORRECT
																			36	0												A.ALLIMUTHU, M.Sc., RECOGNISED QUALIFIE RQP/DMG/HYD/85,	D PERSON


PLATE NO-IIIA


RL MLB SECTION ALONG X1-Y1 MLB									
190.0m 1880m									
183.0m + 183.0m									
$=$ 8m $=$ 29m \sim			GE	OLOGIC	AL RES	OURCES			
178.0m. 9m 30m 178.0m	Section	Bench	Length	Width in	Depth in	Volume in	Rough Stone	Gravel	
173.0m + + + + + + + + 173.0m	Section	Denen	in (m)	(m)	(m)	m ³	in m ³	in m ³	
173.0m		Ι	104	179	2	37232		37232	
168.0m		II	136	179	5	121720	121720		
\sim \sim \sim \sim \sim \sim \sim \sim \sim		111	137	179	5	122615	122615		
163.0m- ~ ~ ~ ~ ~ ~ ~ ~ 163.0m		IV	143	179	5	127985	127985		
158.0m	XY-AB	V	143	179	5	127985	127985		
158.0m		VI	143	179	5	127985	127985		
153.0m		VII	143	179	5	127985	127985		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		VIII IX	143 143	179 179	5	127985 127985	127985 127985		
148.0m ~ ~ ~ ~ ~ ~ ~ ~ ~ 148.0m			143	179	5	127985	127985		
+ + + + 71m + + + →		XI	143	179	3	76791	76791		
143.0m 140.0m			TAL	11.5	50	1254253	1217021	37232	
			10	9	2	180		180	PLATE NO-IIIB
		11	10	9	5	450	450		APPLICANT:
		III	19	11	3	627	627		Mr.S.KUPPUSAMY,
		III	19	28	2	1064	1064		S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTUPALLAM,
		IV	53	58	4	12296	12296		THOTIYAPALAYAM,
MLB SECTION ALONG E-F		IV	116	111	1	12876	12876		MUTHUR, KANGEYAM TALUK, TIRUPPUR DISTRICT - 638105.
190.0m 1880m	XY-CD	V	116	111	5	64380	64380		LEASE APPLIED AREA:
		VI	116	111	5	64380	64380		121700711171211271111211111111111111111
183.0m-		VII	116	111	5	64380	64380		766/3A, 767/1 & 767/2A
178.0m		VIII	116	111	5	64380	64380		EXTENT : 4.82.7Hect, VILLAGE : ANJUR,
		IX	116	111	5	64380	64380		TALUK : PUGALUR,
173.0m		X	116	111	5	64380	64380		DISTRICT : KARUR.
			116	111	3	38628	38628		INDEX
			'TAL	28	50 2	452401 280	452221	180 280	MINE LEASE AREA
+ + + + + + + + + + + + + + + + + + +		II	6	28	2	336	336		
		II	27	28	3	2268	2268		SAFETY BOUNDARY
158.0m		III	37	29	5	5365	5365		GRAVEL VV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		IV	39	34	1	1326	1326		
153.0m. 153.0m.		IV	71	137	4	38908	38908		ROUGH STONE $\sim \sim \sim \sim + + + + =$
4 +++++++ 137m ++++++++++++++++++++++++++++++++++++	X1Y1-EF	V	71	137	5	48635	48635		
		VI	71	137	5	48635	48635		GEOLOGICAL SECTIONS
		VII	71	137	5	48635	48635		SECTION HOR 1 : 1000 & VER 1: 500
140.0m, + + + + + + + + + + + + + + + + + + +		VIII	71	137	5	48635	48635		Prepared By:
		IX	71	137	5	48635	48635		I DO HEREBY CERTIFY THAT THE PLATE HAS BEEN CHECKED BY ME AND IS CORRECT
		X	71	137	5	48635	48635	•••••	TO THE BEST OF MY KNOWLEDGE
			71	137	3	29181	29181		
		୍ରୁମ୍ ସ	TAL RAND TOI	AL	50	369474 2076128	369194 2038436	280 37692	A.ALLIMUTHU, M.Sc., M.PHIL., RECOGNISED QUALIFIED PERSON RQP/DMG/HYD/85/2022


	N	
	PLATE NO-IV	
	<u>APPLICANT:</u> Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTUPALLAM, THOTIYAPALAYAM, MUTHUR, KANGEYAM TALUK, TIRUPPUR DISTRICT - 638105.	
	LEASE APPLIED AREA: S.F.NO : 764/3, 765/3, 766/1, 766/2	,
	766/3A, 767/1 & 767/2A EXTENT : 4.82.7Hect, VILLAGE : ANJUR, TALUK : PUGALUR, DISTRICT : KARUR.	
	INDEX	
	MINE LEASE AREA	· · · · · · · · · · · · · · · · · · ·
rel	SAFETY DISTANCE	
n ³ 58	APPROACH & MINE HAUL ROAD	
8	CART & PATTA ROAD	
76	BOUNDARY PILLAR STONES	□ 1 □ 2
	TEMPORARY BENCH MARK	TBM 190M
	CONTOUR LINES	1000
	SHRUBS	مان مان مان
	GRAVEL	
	ROUGH STONE	\sim \sim \sim $+$ $+$ $+$
	EXISTING PIT	Kun J
	FENCING	
	YEARWISE DEVELOPMEN	T &
	PRODUCTION PLAN SCALE PLAN 1 : 2000	
	Prepared By:	
	I DO HEREBY CERTIFY THAT THE PLAT HAS BEEN CHECKED BY ME AND IS CORRE TO THE BEST OF MY KNOWLEDGE	
76	A.ALLIMUTHU, M.Sc., M.PHIL., RECOGNISED QUALIFIED PERSON RQP/DMG/HYD/85/2022	

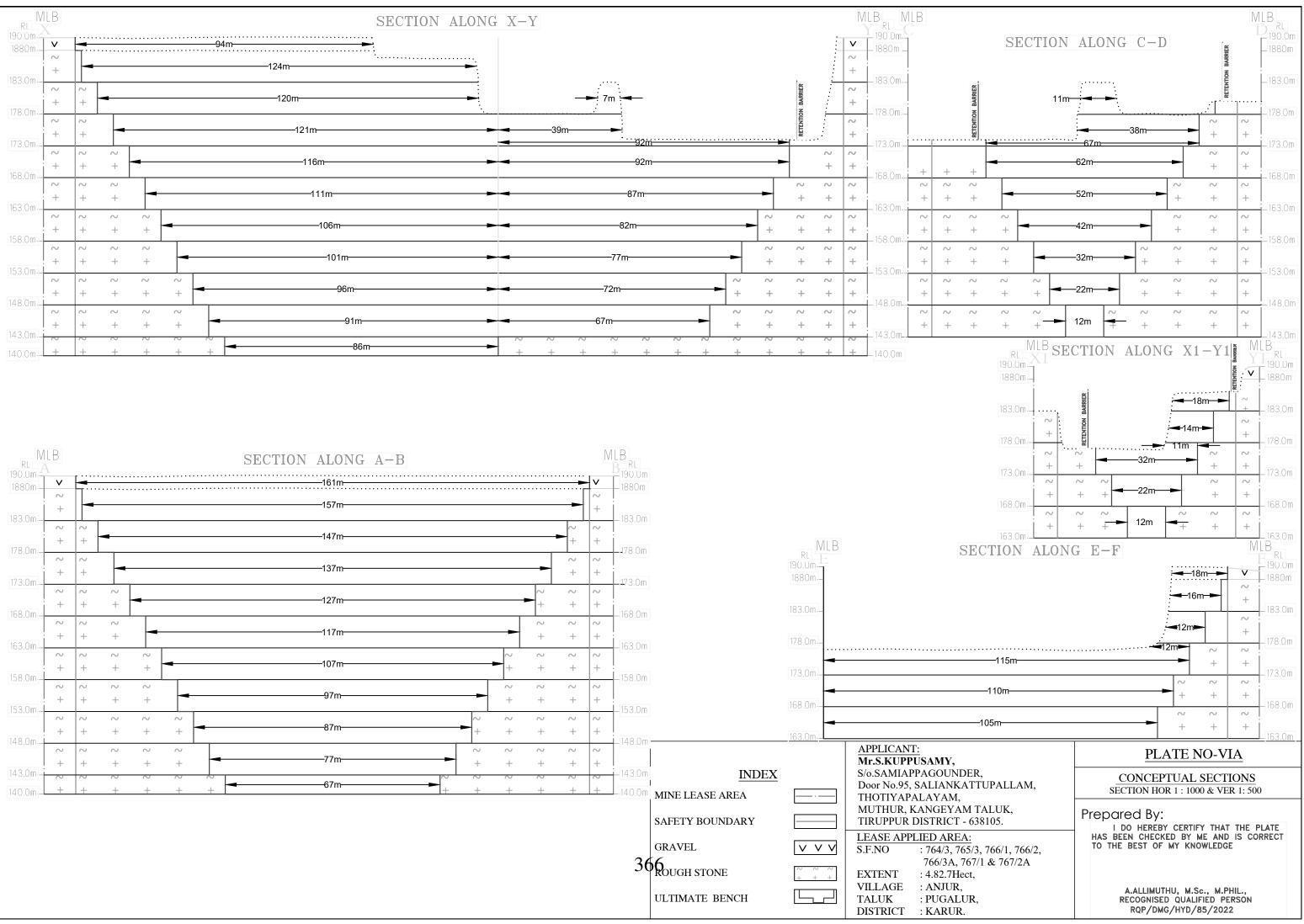


	PLATE NO-V APPLICANT:	
	Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTUPALLAM, THOTIYAPALAYAM, MUTHUR, KANGEYAM TALUK, TIRUPPUR DISTRICT - 638105.	
	LEASE APPLIED AREA:	
	S.F.NO : 764/3, 765/3, 766/1, 766/2 766/3A, 767/1 & 767/2A EXTENT : 4.82.7Hect, VILLAGE : ANJUR,	,
	TALUK : PUGALUR, DISTRICT : KARUR.	
	INDEX	
	MINE LEASE AREA	·
	SAFETY DISTANCE	
	APPROACH & MINE HAUL ROAD	
	CART & PATTA ROAD	
R	BOUNDARY PILLAR STONES	□1 □2
2	TEMPORARY BENCH MARK	TBM 190M
	CONTOUR LINES	-100,000-
	SHRUBS	مان مان مان
	GRAVEL	V V V
	ROUGH STONE	~ ~ + +
	EXISTING PIT & PROPOSED BENCH	turit
	FENCING	
	MINE LAYOUT PLAN AND LAND USE SCALE 1:2000	PATTERN
	Prepared By:	
	I DO HEREBY CERTIFY THAT THE PLAT HAS BEEN CHECKED BY ME AND IS CORRE TO THE BEST OF MY KNOWLEDGE	
	A.ALLIMUTHU, M.Sc., M.PHIL., RECOGNISED QUALIFIED PERSON RQP/DMG/HYD/85/2022	

	N										
	PLATE NO-VI										
	APPLICANT: Mr.S.KUPPUSAMY, S/o.SAMIAPPAGOUNDER, Door No.95, SALIANKATTUPALLAM, THOTIYAPALAYAM, MUTHUR, KANGEYAM TALUK, TIRUPPUR DISTRICT - 638105.										
	LEASE APPLIED AREA: S.F.NO : 764/3, 765/3, 766/1, 766/2, 766/3A, 767/1 & 767/2A EXTENT : 4.82.7Hect, VILLAGE : ANJUR, TALUK : PUGALUR, DISTRICT : KARUR.	,									
	INDEX										
	MINE LEASE AREA	· · · · · · · · · · · · · · · · · · ·									
	SAFETY DISTANCE										
	APPROACH & MINE HAUL ROAD										
el	CART & PATTA ROAD										
3 8	BOUNDARY PILLAR STONES	□ 1 □ 2									
	TEMPORARY BENCH MARK	ТВМ 190М									
	CONTOUR LINES	10.00									
	SHRUBS	يالي براي براي									
	GRAVEL	v v v									
8	ROUGH STONE	~ ~ +									
_	EXISTING PIT & PROPOSED BENCH	Kuni									
	FENCING										
	CONCEPTUAL PLAN SCALE 1:1000										
	Prepared By:										
3	I DO HEREBY CERTIFY THAT THE PLAT HAS BEEN CHECKED BY ME AND IS CORRE TO THE BEST OF MY KNOWLEDGE										
8	A.ALLIMUTHU, M.Sc., M.PHIL., RECOGNISED QUALIFIED PERSON RQP/DMG/HYD/85/2022										

RL	1LB							SECTION ALON	G X-Y	Y								M	T RL C	LB		
190.0m 1880m	V	94m P																V	- 190.0m- - 1880m -			
100.0	~ +	- 124m														$ \sim $ +	100.0					
183.0m	~							_	→ 7m →					ARRIER	÷	~	- <u>183.0m</u>			ARRIER		
178.0m-	+	+						·			·····					NTION B	:	+ ~	- 178.0m -			ITION B
173.0m-	¦ +	+					121m	2		39m	—	92m			····· ►			+	_ 173.0m.			
	~ +	~ +	~ +				116m	•				92m			-	-	~ +	~ +				
168.0m-	\sim	\sim	\sim													~	~ ~	\sim	- 168.0m-	+ ~	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
163.0m-	+	+	+	Ī	-		111m				87	7m				+	+	+	163.0m	+	+	+
	~ +	$ \sim +$	\sim +	~ +		 	106m	P			82m	ì			~ +	~ +	\sim +	~ +		\sim +	\sim +	\sim +
158.0m-	\sim	\sim	\sim	^	,										\sim	\sim	\sim	\sim	_ <u>158.0m</u>	\sim	\sim	\sim
153.0m-	! + 	+	+	+	-		101m				——77m—				+	+	+	+	_ 153.0m;	+	+	+
	$ \sim +$	~ +	\sim +	~ +	-	~ _	96m				72m				~ +	~ +	~ +	$\left \begin{array}{c} \sim \\ + \end{array} \right $		~ +	\sim +	~+
148.0m-	~	~	~	~		~			_					~	~	~	~		_148.0m_	~	~	~
110.0	+	+	+	+	-	+	91m-				67m			+	+	+	+	+	110.0	+	+	+
143.0m	\sim +	~ +	~ +	~ +	-	\sim \sim + +		im	~ +	~ ~ ~ + -	5 ~ + +	~ +	~ ~ ~	~ +	~ +	~+	~ +	~+	_143.0m_ _ _140.0m			

-4199-

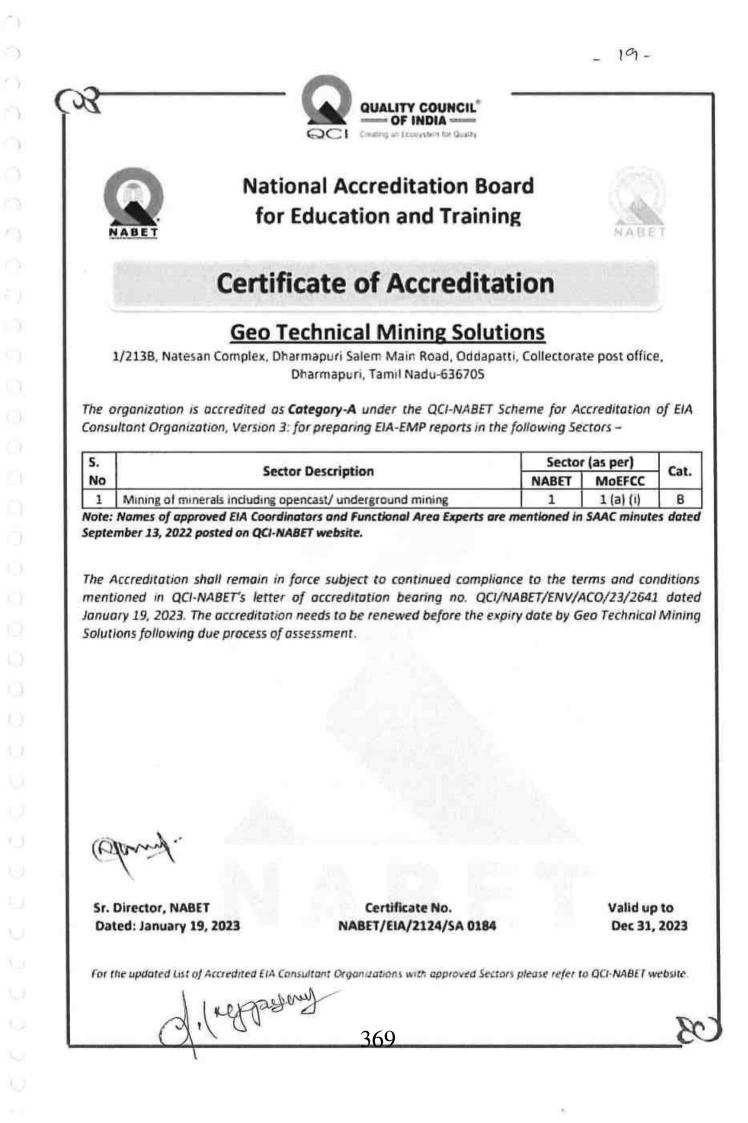
Friton BBi GANCLAS YBBI DULL OBZA AJAD SHOND DIMORNI OIN 33 August. 5604A GANCLE, BAN BBERS NICCE, 2montus agrice, Innound-- mis Gourine Ming Ommercini ender the on in wiss say work in i som BUYMUA OPIODES BONG BONG CONSCIE galdarich, Didren Brigh yn ofmans 764(3 à ong 1.1410 3400, 76573 à 9003 0.48.00 grind, 766112 000 1.34.50 51m -166/2 2 9mg 1.14.00 JAND, 7 766/34 N 2003 0.47.35010 767/1 N Day 0.11.50 gim 1767/24 012 D·13.35 JAN 2587608356 om 4.52.70 grin ormynism shi OBTESZONS 2 MMM MOST SNOW みんちちょうしんかない 日のかいろ ふんちょうい Annubis Bryminis Upini Companies Annowly 53971 Borgingis orionships J. Jappany Pros PITOS

J. Jayophany

kii y≌ sha i year si

in a known the start of the best starts

and the second second


and the second second

a disalah saka menghapan di kepada dan pertahan sebahan pertahan sebahan pertahan sebahan pertahan sebahan pert

ورجانا الأحد فيدعينك أسترجين ويهونوا وحاله

Comer 11/03/2023

கீராம நீர்வாக அலுவலர் நெ: 1அஞ்சுர் 7 ாமம், புகழர் வட்டம், கரூர் மாவட்டம்,

