Executive Summary

For

Proposed Jammanhalli Black Granite Quarry over an extent of 6.59.5 Ha

Proposed Production Capacity: 4,150m³

At

Survey No: 83 (Part)

Village: Jammanahalli

Taluk: Pappireddypatti

District: Dharmapuri

State: Tamil Nadu

By

M/s. Tamil Nadu Minerals Limited

(Project termed under Schedule 1(a) Mining of Minerals 'B1' category as per EIA Notification 2006 and its Amendments)

ToR Identification No. T025B0108TN5769635N Dated: 19.05.2025

Baseline Period: February 2025 to April 2025

EIA Consultant & Laboratory

M/s. HUBERT ENVIRO CARE SYSTEMS (P) LTD, CHENNAI

NABET Certificate No & Validity: NABET/EIA/24-27/RA 0335, valid up to 31.03.2027

NABL Certificate No: TC-12310 Dated: 25.09.2023, valid up to 24.09.2025

August 2025

Revision Status

Name of the Client	:	M/s. Tamil Nadu Minerals Limited	
Name of the Project	:	Proposed Jammanahalli Black Granite Quarry over an extent of 6.59.5 Ha	
Name of the Report	:	Executive Summary	
Project No: H/01/2023/CON/046		Document No: RP004	

Revision details:

No.			Prepared by		Che	cked by	Appro	ved by
Rev	Date	Details	Name	Sign	Name	Sign	Name	Sign
R0	11.07.2025	1 st Submission	Mr. Vamsee Krishna	1.85	P.V.R.S Surendra	Purssuadoa	Dr.J.R. Moses	mulon
R1	29.07.2025	2 nd submission- Draft EIA to QC Team	Mr. Vamsee Krishna	1.67	P.V.R.S Surendra	Pursendo	Dr.J.R.Moses	mular
R2	26.08.2025	3 rd submission- Draft EIA for Public Hearing	P.V.R.S Surendra	Pursenda	P.V.R.S Surendra	Pursenga	Dr.J.R.Moses	soulo-
		3rd submission-						

Executive Summary

1. Introduction

The proposed jammanahalli black granite quarry is over an extent of 6.59.5 Ha at S.F.No.83 (P) of Jammanahalli Village, Pappireddipatti Taluk, Dharmapuri District, and Tamil Nadu State. It is a Government poramboke land.

TAMIN has obtained lease for 20 years vide precise area communication letter No.4539479/MME.1/2023-1, Dated: 13.09.2023. Precise area communication letter is enclosed as **Annexure-1**. Accordingly, Mining Plan has been approved by the Commissioner, Department of Geology and Mining, Guindy, Chennai vide letter Rc. No.72/MM4/2023 dated 23.11.2023 for the proposed production capacity of 4,150m³ at 10% recovery of ROM 41,501m³ during the five years of mining plan period. Mining plan approval letter is enclosed as **Annexure-2** and approved mining plan is enclosed as **Annexure-3**.

The ToR application was submitted to TN-SEIAA vide online proposal No. SIA/TN/MIN/525197/2025, dated: 22.02.2025 as the area of the proposed project is more than 5.00.0Ha. The proposal was appraised during the 549th SEAC meeting held on 07.04.2025 and the 822nd SEIAA meeting held on 15.05.2025 and the ToR was issued along with public hearing vide Identification No.TO25B0108TN5769635N, dated: 19.05.2025 under B1 Category, Schedule 1(a) Mining of Minerals as per EIA Notification 2006 and its subsequent amendments. The ToR was enclosed as **Annexure-5**.

Based on the issued ToR, the draft EIA report will be submitted to the Tamil Nadu Pollution Control Board for conducting Public Hearing. After the completion of the Public Hearing, the querries raised and their compliance will be incorporated into the final EIA report, which will then be submitted to the Tamil Nadu SEAC/SEIAA for appraisal and for seeking Environmental Clearance for the proposed project.

Table-1 Salient Features of the Project Site

Survey No	S.F.No.83 (Part)
Village	Jammanahalli
Taluk and District	Pappireddipatti Taluk, Dharmapuri District
State	Tamil Nadu
Toposheets No.	D44S8
Latitude	12°00'33.8481"N to 12°00'45.4265"N
Longitude	78°25'11.6284"E to 78°25'25.2777"E
Extent Area	6.59.5 Ha
Lease Period	20 years

Estimated Geological Reserves (ROM)m ³	4,09,500
Estimated Mineable Reserves (ROM) m ³	2,13,213
Proposed Production RoM m ³	41,051
Black Granite production @10% recovery m ³	41,501
Annual peak production in m ³	4,150
Depth of Mining	12m from top of the hill (Height of the hillock is 32m)
Method of Mining	Open cast semi mechanized method
Nearest NH/SH Roads	 SH-6A (Tiruvannamalai-Harur),~7.69 km, ENE NH-179A (Salem-Vaniyambadi),~ 2.89 km, ESE
Nearest Town	Harur,~7km, NE
Nearest Railway Station	Thonganur,~10.17km, NW
Nearest Airport	Salem Airport,~45.20km, WSW
Project Cost	99.97 lakhs
Water Requirement	3.5KLD
Power Requirement	60kVA
Fuel Requirement	200 liters/day
Depth of Water Table	11.6m as per TWAD (TWAD- Dharmapuri - May 2024)

2. PROJECT DESCRIPTION

2.1 Method of Quarrying

The quarrying operation is being carried out by open cast semi-mechanized method with deployment of HEMM for development and production activities under Regulation106. The quarrying work being carried out under the direct supervision of our statutory mining personal of TAMIN as approved by the Directorate General of Mines Safety (DGMS) under MMR, 1961.

Reserves of Black Granite

The Geological reserve of black granite was computed based on the geological plan & section as 4,09,500 m³. Mineable Reserves have been computed as 2,13,213m³ after leaving the reserves locked up in safety barrier and benches based on the Conceptual Plan and sections, the effective(Saleable) Mineable Reserves have been worked out as 21,321m³ by applying the recovery factor 10%.

The total proposed production capacity is 4,150m³ at 10% recovery of ROM 41,501m³. The annual peak production per year would be 1,000m³ at 10% recovery of ROM 9,999 m³.

Table-2 Ultimate Pit Dimensional Details

C No	Description	Ultimate Pit Dimensions (m)			
S. No	Description	Length	Width	Depth	
1	Тор	324.0	68.0	22.0	
2	Bottom	193.0	22.50	33.0	

Table-3 Available Reserves

S. No	Geological Reserves (m³)	Mineable Reserves (m³)	Mineable Saleable Reserves at 10% recovery (m³)
1.	4,09,500	2,13,213	21,321

Table-4 Proposed Year Wise Production

S. No	Year	ROM (m³)	Recovery @ 10% (m³)	Granite Waste @ 90 % (m³)
1	1 st Year	6,003	600	5,403
2	2 nd Year	7,503	750	6,753
3	3 rd Year	8,500	850	7,650
4	4 th Year	9,496	950	8,546
5	5 th Year	9,999	1000	8,999
	Total	41,501	4,150	37,351

Waste Management

The waste generated during the mining operation i.e., over burden, side burden, granite rejects and the non-recoverable/un sized boulders and rubbles etc is around 64,962 m³, will be dumped in the suitable area of around 0.66.0 Ha which is already selected. The area of disposal waste rock has been identified in South East portion of the lease area. The unsold blocks are kept within the boundary on the country rock area. The dump will be maintained not exceeding 5m height and the slope angle will be at 45° from horizontal. The area and location of the waste dump has been provided in Plate no. 8 of Sectional Plates and the same is enclosed as **Annexure-4.**

Table-5 Proposed Waste Generation

S. No	Year	Over Burden (m³)	Side Burden (m³)	Granite Rejects @ 90% (m³)
1	1stYear	6,320	580	5,403
2	2 nd Year	4,452	174	6,753
3	3 rd Year	4,539	401	7,650
4	4 th Year	7,012	2,339	8,546
5	5 th Year	1,314	480	8,999
	Total	23,637	3,974	37,351

2.2 Greenbelt Details

The total area for the proposed green belt is 0.06.5 Ha during first 5 years of the proposed quarrying activity. TAMIN is proposing to plant 825 trees which are proposed to plant within the 7.5m safety buffer zone mine lease area and in the proposed green belt area.

Table-6 Proposed Greenbelt Development Details

Year	No of trees proposed to plant	Name of the species to be plant	Survival rate expected	No of trees expected to grow
2025-2026	825	Neem, Vilvam, Aathi, Panai	80%	660

2.3 Man Power Requirement

Manpower details are given in below table.

Table-7 Manpower Details

S.No	Description	No of persons			
A	A Technical/Mining Personnel				
1	Geologist/Agent (M.sc Qualified)	1			
2	Mine Manager (Holder of Manager Certificate of Competency under MMR, 1961)	1			
3	Mining Mate cum Blaster	1			
4	Machinery operator	6			
5	Diesel Mechanic	1			
В	Workers				
1	Skilled	1			
2	Semi- Skilled	9			
3	Un-skilled	10			
	Total	30			

2.4 List of Equipment

The list of Equipment is given in below table.

Table-8 List of Machineries

S. No	Machinery	Capacity	Numbers
1	Excavator	300 LC	1
2	Compressor	400 cfm	2
3	Dumpers	25 Tonnes	2
4	Diamond wire saw	30 m³/day	1

5	Jack Hammers (32mm dia.)	1.2 to 6m	6
6	Diesel Generator	125 kVA	1
7	Tractor Mounted Air Compressor	-	1

2.5 Land use Pattern of the quarry area

Table-9 Land Use Pattern of the Study Area

S.No	Description	Present area (Ha)	Proposed Mining Plan Period (Ha)	Area at the end of the life of mine (Ha)
1.	Mining Area		0.78.0	2.20.5
2.	Waste Dump		0.66.0	1.74.0
3.	Office Infrastructure	0.01.0		0.01.0
4.	Foot Path	0.14.0		0.14.0
5.	Afforestation		0.06.5	0.27.5
6.	Unutilized Area	6.44.5	4.94.0	2.22.5
	Total	6.59.5	6.44.5	6.59.5

3. IMPACTS AND MITIGATION MEASURES

Impacts due to Mining Activity

Various environmental impacts, which have been identified due to the mining operations, are discussed in the following sections. The environmental parameters most commonly affected by mining activities are:

3.1 Land Environment

Impacts

Potential impacts envisaged due to mining operations on land environment are

- The topsoil and bushes observed in the hill slides over the dyke will be removed completely. Hence the top hill ridge will be excavated which will interrupt the aesthetic view of the locality.
- The proposed quarrying operation will alters the hill lock slope and natural drainage pattern.
- Due to the proposed mining activity a pit will be created over the hill lock and left open with the approximate dimension as follows.

Table -10 Ultimate Pit Details

S. No	Description	Ultimate Pit Dimensions (m)		
3. NO	Description	Length	Average Width	Depth
1	Тор	324.0	68.0	22.00
2	Bottom	193.0	22.50	33.00

- The Total waste (Granite waste+ Over Burden + Side Burden) to be generated during the five years of mining plan period will be around 64,962m³. These wastes are proposed to be dumped on the Southeast side of lease area.
- Usage of chemicals like Rock Breaking Powder (Ca(OH)₂) for secondary blasting, fuel and lubricants used for machineries will affect the soil quality and fertility.
- Generation of hazardous and non-hazardous wastages.
- Creation of infrastructure facilities like office building, rest shelter, first-aid centre, toilets and other service facilities.

Mitigation Measures

- Good housekeeping and best practices of waste handling shall be adopted to eliminate/minimize the risks of soil contamination.
- The wastes generated will be stored in temporary storage facility and disposed through nearby municipal disposal bins. Waste oil generated from quarry machineries will be disposed through TNPCB authorized dealers.
- Dust suppression using water tankers.
- Greenbelt around infrastructure within the mine lease area and along the periphery of the mine lease area by using native plants.
- Proper fencing will be provided around the mine lease area.

3.2 Air Environment

Source

The major sources of air pollution due to mining operations are DG sets, Machineries and Vehicular transportation. The activities causing air pollution due to the mining operations will be excavation, drilling, blasting and transportation. The sources of air emission are given below in **Table-11**.

Table-11 Sources of air pollution due mining operations

S. No	Source of emission	Pollutant
1.	Excavation of Granite	РМ

2.	Operation of diesel driven equipment	Gaseous emission
3.	Transportation of product	PM, NO _x , CO

Impacts

- Due to mining activity, Air pollution will cause respiratory problems.
- Air pollution will affect nearby ecosystems, vegetation, livestock habitats and water sources.

Mitigation measures

The mitigation measures due to the proposed mining activity for air environment is given below.

Table-12 Dust Control Measures

S. No	Activities	Control Measures	
1	Drilling	 Adopting wet drilling method Drilling machine should be provided with dust extractors 	
2	Blasting	 Use of control blasting technique Water spray before blasting Usage of Rock breaking powder(Ca(OH)₂) Usage of Wire saw cutting method 	
3	Loading	 Water spray on granite material before loading 	
4	Transportation of material	 Water spray on granite material before loading Covering of the trucks/dumpers to avoid spillage Water spray on the haul roads before and after transportation Maintenance of haul road Speed of vehicles will be limited upto 25km/hr Development of a green belt of suitable width on both sides 	

3.2.1 Air Quality Modelling

Total maximum GLCs from emissions as given below **Table-13**.

Table-13 Total maximum GLC

Pollutant	Max. Base Line Conc. (μg/m³)	Estimated Incremental Conc. (µg/m³)	Total Conc. (μg/m³)	NAAQ standard
PM_{10}	57.72	2.05	59.77	100
SO ₂	15.01	0.12	15.13	80
NO _X	25.87	0.96	26.83	80

The maximum ground level concentration observed due to mining activities and traffic movement through Air Modelling for PM, SO_2 and NO_x are $57.72\mu g/m^3$, $15.01\mu g/m^3$ and $25.87\mu g/m^3$ respectively.

3.3 Transportation of material

Impacts

The granite will be transported through existing road by tippers and approximately 2 times per week materials will be transported. The traffic load was observed on NH-179A Connecting Salem – Vaniyambadi, The vehicular movement for the proposed project is given in **Table-14**.

Table-14 Traffic Volume after Implementation of the Project

For the Road	Volume of Traffic	Volume (V)	Road Capacity (C)	V/C Ratio	LOS Category*	Traffic Classification
Existing	9014	11970	35000	0.34	"A"	Free Flow Traffic
After implementation	9018	11985	35000	0.34	"A"	Free Flow Traffic

^{*}LOS (Level of Service) categories are A-Free Flow, B- Reasonably Free Flow, C-Stable Flow, D-Approaching unstable flow, E- Unstable flow, F- Forced or breakdown flow

Due to propose project there will be slight increment in the vehicle movement but the level of service (LOS) anticipated will be Free Flow Traffic.

Mitigation Measures

- Covering of the trucks/dumpers to avoid spillage
- Water spray on the haul roads before and after transportation
- Maintenance of haul road
- Speed control on vehicles
- Development of a green belt of suitable width on both sides of haul roads.

3.4 Water Environment

Impacts

Impacts envisaged due to wastewater generation during mining operations are

- Wastewater generated from the mines can pollute surface water and groundwater, which can harm wildlife and human health.
- Runoff from mining wastewater can devastate surrounding vegetation.

• Explosive blasting in a mine can cause groundwater to seep to lower depths or connect aquifers, exposing them to contamination by toxic heavy metals.

Mitigation Measures

Surface Water Pollution Control Measures

- Construction of garland drains of suitable size around mine area and dumps to prevent rain water descent into active mine areas.
- Construction of baffle wall or trenches nearby water bodies to prevent runoff water from mines.
- The dumping will be provided with slopes and covered with grasses, shrubs, etc to prevent erosion.

Ground Water Pollution Control Measures

- The domestic sewage of 1.2 KLD will be disposed through septic tank followed by soak pit.
- Regular monitoring of water levels and quality in the existing open wells and bore well in the vicinity will be carried out.

3.5 Rain Water Harvesting

Impacts

Impacts envisaged due to rainwater on mining operations are

- Heavy rainfall can cause high water levels at a mining site, which can damage equipment and threaten worker safety.
- Rainwater can carry pollutants from a mining site into nearby water bodies; these
 pollutants can include heavy metals, acids, and other substances that can contaminate the
 water.
- When it rains, the loosened topsoil can be washed away, carrying sediments that pollute water bodies.

Mitigation Measures

- Construct barriers at suitable intervals along the path of the drains to restrict the flow of water.
- Construction of baffle wall or trenches nearby water bodies to prevent runoff water from mines.
- Provide necessary overflow arrangement to maintain the natural drainage system.
- The rainwater will be diverted by garland drains to the sump area within the mine lease. The stored water will be used for agriculture activities and also for dust suppression purpose.

3.6 Noise Environment

Impact

The main sources of noise generation during mining operations are

- Drilling
- Blasting
- Loading & unloading of materials
- Transportation

Mitigate Measures

Following mitigation measures should be taken to control noise pollution

- Workers will be provided with earmuffs, ear plugs etc.
- All vehicles and machinery will be properly lubricated and maintained regularly.
- Speed of the vehicles entering and leaving the quarrying lease will be limited to 25 kmph.
- Unnecessary use of horns by the drivers of the vehicles shall be avoided.
- Controlled blasting with proper spacing, burden and stemming will be maintained.
- Usage of NONEL Blasting (Non-Electric Detonator).
- The blasting will be carried out during favourable atmospheric condition.

3.7 Vibration due to mining operations

Impacts

Due to mining activities, the following impacts of vibration are envisaged as follows:

- Structural damage to infrastructure facilities within the mine lease area.
- Ground Subsidence
- Vibrations cause human health impacts such as fatigue, muscle strain, joint pain, sleep disturbances, cardiovascular problems etc.

Mitigation Measures

- No primary blasting will be used for granite quarry operations. Only secondary controlled blasting techniques will be used.
- Usage of NONEL Blasting.
- Proposed peripheral green belt will be developed in 7.5m safety zone around the quarry.
- All vehicles and machinery will be properly lubricated and maintained regularly.
- Periodical health checkup will be done for the workers.

3.8 Biological Environment

Impacts

Impacts on biodiversity are given below.

Table-15 Impacts on Biodiversity

S. No	Activity	Examples of aspects	Examples of biodiversity impact
1	Excavation	Land clearing	Loss of habitat, introduction of plant diseases, Siltation of water courses
2	Blasting, Digging and hauling	Dust, noise ,vibration, water pollution	Disruption of water courses ,impacts on aquatic ecosystems due to changes in hydrology and water quality
3	Waste dumping	Clearing, water and soil pollution	Loss of habitat, soil and water contamination, sedimentation.
4	Air emissions	Air pollution	Loss of habitat or species
5	Waste disposal	Oil and water pollution	Encouragement of pests, disease transfer, contamination of groundwater and soil
6	Access roads	Land clearing	Habitat loss or fragmentation, water logging upslope and drainage shadows down slope
7	Water supply (potable or industrial)	Water abstraction or mine dewatering	Loss or changes in habitat or species composition

Mitigation Measures

- To reduce the adverse effects on flora/fauna due to deposition of dust generation from mining operations, water sprinkling and water spraying systems will be ensured in all dust prone areas to arrest dust generation.
- Development of greenbelt around the mine lease area.

3.9 Occupational Health due to mining operations

Impacts

The following occupational health issues are observed due to mining operations.

- Exposure to chemicals
- Airborne hazards
- Dust
- Noise and vibration
- High temperatures and humidity
- Manual handling

Mitigation Measures

The mitigation measures of occupational health and safety is given below.

Table-16 Mitigation for occupational health and safety

S. No	Activity	Mitigation measures
1	Excavation	Planned excavation, avoid haphazard mining.
2	Drilling and blasting	 Adopting wet drilling method. Using controlled blasting techniques. Usage of diamond wire saw cutting.
3	Safety zone	 Provisions of green belt in the 7.5m safety zone area around the mine lease. Restricted entry, use of sirens and cordoning of the lasting area are some of the good practices to avoid accidents.
4	Overburden stabilization	 Accidents are known to happen due to overburden collapse. Therefore, slope stabilization and dump stability are critical issues for safety and environment. Proper measures will be taken care.
5	Worker's health surveillance	 Providing personal protective equipments such as masks, helmets, gloves, earplugs etc., for workers. Health survey program for workers and local community Regular training and awareness of employees to be conducted to meet health and safety objectives.

4. PROJECT COST & ESTIMATED TIME OF COMPLETION

4.1 Project Cost

The estimated project cost is given below **Table-17**.

Table-17 Project cost

S. No	Description of the Cost	Amount in Rs.
A.	Fixed Cost	
1	Land Cost	Nil. Because Govt. land
2	Labour shed	50,000/-
3	Sanitary facilities	50,000/-
4	Fencing Cost	1,25,000/-
	Total	2,25,000/-
B.	Operational Cost	
1	Jack Hammers	1,98,000/-
2	Compressor	19,82,000/-
3	Diamond wire saw	4,87,000/-

4	Diesel General	4,00,000/-
5	Excavators	6,00,000/-
6	Tippers	58,00,000/-
7	Drinking water facilities for the labours	50,000/-
8	Safety kits	50,000/-
	Total Operational Cost	95,67,000/-
C.	EMP Cost	
1	Afforestation	30,000/-
2	Water Sprinkling	50,000/-
3	Water Quality test	25,000/-
4	Air Quality test	25,000/-
5	Noise/Vibration test	25,000/-
6	CSR activities	50,000/-
	Total EMP Cost	2,05,000/-
	Total Cost of the Project (A+B+C)	99,97,000/- (Say 1 Crore)

4.2 Proposed schedule for approval and implementation

The time schedule for the completion of the proposed mining project is given in the below as,

Table-18 Project schedule

Particulars	Time Schedule
Submission of Draft EIA/EMP to TNPCB for Public Hearing	August-2025
Conduction of Public Hearing	October-2025
Submitting final EIA/EMP	December-2025
Presentation to SEAC and Obtaining EC	January-2026

The project will be implemented after obtaining EC from SEIAA and CTO from PCB.

4.3 CER Activity

Based on O.M F.No. 22-65/2017-IA.III dated: 01.05.2018, 2.0% of the Project cost need to be spent for CER activities i.e., Rs. 2.0 Lakhs. However, TAMIN is proposing for Rs. 4.0 Lakhs which is 4.0% of Project cost under CER activities for the Jammanahalli Government Higher Secondary School.

5. MINING CLOSURE PLAN

5.1 Progressive Mine Closure Plan

As a petro genetic character the depth persistence of the black granite body in the mine lease area is beyond the workable limits. Based on the statutory provisions of mine safety rules and regulations the workable depth is proposed for 33m from top of the hill. However, in course of time there is a possibility of up gradation of technology for safe mining beyond 33m. Hence, it is proposed not to backfill the ultimate pit. The pit boundaries shall be safely fenced with 7.5m buffer safety zone and rain water or seepage water stored in the pit will be used for agriculture purpose. Green belt development will be maintained in the 7.5m buffer safety zone. Garland drain will be constructed around the quarry area to prevent the flow of silt and sediment runoff. At the end of the life of mine, the mine closure plan will be prepared and submitted to the competent authority to obtain approval and the same will be implemented.

6. REHABILITATION AND RESETTLEMENT

There will be no Rehabilitation and Resettlement in this proposed project.

7. SITE ANALYSIS

Environmental sensitive such as water bodies, reserved forest, wildlife sanctuary, national park, human settlements and other ecological features are given below.

7.1 Environmentally/Ecologically Sensitive areas

The environmental sensitive areas covering an aerial distance of 15km from the project boundary is given in below tables.

Table-19 Lists of Water bodies

S.No	Water bodies	Distance (~km)	Direction
1.	Turinjihalli Ar	0.57	NW
2.	Annamalaihalli Pond	1.26	NE
3.	Paraiyapatti Pudur Lake	1.68	SSE
4.	Lake near Krishnapuram	2.30	NNW
5.	Tenkaraikottai Lake	2.53	W
6.	Vaniyar River	2.74	SE
7.	Piniyar River	3.85	ESE
8.	Nambiyappatii Lake	3.97	ENE
9.	Karukkampatti River	4.04	ESE
10.	Panchalanagar Lake	4.53	WSW

11.	Alapuram Eri	5.73	SW
12.	Todddampatti Lake	5.74	ENE
13.	Varatta Ar	8.61	NE
14.	Sintalbadi Lake	10.04	NW
15.	Vallimadurai Reservoir	12.92	ESE

Table-20 Lists of nearby Habitations

S.No	Name of the Village	Distance(~km)	Direction	Approximate population
1.	Annamalaihalli	0.66	NE	1,227
2.	Jammanahalli	0.95	SSW	2,363
3.	Vadakarai	1.08	NW	300
4.	Tennagaram	1.25	WSW	100
5.	Gopinathampatti	1.60	ESE	2,500

^{*} Few settlements are located near to the quarry.

Table-21 List of Reserved Forests

S.No	Reserved Forest	Distance(~km)	Direction
1	Kavaramalai RF	3.18	W
2	Harur RF	5.14	NNE
3	Pallippatti RF	6.21	SE
4	Thombakal Ext RF	6.64	ESE
5	Morappur RF	9.17	NNE
6	Thombakal RF	9.53	SE
7	Kavaramalai Ext RF	11.55	W
8	Nochikuttai Ext RF	12.62	SSE
9	Kuttar RF	12.78	SSW
10	Veppampatti RF	13.04	Е
11	Veppampatti Ext RF	13.42	Е
12	Bothakkadu RF	13.61	SW
13	Poyyappatti RF	13.95	ENE
14	Nochikuttai RF	14.15	SSE
15	Karungal RF	14.59	ESE
16	Mavuttu RF	14.68	SSW

8. BASELINE STUDY

8.1 Study Period

The baseline environmental monitoring were carried out during **(February 2025 to April 2025)** within the study area.

8.2 Ambient Air Quality

The ambient air quality has been monitored at 8 locations for 15 parameters as per NAAQS, 2009 within the study area.

Table-22 Summary of Ambient Air Quality Monitoring

S.No	Parameters	Minimum of Average (μg/m³)	Maximum of Average (μg/m³)	NAAQ Standards (μg/m³)
1	PM_{10}	36.95	48.57	100
2	PM _{2.5}	18.48	24.29	60
3	SO_2	7.13	12.63	80
4	NO_2	14.26	21.77	80

8.3 Noise Environment

Ambient noise levels were monitored using precision noise level meter in and around the project site at 8 locations during study period.

- In Residential area day time noise levels varied from 50.1 dB (A) to 53.9dB (A) and night time noise levels varied from 40.5 dB(A) to 43.7 dB(A) across the sampling stations. The field observations during the study period indicate that the ambient noise levels in Residential area are within the limit prescribed by CPCB for Residential area (55 dB (A) Day time & 45 dB(A) Night time).
- In Industrial Area day time noise levels was recorded as 60.3 dB(A) and the night time noise levels was recorded as 51.9 dB(A) among the sampling stations. The field observations during the study period indicate that the ambient noise levels are within the prescribed limit by CPCB (75 dB(A) Day time & 70 dB(A) Night time)

8.4 Water Quality

The prevailing status of water quality at 8 locations for surface water and 8 locations for ground water have been assessed during the study period.

8.4.1 Surface water quality

Table-23 Summary of Surface Water Quality Monitoring

S.No	Parameters	Minimum	Maximum	Designated Best Use Water Quality Criteria
1.	рН	7.12	7.94	A

2.	TDS (mg/l)	673	1149	-
3.	COD (mg/l)	48	92	-
4.	BOD (mg/l)	4	8	-
5.	Total Hardness(mg/l)	300	590	-

8.4.2 Ground Water Quality

Table-24 Summary of Ground Water Quality Monitoring

				IS 10500: 2012 Standards	
S. No	Parameters	Minimum	Maximum	Acceptable Limit	Permissible Limit
1.	рН	7.11	7.74	6.5 – 8.5	NR
2.	Chloride (mg/l)	529.52	900.7	250	1000
3.	Total Hardness (mg/l)	460	790	200	600
4.	TDS (mg/l)	1160	1775	500	2000

• It is observed that all the collected ground water samples meets the drinking water standards (IS 10500:2012) and can be used for drinking

8.5 Soil Quality

Soil sampling was carried out at eight locations in the study area. The summary of the soil quality is given below.

Table-25 Summary of Soil Quality

S.No	Parameters	Minimum	Maximum
1.	рН	6.83	7.86
2.	Electrical conductivity (μS/cm)	68.0	188.0
3.	Nitrogen (%)	0.0010	0.0059
4. Phosphorus (μg/kg) BLQ (LOQ 5.0)		LOQ 5.0)	
5.	Potassium (mEq/100g)	11.85	23.58

9. WASTE HANDLING

9.1 Solid Waste Management

The municipal solid waste generation and management details are given in **Table-26**.

Table-26 Municipal Solid Waste generation & Management

S. No	Туре	Quantity Kg/day	Disposal method
1	Organic	8.1	Municipal bin

2	Inorganic	5.4	TNPCB authorized recyclers
	Total	13.5	

As per CPHEEO guidelines: MSW per capita/day =0.45

9.2 Hazardous Waste Management

The type of hazardous waste and its mode of disposal are detailed in **Table-27**.

Table-27 Hazardous Waste Management

Waste Category No	Description	Quantity (L/Year)	Mode of Disposal
5.1	Waste Oil	3.0	Will be collected in leak proof containers and disposed to TNPCB authorized recyclers

10. POST PROJECT MONITORING

Post Project Environmental Monitoring

The Project proponent set up regular monitoring stations to assess the quality of the environment.

Table-28 Post Project Environmental Monitoring Program

S. No	Area of Monitoring	Number of Sampling Stations	Frequency of Sampling	Parameters to be Analyzed
1	Meteorology	One	Hourly and Daily basis	Wind speed and direction, Temperature, Relative Humidity, Atmospheric pressure, Rainfall.
2	Ambient Air Quality	2 Stations (one in up wind and one in downwind)	Twice a week:24 hourly period	PM ₁₀ , PM _{2.5} , SO ₂ , and NO ₂
3	Noise	2 (one within core area and one in buffer area)	Once every season	Ambient Equivalent continuous Sound Pressure Levels (Leq) at day and Night time.
4	Exhaust from DG set	Stack of DG set	Quarterly	PM ₁₀ , PM _{2.5} , SO ₂ , and NO ₂
5	Soil	Two Locations within the Project Site	Yearly Once	Physico chemical properties, Nutrients, Heavy metals
6	Terrestrial Ecology	Within 10km around the project	Once in three years	Symptoms of injuries on plants
7	Surface/ Ground water quality	Two Locations within the study area	Yearly Once	As per ISO 10500 Standard parameters and IS 2296:1992 Standards

11. CONCLUSION

The **proposed Jammanahalli Black Granite Quarry**, extending over 6.59.5 hectares, is anticipated to play a vital role in fostering socio-economic development in the surrounding villages. The project is expected to provide direct employment opportunities for nearly 30 individuals, thereby improving local livelihood options and contributing to an enhanced standard of living for the community.

From an environmental standpoint, possible impacts such as dust emissions, noise generation, and siltation due to surface run-off have been carefully evaluated. The project will adopt comprehensive mitigation measures to ensure that all activities remain within prescribed regulatory standards, thereby minimizing potential adverse effects on the environment.

To ensure pollution control and workplace safety, the following environmental management practices will be implemented on a routine basis:

- Water sprinkling on haul roads and drilling sites to minimize dust emissions.
- Greenbelt development and plantation around the quarry lease boundary to serve as dust barriers and to augment local biodiversity.
- Adoption of diamond wire saw cutting techniques, which significantly reduce noise, vibration, and fugitive dust compared to conventional blasting practices.
- Mandatory provision and use of personal protective equipment (PPE) to safeguard workers' health and safety.

Furthermore, under its Corporate Environmental Responsibility (CER) commitments, the project proponent will extend support toward strengthening local infrastructure, education, healthcare, and sanitation facilities. These initiatives are expected to generate substantial social and economic benefits for the nearby communities, reinforcing the project's positive contribution to regional development.

