# EXECUTIVE SUMMARY OF ENVIRONMENTAL IMPACT ASSESSMENT AND ENVIRONMENT MANAGEMENT PLAN FOR OBTAINING

Environmental Clearance under EIA Notification – 2006 Schedule Sl. No. 1 (a) (i): Mining Project

"B1" CATEGORY - MINOR MINERAL - CLUSTER - NON- FOREST LAND

CLUSTER EXTENT = 07.79.51 hectares

At

Jagadevipalayam Village, Bargur Taluk, Krishnagiri District,
Tamil Nadu State

TOR File No. 12115

TOR Letter No. TO25B0108TN5937243N, Dated:17.06.2025

## NAME AND ADDRESS OF THE PROPOSED PROJECT PROPONENT

| Name and address                                                                                                                             | Extent & S.F.No.                                                            | Production                                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|--|
| M/s. Sri Vinayaga Granites<br>01/504E, Maruthi Nagar,<br>Jagadevipalayam Village & Post,<br>Bargur Taluk,<br>Krishnagiri District – 635 203. | 3.38.0 ha & 331/1A (P),<br>332/1,332/2,332/3,332/4,<br>332/5 (P), and 332/6 | Grey Granite<br>40% Recovery<br>1,77,628 (Tons) |  |

## **ENVIRONMENTAL CONSULTANT**

## GEO TECHNICAL MINING SOLUTIONS

No: 1/213-B, Ground Floor, Natesan Complex Oddapatti, Collectorate Post office, Dharmapuri-636705. Tamil Nadu.

E-mail: info.gtmsdpi@gmail.com,

NABET ACC. NO: NABET/EIA/23-26/RA 0319

Valid till: 31.12.2026

# **ENVIRONMENTAL LAB**

## EXCELLENCE LABORATORY

No.23/93, 5th Street Ram Nagar, S.S.Colony,

Madurai, Tamil Nadu

NABL Certificate Number: TC-13674,

Valid Until: 12.05.2026

# GREEN LINK ANALYTICAL & RESERCH LAB

S.F.No,414/1, Tex Park Road, Opp.Good Luck Syndicate, Civil Aerodrome Post, Covai-641 014, NABL Certificate Number: TC-6144,

Valid Until: 18.05.2029

Baseline Study Period - October 2023 through December 2023

#### **EXECUTIVE SUMMARY**

## 1 INTRODUCTION

As the proposed rough stone mining project (P1) falls within the quarry cluster of 500 m radius with the total extent of 7.79.51 ha, it requires submission of EIA report for grant of Environmental Clearance (EC) after conducting public hearing. The proposed project falling in S.F.No's. 331/1A (P), 332/1,332/2,332/3,332/4,332/5 (P), and 332/6 over an extent of 3.38.0 ha is situated in the cluster falling in Jagadevipalayam Village, Bargur Taluk, Krishnagiri District and Tamil Nadu. The quarries involved in the calculation of cluster extent are one proposed quarry and one existing quarry.

## 2 PROJECT DESCRIPTION

The proposed project area is located between Latitudes from 12°28'58.47570"N to 12°29'5.11330"N and a longitude of 78°20'51.00141"E to 78°21'0.77090"E in Jagadevipalayam Village, Bargur Taluk, Krishnagiri District, Tamil Nadu. According to the approved mining plan, grey granite 40% recovery of about 1,77,628 tonnes and Granite waste 60% of 2,66,442 will be mined up to the depth of 35m BGL in the five years. The quarrying operation is proposed to be carried out by open semi cast mining method involving drilling and formation of benches of the prescribed dimensions.

# 3 DESCRIPTION OF THE ENVIRONMENT

Baseline data were collected to evaluate the existing environmental condition in the core and buffer areas during October to December, 2023 as per CPCB guidelines. The data were collected by both the FAEs and NABL accredited and MoEF notified Excellence Laboratory & Greenlink Analytical and Research Laboratory (India) Private Ltd for the environmental attributes including soil, water, noise, air and by FAEs for ecology and biodiversity, traffic, and socio-economy.

## 3.1 Land Environment

Land use pattern of the area of 5 km radius was studied using Sentinel II imagery. LULC types and their extent are given in Table.1

Table 3.2 LULC Statistics of the Study Area

| S. No | Classification         | Extent (ha) | Area (%) |  |
|-------|------------------------|-------------|----------|--|
| 1     | Water                  | 63.8        | 0.73     |  |
| 2     | Trees                  | 402.31      | 4.62     |  |
| 3     | Crops                  | 3046.24     | 35.00    |  |
| 4     | Built area             | 2993.96     | 34.40    |  |
| 5     | Mining/Industrial area | 167.32      | 1.92     |  |
| 6     | Bare Groung            | 5.15        | 0.06     |  |
| 7     | Range land             | 2025.66     | 23.27    |  |
| Total |                        | 8704.44     | 100.0    |  |

Source: Sentinel II Satellite Imagery

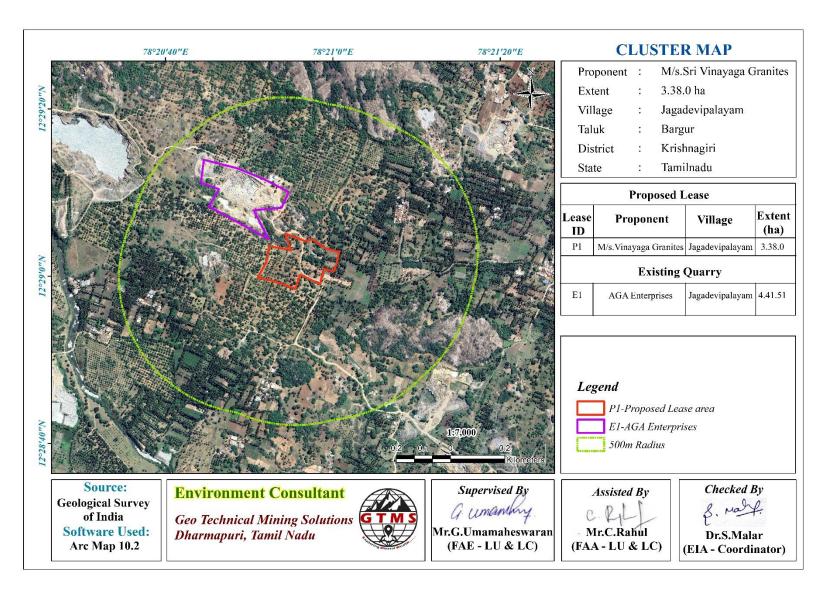



Figure 1 Location of Proposed and Existing Quarries in the Cluster of 500m Radius

#### 3.2 Soil Environment

Physical characteristics of soils were determined through specific parameters viz. particle size distribution, bulk density, porosity, water holding capacity, texture are presented in Table 3.4.

## **Texture:**

In lease area the soil is red calcareous. They are mostly sandy to loamy and characterised by the hard and compact layer of lime. In other places the soil found is brown in colour.

## **Structure:**

The grain size is greater than 2mm in the lease area and in other places where the samples collected ranges from 0.002mm to 2mm.

## **Porosity:**

The porosity of the soils is significantly impacted by the degree of weathering and fracture development in the underlying bedrock. The 500m radius cluster consists of Charnockite formations affect the porosity found in this study.

# **Density:**

The soil samples collected within 5km radius are generally characterized by higher bulk densities typically ranging from <0.1 to <0.1g/cm<sup>3</sup>. This is due to the presence of red sandy and in some areas with red loamy soil. The dominant soil types include red calcareous and red non-calcareous. Sandy soils have larger pore spaces between them compared to finer-grained soils like silt and clay.

## **Consistence:**

Coarse (sandy) soils may require slightly higher moisture content while fine (clay) soils may require slightly lower. A soil moisture content is very low generally considered optimal for plant growth in medium-textured soils (like loams). This range falls within the 25-50% available water zone where plants are at risk of stress if a water deficit is prolonged.

## Chemical Characteristics of Soil

Chemical characteristics of soils through selected parameters viz. pH, soluble cations and anions, exchangeable cations, organic content and fertility status in the form of NPK values and organic matter are presented in Table 3.5. pH is an important parameter indicative of alkaline or acidic nature of soil. It greatly affects the microbial population as well as solubility of metal ions and regulates nutrient availability. Variation in the pH of the soil in the study area is presented in Table 3.5 and it is found to be from slightly acidic to

neutral (6.2 - 7.8) in reaction. Electrical conductivity a measure of soluble salts in the soil is in the range of 45-  $560\mu$ S/cm as shown in Table 3.5.

The important water-soluble cations in the soil are nitrogen, phosphorus, potassium, calcium and magnesium whose concentration levels ranged from core zone- N- 212.0kg<sup>-1</sup>/ha, P- 7.89. mg/kg<sup>-1</sup>, K-740.0 kg<sup>-1</sup>/ha & buffer zone- N- 0.8% to 1.4%, P- 0.03% to 0.09%, K- 0.018% to 0.055%, Cu- 3.3mg/Kg to 13.0mg/Kg & M- 26mg/kg<sup>-1</sup> to 120mg kg<sup>-1</sup> respectively.

The soil samples in the study area show loamy textures varying between Silt Loam and sandy loam. pH of the soil varies from 6.8 - 7.6 indicating slightly acidic to slightly alkaline nature. Electrical conductivity of the soil varies from  $45-560\mu$ S/cm.

#### 3.3 Water Environment

#### Colour:

- Value observed in Project Site (True/Apparent Color): 1 Hazen unit.
- Acceptable and permissible limits: 5 Hazen units and 15 Hazen units respectively. The value in the project site is as same as the acceptable limits prescribed by IS 10500: 2012 (referred as "*Standards*" from herein).

## **Odour & Taste:**

• The water is odour less. The taste of the water is slightly salty which is due to the presence of hardness in water which is attributed to the presence of calcium and magnesium in the water. As per the standards the odour and taste should be agreeable.

## pH:

- Value observed in the Project Site: Min. 7.1 & Max. 7.8 mg/L.
- Acceptable and permissible limits: 6.5-8.5. The pH value is the measure of acid –
  base equilibrium. The value of pH in the project site clearly indicates that water is
  neutral in nature.

## **Turbidity:**

- Value observed in the Project Site: less than 1.
- Acceptable and permissible limits: 1 NTU & 5 NTU respectively. The value of turbidity generally indicates the presence of phytoplankton and other sediments.

#### **Total Dissolved Solids:**

• Value observed in the Project Site: Min. 642 & Max. 1144 mg/L.

- Acceptable and permissible limits: 500mg/L and 2000 mg/L respectively.
- TDS is the presence of inorganic salts and small amounts of organic matter present in the water.

# 3.3.1.2 Chemical parameters of water:

The chemical parameters of the drinking water include,

#### Calcium:

- Value observed in Min. 110 & Max.175 mg/L.
- Acceptable and permissible limits: 75mg/L and 200 mg/L respectively.
- Calcium is an essential macronutrient. The value of the calcium is within the prescribed permissible standards. The higher level of calcium may cause hardening in domestic equipment and will also reduce the detergent efficiency. Higher levels of calcium will lead to constipation, gas, and bloating. Apart from that, extra calcium may also increase the risk of kidney stones. If the calcium deposit in blood is high, it may lead to hypercalcemia.

## Magnesium:

- Value observed in Min. 5.8 & Max. 49 mg/L.
- Acceptable and permissible limits: 30 mg/L and 100 mg/L respectively.
- The value of Magnesium in the project site is below in acceptable limit and less than the permissible limit. The increase in the level of magnesium will cause diarrhea and vomiting in children.

#### Chloride

- Value observed in Min. 95 & Max. 202 mg/L.
- Acceptable and permissible limits: 250 mg/L and 1000 mg/L respectively.
- The chloride level in the project site is within the acceptable and permissible limit. If the level of chloride is more, it may cause galvanic and pitting corrosion, increases level of metals. It imparts bitter taste to the water.

## **Total Alkalinity as CaCO3:**

- Value observed in Avg. 272 mg/L.
- Acceptable and permissible limits: 200 mg/L and 600 mg/L respectively.
- Total Alkalinity is the measure of the concentration of all alkaline substances dissolved in the water which includes carbonates, bicarbonates and hydroxides, which will impart soda taste to the water. The value of the total alkalinity is within acceptable and permissible limits in the project site.

#### **Hardness:**

- Value observed in Min. 326 & Max. 533 mg/L.
- Acceptable and permissible limits:200 mg/L and 600 mg/L respectively.
- The value of Hardness in the project site is higher than acceptable limit. The increase in the level of hardness may cause corrosion and scaling problems, increased soap consumption and it also contributes to the salty taste of water.

## 3.4 Air Environment

As per the monitoring data, PM2.5 ranges from  $16.1 \,\mu\text{g/m}^3$  to  $22.8 \,\mu\text{g/m}^3$ ; PM10 from  $36.2 \,\mu\text{g/m}^3$  to  $43.8 \,\mu\text{g/m}^3$ ; SO2 from  $7.6 \,\mu\text{g/m}^3$  to  $10.9 \,\mu\text{g/m}^3$ ; NO2 from  $16.2 \,\mu\text{g/m}^3$  to  $21.6 \,\mu\text{g/m}^3$ . The concentration levels of the pollutants fall within the acceptable limits of NAAQS prescribed by CPCB.

## 3.5 Noise Environment

The Table 3.19 shows that noise level in core zone was 40.1dB (A) Leq during day time and 37.7 dB (A) Leq during night time. Noise levels recorded in buffer zone during day time varied from 39.5 to 45.8 dB (A) Leq and during night time from 35.8 to 43.3 dB (A) Leq. Thus, the noise level for industrial and residential area meets the requirements of CPCB

## 3.6 Biological Environment

The study found that there is no endemic, endangered migratory fauna found in the area. This area is not also a migratory path of any faunal species. Hence, this small mining operation over short period of time will not have any significant impact on the surrounding flora and fauna.

#### Flora in core zone

There are no trees in the quarry lease area, only shrubs, herbs and grasses. Taxonomically total of 28 species belonging to 16 families were recorded. Amongthem are herbs (23) and shrubs (5). Majority of the species belongs to the family of Fabaceae and Poaceae. The species richness (Margalef index) and plant details are given in Table 3.19-3.21. There are no endangered or threatened plant species in the quarry lease area.

## Flora in 300 m radius zone

The vegetation habit analysis indicates that the flora of the 300m radius of the study area consists of 60 species belonging to 31 families. Among the 60 species, 22 herbs, 24 shrubs and 14 trees. the highest number of species were from the Poaceae family (7), followed by Fabaceae (6), Malvaceae (4), and Mimosaceae (4). Three species were recorded from the

Amaranthaceae, Apocynaceae, and Asteraceae families, while two species each were recorded from the Arecaceae, Boraginaceae, Convolvulaceae, Cucurbitaceae, Euphorbiaceae, and Lamiaceae families. The endangered or threatened and Species Richness (margalef Index) in the study area it mentioned in Table 3.19 - 3.21. The Velamundi Reserve Forest is located 172 meters north of the quarry lease area. The reserve forest is predominantly populated with *Albizia amara, Vachellia leucophloea, Vachellia karroo, Chloroxylon swietenia*, and *Ziziphus mauritiana*.

## Fauna Composition in the Core Zone

The faunal species observed in the study area are listed in Table 3.25. A total of 26 species were recorded in core zone of the project area. The core zone exhibited fewer species, with only a small number of insects, mammals, and reptiles, whereas the buffer zone showed greater species diversity. Among the 26 species recorded, the distribution was as follows: (10) insects, (03) reptiles, Avian and (04) mammals. These species were cross-checked against the IUCN Red List Database version 3.1 to identify any threatened species. Data analysis revealed that 21 species are categorized as Least Concern on the Red List, while 18 species were not listed. The analysis indicates that there are no REET species in the core zone of the proposed quarry site.

## Fauna Composition in the Buffer Zone

The faunal species observed in the study area are listed in Table 3.26. Taxonomically a total of 82 species belonging to 49 families have been recorded from the buffer zone area. Based on habitat classification the majority of species were Birds 50, followed by Insects 13, Reptiles 11, Mammals 5 and amphibians 3. There are 4 schedule II species and 28 schedule IV species according to Indian wild life Act 1972. Totally, 19 species of bird were sighted in the study area.

#### 3.7 Socio Economic Environment

The proposed project will provide direct and indirect employment and improve the infrastructural facilities in that area, thus leading to the improvement of people's standard of living.

## 4. ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

#### 4.1 Land Environment

## **Anticipated Impact**

- Permanent change on land use and land cover.
- Change in topography of the mine lease area.

- Problems to agricultural land and human habitations due to dust, and noise caused by movement of heavy vehicles.
- ❖ Degradation of the aesthetic environment of the core zone due to quarrying
- Soil erosion and sediment deposition in the nearby agricultural fields during the rainy season
- ❖ Increase in agricultural productivity of land when mine water is discharged to the surrounding lands for irrigation.

## **Mitigation Measures**

- ❖ Construction of garland drains, settling pits, and check dams to prevent runoff and siltation Construction of garland drains all around the quarry pits and construction of check dam at strategic location in lower elevations to prevent erosion due to surface runoff during rainfall and also to collect the storm water for various uses within the proposed area.
- Green belt development along the boundary within safety zone. The small quantity of water stored in the mined-out pit will be used for greenbelt
- ❖ At conceptual stage, the land use pattern of the quarry will be changed into Greenbelt area and temporary reservoir.
- ❖ In terms of aesthetics, natural vegetation surrounding the quarry will be retained (such as in a buffer area i.e., 7.5 m safety barrier and other safety provided) so as to help minimize dust emissions.
- ❖ Proper fencing will be carried out at the conceptual stage, Security will be posted round the clock, to prevent inherent entry of the public and cattle.

## **4.2 SOIL ENVIRONMENT**

## **Anticipated Impact**

- Deterioration of soil quality in the surrounding area due to runoff from the project area
- Decrease in the agricultural productivity of the surrounding land due to soil quality degradation

## **Mitigation Measures**

- Construction of garland drains, settling pits, and check dams to prevent runoff and siltation
- ❖ Run-off diversion Garland drains will be constructed around the project boundary to prevent surface flows from entering the quarry works areas and will be discharged

- into the settling tanks to reduce suspended sediment loads before runoff is discharged from the quarry site.
- \* Retain existing or re-plant the vegetation will be retained at the site wherever possible.
- ❖ Monitoring and maintenance Weekly monitoring and daily maintenance of erosion control systems so that they perform as specified specially during rainy season.

#### 4.3 Water Environment

# **Anticipated Impact**

- Surface and ground water resources may be contaminated due to pit water discharge, domestic sewage, discharge of oil and grease bearing waste water from washing of vehicles and machineries, and washouts from surface exposure or working areas
- ❖ As the proposed project acquires 3.2 KLD of water from water vendors, it will not extract water by developing abstraction structures in the lease area. Therefore, the project will not have impact on depletion of aquifer beneath the lease area.

## **Mitigation Measures**

- ❖ Rain water from mine pit will be treated in settling tanks before being used for dust suppression and tree plantation purposes
- Domestic sewage from site office will be discharged in septic tank and then directed to soak pits
- ❖ Water from the tipper wash-down facility and machinery maintenance yard will be passed through interceptor traps/oil separators prior to its reuse.
- ❖ The garland drainage will be connected to settling tank and sediments will be trapped in the settling tanks and only clear water will be discharged to the natural drainage
- ❖ Periodic (every 6 month once) analysis of ground water quality of quarry pit water and ground water of nearby villages will be conducted
- ❖ Artificial recharge structures will be established in suitable locations as part of the rainwater harvesting management program

## **4.4 AIR ENVIRONMENT**

## **Anticipated Impact**

- ❖ During mining at various stages of activities such as excavation, drilling and transportation of materials, particular matter (PM), gases such as sulphur dioxide, oxides of nitrogen from vehicular exhaust are the main air pollutants.
- ❖ Emissions of noxious gases due to incomplete detonation of explosive may sometimes pollute the air.

- ❖ The fugitive dust released from the mining operations may cause effect on the mine workers who are directly exposed to the fugitive dust.
- ❖ Simultaneously, the air-borne dust may travel to longer distances and settle in the villages located near the mine lease area.

By adopting suitable mitigation measures, the pollutant levels in the atmosphere can be controlled further.

# **Mitigation Measures**

- ❖ To control dust at source, wet drilling will be practiced. Where there is a scarcity of water, suitably designed dust extractor will be provided for dry drilling along with dust hood at the mouth of the drill-hole collar
- ❖ Dust mask will be provided to the workers and their use will be strictly monitored
- ❖ Water will be sprinkled on haul roads twice a day to avoid dust generation during transportation
- ❖ The un-metaled haul roads will be compacted weekly before being put into use
- ❖ It will be ensured that all transportation vehicles carry a valid PUC certificate
- ❖ Haul roads and service roads will be graded to clear accumulation of loose materials
- Planting of trees all along main mine haul roads and around the project site will be practiced to prevent the generation of dust
- ❖ Dust mask will be provided to the workers and their use will be strictly monitored

#### 4.5 Noise Environment

# Anticipated Impact

Total noise level in all the sampling areas is well below the CPCB standards for industrial and residential areas.

## Mitigation Measures

The following noise mitigation measures are proposed for control of noise:

- ❖ Usage of sharp drill bits while drilling which will help in reducing noise
- Secondary blasting will be totally avoided and hydraulic rock breaker will be used for breaking boulders
- Controlled blasting with proper spacing, burden, stemming and optimum charge/delay will be maintained
- ❖ The blasting will be carried out during favourable atmospheric condition and less human activity timings by using nonelectrical initiation system
- ❖ Proper maintenance, oiling and greasing of machines will be done every week

- to reduce generation of noise
- ❖ Provision of sound insulated chambers for the workers working on machines (HEMM) producing higher levels of noise
- Silencers / mufflers will be installed in all machineries
- ❖ Greenbelt/Plantation will be developed around the project area and along the haul roads. The plantation minimizes propagation of noise
- ❖ Personal Protective Equipment (PPE) like ear muffs/ear plugs will be provided to the operators of HEMM and persons working near HEMM and their use will be ensured though training and awareness
- ❖ Regular medical check—up and proper training to personnel to create awareness about adverse noise level effects

# 4.6 Biological Environment

# Anticipated Impact

- ❖ There shall be negligible air emissions or effluents from the project site. During loading the truck, dust generation will be likely. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly
- ❖ Most of the land in the buffer area is undulating terrain with crop lands, grass patches and small shrubs. Hence, there will be no effect on flora of the region.
- Carbon released from quarrying machineries and vehicles moment during the industrial activities.
- ❖ Direct impact is anticipated on fauna of core zone
- ❖ Insignificant impact is anticipated on fauna in the buffer area due to air emissions, noise, vibration, transportation, waste water discharges, and changes in land use.

# Mitigation Measures

- During conceptual stage, the top bench will be re-vegetated by planting local /native species and lower benches will be converted into rainwater harvesting structure following completion of mining activities, which will replace habitat resources for fauna species in this locality over a longer time.
- \* Existing roads will be used; new roads will not be constructed to reduce impact on flora.
- ❖ To mitigate carbon emission due to mining activities, we recommend planting trees around the quarry to offset the carbon emission during quarrying. A tree can sequester 40519 kg of carbon per year. Therefore, we recommend planting large number of trees around the quarry and near school campuses, government wasteland, roadsides etc.

- ❖ As per the greenbelt development plan as recommended by SEAC (Table 4.13), about 1690 trees will be planted within three months from the beginning of mining. These trees, when grown up would sequester carbon of about 11932 kg of the total carbon
- ❖ Fencing will be constructed around the proposed mine lease area to restrict the entry of stray animals
- The workers shall be trained not to harm any wildlife near the project site

## **4.7 Socio Economic Environment**

# **Anticipated Impact**

- ❖ Dust generation from mining activity can have negative impact on the health of the workers and people in the nearby area
- ❖ Approach roads can be damaged by the movement of transportation.
- ❖ Increase in Employment opportunities both direct and indirect thereby increasing economic status of people of the region

# Mitigation Measures

- Good maintenance practices will be adopted for all machinery and equipment, which will help to avert potential noise problems
- Green belt will be developed in and around the project site as per Central Pollution Control Board (CPCB) guidelines
- ❖ Air pollution control measure will be taken to minimize the environmental impact within the core zone
- ❖ For the safety of workers, personal protective appliances like hand gloves, helmets, safety shoes, goggles, aprons, nose masks and ear protecting devices will be provided as per mines act and rules
- ❖ Benefit to the State and the Central governments through financial revenues by way of royalty, tax, duties, etc.., from this project directly and indirectly

# 4.8 Occupational Health

- ❖ All the persons will undergo pre-employment and periodic medical examination
- ❖ Employees will be monitored for occupational diseases by conducting medical tests: General physical tests, Audiometric tests, Full chest, X-ray, Lung function tests, Spiro metric tests, Periodic medical examination − yearly, Lung function test − yearly, those who are exposed to dust and Eye test
- ❖ Essential medicines will be provided at the site. The medicines and other test facilities will be provided at free of cost.

❖ The first aid box will be made available at the mine for immediate treatment. First aid training will be imparted to the selected employees regularly. The lists of first aid trained members shall be displayed at strategic places.

# **5 Environment Monitoring Program**

**Table 2 Environment Monitoring Program** 

| S.  | Environment                 | Location                                                                          | Monitoring        |                                    | Parameters                                                                                        |
|-----|-----------------------------|-----------------------------------------------------------------------------------|-------------------|------------------------------------|---------------------------------------------------------------------------------------------------|
| No. | Attributes                  |                                                                                   | Duration          | Frequency                          | rarameters                                                                                        |
| 1   | Air Quality                 | 2 Locations (1 Core<br>& 1 Buffer)                                                | 24 hours          | Once in 6 months                   | Fugitive Dust,<br>PM <sub>2.5</sub> , PM <sub>10</sub> , SO <sub>2</sub><br>and NO <sub>x</sub> . |
| 2   | Meteorology                 | At mine site before<br>start of Air Quality<br>Monitoring & IMD<br>Secondary Data | Hourly /<br>Daily | Continuous<br>online<br>monitoring | Wind speed, Wind direction, Temperature, Relative humidity and Rainfall                           |
| 3   | Water Quality<br>Monitoring | 2 Locations (1SW<br>& 1 GW)                                                       | 1                 | Once in 6 months                   | Parameters<br>specified under<br>IS:10500, 1993 &<br>CPCB Norms                                   |
| 4   | Hydrology                   | Water level in open<br>wells in buffer zone<br>around 1 km at<br>specific wells   | -                 | Once in 6 months                   | Depth in m BGL                                                                                    |
| 5   | Noise                       | 2 Locations (1 Core<br>& 1 Buffer)                                                | Hourly –<br>1 Day | Once in 6 months                   | Leq, Lmax, Lmin,<br>Leq Day & Leq<br>Night                                                        |
| 6   | Vibration                   | At the nearest habitation (in case of reporting)                                  | -                 | During operation                   | Peak particle<br>velocity                                                                         |
| 7   | Soil                        | 2 Locations (1 Core<br>& 1 Buffer)                                                | -                 | Once in six months                 | Physical and chemical characteristics                                                             |
| 8   | Greenbelt                   | Within the project area                                                           | Daily             | Monthly                            | Maintenance                                                                                       |

Source: Guidance of manual for mining of minerals, February 2010

#### **6 ADDITIONAL STUDIES**

## **6.1 Risk Assessment**

The DGMS risk assessment process is intended to identify existing and probable hazards in the work environment and all operations and assess the risk levels of those hazards in order to prioritize those that need immediate attention. The whole quarry operation will be carried out under the direction of a Qualified Competent Mine Manager holding certificate of competency to manage a metalliferous mine granted by the DGMS, Dhanbad for proposed project.

## **6.2 Disaster Management Plan**

The objective of the disaster management plan is to make use of the combined resources of the mine and the outside services to:

- \* Rescue and treat casualties;
- **Safeguard other people**;
- ❖ Minimize damage to property and the environment;
- ❖ Initially contain and ultimately bring the incident under control;
- Secure the safe rehabilitation of affected area; and
- ❖ Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency.

# **6.3 Cumulative Impact Study**

The results on the cumulative impact from the two proposed projects on air environment of the cluster do not exceed the permissible limits set by CPCB for air pollutants.

- ❖ The cumulative results of noise for the habitation in consideration do not exceed the limit set by CPCB for residential areas for day time
- ❖ The proposed projects will allocate Rs. 10,00,000/- towards CER as recommended by SEAC
- The proposed projects will directly provide jobs to 22 local people, in addition to indirect jobs.
- ❖ The proposed projects will plant 1690 about trees in and around the lease area.

# 7 Project Benefits

Various benefits are envisaged due to the three proposed mine and benefits anticipated from the proposed project to the locality, neighbourhood, region and nation as a whole are:

• Direct employment to 22 local people

- Creation of community assets (infrastructure) like school buildings, village roads/ linked roads, dispensary & health Centre, community Centre, market place etc.,
- Strengthening of existing community facilities through the Community Development Program
- Skill development & capacity building like vocational training.
- Rs. 10,00,000 will be allocated for CER.

## **8 ENVIRONMENT MANAGEMENT PLAN**

In order to implement the environmental protection measures, an amount of **Rs.** 22,831,594 as capital cost and **Rs.** 12,56,620 as recurring cost/annum is proposed considering present market price considering present market scenario for the proposed project. After the adjustment of 5% inflation per year, the total recurring cost over 5 years is **Rs.69,43,619** and the overall EMP cost for 5 years will be **Rs.29,775,212**.