DRAFT ENVIRONMENTAL IMPACT ASSESSMENT REPORT

FOR

CAPACITY AUGMENTATION OF EXISTING OPERATIONAL MARINE LIQUID TERMINAL (MLT) FROM 3 MMTPA TO 6 MMTPA AT KAMARAJAR PORT LIMITED, CHENNAI

BY

KAMARAJAR PORT LIMITED

At

VILLAGE: PUZHUTHIVAKKAM

TALUK: PONNERI

DISTRICT: TIRUVALLUR

STATE: TAMIL NADU

ToR File No: 10/15/2024-IA.III dated: 06.09.2024

Baseline Monitoring period: March 2024 – May 2024

Project Schedule: 7(e) "Ports, Harbours, Breakwaters Dredging" falls under Category A as per

EIA Notification 2006 and its amendment

EIA Consultant & Laboratory

M/s. HUBERT ENVIRO CARE SYSTEMS (P) LTD

NABET/ EIA/24-27/ RA-0335 valid upto 31.03.2027

NABL Certificate No: TC-12310

Submitted to

TNPCB Gummindiponndi

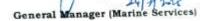
(July 2025)

Declaration by the Project Proponent

I, Captain G.Balan , The General Manager , Marine service declaration undertaking that owing the contents (information and data) of EIA report preparation has been undertaken for the "Capacity augmentation of existing operational Marine Liquid Terminal from 3 MMTPA to 6 MMTPA at – Kamarajar Port Limited" and the information and content provided in the report are factually correct.

For, M/s. Kamarajar Port Limited

General Manager (Marine Services



ACKNOWLEDGEMENT

Draft EIA Report

The following personnel are gratefully acknowledged for their fullest support in collection, compilation of needful data regarding the project and kind co-operation in fulfilling the report on Environmental Impact Assessment (EIA) Report "Capacity augmentation of existing operational Marine Liquid Terminal from 3 MMTPA to 6 MMTPA at – Kamarajar Port Limited".

For, M/s. Kamarajar Port Limited

Declaration by the Head of the Accredited Consultant Organization

I, Dr. J. R. Moses hereby, confirm that the below mentioned experts prepared the Draft or Final EIA/EMP for the "Capacity augmentation of existing operational Marine Liquid Terminal from 3 MMTPA to 6 MMTPA at – Kamarajar Port Limited" by M/s. Kamarajar Port Limited and also confirm that I shall be fully accountable for any misleading information mentioned in this statement.

Signature:

Draft EIA Report

Date: 12.07.2025

Name: Dr. J.R Moses

Designation: CEO

Name of the EIA Consultant Organization: M/s. Hubert Enviro Care Systems (p). Ltd., Chennai.

NABET Certificate No & Validity: NABET/EIA/24-27/RA0335 valid upto 31.03.2027

Declaration of Experts contributing to the EIA

I hereby certify that I was involved in the preparation of EIA/EMP for the "Capacity augmentation of existing operational Marine Liquid Terminal from 3 MMTPA to 6 MMTPA at – Kamarajar Port Limited" by M/s. Kamarajar Port Limited as EIA Coordinator with the support of the following Functional Area Experts.

EIA coordinator		
Name:	Mr. Nitin Tiware	
Signature:	- CE POUND	
Date:	12.07.2025	
Period of Involvement:	January 2022 To Till date	

Contact Information:

Hubert Enviro Care Systems (P) Ltd.

A-21, Phase III, Behind Lion Club School,

Thiru-vi-ka Industrial Area, Guindy,

Chennai -600032.

Tamil Nadu, India.

Email: consultancy@hecs.in

Website: www.hecs.in

Functional Area Experts

S. No.	Funct Are		Name of the Expert	Involvement (Period & task)	Signature
1.	WP	FAE	Dr J R Moses	Period: January 2022 – Till date Task: Identification of surface and ground water quality monitoring locations, interpretation of water quality analysis results. Identification and quantification of impacts and proposed suitable control measures and Environmental Management Plan.	mulon
2.	ЕВ	FAE	Dr Rajkumar Samuel	Period: January 2022 – Till date Task: Site visit, collection of baseline data from primary and secondary sources on flora and fauna species, and comparing of field data. Compilation of Ecology and bio diversity data and their impact assessment on the study area, preparation of conservation plan, greenbelt development plan and environmental management plan for biological environment.	Compenier
3.	SE	FAE	Mr Dhivakar	Period: January 2022 – Till date Task: Site visit, and conducted baseline socioeconomic surveys. Collection of secondary data, discussion with stake holders and preparation of socio-economic status of the study area. Review of demographic characteristics, and supervision of baseline data collection. Collection and analysis of perception study carried out for the proposed project.	12. 2m
4.	LU	FAE	Mr Venkateshwarlu Rachala	Period: March – May 2024 Task: Development of land use maps and land use pattern of study area using GIS/related tools, and finalization of land use maps. Performed site visit for ground reality survey, and marking of eco- sensitive areas within the study area as per Topo map and Gazette notifications.	R. Venkateswarle
5.	AP	FAE	Dr J R Moses	Period: January 2022 – Till date Task: Selection of air quality monitoring location, sampling and interpretation of ambient air quality results. Estimation of fugitive emissions, identification and assessing of impacts due to air pollution and suggested suitable mitigation measures.	mulon
6.	AQ	FAE	Dr J R Moses	Period: January 2022 – Till date Task: Collection and developing of micrometeorological data from secondary sources, preparing site-specific wind rose pattern, prediction of dispersion of pollutants and incremental pollution levels with air quality modelling. Identification of impacts and proposed the suitable control measures, development of EMP.	mular

Draft EIA Report

S.	Funct		Name of the	Involvement (Period & task)	Signature
No.	Are	eas	Expert	· · · · · · · · · · · · · · · · · · ·	Signatur C
7.	NV	FAE	Mr Vamsee Krishna Navooru	Period: January 2022 – Till date Task: Identification of noise monitoring locations and measured the ambient noise levels & vibrations generated due to various activities. Verification of Noise and traffic baseline data, and their impact assessment, Prediction of noise in residential/commercial area using noise modelling, identifying the probable impacts due to noise &vibrations and suggested noise pollution control measures along with environmental management plan.	7. 32
8.	SC	FAE	Dr BC Nagaraja	Period: March – May 2024 Task: Identification of soil quality monitoring locations, assessing of soil nutrients/characteristics in the study area, assessing the impacts on soil and proposing the soil management practices during construction and operation phase of project.	Berlip
9.	SHW	FAE	Mr Vamsee Krishna Navooru	Period : January 2022 – Till date Task: Identification and Quantification of municipal solid waste and hazardous waste generated due to the proposed activity. Proposed suitable management methodologies for handling, disposal, treatment and storage of wastes.	7. 43
10.	HG	FAE	Mr PVRS Surendra	Period: January 2022 – Till date Task: Identification of ground water potential in the study area, analysis of surface hydro geological data, its flow rate and direction. Preparation of report with respect to hydro geological condition in and around the study area.	Purssuandra
11.	RH	FAE	Dr J R Moses	Period: January 2022 – Till date Task: Identification of hazards materials, fire accidents within the facility and validation of existing risk assessment & Disaster management plan along with the preparation of risk for the proposed unit with consequence analysis and mitigation measures	mulo

EIA Team Members:

S. N	No	Name	Role	
1.	•	Dr Ramrajan S	TM for EB	
2.	,	Praveenkumaar R	FAA for AP & LU	

H/01/2022/CON/001

Draft EIA Report RP003- R1

3.	Ajeeth Kumar	TM for EB
4.	Sriya G Nath	TM for RH
5.	Dr Ramrajan S	TM for EB

AP - Air pollution monitoring, prevention and control
 AQ - Meteorology, air quality Modelling and prediction
 WP - Water pollution monitoring, prevention and control

LU - Land use

EB - Ecology and bio-diversity

NV - Noise & Vibration SE - Socio-economics

HG - Hydrology, ground water and water conservation

SC - Soil conservation

RH - Risk assessment and Hazard management SHW - Solid and Hazardous waste management

Table of Content

CHAPT	ER 1	23
1 INT	RODUCTION	24
1.1	Purpose of the report	24
1.2	Project Background	25
1.2.1	Infrastructures and details of KPL Port	26
1.2.2	Compliance status of earlier EC's of KPL Port	27
1.3	Identification of the Project	29
1.3.1	Identification of the Project Proponent	29
1.3.2	Advantages of ETTPL	30
1.4	Brief description of Nature, Size and Location of the Project	30
1.4.1	Nature of the project	30
1.4.2	Location	32
1.4.3	Size of the project	32
1.5	Scope of the Study	36
1.6	Structure of the Report	36
1.7	Methodology adopted for the study	38
1.8	ToR Compliance	39
1.8.1	Special ToR compliance – EAC – ToR issued at 06.09.2024	39
1.8.2	Standard ToR compliance – EAC – ToR issued at 22.07.2024	53
СНАРТ	ER 2	124
2 PRO	OJECT DESCRIPTION	125
2.1	Type of Project	125
2.2	Project Background	125
2.2.1	Infrastructures and details	126
2.2.2	Compliance status of earlier EC's	127
2.3	Need for the project	129
2.4	Project Location	129
2.5	Size of the project	129
2.6	Proposed schedule for approval and implementation	129
2.7	Project cost	130
2.8	Existing Environmental Setup	130
2.9	Project Description with Process Details	139

Capacity Aug	gmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001 RP003- R1
2.9.1	Vessel Size Analysis	
2.9.2	LP Vessels calling at Major ports along the East Coast of India	145
2.9.3	Review of Tanker& Product Vessels at Kamarajar Port	146
2.9.4	Parcel sizes	147
2.9.5	Conclusion	148
2.9.6	Traffic forecast	148
2.9.7	Traffic Projected	152
2.9.8	Preliminary design	155
2.9.9	Equipment Available/Required	158
2.10	Mitigation measures	158
2.10.1	Air pollution	158
2.10.2	Noise pollution	159
2.10.3	Solid waste management	159
2.11	Green Belt Details	160
2.12	Resources required for the Project	161
2.12.1	Power and Fuel Requirement	161
2.12.2	Water Requirement	162
2.12.3	Manpower requirement	164
2.13	Wastewater Treatment	165
2.13.1	Sewage and Effluent Treatment	165
2.13.2	Solid Waste Generation and Management	165
2.13.3	Hazardous Waste Generation and Management	166
СНАРТ	ER 3	168
3 DE	SCRIPTION OF ENVIRONMENT	169
3.1	Study Area and Period	169
3.2	Description of Study Area and components	169
3.3	Environmentally/Ecologically Sensitive areas	173
3.4	Physical Conditions of PIA district	180
3.4.1	PIA District Profile	180
3.4.2	Climatic Conditions	180
3.4.3	Natural Resources of PIA District	180

	ation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001
Draft EIA Report 3.4.4	Land Use & Land Cover	RP003- R1
3.4.5	Topography	
3.4.6	Geomorphology of PIA district	193
3.4.7	Geomorphology of the Study Area	
3.4.8	Hydrogeology of PIA district	
3.4.9	Drainage Pattern in PIA district	
3.4.10	Geology	
3.4.11	Seismicity	202
3.4.12	Soils in PIA District	
3.4.13	Natural Hazards in PIA District	204
3.5 Est	tablishment of Baseline for valued environmental components	206
3.5.1	Air Environment	206
3.5.2	Meteorological Conditions	206
3.5.3	Meteorological Data Collection	206
3.5.4	General Meteorological Scenario based on IMD Data	206
3.5.5	Meteorological Scenario during Study Period	207
3.5.6	Atmospheric Inversion	208
3.5.7	Ambient Air Quality	209
3.5.8	Ambient Air Quality Monitoring Stations	209
3.5.9	Ambient Air Quality Monitoring Techniques, Frequency and Methodolo	ogy213
3.5.10	Observations	219
3.6 No	ise Environment -components and methodology	219
3.6.1	Results and Discussions	219
3.6.2	Observations	220
3.7 Wa	ater Environment components and methodology	223
3.7.1	Surface Water Resources	223
3.7.2	Surface Water Quality Assessment	223
3.7.3	Results and Discussions	234
3.7.4	Ground Water Resources	235
3.7.5	Ground Water Quality	238
3.7.6	Results and Discussions	243

Capacity Augmentat	ion of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001
Draft EIA Report		RP003- R1
	as a resource and its quality	
3.8.1	Results and Discussions	247
3.9 Mar	ine Water Quality	248
3.9.1	Marine Biology	253
3.10 BIO	LOGICAL ENVIRONMENT	256
3.10.1	Ecological Environment	256
3.11 Soci	io Economic Profile	273
3.11.1	Socio Economic Aspects	273
3.11.2	Population	275
3.11.3	Population Density and Sex Ratio	275
3.11.4	Scheduled Castes and Scheduled Tribes	275
3.11.5	Education & Literacy	275
3.11.6	Employment and Livelihood	276
3.11.7	Social Economic Profile of the study area	277
3.11.8	Employment and livelihood	279
3.11.9	Infrastructure within study area	285
3.11.10	Dwelling within study area	289
3.11.11	Health Facilities Within the Study Area	289
3.11.12	Summary	289
CHAPTER 4	······	29
4 ANTICI	PATED ENVIRONMENTAL IMPACTS AND MITIGATION	MEASURES 29
project desi	ails of Investigated Environmental Impacts due to project location, project construction, regular operations, final decommissionin projected	g or rehabilitation of a
4.1.1	General	292
4.1.2	Baseline Environmental Status	293
4.2 Env	ironmental Impacts – Construction Phase	293
4.3 Asse	essment of significance of Impacts - by Matrix method	293
4.3.1	Impact Scenarios	294
4.4 Ope	ration Phase	298
4.5 Gro	und Level Concentration Increment	298
4.5.1	Air Environment	298

Capacity Au	gmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001
Draft EIA R		RP003- R1
4.5.2	Meteorological Data	298
4.5.3	AERMOD Process	298
4.6	Conclusion	302
4.6.1	Mitigational Measures During Operational Phase	302
4.6.2	Marine Environment	303
4.6.3	Noise Environment	303
4.6.4	Solid waste management	306
4.6.5	Ecology	307
4.6.6	Socio-Economic Environment	307
4.7	Land-side Activities	307
4.7.1	Loading and Unloading of Products	307
4.7.2	Inland Product Movement	307
4.7.3	Green Belt Development	308
4.7.4	Environmental Monitoring	310
4.7.5	Instituitional Mechanism	310
5 AN	ALYSIS OF ALTERNATIVES	313
5.1	Introduction	313
5.2	Alternative locations	313
5.3	Summary of adverse impact of each alternative	313
CHAPT	ER 6	314
6 EN	VIRONMENTAL MONITORING PROGRAMME	315
6.1	Monitoring plan for effectiveness of mitigation measures	315
6.2	Objectives	315
6.3	Environmental Monitoring Programme	316
CHAPT	ER 7	318
7 AD	DITIONAL STUDIES	319
7.1	Public consultation	319
7.2	Fire Fighting System	319
7.3	Risk Assessment Studies	319
7.4	Emergency Response Plan	320
7.5	Oil Spill Contingency Plan	320
7.6	Social Impact Assessment R&R Action Plans	321

СНАР	TER 8	322
8 PI	ROJECT BENEFITS	32
8.1	Improvements in the physical infrastructure	323
8.2	Improvements in the social infrastructure	323
8.3	Employment potential - skilled, Semi- skilled, Un-skilled	323
8.4	Other Tangible Benefits	
СНАР	TER 9	324
9 EI	NVIRONMENTAL COST BENEFIT ANALYSIS	324
СНАР	TER 10	320
	NVIRONMENTAL MANAGEMENT PLAN (EMP)	
10.1	Description of the administrative aspects of ensuring that mitigative mea	asures are implemented
and t	their effectiveness monitored	327
10.2	Objectives of EMP	327
10.3	Health, Safety and Environmental Protection	327
10.4	EMP roles and responsibilities	328
10.4	.1 Environmental Management Cell (EMC) of ETTPL	328
10.5	EMP for operation phase	328
10.5	.1 Air Quality	328
10.5	.2 Noise environment	329
10.5	.3 Water and wastewater Management	329
10.5	.4 Rainwater Harvesting	330
10.5	.5 Solid and hazardous waste management	330
10.5	.6 Land environment	330
10.5	.7 Ecology	330
10.5	.8 Socio Economic Environment	331
10.6	Fire protection system	331
10.6	.1 Jetty	331
10.6	.2 Pipeline Trestle and Tank Farm	331
10.6	3.3 Storage Terminal	331
10.7	Occupational Health and Safety program	331
10.7	.1 Operational phase	332
10.8	Decommissioning and restoration plan	332
10.9	Occupational Health Monitoring	332
10.9	.1 Medical Surveillance Program:	332

Capacity Au	agmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001	
Draft EIA F	Report	RP003- R1	
10.10	Corporate Environmental Responsibility (CER)	333	
10.11	EMP Budget	334	
СНАРТ	TER 11	•••••	. 336
11 Su	mmary and Conclusion		.337
11.1	About Project proponent	337	
11.2	Advantages of MLT:	337	
11.3	Overall justification for implementation of the project	337	
11.4	Conclusion	341	
СНАРТ	TER 12		. 342
12 Dis	sclosure of Consultant		. 343
12.1	Brief Profile of Hubert Enviro Care Systems (P) Limited (HECS)	343	
12.2	Consultancy Profile	343	

Draft EIA Report

RP003- R1

List of Tables

Table 1-1 Planning augumentation and its throughput capacity	29
Table 1-2 Existing users of the Marine Liquid Terminal	31
Table 1-3 Coordinates of site	35
Table 2-1 The project cost estimated for Enhancement	130
Table 2-2 Salient features of the proposed project	
Table 2-3 Industry near project site	137
Table 2-4 Planning augmentation and its throughput capacity	139
Table 2-5 General range of tanker sizes	143
Table 2-6 International Seaborne Trade (Oil & Gas)	
Table 2-7 Average vessel sizes of new orders for liquid bulk vessels	145
Table 2-8 Age distribution of World Merchant Fleet (Oil Tankers)	
Table 2-9 Bulk Liquid Handling Facilities along the East Coast of India	145
Table 2-10 POL Traffic handled at Major Ports along East Coast	146
Table 2-11 No of Tankers and Product Vessels Called at Ennore	146
Table 2-12 Tankers at Ennore	147
Table 2-13 The projections of considering existing contracts, traffic, etc	152
Table 2-14 List of Products	153
Table 2-15 Summary of Cargo Handling Equipment – Jetty	156
Table 2-16 Power and Fuel Requirement of existing and proposed	161
Table 2-17 Water Requirement	162
Table 2-18 Total water Break up	162
Table 2-19 Manpower of existing and proposed	164
Table 2-20 Sewage and ETP of existing and proposed	
Table 2-21 Solid Waste Generation and Management	165
Table 2-22 Hazardous Waste Generation and Management of existing	166
Table 2-23 Hazardous Waste Generation and Management of existing	167
Table 3-1 Environmentally Sensitive Areas within 15 km from Project Boundary	
Table 3-2 Irrigation source	181
Table 3-3 Land Use & Land Cover	184
Table 3-4 Land Use Pattern of the Study Area	187
Table 3-5 Geomorphology of the Study Area	
Table 3-6 Climatological Summary– Chennai (Minambakkam) (1991-2020)	206
Table 3-7 Meteorological Data for the Study Period (March – May 2024)	207
Table 3-8 Details of Ambient Air Quality Monitoring Locations	
Table 3-9 Analytical Methods for Analysis of Ambient Air Quality Parameters	
Table 3-10 Summary of the average baseline concentrations of pollutants	
Table 3-11 Day and Night Equivalent Noise Levels	220
Table 3-12 Test methods used for the analysis of water quality parameters	223
Table 3-13 Details of Surface water sampling locations	
Table 3-14: Surface water Monitoring Results	
Table 3-15 Details of Groundwater Quality Monitoring Locations	
Table 3-16 Ground Water Monitoring Results	
Table 3-17 Soil & Sediment Quality Monitoring Locations	
Table 3-18 Soil Results	

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001
Draft EIA Report	RP003- R1
Table 3-19 Marine water quality results	248
Table 3-20 Marine Biology results	253
Table 3-21: Checklist of floral diversity in and around the area	
Table 3-22: Birds from the study site	
Table 3-23: Mammals recorded from the Primary Survey in the Study area and their	r Conservation
Status	
Table 3-23: Reptiles & Amphibians recorded from the Primary Survey in the Study	area and their
Conservation Status	
Table 3-25: Occurrence of butterfly species in buffer zone	262
Table 3-26. Conservation plan for five years	264
Table 3-27: Fisherman hamlets and Fisher flock population along the study area	265
Table 3-28: Craft wise catches along the study area (Quantity in Tonnes)	266
Table 3-29: Catch composition (%) of fishes along the study area for the past seven	ı years267
Table 3-30: Revenue generated from marine fisheries along Tamil nadu coast	
Table 3-31 Social Indicators of Tiruvallur District	274
Table 3-32 Education Infrastructures in the Tiruvallur District	276
Table 3-33 Population profile within study area	277
Table 3-34 Classification of workers within study area	280
Table 3-35 Details of Literacy population in the study area	285
Table 3-36 Health facilities available in the study area	289
Table 3-37 Summary of Socioeconomic indicators within the study area	289
Table 4-1 Project and the scope of modifications of exisiting facilities	293
Table 4-2 Overall impact classification	294
Table 4-3 Project scenario without EMP	295
Table 4-4 Project scenario with EMP	296
Table 4-5 Proposed Expansion project Transportations Emission	299
Table 4-6 Estimated Top 10 Highest Concentrations of Particulate Matter PM obtain	ned through
Modeling	300
Table 4-7 Estimated Top 10 Highest Concentrations of oxide of Nitrogen Obtained	through Modeling
	300
Table 4-8 Estimated Top 10 Highest Concentrations of Carbon Monoxide Obtained	
	301
Table 4-9 Total Maximum GLCs from the Transportations Emissions	302
Table 4-10 Existing & proposed vehicular movement per day SH-107(Minjur-Katt	ur–Thirupalaivanam
Road)/SH-104(Chennai-Pulicat Rd)	304
Table 4-11 Traffic Volume after Implementation of the Project	305
Table 4-12 Summary of Mitigation Measures and Impact	306
Table 6-1 Environmental Monitoring Programme – Operation Phase	316
Table 6-2 Environmental Monitoring Programme Budget-Operation Phase	317
Table 7-1 Fire Fighting System of existing and proposed	
Table 10-1 Cost for Environmental Protection Measures	334
Table 11-1 Impact and Migitation measure of Project Site	339

Draft EIA Report RP003- R1

List of Figure

Figure 1-1 ETTPL Tank forms, Pipeline and Jetty Photographs	33
Figure 1-2 Location map of project site	34
Figure 1-3 Coordinates of project site	35
Figure 2-1 Google image of Project site around 1 km	132
Figure 2-2 Google image of Project site around 5 km	133
Figure 2-3 Google image of Project site around 10 km	134
Figure 2-4 CRZ map of project site	135
Figure 2-5 CRZ map 7 km radius of project site	136
Figure 2-6 Proposed Hook up Piping Layout	140
Figure 2-7 layout of Modification of 16 inch ATF Dock line from jetty and common manifold	141
Figure 2-8 layout of Modification of 16 inch ATF Dock line from jetty and common manifold	142
Figure 2-9 Green Belt Development	161
Figure 2-10 Existing Water balance diagram	163
Figure 2-11 After Expansion Water balance diagram	164
Figure 3-1 Map showing the Satellite Image of the study area of Project	171
Figure 3-2 Topo Map of the Study area	172
Figure 3.3 Environmental sensitive areas (1) covering within 15 km from project boundary	178
Figure 3-4 Environmental sensitive areas covering within 15 km from project boundary	179
Figure 3-5 Mineral Map of Tamil Nadu	183
Figure 3-6 Land use pattern of the Thiruvallur District	185
Figure 3-7 Land use map of the Thiruvallur District	186
Figure 3-8 Land Use Pattern of the Study Area	188
Figure 3-9 Land Use Map of the Study Area	189
Figure 3-10 Physical Map of Tamil Nadu	190
Figure 3-11 Contour Map of Study Area	192
Figure 3-12 Geomorphology Map of the Study Area	197
Figure 3-13 Hydrogeology Map of Tiruvallur District	199
Figure 3-14- The drainage map of the Study Area	200
Figure 3-15 Geology Map of India	201
Figure 3-16 Seismicity Map of India	202
Figure 3-17 Soil map of India	204
Figure 3-18 Natural hazard Map of India	205
Figure 3-19 Wind rose during study period (March – May 2024)	208
Figure 3-20 Atmospheric inversion level at the project site	209
Figure 3-21 Map showing the Air monitoring locations	212
Figure 3-22: Trends of Measured Ambient Concentrations in the Study Area	218
Figure 3-23 Map showing the Noise Monitoring locations	222
Figure 3-24: Map showing the surface water monitoring locations	
Figure 3-25 Depth to water level of Tiruvallur District	237
Figure 3-26 Map showing the groundwater monitoring locations	239
Figure 3-27 Map showing the soil monitoring locations	
Figure 3-28 Marine Monitoring Photographs	253
Figure 4-1 Wind rose diagram of Meteorological data considered for Modelling (March 2024 to Ma	ay
2024)	298
Figure 4-2Predicted 24-Hrs GLC's of Particulate matter PM within 10 km Radius of the Study Area	a 299

Capacity Augmentation of Existing Operational Mari	ine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001
Draft EIA Report		RP003- R1
Figure 4-3 Predicted 24-Hrs' GLC's	of NO _x within 10 km Radius of the Study Area	300
Figure 4-4 Predicted 1-Hrs' GLC's of	of CO within 10 km Radius of the Study Area	301
Figure 4-5 Green belt Layout		309
Figure 4-6 Existing Greenbelt Photo	graphs	309

<u>LIST OF ACRONYMS</u>				
°C	DEGREE CELSIUS			
API	AMERICAN PETROLEUM INSTITUTE			
ATF	AUTOMATIC TRANSIMISSION FLUID			
BLQ	BELOW LIMIT OF QUANTIFICATION			
BOD	BIOCHEMICAL OXYGEN DEMAND			
COD	CHEMICAL OXYGEN DEMAND			
СРСВ	CENTRAL POLLUTION CONTROL BOARD			
CRZ	COASTAL REGULATION ZONE			
CZMP	COASTAL ZONE MANAGEMENT PLAN			
DG	DIESEL GENERATOR			
DMP	DISASTER MANAGEMENT PLAN			
DWT	DEAD WEIGHT TONNAGE			
EIA	ENVIRONMENTAL IMPACT ASSESSMENT			
EMS	ENVIRONMENTAL MANAGEMENT STUDIES			
EMP	ENVIRONMENTAL MANAGEMENT PLAN			
ETP	EFFLUENT TREATMENT PLANT			
ETTPL	ENNORE TANK TERMINALS PVT LTD			
GLC	GROUND LEVEL CONCERATION			
IMD	INDIA METEOROLOGICAL DEPARTMENT			
IRS	INSTITUTE OF REMOTE SENSING			
KPL	KAMARAJAR PORT LIMITED			
KLD	KILO LITER PER DAY			
KVA	KILOVOLT AMPERE			
LPG	LIQUIFIED PETROLEUM GAS			
LPA	LITRE PER ANNUM			
LOQ	LIMIT OF QUANTIFICATION			
MLT	MARINE LIQUID TERMINAL			
MTPS	MADRAS THERMAL POWER STATION			
MTPA	MILLIONS TONNES PER ANNUM			
MOEF&CC	MINISTRY OF ENVIRONMENT, FOREST & CLIMATE CHANGE			
MSL	MEAN SEA LEVEL			
NAAQ	NATIONAL AMBIENT AIR QUALITY STANDARDS			
NCTPS	NORTH CHENNAI THERMAL POWER STATION			

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA H/01/2022/CON/001

Draft EIA Report RP003- R1

	NATIONAL ACCREDITATION BOARD FOR TESTING AND CALIBRATION
NABL	LABORATORIES
NR	NO RELAXATION
OISD	OIL INDUSTRY SAFETY DIRECTORATE
POL	PETROLEUM, OIL AND LUBRICANTS
PPM	PARTS PER MILLION
RMC	READY MIX CONCRETE
	QUALITY COUNCIL OF INDIA - NATIONAL ACCREDITATION BOARD FOR
QCI NABET	EDUCATION AND TRAINING
RA	RISK ASSESSMENT
TDS	TOTAL DISSOLVED SOLIDS
TNEB	TAMILNADU ELECTRICITY BOARD

Draft EIA Report RP003- R1

List of Annexure

Annexure 1	Existing Environement Clearance 2006			
Annexure 2	Land document			
Annexure 3	Oil Spill response plan ETTPL			
Annexure 4	Fire Organization chart - Terminal			
Annexure 5	Consent Order – Air			
Annexure 6	Consent Order – Water			
Anneuxre 7	Fire Fighting Overall Layout - Terminal			
Anneuxre 8	Jetty Fire Fighting Layout			
Anneuxre 9	ERDMP -ETTPL			
Anneuxre 10	CRZ Map 1 :4000 scale			
Anneuxre 11	CRZ Map 1 :25000 scale			
Anneuxre 12	CRZ Report			
Anneuxre 13	Hazardous Waste Authorisation Letter			
Anneuxre 14	QRA			
Anneuxre 15	Certified Compliance			
Anneuxre 16	Oil Spill contingency Plan			
Annexure 17	TNSCZMA Recommendation			
Annexure 18	KPL Port Layout			
Annexure 19	Disaster Management Plan			
Annexure 20	Consolidated Biodiversity Management Plan of KPL Port			
Annexure 21	ToR Copy			
Annexure 22	Revised QRA			
Annexure 23	BLEVE Study			
Annexure 24	Cummulative impact Assessment of Pollution Load Carrying Report			

CHAPTER 1 INTRODUCTION

1 INTRODUCTION

1.1 Purpose of the report

The purpose of this report is to get EC and CRZ clearance for "Capacity Augmentation of existing operational Marine Liquid Terminal (MLT) from 3 MMTPA TO 6 MMTPA at Kamarajar Port Limited, Chennai". Kamarajar Port Limited (KPL) has obtained the initial Environmental Clearance (EC) for their projects on 19th May 2006 for their projects which includes construction and operation of Marine Liquid Terminal of capacity 3 MMTPA. Ennore Tank Terminals Pvt Ltd (ETTPL) designed, constructed and operating the said Terminal on a 30 Years BOT basis with KPL. Further, recently customers evinced interest to discharge multiple products from one or more vessels simultaneously to improve overall turn around time of the vessels and also intend to increase the throughput volumes through ETTPL to cater to the increased market demand. To facilitate this, ETTPL is planning to augment its throughput capacity from 3 MMTPA to 6 MMTPA.

The purpose of this EIA study is to study the baseline environmental condition of the area, assess the environmental impact of various E&P operations and to suggest mitigation measures to address the same. ETTPL proposing for the clearance of CRZ to augmenting its throughput capacity from 3 MMTPA to 6 MMTPA.

The main methods proposed to be followed in the capacity augmentation in enhancing the throughput capacity of the MLT from 3 MMTPA to 6 MMTPA based on the detailed feasibility study are furnished below:

- > Sweating of existing assets and facilities to yield additional throughput.
- ➤ In-Line berthing of one Medium Range (MR) and one Lower Range (LR) vessels for simultaneous discharge improving the vessel turnaround time and in turn the throughput capacity.
- ➤ Simultaneous discharge of 2 POL products namely MS and HSD through 2 separate dock lines namely 24" and 16" thereby POL vessel discharge time is reduced by 40%. This is done through pipeline modification at jetty and at common manifold to connect the second pipeline to the outside terminals like BPCL, HPCL & RIL.
- Convincing the Customers to bring larger size vessels with increased parcel size of POL products. This will reduce the idle time such as vessel berthing/un-berthing time, sampling and ullaging time and pre discharge testing time etc., thus effectively reducing the number of vessels of POL, thereby improving the jetty efficiency and throughput capacity.

- Convincing the POL customers like IOCL, BPCL, and HPCL to club their parcels in single larger size vessels whereby the overall non-working time gets reduced improving the efficiency and throughput.
- ➤ Out of the additional throughput of 3 MMTPA proposed in this proposal, 80% will be going to the terminals outside the port boundary (through captive pipelines of IPPL, HPCL,RIL and BPCL).

1.2 Project Background

- ➤ Ministry of Environment & Forests had accorded Environmental clearance for the development of satellite port at Ennore near Madras vide letter No. J16011/9/87-IA.III dated 28.9.1992. After commissioning of the satellite port in June 2001
- ➤ Initially M/s Ennore Port Limited obtained the EC vide letter no.10-28/2005-IA.III dated 19th May, 2006 by the Ministry for Expansion Proposals-development of Terminals for marine liquids, coal, Iron and containers in second phase and associated capital dredging at Ennore Port.
- ➤ Subsequently, Ennore Port obtained modification in EC by the Ministry vide letter dated 10th September, 2007, thereafter, PP obtained the Environmental and CRZ clearance vide letter no 11-21/2009-IA.II dated 23rd July, 2009 for the construction of general Cargo berth at Ennore Port Cargo Terminal project, Ennore, Ponneri Taluk, District Tiruvallur, Tamilnadu, in the name of M/s Ennore Port Terminal.
- Port limited, after change of the name PP has submitted that the Kamarajar Port ltd (formerly known as Ennore Port ltd.) and obtained environmental and CRZ clearance for expansion and modernization of existing handling of Multicargo container terminal at Kamarajar Port, Tamil Nadu by M/s Kamarajar Port Limited (Formerly known as Ennore Port Ltd) subsequently obtained Environmental and CRZ clearance for construction of (CB3 and CB4) at Kamarajar Port, Tamilnadu vide letter dated 1 March, 2015. Subsequently M/s Kamarajar Port Ltd obtained the EC vide letter no F.No.11-51/2012-IA-II dated 30th October, 2018 for development of the facilities envisaged in the Port Master Plan (Phase III) by M/s. Kamarajar Port Limited.
- Further, the Kamarajar Port limited has applied in the Ministry for capacity optimisation of the ECTPL from present 8 MTPA το 9.6 MTPA, the proposal was considered by the Expert Appraisal Committee (EAC) in its 321st meeting during 28th February-1st March, 2023. The MoEF&CC granted Environment and CRZ Clearance under clause 7 (ii) of EIA Notification, 2006 vide letter no. 10-28/2005-IA.III dated 17/07/2023
- ETTPL has obtained Consent to operate vide 2208242865923 dated 22/08/2022 it is valid upto 31.03.2027.

- Kamarjar port has obtained CCR vide F.No.EP/12.1/2017-18/17/TN/1299 dated 26.08.2024.
- As per the obtained ToR vide 10/15/2024-IA.III dated: 06.09.2024 draft EIA report is prepared for Public hearing submission TNPCB, Gummindipoondi, Thiruvallur, for the Capacity Augmentation of Existing Operational Marine Liquid Terminal (MLT) from 3 MMTPA to 6 MMTPA at Kamarajar Port Limited, Chennai the project obtained recommendation from State Coastal Zone management Authority for the CRZ area.

1.2.1 Infrastructures and details of KPL Port

- > Total area of the port is 2787.2 Acres which includes both customs and outside customs boundary
 - ➤ Total manpower is 1500Nos. (KPL=155Nos. + Other BOT operators = 1345 Nos.)
- ➤ Water requirement is Presently drawing 269.46 KLD out of 1000KLD approved by CMWSSB.
- ➤ Power requirement is 650 KVA & 37342514 KWH per year (Including KPL and all other BOT Operators).

Draft EIA Report RP003- R1

1.2.2 Compliance status of earlier EC's of KPL Port

S.No	EC Number	EC name	Total EC Condition	General Condition	Special condition	Complie d	Not Complied	Partially complied	Refer Below	Agree to comply	Pertained to TNPCB
1	EC.No. J- 16011/9/1987- IA.III, dated 28.09.1992	Construction of New Satellite Port at Ennore near Madras.	23	23	0	9	2	3	9	0	0
2	EC.No. 10-28/2005- IA-III dated 19.05.2006, 10.09.2007 & 18.12.2007.	Development of Terminals for marine liquids, coal, iron and containers in the second phase and associated capital dredging at Ennore Port	35	19	16	18	1	2	11	3	0
3	EC. No. 11-21/2009-IA.III dated 23.07.2009.	Construction of General Cargo Berth at Ennore Port cargo terminal project	27	21	6	12	0	1	9	4	1
4	EC.No. 10-28/2005- LA-III dated 24.12.2014.	Expansion and modernization of existing handling Multicargo container terminal at Kamarajar Port	26	20	6	16	0	0	7	3	0
5	EC.No.11-51/2012- IA.III, dated 12.03.2015	Development of additional coal berths (CB3 and CB4) at Kamarajar Port, Tamil Nadu	54	19	35	14	0	1	12	26	1
6	EC.No. 10-28/2005- IA.III dated 09.05.2018 & 10.07.2018	Modification of existing Iron ore terminal on 'as is where is basis to handle common user coal at Kamarajar Port	Present Status of the project: The project was accorded Environmental and CRZ Clearance for modification of the already approved iron ore terminal of 12 MTPA capacities to handle common user coal at Kamarajar Port vide letter date0005.2018. The mod of the terminal was canned out by M/s. SICAL iron Ore Terminal Limned. The unit has Consent for Establishment under Air (Prevention and control of pollution) Act, 1981 and Water (Prevention and control of pollution) Act, 1974, vide order No. 18012102720/2 & 1801110272073, dated 20.07.2018, valid till 31.03.2025. The copy of the clearance is uploaded on the website of the Project Proponent: https://www.ennoreport.gov.in/content/innerpage/environment.php The lender of the project M/s. YES Bank Limited has given notice for event of financial default on the BOT operator to KPL on 07.11.2020: Accordingly, in line with the license agreement, KPL had served "Notice of intent to terminate" to								

H/01/2022/CON/001

Draft EIA Report RP003- R1

S.No	EC Number	EC name	Total EC Condition	General Condition	Special condition	Complie d	Not Complied	Partially complied	Refer Below	Agree to comply	Pertained to TNPCB
							0. Consequent to the EC& CRZ cle				
7	EC.No. 11-51/2012- IA.III dated 30.10.2018	Development of facilities envisaged in the Port Master Plan (Phase-III).	54	19	35	15	0	1	11	26	1
8	EC.No. 11-10/2022- IA.III dated 22.04.2022	Establishment of 1MLD RO Desalination Plant	Present Status of the project: The Ministry had accorded CRZ Clearance for the establishment of 1 MLD desalination plant letter dated 22.04.20 e unit had obtained for Establishment under Air (Prevention and control of pollution) Act, 1981 and Water (Prevention and control of pollution) Act, 1974, vide order No. 2201148160108 & 2201048160108, dated 03.11.2022, valid till 31.03.2026. The clearance details were advertised in English (The Indian Express) and Tamil (Dinamani) Newspapers on 05.05.2022. The copy of the clearance is uploaded on the website of the Project Proponent: https://www.ennoreport.gov.in/content/innerpage/environment.php However the project is yet to commence construction work. Tender work is in progress. Hence, the compliance of the conditions stipulated in the CRZ clearance dated 22.04.2022 does not arise.								
9	EC.No. 10-28/2005- IA-III dated 17.07.2023 &14.11.2023.	Capacity Optimisation of Existing ECTPL Terminal from 8MTPA to 9.6 MTPA at Kamarajar Port Ltd	16	4	12	7	0	1	5	3	0

1.3 Identification of the Project

Kamarajar Port is planning to augment the Capacity Augmentation of existing operational Marine Liquid Terminal (MLT) from 3 MMTPA TO 6 MMTPA at Kamarajar Port Limited operated by ETTPL **Table 1-1** at Tiruvallur District, Tamilnadu. The project falls under **CRZ III, CRZ III(NDZ), CRZ-IV(A)** and the tank farm area falls under Non- CRZ area. The Existing users of the Marine Liquid Terminal is given in the **Table 1-2**

Table 1-1 Planning augumentation and its throughput capacity

S.No.	Details		Remarks			
1	Modification of Common Manifold to facilitate simultaneous discharge to BPCL	Hooking up l	king up lines to 2 x 24" lines of BPCL			
2	Modification of 16" dock line to make it suitable for receipt of motor spirit from vessels	Modifications at jetty, common manifold and at exchange pit				
3	Modification of 8" SS Dock Line for in line	Extension of	8" SS Dock line	e to south side		
	berthing of chemical vessel with POL vessels	of the jetty fo	r in-line berthin	g of 2 vessels		
S.NO	Product Group	Existing Throughput Capacity in MMTPA	Proposed Throughput Capacity in MMTPA	After Expansion Throughput Capacity in MMTPA		
1	LPG (Refrigerated Propane and Butane)	1.20	0.4	1.60		
2	Petroleum, Oil, and Lubricants.(POL)Products	1.45	1.75	3.20		
3	Black Oil	0.20	0.70	0.90		
4	Chemicals and Petro Chemicals	0.15	0.15	0.30		
	Total	3.0	3.0	6.0		

1.3.1 Identification of the Project Proponent

In 2014, the Ennore Port Ltd. was officially renamed as Kamarajar Port Ltd., originally conceived as a satellite port to the Chennai Port, primarily to handle thermal coal to meet the requirement of Tamil Nadu Electricity Board (TNEB), and was endowed with large chunks of land (about 2,000 acres). The scope was expanded taking into consideration of subsequent developments such as the plan of Government of Tamil Nadu to setup an 1,880 MW LNG power project in association with a private consortium, a large

petrochemical park commissioned on 1st February 2001 and a naphtha cracker plant. The port was set up under the Companies Act, keeping it outside the scope of the Tariff Authority for Major Ports, the tariff regulator for 11 of the 12 ports owned by the Indian government. The first phase of the port consisted of two berths for handling coal vessels up to 65,000 DWT, dredging for the approach channel and harbour basin, onshore civil works, navigational aids, and two breakwaters - 4 km in the north side and 1 km in the south—close to the NCTPS (North Chennai Thermal Power Station) and the Ennore Creek. The port subsequently acquired additional 440 hectares of land for future expansions.

Ennore Tank Terminals Pvt. Ltd. is a subsidiary of IMC Limited, the largest independent Bulk Liquid Storage Company in India. IMC is in the business of port-based bulk liquid storage and international trading for the last seven decades.

1.3.2 Advantages of ETTPL

- (1) Kamarajar Port is designed with higher dredged depths of 15 to 18.5 meters and large tankers (150,000 DWT) can be berthed at present. Users thus have the option to import/export in higher parcel sizes and benefit from lower freight costs.
- (2) Kamarajar Port is located on the international shipping route. Kamarajar Port is a major port of call for Products, chemicals and vegetable oil tankers. Hence, Ennore is an ideal port of call for ships from the west and from Singapore, Malaysia, Korea and other far-east countries.
- (3) The terminal is planned for handling and storage of a wide range of liquid bulk including low flash liquids, which makes Ennore an attractive option for users and shipping companies.
- (4) In view of the higher draught, there is potential for Kamarajar Port to be used as a hub port. Large parcels may be imported at Kamarajar Port and then moved to the consumption points either by road, rail or coastal shipping.
- (5) Chennai Port does not have storage facility for handling LPG. Also, there is no storage infrastructure for Class A/B products, which is forcing importers in the hinterland of Chennai to route their import through other ports such as Cochin and Mangalore. Ennore would therefore be an automatic choice for importers and exporters.

1.4 Brief description of Nature, Size and Location of the Project

Existing Built up area as per EC vide letter no 10-28/2005-IA-III dated on 19.05.2006 which is enclosed as **Annexure-1**. This project is about the Capacity Augmentation of existing operational Marine Liquid Terminal (MLT) from 3 MMTPA TO 6 MMTPA at Kamarajar Port Limited, Chennai.

1.4.1 Nature of the project

1.4.1.1 Petroleum products

The demand for marine terminal facilities for petroleum products is expected to increase significantly due to:

• Increasing importance of coastal shipping in petroleum product movement

- Growing POL product traffic at ports in the southern region
- Overlapping product movement of petroleum products
- Demand serviced from refineries outside the region Private sector players like RIL and Nayara Energy expect to rely substantially on coastal movements from their refineries in the western region to service their share of demand in the southern region
- Retail marketing plans of private sector oil companies
- CPCL expansion and capacity constraints at Chennai Port

In view of the advantages, a wide range of vessels ranging from large product tankers to small chemical tankers are expected to call at the MLT.

1.4.1.2 Liquid Petroleum Gas

Traffic in LPG is expected at Ennore in view of the potential demand-supply gap in the immediate hinterland of Kamarajar Port. The requirement of domestic and industrial and auto LPG of entire North Tamilnadu will be catered through the IPPL's LPG storage terminal at Athipattu Pudhunagar and the products will be handled through the ETTPL's MLT.

The demand is likely to grow at 5-8% on annual basis with Pradhan Mantri Ujwala Yojana scheme being implemented across the country for supply and distribution of domestic LPG.

1.4.1.3 Chemicals/other liquids

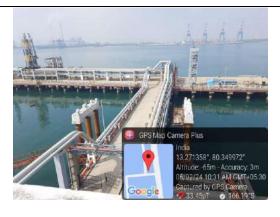
MLT is well placed to service the chemical cluster in and around Chennai, in its immediate hinterland. Manali Industrial Belt is well connected to Ennore for any import of their raw materials and finished goods as Chennai Port Authority will not be in a position to handle hazardous products and also traffic congestion outside the Ports will encourage the importers to prefer Ennore to Chennai.

Table 1-2 Existing users of the Marine Liquid Terminal

S.No	Existing users	Products
1.	Indian Oil Petronas Pvt. Ltd (JV of IOCL & Petronas)	Propane/Butane/LPG
2.	Hindustan Petroleum Corporation Ltd	POL
3.	Bharat Petroleum Corporation Ltd	POL
4.	IOCL	POL
5.	Hi-Tech Carbon – A unit of SKI	Carbon Black Feed Stock

	Carbon India Ltd	
6.	Shell India Marketing Pvt Ltd	POL
7.	Ponpure Logistics	Various chemicals
8.	MRPL	POL
9.	Manali Petrochemicals Ltd	Propylene Oxide
10.	Tamilnadu Petroproducts Ltd	Benzene/LAB
11.	Supreme Petrochem	Styrene Monomer
12.	Reliance Industries Ltd	POL
13.	SKS Logistics Private Limited	Petro Chemicals
14.	KLJ Group of Industries	Petro Chemicals
15.	Jesons Industries Limited	Styrene Monomer
16.	Nayara Energy Limited	POL
17.	Other Customers of Chemicals	AR Stanchem, Kothari Petrochemicals Pvt Ltd., Thirumalai Chemicals Ltd.

1.4.2 Location


Ennore is a suburb in Chennai, India. Ennore is situated on a peninsula and is bounded by the Korttalaiyar River, Ennore creek and the Bay of Bengal. The creek separates Ennore from the Ennore Port and Athipattu Pudunagar. The neighbourhood is served by Ennore railway station. The project site is located near to Coastline of Bay of Bengal and the location map is presented in **Figure 1-2.** The coordinates of the project site is given as **Table 1-3** and **Figure 1-3**. Site photographs are given in **Figure 1-1**.

1.4.3 Size of the project

The ETTPL a subsidiary of IMC Ltd was commissioned in the year 2009 with a total Tankage of 2,56,636 KL with various Petroleum and Chemicals storage and handling, on a Plot of about 33.26 Acres.

Draft EIA Report RP003- R1

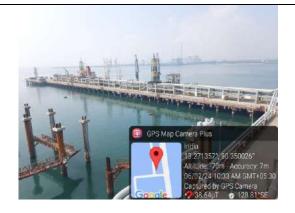


Figure 1-1 ETTPL Tank forms, Pipeline and Jetty Photographs

Draft EIA Report RP003- R1

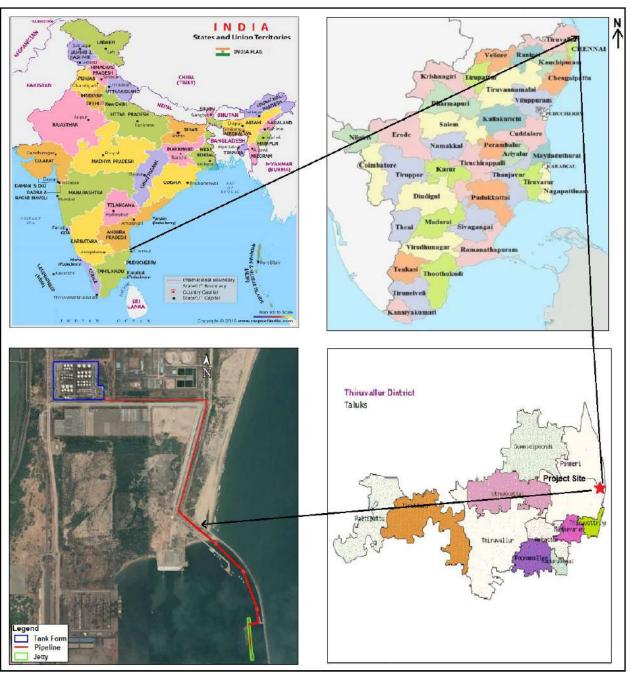


Figure 1-2 Location map of project site

Draft EIA Report

RP003- R1

Figure 1-3 Coordinates of project site

Table 1-3 Coordinates of site

S.No	Latitude	Longitude
1	8°46'35.48"N	78°11'57.15"E
2	8°45'35.64"N	78°12'33.77"E
3	8°45'23.80"N	78°13'3.46"E
4	8°45'20.07"N	78°13'16.52"E
5	8°45'16.93"N	78°13'25.17"E
6	8°44'54.67"N	78°13'44.79"E
7	8°44'59.73"N	78°13'38.88"E
8	8°44'57.53"N	78°13'36.61"E
9	8°41'12.31"N	78°17'49.63"E
10	8°41'6.88"N	78°17'44.76"E
11	8°44'51.09"N	78°13'27.72"E
12	8°44'41.67"N	78°13'37.58"E
13	8°44'21.27"N	78°12'55.55"E
14	8°44'28.95"N	78°12'50.34"E
15	8°44'51.83"N	78°12'5.36"E
16	8°44'58.06"N	78°12'7.21"E
17	8°45'12.97"N	78°11'34.66"E

18	8°45'54.39"N	78°11'52.86"E
19	8°45'44.65"N	78°12'13.85"E
20	8°46'21.45"N	78°11'55.26"E

1.5 Scope of the Study

The study is limited to the established site, covering 10 km radius around this stretch. Thus in the current EIA the Capacity Augmentation of existing operational Marine Liquid Terminal (MLT) from 3 MMTPA TO 6 MMTPA and the surrounding 10 km radius are considered in this impact assessment study.

This EIA is prepared for the EC based on EIA notification 2006 and also for CRZ clearance as per CRZ notification 2011 and its amendments, it mainly consists of baseline study of project site covering 10km radius of the site, anticipated environmental impacts, risk assessment, disaster management plan and the environmental management plan.

The scope of the study has been based on EIA notification 2006, Generic Structure of Environmental Impact Assessment Document. Work mentioned includes an assessment study of and their impact on the region. This study puts forward the most effective ways to protect the environment from increasing pollution caused by the burgeoning industrial development and recommendations for environmental-friendly development initiatives in the region.

This EIA report presents the existing baseline scenario and the assessment and evaluation of the environmental impacts that may rise during the construction and operational phases of the project. This report also highlights the Environmental Monitoring Program of the project and the post project monitoring program.

1.6 Structure of the Report

The EIA report comprises of 12 chapters as under complying of EIA notification 2006 & its amendments.

Chapter 1: Introduction

Introductory information is presented in this Chapter. The introduction chapter provides background of the project, project proponent and describes the objective of this document. The purpose and organization of the report is also presented in this chapter.

Chapter 2: Project Description

This Chapter includes project Description and Facilities in detail.

Chapter 3: Description of the Environment

This Chapter provides baseline environmental status of Environmental Components (Primary data) delineating meteorological details of the project site and surrounding area.

Chapter 4: Anticipated Environmental Impacts & Mitigation Measures

This Chapter presents the analysis of impacts on the environmental and social aspects of the project because of the establishment of the plan and thereby suggesting the mitigation measures.

Chapter 5: Analysis of Alternatives

This chapter includes the justification for the selection of the project site from Environmental point of view as well as from economic point of view so that the technology will be affordable.

Chapter 6: Environmental Monitoring Program

This chapter will include the technical aspects of monitoring the effectiveness of mitigation measures, which will include the measurement methodologies, frequency, location, data analysis, reporting schedules etc.

Chapter 7: Additional Studies

This chapter will go through the public consultation that was requested for the project. During the consultation it will also identify the project's hazards to the public and the surrounding environment, and will offer a Disaster Management Plan, a Social Impact Assessment, and R&R action plans.

Chapter 8: Project Benefits

This chapter deals with the improvement in physical and social infrastructures, employment potential and other tangible benefits.

Chapter 9: Environmental cost Benefit Analysis

Not recommended during scoping stage

Chapter 10: Environmental Management Plan

This is the key Chapter of the report and presents the mitigation plan, covers the institutional and monitoring requirements to implement environmental mitigation measures and to assess their adequacy during project implementation.

Chapter 11: Summary and Conclusion

This chapter summarizes the information given in Chapters in this EIA/EMP report and the conclusion based on the environmental study, impact identification, mitigation measures and the Environmental Management Plan.

Chapter 12: Disclosure of consultant

Disclosure of Consultant Engaged presents the declaration by the EIA consultant organisation as per the NABET requirements

1.7 Methodology adopted for the study

The Environmental Impact Assessment is a management tool to identify, frame and prioritize the environmental issues in such a way so as to work out the mitigation measures to allow the negative impacts to be minimized or to be avoided during actual operation of the established project. To conduct the Environmental Impact Assessment study, it is necessary to plan and execute the study in a scientific manner.

The REIA has been comprehended with detailed Environmental Baseline Monitoring (EBM) and Environmental Management Plan (EMP) for scientific implementation of the existing project for water and wastewater management to have the operations in an environmentally compatible way.

The process followed for this EIA report is composed of the following stages:

- Study of project information.
- Collection of detailed project management plan/report.
- Secondary & Baseline data collection.
- Impact identification, Prediction & Evaluation.
- Mitigation measures & delineation of EMP.
- Risk assessment, safety & disaster management plan.
- Review & finalization of REIA Report.
- Submission of REIA report for implementation of mitigation measures & EMP as well as necessary clearances from relevant Authority.

The distinct features of methodology for the EMP are as follows,

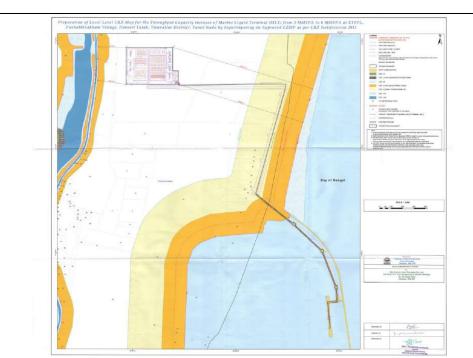
- The existing environmental quality was assessed based on primary and secondary data.
- Potential environmental impacts including potential benefits were identified and assessed.
- An EMP, comprising environmental management strategies was formulated to maintain and enhance the environmental quality around the project site.
- Risk Assessment (RA) to identify the risk involved in the project.
- A scheduled Disaster Management Plan (DMP) to enunciate a sequence of emergency response to preserve life and property which may be threatened in accidental damage of the which may result in fire to environment etc.

Keeping in view the nature of activities envisaged and the various environmental guidelines available, it was decided to cover an area of 10 km radius from the center of the existing project site for the purpose of Environmental Management Studies (EMS).

RP003- R0

1.8 ToR Compliance

S.No	Special ToR Points	Compliance
1.	Submit a copy of layout superimposed on the HTL/LTL map demarcated by an authorized agency on 1:4000 Scales.	Layout superimposed on the HTL/LTL map demarcated by an authorized agency on 1:4000 Scales. Companies of Local Local Cast May from the Description Security Mercard of March 1 (seed Trans) and M
2.	Recommendation of the Tamilnadu CZMA shall be obtained and submitted.	Recommendation from Tamilnadu CZMA is obtained and it is attached as annexure 17 Letter No:8460/EC.3/2023-1 dated 31.12.2023



Draft EIA Report		RP003- R0
		Baylennest, Chaute Change Press (Scala Department, Baylennest, Chaute Change Prom Tent. Suprive Sahu, LA.S., Comment of the Chairman, National Coastal Zone Management Authority, Covernment of India. Process & Climate Change, Agni Wing. & Flore, India Prayawara Bassam, Jor Bagil Road, Aligari, New Delth - 110 003, (ov.s.) Sub: Coastal Regulation Zone - Proposia for the capacity augmentation of casting espectational Marine Liquid Str. Sub: Coastal Regulation Zone - Proposia for the capacity augmentation of casting espectational Marine Liquid Str. Sub: Coastal Regulation Zone - Proposia for the capacity augmentation of casting espectational Marine Liquid Str. Sub: Coastal Regulation Zone - Proposia for the capacity augmentation of casting espectational Marine Liquid Str. Sub: Coastal Regulation Zone - Proposia for the capacity augmentation of casting espectational Marine Liquid Str. Sub: Coastal Regulation Zone - Proposia for the capacity augmentation of casting espectational Marine Liquid Str. Sub: Coastal Regulation Zone - Proposia for the capacity augmentation of casting espectations and Pratrial Marine Str. Sub: Travallar district - Forwarded for Clearance under Coastal Regulation Form Str. Sub: Travallar district - Forwarded for Clearance under Coastal Proposition of Castal Zone Management Authority/Director of Environment and Climate Change letter No.P.J 806 / 2023, distoc. 2021. 12023. i am to enclose a copy of the proposal received from the Member Secretary, Tamil Nada State Coastal Zone Management Authority/Director, Department of Environment and Climate Change tengent Marinetty Director, Department of Environment and Climate Change tengent Authority Proposition (1) from 3 Million Metric Tomes Per Annum MiMTPly to 6 MMTPs at Kenarajae Pert proposaci by M.J. Kanarajae Pert Limited, Chemani of Environment and Climate Change tengent Authority/Director, Department of Environment and Climate Change in pertuelation product in expected to increase againtment and Climate Change in pertuelation product ine
3. Submit superin	mposing of latest CZMP as per the CRZ map	Superimposing of latest CZMP as per CRZ(2011) on the CRZ map

H/01/2022/CON/001

RP003- R0

4. Submit a complete set of documents required as per par 4.2(i) of CRZ Notification, 2011.

A complete set of documents required as per par 4.2(i) of CRZ Notification, 2011 is attached as **Appendix A.** In this Appendix A the below listed documents are attached.

List of documents

- 1. CRZ Form I
- 2. Rapid EIA
- 3.CRZ Map 1:4000 Scale
- 4. CRZ Map 7km Radius
- 5. CRZ Report

RP003- R0

		6. NOC from State Board
		7.SCZMA Recommendation
		8. EMP
5.	Location of the dredge material, if any will be disposed	Not Applicable, since the proposed augumentation project does not involve any dredging
	shall be indicate in the KML file and the layout maps	activities
	overly on the approved CZMP map shall be submitted	
	and site suitability study shall be conducted.	
6.	Total load carrying capacity of the port and complete	Draft BLEVE Report has been attached as Annexure 23.
	environmental impact assessment study including	
	Boiling Liquid Vapour Explosion (BLEVE) for	
	petroleum product to be undertaken.	
7.	Hydrodynamics study on impact of dredging on flow	Not Applicable, since the proposed augumentation project does not involve any dredging
	characteristics shall be carried out.	activities
8.	A Cumulative impact assessment on pollution load	
0.	shall be carried out by taking into consideration of all	
	activities and capacities of the existing projects,	A Cumulative impact assessment on pollution load report has been attached as Annexure
		24.
	loading/unloading operation at both jetties. A suitable	
	material handling system to be designed to minimize	
	pollution.	
9.	A detailed study on the impact of proposed activity on	Detailed marine ecology has been NABL &MoEF&CC recognised Laboratory conducted
	marine ecology and marine biodiversity with specific	and the result is mentioned in the section 3.9.1
	focus on the corals, mangroves and mud flats in the	

proximity of the site should be conducted and required mitigation plan be submitted by a nationally reputed institute. Details of marine biodiversity of the port region has been conducted by NABL & MoEF&CC recognised Laboratory and it is authorised by Tamil Nadu Biodiversity Board. It is attached **Annexure 20.**

Coral Reefs

As per the report coral reefs are not observed in the study area.

Mangroves:

Mangroves are observed in the backwater areasin the habitats of reduced fresh water and sea water Exchange and with high salinities. Due to this project no Mangroves will be affected.

Impact on marine Environment due to this proposed project

The major impact on marine water during the operation of the facility will be due to the spillage of material in land and sea. During the operational phase of the project, frequency of incoming and outgoing ships will increase and hence the chances of spillages and leakages of oil into the sea qill be more. This will affect the sea water quality and appropriate care must be taken to ensure that discharges are made to appropriate drainage lines etc. which lead to appropriate treatment facilities. Oily wastes from machinery, spillages and leakages of oil from incoming and outgoing ships into the sea will affect the water quality. This water will have a chance to either drain into the water body, or will seep through the land and contaminate the ground water. This will have floating material on the water surrounding the port. The discharge of bilge water and/or ballast water from the ship may also cause negative impacts on the marine

water.

The leaks, accidental release of the materials during the transport of the materials through the pipelines may cause serious soil contamination and will seep through the land and affect the ground water quality. As the area is a reclaimed land and the available groundwater will be affected by the salt intrusion and sea water incursion, it cannot be used for drinking without treatment. However contaminating the available groundwater /marine water with oil or any other materials shall be taken as very serious and all the possible measures to be taken to avoid any kind of spillage of materials during the operations like ship to ship transfer, shift to shore transfer, shore to shore transfer and vice versa.

Mitigation Measure of Marine Environment

To mitigate the impacts due to marine water pollution, the following measures would be adopted:

- All the operational areas will be connected with a network of liquid waste collection corridor comprising of storm water, oily wastes, and sewage collection pipelines.
- Oily wastes which are generated from the operational areas would be collected in the effluent network and further treated at the treatment plant.
- Vessels calling at the Terminal would not be permitted to dump the wastes / bilge water during the berthing period.
- Required pollution control facilities for treatment of waste water, solid waste management, etc. will be setup for the terminal.
- Measures would be taken to contain, control and recover the accidental spills of fuel, oil and other product handled.

		ETTPL and KPL has prepared Oil Spill Contingency Plan and is attached as Annexure 16.						
10.	The type of Cargoes proposed to be handled at the port shall be submitted product wise and quantity wise.	The type of Cargoes proposed to be handled at the port with product and its quantity ig given in below table:						
		S. No	Details of EC/CTE/CTO	Description of the cargo	Capacity in Million Tons Per Annum	Present operating consent capacity		
		Terminals under operation/Consent To Operate obtained:						
		1	Coal Berths 1 & 2	Port facility for handling coal for TANGEDCO	16	16		
		2	General Cargo Berth	Port facility for handling Automobiles & RoRo	2lakhs cars/year and project cargo & finished cargo of 0.5 Million Tons/year (Total 3MTPA)	2lakhs cars/year and project cargo & finished cargo of 0.5 Million Tons/year (Total 3MTPA)		
		3	Ennore Coal Terminal Pvt. Ltd., (Common user coal)	Port facility for handling coal for common users	9.6	9.6		
		4	Marine Liquid Terminal	Handling and storage of marine liquids, POL and LPG	3.0	3.0		
		5	Adani Ennore Container Terminal	Port facility to handle	16.8	11.68		

H/01/2022/CON/001

	Pvt. Ltd.,	containers		
6	Ennore Bulk	Multi cargo container		
	Terminal Pvt. Ltd.,	terminal for handling cargoes like granite, timber logs, grains, bagged cargoes including sugar, cobble stone, steel cargoes, project cargo	2.0	2.0
7	Indian Oil LNG terminal	Terminal for transfer of Regasified Liquefied Natural Gas (R-LNG) through Common Corridor from LNG terminal	5.0	5.0
8	Automobile Export/Import Terminal-II	Port facility for handling Automobiles	3.0	3.0
		Total	55.40	50.28
Teri	minals under impleme	entation/Consent To Establish	(CTE) obtained:	
7	Coal Berths 3 & 4	Port facility for handling coal (TANGEDCO)	18	18
9	IOCL captive Jetty	Jetty facility for handling of POL & LPG products	5	5
10	Conversion of Iron Ore Terminal into common user coal	Coal handling - unloading, transfer, storage and loading of Coal)	12	12

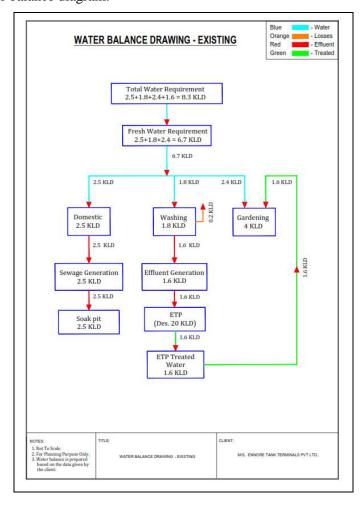
			terminal					
			Т	Total	3:	5		35
			minals yet to under nined):	rtake/implement/Consent To	Establish	yet to	obtain	(but EC
		11	Automobile Export/Import Terminal-III	Port facility for handling Auto	omobiles	3	-	
		12	Container Terminals-3nos of 1000m quay length	Port facility to handle conta	ainers	24	-	
		13	Marine Liquid Terminal-II	Handling and storage of m liquids, POL and LPC		5	-	
		14	Bulk Terminal- 2berths	Port facility to handle coal/or bulk cargo)	re/other	18	-	
		15	Multi Cargo Berth	Port facility to handle bulk & bulk cargoes	k break	2	-	
					Total	52	-	
11.	The impact study on the hazardous materials handling	Detai	led impact study on	hazardous materials handling	and stora	ige in wo	rst case	scenario
	and storage in worst case scenario shall be submitted	as be	en prepared and attac	ched as Annexure 22.				
	along with the EIA/EMP report.							
12.	Public hearing shall be conducted as per laid down	The Public Hearing will be conducted in accordance with the provisions of Environmental						
	procedure and all the commitments made by the PP	Impact Assessment Notification, 2006 and the issues raised by the public will be addressed						
	during PH and action required to be taken along with budgetary provisions shall be reflected in the EMP.	with	budgetary allocation	s along with the action plan				

Water Requirement:

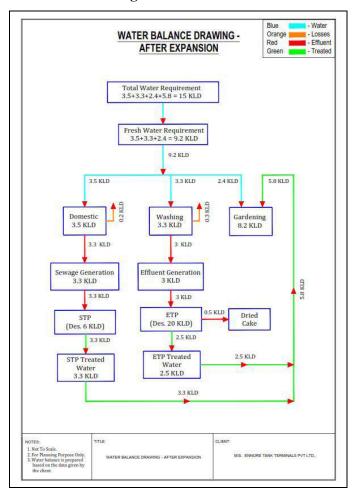
Qty (KLD) Water S.No After Requirement **Proposed Existing Expansion** Fresh water 6.7 2.5 9.2 1 Requirement 2 Recycled Water 4.2 5.8 1.6 **Total Water** 8.3 15 **6.7** Requirement

Total water Break up:

Water **Existing water Proposed water After Expansion** Requirement Requirement(KLD) Requirement(KLD) water Requirement(KLD) Fresh Recycled Fresh Recycled **Fresh** Recycled water water water water water water 2.5 3.5 0 0 0 Domestic 0 0 3.3 Washing 1.8 1.5 0 Gardening 2.4 1.6 0 4.2 2.4 5.8 4.2 9.2 **Total 6.7** 1.6 2.5 5.8


For Fire fighting, sea water is being used and the same will be continued after expansion.

Requirement of water, power, with source of supply of approval, water balance diagram, man power requirement (regular and contract).


Source of water: Out sourced through water tankers.

Existing Water balance diagram:

After Expansion Water balance diagram:

Man power requirement (regular and contract).

H/01/2022/CON/001

RP003- R0

			Details	Existing		Proposed	After Expans	ion
			Manpower	Permanent	65	10	75	
				Temporary	13	15	28	
			Т	otal	78	25	103	
		Power Requi		F-2-42			Duonosod	A \$4
		Details		Existing			Proposed	After Expansion
		Power Requirem	nent ML DG Terr KV KV ML ee: TNEB	T: 1 No of – 180	- 500 - 250 O KV	Existi b	dditional Power is required ng quantity will e sufficient	Terminal – 11KV(HT) MLT – 440 Volt (LT) DG SET: Terminal: 2 No of – 500 KVA and 1 No of – 250 KVA MLT: 1 No of – 180 KVA
14.	Disaster management plan for the project shall be prepared and submitted.	The ERDMP	is prepared a	and it is attache	ed as	Annexure 9	•	
15.	Risk analysis and its management plan for handling different types of liquid cargos(if handling) shall be	The QRA is prepared for handling of liquid cargo and the same is attached as Annexure 1 and Revised QRA has been attached as Annexure 22 .				d as Annexure 14		

RP003- R0

	conducted and submitted.	
16.	Detailed modelling studies to understand whether the selected site can withstand severe cyclones and develop design in accordance to due safety measures.	The project is only capacity Augmentation there will be no new construction is proposed. However,KPL port is having an existing Disaster Management plan which will be continued after capacity augmentation. Cyclone and disaster warning systems are well established in coordination with Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, and Department of Disaster Management. The ships berthed on the berth have to be taken offshore immediately on receiving the warning. The port has established an appropriate warning system in coordination with INCOIS and the Department of Disaster Management. Port is having Robust Disaster management plan which includes Emergency Response Action Plan to tackle natural as well as man made contingencies where in procedures and action plan has been elaborated.
17	Dataile and status of court case needing assinct the	Disaster Management Plan is attached as Annexure 19 No. Litization on account associate the managed project.
17.	Details and status of court case pending against the project the project, if any, shall be submitted.	No Litigation or court case is pending against the proposed project.
18.	A tabular chart with index for point-wise compliance of above ToRs. The specific ToRs as recommended above are in addition to all the relevant information as per the Generic Structure of EIA given in Appendix III and IIIA in the EIA Notification, 2006.	Noted Point-wise ToR Compliance is provided in Chapter 1, Section 1.7
19.	As per the Ministry's Office Memorandum F.No.22-	Will be complied after Public hearing

	65/2017-IA.III dated 30th September, 2020, the project	
	proponent, based on the commitments made during the	
	public hearing, shall include all the activities required	
	to be taken to fulfil these commitments in the	
	Environment Management Plan along with cost	
	estimates of these activities, in addition to the activities	
	proposed as per recommendations of EIA Studies and	
	the same shall be submitted to the ministry as part of	
	the EIA Report. The EMP shall be implemented at the	
	project cost or any other funding source available with	
	the project proponent.	
20.	In pursuance of Ministry's OM No stated above the	Will be complied in after Public hearing
	project proponent shall add one annexure in the EIA	
	Report indicating all the commitments made by the PP	
	to the public during public hearing are fulfilled and	
	submit it to the Ministry and the EAC.	

1.8.2 Standard ToR compliance – EAC – ToR issued at 22.07.2024

Sr.N o.	Terms o	Compliance	
		Project details	
1.	Reasons for selecting the site with details of	The proposed project site of Capacity Augmentation	n of existing operational Marine Liquid Terminal
	alternate sites examined/rejected/selected on	(MLT) from 3 MMTPA TO 6 MMTPA is the	Augmentation project in the existing land of
	merit with the comparative statement and	Kamarajar Port Limited.	

H/01/2022/CON/001

	reason/basis for selection.	
2.	The examination should justify site suitability	So, we will not consider the alternative site for this project.
	in terms of environmental angle, resources	
	sustainability associated with selected site as	
	compared to rejected sites.	
3.	The analysis should include parameters	
	considered along with weightage criteria for	
	short-listing selected site.	
4.	Submit the status of shoreline changes at the	There are no major changes in shoreline activity due to the project site.
	project site	As per the NCCR Report (2018), it is depicted as the low accretion region.

H/01/2022/CON/001

Draft EIA Report RP003- R0

5. A detailed EIA/EMP report should be prepared in accordance with the above TOR and should submitted to the Ministry in accordance with Notification.

The detailed EIA/EMP report is prepared in accordance with ToR and it will be submitted to the Ministry in accordance with Notification.

6.

Draft EIA Report

Cost of the project :

The cost of the project (capital cost and recurring cost) as well as the cost towards implementation of EMP should be clearly spelt out

S.No	Details	Qty	Amount (INR, In Lakhs)	Remarks
1	Modification of Common Manifold to facilitate simultaneous discharge to BPCL	1	104.00	Hooking up lines to 2 x 24" lines of BPCL
2	Modification of 16" dock line to make it suitable for receipt of motor spirit from vessels	1	52.00	Modifications at jetty, common manifold and at exchange pit
3	Modification of 8" SS Dock Line for in line berthing of chemical vessel with POL vessels	1	8.00	Extension of 8" SS Dock line to south side of the jetty for in-line berthing of 2 vesssels
	Total		164.00	

Cost of EMP:

Draft EIA Report	RP003- R0
------------------	-----------

		S. No	Component	Capital cost Rs.(lakh) (2024-25)	Recurring cost Rs.(lakhs) per Annum (2024-25)
		1	Hazardous waste Management	0	15
		2	Greenbelt Development	20.84	2.5
		3	Environmental monitoring	0	2.5
		4	STP of 6 KLD	15	1.5
		5	ETP of 20 KLD with UF and UV	0	4
		6	Total	35.84	25.5
7.		S.no	Impacts	Mitigation I	Measures
	Any further clarification on carrying out the above studies including anticipated impacts due to the project and mitigative measure, project proponent can refer model ToR available.	1	The major air pollution source of DG set which emits flue gases containing Suspended Particular Matters, Oxides of Sulphur and Nitrogen that may affect the grollevel concentrations.	stacks of ade disperse the containing S ound Matters, Oxi	has been provided with equate height so as to emanating flue gases uspended Particulate des of Sulphur and shout affecting the ground trations.
		2	Combustion process such as die engines	generators to combustion,	of diesel power of achieve efficient fuel efficiency and luce emissions

H/01/2022/CON/001

	3	Air borne particulates from soil disturbance during expansion and from vehicle traffic such as trucks and trailers	Adequate sprinkling of water on soil surface will be carried out. Vehicle, equipment and machinery used for men and material transfers.					
	4	Impact due to presence of VOC in the atmosphere	On-line VOC monitoring system has been installed and the same is connected to care air center of TNPCB for real time monitoring of VOC data.					
	5	Noise pollution due to operation of machineries & equipment; Vehicular traffic; Operation of DG sets and machineries	Well maintained equipment and vehicles will be used; All DG sets would be provided with acoustic enclosures; and Appropriate PPEs (e.g. ear plugs) will be used for by workers while working near high noise generating equipment.					
	6	Land use change may lead to impact on income and livelihood	Degraded land will be selected on long term lease and reinstate the land after project activity. Immediate restoration of land for pipeline and brought to its best achievable original state after completion of the buried pipeline laying activity.					
Land use , Land Acquisition and R&R								

Details of the land use break-up for the proposed project. Details of land use around 10 km radius of the project site.

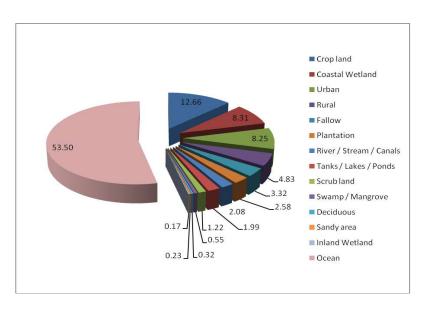
Details of the land use break-up for the proposed project

The land of about 33.26 Acres allotted initially by EPL is fully utilized for the development of Tank Farm, Administrative office building, TLF, internal roads, development of greeneries etc.,

S. No.	Land use & land cover Sq.Mtrs	Area (ha)	0/0	Remarks if any
Tank farm area	56958.7928	5.69587928	42.3170823	
TLF area	2645.98	0.26459781	1.9658084	
Utilities & others	3649.46285	0.364946285	2.71133941	
Admin block	1129.5476	0.11295476	0.83918841	
Greeneries area	1617.2609	0.16172609	1.20153113	
Internal roads & empty area	68598.95775	6.859895775	50.9650503	
Total area	134600	13.46	100	
Total area in acre	33.26 Acre			

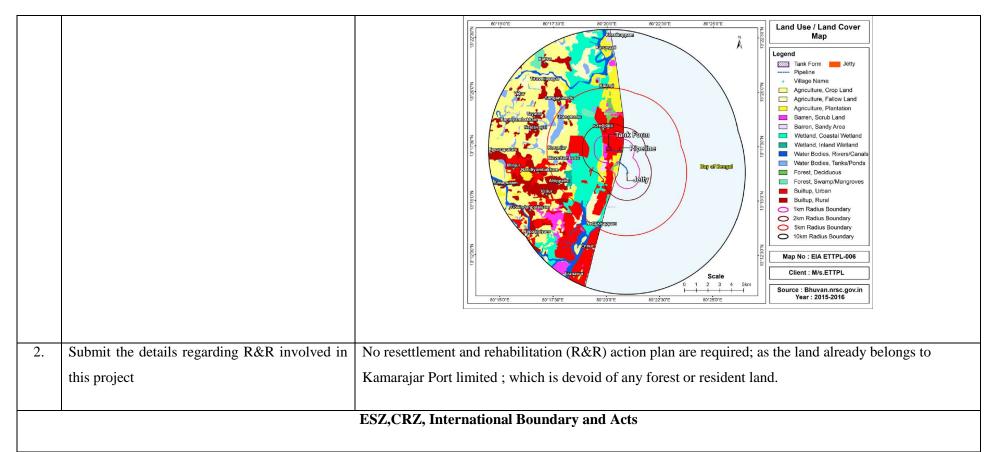
Details of land use around 10 km radius of the project site.

S.No.	Description	Area	Area	Area	Area
		(Sq.Km)	(Acres)	(Hectares)	(%)
1	Crop land	48.95	12095.79	4895	12.66
2	Coastal	32.12	7937.01	3212	8.31
3	Urban	31.89	7880.18	3189	8.25
4.	Rural	18.68	4615.92	1868	4.83
5	Fallow	12.84	3172.83	1284	3.32
6	Plantation	9.97	2463.64	997	2.58
7	River / Stream	8.05	1989.20	805	2.08
8	Tanks / Lakes	7.69	1900.24	769	1.99
9	Scrub land	4.70	1161.39	470	1.22



H/01/2022/CON/001

Draft EIA Report RP003- R0


10	Swamp /	2.13	526.33	213	0.55
11	Deciduous	1.23	303.94	123	0.32
12	Sandy area	0.89	219.92	89	0.23
13	Inland	0.66	163.09	66	0.17
14	Ocean	206.86	51116.14	20686	53.50
	Total	386.66	95545.62	38666	100.00

Land Use/Land Cover statistics of 10 km radius of the Study Area

H/01/2022/CON/001

1. Examine and submit detail of land use around 10 km radius of the project site and map of the project area and 10 km area from boundary of the proposed/existing project area, delineating

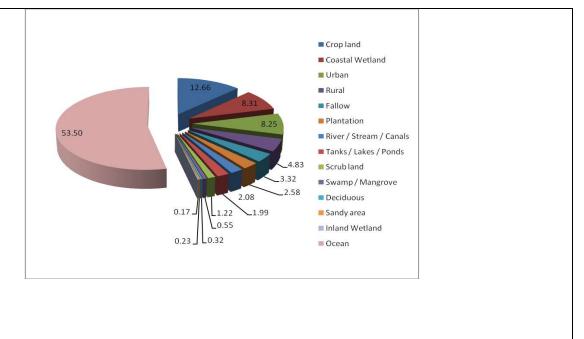
Project areas notified under the

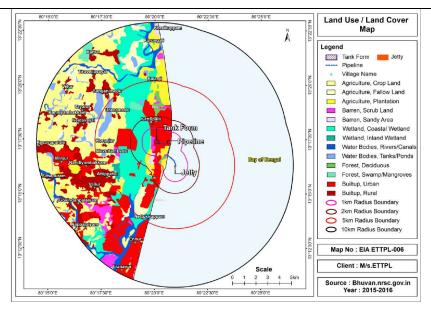
Project areas notified under the wild life (Protection) Act, 1972/critically polluted areas as identified by the CPCB from time to time/notified eco-sensitive areas/interstate boundaries and international boundaries.

Land use around 10 km radius of the project site and map of the project area and 10 km area from boundary of the proposed/existing project area

Details of land use around 10 km radius of the project site.

S.No.	Description	Area	Area	Area	Area
		(Sq.Km)	(Acres)	(Hectares)	(%)
1	Crop land	48.95	12095.79	4895	12.66
2	Coastal	32.12	7937.01	3212	8.31
3	Urban	31.89	7880.18	3189	8.25
4.	Rural	18.68	4615.92	1868	4.83
5	Fallow	12.84	3172.83	1284	3.32
6	Plantation	9.97	2463.64	997	2.58
7	River / Stream	8.05	1989.20	805	2.08
8	Tanks / Lakes	7.69	1900.24	769	1.99
9	Scrub land	4.70	1161.39	470	1.22
10	Swamp /	2.13	526.33	213	0.55
11	Deciduous	1.23	303.94	123	0.32
12	Sandy area	0.89	219.92	89	0.23
13	Inland	0.66	163.09	66	0.17
14 Ocean		206.86	51116.14	20686	53.50
	Total	386.66	95545.62	38666	100.00


Land Use/Land Cover statistics of 10 km radius of the Study Area


Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

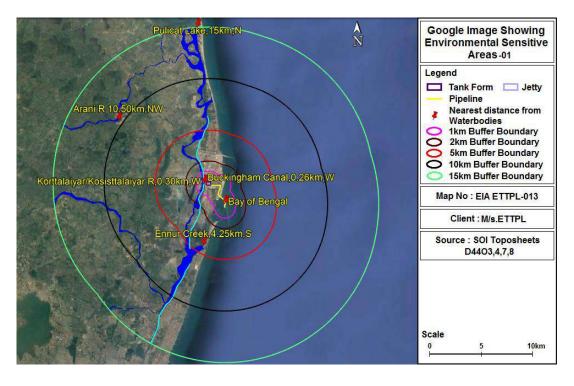
Draft EIA Report

RP003- R0

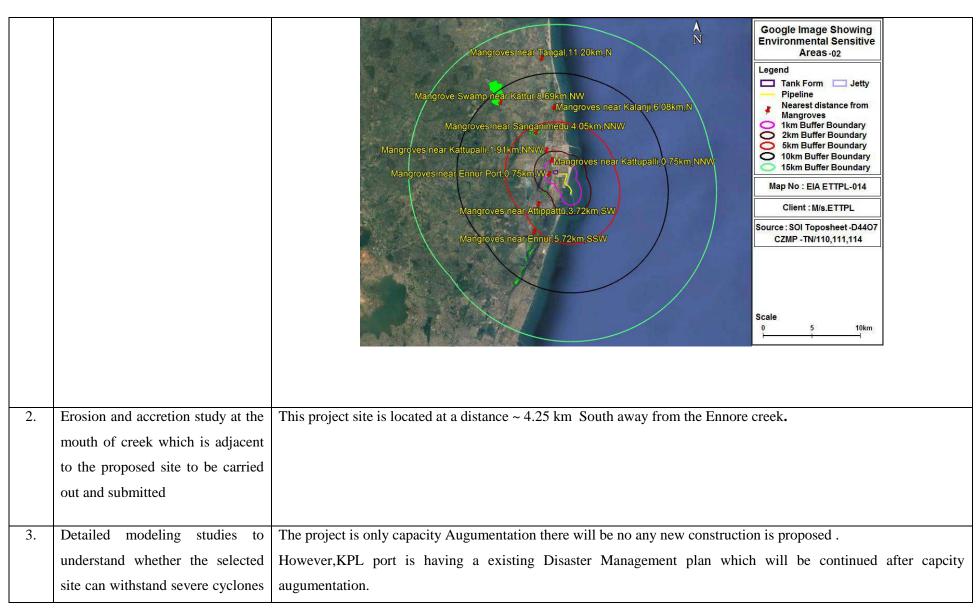
Project areas notified under the wild life (Protection) Act, 1972/critically polluted areas as identified by the CPCB from time to time/notified eco-sensitive areas/interstate boundaries and international boundaries

Areas	Distance &	Distance & Direction from project boo			
List of Reserve forest /	I	Nil within 15 km	radius		
National Park					
List of Water Bodies		Water bodies			
	Description	Distance(km)	Direction		
	Bay of Bengal	Site is within	n Bay of		
	Bay of Bengai	Benga	al		
	Buckingham Canal	0.26	W		
	Korttalaiyar/Kosisttalaiyar	0.30	W		

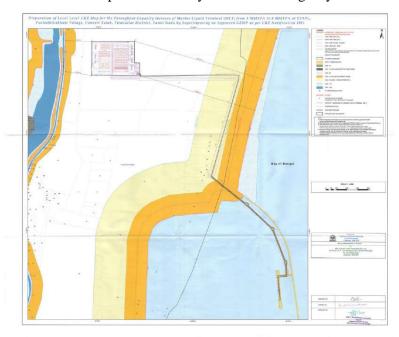
	River					
	Ennur Creek		4.25	S		
	Arani River/Araniy	a Nadi	10.50	NW		
	Pulicat Lake		15	N		
	Lake near Uranar	nedu	3.97	WNW		
	Tiruvellavayal L	ake	4.68	WNW		
	Perumbedu Lai	ke	12.34	NW		
	Lake near Nay	ar	13.90	W		
Nearest Highways	Description		Dist. (~km)	D	ire.	
	SH-107(Minjur–K	attur–				
	Thirupalaivanam Ro	ad)/SH-	6.58	W	NW	
	104(Chennai-Pulic	at Rd)				
	NH-16(Chennai-Ko	olkata)	18.81	W	'SW	
Defence installations		'		•		
		Nil w	ithin 15 km ra	ndius		
Nearest Villages	Description	Distance(km) Directi	on Po	pulations	
	Kattupalli	13.9	N	1,9	911	
		2.10				
	Sepakkam	3.19	W	20	00	
	Uranamedu	3.45	NW	70	00	
	Movuttambedu	3.58	W	40	00	
	Defence installations	Ennur Creek Arani River/Araniy Pulicat Lake Lake near Uranar Tiruvellavayal L Perumbedu Lai Lake near Nay Nearest Highways Nearest Highways Description SH-107(Minjur–K Thirupalaivanam Ro 104(Chennai-Pulic NH-16(Chennai-Ko Defence installations Nearest Villages Description Kattupalli Sepakkam Uranamedu	Ennur Creek Arani River/Araniya Nadi Pulicat Lake Lake near Uranamedu Tiruvellavayal Lake Perumbedu Lake Lake near Nayar Nearest Highways Description SH-107(Minjur-Kattur-Thirupalaivanam Road)/SH-104(Chennai-Pulicat Rd) NH-16(Chennai-Kolkata) Defence installations Nil w Nearest Villages Description Distance(Kattupalli 13.9 Sepakkam 3.19 Uranamedu 3.45	Ennur Creek 4.25 Arani River/Araniya Nadi 10.50 Pulicat Lake 15 Lake near Uranamedu 3.97 Tiruvellavayal Lake 4.68 Perumbedu Lake 12.34 Lake near Nayar 13.90 Nearest Highways Description Dist. (~km) SH-107(Minjur–Kattur– Thirupalaivanam Road)/SH- 104(Chennai-Pulicat Rd) NH-16(Chennai-Kolkata) 18.81 Defence installations Nil within 15 km ra Nearest Villages Description Distance(km) Direction Kattupalli 13.9 N Sepakkam 3.19 W Uranamedu 3.45 NW	Ennur Creek	Ennur Creek



H/01/2022/CON/001


		Koranjur	4.06	W	200	
				1	I	
		Description	Distan	ce(km)	Direction	
		Mangroves near Kattup	alli 0.75		NNW	
		Mangroves near Ennur	Port 0.75		W	
	Nearest Mangroves	Mangroves near Kattup	alli 1.91		NNW	7
		Mangroves near Attippa	attu 3.72		SW	1
		Mangroves near Sangar	nimedu 4.05		NNW	1
		Mangroves near Ennur	5.72		SSW	
	Areas susceptible to	Earthquakes:	l	L		
	natural hazard which	7771 G. 1 C.11 '	Ш /М	1 . D	D' 1 7	1.
	could cause the project	The Study area falls i	·		•	
	to present environmental	Earthquake Hazard Map	•			
	problems, (earthquakes,	vertical directions respec	tively is adopted	i while des	signing the structu	ires.
	subsidence, landslides,	Tsunami & Tidal waves	:			
	erosion or extreme or	1.75				
	adverse climatic	1. Evacuation vehicles w	ill be provided.			
	conditions)	2. Disaster Management	training will be	provided fo	or the operation to	eam.
	Critically polluted area	Nil within 10km radius (KPL port is loc	cated ~10.4	41 km away from	crtically polluted
		area) (CPA- Manali as pe	er CPCB)			
		NT 11 10 1				
	Inter state Boundary	Nil within 10km radius				

Environmental Sensitivity map around 10 km radius


and develop design in accordance to due safety measures.

Cyclone and disasters warning systems are well established in coordination with Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, and Department of Disaster Management. The ships berthed on the berth have to be taken offshore immediately on receiving the warning. The port has established appropriate warning system in coordination with INCOIS and Department of Disaster Management. Port is having Robust Disaster management plan which includes Emergency Response Action Plan to tackle natural as well as man made contingencies where in procedures and action plan has been elaborated.

Disaster Management Plan is attached as Annexure 18.

4. Submit superimposing of latest CZMA as per CRZ Notification (2011) on the CRZ map. And also submit a copy of layoutsuperimposed on the HTL/LTL map demarcated by an authorized agency on 1:4000 scales.

Layout superimposed on the HTL/LTL map demarcated by an authorized agency on 1:4000 Scales.

Submit complete set of documents	A complete set of documents required as per par 4.2(i) of CRZ Notification, 2011 is attached Appendix A and will
required as per para 4.2 of CRZ	be submitted.
Notification, 2011	List of documents
	1. CRZ Form – I
	2. Rapid EIA
	3.CRZ Map 1:4000 Scale
	4. CRZ Map 7km Radius
	5. CRZ Report
	6. NOC from State Board
	7.SCZMA Recommendation
	8. EMP
Hydrodynamics study on impact	Not Applicable, since this augumentation project does not involve any dredging activities
of dredging on flow characteristic	
shall be carried out.	
A detailed study of impact of	Detailed marine ecology has been NABL &MoEF&CC recognised Laboratory conducted and the result is
proposed activity on marine	mentioned in the section 3.9.1
ecology and marine biodiversity	Details of marine biodiversity of the port region has been conducted by NABL & MoEF&CC recognised
with specific focus on the corals,	Laboratory and it is authorised by Tamil Nadu Biodiversity Board. It is attached Annexure 20.
mangroves and Mud flats in the	Laboratory and it is authorised by Tahini Nadu Biodiversity Board. It is attached Amiexure 20.
proximity of the site should be	Coral Reefs
conducted and required mitigation	As a suite many and so sell most construction that the students are
plan be submitted	As per the report coral reefs are not observed in the study area.
	required as per para 4.2 of CRZ Notification, 2011 Hydrodynamics study on impact of dredging on flow characteristic shall be carried out. A detailed study of impact of proposed activity on marine ecology and marine biodiversity with specific focus on the corals, mangroves and Mud flats in the proximity of the site should be conducted and required mitigation

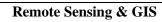
Mangroves:

Mangroves are observed in the backwater areasin the habitats of reduced fresh water and sea water Exchange and with high salinities. Due to this project no Mangroves will be affected.

Impact on marine Environment due to this proposed project

The major impact on marine water during the operation of the facility will be due to the spillage of material in land and sea. During the operational phase of the project, frequency of incoming and outgoing ships will increase and hence the chances of spillages and leakages of oil into the sea qill be more. This will affect the sea water quality and appropriate care must be taken to ensure that discharges are made to appropriate drainage lines etc. which lead to appropriate treatment facilities. Oily wastes from machinery, spillages and leakages of oil from incoming and outgoing ships into the sea will affect the water quality. This water will have a chance to either drain into the water body, or will seep through the land and contaminate the ground water. This will have floating material on the water surrounding the port. The discharge of bilge water and/or ballast water from the ship may also cause negative impacts on the marine water.

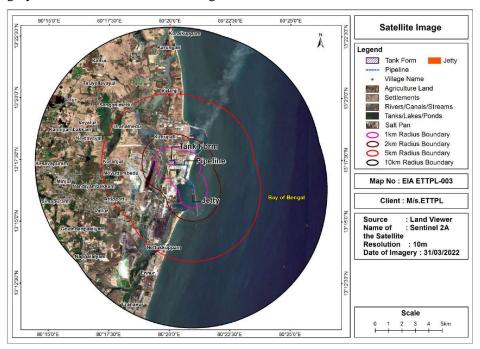
The leaks, accidental release of the materials during the transport of the materials through the pipelines may cause serious soil contamination and will seep through the land and affect the ground water quality. As the area is a reclaimed land and the available groundwater will be affected by the salt intrusion and sea water incursion, it cannot be used for drinking without treatment. However contaminating the available groundwater /marine water with oil or any other materials shall be taken as very serious and all the possible measures to be taken to avoid any kind of spillage of materials during the operations like ship to ship transfer, shift to shore transfer, shore to shore transfer and vice versa.


Mitigation Measure of Marine Environment

To mitigate the impacts due to marine water pollution, the following measures would be adopted:

• All the operational areas will be connected with a network of liquid waste collection corridor comprising of storm

Capacity Draft EI	Augmentation of Existing Operational Marine Liquid	Terminal (Mlt) From 3 MMTPA TO 6 MMTPA H/01/2022/CON/001 RP003- R0
		 water, oily wastes, and sewage collection pipelines. Oily wastes which are generated from the operational areas would be collected in the effluent network and further treated at the treatment plant. Vessels calling at the Terminal would not be permitted to dump the wastes / bilge water during the berthing period. Required pollution control facilities for treatment of waste water, solid waste management, etc. will be setup for the terminal. Measures would be taken to contain, control and recover the accidental spills of fuel, oil and other product handled. ETTPL and KPL has prepared Oil Spill Contingency Plan and is attached as Annexure 16.
8.	A Management plan for the area under which mangroves are or likely to be removed and compensatory mangrove	No mangrove will be removed during this project



plantation plan be submitted.

1.	Analysis should be made based on
	latest satellite imagery for the land
	use with raw images.

Latest satellite imagery for the land use with raw images

Forest & Wildlife

- 1. Submit the present land use and permission required for any conversion such as forest, agriculture etc.
- Submit the present land use and Not applicable. The present land does not involve any forest, agriculture etc.
- 2. Land acquisition status, rehabilitation of communities/ villages and present status of such

Not applicable. The present land does not involve any land acquisition and rehabilition of communities/ villages.

	activities.	
3.	Submit the trees to be cut including their species and whether it is also involve any protected or endangered species.	
4.	Measures taken to reduce the number of trees to be removed should be explained in details	
5.	Submit the details of compensatory plantation	Not applicable. The proposed project is augmentation of marine liquid terminal from 3 MMTPA to 6 MMTPA, which does not involve tree cutting or removal of trees.
6.	Explore the possibilities of relocating the existing trees to be removed shoul be explained in detailed	
7.	Examine the details of afforestation measures indicating land and financial outlay.	

Landscape plan, green belts and Greenbelt details of the KPL Port open spaces may be described. A thick greenbelt should be palnted all around the nearest settlement to mitigate noise and vibarations.

- ➤ In 1992, the Kamarajar Port was conceived as a satellite port to handle coal through two coal berths. The Port is continuously developing green belt area.
- The total area of the port is 2787.2 acres in that area total green belt is to an extend of 636.14 acres (22.82%) which includes inside and outside the custom bound area.
- Proposed Green belt of 5.01 acres will be developed inside and outside the Tank Farm area.
- The treated wastewater will be reused in the green belt areas to reduce the water requirements.
- The tree species to be used for the green belt development will be in line with the local ecology.

9. The identification of species / plant should be made based on the botanical studies.

Draft EIA Report

The identification of species / plant should be made based on the botanical studies.

S. No.	Botanical Name	Family	Tree/Shrub
1	Albizia amara (Roxb.) B.Boivin i	Fabaceae	Tree
2	Albizia lebbeck (L.) Benth.	Fabaceae	Tree
3	Atalantia monophylla DC.	Rutaceae	Tree
4	Barringtonia acutangula (L.) Gaertn.	Lecythidaceae	Tree
5	Bauhinia tomentosa L.	Leguminosae	Tree
6	Borassus flabellifer L.	Arecaceae	Tree
7	Butea monosperma (Lam.) Taub.	Leguminosae	Tree
8	Caesalpinia crista L.	Leguminosae	Shrub
9	Calophyllum inophyllum L.	Clusiaceae	Tree
10	Capparis sepiaria L.	Capparaceae	Tree
11	Casearia tomentosa Roxb.	Salicaceae	Tree
12	Catunaregam spinosa (Thunb.) Tirveng.	Rubiaceae	Shrub
13	Cordia dichotoma G.Forst.	Boraginaceae	Tree
14	Crateva adansonii DC	Capparaceae	Tree
15	Crotalaria pallida Aiton	Leguminosae	Tree
16	Dalbergia lanceolaria L.f.	Leguminosae	Tree
17	Drypetes sepiaria (Wight & Arn.) Pax & K.Hoffm.	Putranjivaceae	Tree
18	Ehretia microphylla Lam.	Boraginaceae	Tree
19	Cassine glauca (Rottb.) Kuntze	Celastraceae	Tree
20	Erythrina variegata L.	Leguminosae	Tree
21	Eugenia roxburghii DC	Leguminosae	Shrub
22	Ficus amplissima Sm.	Moraceae	Tree
23	Ficus microcarpa L.f.	Moraceae	Tree
24	Flacourtia indica (Burm.f.) Merr.	Salicaceae	Shrub
25	Flueggea leucopyrus Willd.	Phyllanthaceae	Shrub
26	Garcinia spicata Hook.f.	Clusiaceae	Tree
27	Glycosmis mauritiana (Lam.) Tanaka	Rutaceae	Shrub
28	Gmelina asiatica L.	Lamiaceae	Shrub
29	Grewia orbiculata Rottler	Malvaceae	Tree
30	Grewia rhombifolia Kaneh. & Sasaki	Malvaceae	Tree
31	Gymnosporia emarginata (Willd.) Thwaites	Celastraceae	Shrub
32	Hibiscus tiliaceus	Malvaceae	Shrub
33	Lannea coromandelica (Houtt.) Merr.	Anacardiaceae	Tree

S. No.	Botanical Name	Family	Tree/Shrub
34	Memecylon umbellatum Burm. f	Melastomataceae	Tree
35	Morinda pubescens Sm.	Rubiaceae	Tree
36	Pamburus missionis (Wight) Swingle	Rutaceae	Tree
37	Pandanus odorifer (Forssk.) Kuntze	Pandanaceae	Tree
38	Phoenix sylvestris (L.) Roxb.	Arecaceae	Tree
39	Pongamia pinnata (L.) Pierre	Leguminosae	Tree
40	Premna serratifolia L.	Lamiaceae	Shrub
41	Pterospermum suberifolium (L.) Willd.	Malvaceae	Tree
42	Salvadora persica L.	Salvadoraceae	Tree
43	Scutia myrtina (Burm.f.) Kurz	Rhamnaceae	Shrub
44	Senna auriculata (L.) Roxb.	Leguminosae	Shrub
45	Spondias pinnata (L. f.) Kurz	Anacardiaceae	Tree
46	Strychnos nux-vomica L.	Loganiaceae	Tree
47	Strychnos potatorum L.f.	Loganiaceae	Tree
48	Syzygium cumini (L.) Skeels	Myrtaceae	Tree
49	Tarenna asiatica (L.) Kuntze ex K.Schum.	Rubiaceae	Tree
50	Thespesia populnea (L.) Sol. ex Corrêa	Malvaceae	Tree
51	Vachellia nilotica (L.) P.J.H. Hurter & Mabb.	Leguminosae	Tree
52	Vitex negundo L.	Lamiaceae	Tree
53	Volkameria inermis L.	Lamiaceae	Shrub
54	Ziziphus jujuba Mill.	Rhamnaceae	Tree
55	Avicennia marina (Forssk.) Vierh.	Acanthaceae	Shrub

Water Environment /Quality/ Analysis/Hydrology and water bodies

Draft EIA Report

Examine the details of water Requirement, impact on competitive user, treatement details, use of treated waste water. Prepare a water balance chart.

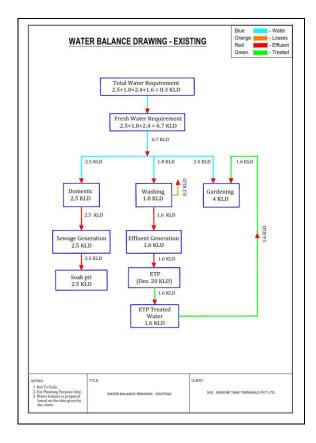
Details of water Requirement:

S.No	Water	Qty (KLD)					
		Existing	Proposed	After Expansion			
1	Fresh water Requirement	6.7	2.5	9.2			
2	Recycled Water	1.6	4.2	5.8			
Total W	ater Requirement	8.3	6.7	15			

Water Requiremen t	Existing water Requirement(KLD)		Proposed water Requirement(KLD)		After Expansion water Requirement(KLD)	
	Fresh water	Recycled water	Fresh water	Recycled water	Fresh water	Recycled water
Domestic	2.5	0	1	0	3.5	0
Washing	1.8	0	1.5	0	3.3	0
Gardening	2.4	1.6	0	4.2	2.4	5.8

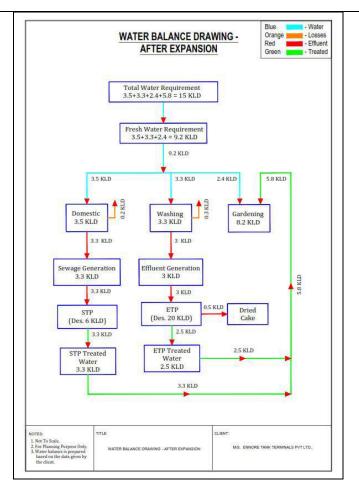
Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001


Draft EIA Report RP003- R0

Total	6.7	1.6	2.5	4.2	9.2	5.8

For Fire fighting, sea water is being used and the same will be continued after expansion.


Source of water: Out sourced through water tankers.

Water balance chart:

Existing Water balance diagram

After Expansion Water balance diagram

		Waste water	generation a	nd its Manag	ement :	
		Details	Existing (KLD)	Proposed (KLD)	After expansion (KLD)	Disposal method
		Sewage	2.5	0.8	3.3	Existing: Sewage Disposal: Septic Tanks and Sock Pit x 6 Nos. Dimension (Length -1.4 mts X width 0.9m, Depth – 2.2m) After Expansion: 6 KLD STP will be proposed and the treated sewage will be used for gardening
		Effluent	1.6	0.9	2.5	Will be treated in existing ETP (Capacity – 20 KLD) and reuse for gardening.
1.	Examine and submit the water bodies including the seasonal ones within the corridor of impacts along with their status, volumetric capacity, quality likely impacts on them due to the project.					

S.No	Description	Dist(~km)	Direc
1	Buckingham Canal	0.26	W
2	Korttalaiyar/Kosisttalaiyar River	0.30	W
3	Ennur Creek	4.25	S

	Lakes/Ponds				
S.No	S.No Description		Direc	Area(Acres)	
4	Lake near Kattupalli	3.14	NNW	25	
5	Lake near Koranjur	3.37	W	10	
6	Lake near Attippattu	3.38	W	13	
7	Lake near Uranamedu	3.97	WNW	460	
8	Movuttambedu Lake	4.09	W	47	
9	Pond near Koranjur	4.56	W	3	

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Draft EIA Report RP003- R0

10	Tiruvellavayal Lake	4.68	WNW	390
	Note-All Lakes/Ponds are non perennial			

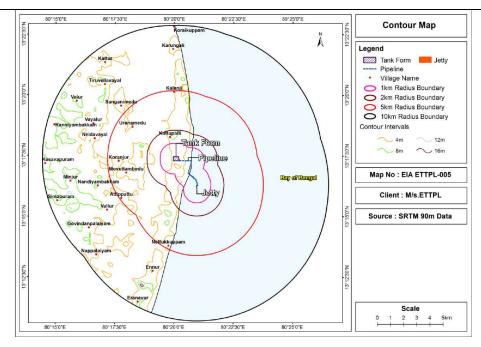
Impacts on the water bodies

During the operational phase of the project, frequency of incoming and outgoing ships will increase and hence the chances of spillages and leakages of oil into the sea qill be more. This will affect the sea water quality and appropriate care must be taken to ensure that discharges are made to appropriate drainage lines etc. which lead to appropriate treatment facilities. Oily wastes from machinery, spillages and leakages of oil from incoming and outgoing ships into the sea will affect the water quality. This water will have a chance to either drain into the water body, or will seep through the land and contaminate the ground water. This will have floating material on the water surrounding the port. The discharge of bilge water and/or ballast water from the ship may also cause negative impacts on the marine water.

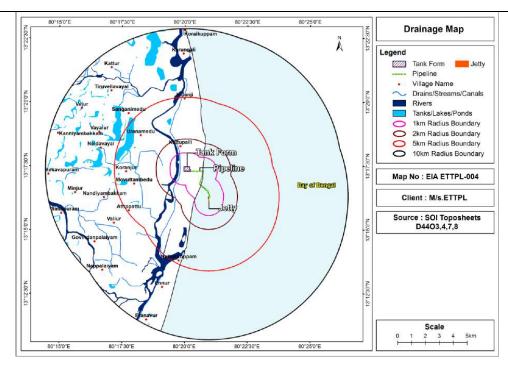
The leaks, accidental release of the materials during the transport of the materials through the pipelines may cause serious soil contamination and will seep through the land and affect the ground water quality. As the area is a reclaimed land and the available groundwater will be affected by the salt intrusion and sea water incursion, it cannot be used for drinking without treatment. However contaminating the available groundwater /marine water with oil or any other materials shall be taken as very serious and all the possible measures to be taken to avoid any kind of spillage of materials during the operations like ship to ship transfer, shift to shore transfer, shore to shore transfer and vice versa.

Mitigation Measure

To mitigate the impacts due to marine water pollution, the following measures would be adopted:


• All the operational areas will be connected with a network of liquid waste collection corridor

	1	Waste Management, Drainage and STPs
	and pile driving on marine life.	
3.	Specific study on effects of construction activity	Not Applicable, Since this project does not involves any construction and pile driving activities
		augmentation from 3 MMTPA to 6 MMTPA of MLT, so there will be no impact on fishing activities.
	impacts on the fishing activity due to the project.	Fishing activities are not permitted within the Port area. Additionally, this project is solely a capacity
2.	Submit the details of fishing activity and likely	Details of fishing activity in the study area is given in chapter 3.10.1.11.
		11 11 L and M L has prepared on Spin Condingency I fail and is attached as Afficeaute 10.
		product handled. ETTPL and KPL has prepared Oil Spill Contingency Plan and is attached as Annexure 16.
		Measures would be taken to contain, control and recover the accidental spills of fuel, oil and other product bondled.
		be setup for the terminal.
		• Required pollution control facilities for treatment of waste water, solid waste management, etc. will
		berthing period.
		• Vessels calling at the Terminal would not be permitted to dump the wastes / bilge water during the
		network and further treated at the treatment plant.
		Oily wastes which are generated from the operational areas would be collected in the effluent
		comprising of storm water, oily wastes, and sewage collection pipelines.



1. Submit a copy of the contour plan with slopes, drainage pattern of the site and surrounding area

Contour Map of the study area

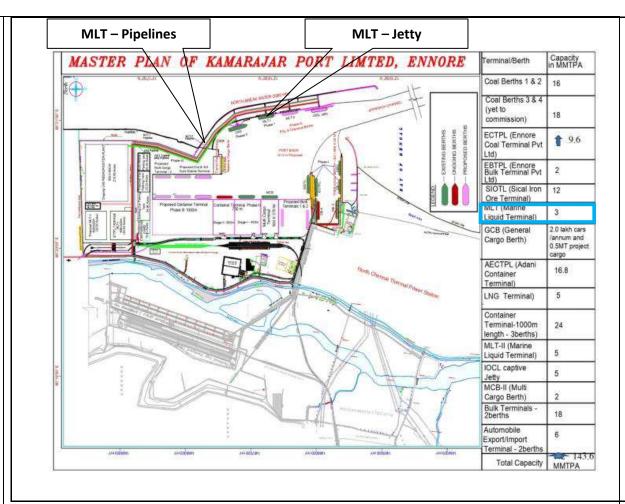
Drainage Map of the study area

- Araniyar, Korattalayar, Cooum, Nagari and Nandhi are the important rivers. The drainage pattern, in general, is dendritic.
- All the rivers are seasonal and carry substantial flows during monsoon period. Korattaliar river water is supplied to Cholavaram and Red Hill tanks by constructing an Anicut at Vellore Tambarambakkam.
- After filling a number of tanks on its further course, the river empties into the Ennore creek a few kilometres north of Chennai.

2.	Examine the details solid waste generation treatment and its disposal	water of tan ightharpoonup It feed Details solid Municipal So The proposed so no municipal	waters of the Cooum tank in Tiruvallur taluk and also receives the surplus waters of tanks. It feeds the Chembarambakkam tank through a channel. Details solid waste generation treatment and its disposal: Municipal Solid waste: The proposed project involves only a capacity augmentation from 3 MMTPA to 6 MMTPA o no municipal solid waste will be generated during the construction phase, as no constructivities are required.					A of MLT,
		Type of Wastes	Existing (kg/day)	Proposed (kg/day)	After Expansion (kg/day)	Treat Meth	ment / Disposal od	
		Inorganic	14.04	4.5	18.54	_	esed to authorized ors and the same will be	
		Organic	21.06	6.75	27.81	Used Green	as a Manure for belt.	
		Total	35.1	11.25	46.35			
		Hazardous w	- C		e Generation and	l Manage	ement of existing	
l		Source	Nan	ne of the	Hazardous Quan	ntity	Storage and Method	of disposal

H/01/2022/CON/001

RP003- R0

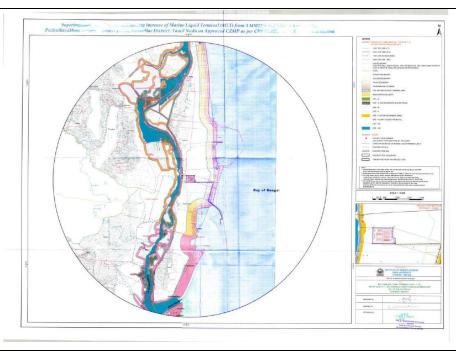

	waste and category		Handling		
	3.1-Cargo residue, washing water and sludge containing	0.4 T/Annum	Stored in barrels		ction, M/s. Waste Ltd, for
Handling of hazardous chemicals and wastes	33.2-Contaminated cotton rags or other cleaning materials	24 T/Annum	Stored in Pig disposal yard	-	•
Engines/ Compressor used oil	5.1-Used or spent oil	0.3 T/Annum	Stored in steel barrels.	Generation , Collectorage and sent authorized recyclers.	ction,
Handling of hazardous chemicals and wastes	33.1-Empty barrels/containers/liners contaminated with hazardous chemicals /wastes	21.6T/Annum		Generation, Collection Storage and sent authorized recycler	ction,

		Haz	ardous Waste Genera	tion and Man	agement of ex	isting
		Source	Name of the Hazardous waste and category	Quantity	Storage and Handling	Method of disposal
		Cleaning, emptying and maintenance of petroleum oil storage tanks including ships	3.1-Cargo residue, washing water and sludge containing oil	1MT/Annum	Stored in barrels	Will be Disposal to Tamilnadu Waste manag Ltd, Gummidipoondi incineration
3.	Details of oil spill contingency plan.	 KPL has Oil Spill Contingency Plan in place. The Tier-1 Oil Spill Response Equip KPL along with ETTPL as per NOS DCP guidelines. Oil Spill Response Management Plan keep the marine water free from pollutants/within the Port limits. Kamarajar Port Limited had procured Oil Spill Response (OSR) equipment in 2016. KPL has a dedicated Oil Spill Response team working 24 x 7. Vessels berthed at Kamarajar Port Limited are being garlanded by booms to prespread of oil spills (if any) that occurs. 				from pollutants/oil spills ipment in 2016.
4.	Details of Layout plan including details of	Detailed Oil Spill continuation Layout of port	Prant 12 detaction			
7.	Details of Layout plan including details of	Layout of port				

channel , breakwaters, dredging , disposal and reclamation

Terrain and Topogarphy

 $Capacity\ Augmentation\ of\ Existing\ \ Operational\ Marine\ Liquid\ Terminal\ (Mlt)\ From\ 3\ MMTPA\ TO\ 6\ MMTPA$


H/01/2022/CON/001

RP003- R0

1.	Submit the details of terrain, level with respect	Not applicable
	to MSL, filling required, source of filling	
	materials and transportation details etc.	
2.	Submit a copy of layout superimposed on the	Preparation of Local Level CMZ May for the Throughput Capacity Increase of Marine Liquid Treminal (MLT) from 3 MMTPA to 4 MMTPA at 5 MMTPA at 1 MMTPA at 1 MMTPA to 4 MMTPA at 1
	HTL/LTL map demarcated by an authorized	F Section Control of C
	agency on 1:4000 scale along with the	T William Control of the Control of
	recommendation of the SCZMA.	## And the part of
3.	Details of bathymetry study.	Not Applicable
4.	Details of ship tranquility study.	The proposed project is enhancement of 3 MMTPA to 6 MMTPA of MLT . so ship tranquility study
		are not required

5. The ecologically fragile area including CRZ IA area etc. shall be demarcated and superimposed on the layout pan and submitted.

Road/Transport connectivity and Traffic measures

1. Examine road/rail connectivity to the project site and impact on the existing traffic network due to the proposed project/activities.

It is well connected by roadways, railways and water ways.

Features	Description							
Nearest Railway	Description	Dist. (~km)		n)	Dire.			
station	Attipattu Railway stati		ion 5.51		WSW			
	Description	Dista	nce (~km)	Ι	Direction			
Nearest Port	Kamarajar Port (Ennore		Site is within	n the	port			
	port)							

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

	Adani Kattupalli Port	0.45	N	
Nearest	Description	Dist. (~km)	Dire.	
	Chennai International	34.59	SSW	
Airport	Airport			
	Description	Dist.	Dire.	
		(~km)		
Highway	SH-107(Minjur–Kattur–			
Highway	Thirupalaivanam Road)/SH-	6.58	WNW	
	104(Chennai-Pulicat Rd)			
	NH-16(Chennai-Kolkata)	18.81	WSW	

A detailed traffic and transportation study should be made for existing and projected passenger and cargo traffic.

Traffic forecast

Traffic Forecast by KPL

Traffic forecast was made initially by Kamarajar Port Limited (KPL) during the tendering stage based on expressions of Interest received from the firms and information furnished by some of prospective users / traders / industry at that time and was estimated conservatively.

Traffic Forecast by ETTPL

Following are the methods adopted for traffic survey by Ennore Tank Terminals Private Limited (ETTPL):

a) Existing Users

Actual traffic volumes of previous period are considered in the projections. ETTPL had extensive interactions with all major potential users of the jetty, pipelines and storage tank farm and various contracts entered into with customers.

S.No	Existing users	Products		
	Indian Oil Petronas Pvt. Ltd (JV of IOCL & Petronas)	Propane/Butane/LPG		
	Hindustan Petroleum Corporation Ltd	POL		
	Bharat Petroleum Corporation Ltd	POL		
	IOCL	POL		
	Hi-Tech Carbon – A unit of SKI Carbon India Ltd	Carbon Black Feed Stock		
	Shell India Marketing Pvt Ltd	POL		
	Ponpure Logistics	Various chemicals		

Raj Lubricants	Base oils
Manali Petrochemicals Ltd	Propylene Oxide
Tamilnadu Petroproducts Ltd	Benzene/LAB
Supreme Petrochem	Styrene Monomer
Reliance Industries Ltd	POL
SKS Logistics Private Limited	Petro Chemicals
KLJ Group of Industries	Petro Chemicals
Jesons Industries Limited	Styrene Monomer
Philips Carbon Limited	CBFS
Other Customers of Chemicals	

b)Market Study by IMaCS

ETTPL retained ICRA Management Consulting Services (IMaCS) to conduct an independent market assessment and risk analysis for this project in 2006, which was revalidated in 2009. ICRA interacted independently with the users and also carried out extensive secondary research to assess the demand at Ennore. The traffic demand was finalized after thorough research, analysis and verification with the users.

Basis of the study

Following parameters are the basis of the study which led to the traffic projection:

The need for a marine liquid jetty and tank farm at Kamarajar Port stems from the below mentioned factors:

Growing demand for handling bulk liquids in and out of the Chennai and surrounding regions

Limitations in infrastructure facilities for handling bulk liquids, especially hazardous class liquids and liquefied gases at Chennai Port.

Potential of Kamarajar Port to be used as a hub port for crude oil, petroleum liquid & gas products and chemicals

Identification of bulk liquids and liquefied gases that would be handled through the MLT based on demand-supply scenario pertinent to the region that can be served by ETTPL and the specific logistics of the potential users.

The traffic study was based on review of the traffic volumes and facilities at competing ports such as Chennai, Mangalore, Krishnapatnam and Cochin. Hence, the demand estimation takes into account the potential traffic that would shift from other ports to Ennore due to logistical and cost advantages to the users.

Traffic Projected

The traffic volume for the proposed terminal expansion and storage tank farm would accrue from realization of the potential volumes due to the following factors:

Shift of existing traffic by users in the immediate hinterland to Kamarajar Port, hitherto serviced from other Ports.

New demand in the immediate and extended hinterland

ETTPL has signed long term agreements with most of the identified potential users and is been handling these products during the last 10 years and above.

While arriving at the traffic projections under chemicals and other liquids category, volumes accruing from existing users and demand likely due to expansion of select users have been considered. However, the projections do not include potential volumes that could possibly accrue on account of new green field projects in the region.

The projections are presented in below **Table** considering existing contracts, traffic, etc. The estimates are conservative and it is possible that the traffic projected could be exceeded.

The projections of considering existing contracts, traffic, etc

Scenario	Optimisti	Optimistic scenario							Base Case (Likely volume assumed for viability)				
Product	Black	POL	Chemic	LPG	Cr	Tot	Black	PO	Che	LP	Cru	Total	
→	oil		al		ude	al	oil	L	mic al	G	de		
Year 1		1	MMTPA	<u> </u>	1					TPA			
21-22 ♥	0.40	3.00	0.20	2.00		5.60	0.30	2.50	0.12	1.60		4.52	
22-23	0.50	3.30	0.20	2.00		6.00	0.40	2.70	0.12	1.60		4.82	
23-24	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
24-25	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
25-26	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
26-27	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
27-28	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
28-29	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
29-300	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
30-31	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
31-32	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
32-33	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
33-34	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
34-35	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	
35-36	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98	

	Scenar	io			Pessimistic	scenario		
	Produ	ct	Black oil	POI	Chemic	al LPG	Crude	Total
	Year	1			MMT	ГРА		
	21-22	2	0.24	2.00	0.10	1.28		3.62
	22-23	3	0.32	2.16	0.10	1.28		3.86
	23-24	1	0.32	2.24	0.10	1.32		3.98
	24-25	5	0.32	2.24	0.10	1.32		3.98
	25-26	5	0.32	2.24	0.10	1.32		3.98
	26-27	7	0.32	2.24	0.10	1.32		3.98
	27-28	3	0.32	2.24	0.10	1.32		3.98
	28-29)	0.32	2.24	0.10	1.32		3.98
	29-30	0	0.32	2.24	0.10	1.32		3.98
	30-31	1	0.32	2.24	0.10	1.32		3.98
	31-32		0.32	2.24		1.32		3.98
	32-33		0.32	2.24		1.32		3.98
	33-34		0.32	2.24		1.32		3.98
	34-35		0.32	2.24		1.32		3.98
	35-36	5	0.32	2.24	0.10	1.32		3.98
Details of handling of each cargo, storage, transport along with spillage control, dust preventive measures.	Cargo – Pr	roducts						
	S.NO	Product G	roup		Existing Throughput Capacity in MMTPA	Proposed Throughput Capacity in MMTPA	After Expa Throughp Capacity i MMTPA	ut

1	LPG (Refrigerated Propane and Butane)	1.20	0.4	1.60
2	Petroleum, Oil, and Lubricants.(POL)Products	1.45	1.75	3.20
3	Black Oil	0.20	0.70	0.90
4	Chemicals and Petro Chemicals	0.15	0.15	0.30
Total		3.0	3.0	6.0

Cargo Handling Facilities - Summary of Cargo Handling Equipment – **Jetty**

Sl.No	Cargo	Equipment Type	Nos.	Size
1	Unloading Arms			
	LPG	Unloading arms (Fixed)	2	12"
	POL	Unloading arms (Fixed)	3	12"
2	Pipelines of length 3700 Mt	rs. (approx)	I	
	Black oil	Mild Steel Pipeline IS-3589	1	24"
	White petroleum product	Mild Steel Pipeline IS-3589	1	24"
	Chemicals	Mild Steel Pipeline IS-3589	1	12"
	POL / Lube	Mild Steel Pipeline IS-3589	1	12"

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Draft EIA Report

	Chemicals Stainless Steel Pipeline 316L				8"				
	LPG	LTO	CS	2	18"				
	Propylene Oxide	Car	bon Steel Pipeline – API 5L Gr B	2	10"				
	White petroleum product	Mile X32	d Steel Pipeline – API 5L Gr.B /	1	24"				
	White petroleum product	Mile X32	d Steel Pipeline – API 5L Gr.B /	1	16"				
3	Pumps								
	Hydraulic pumps		6 KW	6					
	Stripping pumps		10 KW	3					
4	Other Equipments								
	Engine driven Fire fighting pu	ımps	Fire fighting system for jetty as per OISD 156						
	Nitrogen system		40 cum / hr. capacity + 100 cum/ hr capacity	1 No each					
	Compressed air		910 cfm	2 Nos					
	ETP		20 cum. / day	1					
	Control room with emergency facilities	ī	Safety and emergency equipment.						

Summary of Cargo handling equipment- Terminal

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Draft EIA Report RP003- R0

l.N	Cargo	Equipment Type	Nos
	Various sizes (Mild Steel and SS)		
	Pumps		
		200 Cum/Hr-Twin Screw	1
		100 Cum /Hr-Twin Screw	1
		150 Cum /Hr- Twin Screw	1
		70 Cum/Hr – Centrifugal	33
	Product pumps	100 Cum/Hr – Centrifugal	4
		120 Cum/Hr – Centrifugal	4
		150 Cum/Hr – Centrifugal	8
		250 Cum/Hr – Centrifugal	3
		300 Cum/Hr – Centrifugal	3
	TLF station		
	Loading arms	Various sizes	110
	Metering facilities	Flow metering Systems	50

 $Capacity\ Augmentation\ of\ Existing\ \ Operational\ Marine\ Liquid\ Terminal\ (Mlt)\ From\ 3\ MMTPA\ TO\ 6\ MMTPA$

H/01/2022/CON/001

RP003- R0

Tank No	Capacity (KL)	Total (KL)
101	12346	
102	12328	
103	10641	
104	5080	59904
105	6281	
106	6288	
107	6940	
Enclosure 2		
Tank No	Capacity (KL)	Total (KL)
201	2591	
202	1583	
203	1569	23287
204	2033	23201
205	3539	
206	3535	

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA					
			RP003- R0		
207	2	2596			
208	1	1580			
209	1	178			
210	3	3083			
Enclosure 3					
Tank No		Capacity (KL)	Total (KL)		
301	4	5994			
302	(6283			
303	(6283			
304	2	2520	28253		
305	3	3083			
306	3	3080			
307	1	1010			
Enclosure 4					
Tank No	Capac	city (KL)	Total (KL)		
401	859				
402	1189		18370		
403	862				
	207 208 209 210 Enclosure 3 Tank No 301 302 303 304 305 306 307 Enclosure 4 Tank No 401 402	207 208 1 209 1 210 3 Enclosure 3 Tank No 301 302 303 304 305 306 307 Enclosure 4 Tank No Capace 401 859 402 1189	207 2596	207	

oacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA			H/01/2022/CON/0	001
ft EIA Report			RP003- R0	
	404	1188		
	405	859		
	406	1181		
	407	856		
	408	1179		
	409	860		
	410	1179		
	411	861		
	412	1182		
	413	859		
	414	1177		
	415	858		
	416	1180		
		860		
		1181		
	Enclosure 5			
	Tank No	Capacity (KL)	Total	
	Talik NU	Capacity (KL)	(KL)	
	501	3077	32097	

H/01/2022/CON/001 Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA Draft EIA Report RP003- R0 **Enclosure 6** Capacity (KL) Tank No Total (KL)

Capacity Augmentation of Existing Operational Marine Liquid Terminal (MIt) From 3 MMTPA TO 6 MMTPA

Draft EIA Report

RP003- R0

608	6247	
Enclosure 7		
Tank No	Capacity (KL)	Total
		(KL)
701	10627	
702	10629	31885
703	10629	
Enclosure 8		
Tank No	Capacity (KL)	Total
		(KL)
801	5033	5033
Enclosure 9		
Tank No	Capacity (KL)	Total
		(KL)
ET-101	21	2396
ET-102	21	
Slop tank -1	1175	
Slop tank -2	1175	
Grand Total		2,56,636
- 68 Tanks		

		Oil Spill Management Plan is attached as Annexure 16									
2.	In case of coal, mineral cargo, details of storage and closed conveyance, dust suppression and prevention filters.	Not Applicable									
3.	An assessment of cumulative impact of all	•									
	development and increased inhabitation being	and it will be submitted with Final EIA.									
	carried out or proposed to be carried out by the	Line	source for t	he propos	sed transp	ortation o	emission				
	project or other agencies in the core area, shall be made for traffic densities and parking		Pollutan	4	x. Base li nc. (µg/n	ine li	Estimated ncrementa onc. (µg/m	· L (ua/n	_	NAAQ standard (µg/m³)	
	capabilities in a 05 kms radius from the site. A		PM10		71.29		0.13	71.4	-2	100	
	detailed traffic management and a traffic		NO_x		29.13		6.14	35.2		80	
	decongestion plan drawn up through an		СО		950		417.32	1367.	.32	4000	
	organization of repute and specializing in transport planning shall be submitted with the EIA	Appr which move Rd)	n is located a ment due to respectively	the site is at a distand the projectives the t	ce of ~6.5 oct at SH- raffic Cat	8km (WN 107(Minju egorisation ment per c	W) below 'r–Kattur–T	palaivanam Road Fable gives the e hirupalaivanam if Minjur-Kattur (Minjur-Kattur	existing a Road)/SF Thirupa	nd proposed veh I-104(Chennai-F	nicular Pulicat
		S. N o	Type of Vehicle	Existin g vehicle s	Existin g PCU	Propose d vehicles	Propose d PCU	Total vehicles after project implementati on	PCU Facto rs IRC (SP 41)	Total PCU after project implementati on	

		Total	10014	20380	303	1113	10317	-	16216
	6	Light emission vehicle- LCV	996	1394	0	0	996	2.0	1992
4	5	Agricultur al tractor	8	32	0	0	8	4	32
4	4	Trucks/ Bus/HCV	3616	13379	300	1110	3916	2.2	8615
3	3	4 wheelers/ cars	1170	1170	3	3	1173	1	1173
2	2	3 wheelers	989	1978	0	0	989	2	1978
1	1	2 wheelers	3235	2426	0	0	3235	0.75	2426

Traffic Volume after Implementation of the Project

For the Road	Volume of Traffic	Volume (V)	Road Capacity (C)	V/C Ratio	LOS Category*	Traffic Classificat
Existing	10014	20380	35000	0.58	"C"	Restricted I
After implementation	10317	16216	35000	0.61	"C"	Restricted I

^{*}LOS (Level of Service) categories are A-Free Flow, B- Stable Traffic Flow, C- Restricted Flow, D- High Density Flow, E- Unstable flow, F- Forced or breakdown flow

^{*}LOS (Level of Service) categories are:

Level of Service	V/C	Classification
A	<0.35	Free Flow Traffic
В	0.35 - 0.55	Stable Traffic Flow
С	0.55 - 0.77	Restricted Flow
D	0.77 - 0.92	High Density Flow
Е	0.92 - 1.0	Unstable Flow
F	>1.0	Forced Traffic Flow

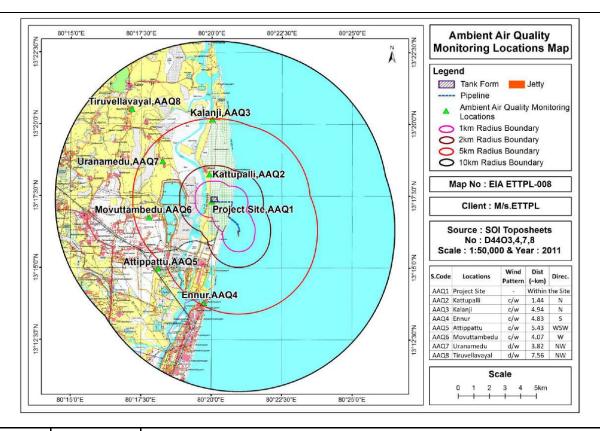
Due to propose project there will be slight increment in the vehicle movement but the level of service (LOS) anticipated will be "Restricted Traffic Flow".

Impacts and Mitigation

The transportation of product Tank Farm will contribute to increase in traffic on the existing road network. The increase in traffic might lead to traffic congestion, increase in dust levels, noise levels and risk of accidents. In order to contain these impacts, the following measures would to be taken up.

- Transportation Management Plan will be prepared by ETTPL along with KPL and the movement of product will be planned in line with the same.
- Traffic density studies will be undertaken along the existing road network covering all the roads leading to Kamarajar Port. All the vehicles involved in transshipment of product inland would be checked for valid Pollution Under Control (PUC) certificates. A mobile task force will be formed in co-ordination with local Road Transport Authority (RTA) to check the compliance of vehicle

pacity Augmentation of Existing Operational Marine Liquid Terminal (MIt) Fro	m 3 MMTPA TO 6 M	IMTPA	H/01/2022/CON/001			
ft EIA Report			RP003- R0			
		sions to norms/standards periodically during operation ement.	phase used for inland produc			
	Ra	in water harvesting				
1. Details of Rain water harvesting and utilization	The Port has	Rainwater Harvesting System in its Administrative Buildin	g consists of Open well. The			
of rain water.	details of the	same are furnished herewith as below:				
	• Subi	merged RCC ring of diameter 3'- 0" into a pit of 3 m depth.				
	• Filte	er chamber of size 0.6 x 0.6 x 0.9 m in brickwork CM 1:5.				
	• River sand to a depth of 0.15 m • Pebbles to a depth of 0.15 m					
	Nylon mesh between river sand and Pebble stone.					
	PVC pipes of 110 mm dia connecting terrace, well and filter chamber have been laid.					
		Baseline data				
Examine the Baseline environmental quality along w	vith projected	Baseline environmental quality along with projected inc	remental load due to proposed			
incremental load due to the proposed project / activities		activities:	r			
r . r		1. All the domestic sewage facilities will be treated with	proposed 6 KLD STP. and			
		effluent will be treated by existing ETP of 20 KLD capa	• •			
		proposed project.	,			
		2.DG Stack- There is no new DG been proposed; There	fore, there will be only minor			
		* *	,			
		incremental load due to proposed activity.				



The air quality monitoring should be carried out according to the notification issued on 16th November ,2009.

To evaluate the baseline air quality of the study area, Eight (08) monitoring locations have been identified as per annual period wind predominance. The annual wind predominance is from South East.

Station	Location	Type of	Distance (~km)	Azimuth
Code		Wind	from Project	Directions
			boundary	
A1	Project site	-	Wi	thin site
A2	Kattupalli	c/w	1.44	N
A3	Kalanji	c/w	4.94	N
A4	Ennur	c/w	4.83	S
A5	Attippattu	c/w	5.43	WSW
A6	Movuttambedu	c/w	4.07	W
A7	Uranamedu	d/w	3.82	NW
A8	Tiruvellavayal	d/w	7.56	NW

						Locati	ons			
Parameters	Conc.	NAAQ Standards	Project Site	Kattupalli	Kalanji	Ennur	Attippatt u	Movutta mbedu	Urana medu	Tiruvella vayal
			A1	A2	A3	A4	A5	A6	A7	A8
	Min.	100	54.29	51.94	44.38	59.45	52.94	46.76	47.76	42.59
PM10 Conc.	Max.	(24 Hours)	77.37	74. 02	63.25	84.73	75.45	66.64	68.07	60.69
$(\mu g/m^3)$	Avg.		65.11	62.28	53.22	71.29	63.48	56.08	57.28	51.07

	98th 'tile		76.93	73.59	62.88	84.24	75.01	66.25	67.67	60.34
	Min.	60	30.96	28.82	25.89	27.2	27.25	25.76	23.63	22.79
	Max.	(24 Hours)	44.13	41.08	36.89	38.77	38.84	36.71	33.68	32.48
PM2.5 Conc.	Avg.		37.13	34.57	31.04	32.63	32.69	30.89	28.34	27.33
(μg/m3)	98th 'tile		43.87	40.84	36.68	38.55	38.62	36.5	33.48	32.29
	Min.	80	13.5	11.84	9.74	11.24	12.94	10.1	7.43	7.24
	Max.	(24 Hours)	19.24	16.87	13.89	16.02	18.45	14.4	10.59	10.32
SO2 Conc.	Avg.		16.2	14.2	11.69	13.48	15.52	12.12	8.92	8.69
(μg/m3)	98th 'tile		19.13	16.78	13.81	15.92	18.34	14.32	10.53	10.26
NO2 Conc.	Min.	80	24.29	23.61	17.45	21.03	20.25	19.27	17.6	16.95
(µg/m3)	Max.	(24 Hours)	34.62	33.65	24.87	29.98	28.86	27.47	25.09	24.16
	Avg.,		29.13	28.32	20.93	25.23	24.29	23.11	21.11	20.33
	98th 'tile		34.42	33.46	24.73	29.8	28.69	27.31	24.94	24.02
						BLQ	BLQ	BLQ	BLQ	BLQ
Lead (Pb)		1	BLQ (LOQ	BLQ (LOQ	BLQ (LOQ	(LOQ	(LOQ	(LOQ	(LOQ	(LOQ
(μg/m3) Carbon	Avg.	(24 hour)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)
monoxide		4	0.82	0.62	0.53	0.95	0.70	0.50	0.42	0.48
(CO) (mg/m3)	Avg.	(1hour)								
Ozone O3		180								
(μg/m3)	Avg.	(1hour)	10.53	10.21	10.09	10.08	10.98	12.72	10.07	10.68
				BLQ (LOQ	BLQ (LOQ	BLQ	BLQ	BLQ	BLQ	BLQ
Benzene(C6H6			BLQ (LOQ	0.1)	0.1)	(LOQ 0.1)	(LOQ 0.1)	(LOQ 0.1)	(LOQ 0.1)	(LOQ 0.1)
`						(), I)	U. I I		1111	
) (μg/m3)	Avg.	5(Annual)	0.1)	DI O (I C C	DI O (I OO	Í	,	DI O	,	,
`	Avg.	5(Annual)	0.1) BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ	BLQ (LOQ	BLQ (LOQ 0.1)	BLQ (LOQ	BLQ (LOQ

2 (a)), (ng/m3)		(Annual)				0.1)	0.1)		0.1)	0.1)
Arsenic (As) (ng/ m3)	Avg.	6 (Annual)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)
Nickel as Ni (ng/m3)	Avg.	20 (Annual)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)
Ammonia (NH3) (μg/m3)	Avg.	400 (24 hour)	8.21	7.12	BLQ(LOQ 5)	6.89	BLQ(LO Q 5)	BLQ(LOQ 5)	BLQ(L OQ 5)	BLQ(LO Q 5)
TVOC (ppm)	Avg.	-	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)
Methane HC (μg/m3)	Avg.	-	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)
Non-Methane HC (μg/m3)	Avg.	-	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)

Environmental Management / Monitoring , Mitigation measures and Risk assessment

1. Examine the details for construction and operation phases both for Environmental Management Plan and Environmental Monitoring Plan with cost and parameters.

Construction Phase:

Air pollution:

Impacts:

No increase in the existing concentrations of air pollutants is expected as the project does not involve any production activity but only Enhancement of the Capacity of the MLT through Augmentation of Existing Facilities.

Concentrations of pollutants in ambient air is expected to remain within the stipulated standards.

Mitigation measure

Following measures can be adopted to mitigate the impacts of pollutants on the ambient air quality:

Vehicular speed will be limited to 20km/hr on areas of unconsolidated or unsealed soil associated with the immediate site work.

Noise Pollution

Impacts:

In addition to the existing machineries, DG and Equipment/Vehicle movement is the primary source of Noise pollution.

Mitigation measure:

The DG set room, compressors and pump room will be isolated from the outside environment and proper acoustic arrangements will be made to control the noise generated.

Use of well-maintained machinery and vehicles could considerably help in this matter.

To prevent the hearing damage to the workers, they will be provided with ear plugs and muffs and job rotation will also be practiced.

Water and waste water Management

Impacts:

During operation phase, water requirement of proposed project will be mainly for domestic use, greenbelt, etc. The required water quantity is met from the outsourced supply. Hence, no significant impacts are envisaged on the water supply in the region. The treated wastewater will be reused in the green belt areas to reduce the water requirements.

Mitigation measure:

Sewage generated is 3.3 KLD during operation phase.

The domestic waste water generated during operation phase will be routed to the proposed 6 KLD STP. And the effluent generated is 2.5 KLD and it will treated through Existing ETP.

The various impacts on the environmental attributes that are likely to arise due to the development and operation of Marine Liquid Terminal at Kamarajar Port are broadly presented. The major activities involved during operation of the Terminal encompass the following:

Marine-Side Activities

Product handling

Movement of vessels

Land-Side Activities

Product storage

Inland product movement.

Mitigational Measures During Operational Phase

Due to handling of the product impacts are envisaged in the harbour basin through discharge of sewage, ship waste, oil spills, runoffs from operational areas, etc. To mitigate these impacts, measures proposed are discussed in the following paragraphs.

Marine Environment

The major impact on marine water during the operation of the facility will be due to the spillage of material in land and sea. During the operational phase of the project, frequency of incoming and outgoing ships will increase and hence the chances of spillages and leakages of oil into the sea qill be more. This will affect the sea water quality and appropriate care must be taken to ensure that discharges are made to appropriate drainage lines etc. which lead to appropriate treatment facilities. Oily wastes from machinery, spillages and leakages of oil from incoming and

outgoing ships into the sea will affect the water quality. This water will have a chance to either drain into the water body, or will seep through the land and contaminate the ground water. This will have floating material on the water surrounding the port. The discharge of bilge water and/or ballast water from the ship may also cause negative impacts on the marine water.

The leaks, accidental release of the materials during the transport of the materials through the pipelines may cause serious soil contamination and will seep through the land and affect the ground water quality. As the area is a reclaimed land and the available groundwater will be affected by the salt intrusion and sea water incursion, it cannot be used for drinking without treatment. However contaminating the available groundwater /marine water with oil or any other materials shall be taken as very serious and all the possible measures to be taken to avoid any kind of spillage of materials during the operations like ship to ship transfer, shift to shore transfer, shore to shore transfer and vice versa.

Mitigation Measure of Marine Environment

To mitigate the impacts due to marine water pollution, the following measures would be adopted:

All the operational areas will be connected with a network of liquid waste collection corridor comprising of storm water, oily wastes, and sewage collection pipelines.

Oily wastes which are generated from the operational areas would be collected in the effluent network and further treated at the treatment plant.

Vessels calling at the Terminal would not be permitted to dump the wastes / bilge water during the berthing period.

Required pollution control facilities for treatment of waste water, solid waste management, etc. will be setup for the terminal.

Measures would be taken to contain, control and recover the accidental spills of fuel, oil and other product handled.

ETTPL and KPL has prepared Oil Spill Contingency Plan and is attached as Annexure 16.

Noise Environment

The impacts of the project on the noise levels of the surrounding areas were assessed. All equipments in the ETTPL site has been designed/operated to have a noise level not exceeding 85 to 90 dB (A) as per the requirement of Occupational Health and Safety Administration Standard (OHSAS). In addition, since most of the noise generating equipment would be in closed structures, the noise transmitted outside would be still lower.

Impacts

Major sources of noise generation during operational phase are classified into two categories:

Vehicles, DG sets etc.

Mobile sources corresponding to mainly vehicular traffic for staff mobilization, material movement, material transportation, liquid fuel transportation to project site, etc.

The impact of vibrations beyond the site would be negligible during normal operation phase. However, the impacts on workers engaged would be considerable due to occupational exposure.

Mitigation Measures

The major noise generating equipment like DG sets, water pumps etc. has been enclosed in an acoustic enclosure designed for an insertion loss of 25 dB (A) and silencers to other equipment etc.

Major noise generating equipment was designed with 85 dB (A) ensuring cumulative noise at 1.0 m remains at 85 dB (A).

Acoustic silencers are provided in equipments wherever necessary.

Use of personal protective equipments/devices such as ear-muffs, ear plugs etc. will be strictly enforced for the workers engaged in high noise areas.

Ambient noise levels are monitored at regular intervals during operational phase of the project.

Water Requirement

Impact due to Wastewater Generation

The untreated wastewater if discharged into nearby surface water may affect the surface water and/or if disposed off on land without treatment may pollute the ground and surface water.

The other impact is water pollution due to disposal of rejects into the sea.

Mitigation Measures

ETP has already been installed to treat the generated effluent. .

Appropriate drainage facilities have been developed within the site including proper disposal to drains.

Impact due to intake, out fall point and marine disposal

There is no marine disposal. So no impacts identified.

Solid waste management

Impacts

During operation phase, the solid wastes generated and it can be broadly categorized as Hazardous Waste and Municipal Solid Waste. Further, the generated Municipal Solid Waste segregated into biodegradable, recyclable and inert compounds.

If the solid waste generated is not properly managed and disposed in unauthorised manner, it will impact on soil quality, groundwater and air quality.

Municipal Solid waste generated from operation phase is estimated as 11.25 kg/day. Port has given permission for disposal of solid waste.

Mitigation Measures

The Source of Municipal waste will be from the domestic use and strict guidelines will be put in place in order to manage the solid waste generation during operation phase.

Solid wastes will be segregated into organic and inorganic categories. The organic waste will be disposed through

village bins and inorganic waste will be sold to authorized vendors. The ship generated solid wastes will be collected, segregated and diposed to approved recyclers/industries for further beneficial use through port engaged contractor.

Hazardous waste generated will be stored in a separate hazardous waste storage area and properly disposed as per the Hazardous and Other Wastes (Management and Transboundary Movement) Amendment Rules, 2016.

Environmental Monitoring Program during Operation phase

S.No	Area of Monitoring	Number of Sampling Stations	Frequently of Sampling	Parameters to be Analyzed
1.	Ambient Air Quality	4 Stations	Twice a week: 24 hourly period	All the 12 parameters as per NAAQ Standards
2.	Noise	4 Stations	Once every season	Ambient Equivalent continuous Sound Pressure Levels (Leq) at day and Night time.
3.	Sewage	One at inlet &outlet	Monthly	pH, TSS, COD, BOD
4	Vehicular Emissions	Parking area in the Road side	Periodic monitoring of vehicles	Air emission and noise, PUC
5.	Soil	4 Stations	Monthly once	Physicochemical properties, Nutrients, Heavy metals

Environmental Monitoring Programme Budget-Operation Phase

	Number of Sampling Stations	Frequency of Sampling	Rate per sample (INR)	Total cost / year (INR)
Ambient Air	3 Stations (one in up wind and	Once in a month	3000	108000

H/01/2022/CON/001

Draft EIA Report

		Quality	one in downwind and one at site)	24 hourly period		
		Noise	2 (one within site and one outside site)	Once in 3 months for 24 hours	1500	9000
		VOC	4 on the corners of the tank farm area	Once in 6 months	1000	2000
		Water	Two number of surface and ground water samples near the site	Once in 6 months	5000	40000
		Sea water	One at nearest sea point	Once in 6 months	4000	8000
		Solid waste	Municipal Solid and waste storage area	Twice in a month	600	14400
		Soil	Three locations (two within and one outside project site)	Once in 6 months	5500	33000
		Terrestrial and marine Ecology	Within 10km, around the project	Once in three years	6000	6000
2	Submit the comprehensive Risk	The risk assessme	ent plan is prepared and is attache	ed as Annexure 14		
	Assessment and Disaster Management plan including emergency evacuation during natural and man made disaster.	The disaster mana	agement plan is prepared and is a	attached Annexure 9		
3	Details of desalination plant and the study for outfall and intake	Not applicable; be	ecause the quantity of water cons	sumption would be v	ery less.	

Court/ Litigation records

Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project should be given.

There is no litigation pending against the project.

Environment Responsibility

As per the Ministry's Office Memorandum F. No. 22-65/2017-IA.III dated 30th September, 2020, the project proponent, based on the commitments made during the public hearing, specific studies shall include all the activities required to be taken to fulfill these commitments in the Environment Management Plan along with cost estimates of these activities, in addition to the activities proposed as per recommendations of EIA Studies and the same shall be submitted to the ministry as part of the EIA Report. The EMP shall be

Environmental management plan along with budgetary allocation and action plan for the issues raised during public hearing will be addressed in the Final EIA report.

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001
Draft EIA Report	RP003- R0
implemented at the project cost or	
any other funding source available	
with the project proponent	

RP003- R1

H/01/2022/CON/001

CHAPTER 2 PROJECT DESCRIPTION

RP003- R1

2 PROJECT DESCRIPTION

2.1 Type of Project

The proposed project is "Capacity augmentation of existing operational Marine Liquid Terminal (MLT) from 3 MMTPA to 6 MMTPA at Kamarajar Port Limited, Chennai". KPL falls under the category "A" Customers evinced interest to discharge multiple products from one or more vessels simultaneously to improve overall turn around time of the vessels and also intend to increase the throughput volumes through ETTPL to cater to the increased market demand. To facilitate this ETTPL is planning to augment its throughput capacity from 3 MMTPA to 6 MMTPA.

2.2 Project Background

- ➤ Ministry of Environment & Forests had accorded Environmental clearance for the development of satellite port at Ennore near Madras vide letter No. J16011/9/87-IA.III dated 28.9.1992. After commissioning of the satellite port in June 2001
- ➤ Initially M/s Ennore Port Limited obtained the EC vide letter no.10-28/2005-IA.III dated 19th May, 2006 by the Ministry for Expansion Proposals-development of Terminals for marine liquids, coal, Iron and containers in second phase and associated capital dredging at Ennore Port.
- Subsequently, Ennore Port obtained modification in EC by the Ministry vide letter dated 10th September, 2007, thereafter, PP obtained the Environmental and CRZ clearance vide letter no 11- 21/2009-IA.II dated 23rd July, 2009 for the construction of general Cargo berth at Ennore Port Cargo Terminal project, Ennore, Ponneri Taluk, District Tiruvallur, Tamilnadu, in the name of M/s Ennore Port Terminal.
- Thereafter the name of the Ennore port has changed from M/s Ennore port limited to M/s Kamarajar Port limited, after change of the name PP has submitted that the Kamarajar Port ltd (formerly known as Ennore Port ltd.) and obtained environmental and CRZ clearance for expansion and modernization of existing handling of Multicargo container terminal at Kamarajar Port, Tamil Nadu by M/s Kamarajar Port Limited (Formerly known as Ennore Port Ltd) subsequently obtained Environmental and CRZ clearance for construction of (CB3 and CB4) at Kamarajar Port, Tamilnadu vide letter dated 1 March, 2015. Subsequently M/s Kamarajar Port Ltd obtained the EC vide letter no F.No.11-51/2012-IA-II dated 30th October, 2018 for development of the facilities envisaged in the Port Master Plan (Phase III) by M/s. Kamarajar Port Limited.
- Further, the Kamarajar Port limited has applied in the Ministry for capacity optimisation of the ECTPL from present 8 MTPA το 9.6 MTPA, the proposal was considered by the Expert Appraisal Committee (EAC) in its 321st meeting during 28th February-1st March, 2023. The MoEF&CC granted Environment and CRZ Clearance under clause 7 (ii) of EIA Notification, 2006 vide letter no. 10-28/2005-IA.III dated 17/07/2023
- ETTPL has obtained Consent to operate vide 2208242865923 dated 22/08/2022 it is valid upto 31.03.2027.
- ➤ Kamarjar port has obtained CCR vide F.No.EP/12.1/2017-18/17/TN/1299 dated 26.08.2024.

As per the obtained ToR vide 10/15/2024-IA.III dated: 06.09.2024 draft EIA report is prepared for Public hearing submission TNPCB, Gummindipoondi, Thiruvallur, for the Capacity Augmentation of Existing Operational Marine Liquid Terminal (MLT) from 3 MMTPA to 6 MMTPA at Kamarajar Port Limited, Chennai the project obtained recommendation from State Coastal Zone management Authority for the CRZ area.

2.2.1 Infrastructures and details

- > Total area of the port is 2787.2 Acres which includes both customs and outside customs boundary
- Total manpower is 1500Nos. (KPL=155Nos. + Other BOT operators = 1345 Nos.)
- ➤ Water requirement is Presently drawing 269.46 KLD out of 1000KLD approved by CMWSSB.
- ➤ Power requirement is 650 KVA & 37342514 KWH per year (Including KPL and all other BOT Operators).

H/01/2022/CON/001

Draft EIA Report RP003- R1

2.2.2 Compliance status of earlier EC's

S.No	EC Number	EC name	Total EC Condition	General Condition	Special condition	Complie d	Not Complied	Partially complied	Refer Below	Agree to comply	Pertained to TNPCB
1	EC.No. J- 16011/9/1987- IA.III, dated 28.09.1992	Construction of New Satellite Port at Ennore near Madras.	23	23	0	9	2	3	9	0	0
2	EC.No. 10-28/2005- IA-III dated 19.05.2006, 10.09.2007 & 18.12.2007.	Development of Terminals for marine liquids, coal, iron and containers in the second phase and associated capital dredging at Ennore Port	35	19	16	18	1	2	11	3	0
3	EC. No. 11-21/2009-IA.III dated 23.07.2009.	Construction of General Cargo Berth at Ennore Port cargo terminal project	27	21	6	12	0	1	9	4	1
4	EC.No. 10-28/2005- LA-III dated 24.12.2014.	Expansion and modernization of existing handling Multicargo container terminal at Kamarajar Port	26	20	6	16	0	0	7	3	0
5	EC.No.11-51/2012- IA.III, dated 12.03.2015	Development of additional coal berths (CB3 and CB4) at Kamarajar Port, Tamil Nadu	54	19	35	14	0	1	12	26	1
6	EC.No. 10-28/2005- IA.III dated 09.05.2018 & 10.07.2018	Modification of existing Iron ore terminal on 'as is where is basis to handle common user coal at Kamarajar Port	The project vof 12 MTPA was canned of and control 18012102720 website of th	Present Status of the project: The project was accorded Environmental and CRZ Clearance for modification of the already approved iron ore terminal from 12 MTPA capacities to handle common user coal at Kamarajar Port vide letter date0005.2018. The mod of the terminal was canned out by M/s. SICAL iron Ore Terminal Limned. The unit has Consent for Establishment under Air (Prevention and control of pollution) Act, 1981 and Water (Prevention and control of pollution) Act, 1974, vide order No. 8012102720/2 & 1801110272073, dated 20.07.2018, valid till 31.03.2025. The copy of the clearance is uploaded on the website of the Project Proponent: https://www.ennoreport.gov.in/content/innerpage/environment.php The lender of the project M/s. YES Bank Limited has given notice for event of financial default on the BOT operator to CPL on 07.11.2020: Accordingly, in line with the license agreement, KPL had served "Notice of intent to terminate" to							

H/01/2022/CON/001

S.No	EC Number	EC name	Total EC Condition	General Condition	Special condition	Complie d	Not Complied	Partially complied	Refer Below	Agree to comply	Pertained to TNPCB
							0. Consequent to the EC& CRZ cle				
7	EC.No. 11-51/2012- IA.III dated 30.10.2018	Development of facilities envisaged in the Port Master Plan (Phase-III).	54	19	35	15	0	1	11	26	1
8	EC.No. 11-10/2022- IA.III dated 22.04.2022	Establishment of 1MLD RO Desalination Plant	Present Status of the project: The Ministry had accorded CRZ Clearance for the establishment of 1 MLD desalination plant letter dated 22.04.20 e u had obtained for Establishment under Air (Prevention and control of pollution) Act, 1981 and Water (Prevention a control of pollution) Act, 1974, vide order No. 2201148160108 & 2201048160108, dated 03.11.2022, valid to 31.03.2026. The clearance details were advertised in English (The Indian Express) and Tamil (Dinamani) Newspapers on 05.05.202								(Prevention and 2022, valid till s on 05.05.2022.
9	EC.No. 10-28/2005- IA-III dated 17.07.2023 &14.11.2023.	Capacity Optimisation of Existing ECTPL Terminal from 8MTPA to 9.6 MTPA at Kamarajar Port Ltd	16	4	12	7	0	1	5	3	0

2.3 Need for the project

The demand for marine terminal facilities for petroleum products is expected to increase significantly due to:

- Increasing importance of coastal shipping in petroleum product movement
- Growing POL product traffic at ports in the southern region
- Overlapping product movement of petroleum products
- Demand serviced from refineries outside the region Private sector players like RIL and Nayara Energy expect to rely substantially on coastal movements from their refineries in the western region to service their share of demand in the southern region
- Retail marketing plans of private sector oil companies
- CPCL expansion and capacity constraints at Chennai Port

In view of the advantages, a wide range of vessels ranging from large product tankers to small chemical tankers are expected to call at the MLT.

2.4 Project Location

The Project site is located inside the custom bond area at Ennore Port, Thiruvallur. The land documents are enclosed as **Annexure-2.** The project site falls in the 13.21"46° N Latitude and 80.32"03° E Longitude respectively. The Google satellite imageries covering 1 Km, 5 km & 10 km radius around the project area are appended in to **Figure 2-1, Figure 2-2,** and **Figure 2-3** respectively. CRZ delination map of 1:4000 scale and CRZ map of 7km radius is given in **Figure 2-4 & Figure 2-5.**

2.5 Size of the project

The terminal is being operated by M/s. Ennore Tank Terminals Pvt. Ltd., a subsidiary of IMC Limited on 30 years BOT basis. The terminal was commissioned in the year 2009 with a total Tankage capacity of about 2,56,636 KL with various Petroleum and Chemicals storage and handling, on a Plot of about 33.26 Acres.

2.6 Proposed schedule for approval and implementation

The time schedule for the completion of EC clearance for proposed project is February 2025.

Draft EIA Submission to PH	December 2024
Public hearing	January 2025
EC application submission	February 2025
EC Clearance	March 2025

RP003- R1

H/01/2022/CON/001

2.7 Project cost

The expected total project cost is **Rs 1.64 crore**

Table 2-1 The project cost estimated for Enhancement

S.No.	Details	Qty	Amount (INR, In Lakhs)	Remarks
1	Modification of Common Manifold to facilitate simultaneous discharge to BPCL	1	104.00	Hooking up lines to 2 x 24" lines of BPCL
2	Modification of 16" dock line to make it suitable for receipt of motor spirit from vessels	1	52.00	Modifications at jetty, common manifold and at exchange pit
3	Modification of 8" SS Dock Line for in line berthing of chemical vessel with POL vessels	1	8.00	Extension of 8" SS Dock line to south side of the jetty for inline berthing of 2 vesssels
	Total		164.00	

2.8 Existing Environmental Setup

The industries within 10 km radius from project site are given in **Table 2-2.** Industry near the project site is given in **Table 2-3.**

Table 2-2 Salient features of the proposed project

Features	Description			
Name of the Project	Capacity augmentation of existing operational Marine Liquid Terminal (MLT) From 3 MMTPA To 6 MMTPA at Kamarajar Port Limited, Chennai			
Inter State Boundary	Nil within 15km radius from the project boundary			
Nearest Railway station	Attipattu Railway station, 5.51km, WSW			
	Highways		Distance (~km)	Direction
	SH-107(Minjur–Kattu	ır–		
Nearest Highway	Thirupalaivanam Road)/SH-		6.58	WNW
	104(Chennai-Pulicat I	₹d)		
	NH-16(Chennai-Kolkata)		18.81	WSW
	Airport	I	Distance (~km)	Direction
Nearest Airport	Chennai International Airport 34.59		34.59	SSW
Nearest city	City Distance		tance (~km)	Direction

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001
Draft EIA Report	RP003- R1

Draft EIA Report	RP003- R1				
	Chennai	5		WSW	
	Ports	Distance (~k	cm)	Direction	
Nearest Port	Kamarajar Port (Ennore port)	Site	is within the	port	
	Adani Kattupalli Port	0.45		N	
	Environmental Sensi	tive Areas	Dist(kn	n) Direction	
	Mangroves near Ka	ttupalli	0.75	NNW	
_	Mangroves near Enr	nore Port	0.75	W	
Reserved	Mangroves near Ka	uttupalli	1.91	NNW	
Forest/Protected	_		3.72		
Forest/Notified	Mangroves near At			SSW	
Wildlife	Mangroves near Sang	ganimedu	4.05	NNW	
Sanctuary/Ecological	Mangroves near I	Ennur	5.72	SSW	
ly sensitive areas	Mangroves near K	Kalanji	6.08	N	
	Mangrove Swamp ne	Mangrove Swamp near Kattur 8.69		NW	
	Mangroves near Tangal		11.20	N	
Water Bodies		Waterbodies			
	Description	Distance(kn	n) I	Direction	
	Bay of Bengal	Site within	the Bay of Be	engal	
	Buckingham Canal	0.26		W	
	Korttalaiyar/Kosisttalaiyar	0.3		W	
	Lake near Uranamedu	3.97 W		WNW	
	Ennur Creek	4.25		S	
	Tiruvellavayal Lake	4.68		WNW	
	Arani River/Araniya Nadi	10.5		NW	
	Perumbedu Lake	12.34		NW	
	Lake near Nayar	13.9		W	
	Pulicat Lake	15		N	
Monuments	Environmental Sensitive Areas		Distance(km) Direction	
	Dutch Cemetery		14.23	N	
Nearest Tourist	Nil within 15km radius	•		•	
Places					
Defence Installations	Nil				
Seismic Zone	Zone- III (least active) according to Seismic Map of India				

H/01/2022/CON/001

Figure 2-1 Google image of Project site around 1 km

H/01/2022/CON/001

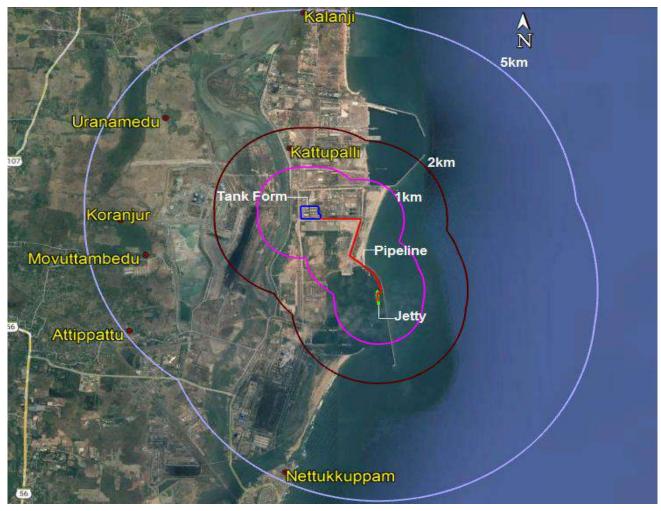
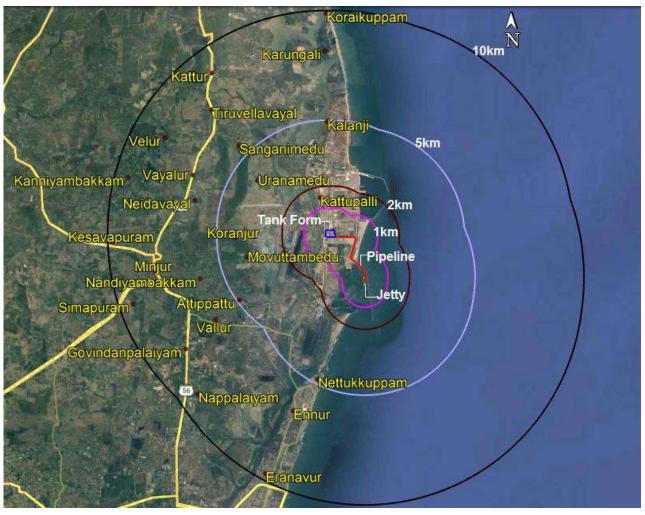



Figure 2-2 Google image of Project site around 5 km

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

Draft EIA Report RP003- R1

H/01/2022/CON/001

Figure 2-3 Google image of Project site around 10 km

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

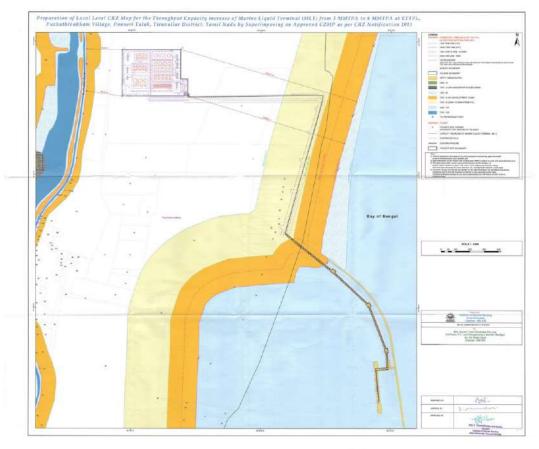


Figure 2-4 CRZ map of project site

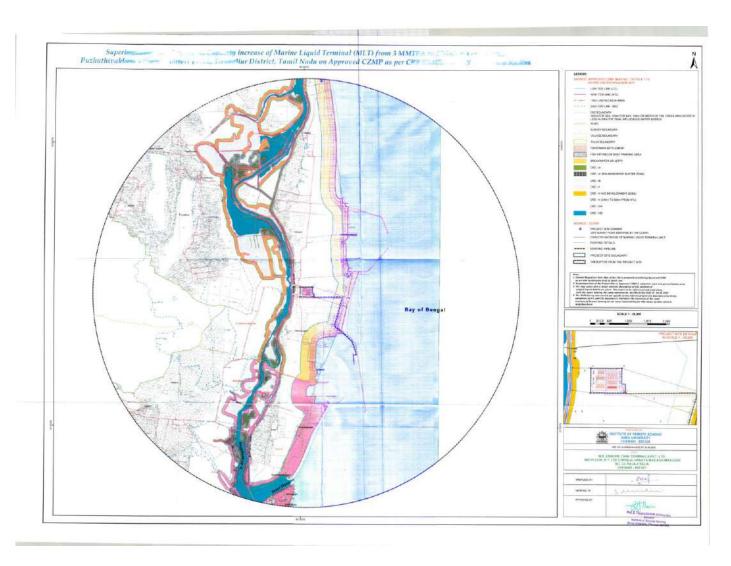


Figure 2-5 CRZ map 7 km radius of project site

RP003- R1

Draft EIA Report

Table 2-3 Industry near project site

Industry	Dist(km)	Dire.
IndianOil LNG Terminal	0.11	Е
L&T MFFK Katupalli Ware house	0.46	N
SICAL Iron Ore Terminals Limited	0.59	W
JSW Ennore Coal Terminal Pvt Ltd	0.92	W
CPCL Desalination Plant	0.92	W
Ennore SEZ Thermal Power Project	1.47	W
North Chennai Thermal Power Station	2.68	S
ABENGOA Seawater Desalination Plant	2.77	N
L&T Hydro carbon Engineering	3.22	N
Zuari Cement Grinding Unit	3.9	SW
IOCL LPG Bottling Plant	4.44	SW
BPCL Terminal Ennore	5.32	SSW
HPCL Terminal Ennore	5.57	SSW
The India Cements Ltd	6.33	SW
Kences Container Terminal Ltd	6.74	SW
Empezar Global Container Terminal	6.95	SW
MSA Global Logistics (Chennai) Private Limited	7.1	SW
Reliance Industries ltd	7.45	SW
German Express Shipping Agency (India) Private Limited	7.54	SW
Lenovo	7.57	S
ECCT - CFS	7.72	SW
COROMANDEL INTERNATIONAL LTD	7.82	S
Farm Implements (India) Pvt Ltd Factory	7.9	SW
Hinduja Foundries Ltd	8.31	S
Ashok Leyland Limited	8.65	S
Ennore Thermal Power Station	9.25	SSW
Triway Container Freight Station	9.63	SW
Piramal Pharma Limited	10.62	S
Chandra CFS and Terminal Operator Pvt Ltd	10.77	W
Sri Balaji Engineering Works	11.22	SW
Shri Sabhari smelters pvt ltd	11.32	SW
Chennai Emulsifiers	11.35	SW
Vichur Sundar Chemicals	11.38	SW

Sriram Cold Forgings Pvt. Ltd	11.41	SW
Sri Sai Ram Hair Industries	11.43	SW
Mirra and Mirra Industries Private Limited	11.48	SW
Sumit pipe Industries	11.5	SW
Mangal Industries	11.52	SW
Modern Age Metal Processors P Ltd	11.64	SSW
ITC limited	11.68	SSW
Kailash Shipping Container Freight Station	11.91	SW
Ocean Star Container Solutions	11.94	SW
Metals & Scrap Traders	11.98	SW
VEL CONTAINERS Terminus Pvt Ltd	12.03	SW
Manas warehousing Pvt LTD	12.14	SW
Gateway Distriparks South Private Limited	12.4	SSW
Olympic Wearhouse	12.66	SW
CMG Steels Private Limited	12.71	SW
Raj Petro Specialities	12.775	SW
SUN MUTIARA ENGINEERING PVT LTD	12.78	SSW
Royal Enfield Motor Factory	12.82	SSW
Toshiba JSW Power Systems Pvt. Ltd	12.85	SW
Natco Pharma Limited	12.9	SW
Southern Tubes	12.92	SSW
Sattya Publicbonded WH	12.99	SSW
Carborundum Universal Ltd CUMI	13.03	SSW
Mahalakshmi Bright Steel Industries Pvt Ltd	13.04	SSW
Crayon Roofings and Structures	13.1	SSW
TPL	13.2	SSW
CPCL LPG Bottling And Bulk Terminal	13.21	SW
Sattva Hitech CFS	13.23	SSW
Petro Araldite Private Limited	13.3	SSW
GG Steels	13.34	SW
Tamilnadu Petroproducts Limited	13.4	SSW
Indian Additives Limited	13.54	SSW
Inox Air Products	13.55	SSW
Madras Fluorine Private Ltd	13.59	SSW
Madras Fertilizer Limited	13.78	SSW

Sicgil India	13.8	SSW
CPCL	14.06	SSW
Manali Petrochemical Ltd Plant-I	14.08	SSW
SRF Limited	14.18	SW
Supreme Petrochem Limited	14.25	SW
The KCP Limited	14.43	SSW

2.9 Project Description with Process Details

This project is to augment the capacity of Marine Liquid Terminal operated by ETTPL from 3MTPA to 6MTPA. Enhancement of the Capacity Facilities which fall **under CRZ IV(A), CRZ III, CRZ III(NDZ)** and while tank farm area falls outside CRZ area. The CRZ Report is attached as **Annexure 12** has well established infrastructure—like road, rail, water connectivity and airport facilities. The planning augmentation and its throughput capacity is given in the **Table 2-4**.

Table 2-4 Planning augmentation and its throughput capacity

S.No.	Details	Remarks
1	Modification of Common Manifold to facilitate simultaneous discharge to BPCL	Hooking up lines to 2 x 24" lines of BPCL
2	Modification of 16" dock line to make it suitable for receipt of motor spirit from vessels	Modifications at jetty, common manifold and at exchange pit
3	Modification of 8" SS Dock Line for in line berthing of chemical vessel with POL vessels	Extension of 8" SS Dock line to south side of the jetty for in-line berthing of 2 vessels

The Augumentation layout of Hooking up lines to 2 x 24" lines of BPCL is given in **Figure 2-6**, layout of Modification of 16 inch ATF Dock line from jetty and common manifold **Figure 2-7** and Modification of 16 inch ATF Dock line from jetty and common manifold **Figure 2-8**.

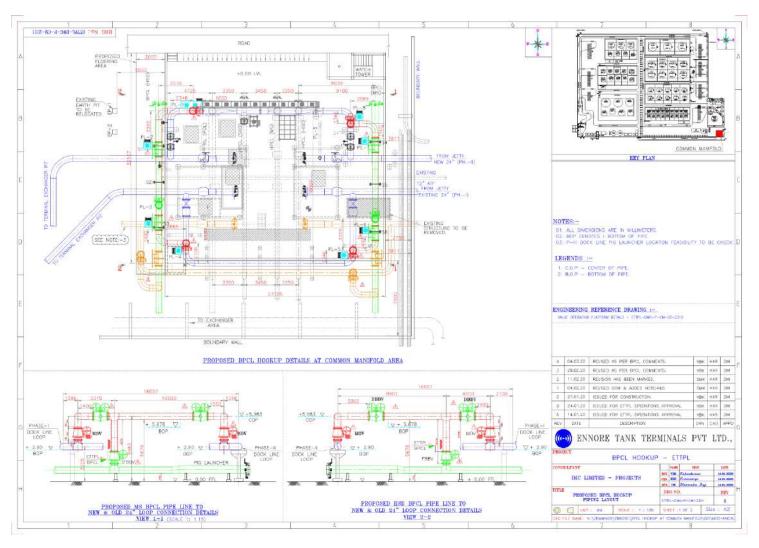


Figure 2-6 Proposed Hook up Piping Layout

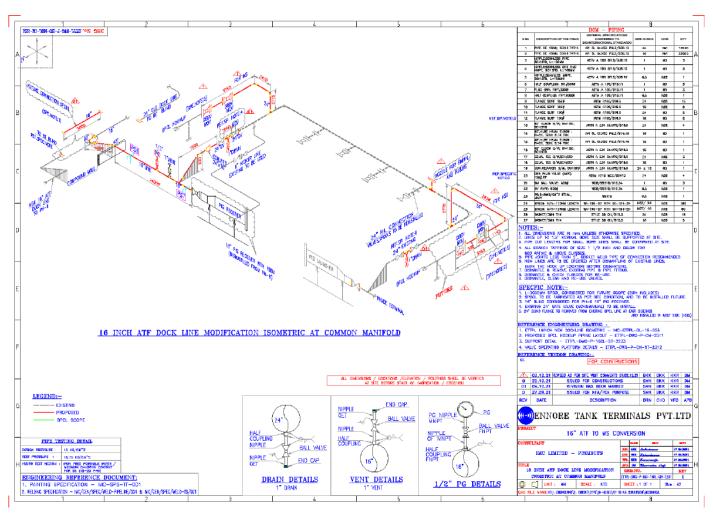


Figure 2-7 layout of Modification of 16 inch ATF Dock line from jetty and common manifold

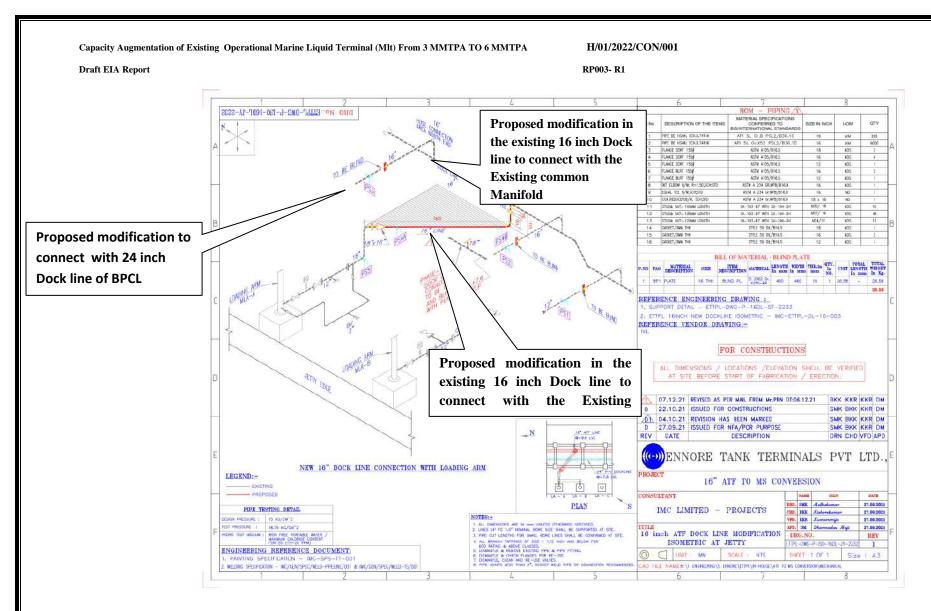


Figure 2-8 layout of Modification of 16 inch ATF Dock line from jetty and common manifold

2.9.1 Vessel Size Analysis

General

Selection of optimal vessel size for planning port facilities is vital as it influences the size of the facilities required. Further it may also be possible that vessels carrying POL products, LPG and hemicals could be of different sizes in actual practice. Hence selection of the design vessel is essential for optimum utilization of available area for future expansion. The design vessel that could call at proposed terminal at Kamarajar Port has been evaluated based on the following:

- Global Trends
- Facility at Indian Major Ports in India
- Analysis of vessels handled by ETTPL at Ennore
- Profile of vessels likely to call at Kamarajar Port and requirements of terminal users.

The various aspects as identified above are examined in detail in the following paragraphs. While doing so, reference is drawn not only to the global scenario and trends but also to the prevailing conditions at Indian ports and at Ennore

Global Trends in Sea Borne Trade -Tankers

The general range of tanker sizes handled globally is presented in Table 2.5

Table 2-5 General range of tanker sizes

Vessel class	DWT Range	Vessel class	DWT Range
General purpose tanker	10,000-24,999	Product Tanker	10,000-60,000
Medium Range tanker	25,000-44,999	Panamax	60,000-80,000
LR1(Large range 1)	45,000-79,999	Aframax	80,000-1,20,000
LR2(Large range 2)	80,000-1,59,999	Suezmax	1,20,000-2,00,000
VLCC (Very large crude carrier)	1,60,000-3,19,999	ULCC(Ultra large crude carrier)	3,20,000-5,49,999
MGC(Medium Gas Carriers)	10,000	Very Large Gas Carriers	40,000-5,00,000

The tanker market deals mainly with transportation of crude petroleum oil and products which represent one-third of global sea-borne trade.

Tanker Types

The main tanker types are:

- Crude Oil Tankers
- Product tankers
- Gas carriers
- Chemical Tankers

Crude Oil Tankers

These are mainly tankers transporting crude oil from origin to the refinery in areas where pipeline facilities do not exist. As such long distances are involved and economies of scale dictate the employment of very large crude carriers & ultra large crude carriers which are tanker vessels above 200,000 DWT.

Product Tankers

These are specialized cargo vessels that carry chemicals such as naphtha, jet fuel, kerosene, petrol, diesel, fuel oil, etc. Unlike crude oil tankers which transfer cargo from its origin to the refinery, this sector deals with processed cargo from the refinery to centers of consumption or distribution.

Product tankers fall mainly within the Handy size tanker classification. Handy size tankers are those of less than 50,000 DWT with draft of around 10 m. Most suited for destinations with depth & length constraints.

Chemical Tankers

The chemical tanker fleet is divided into three specifications in accordance with IMO.

- 1. The smallest sector (3%) is IMO-1 which trades in most hazardous cargoes used in pharma & pesticides, etc.
- 2. The largest sector about 67% of the fleet known as IMO-2 trades primarily in pure chemical cargoes such as styrene, xylene, etc.
- 3. Almost 30% of the fleet comprises IMO-3 which are double hull product tankers trading only in chemicals & vegetable oils.

According to Lloyd's Register of shipping, Marine 'Global Trends 2030' Report, total tonnage & vessel numbers will increase for all major ship types. World seaborne trade grew by an estimated 7 per cent in 2021. However, oil trade has not been as buoyant. The increase for tankers will be at a slower rate.

Around the beginning of 2011 the combined tonnage of sea going ships was 1396 million DWT. Oil tankers accounted for around 33% of this fleet and the annual increase in tanker fleet was around 5.5 percent compared to about 16 percent for dry bulk carriers. The total tonnage of tankers is expected to grow only 1.7 to 1.8 times over the next 2 decades compared to containers, dry bulk & LNG which are expected to grow between 1.8 and 3.0 times.

The growth of oil trade from 2018 to 2023 as indicated **Table 2.6** below shows only an average 2.5% increase per annum.

Table 2-6 International Seaborne Trade (Oil & Gas)

Year	Oil and Gas (In Million Ton
2018	2846
2019	2931
2020	3004
2021	3080
2022	3110
2023	3204

Volumes of Crude oil and refined petroleum products grew marginally at 1.5 per cent in 2022. Though the economic slowdown, high oil price levels and new technologies have damped demand for crude oil, petroleum-product trade fared better in comparison.

Oil tankers and chemical & product tankers comprise only about 25% deliveries in terms of tonnage while the bulk of new orders & deliveries constitute dry bulk carriers and container vessels. The average vessel sizes of new orders for liquid bulk vessels are given in **Table 2.7**.

Table 2-7 Average vessel sizes of new orders for liquid bulk vessels

Туре	DWT
Crude Oil Tankers	200,000
Chemical/Product Tankers	24,000
Product Tankers	34,000
LPG Tankers	45,000

The average size and break-up of the world fleet are presented in Table 2.8.

Table 2-8 Age distribution of World Merchant Fleet (Oil Tankers)

	0-4 years DWT	5-9 years DWT	10-14 years DWT	20+ years DWT
World	57,414	67,739	69,451	11,322
Developing Countries	58,677	73,757	62,818	12,441
Developed Countries	54,561	58,280	70,009	6,061
Countrieswith economies in transition	39,610	32,848	24,281	4,470

The above indicates that 60,000 to 70,000 DWT vessels are the significant carriers in the world oil tanker fleet.

2.9.2 LP Vessels calling at Major ports along the East Coast of India

The vessels calling at Indian ports for cargo like POL products, LPG and Chemicals, facilities at each port and details of the vessels called at major ports along the East Coast of India are studied in the following sections.

Table 2-9 Bulk Liquid Handling Facilities along the East Coast of India

PORT	Cargo Type	No of Berths	Vessel Size in DWT
Kolkata	POL Products	7	Upto 38,000
Haldia	Crude/POL	3	89,000 – 150,000
Donadin	POL	1	70,000
Paradip	Crude	1 SPM	320,000
	Crude Oil	1	150,000
	POL	2	50,000
Visakhapatnam	LPG	1	50,000
	Other Liquids	4	45,000
Ennore	LPG/POL Products	1	15,000 – 70,000
Chennai	Crude/POL	2	140,000
Tuticorin	POL Products	1	65,000

Source: Indian Ports Association

Though the commodity composition of the total traffic at Indian ports has changed marginally over the years, POL and its products continue to be the single largest commodity handled by ports as seen from **Table 2.10** below

Table 2-10 POL Traffic handled at Major Ports along East Coast

PORT	TRF Apr-Mar 2021	TRF Apr-Mar 2022	TRF Apr-Mar 2023	TRF Apr-Mar 2024
Kolkata	35.581	35.679	10005	9913
Paradip	34360	34561	37421	37477
Visakhapatnam	69.84 MT	80MT	15821	18449
Ennore	2297	2419	2387	2582
Chennai	10230	11850	12456	13307
Tuticorin	454	353	299	467

Source: Indian Ports Association

2.9.3 Review of Tanker& Product Vessels at Kamarajar Port

The present composition of the Product vessels was reviewed along with the requirements of the IPPL and PSU oil companies with regard to their plans to bring larger vessels in future.

Table 2-11 No of Tankers and Product Vessels Called at Ennore

FY 2022-23&FY 2023-24							
DWT Range	Black oil	POL	LPG	СНЕМ	Total	%	
0-5000			-	1	1	0.2	
5001-10000			-	39	39	8.1	
10001-15000	3		-	34	37	7.6	
15001-20000			-	6	6	1.2	
20001-25000			-	2	2	0.4	
25001-30000			-	2	2	0.4	
30001-35000		17	-	2	19	3.9	
35001-40000	1	5	-	-	6	1.2	
40001-45000		23	-	-	23	4.8	
45001-50000	21	159	3	-	183	37.8	
50001-55000		1	106	-	107	22.1	
55001-60000			25	-	25	5.2	
70001-75000		8	-	-	8	1.7	
75001-80000		26	-	-	26	5.4	
95000-100000	25	239	134	86	484	100	

Draft EIA Report

RP003 - R1

Table 2-12 Tankers at Ennore

DWT Range	%
0-5000	0.2
5001-10000	8.1
10001-15000	7.6
15001-20000	1.2
20001-25000	0.4
25001-30000	0.4
30001-35000	3.9
35001-40000	1.2
40001-45000	4.8
45001-50000	37.8
50001-55000	22.1
55001-60000	5.2
70001-75000	1.7
75001-80000	5.4
95000-100000	100

It may be seen from **Table 2.11** that POL tankers in the range of 40000 to 60000 DWT constitute 33% of the total number of vessels called at Kamarajar Port in 2023.

2.9.4 Parcel sizes

Petroleum products – The parcel sizes are expected to be wide, in the range of 10,000 MT to 75,000 MT. The private oil marketing companies are expected to bring in smaller tankers initially. Changes in the government control pricing policy of POL products and reduction in gap due to under recovery are likely to result in more business for these firms. The parcel size and vessel size are likely to increase substantially thereafter.

Chemicals – From 500 MT to 40,000 MT. Size of Chemical vessels will be reduced to below 8000 DWT wherein the LoA of the vessels will be lesser than 120 metres. This is to facilitate berthing of these vessels along with MR Size POL vessels to maximize the throughput volumes

The parcel size of CBFS is expected to be relatively steady -40,000 to 50,000 MT initially and is expected to increase subsequently due to higher demand from existing and new plants.

A significant proportion of chemicals and petroleum products are expected in smaller parcel lots and hence the number of shipments would be higher. There are multiple oil companies and traders who would be moving several types of petroleum products through Ennore and significant coastal shipping activity is also expected. A significant proportion of the parcel sizes could be on the lower side (< 10000 MT) and this would lead to higher number of ships.

A wide range of petroleum products – Petrol, Diesel, Naphtha, Kerosene, Aviation Turbine Fuel, Fuel Oils, etc. are expected to be handled. Several of these products are shipped in different grades. In such an event, the different grades would have to be received/discharged separately and hence shipment times may actually take longer than predicted.

RP003 - R1

Draft EIA Report

Petroleum, CBFS, Crude and other chemicals are usually discharged at multiple ports. Hence, even if the vessels are larger in size, the actual parcel sizes may be lower.

The berthing facility must therefore be flexible to handle a large range of vessels so that the market requirements can be met satisfactorily without bunching and demurrage.

Crude – VLCCs around 300,000 DWT subject to depth availability. The existing MLT can berth VLCCs and depending upon the customers' requirements, berthing of VLCCs will be planned.

2.9.5 Conclusion

- ➤ 60,000 DWT to 70,000 DWT oil tankers will also be calling the terminal as against 20,000 to 30,000 DWT vessels calling presently.
- ➤ POL Vessels will invariably be berthed along with a chemical vessel as in-line berthing whereby berth efficiency will be increased and throughput volumes will be higher.
- ➤ POL Vessels will start discharging 2 products namely Motor Spirit and HSD simultaneously through 2 pipelines as against single product discharge being done currently. This is expected to enhance the throughput significantly.
- ➤ With regard to LPG vessels, 45-50,000 DWT vessels will arrive and medium range vessels will be discouraged to achieve higher volumes.
- > ETTPL expects large POL/Crude tankers including Panamax to Suezmax vessels to call at Kamarajar Port in future and on a long-term basis.
- > In view of the above, ETTPL plans to achieve higher throughput volumes by optimizing the existing facilities without much of investments except as mentioned earlier.

2.9.6 Traffic forecast

2.9.6.1 Traffic Forecast by KPL

Traffic forecast was made initially by Kamarajar Port Limited (KPL) during the tendering stage based on expressions of Interest received from the firms and information furnished by some of prospective users / traders / industry at that time and was estimated conservatively.

2.9.6.2 Traffic Forecast by ETTPL

Following are the methods adopted for traffic survey by Ennore Tank Terminals Private Limited (ETTPL):

a) Existing Users

Actual traffic volumes of previous period are considered in the projections. ETTPL had extensive interactions with all major potential users of the jetty, pipelines and storage tank farm and various contracts entered into with customers.

S.No	Existing users	Products
1.	Indian Oil Petronas Pvt. Ltd (JV of IOCL & Petronas)	Propane/Butane/LPG
2.	Hindustan Petroleum Corporation Ltd	POL
3.	Bharat Petroleum Corporation Ltd	POL
4.	IOCL	POL
5.	Hi-Tech Carbon – A unit of SKI Carbon India Ltd	Carbon Black Feed Stock
6.	Shell India Marketing Pvt Ltd	POL
7.	Ponpure Logistics	Various chemicals
8.	Raj Lubricants	Base oils
9.	Manali Petrochemicals Ltd	Propylene Oxide
10.	Tamilnadu Petroproducts Ltd	Benzene/LAB
11.	Supreme Petrochem	Styrene Monomer
12.	Reliance Industries Ltd	POL
13.	SKS Logistics Private Limited	Petro Chemicals
14.	KLJ Group of Industries	Petro Chemicals
15.	Jesons Industries Limited	Styrene Monomer
16.	Philips Carbon Limited	CBFS
17.	Other Customers of Chemicals	

b)Market Study by IMaCS

ETTPL retained ICRA Management Consulting Services (IMaCS) to conduct an independent market assessment and risk analysis for this project in 2006, which was revalidated in 2009. ICRA interacted independently with the users and also carried out extensive secondary research to assess the demand at Ennore. The traffic demand was finalized after thorough research, analysis and verification with the users.

Basis of the study

Following parameters are the basis of the study which led to the traffic projection:

- i) The need for a marine liquid jetty and tank farm at Kamarajar Port stems from the below mentioned factors:
 - > Growing demand for handling bulk liquids in and out of the Chennai and surrounding regions
 - Limitations in infrastructure facilities for handling bulk liquids, especially hazardous class liquids and liquefied gases at Chennai Port.

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Draft EIA Report RP003 - R1

Potential of Kamarajar Port to be used as a hub port for crude oil, petroleum liquid & gas products and chemicals

- ii) Identification of bulk liquids and liquefied gases that would be handled through the MLT based on demandsupply scenario pertinent to the region that can be served by ETTPL and the specific logistics of the potential users.
- iii) The traffic study was based on review of the traffic volumes and facilities at competing ports such as Chennai, Mangalore, Krishnapatnam and Cochin. Hence, the demand estimation takes into account the potential traffic that would shift from other ports to Ennore due to logistical and cost advantages to the users.

Advantages of ETTPL

- ➤ Kamarajar Port is designed with higher dredged depths of 15 to 18.5 meters and large tankers (150,000 DWT) can be berthed at present. Users thus have the option to import/export in higher parcel sizes and benefit from lower freight costs.
- ➤ Kamarajar Port is located on the international shipping route. Kamarajar Port is a major port of call for Products, chemicals and vegetable oil tankers. Hence, Ennore is an ideal port of call for ships from the west and from Singapore, Malaysia, Korea and other far-east countries.
- > The terminal is planned for handling and storage of a wide range of liquid bulk including low flash liquids, which makes Ennore an attractive option for users and shipping companies.
- In view of the higher draught, there is potential for Kamarajar Port to be used as a hub port. Large parcels may be imported at Kamarajar Port and then moved to the consumption points either by road, rail or coastal shipping.
- Chennai Port does not have storage facility for handling LPG. Also, there is no storage infrastructure for Class A/B products, which is forcing importers in the hinterland of Chennai to route their import through other ports such as Cochin and Mangalore. Ennore would therefore be an automatic choice for importers and exporters.

Assumptions of the study

Basic assumptions behind the traffic study are explained in the following paragraphs:

- ➤ IPPL has set up the LPG import terminal at Ennore. ETTPL has also put up LPG handling facilities and entered into a long term contract with IPPL for its entire business requirements. The terminal became operational in July 2012. From IPPL's viewpoint, there is strong need for this LPG terminal as Tamil Nadu is facing a deficit in LPG. The increase in demand for LPG is estimated to grow at a rapid pace. The demand projections of LPG import at Kamarajar Port have been made after taking into account CPCL's expansion of capacity. There are no major refinery projects coming up in the region and hence this assumption is well justified.
- ➤ Users located closer to Chennai and Ennore who are presently using other ports will shift to ETTPL's MLT due to safety, cost and logistical advantages.

- ➤ Products such as CBFS, methanol, etc., which are likely to be handled at Ennore are currently imported as India is deficit in these products. The study is based on the assumption that these products will continue to be imported in future as there is no evidence that import substitution would affect the import volumes.
- ➤ Currently, the public sector oil companies are in the process of shifting their operations from thickly populated areas like Tondiarpet and Korukkupet in Chennai to Ennore. HPCL has already set up a POL storage terminal near Kamarajar Port and their entire requirements will be handled through this MLT. The volumes are likely to exceed 1.0 MMTPA in the year 2016-17.
- > Traffic projections are based on current consumption and growth in demand of the relevant products as per information obtained from secondary sources and potential users. Care has been taken to ensure that estimated projections are conservative.

2.9.6.3 Potential users of the Marine Liquid Terminal

Based on the above the following potential users have been identified:

S.No	Potential users	Products
1.	Chennai Petroleum Corporation	Petroleum Crude Oil/MS/
		HSD/SKO/Furnace Oil
2.	Philips Carbon/Birla Carbon	Carbon Black Feed Stock
3.	ONGC/BPCL/IOCL/HPCL/Nayara Energy/Shell	POL
	India/RIL	
4.	Other International / national users	Bulk handling of products with Kamarajar
		Port as Hub.
5.	IOCL/BPCL/HPCL/IPPL	Refrigerated Propane and Butane

2.9.6.4 Demand Drivers

1. Petroleum products

 $The \ demand \ for \ marine \ terminal \ facilities \ for \ petroleum \ products \ is \ expected \ to \ increase \ significantly \ due \ to:$

Increasing importance of coastal shipping in petroleum product movement

- ➤ Growing POL product traffic at ports in the southern region
- Overlapping product movement of petroleum products
- > Demand serviced from refineries outside the region Private sector players like RIL and Nayara Energy expect to rely substantially on coastal movements from their refineries in the western region to service their share of demand in the southern region
- > Retail marketing plans of private sector oil companies
- > CPCL expansion and capacity constraints at Chennai Port

In view of the advantages, a wide range of vessels ranging from large product tankers to small chemical tankers are expected to call at the MLT.

2. Liquid Petroleum Gas

Traffic in LPG is expected at Ennore in view of the potential demand-supply gap in the immediate hinterland of Kamarajar Port. The requirement of domestic and industrial and auto LPG of entire North TN will be catered through

the IPPL's LPG storage terminal at Athipattu Pudhunagar and the products will be handled through the ETTPL's MLT.

The demand is likely to grow at 5-8% on annual basis with Pradhan Mantri Ujwala Yojana scheme being implemented across the country for supply and distribution of domestic LPG.

3. Chemicals/other liquids

MLT is well placed to service the chemical cluster in and around Chennai, in its immediate hinterland. Manali Industrial Belt is well connected to Ennore for any import of their raw materials and finished goods as Chennai Port Authority will not be in a position to handle hazardous products and also traffic congestion outside the Ports will encourage the importers to prefer Ennore to Chennai.

2.9.6.5 Petroleum Crude Oil

Presently CPCL is handling around 10 MMTPA of Petroleum Crude Oil through Chennai Port. The existing pipeline runs through thickly populated areas and is old, necessitating frequent repairs and very low discharge rate. Hence, it is felt by the industry that an alternative pipeline needs to be provided from Kamarajar Port in order to ensure uninterrupted supply of Crude oil at a faster discharge rate at the same time minimizing the environmental hazards.

2.9.6.6 Ship To Ship (STS) Operations

Kamarajar Port has a potential to tap the demand for transshipment of products in the east coast either through onshore storage or directly from one ship to the other by being berthed alongside the Jetty, one behind the other. ETTPL's Marine Liquid Terminal (MLT) provides a readymade solution for such operations. This operation is required among other reasons for lighterage also. The products which need in-line berthing for Ship to Ship ("STS") transfer facilities include Chemicals, CBFS, POL, LPG, etc.

At present there are inadequate port facilities to address demand in immediate hinterland.

2.9.7 Traffic Projected

The traffic volume for the proposed terminal expansion and storage tank farm would accrue from realization of the potential volumes due to the following factors:

- Shift of existing traffic by users in the immediate hinterland to Kamarajar Port, hitherto serviced from other Ports.
- New demand in the immediate and extended hinterland
- > ETTPL has signed long term agreements with most of the identified potential users and is been handling these products during the last 10 years and above.

While arriving at the traffic projections under chemicals and other liquids category, volumes accruing from existing users and demand likely due to expansion of select users have been considered. However, the projections do not include potential volumes that could possibly accrue on account of new green field projects in the region.

The projections are presented **Table 2.13** considering existing contracts, traffic, etc. The estimates are conservative and it is possible that the traffic projected could be exceeded.

Table 2-13 The projections of considering existing contracts, traffic, etc

Scenario	Optimistic scenario						Base Ca viability		ely volu	me assu	ımed fo	r
Product	Black	POL	Chemic	LPG	Cr	Tot	Black	PO	Che	LP	Cru	Total
→	oil		al		ude	al	oil	L	mic	G	de	
									al			
Year			MMTPA						MM	TPA		
21-22 ♥	0.40	3.00	0.20	2.00		5.60	0.30	2.50	0.12	1.60		4.52
22-23	0.50	3.30	0.20	2.00		6.00	0.40	2.70	0.12	1.60		4.82
23-24	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
24-25	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
25-26	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
26-27	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
27-28	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
28-29	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
29-300	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
30-31	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
31-32	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
32-33	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
33-34	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
34-35	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98
35-36	0.50	3.40	0.20	2.00		6.10	0.40	2.80	0.13	1.65		4.98

Scenario						
Product	Black oil	POL	Chemical	LPG	Crude	Total
Year			MMTPA			
21-22	0.24	2.00	0.10	1.28		3.62
22-23	0.32	2.16	0.10	1.28		3.86
23-24	0.32	2.24	0.10	1.32		3.98
24-25	0.32	2.24	0.10	1.32		3.98
25-26	0.32	2.24	0.10	1.32		3.98
26-27	0.32	2.24	0.10	1.32		3.98
27-28	0.32	2.24	0.10	1.32		3.98
28-29	0.32	2.24	0.10	1.32		3.98
29-300	0.32	2.24	0.10	1.32		3.98
30-31	0.32	2.24	0.10	1.32		3.98
31-32	0.32	2.24	0.10	1.32		3.98
32-33	0.32	2.24	0.10	1.32		3.98
33-34	0.32	2.24	0.10	1.32		3.98
34-35	0.32	2.24	0.10	1.32		3.98
35-36	0.32	2.24	0.10	1.32		3.98

Table 2-14 List of Products

1	Aviation Fuel	45	Di ethyl Acetone	89	MDI (methylene diphenyl di isocyanate)
2	Acetone	46	Dioctyl Phthalate	90	Mono Ethylene Glycol (MEG)

3	Acetic Acid	47	n- Octanol	91	MTBE
4	Acetylene	48	Di Butyl Alcohol	92	Methyl Acrylate
5	Acrylonitrile (ACN)	49	Diesel Oil (Sour)	93	Molasses
6	AHE 70	50	Diesel Oil (Light)	94	Motor Spirit
7	Ammonia Liquid	51	Dicyclopentadiene (DCPD)	95	Molten Sulphur
8	Aniline Oil	52	Ethyl Alcohol	96	Neem Oil
9	Alpha Olefin C14	53	Ethylene Dichloride (EDC)	97	Naphtha
10	Aromatic Feed Stocks (AFS)	54	Ethylene Di Amine (EDA)	98	N Paraffin
11	Base Oil	55	Ethanol	99	N Hexane
12	Black Oil	56	Ethane (Cryogenic)	100	Nitric Acid
13	Butyl Acrylate	57	Mono Ethylene Glycol		Nonane
14	Butane	58	2 Ethyl Hexanol	102	Octanol
15	Butene-1, Butene-2	59	Ethyl Acetate	103	Ortho Xylene
16	Benzene	60	Exxsol D-80	104	Ortho Toluidine
17	Butyl Acetate	61	Di-Ethylene Glycol	105	Phenol
18	Bio Diesel	62	Furnace Oil	106	Propylene Glycol
19	Butanol	63	Formaldehyde	107	Phosphoric Acid
20	1 Butanol	64	Glycerine	108	Polyether Polyols
21	Butadiene 1,3 (Liquefied Gas)	65	High Speed Diesel	109	Paraffin Oil
22	Bitumen (AC Asphalt/Asphalt Cement)	66	Hydro Fluo Silicic Acid	110	Palmolein Oil
23	N-Butanol	67	Hexane	111	Propane
24	2-Butane (Mixer Isomer)	68	Isopropyl Alcohol	112	Paraxylene
25	2-Butanone	69	ISO Butanol	113	Palm Fatty Oil/Acid Distillate (PFAD)
26	Carbon Tetra Chloride	70	Isobutyl Alcohol	114	Propylene Oxide
27	Cumene	71	Isononyl Alcohol	115	Propylene

28	Castor oil	72	Isopar L(S)	116	Polyisobutene
29	Crude oil	73	ISO Butylene	117	Py- gas
30	Cyclohexanol	74	ISO Butyl Acetate	118	Rubber processing Oil
31	Cyclohexanone	75	Ink Oil / Base oil 240	119	Styrene Monomer
32	Carbon Black Feed Stock	76	Kerosene	120	Superior Kerosene Oil
33	Caustic Soda Lye	77	LSHS Heating	121	Sulphuric Acid
34	Crude Glycol	78	Lubricating Oils	122	Solvent C9 (Shellcal A100/Solvensso 150 etc)
35	Crude Palm Styrene	79	Liquefied Petroleum Gas	123	Solvent C10
36	Cyclohexane	80	Low Sulphur Heavy Stock	124	THF (Tetra Hydro Furan)
37	Chloroform	81	Linear Alkyl Benzene (LAB)	125	Toluene
38	C4 (Liquefied gas)	82	Methyl Alcohol	126	TDI (Toluene Diisocyanate)
39	Cresol	83	Maleic Anhydride	127	Trans - 2 Butene
40	Cis-2-Butene	84	Mixed Xylene	128	Vegetable oil
41	Coal Tar Pitch	85	Methylene Di Chloride	129	Vinyl Acetate Monomer (VAM)
42	Diethylene Glycol	86	Methyl Isobutyl Ketone	130	White Oil
43	Dipropylene Glycol	87	Methyl Ethyl Ketone	131	Gum Turpentine
44	Di Octonol	88	Methane (Cryogenic)		

2.9.8 Preliminary design

2.9.8.1 Planning of Marine Liquid Terminal

The planning for the Marine Liquid Terminal is as such to enable future expansions conveniently keeping in view the maximum vessel size and cargo traffic projections which may be envisaged in future. The various facilities available at the MLT are as follows:

2.9.8.2 Marine liquid jetty

The jetty is located at about 1300 meters from the landfall point of the Northern Breakwater on the western side. The berthing face is at a distance of about 160 meters from the North Breakwater. The jetty is an integrated structure consisting of 360 meters length of service/berthing platform and mooring facilities for handling smaller as well as larger vessels. The jetty is designed for berthing of 6000 DWT vessels to 150000 DWT and above vessels. To meet the market demands in future, the MLT is designed in such a way that with suitable modifications/additions/expansions larger vessels can be handled. The detailed design & drawings are approved and released for construction by the Independent Engineer. The Cargo handling equipment of the Jetty given in **Table 2-15.**

This jetty is fully equipped with fire fighting facility as per OISD 156 norms. The necessary tower monitors, jumbo curtains and foam monitors is provided catering to the largest vessel. The water requirement for the entire system is tapped from the sea. Necessary environmental protection system shall be provided such as spill management system conforming to the requirements of various statutory authorities.

Table 2-15 Summary of Cargo Handling Equipment – Jetty

Sl. No	Cargo	Equipment Type	Nos.	Size			
	Unloading Arms						
	LPG	Unloading arms (Fixed)-Hydraulic	2	10"			
1	POL	Unloading arms (Fixed)- Hydraulic	3	12"			
	POL- White Oil	Unloading Arms Manual	1	10"			
	Black Oils	Unloading Arm – Manual	1	12"			
Pipelines of length 3700 Mtrs. (approx)							
	Black oil Mild Steel Pipeline IS-35		1	24"			
	White petroleum product Mild Steel Pipeline IS-35		1	24"			
2	ATF Mild Steel Pipeline IS-3589		1	12"			
	POL / Lube	Mild Steel Pipeline IS-3589	1	12"			
	Chemicals	Stainless Steel Pipeline 316L	1	8"			
	LPG	ASTM A 333-Gr-6 seamless LTCS	2	18"			

	Propylene Oxide	Carbon Steel Pipeline – API 5L Gr B PSL-2	2	10"
	White petroleum product	Mild Steel Pipeline – API 5L Gr.B /	1	24"
	White petroleum product	Mild Steel Pipeline – API 5L Gr.B /	1	16"
		Pumps	<u>l</u>	
3	Hydraulic pumps	6 KW	6	
	Stripping pumps	10 KW	3	
		Other Equipments		
	Engine driven Fire fighting	Fire fighting system for jetty as per		
	pumps	OISD 156		
4	Nitrogen system	40 cum / hr. capacity + 100 cum/ hr capacity	1 No each	
-	Compressed air	910 cfm	2 Nos	
	ЕТР	20 cum. / day		
	Control room with emergency facilities	Safety and emergency equipment.		

2.9.8.3 Approach Trestle & Pipeline Trestle

An Approach Trestle is connecting the jetty head from NBW and fire pump room. The jetty control building is located adjoining the Trestle. The 1300m (approx) long pipeline trestle running almost parallel to the breakwater will carry the pipelines, on both sides, from the main jetty to the tank farm area.

2.9.8.4 Tank Farm

The tank storage terminal is developed in phases and as per the OISD 118. It comprises 8 enclosures consisting of 64 nos. of storage tanks to store liquid products like petroleum products, chemicals, petrochemicals and non-class products. The Tank Farm Fire Fighting system has been designed as per OSD 117 consisting of Hydrant System, Medium Velocity Spray System & Foam System. The detailed design & drawings for the Fire Fighting System are approved by the Independent Engineer.

RP003 - R1

2.9.8.5 Land

The land of about 33.26 Acres allotted initially by EPL is fully utilized for the development of Tank Farm, Administrative office building, TLF, internal roads, development of greeneries etc.

2.9.9 Equipment Available/Required

2.9.9.1 Cargo Handling Equipment

The existing cargo handling equipment consists of:

- Jetty Sub Structure
- Jetty Super Structure
- Fixtures
- Walk way connection
- Pipe Trestle & Pipe-Bridges
- Marine Loading arm structures
- 3 Nos _12" Hydraulic Marine Loading arm for POL
- 2 Nos of 10" Hydraulic Marine Unloading Arms for Butane and Propane
- 1 No of 12" Manual Marine unloading Arm for black oils
- 1 No of 10"Manual Marine Unloading Arm for POL
- 3 x 24" White POL and black oil Pipelines
- 1 x 16" White POL Pipeline
- 2 x 18" LTCS insulated pipelines for Refrigerated propane and butane
- 2 x 12" Lube oils and white POL
- 1 x 8" Chemical pipeline
- 2 x 10" Propylene Oxide Liquid and vapour Pipelines
- Hose Towers
- Tower Monitors
- Computers & Software

2.9.9.2 Storage Requirement

The total Storage capacity available is 2, 54,349 KL in 64 Tanks with Phase I, II with in the land already allotted land.

2.10 Mitigation measures

2.10.1 Air pollution

The emissions from the operations to the atmosphere shall be from the diesel engines and power generator. Emissions from the generator will consist of mainly CO₂, traces of NOx, SO₂ and particulate matter.

Draft EIA Report

RP003 - R1

The concentration of SO_2 from the emitted gas will depend on the fuel source, which in this case shall be diesel containing little sulphur. The DG set emissions shall be through a narrow vent at approximately 6 m above ground level. No flaring is envisaged as this is heavy oil reservoir devoid of any associated gas.

2.10.1.1 Mitigation measures

The DG set has been provided with stacks of adequate height so as to disperse the emanating fuel sources containing Suspended Particulate Matters, Oxides of Sulphur and Nitrogen without affecting the ground level concentrations.

2.10.2 Noise pollution

Noise pollution might be caused due to operation of machineries & equipment; Vehicular traffic; Operation of DG sets and machineries

2.10.2.1 Mitigation measures

- Well maintained equipment and vehicles will be used;
- All DG/GG sets would be provided with acoustic enclosures; and
- Appropriate PPEs (e.g. ear plugs) will be used by workers while working near high noise generating equipment.

2.10.3 Solid waste management

2.10.3.1 Impacts

During operation phase, the solid wastes generated can be broadly categorized as Hazardous Waste and Municipal Solid Waste. Further, the generated Municipal Solid Waste segregated into biodegradable, recyclable and inert compounds.

If the solid waste generated is not properly managed and disposed in unauthorised manner, it will impact on soil quality, groundwater and air quality. Municipal Solid waste generated from operation phase is estimated as 11.25 kg/day. Port has given permission for disposal of solid waste.

2.10.3.2 Mitigation Measures

- The Source of Municipal waste will be from the domestic use and strict guidelines will be put in place in order to manage the solid waste generation during operation phase.
- Solid wastes will be segregated into organic and inorganic categories. The organic waste will be
 disposed through village bins and inorganic waste will be sold to authorized vendors. The ship
 generated solid wastes will be collected, segregated and diposed to approved recyclers/industries for
 further beneficial use through port engaged contractor.


Hazardous waste generated will be stored in a separate hazardous waste storage area and properly
disposed as per the Hazardous and Other Wastes (Management and Transboundary Movement)
Amendment Rules, 2016.

2.11 Green Belt Details

In 1992 the port was conceived as a satellite port to handle coal through two coal berths. Port is continuously developing green belt area.

- ➤ In 1992, the Kamarajar Port was conceived as a satellite port to handle coal through two coal berths. The Port is continuously developing green belt area.
- The total area of the port is 2787.2 acres in that area total green belt is to an extend of 636.14 acres (22.82%) which includes inside and outside the custom bound area.
- > Proposed Green belt of 5.01 acres will be developed inside and outside the Tank Farm area.
- The treated wastewater will be reused in the green belt areas to reduce the water requirements.
- > The tree species to be used for the green belt development will be in line with the local ecology.

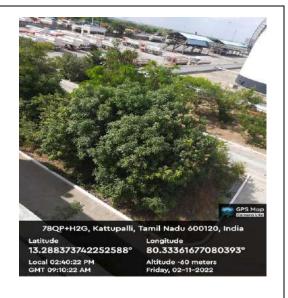


Figure 2-9 Green Belt Development

2.12 Resources required for the Project

2.12.1 Power and Fuel Requirement

As the power requirements of the Terminal are met from TNEB by taking necessary assistance from KPL, no significant impacts are envisaged. A detail power and fuel requirement is given in the **Table 2-16.**

Table 2-16 Power and Fuel Requirement of existing and proposed

Details	Existing	Proposed	After Expansion
Power Requirement	Terminal – 11KV(HT)	No Additional Power is	Terminal –
_	MLT – 440 Volt (LT)	required	11KV(HT)
		Existing quantity will be	MLT – 440 Volt
	DG SET:	sufficient	(LT)
	Terminal: 2 No of – 500 KVA		DG SET:
	and 1 No of – 250 KVA		Terminal: 2 No of
	MLT: 1 No of – 180 KVA		-500 KVA and 1
			No of – 250 KVA
			MLT: 1 No of –
			180 KVA
	Diesel for DG set purpose.	Nil	No change
Fuel	Transportation of fuel-	Existing quantity will be	
	200 liters barrels received from	sufficient	
	local retailers by using load		
	vehicle.		
	Hazardous material storage		
	facility-		
	Not Applicable		
	Maximum quantity stored below		
	900 liters in Diesel storage shed.		

2.12.2 Water Requirement

The existing ,proposed and After Expansion water requirement is given in the **Table 2-172-17.**

Table 2-17 Water Requirement

S.No	Water	Qty (KLD)			
5.110	Water	Existing	Proposed	After Expansion	
1	Fresh water Requirement	6.7	2.5	9.2	
2	Recycled Water	1.6	4.2	5.8	
Total Water Requirement		8.3	6.7	15	

Table 2-18 Total water Break up

Water Requirement	Existing water Requirement(KLD)		Proposed water Requirement(KLD)		After Expansion water Requirement(KLD)	
	Fresh Recycled water water		Fresh water	Recycled water	Fresh water	Recycled water
Domestic	2.5	0	1	0	3.5	0
Washing	1.8	0	1.5	0	3.3	0
Gardening	2.4	1.6	0	4.2	2.4	5.8
Total	6.7	1.6	2.5	4.2	9.2	5.8

For Fire fighting, sea water is being used and the same will be continued after expansion.

Source of water: Out sourced through water tankers.

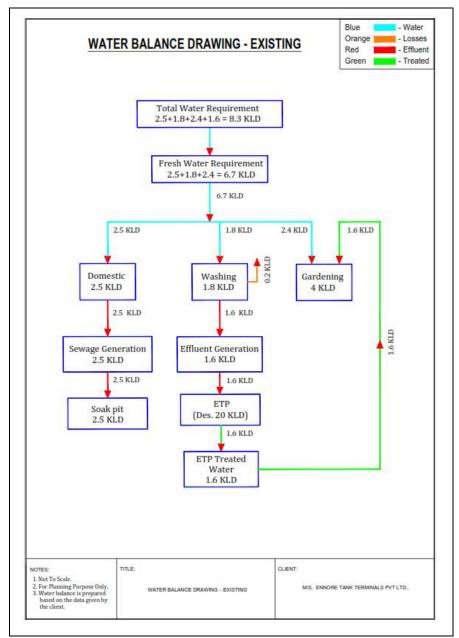


Figure 2-10 Existing Water balance diagram

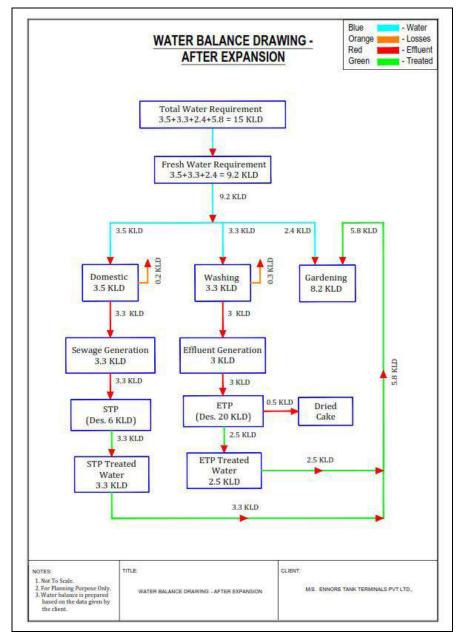


Figure 2-11 After Expansion Water balance diagram

2.12.3Manpower requirement

The existing and proposed manpower is given in the **Table 2-19.**

Table 2-19 Manpower of existing and proposed

Details	Existing		Proposed	After Expansion
Manpower	Permanent	65	10	75
Manpower	Temporary	13	15	28
Total		78	25	103

RP003 - R1

2.13 Wastewater Treatment

2.13.1 Sewage and Effluent Treatment

The existing sewage will be treated in existing septic tank and the proposed sewage will be treated in the Proposed STP. The existing and proposed effluent will be treated in Existing ETP of Ennore Tank Terminals Pvt Ltd is given in the **Table 2-20**.

Table 2-20 Sewage and ETP of existing and proposed

Details	Existing	Proposed	After expansion	Disposal method
Sewage	2.5	0.8	3.3	Existing: Sewage Disposal: Septic Tanks and Sock Pit x 6 Nos. Dimension (Length -1.4 mts X width 0.9m, Depth – 2.2m) After Expansion: 6 KLD STP will be proposed and the treated sewage will be used for gardening
Effluent	1.6	0.9	2.5	Will be treated in existing ETP (Capacity – 20 KLD) and reuse for gardening.

2.13.2 Solid Waste Generation and Management

The existing and proposed solid waste generation of Ennore Tank Terminals Pvt Ltd is given in the **Table 2-21.**

Table 2-21 Solid Waste Generation and Management

Type of Wastes	Existing (kg/day)	Proposed (kg/day)	After Expansion (kg/day)	Treatment / Disposal Method
Inorganic	14.04	4.5	18.54	Disposed to authorized vendors and the same will be continued

Organic	21.06	6.75	27.81	Used as a Manure for Greenbelt.
Total	35.1	11.25	46.35	

- All the solid waste generated are collected in bins and disposed.
- ➤ The same will be followed after Expansion.

Note: Calculated as per CPHEEO Guidelines, 0.45kg/capita/day

2.13.3 Hazardous Waste Generation and Management

The existing and proposed hazardous waste generation of Ennore Tank Terminals Pvt Ltd is given in the **Table 2-22 and Table 2-23.**

Table 2-22 Hazardous Waste Generation and Management of existing

Source	Name of the Hazardous waste and category	Quantity	Storage and Handling	Method of disposal
Cleaning, emptying and maintenance of petroleum oil storage tanks including ships	3.1-Cargo residue, washing water and sludge containing oil	0.4 T/Annum	Stored in barrels	Generation, Collection, Storage, Disposal to M/s. Tamilnadu Waste Management Ltd, Gummidipoondi for incineration
Handling of hazardous chemicals and wastes	33.2-Contaminated cotton rags or other cleaning materials	24 T/Annum	Stored in Pig disposal yard	Generation, Collection, Storage, Disposal to M/s. Tamilnadu Waste Management Ltd, Gummidipoondi for incineration to vendor
Engines/ Compressor used oil	5.1-Used or spent oil	0.3 T/Annum	Stored in steel barrels.	Generation , Collection, Storage and sent to authorized recyclers.

	33.1-Empty		Empty barrels		
Handling of	barrels/containers/liners		stored in	Generation,	Collection,
hazardous chemicals	contaminated with hazardous	21.6T/Annum	hazardous	Storage and	sent to
and wastes	chemicals /wastes		waste storage	authorized recycle	er
	chemicals / wastes		rooms		

Table 2-23 Hazardous Waste Generation and Management of existing

Source	Name of the Hazardous waste and category	Quantity	Storage and Handling	Method of disposal
Cleaning, emptying and maintenance of petroleum oil storage tanks including ships	3.1-Cargo residue, washing water and sludge containing oil	1MT/Annum	Stored in barrels	Will be Disposal to M/s. Tamilnadu Waste management Ltd, Gummidipoondi for incineration

CHAPTER 3 DESCRIPTION OF ENVIRONMENT

RP003 - R1

3 DESCRIPTION OF ENVIRONMENT

This chapter depicts the establishment of baseline for valued environmental components, as identified in and around the proposed project located at **M/s Kamarajar Port Limited**, Capacity Augmentation Of Existing Operational Marine Liquid Terminal (MLT) From 3 MMTPA To 6 MMTPA At Kamarajar Port Limited, Chennai, Tamilnadu. The primary baseline data monitoring covered three month i.e., **March – May 2024** and secondary data was collected from government and semi-government organization's published data. The primary baseline data has been generated by M/s. Hubert Enviro Care Systems (P) Ltd, Chennai, a MoEF&CC approved and National Accreditation Board for Testing and Calibration Laboratories (NABL) accredited environmental testing laboratory for the following terrestrial environmental components.

3.1 Study Area and Period

A 10 Km radial distance from the proposed project site boundary has been identified as the General study area for assessing the baseline environmental status. The core study area is the project area and its immediate surroundings to the tune of 1.0 Km radius from the boundary. Further the Project Impact/Influence Area (PIA) is 10Km from the boundary of the project site which covers parts of Tiruvallur district District, Tamil Nadu State. The primary baseline data monitored covered three (3) months i.e., from **March** – **May 2024**

3.2 Description of Study Area and components

As described in Chapter 1, the proposed project is M/s Kamarajar Port Limited, Capacity Augmentation Of Existing Operational Marine Liquid Terminal (Mlt) From 3 Mmtpa To 6 Mmtpa At Kamarajar Port Limited, Chennai. Traffic in LPG is expected at Ennore in view of the potential demand-supply gap in the immediate hinterland of Kamarajar Port. The requirement of domestic and industrial and auto LPG of entire North TN will be catered through the IPPL's LPG storage terminal at Athipattu Pudhunagar and the products will be handled through the ETTPL's MLT. An overall idea of the study area with reference to the physical conditions are presented for better understanding in the following sections before proceeding into the section on the prevailing environmental conditions of the study area. The map showing the satellite image of the study area is given in **Figure 3-1** and Topo Map of the study area is given in **Figure 3-2**.

- Meteorology: Temperature, Relative Humidity, Rainfall, Wind Speed & Direction- Refer Section 3.5.2.
- Ambient Air Quality: Particulate matter <10 micron size (PM10), Particulate matter <2.5 micron size (PM2.5), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Carbon Monoxide (CO), Lead (Pb), Ozone (O3), Benzene (C6H6), Benzo (a) pyrene (C20H12), Arsenic (As), Nickel (Ni) and Ammonia (NH3)-Refer Section 3.5.8
- Ambient Noise Levels: Day equivalent noise levels, Night equivalent noise levels Refer Section 3.6.
- Water Quality: Groundwater Quality, Surface Water Quality Refer Section -3.7
- Soil Quality Refer Section 3.8

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

RP003 - R1

• Ecology - Refer Section - 3.10

Draft EIA Report

• Social Economic Status - Refer Section - 3.11

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Draft EIA Report RP003 - R1

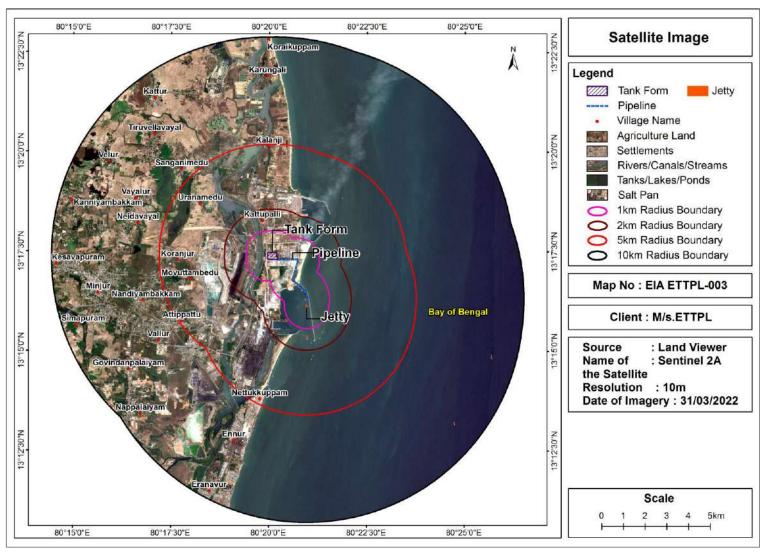
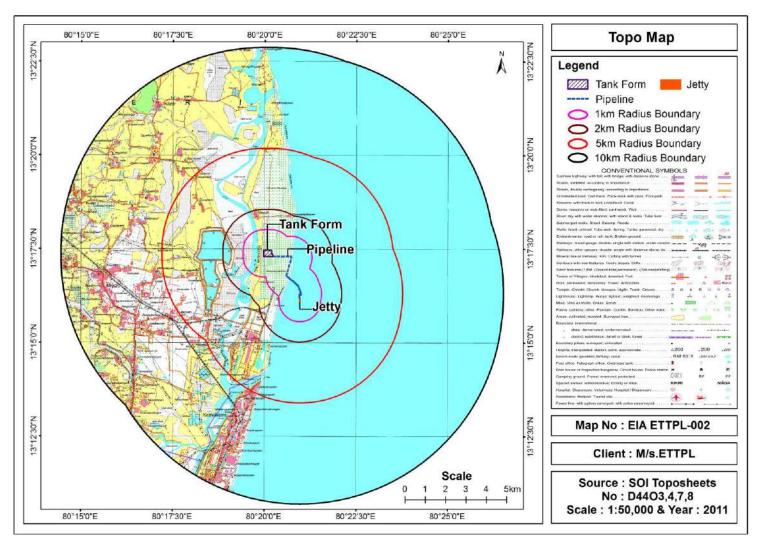



Figure 3-1 Map showing the Satellite Image of the study area of Project

 $Capacity\ Augmentation\ of\ Existing\ \ Operational\ Marine\ Liquid\ Terminal\ (Mlt)\ From\ 3\ MMTPA\ TO\ 6\ MMTPA$

Draft EIA Report RP003 - R1

H/01/2022/CON/001

Figure 3-2 Topo Map of the Study area

3.3 Environmentally/Ecologically Sensitive areas

This section details with the environmentally sensitive areas present within the project site and surrounding environs. It included national parks, state forest, essential habitats etc. The environmental sensitive areas covering an aerial distance of 15 km from the project boundary is given in **Table 3-1**.

Table 3-1 Environmentally Sensitive Areas within 15 km from Project Boundary

S.No	Areas	Proposed project location boundary			
1	Areas protected				
	under		Monuments		
	international	Description	Distance(l	km)	Direction
	conventions,	Dutch Cemetery	14.23		N
	national or local				
	legislation for				
	their ecological,				
	landscape,				
	cultural or other				
	related value				
2	Areas which are	T	Waterbodies		
_	important or	Description	Distance	ce(km)	Direction
	sensitive for	Bay of Bengal		within the Bay of Bo	
	ecological	Buckingham Canal	0.2		W
	reasons –	Korttalaiyar/Kosisttalaiyar	0.3	.3	W
	Wetlands,	Lake near Uranamedu	3.9) 7	WNW
	Watercourses or	Ennur Creek	4.2	25	S
	other water	Tiruvellavayal Lake	4.6	58	WNW
	bodies, coastal	Arani River/Araniya Nadi	10.		NW
	zone,	Perumbedu Lake	12.3		NW
	biospheres,	Lake near Nayar	13.		W
	mountains,	Pulicat Lake	15	5	N
	forests	_	_		_
	Toresis				
3	State, National		Nil		
	boundaries				
4	Routes or	Description		Distance(km)) Direction
	facilities used	SH-107(Minjur–Kattur–Thiru	palaivanam	6.58	WNW
	by the public for	NH-16(Chennai-Kolka	ata)	18.81	WSW
	access to				

	an EIA Report		Kr005 - K1					
	recreation or	Nearest Railway Station-Attipattu	5.51	WSW				
	other tourist,	Chennai International Airport	34.59	SSW				
	pilgrim areas		L					
5	Defence	Nil						
	installations	IVII						
6	Areas occupied	Hospitals						
	by sensitive	Description	Distance(km)	Direction				
	manmade land	Athipattu Government Primary Health Centre	5.19	SW				
	uses(hospitals,	Ennore Urban Primary Health Centre	7.86	S				
	schools, places	Minjur Government Primary Hospital	8.11	W				
	of worship,	Kattoor Government PHC	9.15	NW				
	community	Manali New Town Government Primary Health Center	11	SW				
	facilities)	Jothi Nagar Urban Primary Health Center	12.4	SSW				
	racinties)	Pulicat Annai Health Care Centre	14.41	N				
		Tiruvottiyur Government Hospital	14.82	SSW				
		Budur Upgraded Government PHC	14.86	WSW				
		Industry 14.86						
		Industry Description		Dire.				
		Indian Oil LNG Terminal	0.03	N				
		L&T MFFK Katupalli Ware house	0.46	N				
		SICAL Iron Ore Terminals Limited	0.59	W				
		JSW Ennore Coal Terminal Pvt Ltd	0.91	W				
		CPCL Desalination Plant	0.92	W				
		Ennore SEZ Thermal Power Project	1.47	W				
		North Chennai Thermal Power Station	1.67	S				
		ABENGOA Seawater Desalination Plant	2.77	N				
		L&T Hydro carbon Engineering	3.29	N				
		Zuari Cement Grinding Unit	3.90	WSW				
		IOCL LPG Bottling Plant	4.44	WSW				
		BPCL Terminal Ennore	4.59	SW				
		HPCL Terminal Ennore	4.84	SW				
		KICL	5.98	S				
		COROMANDEL INTERNATIONAL LTD	6.15	S				
		The India Cements Ltd	6.33	SW				
		Ashok Leyland Limited	6.73	SSW				
		Kences Container Terminal Ltd	6.74	SW				
		Hinduja Foundries Ltd	6.74	S				
		Empezar Global Container Terminal	6.95	WSW				

MSA Global Logistics (Chennai) Private Limited	7.10	SW
Reliance Industries ltd	7.45	SW
German Express Shipping Agency (India) Private	7.54	SW
ECCT - CFS	7.72	SW
Ennore Thermal Power Station	7.79	SSW
Farm Implements (India) Pvt Ltd Factory	7.90	WSW
Piramal Pharma Limited	8.93	SSW
Triway Container Freight Station	9.47	SW
ITC limited	10.22	SSW
Modern Age Metal Processors P Ltd	10.33	SSW
Chandra CFS and Terminal Operator Pvt Ltd	10.76	W
Sri Balaji Engineering Works	10.98	SW
Chennai Emulsifiers	11.05	SW
Shri Sabhari smelters pvt ltd	11.09	SW
Mirra and Mirra Industries Private Limited	11.13	SW
Vichur Sundar Chemicals	11.18	SW
Sriram Cold Forgings Pvt. Ltd	11.20	SW
Sri Sai Ram Hair Industries	11.23	SW
Sumit pipe Industries	11.25	SW
Mangal Industries	11.26	SW
Royal Enfield Motor Factory	11.29	SSW
Carborundum Universal Ltd CUMI	11.50	SSW
Kailash Shipping Container Freight Station	11.63	SW
Ocean Star Container Solutions	11.67	SW
Gateway Distriparks South Private Limited	11.73	SW
Metals & Scrap Traders	11.80	SW
Vel Containers Terminus Pvt Ltd	11.81	SW
Manas warehousing Pvt LTD	11.96	SW
CMG Steels Private Limited	12.05	SW
Sun Mutiara Engineering Pvt Ltd	12.07	SW
Mahalakshmi Bright Steel Industries Pvt Ltd	12.14	SSW
Crayon Roofings and Structures	12.20	SSW
Southern Tubes	12.21	SW
Raj Petro Specialities	12.21	SW
Olympic Wearhouse	12.24	SW
Sattva Hitech CFS	12.26	SSW
TPL	12.29	SSW
Natco Pharma Limited	12.32	SW
Toshiba JSW Power Systems Pvt. Ltd	12.35	SW
Petro Araldite Private Limited	12.36	SSW

	nft EIA Report	RP003 – R1			
		Indian Additives Limited	12.45	SSW	
		CPCL	12.45	SSW	
		ICBC CFS	12.49	SW	
		GG Steels	12.59	SSW	
		TPL-Lab Plant	12.62	SSW	
		Madras Fluorine Private Ltd	12.65	SSW	
		Inox Air Products	12.65	SSW	
		Sicgil India	12.73	SSW	
		TPL-HCD Plant	12.76	SSW	
		Manali Petrochemical Ltd Plant-I	12.76	SSW	
		CPCL LPG Bottling And Bulk Terminal	12.94	SW	
		The KCP Limited	13.00	SSW	
		Madras Fertilizer Limited	13.03	SSW	
		SRF Limited	13.52	SW	
		Supreme Petrochem Limited	13.68	SW	
7	Areas already	Nil			
	subjected to				
	500,000				
	pollution or				
	pollution or environmental				
	environmental				
	environmental damage (those				
	environmental damage (those where existing				
	environmental damage (those where existing legal				
	environmental damage (those where existing legal environmental				
	environmental damage (those where existing legal environmental standards are				
	environmental damage (those where existing legal environmental				
8	environmental damage (those where existing legal environmental standards are	Earthquakes:			
8	environmental damage (those where existing legal environmental standards are exceeded)			F. 41	
8	environmental damage (those where existing legal environmental standards are exceeded) Areas	The Study area falls in zone-III (Moderate Damage R	_	_	
8	environmental damage (those where existing legal environmental standards are exceeded) Areas susceptible to	The Study area falls in zone-III (Moderate Damage R Hazard Map of India. Suitable seismic coefficients in	horizontal and vertical	_	
8	environmental damage (those where existing legal environmental standards are exceeded) Areas susceptible to natural hazard	The Study area falls in zone-III (Moderate Damage R	horizontal and vertical	_	
8	environmental damage (those where existing legal environmental standards are exceeded) Areas susceptible to natural hazard which could	The Study area falls in zone-III (Moderate Damage R Hazard Map of India. Suitable seismic coefficients in	horizontal and vertical	-	
8	environmental damage (those where existing legal environmental standards are exceeded) Areas susceptible to natural hazard which could cause the	The Study area falls in zone-III (Moderate Damage R Hazard Map of India. Suitable seismic coefficients in respectively is adopted while designing the structures Tsunami &Tidal waves:	horizontal and vertical	_	
8	environmental damage (those where existing legal environmental standards are exceeded) Areas susceptible to natural hazard which could cause the project to	The Study area falls in zone-III (Moderate Damage R Hazard Map of India. Suitable seismic coefficients in respectively is adopted while designing the structures	horizontal and vertical	_	
8	environmental damage (those where existing legal environmental standards are exceeded) Areas susceptible to natural hazard which could cause the project to present	The Study area falls in zone-III (Moderate Damage R Hazard Map of India. Suitable seismic coefficients in respectively is adopted while designing the structures Tsunami &Tidal waves: 1. Evacuation vehicles will be provided.	horizontal and vertical	_	
8	environmental damage (those where existing legal environmental standards are exceeded) Areas susceptible to natural hazard which could cause the project to present environmental	The Study area falls in zone-III (Moderate Damage R Hazard Map of India. Suitable seismic coefficients in respectively is adopted while designing the structures Tsunami &Tidal waves:	horizontal and vertical	_	

_	city Augmentation of Exist	ing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001 RP003 – R1
	landslides,		
	erosion or		
	extreme or		
	adverse climatic		
	conditions)		

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Draft EIA Report RP003 - R1

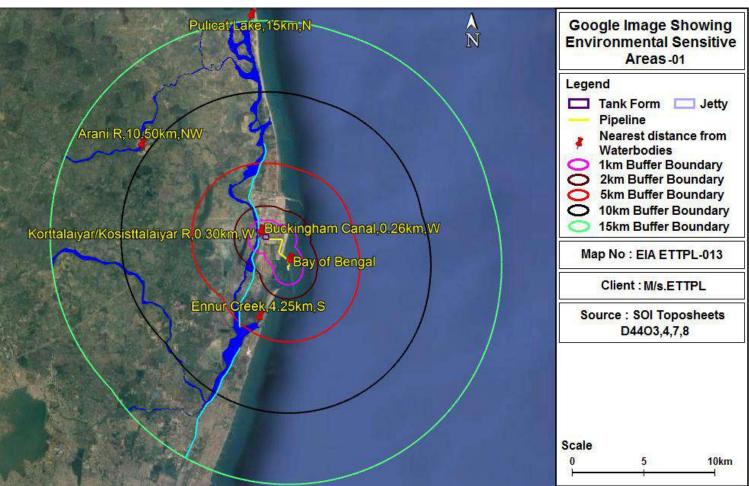


Figure 3.3 Environmental sensitive areas (1) covering within 15 km from project boundary

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Draft EIA Report RP003 - R1

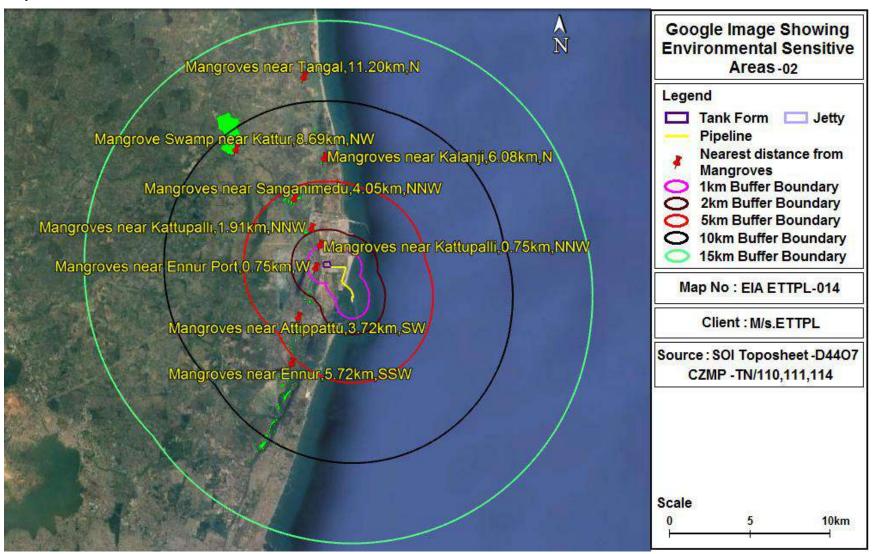


Figure 3-4 Environmental sensitive areas covering within 15 km from project boundary

RP003 - R1

3.4 Physical Conditions of PIA district

In this section, the physical conditions of PIA district are discussed in general and wherever possible references to the conditions prevailing in the study area in particular are also provided. The physical conditions are discussed as under:

- District profile
- Drainage, land use, geology, Physiographic profile
- Natural resources
- Climatic conditions, seismic zone characteristics and natural hazard.

3.4.1 PIA District Profile

Tiruvallur district is situated on the North Eastern part of Tamil Nadu and is surrounded by Kancheepuram district in the South, Vellore district in the West, Bay of Bengal in the East and Andhra Pradesh State in the North. The district spreads over an area of about 3422 Sq.km. This district consists of 1 Corporation, 9 taluks, 14 blocks, 4 Municipalities and 10 town Panchayats. Thiruvallur district is one of the fastest developing districts in Tamil Nadu in terms of Industrial Development as the district is adjacent to Chennai district. The district has 10 Industrial Estates which are developed by the Government of Tamilnadu.

Source: https://tnrtp.org/wp-content/uploads/2020/07/TIRUVALLUR-FINAL.pdf

(Ref: TIRUVALLUR DISTRICT DIAGNOSTIC REPORT)

3.4.2 Climatic Conditions

It may be noted that the district gets more rainfall during the North East Monsoon though it gets the influence of South West Monsoon (June - September) and North West Monsoon (October - December). During the year 2009-10, there was a rainfall of 589.9 mm in the district due to the influence of North East Monsoon as against the normal rainfall of 604.1 mm. The South West Monsoon has contributed to the extent of 331.7 mm during the year, the normal rainfall being 449.5 mm.

Source: https://cdn.s3waas.gov.in/s39431c87f273e507e6040fcb07dcb4509/uploads/2018/05/2018050814.pdf

(Ref: Directorate of Census Operations-Tamil Nadu, "District Census Handbook-2011, Thiruvallur District", Series-34 Part XII-A)

3.4.3 Natural Resources of PIA District

3.4.3.1 Flora & Fauna

Thiruvallur coast has a very vast coastal plain, which extends from North of Toppala Palayam to South of Sattangadu. There are three strand lines, with intervening broad tidal flats occurring in the coastal plains. Lagoons, mangrove swamps, salt marshes, estuaries, creeks, sand dunes, and beach terraces represent the marine landforms. The Pulicate brackish water lake of Bay of Bengal in Ponneri block is a potential hot spot along the coast. It was

Draft EIA Report RP003 - R1

the site of old Dutch settlement. Migratory birds from various countries flock here every year between December and February. Pulicate Lake was identified as a site of international importance by the International Union for the Conservation of Nature (IUCN) and is rich in mangroves. Flora and fauna of PIA are discussed in section 3.11.

Source: http://tnenvis.nic.in/files/THIRUVALLUR%20%20.pdf

3.4.3.2 Forest Resources

The district has scattered forest area of 18748.82 hectares of the total area of 290785.61 hectares. The forest types available in the district are tropical in nature and they fall under dry thorn and dry evergreen types. Much of the natural forests have been converted in to man made forests since the late 1950s. However, chunks of natual forests still exist. These pieces of reserved forest consists of trees of poor height and deciduous type, fuel trees and low scrub jungle and do not have any valuable resources.

Source: https://cdn.s3waas.gov.in/s39431c87f273e507e6040fcb07dcb4509/uploads/2018/05/2018050814.pdf

(Ref: Directorate of Census Operations-Tamil Nadu, "District Census Handbook-2011, Thiruvallur District", Series-34 Part XII-A)

3.4.3.3 Irrigation

Apart from seasonal rivers like Kosasthalaiyar, Araniar, Nandi, Kallar, Coovum and Buckingham canal, there is no perennial river in the district. The agricultural operations in the district depends mainly on tanks and lakes.

S.No **Irrigation Source** Number/Length Canals 17/189 2 **Irrigation Wells** 30126 3 Tube Wells 17245 4 Reservoires 1 Tanks 1895

Table 3-2 Irrigation source

Source: https://cdn.s3waas.gov.in/s39431c87f273e507e6040fcb07dcb4509/uploads/2018/05/2018050814.pdf

(Ref: Directorate of Census Operations-Tamil Nadu, "District Census Handbook-2011, Thiruvallur District", Series-34 Part XII-A)

3.4.3.4 Agricultural Resources

Though industrially well developed, residents of Thiruvallur district continues to be involved in the agricultural sector also. But, the extent of dependency on agriculture appears to be declining in this district as seen from previous years. Only 8.5% of the total workers of its residents are occupied in agriculture, 37.41% of the total area of the district is utilised for cultivation of various food and non-food crops and 73444 persons in this district are engaged in agriculture as cultivators. The major crops grown in the district are paddy, corn, maize, ragi, green gram, black gram, sugar cane and ground nut.

Source: https://cdn.s3waas.gov.in/s39431c87f273e507e6040fcb07dcb4509/uploads/2018/05/2018050814.pdf

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA H/01/2022/CON/001

Draft EIA Report RP003 - R1

(Ref: Directorate of Census Operations-Tamil Nadu, "District Census Handbook-2011, Thiruvallur District", Series-34 Part XII-A)

3.4.3.5 Mineral Resources

The district does not contain any precious mineral. However, it has a few varieties of major/minor minerals which are given in **Figure 3-5**.

Minor minerals

The district does not contain any precious mineral. However it has a few varieties of major and minor minerals.

Minor Minerals

Lime Shell: Pulicut Lake, Sunnambukulam, Annamalaicherry

Silica Sand: Elavoor, Eravanoor, Ennore, Gummidipoondi and Ponneri.

Stoneware Clay: Adhigathur, Odhapal, Gudapakkam Kandigai

Major Minerals

River Sand: Kosasthalaiyar, Araniar, Kallar, Nandi, Coovam

Blue Metal: Pallipattu and Tiruttani Taluks

Gravel: Ponneri and Gummidipoondi Taluks

Brick Clay: Tiruvallur and Ponneri Taluks

Source:http://censusindia.gov.in/2011census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf

(Ref:Directorate of Census Operations-Tamil Nadu, "District Census Handbook-2011, Thiruvallur District", Series-34 Part XII-A

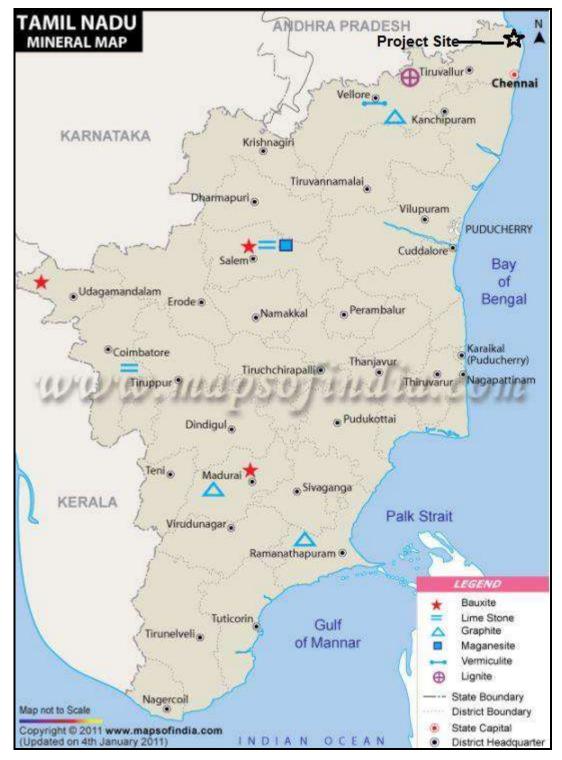


Figure 3-5 Mineral Map of Tamil Nadu

3.4.4 Land Use & Land Cover

Total geographic area of Thiruvallur district is 3423 Sq. Km. Urban Built up area is 295.16 Sq.km and Rural Built up area is 272.76 Sq.km. Details of land use/land cover 4 statistics for Thiruvallur district district were given in **Table 3-3** and Land Use pattern of Thiruvallur district is given in **Figure 3-6** and Land use map of Thiruvallur district is given in **Figure 3-7**

Table 3-3 Land Use & Land Cover

S.No.	Division of Land Use/Land Cover	Area in	Area in	Area in	Area (%)
5.110.	Division of Land Use/Land Cover	Sq.Km.	acres	На	Alea (70)
1.	Builtup, Urban	295.16	72935.51	29516	8.623
2.	Builtup, Mining	7.54	1863.17	754	0.220
3.	Agriculture,Plantation	87.77	21688.41	8777	2.564
4	Forest,Evergreen/ Semi evergreen	18.22	4502.25	1822	0.532
5	Forest,Forest Plantation	10.57	2611.90	1057	0.309
6	Forest,Swamp/ Mangroves	3.03	748.73	303	0.089
	Barren/unculturable/ Wastelands,				0.003
7	Gullied/Ravinous Land	0.11	27.18	11	0.003
8	Barren/unculturable/ Wastelands, Sandy area	12.83	3170.36	1283	0.375
9	Wetlands/Water Bodies, Inland Wetland	0.65	160.62	65	0.019
10	Wetlands/Water Bodies, River/Stream/canals	67.33	16637.58	6733	1.967
11	Builtup,Rural	272.76	67400.36	27276	7.968
12	Agriculture,Crop land	1834.25	453252.35	183425	53.586
13	Agriculture,Fallow	115.92	28644.41	11592	3.387
14	Forest,Deciduous	68.13	16835.26	6813	1.990
15	Forest,Scrub Forest	0.03	7.41	3	0.001
	Barren/unculturable/ Wastelands, Salt Affected				0.217
16	land	7.42	1833.52	742	0.217
17	Barren/unculturable/ Wastelands, Scrub land	190.58	47093.27	19058	5.568
18	Barren/unculturable/ Wastelands, Barren rocky	2.39	590.58	239	0.070
19	Wetlands/Water Bodies, CoastalWetland	86.74	21433.89	8674	2.534
	Wetlands/Water Bodies,				9.979
20	Reservoir/Lakes/Ponds	341.57	84403.65	34157	7.717
	Total	3423	845840.4	342300	100.000

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

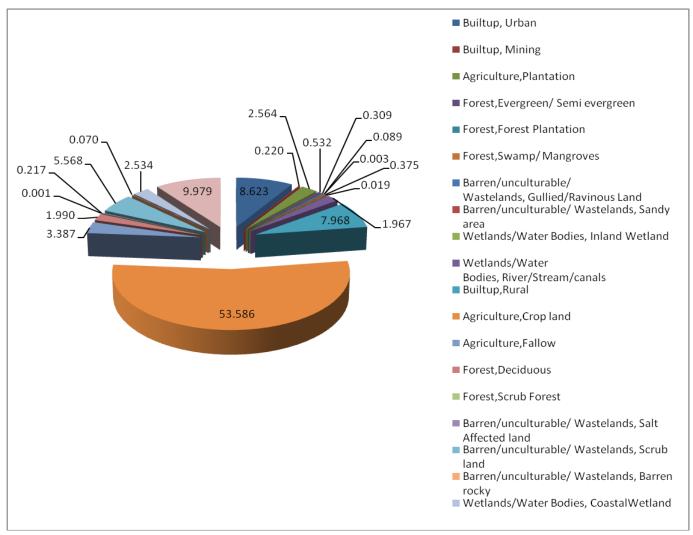


Figure 3-6 Land use pattern of the Thiruvallur District

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

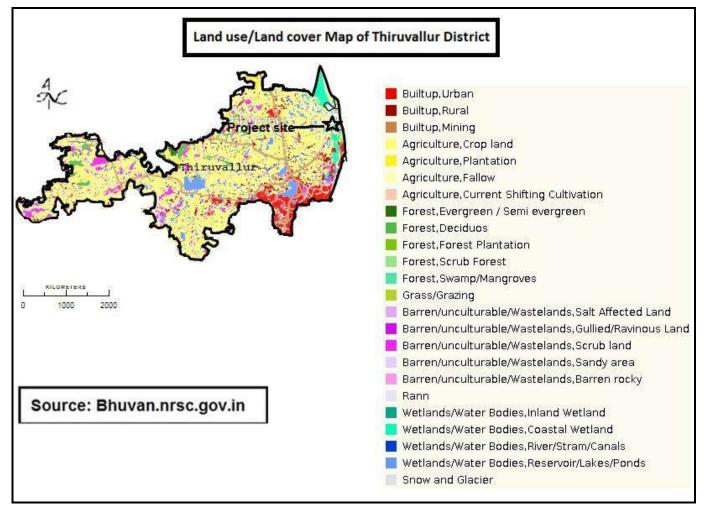


Figure 3-7 Land use map of the Thiruvallur District

Draft EIA Report RP003 - R1

3.4.4.1 Land Use and Land Cover of the Study Area

Total Project Study area is **386.66** Sq.Km. The Land Use Pattern is given in **Figure 3-8.** The Land Use Map of the Study area are given in **Figure 3.9** .Land use pattern of the study area is given in **Table 3-4**

Table 3-4 Land Use Pattern of the Study Area

S.No.	Description	Area (Sq.Km)	Area (Acres)	Area (Hectares)	Area (%)
1	Crop land	48.95	12095.79	4895	12.66
2	Coastal Wetland	32.12	7937.01	3212	8.31
3	Urban	31.89	7880.18	3189	8.25
4.	Rural	18.68	4615.92	1868	4.83
5	Fallow	12.84	3172.83	1284	3.32
6	Plantation	9.97	2463.64	997	2.58
7	River / Stream / Canals	8.05	1989.20	805	2.08
8	Tanks / Lakes / Ponds	7.69	1900.24	769	1.99
9	Scrub land	4.70	1161.39	470	1.22
10	Swamp / Mangrove	2.13	526.33	213	0.55
11	Deciduous	1.23	303.94	123	0.32
12	Sandy area	0.89	219.92	89	0.23
13	Inland Wetland	0.66	163.09	66	0.17
14	Ocean	206.86	51116.14	20686	53.50
	Total	386.66	95545.62	38666	100.00

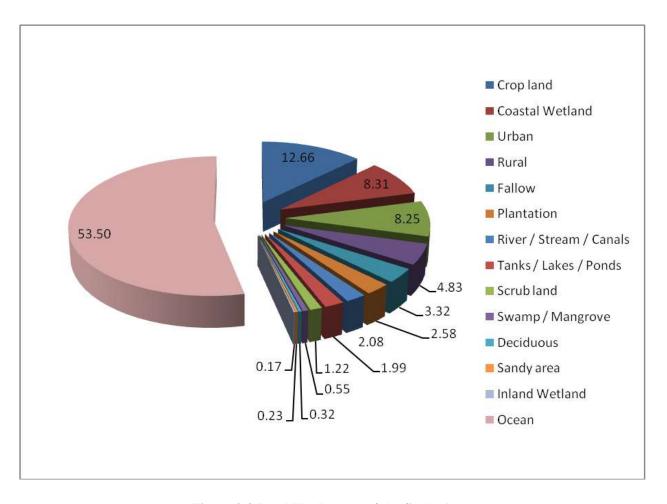


Figure 3-8 Land Use Pattern of the Study Area

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

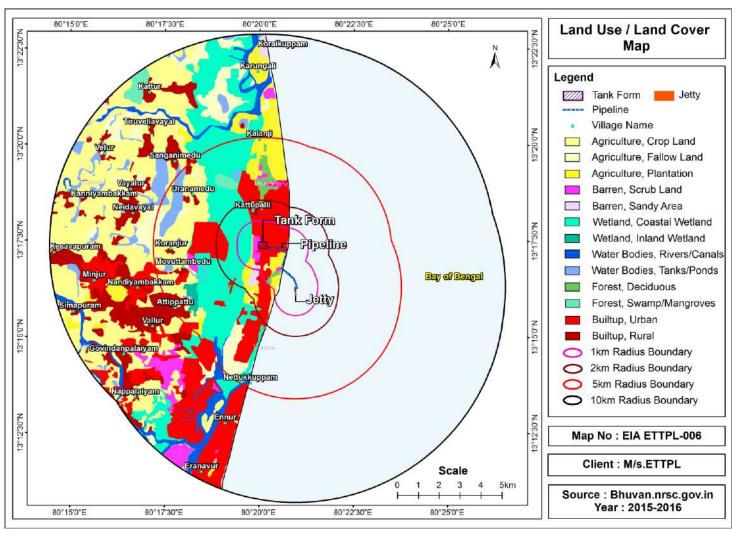


Figure 3-9 Land Use Map of the Study Area

3.4.5 Topography

The coastal region is mostly flat while certain areas in Tiruttani and Pallipet taluks are undulated and even hilly. However, there are not many hills of any considerable height in this district. There are a few conical hills or ridges of small elevation, like the St. Thomas Mount. Most of the hills and hillocks are rocky and no verdant vegetation is seen in the slopes of these hills. The area under forests, all of 19,736 sq. km., is only 5.8 % of the total geographical area of the district. Physical map of Tamilnadu is given as **Figure 3-10** and Topo map of study area is given as **Figure 3-2** and contour map of the study area is given as **Figure 3-11**

Source: http://www.spc.tn.gov.in/Exe_Summary_DHDR/Thiruvallur.pdf

(Ref: State planning Comission –Tamil Nadu, "District Human Development Report-2017, Thiruvallur District")

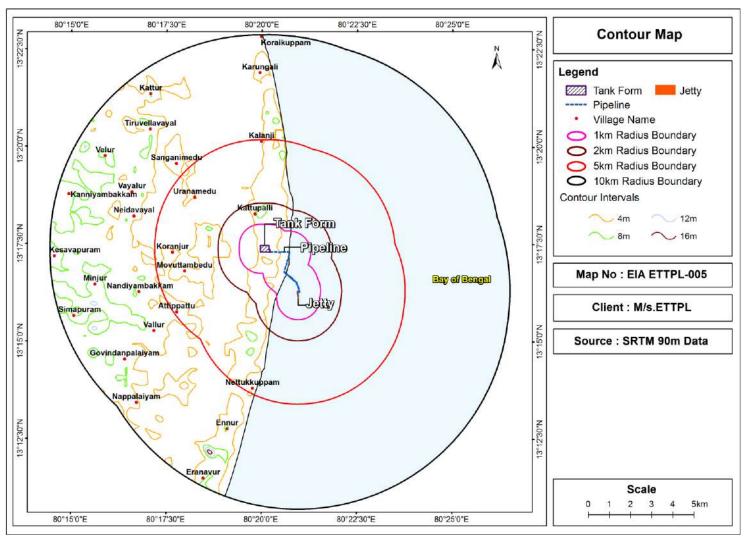


Figure 3-10 Physical Map of Tamil Nadu

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Draft EIA Report RP003 - R1

Figure 3-11 Contour Map of Study Area

3.4.6 Geomorphology of PIA district

The prominent geomorphic units identified in the district through interpretation of Satellite imagery are Alluvial Plain, Old River Courses, Coastal plains, Shallow & deep buried Pediments, Pediments and Structural Hills. The elevation of the area ranges from 183 m amsl in the west to sea level in the east. Four cycles of erosion gave rise to a complex assemblage of fluvial, estuarine and marine deposits. The major part of the area is characterised by an undulating topography with innumerable depressions which are used as irrigation tanks. The coastal tract is marked by three beach terraces with broad inter-terrace depressions. The coastal plains display a fairly lower level or gently rolling surface and only slightly elevated above the local water surfaces or rivers. The straight trend of the coastal tract is resultant of development of vast alluvial plains. There are a number of dunes in the coastal tract. The Geomorphology Map of the Thiruvallur District is shown as **Figure 3-13.**

Source:http://cgwb.gov.in/District_Profile/TamilNadu/TIRUVALLUR.pdf

(Ref:Government of India Ministry of Water Resources Central Ground Water Board South Eastern Coastal Region Chennai, "District Ground Water Brochure Tiruvallur District")

3.4.7 Geomorphology of the Study Area

The total Geographical area of the study area is **386.66** Sq.Km. The Geomorphology of the study area is given in **Figure 3.14** and Geomorphology pattern is given in **Figure 3.12**

Table 3-5 Geomorphology of the Study Area

S.No.	Description	Area (Sq.Km)	Area (Acres)	Area (Hectares)	Area
					(%)
1	Coastal Origin-Older Deltaic Plain	83.56	20648.09	8356	21.61
2	Coastal Origin-Younger Coastal Plain	78.89	19494.11	7889	20.40
3	Waterbodies	15.03	3713.99	1503	3.89
4	Fluvial Origin-Active Flood Plain	2.71	669.65	271	0.70
5	Coastal Origin-Younger Deltaic Plain	2.51	620.23	251	0.65
6	Ocean	203.96	50399.54	20396	52.75
	Total	386.66	95545.62	38666	100.00

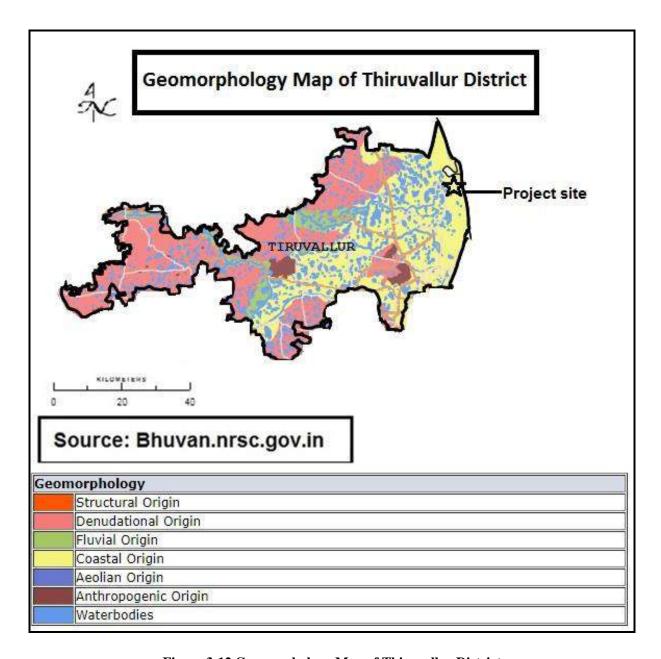


Figure 3-12 Geomorphology Map of Thiruvallur District

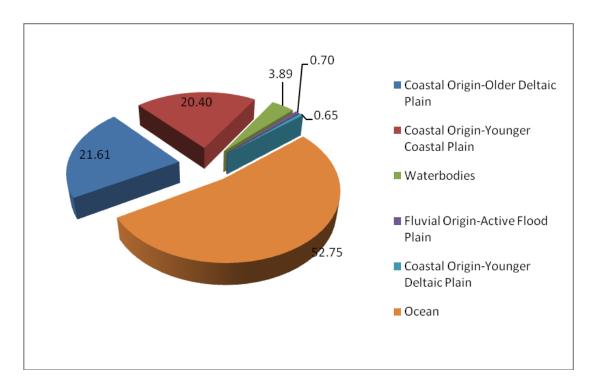
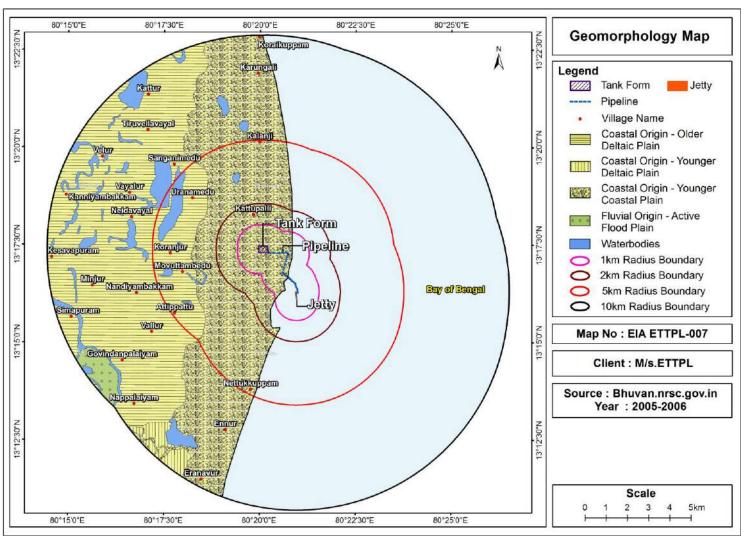



Figure 3-13 Geomorphology Pattern of the Study Area

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

Draft EIA Report RP003 - R1

Figure 3-12 Geomorphology Map of the Study Area

Draft EIA Report

3.4.8 Hydrogeology of PIA district

The district is underlain by both porous and fissured formations. The important aquifer systems in the district are considered by Unconsolidated & semi-consolidated formations and Weathered, fissured and fractured crystalline rocks. The porous formations in the district include sandstones and clays of Jurassic age (Upper Gondwana), marine sediments of Cretaceous age, sandstones of Tertiary age and recent alluvial formations. As the Gondwana formations are well-compacted and poorly jointed, the movement of ground water in these formations is mostly restricted to shallow levels. Ground water occurs under phreatic to semi-confined conditions in the inter-granular pore spaces in sands and sandstones and the bedding planes and thin fractures in shales. In the area underlain by Cretaceous sediments, ground water development is rather poor due to the rugged nature of the terrain and the poor quality of the formation water. Quaternary formations comprising mainly sands, clays and gravels are confined to major drainage courses in the district. The maximum thickness of alluvium is 30.0 m. whereas the average thickness is about 15.0m. Ground water occurs under phreatic to semi-confined conditions in these formations and is being developed by means of dug wells and filter points. Alluvium which forms a good aquifer system along Araniyar and Korattalaiyar river bed which is one of the major sources of water supply to urban areas of Chennai city and also to the industrial units. Ground water generally occurs under phreatic conditions in the weathered mantle and under semi-confined conditions in the fissured and fractured zones at deeper levels. The thickness of weathered zone in the district is in the range of 2 to 12 m. The depth of the wells ranged from 8.00 to 15.00 mbgl. The yield of large diameter wells tapping the weathered mantle of crystalline rocks ranges from 100 to 500 lpm and are able to sustain pumping for 2 to 6 hours per day. The yield of bore wells drilled down to a depth of 50 to 60 m ranges from 20 to 400 lpm. The yield of successful bore wells drilled down to a depth of 150 m bgl during the ground water exploration programme of Central Ground Water Board ranged from 1.2 to 7.6 lpm. The depth to water level in the district varied between 2.38 - 7.36 m bgl during pre-monsoon (May 2006) and 0.79 - 5.30 m bgl during post monsoon (Jan 2007). The seasonal fluctuation shows a rise between 0.28 and 4.80 mbgl. The piezometric head varied between 2.20 to 10.30 m bgl (May 2006) during premonsoon and 2.72 to 8.55 m bgl during post monsoon. The hydrogeology map of Thiruvallur District is given in Figure 3-13.

Source:http://cgwb.gov.in/District Profile/TamilNadu/TIRUVALLUR.pdf

(Ref:Government of India Ministry of Water Resources Central Ground Water Board South Eastern Coastal Region Chennai, "District Ground Water Brochure Tiruvallur District")

Figure 3-13 Hydrogeology Map of Tiruvallur District

3.4.9 Drainage Pattern in PIA district

Araniyar, Korattalayar, Cooum, Nagari and Nandhi are the important rivers. The drainage pattern, in general, is dendritic. All the rivers are seasonal and carry substantial flows during monsoon period. Korattaliar river water is supplied to Cholavaram and Red Hill tanks by constructing an Anicut at Vellore Tambarambakkam. After filling a number of tanks on its further course, the river empties into the Ennore creek a few kilometres north of Chennai. The Cooum River, flowing across the southern part of the district, has its origin in the surplus waters of the Cooum tank in Tiruvallur taluk and also receives the surplus waters of a number of tanks. It feeds the Chembarambakkam tank through a channel. It finally drains into the Bay of Bengal. The drainage map of the Study Area is given as **Figure 3.16.**

Source:http://cgwb.gov.in/District_Profile/TamilNadu/TIRUVALLUR.pdf

(Ref:Government of India Ministry of Water Resources Central Ground Water Board South Eastern Coastal Region Chennai, "District Ground Water Brochure Tiruvallur District")

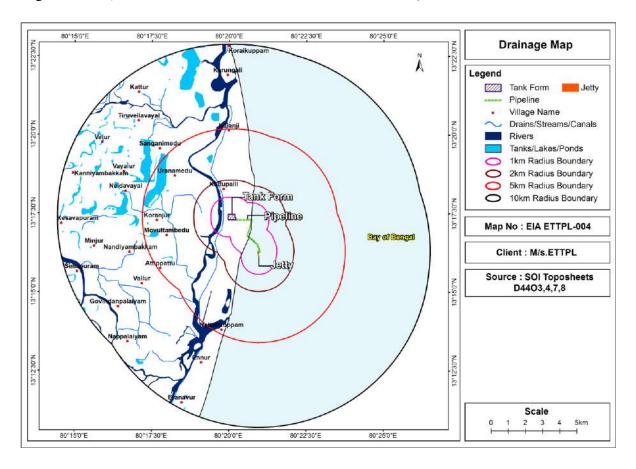


Figure 3-14- The drainage map of the Study Area

3.4.10 Geology

Draft EIA Report

The Thiruvallur district can be geologically classified into hard rock and sedimentary (alluvial) formation. This district is principally made up of Archaean, upper Gondwana and the tertiary formations. These are over laid by laterites and alluvium. The oldest of the crystalline rocks of Archaean age are of Biotite and Hornblende Gneiss, Charnockite and granite. These are intruded by Amphibole dykes, and occasionally with veins of quartz and pegmatites. Granites and gneisses of Archaean age are mainly seen in Tiruthani taluk. Geological map of Tamilnadu is given as **Figure 3-15.**

Source:http://nwm.gov.in/sites/default/files/Notes%20on%20Thiruvallur%20District.pdf

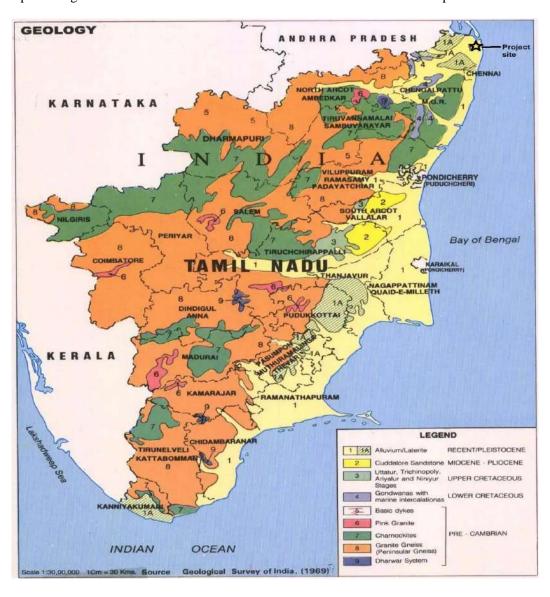


Figure 3-15 Geology Map of India

3.4.11 Seismicity

As per Earthquake hazard map of Tamil Nadu, The project location/study area falls in Zone III, which is categorized as a Moderate Damage Risk Zone. The Earthquake hazard map of Tamil Nadu is shown in **Figure 3-16.**

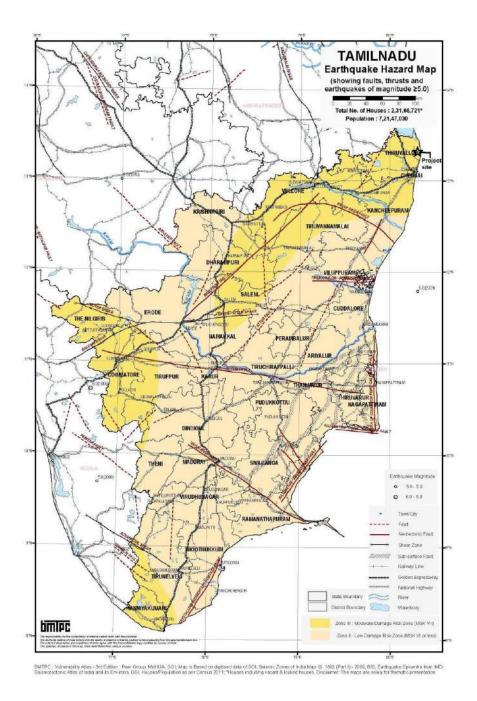


Figure 3-16 Seismicity Map of India

3.4.12 Soils in PIA District

Draft EIA Report

Soils in the area have been classified into Red soil, Black soil, Alluvial soil and colluvial soil. The major part is covered by Red soil of red sandy/clay loam type. Ferruginous red soils are also seen at places. Black soils are deep to very deep and generally occurs in the depressions adjacent to hilly areas, in the western part. Alluvial soils occur along the river courses and eastern part of the coastal areas. Sandy coastal alluvium (arenaceous soil) are seen all along the sea coast as a narrow belt. Soil map of India is given in **Figure 3-17**.

Source:http://cgwb.gov.in/District_Profile/TamilNadu/TIRUVALLUR.pdf

(Ref:Government of India Ministry of Water Resources Central Ground Water Board South Eastern Coastal Region Chennai, "District Ground Water Brochure Tiruvallur District"

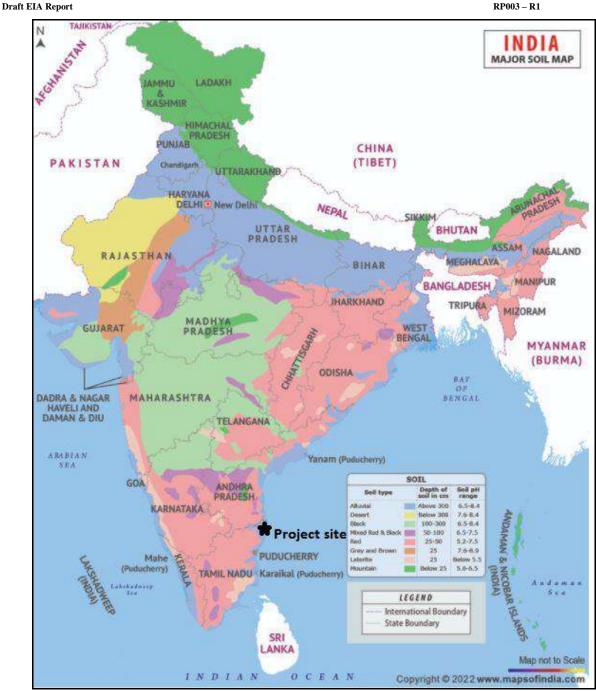


Figure 3-17 Soil map of India

3.4.13 Natural Hazards in PIA District

The coastline is mainly accreting with noticeable erosional effects particularly near Ennore. Development of offshore bars and shoals are observed near Ennore and Pulicat. Madras Thermal Power Station (MTPS) has been located near the Pulicat Lake. Boulders and Groynes were laid along a continuous stretch in this area. The

Draft EIA Report RP003 - R1

strip of land between the Bay of Bengal and Pulicat Lake faces sea erosion. Generally floods occur during north east monsoon when there is heavy rainfall coupled with cyclonic storm in Bay of Bengal. Floods often occur in the basins of Kosasthalaiyar, Araniar, Coovum and Adyar and its tributaries. The entire coastal length of the district is prone to tsunami. The Natural Hazard Map of India is given in **Figure 3-18.**

Source: http://tnenvis.nic.in/files/THIRUVALLUR%20%20.pdf

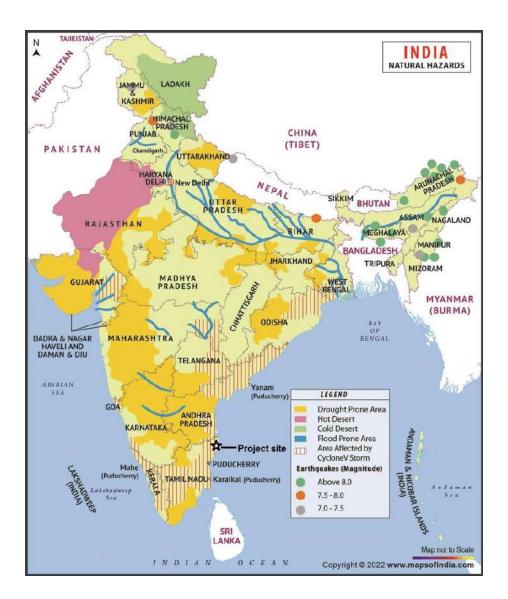


Figure 3-18 Natural hazard Map of India

3.5 Establishment of Baseline for valued environmental components

3.5.1 Air Environment

Baseline ambient air quality assessment gives the status in the vicinity of site and is an indispensable part of environmental impact assessment studies. Significant changes, in predominant winds and weather conditions are observed in winter, summer and post-monsoon seasons apart from the local topographic influences by using secondary data and also the baseline status of air environment in the study area is assessed for one season through a systematic air quality surveillance programme as a primary data generation.

3.5.2 Meteorological Conditions

The regional air quality is influenced by the meteorology of that region. The principal weather parameters that influence the concentration of the air pollutants in the surroundings are wind speed, wind direction and temperature. The meteorological data is useful for proper interpretation of the baseline data. It is used as input for air quality dispersion models for predicting the post project environmental scenario.

3.5.3 Meteorological Data Collection

Available secondary data pertaining to the meteorological parameters was obtained from the IMD Climatological tables. In addition, baseline meteorological data was generated during the study period **March** – **May 2024**. The methodology adopted for monitoring surface observations is as per the standard norms laid down by Bureau of Indian Standards (BIS) i.e. IS:8829 and India Meteorological Department (IMD).

3.5.4 General Meteorological Scenario based on IMD Data

The nearest India Meteorological Department (IMD) station located to project site is **Chennai** (**Minambakkam**). The Climatological data of **Chennai** (**Minambakkam**) (13° 00' N and 80° 11' E), published by the IMD, based on daily observations at 08:30 and 17:30 hour IST for a 30 year period (1991-2020), is presented in the following sections on the meteorological conditions of the region. The monthly variations of the relevant meteorological parameters are reproduced in **Table 3-6**.

Table 3-6 Climatological Summary- Chennai (Minambakkam) (1991-2020)

										Predoi	ninant
Month	Temp (°C)		Rain	fall	Relative		Vapour			Wind	
			(mı	n)	Humidity		Pressure		Mean	Directions	
				No.of					Wind		
	Daily	Daily	Total	days	08:30	17:30	08:30	17:30	Speed	08:30	17:30
Jan	29.9	20.9	20.0	1.4	8	6	24.6	22.8	4.8	NW	NE
Feb	31.7	21.8	4.7	0.6	8	6	25.6	23.8	5.7	NW	Е

Capacity A	Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA									ON/001		
Draft EIA	Report								RP003 - R1			
Mar	34.0	23.8	3.4	0.2	7	6	25.4	26.7	7.2	S	SE	
Apr	35.9	26.2	17.5	1.0	7	6	31.4	30.5	8.7	S	SE	
May	38.3	27.7	49.7	1.8	6	6	30.1	31.2	9.2	SW	SE	
Jun	37.5	27.4	75.4	4.5	6	5	27.4	28.9	9.1	W	SE	
Jul	35.8	26.4	113.1	6.7	6	5	27.5	28.4	8.1	W	SE	
Aug	34.9	25.7	141.4	8.8	7	6	28.1	29.4	7.5	W	SE	
Sep	34.4	25.4	143.9	7.4	7	6	29.3	29.8	6.4	W	SE	
Oct	32.6	24.6	278.3	10.6	8	7	30.1	29.7	4.9	W	Е	
Nov	30.4	23.2	377.3	11.5	8	7	28.5	27.4	4.6	N	NE	
Dec	29.4	21.7	183.7	5.7	8	6	25.7	24.1	5.0	N	NE	
Max.	38.3	27.7	377.3	11.5	8	7	31.4	31.2	9.2	Anı	nual	
Min.	29.4	20.9	3.4	0.2	6	5	24.6	22.8	4.6	predo	predominant	
	33.7	24.6	1408.4	60.2	75	65	28.1	27.7	6.8	-	attern is	
Avg/Total	4 77 11	2 (01)	. 1			<u> </u>	1 6			SOUTE	I EAST	

As per the **Table 3-6** Climatological data provided observations drawn for the study period are the following. As per the above IMD Climatological the observations drawn are the following.

- Daily maximum temperature is 38.3°C and the daily minimum temperature is 20.9°C were recorded in the months of May and january respectively.
- Maximum and minimum relative humidity of 83% and 58% were recorded in the months of January, November, December and June respectively.
- Maximum and minimum rainfall of 377.3mm and 3.4mm was recorded in the months of November and March respectively.
- Maximum and minimum Mean wind speed is 9.2 Km/hr and 4.6 Km/hr was recorded in the
 months of May and November respectively. According to the above IMD data, Annual
 predominant wind pattern is from South west.

3.5.5 Meteorological Scenario during Study Period

The meteorological scenario in and around the project site is an essential requirement during study period for proper interpretation of baseline air quality status. Meteorological data was collected during the study period (March – May 2024) and is presented in Table 3-7. The wind rose for the study period is given as Figure 3-19.

Table 3-7 Meteorological Data for the Study Period (March – May 2024)

S. No	Parameter	Observation

1.	Temperature	Max Temperature : 41 °C
		Min Temperature: 24°C
		Avg Temperature : 31.15°C
2.	Average Relative Humidity	73.36%
3.	Average Wind Speed	3.61 m/s
4.	Predominant Wind Direction during study period	South East to North West

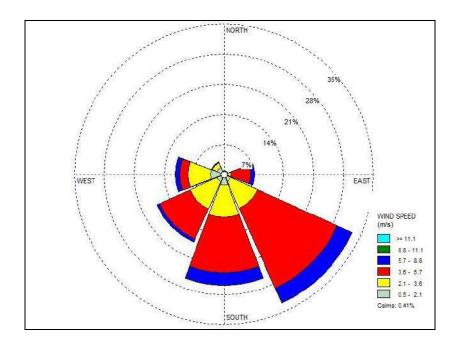


Figure 3-19 Wind rose during study period (March – May 2024)

3.5.6 Atmospheric Inversion

Atmospheric inversion level at the project site was monitored; the results observed at the site during the study period are as follows

Average atmospheric temperature: 31.15°C

• Average Relative humidity: 73.36 %

• Average Wind speed: 3.61 m/s

The daily inversion level calculated based on the average temperature and average wind speed at the project site and the maximum inversion height is derived by the graph plotted based on the average temperature and average wind speed. The daily inversion level at the project site varies from 842 to 3858 m on 2nd April 2024, the maximum recorded on March - May 2024. This is shown in **Figure 3-20**.

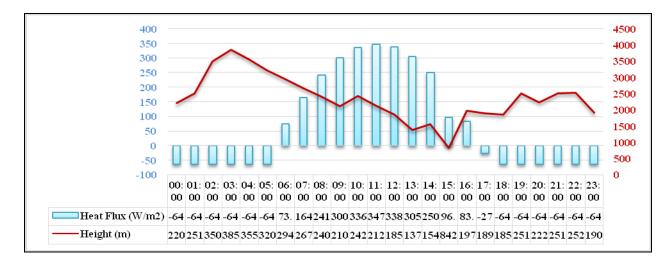


Figure 3-20 Atmospheric inversion level at the project site

3.5.7 Ambient Air Quality

The selection criteria for monitoring locations are based on the following:

- Topography/Terrain
- Meteorological conditions Upwind and Downwind locations
- Residential and sensitive areas within the study area
- Representatives of regional background air quality/pollution levels and
- Representation of likely impacted areas

3.5.8 Ambient Air Quality Monitoring Stations

To evaluate the baseline air quality of the study area, Eight (08) monitoring locations have been identified as per Meteorological data during the study period (March – May 2024). The Annual wind predominance is from South East to North West. AAQ monitoring locations are selected based on Annual wind predominance, map showing the air monitoring locations is given in **Figure 3-21** and the details of the locations are given in

 $Capacity\ Augmentation\ of\ Existing\ Operational\ Marine\ Liquid\ Terminal\ (Mlt)\ From\ 3\ MMTPA\ TO\ 6\ MMTPA$

Draft EIA Report

RP003 - R1

H/01/2022/CON/001

Table 3-8.

Draft EIA Report

RP003 - R1

Table 3-8 Details of Ambient Air Quality Monitoring Locations

Station	Location	Type of Wind	Distance (~km) from	Azimuth
Code			Project boundary	Directions
A1	Project site	-	Within	site
A2	Kattupalli	c/w	1.44	N
A3	Kalanji	c/w	4.94	N
A4	Ennur	c/w	4.83	S
A5	Attippattu	c/w	5.43	WSW
A6	Movuttambedu	c/w	4.07	W
A7	Uranamedu	d/w	3.82	NW
A8	Tiruvellavayal	d/w	7.56	NW

^{*}As per the IMD (India Meteorological Department), the prevailing wind direction is from the South-East, which is typically regarded as the upwind direction. In our study area, the upwind side corresponds to the seaside. Consequently, monitoring couldn't be effectively carried out on the upwind side.

Draft EIA Report

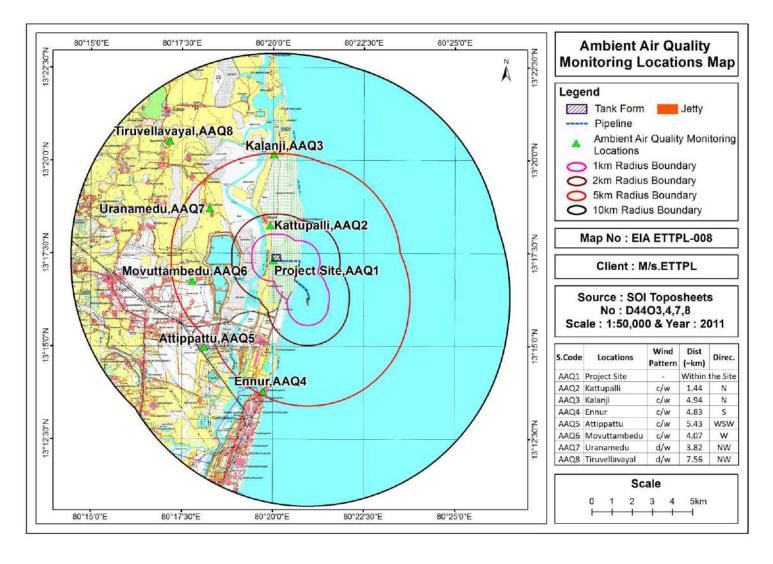


Figure 3-21 Map showing the Air monitoring locations

Draft EIA Report RP003 - R1

3.5.9 Ambient Air Quality Monitoring Techniques, Frequency and Methodology

Ambient air quality was monitored twice in a week for One (1) month (shall cover 4 weeks), i.e. (**March – May 2024**). PM10, PM2.5, SO2, NOx, CO, Pb, O3, NH3, C6H6, C20H12, As and Ni were monitored. Sampling was carried out as per Central Pollution Control Board (CPCB) monitoring guidelines at each location. Analytical methods used for analysis of parameters are given in **Table 3-9**.

Table 3-9 Analytical Methods for Analysis of Ambient Air Quality Parameters

S. No	Parameters	Analytical method	NAAQ standar	rds: 2009	Sampling Time
1	Sulphur Dioxide (SO2), μg/m3	IS:5182(Part-2):2001	50 (Annual)	80(24 Hours)	24 Hours
2	Nitrogen Dioxide (NO2), μg/m3	IS: 5182 (Part - 6): 2006	40 (Annual)	80 (24 Hours)	24 Hours
3	Particulate Matter (PM2.5), μg/m3	IS: 5182 (Part - 23): 2006	40 (Annual)	60 (24 hours)	24 Hours
4	Particulate Matter (PM10), µg/m3	IS:5182 (Part- 23): 2006	60 (Annual)	100 (24 hours)	24 Hours
5	CO, mg/m3	IS:5182(Part-10):1999	2 (8 hours)	4 (1hour)	8 Hours
6	Pb, μg/m3	IS:5182(Part-22):2004	0.5(Annual)	1(24 hours)	24 Hours
7	O3, μg/m3	In house method (Spectrophotometric method) based on CPCB guidelines Volume1	100(8hours)	180 (1hour)	8 Hours
8	NH3, μg/m3	IS 5182 Part 25: 2018	100(Annual)	400(24 hours)	8 Hours
9	Benzene, μg/m3	IS 5182 Part 11: 2006	5 (Annual)	5 (Annual)	24 Hours

H/01/2022/CON/001

RP003 - R1

S. No	Parameters	Analytical method NAAQ standards: 2009		Sampling Time	
10	Benzo (a) pyrene, ng/m3	IS 5182 Part 12: 2004	1 (Annual)	(Annual)	24 Hours
11	Arsenic, ng/ m3	HECS-G/INS/SOP/ 041 Issue No.:01 Issue Date:01.03: 2021	6 (Annual)	6 (Annual)	24 Hours
12	Nickel, ng/ m3	HECS-G/INS/SOP/ 041 Issue No.:01 Issue Date:01.03: 2021	20(Annual)	(Annual)	24 Hours
13	TVOC, ppmv	HECS-G/ENV/AAQ/SOP/005 Issue No.:01 Issue Date:02:07:2020	-	-	-
14	Methane Hydrocarbon	IS 5182 (Part 17)	-	-	8 Hours
15	Non-Methane Hydrocarbon	IS 5182 (Part 17)	-	-	8 Hours

3.5.9.1 Results and Discussions

Draft EIA Report

The variations of the pollutant concentrations of PM10, PM2.5, SO2, NO2, CO, Pb, O3, NH3, C6H6, C20 H12, As and Ni are compared with National Ambient Air Quality Standards (NAAQS), MoEF&CC Notification, November, 2009. Ambient Air Quality Monitoring Data (March – May 2024) for the study area is given in Table 3-10 and trends of measured ambient concentration in the study area were graphically represented in Figure 3-22.

Draft EIA Report

RP003 - R1

Table 3-10 Summary of the average baseline concentrations of pollutants

						Locati	ons			
Parameters	Conc.	NAAQ Standards	Project Site	Kattupalli	Kalanji	Ennur	Attippatt u	Movutta mbedu	Urana medu	Tiruvella vayal
			A1	A2	A3	A4	A5	A6	A7	A8
	Min.	100	54.29	51.94	44.38	59.45	52.94	46.76	47.76	42.59
	Max.	(24 Hours)	77.37	74. 02	63.25	84.73	75.45	66.64	68.07	60.69
PM10 Conc.	Avg.		65.11	62.28	53.22	71.29	63.48	56.08	57.28	51.07
(μg/m ³)	98th 'tile		76.93	73.59	62.88	84.24	75.01	66.25	67.67	60.34
	Min.	60	30.96	28.82	25.89	27.2	27.25	25.76	23.63	22.79
	Max.	(24 Hours)	44.13	41.08	36.89	38.77	38.84	36.71	33.68	32.48
PM2.5 Conc.	Avg.		37.13	34.57	31.04	32.63	32.69	30.89	28.34	27.33
(μg/m3)	98th 'tile		43.87	40.84	36.68	38.55	38.62	36.5	33.48	32.29
	Min.	80	13.5	11.84	9.74	11.24	12.94	10.1	7.43	7.24
	Max.	(24 Hours)	19.24	16.87	13.89	16.02	18.45	14.4	10.59	10.32
SO2 Conc.	Avg.		16.2	14.2	11.69	13.48	15.52	12.12	8.92	8.69
(μg/m3)	98th 'tile		19.13	16.78	13.81	15.92	18.34	14.32	10.53	10.26
NO2 Conc.	Min.	80	24.29	23.61	17.45	21.03	20.25	19.27	17.6	16.95
(µg/m3)	Max.	(24 Hours)	34.62	33.65	24.87	29.98	28.86	27.47	25.09	24.16
	Avg.,		29.13	28.32	20.93	25.23	24.29	23.11	21.11	20.33
	98th 'tile		34.42	33.46	24.73	29.8	28.69	27.31	24.94	24.02
Lead (Pb) (μg/m3)	Avg.	1	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ	BLQ (LOQ	BLQ (LOQ	BLQ (LOQ	BLQ (LOQ	BLQ (LOQ

H/01/2022/CON/001

Draft EIA Report

RP003 - R1

						Locati	ons			
Parameters	Conc.	NAAQ Standards	Project Site	Kattupalli	Kalanji	Ennur	Attippatt u	Movutta mbedu	Urana medu	Tiruvella vayal
			A1	A2	A3	A4	A5	A6	A7	A8
		(24 hour)			0.05)	0.05)	0.05)	0.05)	0.05)	0.05)
Carbon monoxide		4								
(CO) (mg/m3)	Avg.	(1hour)	0.82	0.62	0.53	0.95	0.70	0.50	0.42	0.48
Ozone O3 (µg/m3)	Avg.	180 (1hour)	10.53	10.21	10.09	10.08	10.98	12.72	10.07	10.68
Benzene(C6H6) (μg/m3)	Avg.	5(Annual)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)
Benzo (a) Pyrene(C20H1 2 (a)), (ng/m3)	Avg.	1 (Annual)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)
Arsenic (As) (ng/ m3)	Avg.	6 (Annual)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)
Nickel as Ni (ng/m3)	Avg.	20 (Annual)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)	BLQ (LOQ 0.05)
Ammonia (NH3) (µg/m3)	Avg.	400 (24 hour)	8.21	7.12	BLQ(LOQ 5)	6.89	BLQ(LO Q 5)	BLQ(LOQ 5)	BLQ(L OQ 5)	BLQ(LO Q 5)
TVOC (ppm)	Avg.	-	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)

H/01/2022/CON/001

Draft EIA Report

RP003 - R1

						Locations				
Parameters	Conc.	NAAQ Standards	Project Site	Kattupalli	Kalanji	Ennur	Attippatt u	Movutta mbedu	Urana medu	Tiruvella vayal
			A1	A2	A3	A4	A5	A6	A7	A8
Methane HC (µg/m3)	Avg.	-	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)
Non-Methane HC (µg/m3)	Avg.	-	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)

Note: BLQ (Below Limit of Quantification), LOQ (Limit Of Quantification)

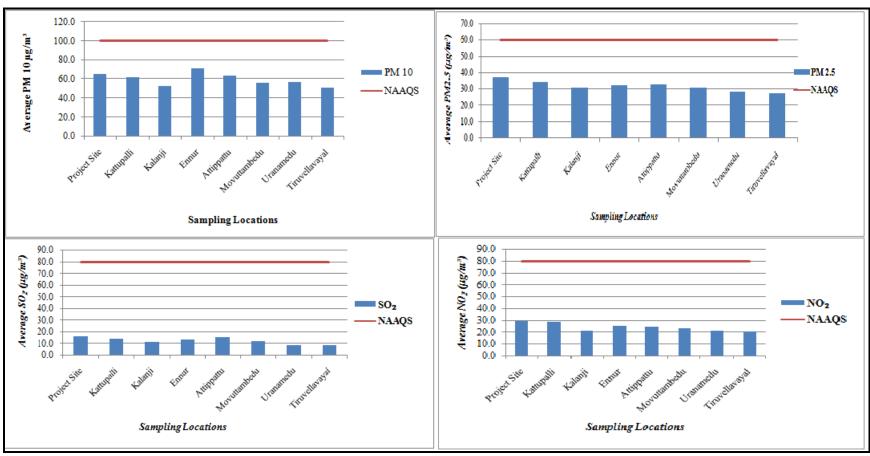


Figure 3-22: Trends of Measured Ambient Concentrations in the Study Area

3.5.10 Observations

. The average baseline levels of PM10 is $51.07~\mu g/m^3$ to $71.29~\mu g/m^3$, PM2.5 is $27.33~\mu g/m^3$ to $37.13~\mu g/m^3$, SO2 is $8.69~\mu g/m^3$ to $16.20~\mu g/m^3$, NO2 is $20.33\mu g/m^3$ to $29.13~\mu g/m^3$, all the parameters are well within the National Ambient Air Quality at all monitoring locations during the study period March – May 2024.

3.6 Noise Environment -components and methodology

The prevailing ambient noise level at a particular location is nothing but the resultant (total) of all kinds of noise sources existing at various distances around that location. The ambient noise level at a location varies continuously depending on the type of surrounding activities.

Ambient noise levels have been established by monitoring noise levels at Eight (08) locations in and around 10Km distance from project area during the study period using precision noise level meter. The noise monitoring locations in the study area were selected after giving due consideration to the various land use categories. The land use categories include commercial, residential, rural and sensitive areas. Noise levels were recorded on an hourly basis for one complete day at each location using pre-calibrated noise levels. Map showing noise monitoring locations is **Figure 3-25**.

3.6.1 Results and Discussions

Based on the recorded hourly noise levels at each monitoring location, the day equivalent (Ld) and night equivalent (Ln) were calculated;

Ld: Average noise levels between 6:00 hours to 22.00 hours.

Ln: Average noise levels between 22:00 hours to 6.00 hours.

The comparison of day equivalent noise levels (Ld) and night equivalent noise levels (Ln) with the respective CPCB stipulated noise standards for various land use categories are shown in the **Table 3-11**.

H/01/2022/CON/001

Draft EIA Report

RP003 - R1

Table 3-11 Day and Night Equivalent Noise Levels

S.	Location	Location Code		ntion Code Distance (km) Azimuth Noise level in dB(A)				Standard	Environmental	
No			from Project boundary]	Leq			Setting	
			boundary		Day	Night	Lday	LNight		
							(Ld)	(Ln)		
1	Project site	N1	With	in site	63.2	52.8	75	70	Industrial	
2	Kattupalli	N2	1.44	N	54.3	43.2	55	45	Residential	
3	Kalanji	N3	4.94	N	48.8	41.5	55	45	Residential	
4	Ennur	N4	4.83	S	49.5	41.9	55	45	Residential	
5	Attippattu	N5	5.43	WSW	61.6	51.8	75	70	Industrial	
6	Movuttambedu	N6	4.07	W	51.3	43.7	55	45	Residential	
7	Uranamedu	N7	3.82	NW	46.1	42.4	55	45	Residential	
8	Tiruvellavayal	N8	7.56	NW	47.8	43.6	55	45	Residential	

3.6.2 Observations

The observations of day equivalent and night equivalent noise levels at all locations are given below

In Industrial area's, noise levels varied from 61.6 to 63.2 dB(A) during day time and 51.8 to 52.8 dB(A) during night time, which is within prescribed limit by

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

Draft EIA Report RP003 - R1

CPCB (75 dB(A) Day time & 70 dB(A) Night time) at the proposed site & attippattu location .

In residential area's, noise levels varied from 46.1 dB(A) to 54.3 dB(A)) during day time and night time noise levels varied from 41.5 dB(A) to 43.7 dB(A) across the sampling stations. The field observations during the study period indicate that the ambient noise levels is within the prescribed limit by CPCB (55 dB(A) Day time & 45 dB(A) Night time).

H/01/2022/CON/001

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

RP003 - R1

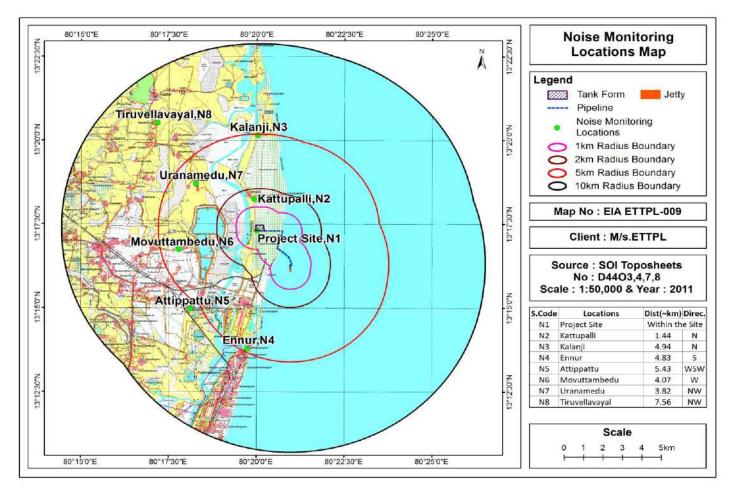


Figure 3-23 Map showing the Noise Monitoring locations

3.7 Water Environment components and methodology

3.7.1 Surface Water Resources

Araniyar, Korattalayar, Cooum, Nagari and Nandhi are the important rivers. The drainage pattern, in general, is dendritic. All the rivers are seasonal and carry substantial flows during monsoon period. Korattaliar river water is supplied to Cholavaram and Red Hill tanks by constructing an Anicut at Vellore Tambarambakkam. After filling a number of tanks on its further course, the river empties into the Ennore creek a few kilometres north of Chennai. The Cooum River, flowing across the southern part of the district, has its origin in the surplus waters of the Cooum tank in Tiruvallur Taluk and also receives the surplus waters of a number of tanks. It feeds the Chembarambakkam tank through a channel. It finally drains into the Bay of Bengal.

Source: http://cgwb.gov.in/District_Profile/TamilNadu/TIRUVALLUR.pdf

(Ref:Government of India Ministry of Water Resources Central Ground Water Board South Eastern Coastal Region Chennai, "District Ground Water Brochure Tiruvallur District")

3.7.2 Surface Water Quality Assessment

Water quality monitoring and assessment can be used to determine ambient water quality, the extent and causes of a water quality problem, or to measure the effectiveness of best management practices being implemented in water system. Monitoring helps to determine the trends in the quality of the aquatic environment and the impact due to the release of contaminants, other anthropogenic activities, and/or by waste treatment operations (impact monitoring). To establish the baseline status of water environment, the representative sampling locations for surface water within a radial distance of 10Km from project site have been selected as per CPCB guidelines of Water Quality Monitoring through an adequate survey of the project area. Test methods used for the analysis of water quality parameters is given in **Table 3-12**. Water sampling location are given in **Table 3-13**.

Table 3-12 Test methods used for the analysis of water quality parameters

S. No	Parameter Measured	Test Method
1	Colour	IS:3025 (Part- 4) 1983
2	Turbidity	IS 3025(Part - 10):1984
3	рН	IS:3025 (Part - 11): 1983
4	Conductivity	IS:3025 (Part - 14): 1983
5	Total Dissolve Solids	IS:3025:1(Part - 16) 1984

S. No	Parameter Measured	Test Method
5. 110		
6	Total Suspended Solids	IS 3025 (Part - 17) 1984
7	Alkalinity as CaCO3	IS:3025,1 (Part - 23) 1986
8	Total Hardness as CaCo3	IS:3025 (Part - 21) 1983
9	Sodium	IS:3025,5(Part - 45) 1993
10	Potassium	IS:3025,5(Part - 45) 1993
11	Calcium as Ca	IS 3025 (Part - 40):1991
12	Magnesium as Mg	IS 3025 (Part - 46) 1994
13	Chloride	IS 3025 (Part - 32):1988
14	Sulphate SO4	IS 3025(Part - 24):1986
15	Nitrate as NO3	ASTM(Part - 31)1978
16	Phosphate	IS 3025 (Pt 45) 1993
17	Fluorides as F	IS 3025 (Part - 60):2008
18	Arsenic	IS 3025:(Part-37):1988
19	Boron	IS:3025 (Part - 57):2003
20	Cadmium	IS 3025 (Part - 41)1991
21	Chromium, Total	IS:3025 (Part - 52) 2003
22	Copper	IS:3025 (Part - 42)1992
23	Lead	IS:3025 (Part - 47) 1994
24	Manganese	IS 3025:(Part - 59):2006
25	Mercury	IS 3025 (Part48):1994
26	Nickel	IS 3025:(Part-54):2003
27	Selenium	IS 3025 Part (56)2003
28	Zinc	IS:3025 (Part - 49) 1994

RP003 - R1

S. No	Parameter Measured	Test Method
29	Dissolved Oxygen	IS:3025 (Part - 38)1989
30	BOD	5210B APHA22nd Edn 2012
31	COD	IS:3025 (Part-58)-2006
32	Total Coliform	IS 1622: 2019

The prevailing status of surface water quality has been assessed during the study period. Surface water quality results are provided in **Table 3-14**. A map showing the surface water monitoring locations is given in **Figure 3-24**.

Table 3-13 Details of Surface water sampling locations

S.No	Water bodies	Location code	Distance from project boundary (~Km)	Direction from project boundary
1	Kosisttalaiyar R u/s	SW1	5.72	N
2	Marine sample near Kalanji	SW2	4.99	N
3	Marine sample near Ennore	SW3	5.91	S
4	Kosisttalaiyar R d/s	SW4	4.33	SW
5	Buckingham Canal d/s	SW4	1.75	W
6	Tiruvellavayal	SW6	6.65	NW
7	Kattur Lake (Mangrove swamp)	SW7	8.69	NW
8	Buckingham Canal u/s	SW8	1.32	NNW

Draft EIA Report RP003 - R1

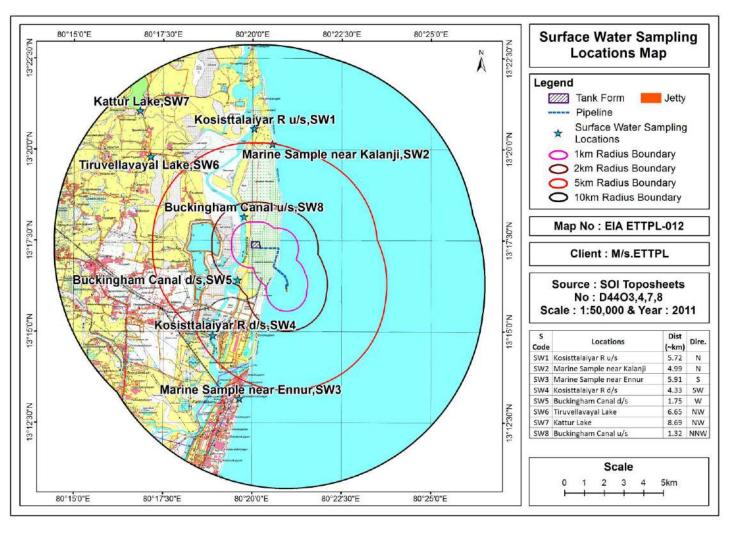


Figure 3-24: Map showing the surface water monitoring locations

Table 3-14: Surface water Monitoring Results

S.	Parameter	Unit	Surface water	Kosisttalaiya	Kosisttalaiyar	Buckingha	Tiruvellavay	Kattur	Buckingha
No			standards (IS	r River u/s	River d/s	m Canal d/s	al lake	lake	m Canal u/s
			2296 Class-A)					(Mangrov	
								e Swamp)	
				SW 1	SW 4	SW 5	SW 6	SW7	SW 8
1	Turbidity	NTU	1	1.1	3.2	3.0	5.1	20.1	7.1
2	pH (at 25°C)		6.5-8.5	7.32	7.91	7.92	7.13	7.93	7.87
3	Electrical Conductivity	μS/cm	-	14320	14780	15376	2915	2970	14964
4	Total Dissolved Solids	mg/l	500	8000	8257	8495	1584	1611	8088
5	Total Suspended Solids	mg/l	-	7	24	21	36	143	23
6	Total Alkalinity as CaCO3	mg/l	-	90	154	142	231	173	158
7	Total Hardness as CaCO3	mg/l	300	1796	1885	1938	586	572	1965
8	Sodium as Na	mg/l	-	2155	2210	2278	358	379	2155
9	Potassium as K	mg/l	-	150.8	154.7	159.4	25.1	26.5	150.9
10	Calcium as Ca	mg/l	-	418.12	438.34	451.48	136.67	133.72	457.63
11	Magnesium as Mg	mg/l	-	183.3	192.4	197.8	59.8	58.4	200.5
12	Chloride as Cl	mg/l	250	3591.52	3684.76	3796.47	597.18	632.24	3592.37
13	Sulphate as SO4	mg/l	400	1416.85	1453.54	1497.73	235.55	249.36	1417.24
14	Nitrate as NO3	mg/l	20	3.80	5.90	4.10	6.20	2.90	4.20
15	Phosphate as PO4	mg/l	-	0.11	0.59	0.23	0.04	0.06	0.25
16	Fluorides as F	mg/l	1.5	0.71	0.78	0.73	0.72	0.77	0.73

H/01/2022/CON/001

S.	Parameter	Unit	Surface water	Kosisttalaiya	Kosisttalaiyar	Buckingha	Tiruvellavay	Kattur	Buckingha
No			standards (IS	r River u/s	River d/s	m Canal d/s	al lake	lake	m Canal u/s
			2296 Class-A)					(Mangrov	
								e Swamp)	
				SW 1	SW 4	SW 5	SW 6	SW7	SW 8
17	Cyanide	mg/l	0.05	BLQ (LOQ		BLQ (LOQ	BLQ	BLQ	BLQ
				0.01)	BLQ (LOQ 0.01)	0.01)	(LOQ0.01)	(LOQ	(LOQ0.01)
		<u> </u>		0.01)	(LOQ0.01)	0.01)	(LOQ0.01)		
18	Arsenic	mg/l	0.05	BLQ (LOQ	BLQ (LOQ	BLQ (LOQ	BLQ (LOQ	BLQ	BLQ (LOQ
				0.005)	0.005)	0.005)	0.005)	(LOQ	0.005)
				0.003)	0.002)	0.005)	0.003)	0.005)	0.003)
19	Boron as B	mg/l	-	BLQ (LOQ	BLQ (LOQ 0.1)	BLQ (LOQ	BLQ (LOQ	BLQ	BLQ (LOQ
				0.1)	BLQ (LOQ 0.1)	0.1)	0.1)	(LOQ 0.1)	0.1)
20	Cadmium as Cd	mg/l	0.01		BLQ (LOQ	BLQ (LOQ	BLQ (LOQ	BLQ (BLQ (LOQ
				BLQ (LOQ	0.001)	0.001)	0.001)	LOQ	0.001)
				0.001)				0.001)	
21	CI		0.05			DI O (I O O	DV 0 (7 0 0	DV 0 / 0 0	DV 0 (V 0 0
21	Chromium, Total	mg/l	0.05	BLQ(LOQ	BLQ(LOQ 0.01)	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
				0.01)	BLQ(LOQ 0.01)	0.01)	0.01)	0.01)	0.01)
22	Copper as Cu	mg/l	1.5	BLQ(LOQ	DI O/I OO 0 005	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
				0.005)	BLQ(LOQ 0.005)	0.005)	0.005)	0.005)	0.005)
23	Total Iron	mg/l	0.3	0.03	0.03	BLQ(LOQ	0.05	0.04	0.03
				0.03	0.03	0.02)	0.03	0.04	0.03

H/01/2022/CON/001

Draft EIA Report

S.	Parameter	Unit	Surface water	Kosisttalaiya	Kosisttalaiyar	Buckingha	Tiruvellavay	Kattur	Buckingha
No			standards (IS	r River u/s	River d/s	m Canal d/s	al lake	lake	m Canal u/s
			2296 Class-A)					(Mangrov	
								e Swamp)	
				SW 1	SW 4	SW 5	SW 6	SW7	SW 8
24	Lead as Pb	mg/l	0.1	BLQ(LOIQ	BLQ(LOQ 0.005)	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
				0.005)	BLQ(LOQ 0.003)	0.005)	0.005)	0.005)	0.005)
25	Manganese as Mn	mg/l	0.5	BLQ(LOC) BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
				0.05	0.05)	0.05)	0.05)	0.05)	0.05)
26	Mercury	mg/l	0.001	BLQ(LOC	Q BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
				0.0005	0.0005)	0.0005)	0.0005)	0.0005)	0.0005)
27	NU-11 NU	/1		DI O/I O/	DI O/I OO	DI O/I OO	DI O/I OO	DI O/I OO	DI O/I OO
21	Nickel as Ni	mg/l	-	BLQ(LOC		BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
				0.05		0.05)	0.05)	0.05)	0.05)
28	Selenium as Se	mg/l	0.01	0.009	BLQ(LOQ	BLQ(LOQ	0.019	0.011	BLQ(LOQ
					0.005)	0.005)	0.0 = 2	0.00	0.005)
29	Zinc	mg/l	15	BLQ(LOQ 0.1	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
				DLQ(LOQ 0.1	0.1)	0.1)	0.1)	0.1)	0.1)
30	Dissolved Oxygen	mg/l	6	6.	5.4	5.5	6.0	5.8	5.6
31	Chemical Oxygen Demand	mg/l	-	10	5 32	28	20	24	24
	as O2				32	28	20	24	24
32	BOD, 3 days @ 27°C as	mg/l	2	,	2 4	A	2	3	3
	O2			•	2 4	4	2	3	3

(Note: BLQ – Below Limit of Quantification; LOQ – Limit Of Quantification)

Marine Water Under the Surface Water Samples

Parameter	Unit*	Marine sample	Marine sample near Ennore
		near Kalanji	
		SW 2	SW 3
Turbidity	NTU	3.2	3.1
pH (at 25°C)		8.12	8.07
Electrical Conductivity	μS/cm	50743	49512
Total Dissolved Solids	mg/l	32116	31337
Total Suspended Solids	mg/l	18	19
Total Alkalinity as CaCO3	mg/l	114	137
Total Hardness as CaCO3	mg/l	6016	6153
Sodium as Na	mg/l	10369.2	10087.8
Potassium as K	mg/l	345.64	336.26
Calcium as Ca	mg/l	397.31	406.35
Magnesium as Mg	mg/l	1221.0	1248.8
Chloride as Cl	mg/l	17282	16813
	Turbidity pH (at 25°C) Electrical Conductivity Total Dissolved Solids Total Suspended Solids Total Alkalinity as CaCO3 Total Hardness as CaCO3 Sodium as Na Potassium as K Calcium as Ca Magnesium as Mg	Turbidity PH (at 25°C) Electrical Conductivity Total Dissolved Solids Total Suspended Solids Total Alkalinity as CaCO3 Total Hardness as CaCO3 mg/l Sodium as Na Potassium as K mg/l Calcium as Ca mg/l Magnesium as Mg mg/l	near Kalanji SW 2 Turbidity NTU 3.2 pH (at 25°C) 8.12 Electrical Conductivity μS/cm 50743 Total Dissolved Solids mg/l 32116 Total Suspended Solids mg/l 18 Total Alkalinity as CaCO3 mg/l 114 Total Hardness as CaCO3 mg/l 6016 Sodium as Na mg/l 10369.2 Potassium as K mg/l 345.64 Calcium as Ca mg/l 397.31 Magnesium as Mg mg/l 1221.0

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

S. No	Parameter	Unit*	Marine sample	Marine sample near Ennore		
			near Kalanji			
			SW 2	SW 3		
13	Sulphate as SO4	mg/l				
14	Nitrate as NO3	mg/l	2419.48	2353.82		
15	Phosphate as PO4	mg/l	1.9	2.1		
16	Fluorides as F	mg/l	0.05	0.07		
17	Cyanide	mg/l	1.3	1.4		
18	Arsenic	mg/l	BLQ (LOQ 0.01)	BLQ (LOQ 0.01)		
19	Boron as B	mg/l	BLQ (LOQ 0.005)	BLQ (LOQ 0.005)		
20	Cadmium as Cd	mg/l	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)		
21	Chromium, Total	mg/l	BLQ (LOQ 0.01)	BLQ (LOQ 0.01)		
22	Copper as Cu	mg/l	BLQ(LOQ 0.05)	BLQ(LOQ 0.05)		
23	Total Iron	mg/l	BLQ(LOQ 0.005)	BLQ(LOQ 0.005)		
24	Lead as Pb	mg/l	0.06	0.07		
25	Manganese as Mn	mg/l	BLQ(LOQ 0.005)	BLQ(LOQ 0.005)		

H/01/2022/CON/001

Draft EIA Report

S. No	Parameter	Unit*	Marine sample	Marine sample near Ennore
			near Kalanji	
			SW 2	SW 3
26	Mercury	mg/l	BLQ(LOQ 0.0005)	BLQ(LOQ 0.0005)
27	Nickel as Ni	mg/l	BLQ(LOQ 0.05)	BLQ(LOQ 0.05)
28	Selenium as Se	mg/l	BLQ(LOQ 0.005)	BLQ(LOQ 0.005)
29	Zinc	mg/l	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)
30	Dissolved Oxygen	mg/l	6.1	6.2
31	Chemical Oxygen Demand as O2	mg/l	52	48
32	BOD, 3 days @ 27°C as O2	mg/l	9	8

^{*}water quality standards for coastal wasters marine outfall-Primary Water Quality Criteria For Class SW-I Waters

MARINE WATER QUALITY STANDARDS FOR COASTAL WASTERS MARINE OUTFALL

S.No.	class	Designated best use
1.	SW-I (see Table 1.1)	Salt pans, Shell fishing, Mariculture and Ecologically Sensitive Zone.
2.	SW-II (see Table 1.2)	Bathing, Contact Water Sports and Commercial fishing.
3.	SW-III(see Table 1.3)	Industrial cooling, Recreation (non-contact) and Aesthetics.
4.	SW-IV (see Table 1.4)	Harbour
5.	SW-V (see Table 1.5)	Navigation and Controlled Waste Disposal.

Draft EIA Report RP003 - R1

3.7.3 Results and Discussions

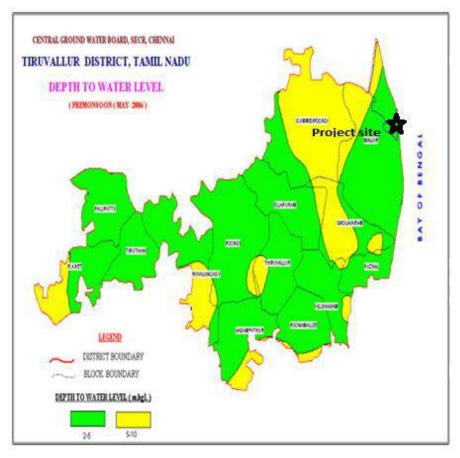
Surface water sample results are discussed below:

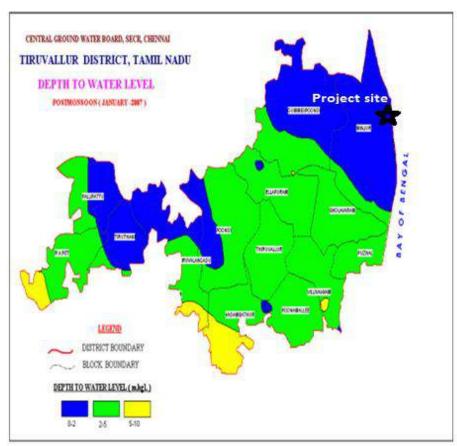
- pH in the collected surface water samples varies between 7.13 to 7.93 and pH in the collected marine water samples varies between 8.07 to 8.12.
- The Total Dissolved Solids (TDS) value of collected surface water sample ranges from 1584 mg/l to 8495 mg/l and TDS value of collected marine water sample ranges from 31337 mg/l to 32116 mg/l.
- The Total hardness value of the collected surface water sample ranges between 572 mg/l to 1965 mg/l and Total hardness value of the collected marine water sample ranges between 6016 mg/l to 6153 mg/l
- BOD value of the collected surface water sample ranges from upto 4 mg/l and BOD in the marine water sample is upto 9 mg/l.
- COD value of collected surface water varies from upto 32 mg/l and COD of collected marine water sample ranges from upto 52 mg/l. Higher values of COD at Kosisttalaiyar River d/s, Buckingham Canal d/s may indicate organic Pollution.
- The concentration of heavy metals like As, Cd, Cr, Pb, Mn, Hg, Ni and Se are within the limits of IS 2296:1992.

RP003 - R1

3.7.4 Ground Water Resources

In view of the comparatively high level of ground water development in the major part of the district and the quality problems due to geogenic and anthropogenic factors, it is necessary to exercise caution while planning further development of available ground water resources in the district. The yields of dug wells in crystalline and Gondwana formations are improved at favourable locations by construction of extension bores varies from 20 to 40m. In recent years, a large number of bore wells have also been drilled byfarmers for irrigation purposes. Dug wells with extension bores wherever necessary is ideal for hard rock areas whereas large diameter dug wells with radials is suitable for alluvial areas.


It is observed that ground water in the phreatic zone may cause high to very high salinity hazard and medium to high alkali hazard when used for irrigation.


The yield of dug wells range from Tiruvallur District Depth of Water Level on Pre Monsoon & post Monsoon is given in **Figure 3-25**.

Source: blob:https://acrobat.adobe.com/abee91b2-ba50-4f7c-9aa7-3364614455a5

(Ref: Government of India Ministry of Water Resources Central Ground water Board, District Ground Water Brochure Tiruvallur District, Tamil Nadu'')

Capacity Augmentation of Existing Operational Marine Liquid Terminal (MIt) From 3 MMTPA TO 6 MMTPA

Draft EIA Report

RP003 - R1

Figure 3-25 Depth to water level of Tiruvallur District

Draft EIA Report RP003 – R1

3.7.5 Ground Water Quality

Total Eight (08) ground water monitoring locations were identified for assessment in different villages around the project site based on the usage of sub surface water by the settlements/ villages in the study area. The groundwater results are compared with the acceptable and permissible water quality standards as per IS: 10500 (2012) for drinking water. Groundwater quality monitoring locations and results are given in **Table 3-15** and

Table 3-16 A map showing the groundwater monitoring locations is given in **Figure 3-26**.

Table 3-15 Details of Groundwater Quality Monitoring Locations

Station Code	Location	Distance (km) from Project boundary	Azimuth
			Directions
GW1	Project site	Within site	
GW2	Kattupalli	1.44	N
GW3	Kalanji	4.94	N
GW4	Ennur	4.83	S
GW5	Attippattu	5.43	WSW
GW6	Movuttambedu	4.07	W
GW7	Uranamedu	3.82	NW
GW8	Tiruvellavayal	7.56	NW

Draft EIA Report RP003 - R1

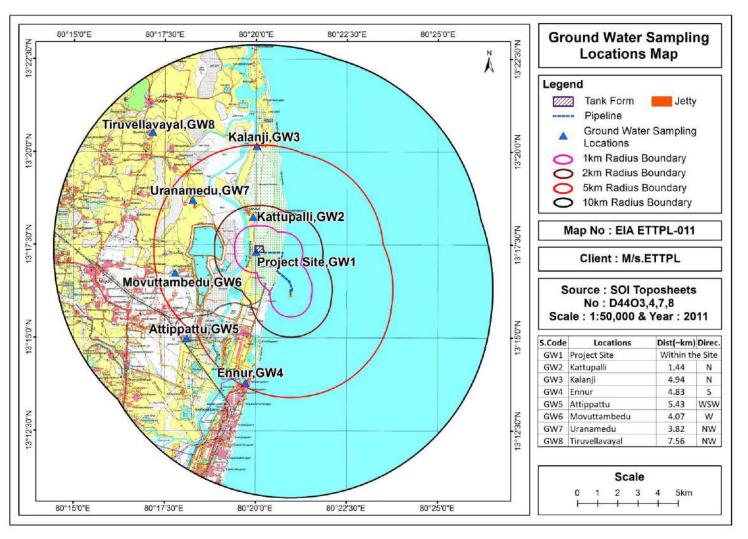


Figure 3-26 Map showing the groundwater monitoring locations

Table 3-16 Ground Water Monitoring Results

			Drinki ng	Drinki ng	Project site	Kattupall i	Kalanji	Ennur	Attippatt u	Movuttam bedu	Uranamed u	Tiruvellava yal
S. No	Parameters	Unit	water Standa rd (IS 10500: 2012) Accept able Limit	water Standa rd (IS 10500: 2012) Permis sible Limit	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8
1	Colour	Haze	5	15	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
	Colour	n	3	15	1)	Q 1)	Q 1)	1)	1)	1)	1)	1)
2	Turbidity	NTU	1	5	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
	Turolany	1110	-		0.1)	Q 0.1)	Q 0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
3	pН		6.5-8.5	NR	7.12	7.89	7.91	7.85	7.62	7.75	7.23	7.21
4	Conductivity	μS/c m	-	-	994	975	734	741	705	716	804	619
5	Total Dissolve Solids	mg/l	500	2000	518	510	436	439	425	427	430	368

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

6	Total Suspended	/1			BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
0	Solids	mg/l	-	-	1)	Q 1)	Q 1)	1)	1)	1)	1)	1)
7	Alkalinity as CaCO3	mg/l	200	600	240	210	140	126	120	130	230	110
8	Total Hardness as CaCO3	mg/l	200	600	361	366	240	213	225	224	311	183
9	Sodium as Na	mg/l	-	-	51	41	62	75	63	65	42	60
10	Potassium as K	mg/l	-	-	5	4	5	6	3	6	3	5
11	Calcium as Ca	mg/l	75	200	83.92	85.08	55.79	49.51	52.3	52.07	72.3	42.54
12	Magnesium as Mg	mg/l	30	100	36.8	37.4	24.5	21.7	23.0	22.9	31.7	18.7
13	Chloride as Cl	mg/l	250	1000	118.5	132.8	124.6	127.8	127.8	128.4	85.6	108.7
14	Sulphate SO4	mg/l	200	400	47.4	54.45	47.35	57.2	50.79	51.56	34.05	46.78
15	Nitrate as NO3	mg/l	45	NR	4.3	3.05	3	4.9	5.8	2.6	2.2	3.1
16	Fluorides as F		1	1.5	0.52	0.41	0.32	0.31	0.37	0.2	0.36	0.28
17	Cyanide	mg/l	0.05	NR	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
17	Cyamac	mg/1	0.03	1410	0.01)	Q 0.01)	Q 0.01)	0.01)	0.01)	0.01)	0.01)	0.01)
18	Arsenic as As	mg/l	0.01	0.05	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
10	rifseine us ris	1116/1	0.01	0.03	0.005)	Q 0.005)	Q 0.005)	0.005)	0.005)	0.005)	0.005)	0.005)
19	Boron as B	mg/l	0.5	1.0	BQL(LOQ	BQL(LO	BQL(LO	BLQ(LOQ	BQL(LOQ	BQL(LOQ	BQL(LOQ	BLQ(LOQ
1)	Doron as D	1115/1	0.5	1.0	0.1)	Q 0.1)	Q 0.1)	0.1)	0.1)	0.1)	0.1)	0.1)
20	Cadmium as Cd	mg/l	0.003	NR	BQL(LOQ	BQL(LO	BQL(LO	BQL(LOQ	BQL(LOQ	BQL(LOQ	BQL(LOQ	BQL(LOQ
20	Caumum as Cu	111g/1	0.003	111	0.001)	Q 0.001)	Q 0.001)	0.001	0.001)	0.001)	0.001)	0.001

H/01/2022/CON/001

Draft EIA Report RP003 - R1

21	Chromium as Cr	mg/l	0.05	NR	BQL(LOQ	BQL(LO	BQL(LO	BQL(LOQ	BQL(LOQ	BQL(LOQ	BQL(LOQ	BQL(LOQ
21	Cinomium as Ci	IIIg/I	0.03	INIX	0.01)	Q 0.01)	Q 0.01)	0.01)	0.01)	0.01)	0.01)	0.01)
22	Copper as Cu	mg/l	0.05	1.5	BLQ(LOQ	BLQ(LO	BLQ(LO	BQL(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BQL(LOQ
22	Copper as Cu	IIIg/I	0.03	1.3	0.01)	Q 0.01)	Q 0.01)	0.01)	0.01)	0.01)	0.01)	0.01)
23	Lead as Pb	mg/l	0.01	NR	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
23	Lead as 10	IIIg/I	0.01	INIX	0.005)	Q 0.005)	Q 0.005)	0.005)	0.005)	0.005)	0.005)	0.005)
24	Manganese as	mg/l	0.1	0.3	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
24	Mn	IIIg/I	0.1	0.3	0.05)	Q 0.05)	Q 0.05)	0.05)	0.05)	0.05)	0.05)	0.05)
25	Mercury	mg/l	0.001	NR	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
23	Mercury	IIIg/I	0.001	INIX	0.0005)	Q 0.0005)	Q 0.0005)	0.0005)	0.0005)	0.0005)	0.0005)	0.0005)
26	Nickel as Ni	mg/l	0.02	NR	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
20	TVICKCI AS TVI	IIIg/1	0.02	IVIX	0.01)	Q 0.01)	Q 0.01)	0.01)	0.01)	0.01)	0.01)	0.01)
27	Selenium as Se	mg/l	0.01	NR	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
21	Sciemum as Se	IIIg/I	0.01	INIX	0.005)	Q 0.005)	Q 0.005)	0.005)	0.005)	0.005)	0.005)	0.005)
28	Zinc as Zn	mg/l	5	15	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ
		ing/i	3		0.1)	Q 0.1)	Q 0.1)	0.1)	0.1)	0.1)	0.1)	0.1)

(Note: BLQ – Below Limit of Quantification; LOQ – Limit Of Quantification; NR – No Relaxation)

A summary of analytical results are presented below:

• The ground water results of the study area indicate that the pH range varies between 7.12 and 7.91. It is observed that the pH range is within the permissible limit of IS 10500:2012.

• The Total Dissolved Solids range of the collected ground water sample is varied between 368 mg/l – 518 mg/l. All the samples are within the permissible limit of IS 10500: 2012.

• The acceptable limit of the chloride content is 250mg/l and permissible limit is 1000 mg/l. The chloride content in the collected ground water samples in the study area ranges between 85.6 mg/l – 132.8 mg/l. It is observed that all the samples are within the permissible limit of IS 10500:2012.

• The acceptable limit of the sulphate content is 200mg/l and permissible limit is 400mg/l. the sulphate content in the collected ground water samples in the study area is varied between 34.05 mg/l – 57.2 mg/l. It is observed that all the samples are meeting the acceptable limit of the IS 10500: 2012.

• The Total hardness ranges is between 183 mg/l – 366 mg/l for ground water samples. It is observed that all the samples are within the permissible limit of the IS 10500: 2012.

• It is observed that all ground water sample collected within the study area are meeting the drinking water standards IS 10500:2012.

3.8 Soil as a resource and its quality

Soils in the area have been classified into i) Red soil ii) Black soil iii) Alluvial soil iv) colluvial soil. The major part is covered by Red soil of red sandy/clay\ loam type. Ferrugineous red soils are also seen at places. Black soils are deep to very deep and generally occur in the depressions adjacent to hilly areas, in the western part. Alluvial soils occur along the river courses and eastern part of the coastal areas. Sandy coastal alluvium (arenaceous soil) are seen all along the sea coast as a narrow belt. Soil analysis was carried as per IS: 2720 methods. Soil quality monitoring locations & results are given in

Table 3-17 & Table 3-18. Map showing the soil monitoring locations is given in Figure 3-27.

Source: blob:https://acrobat.adobe.com/abee91b2-ba50-4f7c-9aa7-3364614455a5

(Ref: Government of India Ministry of Water Resources Central Ground water Board, District Ground Water Brochure Tiruvallur District, Tamil Nadu")

Table 3-17 Soil & Sediment Quality Monitoring Locations

Location		Distance (Km)	Direction
Code	Location	w.r.t project site	w.r.t. project site
S1	Project site	With	nin site
S2	Kattupalli	1.44	N
S3	Kalanji	4.94	N
S4	Ennur	4.83	S
S5	Attippattu	5.43	WSW
S6	Movuttambedu	4.07	W
S7	Uranamedu	3.82	NW
S8	Tiruvellavayal	7.56	NW

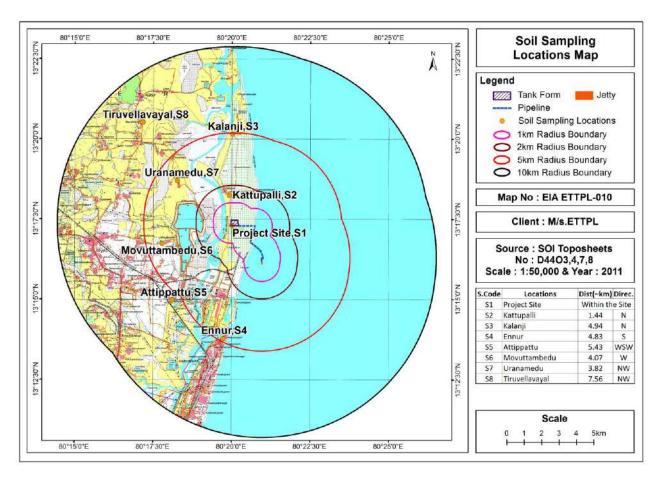


Figure 3-27 Map showing the soil monitoring locations

Table 3-18 Soil Results

S.			Project	Kattupalli	Kalanji	Ennur	Attipattu	Movuttam	Uranam	Tiruvellava
No	Parameters	Units	site	Kattupam	Kalaliji	Elliur	Atupattu	bedu	bedu	yal
110			S1	S2	S3	S4	S5	S6	S7	S8
1	Soil Texture	_	Sand	Sand	Sandy	Sand	Sandy loam	Sandy loam	Sandy	Sandy
1	Son Texture	-	Saliu	Sanu	loam	Sanu	Sandy Ioani	Sandy Ioani	loam	Loam
2	Sand	%	90	91.32	65.37	89.56	60.89	54.55	68.33	69.1
3	Silt	%	8	7.29	16.69	6.3	22.8	17.89	23.08	24.4
4	Clay	%	2	1.39	17.94	4.14	16.31	27.56	8.59	6.5
5	рН	-	7.12	7.35	7.39	7.32	7.34	7.24	7.17	7.23
6	Electrical	uS/om								
0	conductivity	μS/cm	1208	1052	1070	1089	947	916	854	756
9	Nitrogen as N	mg/kg	119.3	83.8	121.3	114	85.9	78.2	101.3	69.2
10	Phosphorus	mg/kg	17.0	12.0	17.3	16.3	12.3	11.2	14.5	9.9
11	Potassium	mg/kg	63.9	44.9	65.0	61.1	46.0	41.9	54.3	37.1
12	Boron	ma/ka	BLQ(LO	BLQ(LOQ	BLQ(LO	1.33	BLQ(LOQ	BLQ(LOQ	BLQ(LO	BLQ(LOQ
12	DOIOII	mg/kg	Q 1)	1)	Q 1)	1.33	1)	1)	Q 1)	1)
13	Cadmium	ma/ka	BLQ(LO	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LO	BLQ(LOQ
13	Cadillulli	mg/kg	Q 0.1)	0.1)	Q 0.1)	Q 0.1)	0.1)	0.1)	Q 0.1)	0.1)
14	Porosity	-	0.39	0.38	0.43	0.38	0.43	0.45	0.44	0.43
15	Water Holding	%	4.1	4.3	20.5	15.5	20.3	20.7	19.8	19.5
13	Capacity	70	7.1	7.3	20.5	15.5	20.5	20.7	17.0	17.5
16		mg/kg	BLQ(LO	BLQ(LOQ	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LO	BLQ(LOQ
10	Chromium	mg/kg	Q 0.1)	0.1)	Q 0.1)	Q 0.1)	0.1)	0.1)	Q 0.1)	0.1)

Note: BLQ: Below Limit of Quantification; LOQ: Limit Of Quantification

3.8.1 Results and Discussions

Summary of analytical results

- ➤ The pH of the soil samples ranged from 7.12 to 7.39.
- > Conductivity of the soil samples ranged from 756 to 1208 μS/cm.
- Nitrogen content in the collected soil samples ranged from 69.2 mg/kg to 121.3 mg/kg.
- ➤ Phosphorous content ranged from 9.9 mg/kg to 17.3 mg/kg.
- ➤ Potassium content ranges from 37.1 mg/kg to 65 mg/kg.

3.9 Marine Water Quality

Marine water analysis was carried as per IS: 3025 and APHA 23rd Ed methods. Marine water quality monitoring locations & results are given in

Table 3-17

Table 3-19 Marine water quality results

		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW- 10	MW- 11	MW- 12		SW- class- IV
Parameters	Unit	Near GCB (surfa ce)	Near GCB (Botto m 1.5 m)	Near MLT Berth (surfa ce)	Near MLT Berth (Botto m 1.5 m)	Near Finger Jetty (surfa ce)	Near Finger Jetty (Botto m 1.5 m)	Outer South- North Break water (surfa ce)	Outer South- North Break water (Botto m 1.5 m)	Outer South- East Break water (surfa ce)	Outer South -East Break water (Botto m 1.5 m)	Outer South- South Break water (surfa ce)	Outer South - South Break water (Botto m 1.5 m)	Protocol	Harbou r standar ds
рН	-	8.02	8.26	7.89	8.05	8.14	8.18	7.91	8.03	7.79	8.01	7.6	7.82	IS:3025(P-11)	6.0-9.0
Temperature	°C	26.8	27	26.3	26.9	26.1	27	26.4	26.8	27.2	28.1	27	27.4	IS:3025(P-9)	-
Electrical conductivity	μS/cm	48560	49820	41960	42810	45280	45990	50680	51840	40620	40980	46420	46910	IS:3025 (P-14)	-
Turbidity	NTU	2.3	1.5	<1	<1	2.5	2.9	3.7	3.2	2.7	2.9	2.8	3.2	APHA 23 rd Ed.	-

Draft EIA Report														RP003-R0	
		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW- 10	MW- 11	MW- 12		SW- class- IV
Parameters	Unit	Near GCB (surfa ce)	Near GCB (Botto m 1.5 m)	Near MLT Berth (surfa ce)	Near MLT Berth (Botto m 1.5 m)	Near Finger Jetty (surfa ce)	Near Finger Jetty (Botto m 1.5 m)	Outer South- North Break water (surfa ce)	Outer South- North Break water (Botto m 1.5 m)	Outer South- East Break water (surfa ce)	Outer South -East Break water (Botto m 1.5 m)	Outer South- South Break water (surfa ce)	Outer South South Break water (Botto m 1.5 m)	Protocol	Harbou r standar ds
Total Dissolved solids	mg/l	31560	29890	27270	27820	29140	29620	32940	33660	26400	26650	30170	30490	IS:3025 (P-16)	-
Sulphate as SO ₄	mg/l	2360	2480	1980	2010	1860	2940	2400	2510	1790	1850	1900	1990	APHA 23 rd Ed.	-
Nitrate as NO ₃	mg/l	2.15	2.45	3.1	3.6	4.02	4.4	5.02	5.4	3.1	3.56	2.32	2.51	IS:3025 (P-34)	-
Total Ammonia	mg/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12	ND	IS:3025 (P-34)	-
Total Suspended Solids	mg/l	14	10	10	13	12	18	10	13	12	15	8	6	IS:3025 (P-17)	-
Dissolved oxygen as DO	mg/l	6.6	6.2	6.5	6.1	6.4	6	6.7	6.4	6.4	6.1	6.4	5.8	IS:3025 (P-38)	3
Biological Oxygen Demand	mg/l	10	11	9	12	6	9	5	7	4	6	6	8	IS:3025 (P-44)	5
Chemical Oxygen Demand	mg/l	50	60	40	50	40	50	32	42	24	32	30	40	IS:3025 (P-58)	-
Copper as Cu	mg/l	0.16	0.19	0.08	0.12	0.13	0.18	ND	ND	ND	ND	ND	ND	APHA 23 rd Ed.	-

Draft EIA Report										•				RP003-R0	
		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW- 10	MW- 11	MW- 12		SW- class- IV
Parameters	Unit	Near GCB (surfa ce)	Near GCB (Botto m 1.5 m)	Near MLT Berth (surfa ce)	Near MLT Berth (Botto m 1.5 m)	Near Finger Jetty (surfa ce)	Near Finger Jetty (Botto m 1.5 m)	Outer South- North Break water (surfa ce)	Outer South- North Break water (Botto m 1.5 m)	Outer South- East Break water (surfa ce)	Outer South -East Break water (Botto m 1.5 m)	Outer South- South Break water (surfa ce)	Outer South - South Break water (Botto m 1.5 m)	Protocol	Harbou r standar ds
Iron as Fe	mg/l	0.04	0.09	0.05	0.15	0.14	0.23	0.15	0.2	0.13	0.18	0.16	0.26	APHA 23 rd Ed.	-
Zinc as Zn	mg/l	0.11	0.16	ND	ND	0.22	24	0.09	0.13	0.15	0.21	0.16	0.19	APHA 23 rd Ed.	-
Mercury as Hg	mg/l	ND[D L- 0.001]	ND[D L- 0.001]	ND[D L- 0.001]	ND[D L- 0.001]	ND[D L- 0.001]	ND[D L- 0.001]	ND[D L- 0.001]	ND[D L- 0.001]	ND[D L- 0.001]	ND[D L- 0.001]	ND[D L- 0.001]	ND[D L- 0.001]	APHA 23 rd Ed.	-
Arsenic as As	mg/l	ND[D L - 0.01]	ND[D L - 0.01]	ND[D L - 0.01]	ND[D L - 0.01]	ND[D L - 0.01]	ND[D L - 0.01]	ND[D L - 0.01]	ND[D L - 0.01]	ND[D L - 0.01]	ND[D L - 0.01]	ND[D L - 0.01]	ND[D L - 0.01]	APHA 23 rd Ed.	-
Lead as Pb	mg/l	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	APHA 23 rd Ed.	-
Cadmium as Cd	mg/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	APHA 23 rd Ed.	-
Petroleum hydrocarbon	mg/l	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	APHA 23 rd Ed.	-
Chlorophyll A	mg/l	1.1	1.3	1.8	1.4	1.26	1.6	1.26	1.6	1	1.02	1.1	1.55	APHA 23 rd Ed.	-

Di ait EIA Report														KI 003-K0	
		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW- 10	MW- 11	MW- 12		SW- class- IV
Parameters	Unit	Near GCB (surfa ce)	Near GCB (Botto m 1.5 m)	Near MLT Berth (surfa ce)	Near MLT Berth (Botto m 1.5 m)	Near Finger Jetty (surfa ce)	Near Finger Jetty (Botto m 1.5 m)	Outer South- North Break water (surfa ce)	Outer South- North Break water (Botto m 1.5 m)	Outer South- East Break water (surfa ce)	Outer South -East Break water (Botto m 1.5 m)	Outer South- South Break water (surfa ce)	Outer South South Break water (Botto m 1.5 m)	Protocol	Harbou r standar ds
Phaeophytin	mg/m ³	16.2	15.8	16.2	16.9	15.8	16.7	15.8	16.7	17.2	17.5	16.2	16.7	APHA 23 rd Ed.	-
Salinity	PPT	33.2	31.6	29.8	30.1	30.2	30.7	30.2	30.7	28.3	28.9	31.6	31.95	EC Meter	-
Nitrite as NO ₂	mg/l	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	ND[D L- 0.01]	IS:3025 (P-34)	-
Total Nitrogen as N	mg/l	2.42	2.85	3.95	4.1	4.42	4.8	4.42	4.8	3.38	3.91	2.65	2.69	IS:3025 (P-34)	-
Inorganic Phosphate	mg/l	0.13	0.19	0.06	0.04	0.16	0.2	0.16	0.2	0.15	0.14	0.07	0.09	IS:3025 (P-31)	-
Total Phosphate as P	mg/l	0.22	0.3	0.1	0.09	0.26	0.32	0.26	0.32	0.26	0.22	0.1	0.12	IS:3025 (P-31)	-
Faecal Coliform*	MPN/100ml	187	253	278	221	345	426	542	221	172	426	240	253	IS:1622	500/100 ml

ND-Not Detected

- pH in the collected marinewater samples varies between 7.6 to 8.26.
- The Total Dissolved Solids (TDS) value of collected marine water sample ranges from 26400 mg/l to 33660 mg/l.

- The electrical conductivity value of the collected marine water sample ranges between 40620 mg/l to 51840 mg/l
- BOD value in the marine water sample is upto 12 mg/l.
- COD value of collected marine water sample ranges from 24 upto 60 mg/l.
- The concentration of heavy metals like As, Cd, Cr, Pb, Mn, Hg, Ni and Se are within the limits of APHA 23rd Ed.

Figure 3-28 Marine Monitoring Photographs

3.9.1 Marine Biology

Table 3-20 Marine Biology results

S.	Para						Tes	st Result						Protocol
No	meter	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	FIOLOCOI

	JA Report	Near GCB (surface)	Near GCB (Bottom 1.5 m)	Near MLT Berth (surface)	Near MLT Berth (Bottom 1.5 m)	Near Finger Jetty (surface)	Near Finger Jetty (Bottom 1.5 m)	Outer South- North Break water (surface)	Outer South- North Break water	Near GCB (surface)	Near GCB (Bottom 1.5 m)	Outer South- South Break water (surface)	Outer South – South Break water (Bottom 1.5 m)	
	Diam				T	T	Pnytopian	kton*(64 um	Mesn)		T		1	
	Biom ass	2.9	3.4	4.1	3.2	2.3	2.4	7.6	5.3	3.9	4.8	3.1	4.8	
	Diver sity	2.1	2.4	3.1	2	2.7	3.6	2.4	1.9	1.7	3.2	2.2	2.3	
1	Specie s	Farranula carinata, Peridinu m elegans, Rhabdone ma magnificu m	Diploneis sinithii, Naviculla sigma, Guinardia delicatula	Thalassione manitzs chioides, Ditylum brightwelli, Triceratium dublum	Coscinod discus radiates, Guinardi a delicatul a	Actiniscus pentasteria s, Ceratim furca, Dino physisovu m	Peridiniu m claudican s, Peridiniu m gracile, Fragilario psis oceanic	Talassiosir a pseudonan a Bacteriastr um cosmosum , Skeletone ma costatum	Bacteriastru m rhombus, Farranula carinata, Lauderiaan nulata	Pyrocystis fusiformis Actiniscusc ur cubita,,	Noctiluc a miliaris, Bacterias trum cosmosu m, Amphora decussate		eros diversus, Skeleton ema	APHA 23 rd Ed
							Zooplankto	ons *(200 um	Mesh)					
2	Biom ass	0.036	0.053	0.018	0.038	0.081	0.064	0.058	0.088	0.052	0.084	0.09	0.058	A
	Diver sity	3.4	3.9	3.4	2.8	2.5	1.8	2.7	3.2	1.9	2.1	1.8	1.9	23 rd Ed

Capacity Augmenta	tion of Existing Opera	tional Marine Liqu	id Terminal (Mlt)	From 3 MMT	PA TO 6 MMTPA	1			H/01/2022/0	CON/001
Draft EIA Report									RP003-R0	

Draf	EIA Report	1	i	i	i i		1	1	1	i	i	i	RP003-R0	
	Specie s	Eucalanus calocalan uspova, Euchaeta marina , Meta calanusau rivilli	Farraula carinata , Eutintinn us tenue , Oithona nana	Calocalanus pova, Metacylisjor , Tortanus barbatus	Penilia avirostris , Eutintinn us tenue, Cresis acicula, Undinula vulgaris	Paracanda cia truncatta, Labidocer aacuta, Corycaeid ae catus	Hyalocyli x striata, Oncaeida e mediterra nea, Aglaurah e mistoma	Eucalanus, Copilia quadrata, Dosinia trigona	Subeucalanu scrassus, A.Longicorn is Farranula carinata	Globigerina bulloides Pseudosagit ta maxima, Salpa fusiformis,	Periclime nes imperato r, Oncaea conifer, Miraciae fferata,	Sagitta bedoti, Bathynomusdo ederleinii, Acarti idaeeryhraea	Farranula carinata, Macrocypridin acastanea, Hyalocylix striata	
								Benthos						
3	Specie s	Oikopleur a dioica , Ancilla ampla , Syllisferr ugina, Cirratutu sdasyloph ius	Tapes belcheri , Magelona cincta	Agaronia nebulosa, Dodecaceria capensis, Armandi a intermedia	Sinumne ritoi derum, Pinna bicolour, Mactram era, Pulliellaa rmata,	Macomabi rmanic, Standellan i cobarica, Roetapelic ulla, Jasmineira elegans,	Conus canonicus , Melinna cristate, Pugilina coachlidi um., Anadarag ranosa, Prionos piocirrifer a	Paphiasem irugata, isopods, Pitaralbast rum, Pugilina cochlidiu m	Cossura coast, Quadrivisiob oneri, Circè scripta,, Anadara granosa, Laternula anatine	apolymetise dentula, Gastropods dentalium, Pisionoerst edi, Macoma candida	Saccostre a cucullata, Crassostr ea cuttacken sis, Lumbrin erinae simplex	Strombus luhuanus, Cossurecoaste, Maldanids. Solen brevis, Potamilaehleri	Nassarius dorsatus, Portulatubulari a, Siliqua radiate, Laevicardiuma pertom	APH A 23 rd Ed

3.10 BIOLOGICAL ENVIRONMENT

3.10.1 Ecological Environment

3.10.1.1 Introduction

An ecological study of the ecosystem is essential to understand the impact of industrialization and urbanization on existing flora and fauna of the study area. Studies on various aspects of ecosystem play an important role in identifying sensitive issues for under taking appropriate action to mitigate the impact, if any. The biological study was under taken as a part of the EIA study report to understand the present status of ecosystem prevailing in the study area, to compare it with past condition with the help of available data, to predict changes in the biological environment as a result of present activities and to suggest measures for maintaining its health. Secondary source information was conducted to study the flora & fauna in 10 km radius. Some of the information was gathered from the local habitants. The entire secondary data were classified to interpret the impact of pollution on the flora and fauna of that region. Survey of the wild plants as well as cultivated crop plants was made and all the available information was recorded.

During the collection of secondary information, following aspects were considered for ecological studies:

Assessment of present status of flora and fauna;

Identification of rare and endangered species of plants and animals (if any);

Identification of ecologically sensitive areas within the study area;

Assessment of migratory route of wildlife (if any); and

Assessment of Aquatic Ecology with specific reference to aquatic birds and plankton resources.

3.10.1.2 Methodology

Terrestrial investigations for flora and fauna records were collected by secondary information like research article, periodicals, floras and forest checklist.

3.10.1.3Floral Study

Plants species were identified based on their specific diagnostics characters of family, genus and species using available floral, other related literature. Besides the identification of plant species, information was collected on the vernacular names and uses of plants made by local inhabitants. Secondary information collected from published government data etc.

3.10.1.4 Floristic composition within the study area

For secondary information based on a total 46 species found in the study area.

List of Flora

For secondary information based on a total 51 species under 28 family found in the study area. The detailed list of plant species found in each quadrat provided in **Table 3-21**.

Table 3-21: Checklist of floral diversity in and around the area

S.No	Species	Vernacular Name	Habit	IUCN
		Acanthaceae	1	"
1	Justicia simplex	Water Willow	Herb	NA
		Amaranthaceae		
2	Achyranthes aspera	Nayurivi	Herb	NA
3	Aerva lanata	Peelai	Shrub	NA
4	Aerva persica	Perumpeelai	Shrub	NA
		Annonaceae		
5	Annona squamosa	Seetha	Tree	NA
		Apocynaceae		
6	Carissa carandas	Kalaa, Perun kala	Shrub	NA
7	Wrightia tinctoria	Nilapaalai	Tree	LC
		Asclepiadaceae		
8	Calotropis gigantea	Erukku, Arkkam	Shrub	NA
		Bignoniaceae		
9	Tecoma stans	Sornapatti	Shrub	NA
		Caesalpiniaceae		
10	Cassia fistula	Kondrai	Tree	NA
11	Tamarindus indica	Puliya maram	Tree	NA
12	Cleome viscosa	Nai kadugu	Herb	NA
		Compositae		
13	Acanthospermum hispidum		Herb	NA
14	Tridax procumbens	Vettukkaaya-thazhai	Herb	NA
		Convolvulaceae		
15	Evolvulus alsinoides	Vishnukarandi	Herb	NA
		Cucurbitaceae		
16	Citrullus colocynthis	Peikkumatti	Herb	NA
17	Coccinia grandis	Kovai	Climber	NA
		Euphorbiaceae		
18	Acalypha indica	Kuppaimeni	Herb	NA
		Fabaceae		
19	Alysicarpus monilifer		Herb	NA
20	Tephrosia purpurea	Kozhinji	Undershrub	NA
		Labiatae		
21	Hyptis suaveolens		Shrub	NA
22	Leucas aspera	Thumbai	Herb	NA

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA H/01/2022/CON/001 Ganjaankorai Herb NA 23 Ocimum americanum Malvaceae Perun thuthi 24 Abutilon indicum Shrub NA 25 Malai thangi NA Sida acuta Herb 26 Sida cordifolia Nilatutthi Herb NA Martyniaceae 27 Martynia annua Thael Kodukku Herb NA Menispermaceae 28 Tinospora cordifolia Seendhil Climber NA Mimosaceae 29 Acacia nilotica Karuvelam Tree LC Soundil 30 Leucaena leucocephala Tree NA 31 Velikkaathaan Tree NA Prosopis juliflora Moraceae 32 Ficus benghalensis Tree NA Aala maram NA 33 Ficus religiosa Arasu Tree Nyctaginaceae 34 Boerhavia diffusa Mookarattai Herb NA 35 Boerhavia erecta Seemai mookarattai Herb NA Pedaliaceae Perunerunji 36 Pedalium murex Herb NA 37 Sesamum indicum Ellu Herb NA Poaceae Alloteropsis cimicina bug-seed grass Grass NA 38 39 Aristida adscensionis Cheevam pul Grass NA 40 Aristida hystrix Grass NA Pottapullu 41 Digitaria ciliaris Grass NA southern crabgrass 42 Echinochloa colona Pullam payiru Grass NA 43 Eragrostis tenella Feather Loveg rass Grass NA Rhamnaceae 44 Illandhai Tree NA Ziziphus mauritiana Rubiaceae 45 Morinda pubescens Manjanatti Tree NA 46 Spermacoce hispida Nathaichoori Herb NA Rutaceae 47 Citrus aurantifolia Elumichai Tree NA Scrophulariaceae 48 Sconaria dulcis Sarakkotthini Herb NA Solanaceae 49 Solanum torvum Chundai Shrub NA

H/01/2022/CON/001 RP003-R1

Diant Emi Repo			M 005 M	
		Verbenaceae		
50	Tectona grandis	Thekku	Tree	NA
51	Vitex negundo	Nochi	Tree	NA

LC- Least Concern, NT- Near Threatened, EN- Endangered, NE-Not Evaluated, DD -Data Deficient, VU-Vulnerable, IUCN- International Union for Conservation of Nature.

Source:

Gamble, J.S. and C.E.C. Fischer. 1915-1935. Flora of Presidency of Madras, Adlard and Son, London. pp. 1-3.

Mathew, K. M. 1981. The Material for the Flora of the Tamilnadu Carnatic, Madras, India.

Matthew, K. M. 1982. Illustrations on the Flora of the Tamilnadu Carnatic. Vol. II. The Diocesan press, Madras, India.

Matthew, K. M. 1983. The Flora of Tamilnadu Carnatic. Vol. III. The Diocesan press, Madras, India.

Matthew, K. M. 1988. Further Illustrations on the Flora of the Tamilnadu Carnatic. Vol. IV. The Diocesan press, Madras, India.

Nair, N.C. and A.N. Henry. 1983. Flora of Tamil Nadu, India.Series 1, Vol. 1, Botanical Survey of India, Southern Circle, Coimbatore. 1-184.

Henry, A.N., Kumari, G.R. and Chitra, V. (1987) Flora of Tamil Nadu India. Series 1: Analysis. Vol. 2, Botanical Survey of India, Coimbatore.

Hooker J.D. 1872-1897. Flora of British India. (Vol. 1-7), Ashford: Reeve and Company. 5568 p.

Henry, A.N., Chithra, V.N. and Balakrishnan, P. (1989) Flora of Tamil Nadu India. Series 1: Analysis. Vol. III. Botanical Survey of India, Coimbatore.

3.10.1.5 Fauna Diversity

List of the endangered and endemic species as per the schedule of The Wildlife Protection Act, 1972. Emphasis is given to identify avifauna and mammals to determine the presence and absence of Schedule-1 species, listed in The Wildlife Protection Act 1972, as well as in Red List of IUCN. Fauna diversity were collected from secondary information and cross check with relevant literatures (Smith 1933-43, Ali and Ripley 1983, Daniel 1983, Prater 1993, Murthy and Chandrasekhar 1988).

3.10.1.6 Birds species

A total of 40 species belonging to 27 families have been identified from Agricultural area. A comparative chart of the total bird species belonging to different families along with their feeding preference and abundance are provided in **Table 3-22**.

Table 3-22: Birds from the study site

S. No	Common Name	Scientific Name	IUCN	WPA
	Phasian	idae		
1	Indian peafowl	Pavo cristatus	LC	Sch -1
2	Grey francolin	Francolinus pondicerianus	LC	Sch-IV
	Ardeid	lae		
3	Indian pond heron	Ardeola grayii	LC	Sch-IV
4	Cattle egret	Bubulcus ibis	LC	Sch-IV
	Accipitr	idae		
5	Brahminy kite	Haliastur indus	LC	Sch -1
6	Black kite	Milvus migrans	LC	Sch-IV
	Charadr	iidae		
7	Red wattled lapwing	Vanellus indicus	LC	Sch-IV
8	Common ringed plover	Charadrius hiaticula	LC	Sch-IV
	Columb	idae	•	
9	Common pigeon	Columba livia	LC	Sch-IV
	Psittacul	lidae	-	
11	Rose ringed parakeet	Psittacula krameri	LC	Sch-IV
L	Cuculio	dae		
12	Common hawk cuckoo	Hierococcyx varius	LC	Sch-IV
13	Asian koel	Eudynamys scolopaceus	LC	Sch-IV
	Strigid	lae		
14	Spotted owlet	Athene brama	LC	Sch-IV
L	Upupid	lae		
15	Common hoopoe	Upupa epops	LC	Sch-IV
L	Coracii	dae		
16	Indian roller	Coracias benghalensis	LC	Sch-IV
	Alcedini	idae	l	
17	White throated king fisher	Halcyon smyrnensis	LC	Sch-IV
18	Pied kingfisher	Ceryle rudis	LC	Sch-IV
	Meropi	dae		
19	Green bee eater	Merops orientalis	LC	Sch-IV
	Ramphas	tidae		
20	Brown headed barbet	Megalaima zeylanica	LC	Sch-IV
21	Copper smith barbet	Megalaima haemacephala	LC	Sch-IV
	Picida	ne		
22	Flame back	Dinopium benghalense?	LC	Sch-IV
	Dicruri			
23	Greater racket tailed drongo	Dicrurus paradiseus	LC	Sch-IV
24	Black drongo	Dicrurus macrocercus	LC	Sch-IV
ļ.	Monarch	nidae	1	
25	Indian paradise flycatcher	Terpsiphone paradise	LC	Sch-IV
L	Hirundir		_1	
26	Barn swallow	Hirundo rustica	LC	Sch-IV
	Corvid		1	

acity Augmenta ft EIA Report	tion of Existing Operational Marine Liquid Termin	aal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2 RP003-	022/CON/001 R1
27	House crow	Corvus splendens	LC	Sch-IV
28	Rufous treepie	Dendrocitta vagabunda	LC	Sch-IV
•	Sturi	nidae		
29	Common myna	Acridotheres tristis	LC	Sch-IV
30	Brahminy starling	Sturnia pagodarum	LC	Sch-IV
•	Estril	didae		
31	Scaly breasted munia	Lonchura punctulata	LC	Sch-IV
32	White rumped munia	Lonchura striata	LC	Sch-IV
33	Black headed munia	Lonchura Malacca	LC	Sch-IV
•	Motac	illidae		
34	Grey wagtail	Motacilla cinerea	LC	Sch-IV
35	White browed wagtail	Motacilla maderaspatensis	LC	Sch-IV
•	Timal	llidae		
36	Yellow-billed babbler	Turdoides affinis	LC	Sch-IV
	Ploce	eidae		
37	Baya weaver	Ploceus philippinus	LC	Sch-IV
•	Muscic	apidae		
38	Pied Bushchat	Saxicola caprata	LC	Sch-IV
•	Nectar	iniidae	•	
39	Purple sunbird	Cinnyris asiaticus	LC	Sch-IV
1	Scolop	acidae	•	
40	Wood sandpiper	Tringa glareola	LC	Sch-IV

LC- Least Concern, NT- Near Threatened, EN- Endangered, NE-Not Evaluated, DD -Data Deficient, VU-Vulnerable, IUCN- International Union for Conservation of Nature.

3.10.1.7 Mammals:

Based on the secondary Source information.

Table 3-23: Mammals recorded from the Primary Survey in the Study area and their Conservation Status

S.No	Species name	Common name	IUCN	WPA
1	Mus musculus	Common Mouse	Not assessed	Sch-IV
2	Funambulus pennanti	Palm -Squirrel	Not assessed	Sch-IV
3	Mus rattus	Indian rat	Not assessed	Sch-IV
4	Lepus nigricollis	Indian Hare	Least Concern	Sch-IV
5	Rattus norvegicus	Brown Rat	Least Concern	Sch-IV
6	Felis catus	Cat	Not assessed	Sch-IV

3.10.1.8Reptiles & Amphibians

Reptiles and amphibian species were prepared secondary information.

Table 3-24: Reptiles & Amphibians recorded from the Primary Survey in the Study area and their Conservation Status

S.No	Species name	Common name	IUCN Conservation Status	
1	Eutropis macularia	Common skink	Not assessed	Sch-IV
4	Rana tigrina	Common yellow frog	Least Concern	Sch-IV
5	Calotes versicolor	Common Garden Lizard	Not assessed	Sch-IV
6	Hemidactylus sp.	House lizard	Not assessed	Sch-IV
7	Ophisops leschenaultiix	Snake-eyed lizard	Not assessed	Sch-IV
8	Rana hexadactyla	Frog	Least Concern	Sch-IV
9	Naja naja	Cobra	Least Concern	Sch-I
10	Ptyas mucosa	Rat snake	Least Concern	Sch-I

3.10.1.9Butterfly Species

Butterfly can also serve as useful indicators of habitat biodiversity. They are responsible for a large part of the complex interconnections that characterize natural ecosystems. The butterfly communities that are present in forests help to maintain crucial ecological processes and preserve biodiversity as a whole. They participate in most of the ecological processes that sustain ecosystems. A totally 10 species belonging to five families of butterflies recorded.

Table 3-25: Occurrence of butterfly species in buffer zone

Sl.	Zoological Name	Common Name	WPA-1972
1	Danaus chrysippus	Plain Tiger	_
2	Danaus genutia	Striped Tiger	_
3	Ariadne merione	Common Caster	_
4	Ariadne ariadne	Angled Castor	_
5	Acraea terpsicore	Tawny Caster	_
6	Neptis hylas	Common Sailor	_
7	Phalanta phalantha	Common Leopard	_
8	Hypolimnas bolina	Great Egg Fly	_
9	Hypolimnas misippus	Danaid Egg Fly	Sch II
10	Junonia lemonias	Lemon Pansy	_

Source:

List of Birds: Ali, S. (2002). The Book of Indian Birds (13th Revised Edition). Oxford University Press, New Delhi, 326pp.

List of Butterflies: Kehimkar I. The Book of Indian Butterflies. Bombay Natural History Society, 2008, 497.

Evans WH. Identification of Indian butterflies. The Bombay Natural History Society, Bombay, 1927, 32.

Draft EIA Report

List of Mammals: Kamalakannan, M.& P.O.Nameer (2019). A checklist of mammals of Tamil Nadu, India. Journal of Threatened Taxa 11(8): 13992–14009; https://doi.org/10.11609/jott.4705.11.8.13992–14009.

List of Reptiles: Aengals, R., Sathish Kumar, V.M., Palot, M.J. & Ganesh, S.R. (2018). A Checklist of Reptiles of India. 35 pp. Version 3.0. Online publication is available at www.zsi.gov.in (Last update: May 2018)

3.10.1.10 Conservation Plan

The project is expected not to cause any impacts to the habitats of the study area or to the local species therein. Despite this, the industry will contribute to conservation of the biodiversity in study area. Various on-site and off-site measures are proposed for conservation of the Schedule – I species as well as other biodiversity and supportive habitats in the study area. No any land from any protected area is being used nor will be used for the proposed project. The details of the onsite EMP measures, biodiversity and habitats conservation plans and CER activities supportive to the same are given below.

The Conservation Plan would focus on conservation of habitats of Schedule-I species identified during the study. We identified 2 IUCN red list species viz.. one butterfly and one bird in the study area i.e. 10 km buffer area

S.No	Common Name	Species Name	IUCN	WPA 1972
Bird			•	
1	Indian peafowl	Pavo cristatus	LC	Schedule I
2	Brahminy kite	Haliastur indus	LC	Schedule I
Reptiles		1	-	
3	Rat snake	Ptyas mucosa	LC	Schedule I
4	Cobra	Naja naja	LC	Schedule I

• Management plan

- Capacity Building: Capacity building program on protection would be of high significance. Creation of awareness among local people as well as employees about the importance of protecting the habitat and foraging grounds.
- o **Anti-Poaching Plan:** Poaching being one of the causes for depletion of wildlife in general and it being one of the main reasons for the poor faunal assemblage, it is necessary to increase protection for the RET species. The people living in the surrounding area should be rewarded for timely information about disturbing and/or poaching of the bird more specifically the threatened species.
- **Habitat Improvement:** Sufficient food, water resources, vegetation cover, and breeding sites must be available at the release location.

- Awareness program: It will be ensured through regular awareness programs and through publicity by way of signages, posters, bill distributions, public meetings, announcements, student's awareness sessions etc. d) Litter burning will be discouraged strictly.
- o Litter burning practices destroy feeding material and removes the cover and nesting materials necessary for shelter and protection from predators.

Good Practices:

- ETTPL will be bound by rules and regulation of Wildlife (Protection) Act, 1972 of India and any others rule and guidelines, stipulated by the State Government.
- ETTPL will not plant any alien and/or invasive species in the project site, which may spread in the forest areas.
- Employees will be made aware of presence of a few threatened and Schedule species in the area and legal consequences of hunting, poaching of animals and harvesting of forest produces.

The proponent has proposed a sum of Rs. 5,40,000/-for the "Schedule – I species" conservation plan under the following heads:

Table 3-26. Conservation plan for five years

S.No	Work or Activity	Approximate Cost. Rs.						
5.110	WOLK OF ACTIVITY	Year 1	Year 2	Year 3	Year 4	Year 5		
1	Plantation-350 tree plants (@ 150/-per plant)	52,500/-	52,500/-	52,500/-	52,500/-			
3	One awareness programme	20,000/-	20,000/-	20,000/-	20,000/-	20,000/-		
3	Habitat improvement	1,00,000/-	1,00,000/-					
	Total	102500/-	272,500/-	72,500/-	72,500/-	20,000/-		

Following Plants will be planted on the periphery of Project are a& along the Approachable Road					
S.No	Botanical name	Common Name	Key future of Tree		
1	Albizia lebbeck	Vagai	A middle-sized deciduous tree with a spreading crown.		
2	Azadicrta Indica	Vembu	It is adapted to various climate zones.		
3	Dalbergia latifolia	Eeitti	It is common on deep loams or clays containing lime.		

Diantel	A Keport		KI 003-KI
4	Ficus benghalensis	Allamaram	Nesting and food purpose for wildlife
5	Ficus relegiosa	Arasamaram	It is tolerant to various climate zones.
6	Madhuca longifolia	Illupai	A large deciduous shapely, long lived tree
7	Pongamia pinnata	Pungaimaram	Dust reduce
8	Pterocarpus marsupium	Vengai	
9	Syzygiumcumini	Naval	It is tolerant to temperature resistant.
10	Termanilia arjuna	Maruthu	It is reducing soil erosion

3.10.1.11 A detailed study of fisherman hamlets along the study area:-

Table 3-27: Fisherman hamlets and Fisher flock population along the study area

S. No	Name of the fisher man hamlets	Population
1	Paziyavaram	354
2	Goonankuppam	1181
3	Thirumalainagar	876
4	Lighthousekuppam	620
5	Lighthousenedukuppam	312
6	Arangamkuppam	1335
7	Vairavankuppam	723
8	Sathankuppam	980
9	Koraikuppam	308
10	Kamaraj nagar kattupallai	280
11	Ennorekuppam	710
12	Nettukuppam	1847
13	Thazhakuppam	1958
14	Kathivakkamperiakuppam	369
15	Kathivakkamchinnakuppam	432
16	Ernavorkuppam	362
17	Indiragandhikuppam	241
18	Kasikoilkuppam	3677
19	Kasivisalakashikuppam	271
20	Kasivisvanatherkoilkuppam	969
21	Palagaithottikuppam	427
22	Pattinatharkoilkuppam	1175
23	Thiruvottiyurkuppam	567
24	Ondikuppam	416
25	Thiruchinamkuppam	2642
26	Lakshimipuram	332
27	Nallathanneerodikuppam	1285
28	Poondithanglaammalcolony	77

S. No	Name of the fisher man hamlets	Population
29	Poongavanamkuppam	523
30	Annanagar	1131
31	Nagoorarthottam	3285
32	Pallavannagar & Thideernagar	3713
33	Powerkuppam	1545
34	Pudumanaikuppam	992
35	Kasipuram A Block	1691
36	Kasipuram B Block	2831
37	C.G. Colony	4887
38	YMCA kuppam	1436
39	Vinayagapuram	649
40	VOC Nagar	2625
41	Singaravalaznagar	3363
42	Muthamizhnagar	715
43	Kasimanagar	1154
44	Jeevarathinamnagar	2547
45	AJ Colony	1243
46	Kasithottam	1427
47	Bentlemamgardem	644
48	Attapalayam	1486
49	Panaimaraithotty	2114
50	Royapuram	2274
	Total	67001

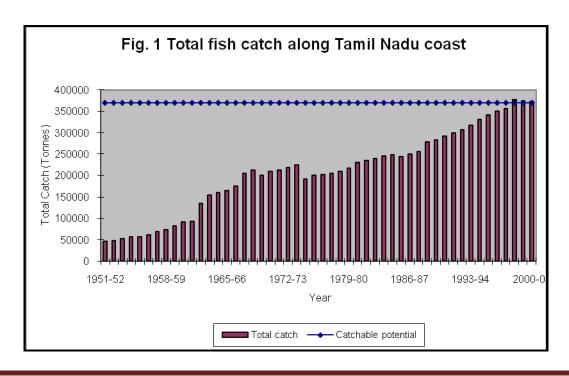
Table 3-28: Craft wise catches along the study area (Quantity in Tonnes)

Name of the							
Craft	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-2001
Mechanical	14716	14831	15372	14970	13557	13949	10456
Non -Mechanical	6000	5057	4571	1760	1528	1359	2022
Motorized	1291	1836	2156	1740	1417	1561	1354
Shore Seine	0	0	0	0	0	0	0
Total	22007	21724	22099	18470	16502	16869	13832

Table 3-29: Catch composition (%) of fishes along the study area for the past seven years

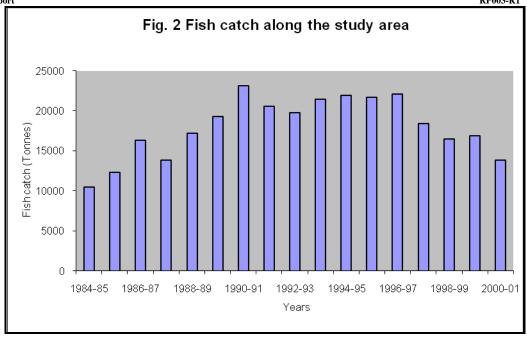
Sharks 2.42 2.81 2.24 2.47 1.61 1.95 2.10 Skates &Rays 6.55 7.01 4.98 4.88 6.11 4.42 4.80 Eels 0.09 0.00 0.00 0.00 0.00 0.06 0.24 Cat fishes 0.82 0.55 0.73 0.28 0.53 0.81 1.08 Chirocentrus 4.65 2.34 3.81 3.61 3.12 3.87 3.65 Oil Sardines 0.00	Nomenclature	1994-95	1995-96	1996-97	1997-98	1998-99	1999-00	2000-01
Eels 0.09 0.00 0.00 0.00 0.00 0.06 0.24 Cat fishes 0.82 0.55 0.73 0.28 0.53 0.81 1.08 Chirocentrus 4.65 2.34 3.81 3.61 3.12 3.87 3.65 Oil Sardines 0.00 <td>Sharks</td> <td>2.42</td> <td>2.81</td> <td>2.24</td> <td>2.47</td> <td>1.61</td> <td>1.95</td> <td>2.10</td>	Sharks	2.42	2.81	2.24	2.47	1.61	1.95	2.10
Cat fishes 0.82 0.55 0.73 0.28 0.53 0.81 1.08 Chirocentrus 4.65 2.34 3.81 3.61 3.12 3.87 3.65 Oil Sardines 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Lesser sardines 11.85 14.14 20.72 22.14 23.46 18.56 18.12 Hilsa Ilisha 0.00 0.00 0.05 0.00 0.00 0.00 0.00 Anchoveilla 1.88 1.91 0.79 1.16 1.70 2.52 2.17 Thrissocles 0.16 0.14 0.33 0.05 0.50 0.37 0.46 Other clupeids 1.96 1.89 1.13 0.76 0.19 0.00 0.01 Harpoden nehereus 0.25 0.20 0.11 0.00 0.00 0.00 0.00 Saurida & saurus 1.87 2.47 2.78 2.50 2.34 1.89 1.90 <td>Skates &Rays</td> <td>6.55</td> <td>7.01</td> <td>4.98</td> <td>4.88</td> <td>6.11</td> <td>4.42</td> <td>4.80</td>	Skates &Rays	6.55	7.01	4.98	4.88	6.11	4.42	4.80
Chirocentrus 4.65 2.34 3.81 3.61 3.12 3.87 3.65 Oil Sardines 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Lesser sardines 11.85 14.14 20.72 22.14 23.46 18.56 18.12 Hilsa Ilisha 0.00 0.00 0.05 0.00 0.00 0.00 0.00 Anchoveilla 1.88 1.91 0.79 1.16 1.70 2.52 2.17 Thrissocles 0.16 0.14 0.33 0.05 0.50 0.37 0.46 Other clupeids 1.96 1.89 1.13 0.76 0.19 0.00 0.01 Harpoden nehereus 0.25 0.20 0.11 0.00 0.00 0.00 0.00 Saurida & saurus 1.87 2.47 2.78 2.50 2.34 1.89 1.90 Hemirhamphus & Belone 0.10 0.01 0.03 0.00 0.00 0.03 0.02 </td <td>Eels</td> <td>0.09</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.06</td> <td>0.24</td>	Eels	0.09	0.00	0.00	0.00	0.00	0.06	0.24
Oil Sardines 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Lesser sardines 11.85 14.14 20.72 22.14 23.46 18.56 18.12 Hilsa Ilisha 0.00 0.00 0.05 0.00 0.00 0.00 0.00 Anchoveilla 1.88 1.91 0.79 1.16 1.70 2.52 2.17 Thrissocles 0.16 0.14 0.33 0.05 0.50 0.37 0.46 Other clupeids 1.96 1.89 1.13 0.76 0.19 0.00 0.01 Harpoden nehereus 0.25 0.20 0.11 0.00 0.00 0.00 0.00 Saurida & saurus 1.87 2.47 2.78 2.50 2.34 1.89 1.90 Hemirhamphus & Belone 0.10 0.01 0.03 0.00 0.00 0.03 0.02 Flying fish 0.00 0.02 0.32 0.00 0.00 0.01 0.68 <td>Cat fishes</td> <td>0.82</td> <td>0.55</td> <td>0.73</td> <td>0.28</td> <td>0.53</td> <td>0.81</td> <td>1.08</td>	Cat fishes	0.82	0.55	0.73	0.28	0.53	0.81	1.08
Lesser sardines 11.85 14.14 20.72 22.14 23.46 18.56 18.12 Hilsa Ilisha 0.00 0.00 0.05 0.00 0.00 0.00 0.00 Anchoveilla 1.88 1.91 0.79 1.16 1.70 2.52 2.17 Thrissocles 0.16 0.14 0.33 0.05 0.50 0.37 0.46 Other clupeids 1.96 1.89 1.13 0.76 0.19 0.00 0.01 Harpoden nehereus 0.25 0.20 0.11 0.00 0.00 0.00 0.00 Saurida & saurus 1.87 2.47 2.78 2.50 2.34 1.89 1.90 Hemirhamphus & Belone 0.10 0.01 0.03 0.00 0.00 0.03 0.02 Flying fish 0.00 0.02 0.32 0.00 0.00 0.41 0.68 Perches 6.16 7.16 7.54 5.87 6.69 10.27 9.96	Chirocentrus	4.65	2.34	3.81	3.61	3.12	3.87	3.65
Hilsa Ilisha 0.00 0.00 0.05 0.00 0.00 0.00 Anchoveilla 1.88 1.91 0.79 1.16 1.70 2.52 2.17 Thrissocles 0.16 0.14 0.33 0.05 0.50 0.37 0.46 Other clupeids 1.96 1.89 1.13 0.76 0.19 0.00 0.01 Harpoden nehereus 0.25 0.20 0.11 0.00 0.00 0.00 0.00 Saurida & saurus 1.87 2.47 2.78 2.50 2.34 1.89 1.90 Hemirhamphus & Belone 0.10 0.01 0.03 0.00 0.00 0.03 0.02 Flying fish 0.00 0.02 0.32 0.00 0.00 0.41 0.68 Perches 6.16 7.16 7.54 5.87 6.69 10.27 9.96 Red Mullets 1.22 0.72 0.74 0.17 0.72 0.85 0.71 Pol	Oil Sardines	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anchoveilla 1.88 1.91 0.79 1.16 1.70 2.52 2.17 Thrissocles 0.16 0.14 0.33 0.05 0.50 0.37 0.46 Other clupeids 1.96 1.89 1.13 0.76 0.19 0.00 0.01 Harpoden nehereus 0.25 0.20 0.11 0.00 0.00 0.00 0.00 Saurida & saurus 1.87 2.47 2.78 2.50 2.34 1.89 1.90 Hemirhamphus & Belone 0.10 0.01 0.03 0.00 0.00 0.03 0.02 Flying fish 0.00 0.02 0.32 0.00 0.00 0.41 0.68 Perches 6.16 7.16 7.54 5.87 6.69 10.27 9.96 Red Mullets 1.22 0.72 0.74 0.17 0.72 0.85 0.71 Polynemids 0.61 0.62 0.92 0.10 0.80 0.17 0.27	Lesser sardines	11.85	14.14	20.72	22.14	23.46	18.56	18.12
Thrissocles 0.16 0.14 0.33 0.05 0.50 0.37 0.46 Other clupeids 1.96 1.89 1.13 0.76 0.19 0.00 0.01 Harpoden nehereus 0.25 0.20 0.11 0.00 0.00 0.00 0.00 Saurida & saurus 1.87 2.47 2.78 2.50 2.34 1.89 1.90 Hemirhamphus & Belone 0.10 0.01 0.03 0.00 0.00 0.03 0.02 Flying fish 0.00 0.02 0.32 0.00 0.00 0.41 0.68 Perches 6.16 7.16 7.54 5.87 6.69 10.27 9.96 Red Mullets 1.22 0.72 0.74 0.17 0.72 0.85 0.71 Polynemids 0.61 0.62 0.92 0.10 0.80 0.17 0.27 Seiaenids 4.25 3.69 4.45 5.17 6.87 4.07 3.91 <t< td=""><td>Hilsa Ilisha</td><td>0.00</td><td>0.00</td><td>0.05</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	Hilsa Ilisha	0.00	0.00	0.05	0.00	0.00	0.00	0.00
Other clupeids 1.96 1.89 1.13 0.76 0.19 0.00 0.01 Harpoden nehereus 0.25 0.20 0.11 0.00 0.00 0.00 0.00 Saurida & saurus 1.87 2.47 2.78 2.50 2.34 1.89 1.90 Hemirhamphus & Belone 0.10 0.01 0.03 0.00 0.00 0.03 0.02 Flying fish 0.00 0.02 0.32 0.00 0.00 0.41 0.68 Perches 6.16 7.16 7.54 5.87 6.69 10.27 9.96 Red Mullets 1.22 0.72 0.74 0.17 0.72 0.85 0.71 Polynemids 0.61 0.62 0.92 0.10 0.80 0.17 0.27 Seiaenids 4.25 3.69 4.45 5.17 6.87 4.07 3.91 Ribbon fish 0.68 0.88 1.38 1.38 0.00 0.05 0.29 <t< td=""><td>Anchoveilla</td><td>1.88</td><td>1.91</td><td>0.79</td><td>1.16</td><td>1.70</td><td>2.52</td><td>2.17</td></t<>	Anchoveilla	1.88	1.91	0.79	1.16	1.70	2.52	2.17
Harpoden nehereus 0.25 0.20 0.11 0.00 0.00 0.00 0.00 Saurida & saurus 1.87 2.47 2.78 2.50 2.34 1.89 1.90 Hemirhamphus & Belone 0.10 0.01 0.03 0.00 0.00 0.03 0.02 Flying fish 0.00 0.02 0.32 0.00 0.00 0.41 0.68 Perches 6.16 7.16 7.54 5.87 6.69 10.27 9.96 Red Mullets 1.22 0.72 0.74 0.17 0.72 0.85 0.71 Polynemids 0.61 0.62 0.92 0.10 0.80 0.17 0.27 Seiaenids 4.25 3.69 4.45 5.17 6.87 4.07 3.91 Ribbon fish 0.68 0.88 1.38 1.38 0.00 0.05 0.29 Caranx 1.07 0.55 0.25 0.22 0.81 0.90 1.15	Thrissocles	0.16	0.14	0.33	0.05	0.50	0.37	0.46
Saurida & saurus 1.87 2.47 2.78 2.50 2.34 1.89 1.90 Hemirhamphus & Belone 0.10 0.01 0.03 0.00 0.00 0.03 0.02 Flying fish 0.00 0.02 0.32 0.00 0.00 0.41 0.68 Perches 6.16 7.16 7.54 5.87 6.69 10.27 9.96 Red Mullets 1.22 0.72 0.74 0.17 0.72 0.85 0.71 Polynemids 0.61 0.62 0.92 0.10 0.80 0.17 0.27 Seiaenids 4.25 3.69 4.45 5.17 6.87 4.07 3.91 Ribbon fish 0.68 0.88 1.38 1.38 0.00 0.05 0.29 Caranx 1.07 0.55 0.25 0.22 0.81 0.90 1.15 Nomenclature 1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 <td>Other clupeids</td> <td>1.96</td> <td>1.89</td> <td>1.13</td> <td>0.76</td> <td>0.19</td> <td>0.00</td> <td>0.01</td>	Other clupeids	1.96	1.89	1.13	0.76	0.19	0.00	0.01
Hemirhamphus & Belone 0.10 0.01 0.03 0.00 0.00 0.03 0.02 Flying fish 0.00 0.02 0.32 0.00 0.00 0.41 0.68 Perches 6.16 7.16 7.54 5.87 6.69 10.27 9.96 Red Mullets 1.22 0.72 0.74 0.17 0.72 0.85 0.71 Polynemids 0.61 0.62 0.92 0.10 0.80 0.17 0.27 Seiaenids 4.25 3.69 4.45 5.17 6.87 4.07 3.91 Ribbon fish 0.68 0.88 1.38 1.38 0.00 0.05 0.29 Caranx 1.07 0.55 0.25 0.22 0.81 0.90 1.15 Nomenclature 1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 Chorinemus 1.55 3.37 3.24 0.84 0.00 0.00 0.00 0.	Harpoden nehereus	0.25	0.20	0.11	0.00	0.00	0.00	0.00
Flying fish 0.00 0.02 0.32 0.00 0.00 0.41 0.68 Perches 6.16 7.16 7.54 5.87 6.69 10.27 9.96 Red Mullets 1.22 0.72 0.74 0.17 0.72 0.85 0.71 Polynemids 0.61 0.62 0.92 0.10 0.80 0.17 0.27 Seiaenids 4.25 3.69 4.45 5.17 6.87 4.07 3.91 Ribbon fish 0.68 0.88 1.38 1.38 0.00 0.05 0.29 Caranx 1.07 0.55 0.25 0.22 0.81 0.90 1.15 Nomenclature 1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 Chorinemus 1.55 3.37 3.24 0.84 0.00 0.20 0.30 Trachynotus 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00	Saurida & saurus	1.87	2.47	2.78	2.50	2.34	1.89	1.90
Perches 6.16 7.16 7.54 5.87 6.69 10.27 9.96 Red Mullets 1.22 0.72 0.74 0.17 0.72 0.85 0.71 Polynemids 0.61 0.62 0.92 0.10 0.80 0.17 0.27 Seiaenids 4.25 3.69 4.45 5.17 6.87 4.07 3.91 Ribbon fish 0.68 0.88 1.38 1.38 0.00 0.05 0.29 Caranx 1.07 0.55 0.25 0.22 0.81 0.90 1.15 Nomenclature 1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 Chorinemus 1.55 3.37 3.24 0.84 0.00 0.20 0.30 Trachynotus 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Hemirhamphus & Belone	0.10	0.01	0.03	0.00	0.00	0.03	0.02
Red Mullets 1.22 0.72 0.74 0.17 0.72 0.85 0.71 Polynemids 0.61 0.62 0.92 0.10 0.80 0.17 0.27 Seiaenids 4.25 3.69 4.45 5.17 6.87 4.07 3.91 Ribbon fish 0.68 0.88 1.38 1.38 0.00 0.05 0.29 Caranx 1.07 0.55 0.25 0.22 0.81 0.90 1.15 Nomenclature 1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 Chorinemus 1.55 3.37 3.24 0.84 0.00 0.20 0.30 Trachynotus 0.00 0.69 0.00	Flying fish	0.00	0.02	0.32	0.00	0.00	0.41	0.68
Polynemids 0.61 0.62 0.92 0.10 0.80 0.17 0.27 Seiaenids 4.25 3.69 4.45 5.17 6.87 4.07 3.91 Ribbon fish 0.68 0.88 1.38 1.38 0.00 0.05 0.29 Caranx 1.07 0.55 0.25 0.22 0.81 0.90 1.15 Nomenclature 1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 Chorinemus 1.55 3.37 3.24 0.84 0.00 0.20 0.30 Trachynotus 0.00 0.69 0.00 <td< td=""><td>Perches</td><td>6.16</td><td>7.16</td><td>7.54</td><td>5.87</td><td>6.69</td><td>10.27</td><td>9.96</td></td<>	Perches	6.16	7.16	7.54	5.87	6.69	10.27	9.96
Seiaenids 4.25 3.69 4.45 5.17 6.87 4.07 3.91 Ribbon fish 0.68 0.88 1.38 1.38 0.00 0.05 0.29 Caranx 1.07 0.55 0.25 0.22 0.81 0.90 1.15 Nomenclature 1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 Chorinemus 1.55 3.37 3.24 0.84 0.00 0.20 0.30 Trachynotus 0.00 0.69 0.00 0.	Red Mullets	1.22	0.72	0.74	0.17	0.72	0.85	0.71
Ribbon fish 0.68 0.88 1.38 1.38 0.00 0.05 0.29 Caranx 1.07 0.55 0.25 0.22 0.81 0.90 1.15 Nomenclature 1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 Chorinemus 1.55 3.37 3.24 0.84 0.00 0.20 0.30 Trachynotus 0.00 0.69 0.00	Polynemids	0.61	0.62	0.92	0.10	0.80	0.17	0.27
Caranx 1.07 0.55 0.25 0.22 0.81 0.90 1.15 Nomenclature 1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 Chorinemus 1.55 3.37 3.24 0.84 0.00 0.20 0.30 Trachynotus 0.00 0.69 0.00 <td>Seiaenids</td> <td>4.25</td> <td>3.69</td> <td>4.45</td> <td>5.17</td> <td>6.87</td> <td>4.07</td> <td>3.91</td>	Seiaenids	4.25	3.69	4.45	5.17	6.87	4.07	3.91
Nomenclature 1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 Chorinemus 1.55 3.37 3.24 0.84 0.00 0.20 0.30 Trachynotus 0.00 0.69 0.00 0.00 0.00 0.00 0.00 Other carangids 0.00 0.00 0.00 0.00 0.00 0.02 0.03 Elacate 0.13 0.13 0.08 0.25 0.21 0.21 0.17 Silverbellies 0.06 0.17 0.02 5.66 4.33 4.78 4.51 Leiagnathus 4.11 3.96 3.40 0.59 0.00 0.00 0.00 Gassa 0.56 0.88 2.09 0.00 0.00 0.00 0.00 Lactarius 0.61 0.66 0.27 0.00 0.17 0.05 0.07 Pomfrets 1.42 2.28 1.36 0.70 0.56 1.09 1.22	Ribbon fish	0.68	0.88	1.38	1.38	0.00	0.05	0.29
Chorinemus 1.55 3.37 3.24 0.84 0.00 0.20 0.30 Trachynotus 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 Elacate 0.13 0.13 0.08 0.25 0.21 0.21 0.17 Silverbellies 0.06 0.17 0.02 5.66 4.33 4.78 4.51 Leiagnathus 4.11 3.96 3.40 0.59 0.00 0.00 0.00 Gassa 0.56 0.88 2.09 0.00 0.00 0.00 0.00 Lactarius 0.61 0.66 0.27 0.00 0.17 0.05 0.07 Pomfrets 1.42 2.28 1.36 0.70 0.56 1.09 1.22 Mackerel 6.49 6.35 4.72 5.70 10.05 7.46 8.05	Caranx	1.07	0.55	0.25	0.22	0.81	0.90	1.15
Trachynotus 0.00 0.69 0.00 0.00 0.00 0.00 0.00 Other carangids 0.00 0.00 0.00 0.00 0.00 0.02 0.03 Elacate 0.13 0.13 0.08 0.25 0.21 0.21 0.17 Silverbellies 0.06 0.17 0.02 5.66 4.33 4.78 4.51 Leiagnathus 4.11 3.96 3.40 0.59 0.00 0.00 0.00 Gassa 0.56 0.88 2.09 0.00 0.00 0.00 0.00 Lactarius 0.61 0.66 0.27 0.00 0.17 0.05 0.07 Pomfrets 1.42 2.28 1.36 0.70 0.56 1.09 1.22 Mackerel 6.49 6.35 4.72 5.70 10.05 7.46 8.05	Nomenclature	1994-95	1995-96	1996-97	1997-98	1998-99	1999-00	2000-01
Other carangids 0.00 0.00 0.00 0.00 0.00 0.02 0.03 Elacate 0.13 0.13 0.08 0.25 0.21 0.21 0.17 Silverbellies 0.06 0.17 0.02 5.66 4.33 4.78 4.51 Leiagnathus 4.11 3.96 3.40 0.59 0.00 0.00 0.00 Gassa 0.56 0.88 2.09 0.00 0.00 0.00 0.00 Lactarius 0.61 0.66 0.27 0.00 0.17 0.05 0.07 Pomfrets 1.42 2.28 1.36 0.70 0.56 1.09 1.22 Mackerel 6.49 6.35 4.72 5.70 10.05 7.46 8.05	Chorinemus	1.55	3.37	3.24	0.84	0.00	0.20	0.30
Elacate 0.13 0.13 0.08 0.25 0.21 0.21 0.17 Silverbellies 0.06 0.17 0.02 5.66 4.33 4.78 4.51 Leiagnathus 4.11 3.96 3.40 0.59 0.00 0.00 0.00 Gassa 0.56 0.88 2.09 0.00 0.00 0.00 0.00 Lactarius 0.61 0.66 0.27 0.00 0.17 0.05 0.07 Pomfrets 1.42 2.28 1.36 0.70 0.56 1.09 1.22 Mackerel 6.49 6.35 4.72 5.70 10.05 7.46 8.05	Trachynotus	0.00	0.69	0.00	0.00	0.00	0.00	0.00
Silverbellies 0.06 0.17 0.02 5.66 4.33 4.78 4.51 Leiagnathus 4.11 3.96 3.40 0.59 0.00 0.00 0.00 Gassa 0.56 0.88 2.09 0.00 0.00 0.00 0.00 Lactarius 0.61 0.66 0.27 0.00 0.17 0.05 0.07 Pomfrets 1.42 2.28 1.36 0.70 0.56 1.09 1.22 Mackerel 6.49 6.35 4.72 5.70 10.05 7.46 8.05	Other carangids	0.00	0.00	0.00	0.00	0.00	0.02	0.03
Leiagnathus 4.11 3.96 3.40 0.59 0.00 0.00 0.00 Gassa 0.56 0.88 2.09 0.00 0.00 0.00 0.00 Lactarius 0.61 0.66 0.27 0.00 0.17 0.05 0.07 Pomfrets 1.42 2.28 1.36 0.70 0.56 1.09 1.22 Mackerel 6.49 6.35 4.72 5.70 10.05 7.46 8.05	Elacate	0.13	0.13	0.08	0.25	0.21	0.21	0.17
Gassa 0.56 0.88 2.09 0.00 0.00 0.00 0.00 Lactarius 0.61 0.66 0.27 0.00 0.17 0.05 0.07 Pomfrets 1.42 2.28 1.36 0.70 0.56 1.09 1.22 Mackerel 6.49 6.35 4.72 5.70 10.05 7.46 8.05	Silverbellies	0.06	0.17	0.02	5.66	4.33	4.78	4.51
Lactarius 0.61 0.66 0.27 0.00 0.17 0.05 0.07 Pomfrets 1.42 2.28 1.36 0.70 0.56 1.09 1.22 Mackerel 6.49 6.35 4.72 5.70 10.05 7.46 8.05	Leiagnathus	4.11	3.96	3.40	0.59	0.00	0.00	0.00
Pomfrets 1.42 2.28 1.36 0.70 0.56 1.09 1.22 Mackerel 6.49 6.35 4.72 5.70 10.05 7.46 8.05	Gassa	0.56	0.88	2.09	0.00	0.00	0.00	0.00
Mackerel 6.49 6.35 4.72 5.70 10.05 7.46 8.05	Lactarius	0.61	0.66	0.27	0.00	0.17	0.05	0.07
	Pomfrets	1.42	2.28	1.36	0.70	0.56	1.09	1.22
Som 922 754 512 502 225 226 222	Mackerel	6.49	6.35	4.72	5.70	10.05	7.46	8.05
Seer 8.33 7.34 3.12 3.03 2.35 2.26 2.83	Seer	8.33	7.54	5.12	5.03	2.35	2.26	2.83
Tunnies 1.94 2.77 1.75 3.01 0.71 1.27 1.41	Tunnies	1.94	2.77	1.75	3.01	0.71	1.27	1.41
Sphyreana 0.04 0.09 0.10 0.16 0.00 0.05 0.04	Sphyreana	0.04	0.09	0.10	0.16	0.00	0.05	0.04
Mugil 0.31 0.20 0.30 0.15 0.55 0.15 0.15	Mugil	0.31	0.20	0.30	0.15	0.55	0.15	0.15
Bregmaceres 0.03 0.00 0.01 0.00 0.01 0.00 0.00	Bregmaceres	0.03	0.00	0.01	0.00	0.01	0.00	0.00

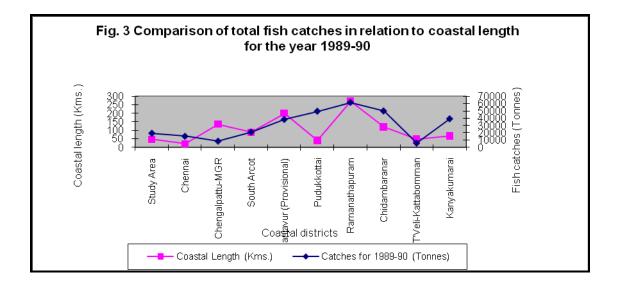
Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

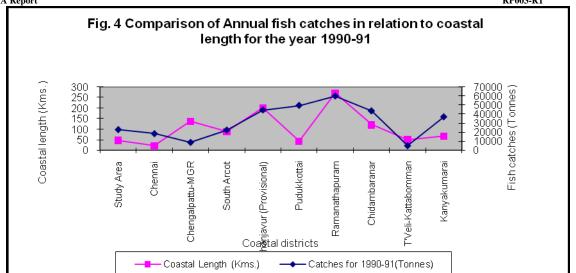

1 H/01/2022/CON/001

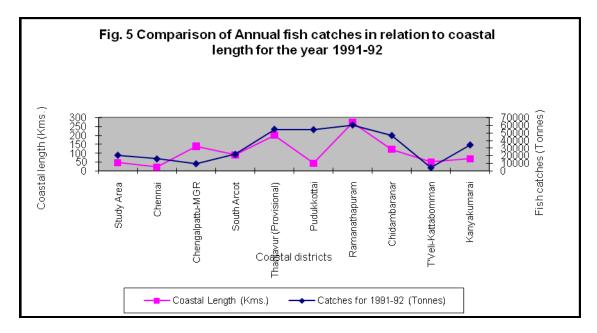
1 RP003-R1

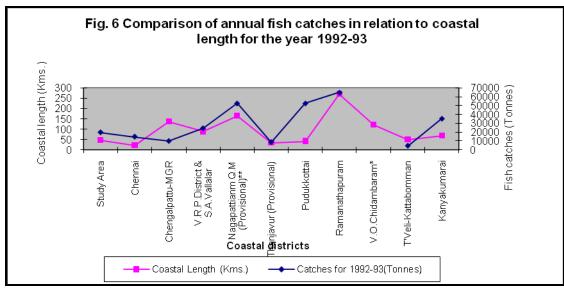
t EIA Keport		1	1	1	1	KI UU.	J 111
Nomenclature	1994-95	1995-96	1996-97	1997-98	1998-99	1999-00	2000-01
Soles	0.13	0.07	0.13	0.05	0.24	0.12	0.18
Penaeid Prawns	4.30	3.54	4.09	4.94	4.16	5.08	4.90
N.P.Prawns	2.49	1.89	2.10	0.50	0.00	0.68	0.82
Lobsters	0.06	0.11	0.20	0.01	0.01	0.00	0.00
Crabs	3.53	1.48	2.73	4.02	2.15	4.54	4.63
Cephalopods	4.39	3.74	3.30	3.67	1.75	2.38	2.28
Miscellaneous	12.25	11.24	10.69	13.83	17.14	18.28	16.66
Drapane	0.49	1.53	0.74	0.13	0.00	0.00	0.00
Lethrinus	0.00	0.06	0.00	0.00	0.00	0.00	0.00
Sillago	0.13	0.02	0.00	0.00	0.02	0.11	0.17
Balistis	0.07	0.09	0.22	0.01	0.00	0.00	0.00
Turtle	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ora	0.00	0.00	0.00	0.00	0.15	0.08	0.04
Spotted Dory	0.00	0.00	0.04	0.00	0.00	0.00	0.00

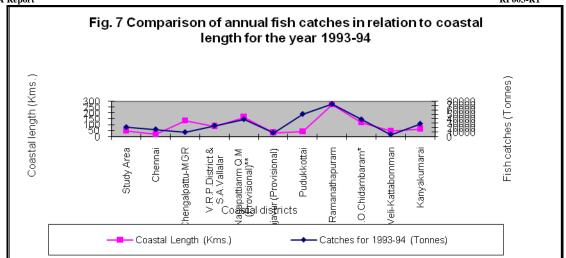

Table 3-30: Revenue generated from marine fisheries along Tamil nadu coast

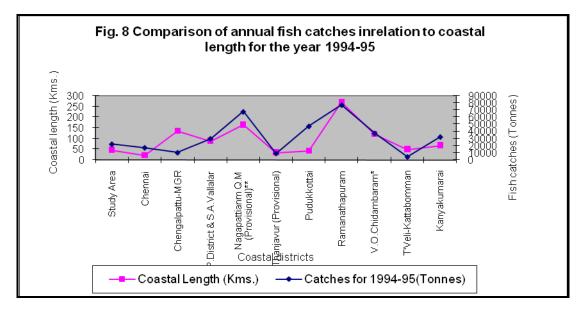

Year	Quantum of fishery (tonnes)	Revenue earned (cores)
1997-98	41052	1220.1
1998-99	45026	1379
1999-2000	43464	1462.7
2000-2001	53005	2264.78
2001-2002	58482	2016.4

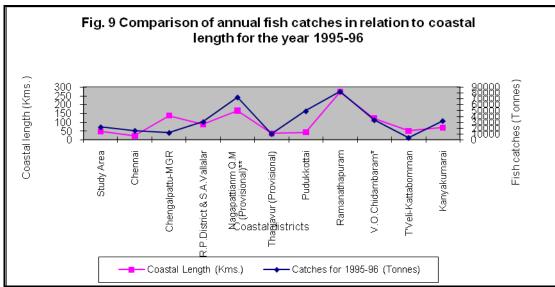


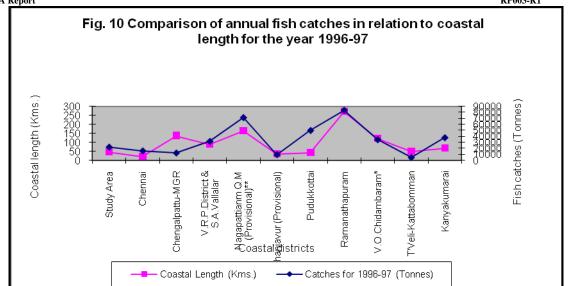

H/01/2022/CON/001

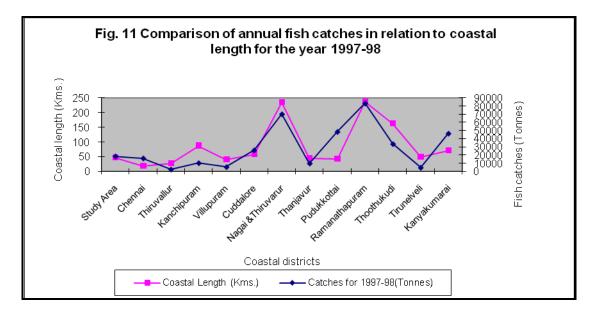


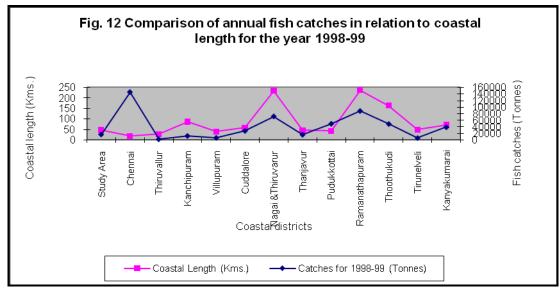


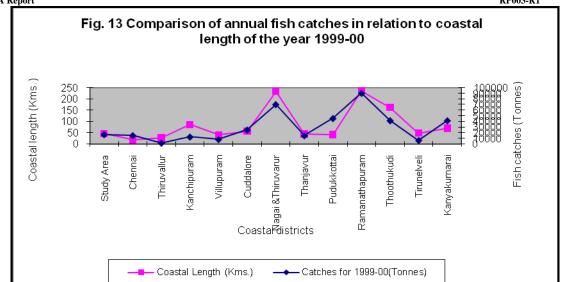


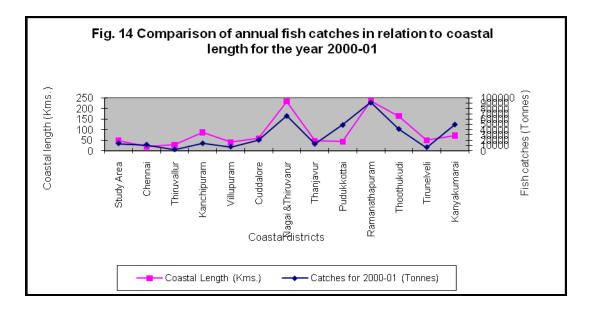












3.11 Socio Economic Profile

In 2011, Tiruvallur had population of 3728104 of which male and female were 1,876,062 and 1,852,042 respectively. Literates of Thiruvallur in 2011 were 84.03% of which male and female were 89.69% and 78.32%. The district has a Sex ratio of 987.

Source: https://acrobat.adobe.com/3c1ff7f8-b774-4e95-903d-6d6e66bf23a1

(Ref: Directorate of Census Operations-Tamil Nadu, "District Census Handbook-2011, Thiruvallur District", Series-34 Part XII-B)

3.11.1 Socio Economic Aspects

A socio-economic study was undertaken in assessing aspects which are dealing with social and cultural conditions, and economic status in the study area. The study provides information such as demographic structure, population dynamics, infrastructure resources, and the status of human health and economic attributes like

employment, per-capita income, agriculture, trade, and industrial development in the study area. The study of these characteristic helps in identification, prediction and evaluation of impacts on socio-economic and parameters of human interest due to proposed project activities and its developments. The parameters are:

- > Demographic structure
- ➤ Infrastructure Facility
- ➤ Economic Status
- ➤ Health status
- Cultural attributes

Awareness and opinion of people about the project and Industries in the area. **Table 3-31 Social Indicators of Tiruvallur District** shows some important Social Indicators of Tiruvallur District in Tamil Nadu.

Table 3-31 Social Indicators of Tiruvallur District

S.No	Social Indicators	Tiruvallur District
1	Decadal variation %	35.30
2	Urban population %	65.14
3	Sex ratio	987
4	0-6 age group %	10.88
5	Population density (Persons per square Km)	1098
6	Scheduled caste population %	22.03
7	Scheduled tribe population %	1.26
8	Literacy rate %	84.03
9	Work Participation rate %	41.26
10	Main Workers %	81.14
11	Marginal Workers %	18.86
12	Cultivators %	4.78
13	Agricultural labourers %	17.59

S.No	Social Indicators	Tiruvallur District
14	Workers in household industries %	3.79
15	Other workers %	73.84

Source:http://censusindia.gov.in/2011census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf (Ref:Directorate of Census Operations-Tamil Nadu, "District Census Handbook-2011, Thiruvallur District", Series-34 Part XII-B).

3.11.2 Population

Thiruvallur district ranked the 4th in terms of the highest population in Tamil Nadu. Thiruvallur district has the urban population share of 65.14%. In terms of population density, Thiruvallur district has recorded 1098 persons per sq.km. The district Sex Ratio is 987, lower when compared to the State Sex Ratio of 996. The district has recorded higher literacy rate (84.03%) as compared with State literacy rate of 80.1%. The district decadal population growth during 2001 - 2011 was 35.3%.

Source:http://censusindia.gov.in/2011census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf

3.11.3 Population Density and Sex Ratio

The sex ratio is defined as number of females to 1000 males. With regards to sex ratio in Thiruvallur, it stood at 987 per 1000 male compared to 2001 census figure of 971. The average national sex ratio in India is 940 as per latest reports of Census 2011 Directorate. In 2011 census, child sex ratio is 946 girls per 1000 boys compared to figure of 957 girls per 1000 boys of 2001 census data.

Source:http://censusindia.gov.in/2011census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf

3.11.4 Scheduled Castes and Scheduled Tribes

As per 2011 Census, Total Scheduled Castes (SCs) population reported in the district is 821646 persons, which contributes about 22.03 percent of total population of the district. Total Scheduled Tribes (STs) population reported in the district is 47243 persons, which contributes about 1.26 % of total population of the district.

Source:http://censusindia.gov.in/2011census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf

3.11.5 Education & Literacy

As per Census 2011, a person aged 7 years and above who can both read and write with understanding in any language is taken as literates. A person who can only read but cannot write is not literate. It is not necessary that to be considered as literate, a person should received any formal education or passed any minimum educational standard. Literacy could have been achieved through adult literacy

classes or through any non-formal educational system. People who are blind and can read in Braille are treated as literates. The literacy rate of Thiruvallur district is 84.03% in 2011 as against the state literacy rate of 80.1%. The educational infrastructure in the Thiruvallur district is given in **Table 3-32**

Source:http://censusindia.gov.in/2011census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf

Table 3-32 Education Infrastructures in the Tiruvallur District

	Total sch	ools	Rural Schools	
Type of school	Government	Private	Government	Private
Primary	941	487	815	252
Primary + Upper Primary	289	60	225	35
Primary + Upper Primary + Secondary + Higher Secondary	33	192	12	55
Upper Primary only	2	1	2	0
Upper Primary + Secondary + Higher Secondary	100	36	69	13
Primary + Upper Primary + Secondary	22	126	11	53
Upper Primary + Secondary	147	18	117	7

(Source: District Information Systems on Education (DISE report card 2016-17))

3.11.6 Employment and Livelihood

Agriculture is the main occupation of the district, but the district is being close to Chennai and the fast industrialization in the district, there is shift in the occupation pattern. Out of the totalworkers only 4.78% of workers are cultivators and 17.59% of workers are Agricultural labourers. The district seconomy is vibrant as 81.14% of working population is belonging to main workers category that means they have regular employment activities more than 6 months in a year. The total coastal area of the district is about 49,803 ha and has a coast line of 80 km for marine fisheries. Prawn/shrimp culture is famous along the coast line of Gummidipoondi and Minjur.

Industrial Scenario

The district is fast growing in Industries. The district has many leading industries like Madras Refineries, Madras Fertilizers, Manali Petro Chemicals, MRF, Ashok Leyland, TI Cycles, Britannia India Ltd, Parry India Ltd. It also boasts of the Ennore Thermal Power Station and the Avadi Tank Factory. The District has 16 Industrial Estates, all in operation: 11 developed by the Government and 5 by Private Organization. This district also has 16940 Small Scale Industries.

Draft EIA Report

 $Source: http://dcmsme.gov.in/dips/2016-17/DIP.THIRUVALLUR.\%\,202015.16.pdf$

3.11.7 Social Economic Profile of the study area

The project area comes under the Ponneri taluk and Madhavaram Taluk of Thiruvallur District in Tamil Nadu. **Table 3-33** provides the details on population profile within study area.

Table 3-33 Population profile within study area

Sl.N	Name	No of	Total	Total	Total	Populati	Schedule	Schedule
0		Househol	Populati	Populati	Populati	on in the	d Castes	d Tribes
		ds	on	on Male	on	age	populati	populati
			Person		Female	group 0-	on	on
						6 Person	Person	Person
				0-5 Km				
		7	Tiruvallur D	District- Pon	neri taluk			
1	Kattoor	900	3425	1726	1699	362	2153	132
2	Karungali	58	203	97	106	34	22	101
3	Kalanji	77	260	126	134	45	195	0
4	Kattupalli	534	1911	1096	815	201	856	46
5	Voyalur	1683	6080	3017	3063	662	1483	30
6	Neithavayal	1400	5525	2777	2748	600	3553	137
7	Nandiambakkam	1511	6268	3156	3112	719	2048	549
8	Athipattu (CT)	2762	11034	5623	5411	1257	4505	299
		1	<u>I</u>	5-10 km	1	1	l	l
		T	hiruvallur l	District- Por	neri taluk			
9	Medur	878	3144	1559	1585	348	1510	217
10	Pralayambakkam	313	1247	590	657	117	515	2
11	Andarmadam	54	226	109	117	38	223	0
12	Pulicut	4619	17925	8915	9010	2196	2393	1116

	A Report	N. 0	7D 4 1	7D 4 1	7D 4 1	D 1.0	RP003-R1	
Sl.N	Name	No of	Total	Total	Total	Populati	Schedule	Schedule
0		Househol	Populati	Populati	Populati	on in the	d Castes	d Tribes
		ds	on	on Male	on	age	populati	populati
			Person		Female	group 0-	on	on
						6 Person	Person	Person
10	TD1 1 1 1	572	2005	1002	1012	264	45.4	0
13	Thangalperumbal am	573	2095	1083	1012	264	454	0
14	Sirupazhaverkadu	124	448	214	234	58	427	0
15	Kadapakkam	302	1126	568	558	163	841	114
16	Thathamanji	217	809	406	403	77	373	86
17	Somanjeri	233	830	405	425	92	490	0
18	Athamanjeri	325	1186	554	632	110	682	4
19	Thiruvellavoyal	532	1998	988	1010	246	886	32
20	Eripillaikuppam	90	279	139	140	25	179	0
21	Velur	451	1498	743	755	147	910	29
22	Kumarasirulapakk am	109	405	193	212	26	17	0
23	Kaniambakkam	452	1651	836	815	186	963	104
24	Kadamanjeri	79	287	144	143	34	187	40
25	Marattoor	168	593	295	298	64	525	2
26	Devadanam	317	1181	578	603	123	422	83
27	Vellambakkam	81	292	150	142	27	122	0
28	Thottakadu	271	1053	532	521	113	343	0
29	Kalpakkam	277	1136	582	554	169	269	0
30	Nalur	1655	6238	3146	3092	684	2794	53
31	Vallur	2993	11935	6089	5846	1309	7803	29

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA

H/01/2022/CON/001

RP003-R1

Sl.N	A Report Name	No of	Total	Total	Total	Populati	Schedule	Schedule
0		Househol	Populati	Populati	Populati	on in the	d Castes	d Tribes
		ds	on	on Male	on	age	populati	populati
			Person		Female	group 0-	on	on
						6 Person	Person	Person
32	Seemapuram	477	1876	924	952	182	1061	15
33	Madiyur	84	313	160	153	24	0	13
34	Vellivoyal	820	3511	1758	1753	389	2466	5
35	Minjur (TP)	7048	28337	14168	14169	2960	9374	58
36	Edayanchavadi (CT)	3142	12119	6042	6077	1151	1402	5
		Tiru	vallur Dist	rict - Madh	 avaram talu	ık		
37	Kattivakkam (M)	9354	36617	18466	18151	4301	2194	2107
38	Tiruvottiyur (M)	63862	249446	125300	124146	26903	13782	13121
Total		108825	424507	213254	211253	46406	68422	18529

Source:http://censusindia.gov.in/2011census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf

3.11.8 Employment and livelihood

Economic vibrancy in area is shown by the type and nature of the occupation available in the area. Of the total working population, the majority is the main workers i.e they have steady job more than six months per annum. It is due to the industrialization in the area. The job opportunity is due to the development of Industrial and Service sectors. **Table 3-34** shows the classification of workers within the study area.

Table 3-34 Classification of workers within study area

		Total	Main	Margina		Agricultu	re Worke	ers		sehold	Other	Workers
Sl.	Name	Worker	Worker	l Worker	Cul	tivators	Agri. I	abourers	Industr	y Workers		
No		S	S	S	Main	Margina l	Main	Margina l	Main	Margina l	Main	Margina l
					0-5 H	<u> </u> Km						
				Thiruvallu	r Distri	ct- Ponneri	taluk					
1	Kattoor	1402	1079	323	117	20	601	98	31	5	330	200
2	Karungali	81	23	58	7	4	1	44	0	0	15	10
3	Kalanji	107	28	79	2	0	0	51	0	2	26	26
4	Kattupalli	864	773	91	20	9	3	0	20	0	730	82
5	Voyalur	2688	1612	1076	150	39	307	480	36	13	1119	544
6	Neithavayal	2310	1541	769	55	33	319	362	43	19	1124	355
7	Nandiambakkam	2362	1899	463	89	21	134	8	34	15	1642	419
8	Athipattu (CT)	4072	3397	675	10	5	7	6	81	19	3299	645

Draft EIA	Acpute	Total	Main	Margina		Agricultu	re Worke	ers		sehold	Other '	Workers
Sl.	Name	Worker	Worker	l Worker	Cul	tivators	Agri. L	abourers	Industr	y Workers		
No		S	s	S	Main	Margina l	Main	Margina l	Main	Margina l	Main	Margina l
					5-10	km						
				Thiruvallu	r Distric	t – Ponneri	taluk					
9	Medur	1488	1133	355	77	22	664	264	9	7	383	62
10	Pralayambakkam	666	294	372	18	21	141	143	3	4	132	204
11	Andarmadam	84	81	3	7	0	44	3	0	0	30	0
12	Pulicut	6552	5649	903	75	29	41	19	60	36	5473	819
13	Thangalperumbalam	816	559	257	31	4	3	150	8	6	517	97
14	Sirupazhaverkadu	260	168	92	1	1	131	84	4	2	32	5
15	Kadapakkam	556	548	8	0	0	459	6	10	1	79	1
16	Thathamanji	340	248	92	33	23	76	53	3	2	136	14
17	Somanjeri	465	454	11	15	0	343	10	2	0	94	1

	х кероге	Total	Main	Margina		Agricultu	re Worke	ers		sehold	Other	Workers
Sl.	Name	Worker	Worker	l Worker	Cul	tivators	Agri. I	abourers	Industr	y Workers		
No		S	S	s	Main	Margina l	Main	Margina l	Main	Margina l	Main	Margina l
18	Athamanjeri	595	465	130	39	0	283	122	3	0	140	8
19	Thiruvellavoyal	863	709	154	18	1	265	10	10	3	416	140
20	Eripillaikuppam	147	116	31	14	0	58	6	0	0	44	25
21	Velur	699	437	262	57	25	185	159	12	7	183	71
22	Kumarasirulapakkam	322	74	248	38	11	14	204	3	25	19	8
23	Kaniambakkam	791	81	710	3	27	5	106	1	12	72	565
24	Kadamanjeri	142	92	50	5	0	3	31	1	2	83	17
25	Marattoor	313	49	264	0	5	1	17	2	3	46	239
26	Devadanam	487	485	2	16	1	122	0	14	0	333	1
27	Vellambakkam	167	102	65	3	7	0	0	21	26	78	32
28	Thottakadu	505	311	194	12	8	57	17	6	0	236	169

Drait EIA		Total	Main	Margina		Agricultu	re Worke	ers		sehold	Other	Workers
Sl.	Name	Worker	Worker	l Worker	Cul	tivators	Agri. L	abourers	Industr	y Workers		
No		s	S	s	Main	Margina l	Main	Margina l	Main	Margina l	Main	Margina l
29	Kalpakkam	508	472	36	31	5	36	3	28	0	377	28
30	Nalur	2704	2028	676	356	69	205	173	70	65	1397	369
31	Vallur	4617	3662	955	77	39	138	56	117	46	3330	814
32	Seemapuram	849	651	198	62	2	92	109	31	9	466	78
33	Madiyur	116	110	6	50	1	19	4	4	0	37	1
34	Vellivoyal	1340	1299	41	49	6	96	0	5	0	1149	35
35	Minjur (TP)	11392	8624	2768	193	52	130	307	168	772	8133	1637
36	Edayanchavadi (CT)	4219	3495	724	14	1	27	22	54	19	3400	682
			Ti	ruvallur D	istrict -	Madhavara	m taluk	1	<u> </u>			1
37	Kattivakkam (M)	13273	10880	2393	17	4	49	20	201	201	10613	2289
38	Tiruvottiyur (M)	94000	81050	12950	451	163	509	136	1568	1568	78522	12039
												1

H/01/2022/CON/001 RP003-R1

		Main	Margina		Agricultu	re Worke	rs		sehold	Other Workers		
Sl.	Name	Total Worker	Worker	l Worker	Cul	tivators	Agri. L	abourers	industry	y Workers		
No		s	S	S	Main	Margina l	Main	Margina l	Main	Margina l	Main	Margina l
	Total	163162	134678	28484	2212	658	5568	3283	2663	2889	124235	22731

Source:http://censusindia.gov.in/2011census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf

3.11.9 Infrastructure within study area

The district has good primary and secondary education infrastructure in urban and rural areas. The people around the study area have well connected to educational infrastructures. Details of Literacy population available in the study area are given in **Table 3-35.**

Table 3-35 Details of Literacy population in the study area

Sl. No	Name	Total Population Person	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
			1	0-5 Km				
			Thiruva	allur District-Ponneri t	aluk			
1.	Kattoor	3425	2357	1319	1038	1068	407	661
2.	Karungali	203	102	51	51	101	46	55
3.	Kalanji	260	145	73	72	115	53	62
4.	Kattupalli	1911	1196	784	412	715	312	403
5.	Voyalur	6080	3794	2132	1662	2286	885	1401
6.	Neithavayal	5525	3913	2109	1804	1612	668	944
7.	Nandiambakkam	6268	4817	2542	2275	1451	614	837

	A Report	11004	0205		003-R1	2020	11.00	1,550
3.	Athipattu (CT)	11034	8205	4454	3751	2829	1169	1660
				5-10 km				
			Thiru	vallur District - Ponner	i taluk			
9.	Medur	3144	1924	1077	847	1220	482	738
10.	Pralayambakkam	1247	754	407	347	493	183	310
11.	Andarmadam	226	124	64	60	102	45	57
12.	Pulicut	17925	11970	6320	5650	5955	2595	3360
13.	Thangalperumbala m	2095	1293	744	549	802	339	463
14.	Sirupazhaverkadu	448	225	127	98	223	87	136
15.	Kadapakkam	1126	630	347	283	496	221	275
16.	Thathamanji	809	523	290	233	286	116	170
17.	Somanjeri	830	437	234	203	393	171	222
18.	Athamanjeri	1186	743	388	355	443	166	277

Thiruvellavoyal

19.

Capacity Draft EL	Augmentation of Existing Operat A Report	tional Marine Liquid Term	inal (Mlt) From 3 MMTPA TO	6 MMTPA I	I/01/2022/CON/001 P003-R1			
20.	Eripillaikuppam	279	192	102	90	87	37	50
21.	Velur	1498	939	524	415	559	219	340
22.	Kumarasirulapakk am	405	288	154	134	117	39	78
23.	Kaniambakkam	1651	1082	615	467	569	221	348
24.	Kadamanjeri	287	180	103	77	107	41	66
25.	Marattoor	593	386	226	160	207	69	138
26.	Devadanam	1181	733	407	326	448	171	277
27.	Vellambakkam	292	203	114	89	89	36	53
28.	Thottakadu	1053	671	388	283	382	144	238
29.	Kalpakkam	1136	693	397	296	443	185	258
30.	Nalur	6238	4531	2452	2079	1707	694	1013
31.	Vallur	11935	9101	5040	4061	2834	1049	1785
32.	Seemapuram	1876	1239	676	563	637	248	389
33.	Madiyur	313	235	137	98	78	23	55

Capacity Draft EIA		ational Marine Liquid Termi	inal (Mlt) From 3 MMTPA TO		I/01/2022/CON/001 P003-R1			
34.	Vellivoyal	3511	2399	1292	1107	1112	466	646
35.	Minjur (TP)	28337	22301	11813	10488	6036	2355	3681
36.	Edayanchavadi (CT)	12119	9340	4969	4371	2779	1073	1706
	1	1	Thiruvallu	ır District - Madhavar	am taluk			
37.	Kattivakkam (M)	36617	27279	14692	12587	9338	3774	5564
38.	Tiruvottiyur (M)	249446	197146	103034	94112	52300	22266	30034
	Total	424507	323355	171271	152084	101152	41983	59169

Source:http://censusindia.gov.in/2011census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf

3.11.10 Dwelling within study area

Due to industrialization in nearby area and various Government Schemes, the standard of dwelling place has improved.

3.11.11 Health Facilities Within the Study Area

The majority of people visit nearby Hospitals/health services provided by the Government. The area has got good public health facilities at easily reachable distances. There was no major health issues reported in our survey. Even for any minor ailments they contact medical facilities immediately as it is very accessible to them. The local transport facilities and the communication facilities are the main reasons to get immediate medical attention. The emergency medical service facility "108" is very familiar and being used by the people in this area. The incidents of institutional delivery are high due to awareness, education, economic development, proximity to health delivery system. The Infant mortality rate and the maternal mortality rate have significantly reduced. **Table 3-36** shows the health facilities available in the study area.

Table 3-36 Health facilities available in the study area

Sl.No	Туре	Numbers
1	Community health centre	1
2	Primary health centre	5
3	Primary health sub-centre	22
4	Maternity and Child Welfare Centre	22
5	TB hospital/Clinic	13
6	Hospital Allopathic	3
7	Hospital Alternative Medicine	16
8	Dispensary Health Centre	17
9	Veterinary hospital	13
10	Mobile health clinic	0
11	Family Welfare Centre	13
12	Non-Government Medical facilities Out Patient	54

Source:http://censusindia.gov.in/2011census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf

3.11.12 Summary

The Socioeconomic profile of the study area shows that more than half of people in the study area work in other sector. The average literacy rate of the study area is 76.17%. The people in the study area are well connected to Government primary health centres and Primary health sub-centres.

Table 3-37 Summary of Socioeconomic indicators within the study area

S.No	S.No Particulars		Unit
	0-5 Km		

S.No	Particulars	Study Area	Unit
1.	Number of villages and Town in the Study Area	8	Nos.
2.	Total Households	8925	Persons
3.	Total Population	34706	Persons
4.	Children Population (0-6 Years Old)	3880	Persons
5.	SC Population	14815	Persons
6.	ST Population	1294	Persons
7.	Total Working Population	13886	Persons
8.	Main Workers	10352	Persons
9.	Marginal Workers	3534	Persons
10.	Cultivators	581	Persons
11.	Agricultural Labourers	2421	Persons
12.	Household Industries	318	Persons
13.	Other Workers	10566	Persons
14.	Literates population	24529	Persons
15.	Illiterates population	10177	Persons
	5-10 km		
16.	Number of villages and Town in the Study Area	30	Nos.
17.	Total Households	99900	Persons
18.	Total Population	389801	Persons
19.	Children Population (0-6 Years Old)	42526	Persons
20.	SC Population	53607	Persons
21.	ST Population	17235	Persons
22.	Total Working Population	149276	Persons
23.	Main Workers	124326	Persons
24.	Marginal Workers	24950	Persons
25.	Cultivators	614	Persons
26.	Agricultural Labourers	645	Persons
27.	Household Industries	3136	Persons
28.	Other Workers	90561	Persons
29.	Literates population	298826	Persons
30.	Illiterates population	90975	Persons

 $Source: http://census india.gov.in/2011 census/dchb/DCHB_A/33/3301_PART_A_DCHB_THIRUVALLUR.pdf$

CHAPTER 4 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

4 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

4.1 Details of Investigated Environmental Impacts due to project location, possible accidents, project design, project construction, regular operations, final decommissioning or rehabilitation of a completed projected

Environmental impact is any change in the environmental attributes, adverse or beneficial, caused or induced by the proposed action or set of actions. The predicted adverse impacts during each stage of project development are superimposed over the baseline status of the existing environmental quality to infer the scenario of environmental conditions in the post-project stage. The main purpose of identifying the impacts is that it helps in adopting appropriate mitigation measure for the adverse consequences if any.

Identification of impacts leads to quantification and evaluation of impacts and suggestions of mitigation measures. Predicting and evaluating the various significant impacts that are likely to occur. The impacts on the environmental indices viz. air, water, soil, noise, biological and socio-economic conditions are scrutinized methodically and assessed.

4.1.1 General

The outcome of the revalidation of the earlier traffic study in 2010 for the POL, LPG and Chemicals / other liquids indicated a good potential for the development of Marine Liquid Terminal at Kamarajar Port. However, the development of liquid terminal at Kamarajar Port could entail impacts on the environmental components such as air, noise, water, occupational health, etc. These impacts have to be taken into consideration during the planning stages of the project to minimize the same during development and operation.

Keeping this in view, the various impacts on the environmental attributes which are likely to arise due to the development of the Marine Liquid Terminal at Kamarajar Port are broadly discussed in this chapter. The assessment is based on a qualitative approach through review of the past environmental data generated for the Kamarajar Port. Both beneficial (positive) and potential negative impacts are envisaged due to the construction and operation of the terminal. A brief summary of the activities associated with the development of the Terminal are presented to assist in better appreciation of the assessed impacts vis-à-vis the proposed construction and operation. The environmental impacts both for the construction phase and operation phase and for each activity are presented. The details of the mitigation measures to minimize the impacts, which were planned as part of the development of the Terminal or proposed to be adopted are also presented. A broad Environmental Management Plan (EMP) is also presented.

4.1.2 Baseline Environmental Status

The existing environmental scenario in the project area has been established through collection and review of past data and reports on Kamarajar Port together with the information gathered from the site visits and consultations with various agencies / officials. Brief details of the environmental features are presented in the following paragraphs.

4.2 Environmental Impacts – Construction Phase

There is no major costruction involved in this project and the scope of modifications of exisiting facilities are given in the table below.

Table 4-1 Project and the scope of modifications of exisiting facilities

S.No.	Details	Remarks
1	Modification of Common Manifold to facilitate simultaneous discharge to BPCL	Hooking up lines to 2 x 24" lines of BPCL
2	Modification of 16" dock line to make it suitable for receipt of motor spirit from vessels	Modifications at jetty, common manifold and at exchange pit
3	Modification of 8" SS Dock Line for in line berthing of chemical vessel with POL vessels	Extension of 8" SS Dock line to south side of the jetty for in-line berthing of 2 vesssels

The impacts due to the above activities will be for a very short time and insignificant. Hence this report does not address the impacts due to the construction phase.

4.3 Assessment of significance of Impacts - by Matrix method

Water, Air and Land are the most vulnerable environmental attributes in serving the proposed industrial activities. Solid waste is another significant environmental issue from the proposed member industries. More discharges, discards and disposals can be listed to have significant impact on water, air and land environment.

A number of techniques are available for the assessment of impacts. Each of these techniques has their own advantages and disadvantages. The selection of any of these techniques for any particular project depends largely upon the choice of judgment of the analysis. The technique chosen should be comprehensive, easy to understand, systematic and flexible. Considering these criteria, for this project, the matrix method was used, with an impact scale of -4 to +4.

Impact identification and assessment of the site can be assessed by the matrix method, popularly known as Leopold matrix method, which is a universal tool for the EIA studies. The matrix used for the EIA consists of project activities on the x-axis and the environmental components likely to be affected by these activities on the y-axis. Each cell of the matrix represents a subjective evaluation of the impact of the particular components, in terms of magnitude importance. A blank cell indicates no impact of the activity on the component. The magnitude (m) is represented by a number from 1-4 where,

1= Minimal

- 2= Appreciable
- 3= Significant
- 4= Severe

A positive sign indicates a beneficial impact and the negative sign indicates an adverse impact. The impact classification is given below in **Table 4-2**.

Table 4-2 Overall impact classification

S.No	Project impact scale	Magnitude of impact
1	-100 to -75	Severely adverse
2	-75 to -50	Significantly adverse
3	-50 to -25	Appreciably adverse
4	-25 to 0	Low Adverse Impact
5	0 to 25	Minimally beneficial
6	25 to 50	Appreciably beneficial
7	50 to 75	Significantly beneficial
8	75 to 100	Highly beneficial

4.3.1 Impact Scenarios

Impact score for the project was calculated for two scenarios using the matrix method described above. Matrices were prepared to represent each of these scenarios namely

- Project without EMP
- Project with EMP

4.3.1.1 Project without EMP

In this scenario, the proposed Industrial Area development is considered without proposing Environmental Management plans. The magnitude of the environmental components likely to be affected with the values for importance is tabulated in **Table 4-3**

Table 4-3 Project scenario without EMP

				Op	eration ph	ase			
S.No	Environmental con	Environmental components likely to be affected		Emissions from unloading cargo	Water requirement	Waste disposal (solid & liquid)	Chemical storage	Impact on the components	Remarks
1	Air quality	Magnitude	-3	-3	0	-1	-2	-21	Low Adverse
1	1 Air quality	Importance	2	3	0	2	2	-21	Impact
2	Noise	Magnitude	-3	-3	0	0	0	-18	Low Adverse
2	Noise	Importance	3	3	0	0	0	-10	Impact
3	Surface water	Magnitude	-1	-1	-3	-4	-2	-31	Appreciably
3	quantity	Importance	1	1	3	4	2	-31	adverse
4	Ground water	Magnitude	0	0	0	-4	-1	-17	Low Adverse
4	quantity	Importance	0	0	0	4	1	-1/	Impact
5	Coil quality	Magnitude	-2	-2	0	-4	-2	-28	Appreciably
3	Soil quality	Importance	2	2	0	4	2	-28	adverse
6	Flora & fauna	Magnitude	0	-2	-1	-4	-1	-22	Low Adverse
U	riora & faulta	Importance	0	2	1	4	1	-22	Impact
7	Socio economics	Magnitude	2	-2	-1	-3	-2	-14	Low Adverse
/	Socio economics	Importance	2	2	1	3	2		Impact

The impact was found to be -151 which is Severely adverse

4.3.1.2 Project scenario with EMP

In this scenario, the proposed Industrial Area development is considered with all the Environmental Management plans. The magnitude of the environmental components likely to be affected with the values for importance is tabulated in **Table 4-4.**

Table 4-4 Project scenario with EMP

				Operation phase					
S.No	S.No Environmental components likely to be affected		Transport of men & materials	Emissions from unloading cargo	Water requirement	Waste disposal (solid & liquid)	Chemical storage	Impact on the components	Remarks
1	Air quality	Magnitude	-1	-1	0	-1	-1	-7	Low adverse
	All quality	Importance	2	2	0	2	1	-/	impact
2	Noise	Magnitude	-1	-1	0	0	-1	-5	Low adverse impact
2	TVOISC	Importance	2	2	0	0	1		
3	Surface water	Magnitude	1	1	1	1	1	7	Minimally beneficial
3	quantity	Importance	1	1	1	2	2	1	
4	Ground water	Magnitude	0	0	0	-1	-1	-3	Low adverse
	quantity	Importance	0	0	0	1	2	-5	impact
5	5 Soil quality	Magnitude	1	1	1	1	1	- 11	Minimally beneficial
		Importance	2	2	4	2	1		

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA Draft EIA Report						1/2022/CON/001 03-R1			
6 Flora & fauna	Magnitude	0	1	1	1	1	5	Minimally beneficial	
	Importance	0	2	1	1	1			
8 Socio economics	Magnitude	3	-1	1	1	0	0	Minimally	
	Importance	2	2	3	2	0	9	beneficial	

The impact was found to be 17 which are minimally beneficial.

4.4 Operation Phase

The various impacts on the environmental attributes that are likely to arise due to the development and operation of Marine Liquid Terminal at Kamarajar Port are broadly presented. The major activities involved during construction and operation of the Terminal encompass the following:

4.5 Ground Level Concentration Increment

4.5.1 Air Environment

Base line data reveals that ambient air quality in the study area for the Parameters PM, NO_x and CO are well within the permissible Limits as prescribed by the National Ambient Air Quality Standards (NAAQS) for Industrial Area, Residential, Rural & Other areas.

4.5.2 Meteorological Data

The meteorological data for a 3 month, i.e. from 01/03/2024 to 31/05/2024 was considered for the study. Data included for AERMET were daily wind speed, wind direction, temperature, relative humidity, air pressure, precipitation, and solar radiation recorded during the period. AERMET reformats meteorological data so that it can be used as input for AERMOD model. Meteorology considered for modelling is shown below.

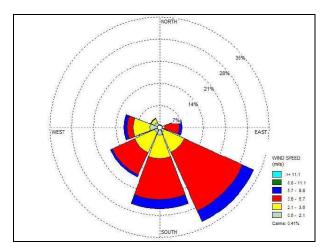


Figure 4-1 Wind rose diagram of Meteorological data considered for Modelling (March 2024 to May 2024)

AERMET Process

For the 3 phase AERMET processing of the meteorological data, specifications of the land use in the area are required to determine the terrain roughness for modelling. The land use was characterized for in and around the site. The surface characteristics for the site and surroundings were selected and used to calculate the Albedo, Bowen ratio and surface roughness parameters.

4.5.3 **AERMOD Process**

AERMOD Software Version 8.0.5 was used for air dispersion modelling and is applicable to a wide range of buoyant or neutrally buoyant emissions up to a range of 50 km. In addition to more straight forward cases, AERMOD is also suitable for complex terrain and urban dispersion scenarios.

AERMOD is a steady-state plume model. In the stable boundary layer (SBL), it assumes the concentration distribution to be Gaussian in both the vertical and horizontal. In the convective boundary layer (CBL), the

horizontal distribution is also assumed to be Gaussian, but the vertical distribution is described with a bi-Gaussian probability density function (pdf). This behavior of the concentration distributions in the CBL was demonstrated by Willis and Deardorff (1981) and Briggs (1993). Additionally, in the CBL, AERMOD treats "plume lofting," whereby a portion of plume mass, released from a buoyant source, rises to and remains near the top of the boundary layer before becoming mixed into the CBL. AERMOD also tracks any plume mass that penetrates into the elevated stable layer, and then allows it to re-enter the boundary layer when and if appropriate. For sources in both the CBL and the SBL AERMOD treats the enhancement of lateral dispersion resulting from plume meander. The emissions from proposed stacks are estimated and used for the air dispersion modeling as shown in Table 4.5 respectively. Maximum incremental values for PM, SO2, NOx and CO have been represented as pictorial concentration contours and as tabular concentration values in following sections.

Line Source:

Table 4-5 Proposed Expansion project Transportations Emission

S.No Vehic	Vahiala Tyma	No. of Vehicle per day (Maximum Operation		Emission Details(g/s)			
	Vehicle Type	Capacity)	PM	NOX	CO		
1	4W	3	3.75E-05	1.04E-03	6.17E-03		
2	HW	300	1.67E-03	7.67E-02	6.67E-01		
	Total(g/s)			7.77E-02	6.73E-01		

Source:

Indian Emission Regulations by the Automotive Research Association of India

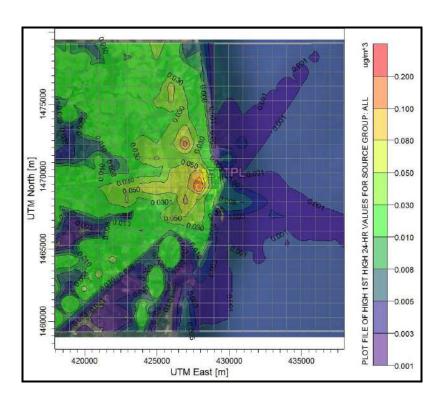


Figure 4-2Predicted 24-Hrs GLC's of Particulate matter PM within 10 km Radius of the Study Area

Table 4-6 Estimated Top 10 Highest Concentrations of Particulate Matter PM obtained through Modeling

	UTM co	ordinates (m)		Distance	Direction
S. No	E	N	Conc. (μg/m³)	from Centre of Project Site (~Km)	from Centre of Project Site
1.	427946	1469270	0.13357	Within site	Within site
2.	426946	1472270	0.11585	3.16	NNW
3.	427946	1470270	0.09817	1	N
4.	426946	1468270	0.08937	1.41	SW
5.	426946	1469270	0.07505	1	W
6.	424946	1469270	0.07394	3	W
7.	426946	1470270	0.07169	1.41	NW
8.	425946	1469270	0.06346	2	W
9.	423946	1469270	0.06314	4	W
10.	426946	1473270	0.06223	4.12	NNW

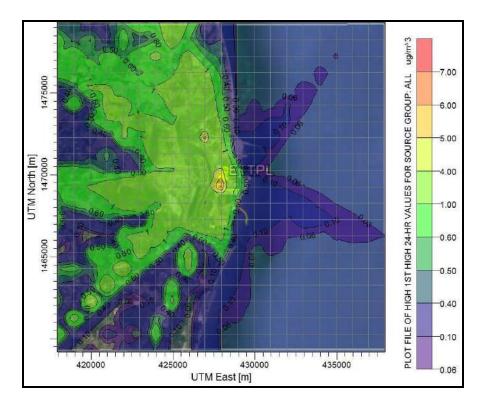


Figure 4-3 Predicted 24-Hrs' GLC's of NO_x within 10 km Radius of the Study Area

Table 4-7 Estimated Top 10 Highest Concentrations of oxide of Nitrogen Obtained through Modeling

	UTM coordinates (m)			Distance from	Direction from
S. No	E	N	Conc. (μg/m³)	Centre of Project Site (~Km)	Centre of Project Site
1.	427946	1469270	6.14108	Within site	Within site
2.	426946	1472270	5.32676	3.16	NNW
3.	427946	1470270	4.51364	1	N
4.	426946	1468270	4.10908	1.41	SW
5.	426946	1469270	3.45061	1	W
6.	424946	1469270	3.39957	3	W
7.	426946	1470270	3.29596	1.41	NW
8.	425946	1469270	2.91773	2	W
9.	423946	1469270	2.90312	4	W
10.	426946	1473270	2.86144	4.12	NNW

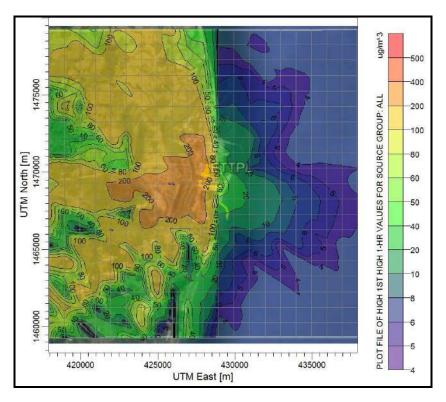


Figure 4-4 Predicted 1-Hrs' GLC's of CO within 10 km Radius of the Study Area

Table 4-8 Estimated Top 10 Highest Concentrations of Carbon Monoxide Obtained through Modeling

G.N	UTM cool	dinates (m)	Conc.	Distance from Centre of	Direction from Centre
S. No	E	N	(μg/m ³)	Project Site (~Km)	of Project Site
1.	425946	1469270	417.327	2	W
2.	424946	1469270	366.1593	3	W
3.	427946	1470270	314.545	1	N

Capacity A Draft EIA	ugmentation of Existing Operations Report	H/01/2022/C RP003-R1	CON/001		
4.	426946	1469270	283.6997	1	W
5.	423946	1469270	273.8654	4	W
6.	422946	1468270	262.1737	5.10	WSW
7.	425946	1467270	259.7753	2.82	SW
8.	423946	1467270	248.6369	4.47	WSW
9.	422946	1469270	245.7591	5	W
10.	427946	1467270	243.7865	2	S

4.6 Conclusion

Maximum pollutant concentrations of PM and NO_x observed due to proposed for an 24hr-average period have been and CO observed due to proposed for an 24hr-average period have been studied. The total increase in concentrations above baseline status to estimate the percentage increase and summarized in **Table 4-9**.

Table 4-9 Total Maximum GLCs from the Transportations Emissions

Pollutant	Max. Base line Conc. (μg/m³)	Estimated Incremental Conc. (µg/m³)	Total Conc. (µg/m³)	NAAQ standard (µg/m³)
PM10	71.29	0.13	71.42	100
NO_x	29.13	6.14	35.27	80
CO	950	417.32	1367.32	4000

Marine-Side Activities

- Product handling
- Movement of vessels

Land-Side Activities

- Product storage
- Inland product movement.

4.6.1 Mitigational Measures During Operational Phase

Due to handling of the product impacts are envisaged in the harbour basin through discharge of sewage, ship waste, oil spills, runoffs from operational areas, etc. To mitigate these impacts, measures proposed are discussed in the following paragraphs.

4.6.2 Marine Environment

The major impact on marine water during the operation of the facility will be due to the spillage of material in land and sea. During the operational phase of the project, frequency of incoming and outgoing ships will increase and hence the chances of spillages and leakages of oil into the sea qill be more. This will affect the sea water quality and appropriate care must be taken to ensure that discharges are made to appropriate drainage lines etc. which lead to appropriate treatment facilities. Oily wastes from machinery, spillages and leakages of oil from incoming and outgoing ships into the sea will affect the water quality. This water will have a chance to either drain into the water body, or will seep through the land and contaminate the ground water. This will have floating material on the water surrounding the port. The discharge of bilge water and/or ballast water from the ship may also cause negative impacts on the marine water.

The leaks, accidental release of the materials during the transport of the materials through the pipelines may cause serious soil contamination and will seep through the land and affect the ground water quality. As the area is a reclaimed land and the available groundwater will be affected by the salt intrusion and sea water incursion, it cannot be used for drinking without treatment. However contaminating the available groundwater /marine water with oil or any other materials shall be taken as very serious and all the possible measures to be taken to avoid any kind of spillage of materials during the operations like ship to ship transfer, shift to shore transfer, shore to shore transfer and vice versa.

4.6.2.1 Mitigation Measure of Marine Environment

To mitigate the impacts due to marine water pollution, the following measures would be adopted:

- All the operational areas will be connected with a network of liquid waste collection corridor comprising of storm water, oily wastes, and sewage collection pipelines.
- Oily wastes which are generated from the operational areas would be collected in the effluent network and further treated at the treatment plant.
- Vessels calling at the Terminal would not be permitted to dump the wastes / bilge water during the berthing period.
- Required pollution control facilities for treatment of waste water, solid waste management, etc. will be setup
 for the terminal.
- Measures would be taken to contain, control and recover the accidental spills of fuel, oil and other product handled.
- ETTPL and KPL has prepared Oil Spill Contingency Plan and is attached as Annexure 16.

4.6.3 Noise Environment

The impacts of the project on the noise levels of the surrounding areas were assessed. All equipments in the ETTPL site has been designed/operated to have a noise level not exceeding 85 to 90 dB (A) as per the

requirement of Occupational Health and Safety Administration Standard (OHSAS). In addition, since most of the noise generating equipment would be in closed structures, the noise transmitted outside would be still lower.

4.6.3.1 Impacts

Major sources of noise generation during operational phase are classified into two categories:

- Stationary sources due to operation of heavy duty machinery at the project site like Vehicles, DG sets, Pumps etc.
- Mobile sources corresponding to mainly vehicular traffic for staff mobilization, material movement, material transportation, liquid fuel transportation to project site, etc.

The impact of vibrations beyond the site would be negligible during normal operation phase. However, the impacts on workers engaged would be considerable due to occupational exposure.

4.6.3.2 Mitigation Measures

- The major noise generating equipment like DG sets, water pumps etc. has been enclosed in an acoustic enclosure designed for an insertion loss of 25 dB (A) and silencers to other equipment etc.
- Major noise generating equipment was designed with 85 dB (A) ensuring cumulative noise at 1.0 m remains at 85 dB (A).
- Acoustic silencers are provided in equipments wherever necessary.
- Use of personal protective equipments/devices such as ear-muffs, ear plugs etc. will be strictly enforced for the workers engaged in high noise areas.
- Ambient noise levels are monitored at regular intervals during operational phase of the project.

4.6.3.3 Traffic and Transport

Approach road to the site is SH-107(Minjur–Kattur–Thirupalaivanam Road)/SH-104(Chennai-Pulicat Rd) which is located at a distance of ~6.58km (WNW) **Table 4-10** gives the existing and proposed vehicular movement due to the project at SH-107(Minjur–Kattur–Thirupalaivanam Road)/SH-104(Chennai-Pulicat Rd) respectively gives the traffic Categorisation.

Table 4-10 Existing & proposed vehicular movement per day SH-107(Minjur–Kattur–Thirupalaivanam Road)/SH-104(Chennai-Pulicat Rd)

S. No	Type of Vehicle	Existing vehicles	Existing PCU	Proposed vehicles	Proposed PCU	Total vehicles after project implementation	PCU Factors IRC (SP 41)	Total PCU after project implementation
1	2 wheelers	3235	2426	0	0	3235	0.75	2426
2	3 wheelers	989	1978	0	0	989	2	1978
3	4 wheelers/cars	1170	1170	3	3	1173	1	1173

	apacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA H/01/2022/CON/001 RP003-R1							
4	Trucks/ Bus/HCV	3616	13379	300	1110	3916	2.2	8615
5	Agricultural tractor	8	32	0	0	8	4	32
6	Light emission vehicle-LCV	996	1394	0	0	996	2.0	1992
	Total	10014	20380	303	1113	10317	-	16216

Table 4-11 Traffic Volume after Implementation of the Project

For the Road	Volume of Traffic	Volume (V)	Road Capacity (C)	V/C Ratio	LOS Category*	Traffic Classification
Existing	10014	20380	35000	0.58	"C"	Restricted Flow
After implementation	10317	16216	35000	0.61	"C"	Restricted Flow

^{*}LOS (Level of Service) categories are A-Free Flow, B- Stable Traffic Flow, C- Restricted Flow, D- High Density Flow, E- Unstable flow, F- Forced or breakdown flow

^{*}LOS (Level of Service) categories are:

Level of Service	V/C	Classification
A	<0.35	Free Flow Traffic
В	0.35 - 0.55	Stable Traffic Flow
С	0.55 - 0.77	Restricted Flow
D	0.77 - 0.92	High Density Flow
Е	0.92 - 1.0	Unstable Flow
F	>1.0	Forced Traffic Flow

Due to propose project there will be slight increment in the vehicle movement but the level of service (LOS) anticipated will be "Restricted Traffic Flow".

4.6.3.4 Impact due to Wastewater Generation

- The untreated wastewater if discharged into nearby surface water may affect the surface water and/or if disposed off on land without treatment may pollute the ground and surface water.
- The other impact is water pollution due to disposal of rejects into the sea.

4.6.3.5 Mitigation Measures

• ETP has already been installed to treat the generated effluent. .

 Appropriate drainage facilities have been developed within the site including proper disposal to drains

4.6.3.6 Impact due to intake, out fall point and marine disposal

There is no marine disposal. So no impacts identified.

4.6.4 Solid waste management

4.6.4.1 Impacts

During operation phase, the solid wastes generated and it can be broadly categorized as Hazardous Waste and Municipal Solid Waste. Further, the generated Municipal Solid Waste segregated into biodegradable, recyclable and inert compounds.

4.6.4.2 Mitigation Measures

- The Source of Municipal waste will be from the domestic use and strict guidelines will be put in place in order to manage the solid waste generation during operation phase.
- Solid wastes will be segregated into organic and inorganic categories. The organic waste will be disposed through village bins and inorganic waste will be sold to authorized vendors. The ship generated solid wastes will be collected, segregated and diposed to approved recyclers/industries for further beneficial use through port engaged contractor.
- Hazardous waste generated will be stored in a separate hazardous waste storage area and properly disposed as per the Hazardous and Other Wastes (Management and Transboundary Movement) Amendment Rules, 2016.

Table 4-12 Summary of Mitigation Measures and Impact

S.no	Impacts	Mitigation Measures
1	The major air pollution source is the DG set which emits flue gases containing Suspended Particulate Matters, Oxides of Sulphur and Nitrogen that may affect the ground level concentrations.	The DG set has been provided with stacks of adequate height so as to disperse the emanating flue gases containing Suspended Particulate Matters, Oxides of Sulphur and Nitrogen without affecting the ground level concentrations.
2	Combustion process such as diesel engines	Maintenance of diesel power generators to achieve efficient combustion, fuel efficiency and therefore reduce emissions
3	Air borne particulates from soil disturbance during expansion and from vehicle traffic such as trucks and	 Adequate sprinkling of water on soil surface will be carried out. Vehicle, equipment and machinery used for

S.no	Impacts	Mitigation Measures
	trailers	men and material transfers.
4	Impact due to presence of VOC in the atmosphere	On-line VOC monitoring system has been installed and the same is connected to care air center of TNPCB for real time monitoring of VOC data.
5	Noise pollution due to operation of machineries & equipment; Vehicular traffic; Operation of DG sets and machineries	 Well maintained equipment and vehicles will be used; All DG sets would be provided with acoustic enclosures; and Appropriate PPEs (e.g. ear plugs) will be used for by workers while working near high noise generating equipment.
6	Land use change may lead to impact on income and livelihood	 Degraded land will be selected on long term lease and reinstate the land after project activity.

4.6.5 Ecology

Air emissions, liquid effluent disposal and solid waste generation are likely to have some impact on terrestrial ecosystem. An ETP of 20 KLD has been installed in the terminal to treat the effluent generated.

The ecology development will be taken care as per KPL's approved Biodiversity Management Plan.

4.6.6 Socio-Economic Environment

The project is likely to have positive impacts on socio economic environment.

4.7 Land-side Activities

4.7.1 Loading and Unloading of Products

The product handling operations will generate noise. It will be ensured that the noise levels do not exceed 75 dB(A) during daytime and 70 dB(A) during night-time.

4.7.2 Inland Product Movement

The transportation of product Tank Farm will contribute to increase in traffic on the existing road network. The increase in traffic might lead to traffic congestion, increase in dust levels, noise levels and risk of accidents. In order to contain these impacts, the following measures would to be taken up.

- Transportation Management Plan will be prepared by ETTPL along with KPL and the movement of product will be planned in line with the same.
- Traffic density studies will be undertaken along the existing road network covering all the roads leading to Kamarajar Port. All the vehicles involved in transshipment of product inland would be checked for valid Pollution Under Control (PUC) certificates. A mobile task force will be formed in co-ordination with local Road Transport Authority (RTA) to check the compliance of vehicle emissions to norms/standards periodically during operation phase used for inland product movement.
- Development of greenbelt along the access roads especially at areas prone to the impacts due to the product
 movement will be undertaken. This activity will be immediately taken up after the approval to reduce the
 impacts on air quality and attenuate the excessive noise levels due to the product movement.
- Based on the traffic density / vehicular movements anticipated from the port, parking facilities would be provided.

4.7.3 Green Belt Development

In 1992 the port was conceived as a satellite port to handle coal through two coal berths.Port is continuously developing green belt.

- Port is having a green belt to an extend of 636.14 acres which includes inside and outside custom bound area.
- The total area of the port is 2787.2 acres in that area total green belt is to an extend of 636.14 acres (22.82%) which includes inside and outside the custom bound area.
- Proposed Green belt of 5.01 acres will be developed inside and outside the Tank Farm area.
- The treated wastewater will be reused in the green belt areas to reduce the water requirements.
- The tree species to be used for the green belt development will be in line with the local ecology.

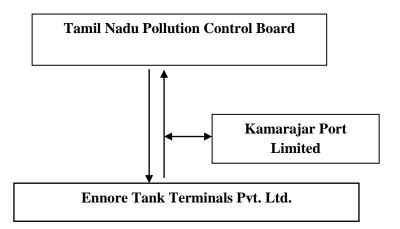
H/01/2022/CON/001 RP003-R1 Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA Legend KPL Boundary Vegetation type

Greenbelt Planted Creencover (Natural) Mangrove

Figure 4-5 Green belt Layout

Figure 4-6 Existing Greenbelt Photographs

Draft EIA Report


4.7.4 Environmental Monitoring

The mitigation measures suggested in the preceding sections require environmental monitoring of air quality, noise levels, seawater, sediment, groundwater quality, etc. during the operation phase of capacity expansion of ETTPL. Offshore and onshore environmental surveys will be carried out to meet the monitoring requirements. The monitoring requirements would be carried out through sub-contracting the assignment to an approved agency with capabilities to undertake monitoring of onshore and offshore environmental surveys.

4.7.5 Instituitional Mechanism

The effective implementation and close supervision of the environmental monitoring programme to negate the environmental impacts, which are likely to arise due to the development and operation phase of terminal could be achieved through a suitable institutional mechanism. During operation phase od expansion ETTPL will have an institutional mechanism to ensure proper implementation of the EMP. A broad institutional mechanism for both the phases is presented below

Operation Phase

The implementation of the Environmental Management Plan (EMP) is the responsibility of ETTPL. The ETTPL would see that the environmental monitoring works are included in all the contracts. The Contractors would appoint a full-time Environmental Officer to monitor the mitigation measures and keeping a daily record of the same.

The responsibilities of the Environmental Officer would include day to day recording of mitigation measures, planning and execution of environmental monitoring, review of the report submitted by the monitoring agency, checking the compliance of the results with respect to the baseline conditions and also with the relevant standards and preparation of monthly progress reports documenting all the activities.

The Environmental Officer of the contractor would report the monitoring programme to the ETTPL..

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA Draft EIA Report

H/01/2022/CON/001 RP003-R1

ETTPL would also carry out environmental monitoring on random basis through an independent agency other than the contractor's agency in order to check the compliance of the monitoring results.

Pursuant to the above, 'Rules and Regulations' notified by the MoEF, GOI shall be implemented for:

- a) Hazardous waste and other waste (Management and Trans boundary) (Rules 2016)
- b) Manufacture, Import & Storage of hazardous chemicals (Rules 1989)

Onsite & offsite Disaster Management Plan are prepared and on-site mock drills are being conducted once in a month assuming different scenarios..

Oil spills if any shall be properly collected and disposed as per norms.

CHAPTER 5 ANALYSIS OF ALTERNATIVES

5 ANALYSIS OF ALTERNATIVES

5.1 Introduction

A necessary part of the EIA process is the consideration of alternatives to the proposed activity. Customers evinced interest to discharge multiple products from one or more vessels simultaneously to improve overall turnaround time of the vessels and also intend to increase the throughput volumes through ETTPL to cater to the increased market demand. To facilitate this, ETTPL is planning to augment its throughput capacity from 3 MMTPA to 6 MMTPA.

5.2 Alternative locations

Since this is an existing project, no alternate sites were proposed.

Advantage of the existing site:

- Greater flexibility in terms of handling multiple products simultaneously
- Handling berthing of two smaller tankers simultaneously.
- The jetty can handle higher level of traffic with minimal waiting time for Tankers
- Customers can import/export in larger parcels and benefit from lower ocean freight
- Help the customers to meet the increased market requirements with higher volumes.
- In the long run, the Port would benefit from higher traffic and hence higher revenues

5.3 Summary of adverse impact of each alternative

Since this is an existing project, no alternate sites were proposed. So no adverse impact in alternative site.

CHAPTER 6 ENVIRONMENTAL MONITORING PROGRAMME

6 ENVIRONMENTAL MONITORING PROGRAMME

6.1 Monitoring plan for effectiveness of mitigation measures

Environmental monitoring is required to protect the public and the environment from toxic contaminants and pathogens that can be released into a variety of media including air, soil, and water. Air pollutants include sulphur dioxide, carbon monoxide, nitrogen dioxide, and volatile organic compounds, which originate from sources such as increased vehicle emissions by raod and sea, fugutuve emissions, that may occure during the material transfer etc. .

The plan framed for the intended facility will describe:

- > The details of the proposed mitigation measures taken for safeguarding the environment at the project site as well as in the vicinity of the industrial site
- > Details of management plans (Solid waste management plan etc.)
- ➤ Post project environmental monitoring programme to be undertaken after commissioning of the expansion palse of the project.
- > The associated cost components of the pollution control systems that will be installed at the site.

For each of the environmental attributes, the monitoring plan specifies the parameters to be monitored, location of monitoring sites, frequency and duration of monitoring and it also denotes the applicable standards, implementation and supervising responsibilities.

6.2 Objectives

- > To provide a database this can be used to determine any short or long-term environmental impacts of the Project.
- > To verify the environmental impacts predicted in the EIA study.
- > To monitor the performance and effectiveness of mitigation measures employed.
- > To determine project compliance with regulatory requirements, standards and Government policies.
- > To provide an early indication and suggest appropriate additional or remedial measures should any of the environmental mitigation measures or controls fail to achieve the acceptable standards.
- > To ensure that the areas of environmental concern identified during EIA process are carried through to, and appropriately considered and incorporated into the detailed design and tender stage of project
- > To take remedial action if unexpected problems or unacceptable impacts arise
- > To implement water quality, air quality and noise impact monitoring programme during the operational phase
- > To conduct regular reviews of monitored data as the basis for assessing compliance with defined criteria

6.3 Environmental Monitoring Programme

The monitoring programme in different areas of the environment has been based on the findings of the impact assessment studies. The post project monitoring programme including areas, number and location of monitoring stations, frequency of sampling and parameters to be covered is summarized in **Table 6-1**.

Table 6-1 Environmental Monitoring Programme –Operation Phase

S.	Area of	Number of Sampling	Frequency of	Donometons to be Analyzed
No	Monitoring	Stations	Sampling	Parameters to be Analyzed
1.	Ambient Air Quality	3 Stations (one in up wind and one in downwind and one at site)	Once in a month 24 hourly period	All the 12 parameters as per NAAQ Standards
2.	Noise	2 (one within site and one outside site)	Once in 3 months for 24 hours	Ambient Equivalent Continuous Sound Pressure Levels (Leq) at day and Night time.
3	VOC	4 on the corners of the tank farm area	Once in 6 months	Presence of VOC in the ambient air is analysed on real time basis.
3.a.	Water	Two number of surface and ground water samples near the site	Once in 6 months	All the parameters as per IS 10500:2012 and IS 2296:1992
4	Sea water	One at nearest sea point	Once in 6 months	All the parameters as per IS: 3025 and APHA 23 rd Ed methods
5.	Vehicular Emissions	At site approach	Periodic monitoring of vehicles	Air emission and noise, PCU
6.	Solid waste	Municipal Solid and waste storage area	Twice in a month	Quantity
7.	Soil	Three locations (two within and one outside project site)	Once in 6 months	Physico chemical properties, Nutrients, Heavy metals
8.	Terrestrial and marine Ecology	Within 10km, around the project	Once in three years	Symptoms of injuries on plants
9.	Effluent	Existing ETP	Once in 6 months	All the parameters as per CPCB Norms

Table 6-2 Environmental Monitoring Programme Budget-Operation Phase

Area of Monitoring	Number of Sampling Stations	Frequency of Sampling	Rate per sample (INR)	Total cost / year (INR)
Ambient Air Quality	3 Stations (one in up wind and one in downwind and one at site)	Once in a month 24 hourly period	3000	108000
Noise	2 (one within site and one outside site)	Once in 3 months for 24 hours	1500	9000
VOC	4 on the corners of the tank farm area	Once in 6 months	1000	2000
Water	Two number of surface and ground water samples near the site	Once in 6 months	5000	40000
Sea water	One at nearest sea point	Once in 6 months	4000	8000
Solid waste	Municipal Solid and waste storage area	Twice in a month	600	14400
Soil	Three locations (two within and one outside project site)	Once in 6 months	5500	33000
Terrestrial and marine Ecology	Within 10km, around the project	Once in three years	6000	6000

H/01/2022/CON/001 RP003-R1

CHAPTER 7 ADDITIONAL STUDIES

7 ADDITIONAL STUDIES

7.1 Public consultation

As per issued ToR vide File No:10/15/2024-IA.III dated 06.09.2024, Draft EIA report has been prepared and submitted to CPCB for Public Hearing (PH). After completion of Public Hearing, the Final EIA report along with action plan for commitment by the proponent will be submitted for further appraisal of the project and to obtain Environmental Clearance.

7.2 Fire Fighting System

Table 7-1 Fire Fighting System of existing and proposed

Details	Existing	Proposed
Fire Fighting	1.Fire Fighting Facilities at Jetty	Nil
System	 Fire Fighting Facilities as per OISD 156 Engine driven Fire Fighting Pumps (3 Nos X 360 Cum per Hour and 3 Nos X 750 Cum per Hour) Motor Driven Jockey pumps (2 x 25 M3 /Hour) 4 Tower Monitors (2 x 360 M3/Hr & 2 x 180 M3/Hr) capable of fire fighting Jumbo Water Curtain to avoid heat in the Jetty area in case of fire in the Vessel 	
	2.Fire Fighting Facilities at Storage Terminal	
	Fire fighting system designed as per OISD 117 norms	
	• Fire Water Storage Capacity (2 X 4000 Cum per tank)	
	• Fire Fighting Pumps(5 x 650 Cum per hour)	
	Foam System	
	Sprinkler Systems in tanks	
	Fire Extinguishers as per standard	
	3. Fire fighting's drawings – Attached as Annexure 7 and 8.	

7.3 Risk Assessment Studies

Risk assessment report has been attached as Annexure 14

7.4 Emergency Response Plan

ERDMP acts as a substitute for maintaining good safety standards in the facility. The best way to protect against occurrence of major accidents is by maintaining very high levels of safety standards. The Present report is based on Petroleum and Natural Gas Regulatory Board PNGRB Notification Dated 18th January 2010.

The planning and response strategies for meeting the emergencies caused by major accidents are termed as Emergency Response & Disaster Management Plan (ERDMP). Generally, the following Phases are involved in ERDMP:

Hazard identification and Risk analysis:

An event with an imminent threat of turning into an accident must first be identified and risk associated with it must be observed.

Preventive measures:

Based on the evaluation of available information, a rapid analysis of the severity of the likely accident is done and the best course of action could be identified which would help in eliminating the causes which may lead to the spread of accident.

Preparedness measures:

Preparedness includes all activities necessary to ensure a high degree of readiness so that response to an incident would be swift and effective.

Response Procedures:

Action plan along with roles and responsibilities of employees and external authorities is incorporated in response procedures.

Recovery:

It contains those short and long-term activities, which return all systems to normal operation.

Clean-up and Disposal:

After the accident is effectively contained and controlled, the clean-up of the site of the accident and safe disposal of waste generated due to the accident are undertaken.

Documentation:

All aspects of accidents, including the way it started and progressed as well as the steps taken to contain and the extent of the damage and injury, must be documented for subsequent analysis of accident for prevention in future, damage estimation, insurance recovery and compensation payment. It may be noted that some aspects of documentation, such as, photographs of the site of accident and main objects involved in the accident, survey for damage estimation, etc. may have to be carried out before the clean-up and disposal phase. However, the effort in all cases is to recommence the operation as soon as possible. A detailed report is attached as **Annexure 9.**

7.5 Oil Spill Contingency Plan

• Conduct a spill risk assessment for the facilities and design, process, and utility systems to reduce the risk of major uncontained spills;

- Ensure adequate corrosion allowance for the lifetime of the facilities or installation of corrosion control and prevention systems in all pipelines, process equipment, and tanks;
 - Install secondary containment around vessels and tanks to contain accidental releases;
 - Install shutdown valves to allow early shutdown or isolation in the event of a spill;
- Develop automatic shutdown actions through an emergency shutdown system for significant spill scenarios so that the facility may be rapidly brought into a safe condition;
 - Install leak detection systems
- Develop corrosion maintenance and monitoring programs to ensure the integrity of all field equipment. For pipelines, maintenance programs should include regular pigging to clean the pipeline, and intelligent pigging should be considered as required;
 - Ensure adequate personnel training in oil spill prevention, containment, and response;
 - Ensure spill response and containment equipment is deployed or available for a timely response
- In case there is a spillage, this will be properly collected in a collection tank & the sludge will be disposed to TSDF after drying.

A detailed report is attached as **Annexure 16.**

7.6 Social Impact Assessment R&R Action Plans

There is no R&R for the proposed operations.

CHAPTER 8 PROJECT BENEFITS

8 PROJECT BENEFITS

8.1 Improvements in the physical infrastructure

- Greater flexibility in terms of handling multiple products simultaneously
- Handling berthing of two smaller tankers simultaneously.
- The jetty can handle higher level of traffic with minimal waiting time for Tankers
- Customers can import/export in larger parcels and benefit from lower ocean freight
- Kamarajar Port is located very close to Manali Industrial Belt and the CPCL and hence can cater to the raw material & finished goods movement of the industries located in this area.

8.2 Improvements in the social infrastructure

- Chennai Port does not have storage facility for handling LPG. Also, there is no storage infrastructure for Class A/B products, which is forcing importers in the hinterland of Chennai to route their import through other ports such as Cochin and Mangalore. Ennore would therefore be an automatic choice for importers and exporters.
- Kamarajar Port is located on the international shipping route. Kamarajar Port is a major port of call for Products, chemicals and vegetable oil tankers. Hence, Ennore is an ideal port of call for ships from the west and from Singapore, Malaysia, Korea and other far-east countries.
- In the long run, the Port would benefit from higher traffic and hence higher revenues

8.3 Employment potential - skilled, Semi- skilled, Un-skilled

The project has a potential to generate employment for unskilled, semi-skilled and skilled manpower

8.4 Other Tangible Benefits

- Both, State Government and Government of India would be benefited.
- Government will earn huge revenue by way of various taxes and levies and transportation through sea route.

CHAPTER 9 ENVIRONMENTAL COST BENEFIT ANALYSIS

apacity Augmentation of I raft EIA Report	Existing Op	perational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA	H/01/2022/CON/001 RP003-R1
	9	ENVIRONMENTAL COST BENEFIT ANALYS	SIS
		(Not recommended during scoping stage)	

CHAPTER 10 ENVIRONMENTAL MANAGEMENT PLAN

10 ENVIRONMENTAL MANAGEMENT PLAN (EMP)

10.1 Description of the administrative aspects of ensuring that mitigative measures are implemented and their effectiveness monitored

Environmental Management Plan is a plan or programme that seeks to achieve a required end state and describes how activities that have or could have an adverse impact on the environment, will be mitigated, controlled, and monitored.

The EMP will address the environmental impacts during the design, construction and operational phases of a project. Due regard must be given to environmental protection during the entire project. In order to achieve this number of environmental specifications/ recommendations are made. These are aimed at ensuring that the contractor maintains adequate control over the project in order to:

- Minimize the extent of impact during expansion.
- Ensure appropriate restoration of areas affected by expansion.
- Prevent long term environmental degradation.

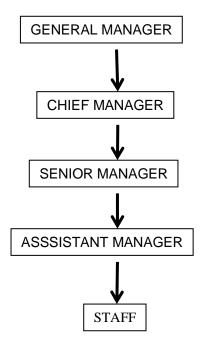
10.2 Objectives of EMP

As far as this project concerned, EMP covers the likely impact due to the existing activities and the proposed enhancement – Increased material transfer and increased traffic-as well.

EMP ensures that the best available technology is used for the above activities and environmental protection. Effluent waste generated will be collected, handled and disposed as per the standard practice to minimize potential impacts. Resources like water and chemical are used in a way to reduce overall burden on the environment.

10.3 Health, Safety and Environmental Protection

The tank terminal is designed, constructed and equipped with facilities to ensure high level of HSE standards:


- Environmental Clearance granted by the Ministry of Environment and Forests
- Tank Terminal Layout as per OISD norms
- Tanks construction API 650 & API 620 as applicable
- Tank Terminal Licensed by the Chief Controller of Explosives for storing Class A/B/C products
- Fire Protection System as per OISD
- Cooling water spray system on tanks
- Oil Water Separator
- Effluent Treatment Plant
- Slop Tanks
- Green Belt

10.4 EMP roles and responsibilities

10.4.1 Environmental Management Cell (EMC) of ETTPL

- Each industry should identify within its setup a Department/ Section/ Cell with trained personnel to take up the model responsibility of environmental management as required for planning and implementation of the projects.
- Environmental Cell consisting of General Manager and Chief Manager will be created for efficient management of the environmental activities in the industry.
- The EMC will handle all issues related to different environmental attributes; it will be responsible for overall environmental and social management in project undertaken from investigation level to execution at project level.
- > The EMC will be responsible for the technical planning, implementation and monitoring of all environmental mitigation and compensation measures.

This section describes the organizational structure and responsibilities for implementation of the EMP. General Manager of the facility will be responsible for total environmental management.

10.5 EMP for operation phase

10.5.1 Air Quality

Following measures will be adopted to mitigate the impacts of pollutants on the ambient air quality:

No increase in the existing concentrations of air pollutants is expected as the project does not involve any production activity but only Enhancement of the Capacity of the MLT through Augmentation of Existing Facilities

Concentrations of pollutants in ambient air is expected to remain within the stipulated standards.
APC measures provided are summarized

Details	Capacity	APC	Stack Height(m)
DG Sets (Power kVA)	180 x 1 No.s 250 x 1 No.s 500 x 2 No.s	Nil	6 m AGL

Following measures can be adopted to mitigate the impacts of pollutants on the ambient air quality:

• Vehicular speed will be limited to 20km/hr on areas of unconsolidated or unsealed soil associated with the immediate site work.

Odour control

- ➤ No odour / dust will be released while handling materials including sewage and waste.
- ➤ Leak detection equipments are installed wherever necessary.

10.5.2 Noise environment

- ➤ In addition to the existing machineries, DG and Vehicle/Equipment movement is the primary source of Noise pollution.
- ➤ Operation involves transfer of product producing negligible noise or vibration.
- > The major source of noise pollution is DG set, compressors and air pumps. Maximum Care will be taken to reduce the noise generation during operation.
- ➤ The DG set room, compressors and pump room will be isolated from the outside environment and proper acoustic arrangements will be made to control the noise generated.
- ➤ Use of well-maintained machinery and vehicles could considerably help in this matter.
- > To prevent the hearing damage to the workers, they will be provided with ear plugs and muffs and job rotation will also be practiced.
- ➤ All efforts will be made to maintain the noise level within the proposed premises around 50 dB (A) in day time & 40 dB (A) during night time.

10.5.3 Water and wastewater Management

During operation phase, water requirement of proposed project will be mainly for domestic use, greenbelt, etc. The required water quantity is met from water treatment plant. Hence, no significant impacts are envisaged on the water supply in the region. The treated wastewater will be reused in the green belt areas to reduce the water requirements. Details of water requirement given in **Table 2-17**. Total water Requirement is 15 KLD during Operation phase after expansion to 6 MMTPA.

- > Sewage generated is 3.3 KLD during operation phase.
- ➤ The domestic waste water generated during operation phase will be routed to the proposed STP. Effluent generated will be treated through existing ETP.

10.5.4 Rainwater Harvesting

The Port has Rainwater Harvesting System in its Administrative Building consists of Open well. The details of the same are furnished herewith as below:

- Submerged RCC ring of diameter 3'- 0" into a pit of 3 m depth.
- Filter chamber of size 0.6 x 0.6 x 0.9 m in brickwork CM 1:5.
- River sand to a depth of 0.15 m Pebbles to a depth of 0.15 m
- Nylon mesh between river sand and Pebble stone.
- PVC pipes of 110 mm dia connecting terrace, well and filter chamber have been laid.

10.5.5 Solid and hazardous waste management

In India, the average waste generated per capita per day is considered as 425 g (dry weight). This waste will not be allowed to dump into nearby surface water body or stream. The collection, transportation and disposal of the solid waste generated during the operation phase of the proposed project will be done as per the Municipal Solid Wastes (Management & Handling) Rules, 2000 (MSW Rules). These generated solid wastes will be first segregated as plastic, glass, paper and other waste separately and disposed off as per MSW Rule, 2000. The organic waste generated during operation phase will be sent to panchayat bins.

The hazardous waste generated from the process is Used or spent oil only. Hazardous waste materials will be properly disposed as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 1989 and subsequent amendment in 2016.

10.5.6 Land environment

Following measures are proposed to mitigate negative impact during operational phase of the project on the land environment.

- ➤ Air emissions will be effectively controlled and therefore deposition of air pollutants in and around the premises and surrounding area is not envisaged.
- > Solid waste generated will be stored in adequate bins and disposed through Authorized Vendors.
- > Sewge will be disposed through Proposed STP.
- ➤ Hazardous materials will be prohibited to be drained or dumped in the premises. Accidental spills shall be cleaned, reported and monitored.
- > Thus, no impact on land is envisaged due to discharge of gaseous emission, solid waste or liquid effluent from the proposed project.

10.5.7 Ecology

There is no potential source of impact on terrestrial biology during the operational phase.

10.5.8 Socio Economic Environment

Actual requirements of manpower/employment opportunities will be provided. This project is mainly to products through pipeline. Thus indirect beneficial impacts are anticipated.

10.6 Fire protection system

10.6.1 Jetty

This jetty is fully equipped with fire fighting facility as per OISD 156 norms.

- Engine driven Fire Fighting Pumps(3 Nos X 360 Cum per Hour3 Nos X 750 Cum per Hour)
- Motor Driven Jockey pumps (2 x 25 M3 /Hour)
- Tower Monitors (2 x 360 M3/Hr & 2 x 180 M3/Hr) capable of fire fighting
- Jumbo Water Curtain to avoid heat in the Jetty area in case of fire in the Vessel

The fire fighting layout is attached as Annexure 7

10.6.2 Pipeline Trestle and Tank Farm

An Approach Trestle is connecting the jetty head from NBW and fire pump room. The Tank Farm Fire Fighting system has been designed as per OISD 117 consisting of Hydrant System, Medium Velocity Spray System & Foam System. The detailed design & drawings for the Fire Fighting System are attached as **Annexure 4.**

10.6.3 Storage Terminal

- Fire fighting system designed as per OISD 117 norms
- Fire Water Storage Capacity (2 X 4000 Cum per tank)
- Fire Fighting Pumps(5 x 650 Cum per hour)
- Foam System
- Sprinkler Systems in tanks
- Fire Extinguishers as per standard

10.7 Occupational Health and Safety program

ETTPL will provide a safe and healthy work environment to its employees by conducting annual medical check-ups for all the employees. The main objectives are

- 1. Maintenance and promotion of workers' health and working capacity.
- 2. Improvement of working environment by following well-being program for its employees.
- 3. Monitor the workplace to maintain industrial hygiene practices.
- 4. Development of work culture in a direction which will support health and safety at work and thereby promoting positive social climate for smooth operation that will enhance productivity.
- 5. Area monitoring is done.
- 6. Employees undergo annual health check-up.

7. All personnel will be provided with personal protective equipments individually as required.

10.7.1 Operational phase

General functions of the safety committee will be;

- 1. Conduct routine workplace inspections.
- 2. Provide Personal Protective Equipment.
- 3. Develop and implement safe work procedures and rules.
- 4. Provide on-going safety training & Enforce safety rules and appropriate discipline.
- 5. Promote safety awareness and reduce the potential for injury/loss.
- 6. Identify workplace hazards.
- 7. Enforce of safety rules, measure safety performance & reduce frequency/severity of injuries

10.8 Decommissioning and restoration plan

Not applicable

10.9 Occupational Health Monitoring

10.9.1 Medical Surveillance Program:

Medical surveillance program is essential to assess and monitor employees health and fitness both prior to employment and during the course of work; to determine fitness for duty and to provide emergency and other treatment as needed. Effectiveness of a medical program depends on active involvement of employees. ETTPL has medical surveillance program which include the following major elements;

- 1. Developing an OH-IH Medical Surveillance Program.
- 2. Pre-Employment Examination and Periodic Medical Examinations.
- 3. Determination of Fitness for Duty.
- 4. Communications.
- 5. Emergency Medical Treatment.
- 6. Medical Records.

Pre-Employment Screening / Examinations - All employees (Contact & Permanent) will be subjected to preplacement medical examinations to determine their fitness for the jobs on site. Potential exposures to the work environment will be considered before placing an employee on the job.

Periodic Medical Examinations - Periodic medical examination is the same as the pre-employment screening and may be modified according to current conditions, such as changes in the employee's symptoms, site hazards or exposures.

Comparison of sequential medical reports with baseline data is essential to determine biologic trends that may mark early signs of adverse health effects, and thereby facilitate appropriate protective measures. The frequency and

content of examinations are normally one year. Apart from this for workers working in Hazardous area, medical examination is conducted by Doctor Authorized by Factory Inspectorate.

10.10 Corporate Social Responsibility (CSR)

- ➤ Kamarajar Port consistently strive to meet the expectations of the society by supporting initiatives for improving infrastructure/quality of life of society/ community without compromising on ecological issues on sustainable basis consistent with the CSR provisions of the Companies Act, 2013; Schedule VII of the Companies Act, 2013.
- ➤ The CSR activities of the port during last five FYs are follows.

Financial Year	Amount spent in Crores.(Rs.)
2019-20	8.11
2020-21	8.27
2021-22	5.57
2022-23	9.85
2023-24 (Budgeted)	9.06

- ➤ Besides the expenditure incurred by KPL, the terminal operator M/s. Ennore Tank Terminals Pvt. Ltd., is also planned the certain infrastructure creation activities under CSR as below.
- The Terminal operator has planned the following infrastructure creation activities for the FYs 2024-25 & 2025-26.

Sr.No	CSR activity	Amount in Lakhs
1	Providing Bench and Table furniture to Government High School	8
2	Providing sanitation facilities to nearby Government schools	8
	Total	16

Corporate Environmental Responsibility (CER)

Kamarajar Port has incurred an amount of Rs.1.68 Crores under Corporate Environmental Responsibility for development drinking water supply and sanitation facilities in the vicinity of the Port. Besides KPL, the terminal operator ETTPL also incurs the funds under CER and CSR activities.

10.11 EMP Budget

Environmental Management Expenditure

Port and its BOT Operators are continuously incurring the expenditure for the better environmental management with regard to Solid Waste management, Consent Management, Environmental Monitoring, Horticulture Development, O&M of STPs and ETPs. The expenditure incurred during the last five years is as below.

S. No	Year	Planned Expenditure	Actual Expenditure
			in Rs.
1	2021-22	1,10,00,00	1,07,33,263
2	2022-23	1,40,00,000	1,56,12,772
3	2023-24	1,40,00,000	1,37,75,462
4	2024-25	1,50,00,000	Planned.

Besides the above expenditure, the terminal operator ETTPL has planned the below expenditure for execution of environmental management plan of the terminal. The budget will give overall proposed investment on the environmental safeguards for successful monitoring and implementation of control measures. The EMP budget has been prepared considering the following phases of the project. The detailed cost break-up for each well is given in **Table 10-1.**

Table 10-1 Cost for Environmental Protection Measures

S. No	Component	Capital cost Rs.(lakh) (2024-25)	Recurring cost Rs.(lakhs) per Annum (2024-25)
1	Hazardous waste Management	0	15
2	Greenbelt Development	20.84	2.5
3	Environmental monitoring	0	2.5
4	STP of 6 KLD	15	1.5
5	ETP of 20 KLD with UF and UV	0	4
6	Total	35.84	25.5

Planned Expenditure by the Terminal Operator for upgradation of OSR, Fire fighting facilities & green belt

Besides the EMP, CSR and CER expenditure, the terminal operator M/s.ETTPL has planned the following expenditure during the FY 2024-25 for upgradation of OSR, Fire fighting facilities & enhancement of green belt as below.

Capacity Augmentation of Existing Operational Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMTPA Draft EIA Report

H/01/2022/CON/001 RP003-R1

S.No	Activity	Cost in Lakhs (Rs.)		
5.110	Activity	2023-24	2024-25	2025-26
1	Upgradation of- OSR facilities	4.9	5.9	6.4
2	Development of green belt	12.6	17.61	16.8
3	Terminal Fire Fighting System Upgradation	195	500	700
		212.50	523.51	723.20
	Total		1459.21	

H/01/2022/CON/001 RP003-R1

CHAPTER 11 SUMMARY AND CONCLUSION

11 Summary and Conclusion

11.1 About Project proponent

In 2014, the Ennore Port Ltd. was officially renamed as Kamarajar Port Ltd., originally conceived as a satellite port to the Chennai Port, primarily to handle thermal coal to meet the requirement of Tamil Nadu Electricity Board (TNEB), and was endowed with large chunks of land (about 2,000 acres). The scope was expanded taking into consideration of subsequent developments such as the plan of Government of Tamil Nadu to setup an 1,880 MW LNG power project in association with a private consortium, a large petrochemical park commissioned on 1st February 2001 and a naphtha cracker plant. The port was set up under the Companies Act, keeping it outside the scope of the Tariff Authority for Major Ports, the tariff regulator for 11 of the 12 ports owned by the Indian government. The first phase of the port consisted of two berths for handling coal vessels up to 65,000 DWT, dredging for the approach channel and harbour basin, onshore civil works, navigational aids, and two breakwaters—4 km in the north side and 1 km in the south—close to the NCTPS (North Chennai Thermal Power Station) and the Ennore Creek. The port subsequently acquired additional 440 hectares of land for future expansions.

Ennore Tank Terminals Pvt. Ltd. is a subsidiary of IMC Limited, the largest independent Bulk Liquid Storage Company in India. IMC is in the business of port-based bulk liquid storage and international trading for the last seven decades. India's first independent Bulk Liquid Terminal Project to be developed on BOT basis at a Major Port Promoted by IMC, India's largest independent bulk liquid storage company. Berthing Facility for petroleum, LPG, chemical, gas and vegetable oil tankers. Multiple Pipelines for transfer of cargo between vessel and shore tanks. Storage Tanks inside the port premises – 2,56,636 KL storage capacity for petroleum, chemicals and safe class cargo. Jetty and Storage Tank terminal were fully operational

11.2 Advantages of MLT:

- Offers state-of-the-art facilities with minimal or nil waiting time for vessels.
- Berthing of large product tanker and very large Gas carrier (LPG)
- Simultaneous berthing of two vessels
- Multiple pipelines for simultaneous discharge of cargoes
- Large pipelines for faster vessel evacuation and loading
- Scope for adding pipelines
- Special facilities such as inert gas blanketing, heating, refrigeration, coated tanks, stainless steel
 tanks shall be provided on specific request
- Availability of Slop Tanks

11.3 Overall justification for implementation of the project

Further, recently customers evinced interest to discharge multiple products from one or more vessels simultaneously to improve overall turnaround time of the vessels and also intend to increase the throughput

volumes through ETTPL to cater to the increased market demand. To facilitate this, ETTPL is planning to augment its throughput capacity from 3 MMTPA to 6 MMTPA.

This additional throughput capacity will have the following advantages:

- 1. Greater flexibility in terms of handling multiple products simultaneously
- 2. Handling berthing of two smaller tankers simultaneously.
- 3. The jetty can handle higher level of traffic with minimal waiting time for Tankers
- 4. Customers can import/export in larger parcels and benefit from lower ocean freight
- 5. Help the customers to meet the increased market requirements with higher volumes.
- 6. In the long run, the Port would benefit from higher traffic and hence higher revenues
- 7. This will function as the major hub in the east coast for petroleum products, LPG and also petro chemicals catering to the entire hinterland of north TN, south AP and Karnataka.

Table 11-1 Impact and Migitation measure of Project Site

S.No	Environment	Impact	Migitaion Measure
		The major air pollution source is the DG set which emits flue gases containing Suspended Particulate Matters, Oxides of Sulphur and Nitrogen that may affect the ground level concentrations.	The DG set will be provided with stacks of adequate height so as to disperse the emanating flue gases containing Suspended Particulate Matters, Oxides of Sulphur and Nitrogen without affecting the ground level concentrations.
1.	Air	Combustion process such as diesel engines	Maintenance of diesel power generators to achieve efficient combustion, fuel efficiency and therefore reduce emissions
		Air born particulates from soil disturbance during construction and from vehicle traffic such as trucks and trailers	Adequate sprinkling of water on soil surface will be carried out. Vehicle, equipment and machinery used would conform to applicable emission norms;
2.	Noise	The increase in the noise level may be due to: 1. DG set	Adoption of Acoustic enclosure and provision of adequate protective equipment like ear plugs, ear muffs, noise helmets etc., to the workers.
		Vehicular movement for construction material conveyance	Periodic maintenance of the construction machinery and transportation vehicles will be undertaken to reduce the

A	Report			RP003-R1
				noise impacts. Workers participating in construction operations in the
				region generating excessive levels of noise shall be
				supplied with personal protection equipment(PPE),
				promoting education and public awareness, and
				exposure control through work rotation.
	3.	Land	No land use pattern will be affected	All the Solid and Hazardous waste like spent oil is being disposed as per Hazardous and other wastes Amendment Rules, 2016. Hence, there will be no discharge on land premises
	4.	Water	The untreated wastewater if discharged into nearby surface water may affect the surface water and/or if disposed of on land without treatment may pollute the ground and surface water. The other impact is water pollution due to disposal of rejects into the sea.	STP has been installed to treat the generated sewage. Treated sewage is reused for flushing and green belt development. Appropriate drainage facilities have been developed within the site including proper disposal to drains.
	5.	MSW	If the solid waste generated is not properly managed and disposed in unauthorised manner, it will impact on soil quality, groundwater and air quality.	The Source of Municipal waste will be from the domestic use and strict guidelines will be put in place in order to manage the solid waste generation during

Capacity A Draft EIA	on of Existing Operational	Marine Liquid Terminal (Mlt) From 3 MMTPA TO 6 MMT	ΓΡΑ H/01/2022/0 RP003-R1	CON/0
			Operation phase will	be
			segregated to organic a	nd
		i	inorganic wastes. The organ	nic
		,	waste will be dispos	sed
		1	through village bins a	nd
		i	inorganic waste will be so	old
		1	to authorized vendors.	
			Hazardous waste generat	ted
			will be stored in a separa	ate
			hazardous waste storage ar	rea
			and properly disposed as p	per
		1	the Hazardous and Oth	ner
			Wastes (Management a	nd
			Transboundary Movemen	nt)
			Amendment Rules, 2016.	

11.4 Conclusion

Capacity .

The baseline study carried out for the study area indicates that all the physical, chemical and biological characteristics of the environmental attributes in the surrounding area are well within the permissible limits.

Based on this environmental assessment, the possible impacts during both pre-project and post-project phase are anticipated and the necessary adequate control measures are formulated to meet the statutory compliances.

With very less negative impacts, the project positively leads to commercial business opportunities, employment opportunities, increased revenue and infrastructural development.

H/01/2022/CON/001 RP003-R1

CHAPTER 12 DISCLOSURE OF CONSULTANT

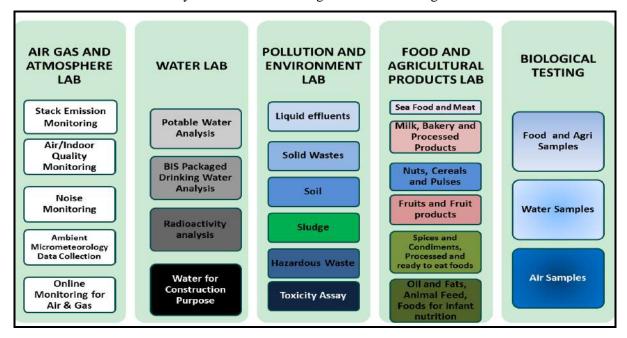
12 Disclosure of Consultant

In order to assess the potential environmental impacts due to the "Capacity Augmentation of existing operational Marine Liquid Terminal (MLT) from 3 MMTPA TO 6 MMTPA at Kamarajar Port Limited, Chennai" by M/s. Kamrajar Port Limited, engaged M/s. Hubert Enviro Care Systems (P) Limited, Chennai to undertake EIA study. The nature of consultancy service rendered covers terrestrial and Marine environmental assessment.

12.1 Brief Profile of Hubert Enviro Care Systems (P) Limited (HECS)

HECS is a total Environmental management company which provides Environmental consultancy services, Analytical testing services, turnkey solutions and Operation-Maintenance services for water and wastewater facilities.

The company provides solutions to several industries like Refineries, Thermal Power Plant, Pharma, R&D Facilities, Electroplating and Manufacturing, IT Parks, Residential Complexes, Mines, Dairies, Food Processing, Textile mills, Breweries, etc.


The company is specialized in executing projects right from concept development, supply, erection, commissioning and operation on turnkey basis. HECS has successfully executed more than 300 environmental engineering projects for various industrial sectors both in India and overseas.

12.2 Consultancy Profile

- ♣ HECS is accredited by QCI-NABET
- ♣ An approved consultant for carryout EIA studies across India
- ♣ India's leading multidisciplinary Environmental Consultancy organization
- ♣ HECS- Consultancy division comprises of technical skilled and competent Team of 40 people. The team consists of Three Doctorates & about thirty postgraduates
- ➡ HECS has industry specific prominent expert to provide solutions & recommendations
- ♣ Serving client more than 25 years & pan India presence in the following sectors:
 - o Environmental Clearance
 - o Coastal Regulation Zone
 - o Risk Assessment, DMP, HAZOP studies
 - o Feasibility/ treatability studies
 - o Due diligence studies
 - Ground water Clearance
 - o DISH, PESO and other statutory approvals
 - o Consent to Establish, Consent to Operate
 - o Hazardous waste, bio medical waste authorization

- o Other environmental approvals
- **4** Has an in-house laboratory wherein the following activities are being carried out:

QCI - NABET Accreditation

Consultancy	Hubert Enviro Care Systems (P) Ltd., Chennai
NABET Certificate No	NABET/ EIA/24-27/ RA 0335 Valid up to 31.03.2027
MoEF Reg. Lab	Lb/99/7/2021-INST LAB-HO-CPCB-HO/Pvt./8984 Dated 29.01.2024

National Accreditation Board for Education & Training (NABET) is a constituent board of the Quality Council of India (QCI). QCI, NABET has accredited HECS for carrying out Category 'A & Category B' EIA studies in the following sectors:

National Accreditation Board for Education and Training

Certificate of Accreditation

Hubert Enviro Care Systems, Chennai

A-21, III Phase, Thiru Vi Ka Industrial Estate-600032

The organization is accredited as Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant Organization, Version 3: for preparing EIA/EMP reports in the following Sectors-

S.No	Sector Description	Secto	r (as per)	
3.140	Sector Description	NABET	MoEFCC	Cat
1.	Mining of minerals including opencast / underground mining	1	1 (a) (i)	A
2.	Offshore and onshore oil and gas exploration, development & production	2	1 (b)	A
3.	River Valley projects	3	1 (c)	A
4.	Thermal power plants	4	1 (d)	A
5.	Mineral beneficiation	7	2 (b)	A
6.	Metallurgical industries (ferrous & non-ferrous)	8	3 (a)	A
7.	Cement plants	9	3 (b)	A
8.	Petroleum refining industry	10	4 (a)	A
9.	Pesticides industry and pesticide specific intermediates (excluding formulations)	17	5 (b)	A
10.	Petro-chemical complexes	18	5 (c)	A
11.	Petrochemical based processing	20	5 (e)	A
12.	Synthetic organic chemicals industry	21	5 (f)	A
13.	Industrial estates/ parks/ complexes/areas, export processing Zones (EPZs), Special Economic Zones (SEZs), Biotech Parks, Leather Complexes	31	7 (c)	A
14.	Bio-medical waste treatment facilities	32A	7(d a)	В
15.	Ports, harbours, break waters and dredging	33	7 (e)	A
16.	Highways,	34	7 (f)	В
17.	Common Effluent Treatment Plants (CETPs)	36	7 (h)	В
18.	Common Municipal Solid Waste Management Facility (CMSWMF)	37	7 (i)	В
19.	Building and construction projects	38	8 (a)	В
20.	Townships and Area development projects	39	8 (b)	В

Note: Names of approved EIA Coordinators and Functional Area Experts are mentioned in RAAC minutes dated May 31, 2024, posted on QCI-NABET website.

The Accreditation shall remain in force subject to continued compliance to the terms and conditions mentioned in QCI-NABET's letter of accreditation bearing no QCI/NABET/ENV/ACO/24/3292 dated June 25, 2024. The accreditation needs to be renewed before the expiry date by Hubert Enviro Care Systems, Chennal following due process of assessment.

Issue Date June 25, 2024

Valid up to March 31, 2027

Mr. Ajay Kumar Jha (Sr. Director, NABET)

Certificate No. NABET/EIA/24-27/RA 0335 Prof (Dr) Varinder S Kanwar (CEO- NABET)

For the updated List of Accredited EIA Consultant Organizations with approved Sectors please refer to QCI-NABET website

Further details may be seen on the following URL: www.hecs.in

