DRAFT ENVIRONMENTAL IMPACT ASSESSMENT REPORT

For

Proposed Jammanahalli Black Granite Quarry

over an extent of 6.59.5 Ha

Production Capacity-4,150m³

At

Survey No: 83 (Part)

Village: Jammanahalli

Taluk: Pappireddypatti

District: Dharmapuri

State: Tamil Nadu

By

M/s. Tamil Nadu Minerals Limited

(Project termed under Schedule 1(a) Mining of Minerals 'B1' category as per EIA Notification 2006 and its Amendments)

Proposal No: SIA/TN/MIN/525197/2025, Dtaed: 22.02.2025

ToR Identification No: T025B0108TN5769635N, Dated 19.05.2025

Baseline Period: February 2025 - April 2025

EIA Consultant & Laboratory HUBERT ENVIRO CARE SYSTEMS (P) LTD, CHENNAI

NABET Certificate No & Validity: NABET/EIA/24-27/RA 0335, valid upto 31.03.2027

NABL Certificate No: TC-12310 Dated: 25.09.2023, valid upto 24.09.2025

August 2025

Revision Status

Name of the Client			:	M/s	. Tamil Nadu Miı	nerals Limited			
Name of the Project				:	Pro	Proposed Jammanahalli Black Granite Quarry over an extent of 6.59.5 Ha			
Name of the Report				:	Dra	Draft EIA Report			
Project No: H/01/2023/CON/046			•		Document No:	RP003			
Revis	sion details:								

No.			Prepared by		Checked by		Annro	Approved by	
Rev	Date	Details	Name	Sign	Name	Sign	Name	Sign	
R0	11.07.2025	1 st Submission	Mr. Vamsee Krishna	1.62	Mr. PVRS Surendra	Pursenda	Dr.J.R. Moses	mulon	
R1	29.07.2025	2 nd submission- Draft EIA to QC Team	Mr. Vamsee Krishna	1.67	Mr. PVRS Surendra	Pursemando	Dr.J.R.Moses	mulan	
R2	26.08.2025	3 rd submission- Draft EIA for Public Hearing	Mr. PVRS Surendra	Pursemandra	Mr. PVRS Surendra	Pursemandra	Dr.J.R.Moses	mula-	

ACKNOWLEDGEMENT

The following personnel are gratefully acknowledged for their fullest support in collection, compilation of needful data regarding the project and kind cooperation in fulfilling the report on Environmental Impact Assessment (EIA) report of "**Proposed Jammanahalli Black Granite Quarry over an extent of 6.59.5 Ha**" at S.F.83 (Part) at Jammanahalli Village, Pappireddypatti Taluk, Dharmapuri District, and Tamil Nadu State.

M/s Tamil Nadu Minerals Limited,

• Dr. E Ganesan - Manager (ML)

M/s Hubert Enviro Care System Private Limited

- 1) Dr. J R Moses (CEO)
- 2) Dr. Raj Kumar Samuel (Director- Technical)
- 3) Mr. Vamsee Krishna Navooru (Head-Consultancy)
- 4) Mr. P.V.R.S. Surendra (EIA Coordinator)

Declaration by the Project Proponent

I, Dr. E Ganesan, Manager (ML) of M/s Tamil Nadu Minerals Limited, declaration/ undertaking that owing the contents (information and data) of the EIA report preparation has been undertaken in the compliance with Terms of Reference (ToR) for the "Proposed Jammanahalli Black Granite Quarry over an extent of 6.59.5 Ha" at S.F.83 (Part) of Jammanahalli Village, Pappireddypatti Taluk, Dharmapuri District, Tamil Nadu and the information and content provided in the report are factually correct.

For Tamil Nadu Minerals Ltd,

Authorised Signatory
Manager (ML)

TAMIN-Chennai

Declaration by the Head of the Accredited Consultant Organization

I, Dr.J.R. Moses, hereby, confirm that the below mentioned experts prepared the EIA/EMP report for "**Proposed Jammanahalli Black Granite Quarry over an extent of 6.59.5 Ha"** at S.F. 83 (Part) of Jammanahalli Village, Pappireddypatti Taluk, Dharmapuri District, Tamil Nadu State. I also confirm that I shall be fully accountable for any misleading information mentioned in this statement.

Date: 26.08.2025

Name: Dr. J. R. Moses

Designation: Chief Executive Officer

Name of the EIA Consultant Organization: M/s. Hubert Enviro Care Systems (P) Ltd, Chennai

NABET Certificate No & Validity: NABET/EIA/24-27/RA 0335, valid up to 31.03.2027.

Declaration of Experts contributing to the EIA

I, hereby, certify that I was involved in the EIA report for the project titled "**Proposed Jammanahalli Black Granite Quarry over an extent of 6.59.5 Ha"** at S.F.83 (Part) of Jammanahalli Village, Pappireddypatti Taluk, Dharmapuri District, and Tamil Nadu State. I was a part of the EIA team in the following capacity that developed the above EIA with the support of the following functional area experts.

	EIA Coordinator	
Name:	Mr. Vamsee Krishna	Mr. PVRS Surendra
Signature:	7. 12.	Pursenda
Date:	06.08.2025	26.08.2025
Period of Involvement:	January 2025 to 06th August 2025	06 th August 2025 to Till date

Contact Information: M/s. Hubert Enviro Care Systems (P) Ltd

A-21, III Phase, Behind Lions Club School,

Thiru Vi Ka Industrial Estate

Guindy, Chennai - 600 032,

Tamilnadu, India.

Email: consultancyhead@hecs.in

Website: www.hecs.in

Functional Area Experts (FAEs):

S.No	Functional Areas	Name of the Expert	Period of Involvement	Signature
1.	WP	Dr. Rajkumar Samuel	Period: January 2025 to Till date Task: Selection of surface and ground water quality monitoring locations, and interpretation of analysis results. Identification and quantification of impacts and proposed suitable control measures and Environmental Management Plan.	Carryanian
2.	SE	Mr. V. Dhivakar	Period: January 2025 to Till date Task: Site visit, Collection of secondary data, discussion with stakeholders and Preparation of socio -economic status of the study area. Review of demographic	1. 2m

S.No	Functional Areas	Name of the Expert	Period of Involvement	Signature
			characteristics, and supervision of baseline data collection. Collection and analysis of perception study carried out for the proposed project.	
3.	ЕВ	Dr. Rajkumar Samuel	Period: January 2025 to Till date Task: Primary ecological survey and assessment of flora and fauna with respect to the core and buffer zone in study area and development of EMP.Collection of data from secondary sources and comparing with field data, compilation of Ecology and bio diversity data and their impact assessment on the study area.	Carryamen
4.	LU	Mr. Venkateswarlu	Period: February 2025 to April 2025 Task: Development of land use maps of study area using GIS / related tools, site visit for ground reality survey, finalization of land use maps and studying the ecologically sensitive details in the study area as per Topo map and Gazette notifications.	R. Venkoteswork
5.	АР	Mr. PVRS Surendra	Period: January 2025 to Till date Task: Selection of air quality monitoring location, and interpretation of ambient air quality results. Estimation of fugitive emissions, identification and assessing of impacts due to air pollution and suggested suitable mitigation measures.	Pursluanda
6.	AQ	Dr. J R Moses	Period: January 2025 to Till date Task: Collection and developing of micrometeorological data from secondary sources, preparing site-specific wind rose pattern, prediction of dispersion of pollutants and incremental pollution levels with air quality modeling. Identification of impacts and proposed the suitable control measures, development of EMP.	mulon
7.	NV	Mr. Vamsee Krishna Navooru	Period: January 2025 to July 2025 Task: Identification of noise monitoring locations and measured the ambient noise levels & vibrations generated due to	7. 12

S.No	Functional Areas	Name of the Expert	Period of Involvement	Signature
			various activities. Identifying the probable impacts due to noise & vibrations and suggested noise pollution control measures along with environmental management plan.	
8.	GEO	B. Mallikarjuna Rao	Period: February 2025 to April 2025 Task: Studying the site topography, geology, geomorphological analysis, and existing available mineral resources. Studying of ground profile, assessing of environmental impacts due to proposed activity and proposed suitable mitigation measures.	April 1 famo
9.	НG	Mr.PVRS Surendra	Period: January 2025 to Till date Task: Identification of ground water potential in the study area, analysis of surface hydrogeological data, its flow rate and direction. Preparation of report with respect to hydrogeological condition in and around the study area.	Prossurando
10.	SC	Dr. B.C. Nagaraja	Period: February 2025 to April 2025 Task: Identification of soil quality monitoring locations, assessing of soil nutrients/characteristics in the study area, assessing the impacts on soil and proposing the soil management practices during construction and operation phase of project.	Berlip
11.	SHW	Mr. Vamsee Krishna Navooru	Period: January 2025 to July 2025 Task: Quantification of Municipal solid waste and hazardous waste generation and suggesting management measures, methodologies for handling, treatment, disposal and storage of generated wastes.	7. 13.
12.	RH	Dr. J R Moses	Period: January 2025 to Till date Task: Identification of hazardous materials, fire accidents within the quarry and validation of existing risk assessment & Disaster management plan along with mitigation measures.	mulon

Team Members

S. No	Name	Role
1.	PVRS Surendra	TM for WP
2.	Dr Ramrajan S	TM for EB
3.	Praveenkumaar R	TM for EC (Sector – 1)
4.	Monadevi M	TM for EC (Sector – 1) & AP
5.	Ajeeth Kumar	TM for SC
6.	Hemanth	TM for WP & AP
7.	Vanitha S	TM for SC & WP

- LU Land Use
- *AP Air Pollution monitoring, prevention and control*
- AQ Meteorology, air quality modeling and prediction
- WP Water pollution monitoring, prevention and control
- EB Ecology and biodiversity
- NV Noise& Vibration
- SE Socio-economics
- *HG Hydrology, ground water and water conservation*
- GEO Geology
- RH Risk assessment and hazards management
- SHW Solid and hazardous waste management
- SC Soil Conservation

TABLE OF CONTENTS

TABL	E OF CONTENTS	10
LIST (OF TABLES	17
LIST (OF FIGURES	20
LIST (OF ANNEXURE	22
EXEC	UTIVE SUMMARY	24
1 I	NTRODUCTION	43
1.1	Purpose of the Report	43
1.2	Project Background	43
1.3	Identification of Project & Project Proponent	44
1.3.1	Identification of the Project	44
1.3.2	Identification of the Project Proponent	44
1.4	Brief Description of the Project	45
1.4.1	Nature and Size of the Project	45
1.4.2	Location of the Project	45
1.4.3	Site elevation and ground water depth	46
1.5	EIA Study	47
1.6	EIA Cost	47
1.7	Importance of the Project to the Country and Region	47
1.8	Scope of the Study	48
1.8.1	Objectives of the Study	50
1.8.2	EIA Process	50
1.8.3	Legal Complicability	53
1.8.4	Terms of Reference Compliance	54
1.8.4.1	SEAC Standard Conditions	58
1.8.4.2	2 Standard Terms of Reference for Mining Minerals	75
1.8.4.3	SEIAA Standard Conditions	92
2 P	PROJECT DESCRIPTION	102
2.1	Description of the Project	102
2.2	Type of Project	102
2.3	Need of the Project	102
2.4	Location of the Project	102
2.5	Size or Magnitude of operation	108
2.6	Proposed Schedule for Approval and Implementation	117
2.7	Project Cost	117
2.8	Technology & Process Description	118

3.4.4 Topography of the PIA District......140

3.4.4.	1 Topography of the Study Area	141
3.4.5	Drainage Pattern in the PIA district	143
3.4.6	Geology in the PIA District	143
3.4.7	Soils in the PIA District	144
3.4.8	Geomorphology of PIA District	146
3.4.8.	1 Geomorphology of the Study Area	146
3.4.9	Land Use & Land Cover of the PIA District	149
3.4.9.	1 Land use land cover for the study area	149
3.4.10	Hydrogeology of PIA DistrictProfile	152
3.4.11	Natural Hazards in PIA District	154
3.4.12	2 Seismicity	155
3.5	Establishment of Baseline for Valued Environmental Components	156
3.5.1	Air Environment	156
3.5.2	Meteorological Conditions	157
3.5.3	Meteorological Data Collection	157
3.5.4	General Meteorological Scenario based on IMD Data	157
3.5.5	Meteorological data during Study Period	158
3.5.6	Atmospheric Inversion	159
3.6	Ambient Air Quality	160
3.6.1	Ambient Air Quality Monitoring Stations	160
3.6.2	Ambient Air Quality Monitoring Techniques and Frequency	162
3.6.2.	1 Results and Discussions	167
3.7	Noise Environment	167
3.7.1	Results and Discussions	167
3.7.1.	1 Observations	170
3.8	Water Environment	172
3.8.1	Surface Water Resources	172
3.8.2	Surface Water Quality Assessment	172
3.8.2.	1 Results and Discussions	181
3.8.3	Groundwater resources	181
3.8.3.	1 Groundwater Quality Assessment	182
3.8.3.	2 Results and Discussions	189
3.9	Soil Quality	189
3.9.1	Results and Discussions	193
3.10	Biological Environment	193
3.10.1	Methodology	193

3.10.1	.1Floral Study	193
	.2Faunal Study	
	Floristic composition within the study area	
	Faunal composition of the stusy area	
	Conservation Plan for Schedule 1 Species	
3.11	Socio Economic profile	
3.11.1	Socio Economic Aspects	
	Social Economic Profile of the study area	
3.11.2	.1Employment and Livelihood within study area	207
	.2Educational Infrastructure within study area	
3.11.2	.3Health facility within the study area	216
	Summary	
4	ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES	218
4.1	Details of Investigated Environmental impacts due to project location, possible acc	cidents,
projec	ct design, project construction, regular operations, final decommissioning or rehabil	litation
of a co	ompleted project	218
4.2	Impact of Land Environment	218
4.3	Impact of Air Environment	219
4.3.1	Meteorological Data	219
4.3.2	Conclusion	227
4.4	Impact due to Carbon Emission	227
4.5	Impact on climate change, temperature rise, pollution	229
4.6	Impacts due to Transportation	230
4.7	Impact of Water Environment	232
4.7.1	Rainwater Harvesting	232
4.8	Impact of Noise	232
4.8.1	Noise due to Mining Activity	233
4.9	Impact of Vibration	233
4.10	Impact on Biological Environment	233
4.11	Impact on Agricultural, Forestry & Traditional Practices	234
4.12	Hydrothermal Effect due to the Proposed Project	235
4.13	Geothermal Effects due to the Proposed Project	236
4.14	Impact on Sediment Geochemistry in the Surface streams	236
4.15	Impacts on Occupational Health	236
4.16	Impacts on Public Health	237
4.17	Project Measures for Minimizing and/or offsetting Adverse Impacts Identified	237

4.17.1	Land Degradation Control Measures	237
4.18	Mitigation Measures of Impact on Sediment Geochemistry	238
4.19	Land Environment Mitigation Measures	238
4.20	Erosion Control Measures	238
4.21	Air Environment Mitigation Measures	239
4.22	Mitigation measures to address these impacts may include development of Carbo	n Sinks
	239	
4.23	Mitigation Measures of Climate Change & Temperature	240
4.24	Mitigation Measures for Impacts due to Transportation	240
4.25	Water Environment Mitigation Measures	241
4.25.1	Surface Water Pollution Control Measures	241
4.25.2	Ground Water Pollution Control Measures	241
4.25.3	Rain Water Harvesting	241
4.26	Noise Environment Mitigation Measures	241
4.27	Biological Environment Mitigation Measures	
4.27.1	Green Belt Development	242
4.28	Mitigate Measures for Occupational Health and Public Health	243
4.29	Mitigation Measures due to the Impact on Agriculture	244
4.30	Mitigation Measures of Hydrothermal and Geothermal Effects	
4.31	Assessment of Potential Fragmentation Impacts on the Natural Environment	244
4.32	Irreversible and Irretrievable commitments of environmental components	245
4.33	Assessment of Significance of Impacts	245
4.34	Scale of Importance	246
4.35	Scale of Magnitude	246
5	ANALYSIS OF ALTERNATIVES	252
5.1	Introduction	252
5.2	Selection & Description of each alternatives with its adverse impacts	252
5.3	Site Connectivity	252
5.4	Technology Alternatives	
6	ENVIRONMENTAL MONITORING PROGRAMME	253
6.1	Introduction	253
6.2	Technical Aspects of Post Project Environmental Monitoring Program	253
6.3	Measurement Methodologies	254
6.4	Emergency procedures on reporting & documentation	254
7	ADDITIONAL STUDIES	
7 1	Public Consultation	256

7.2	Risk Identification & Management	256
7.2.1	Introduction	256
7.2.2	Identification of Hazards in Open Cast Mining	257
7.2.2.	1 Drilling	258
7.2.2.	2 Blasting	258
7.2.2.	3 Precautionary Measures to Avoid Accidents Due to Blasting	259
7.2.2.	4 Overburden Handling	259
7.2.2.	5 Heavy Machinery	259
7.2.2.	6 Precautionary Measures to Prevent Accidents due to Trucks and Dumpers	259
7.2.2.	7 Storage of Explosives	260
7.2.2.	8 Safety Measures at the quarry	260
7.3	Disaster Management Plan	260
7.3.1.	1 Emergency Organization (EO)	261
7.3.1.	2 Emergency Communication (EC)	261
7.3.1.	3 Emergency Services	261
7.3.1.	4 Fire Protection System	262
7.3.1.	5 Off-Site Emergency Plan	262
7.3.1.	6 Water Quality Management	262
7.3.1.	7 Mines Seepage Water	262
7.3.1.	8 Air Quality Management	262
7.3.1.9	9 Solid waste Management	263
7.3.1.	10Stabilization of Dump	263
7.3.1.	11Mine Drainage	263
7.3.1.	12Disposal of Waste	263
7.3.1.	13Top Soil Management	264
7.3.1.	14Disposal of Mining Machinery	264
7.3.1.	150ther Infrastructure	264
7.3.1.	16Safety & Security	264
7.3.2	Social Impact Assessment R & R Action plan	264
8	PROJECT BENEFITS	265
8.1	Benefits in the Physical Infrastructure	265
8.2	Benefits in the Social Infrastructure	265
8.3	Employment potential- Skilled, Semi-Skilled and Unskilled	265
8.4	CER activity	265
8.5	Other tangible benefits	266
9	ENVIRONMENTAL COST & BENEFIT ANALYSIS	267

10	ENVIRONMENTAL MANAGEMENT PLAN2		
10.1	Description of the administrative aspects of ensuring that mitigative measures are		
impler	nented and their effectiveness monitored, after approval of the EIA Management Plan	.268	
10.2	EMP structure and organization	268	
10.2.1	Environment Policy of TAMIN	268	
10.3	Land Environment Management	272	
10.3.1	Ground Vibration and Fly Rock Control	273	
10.4	Soil Management	273	
10.5	Water Management	274	
10.6	Air Quality Management	275	
10.7	Noise Management	277	
10.8	Occupational Safety & Health Management	277	
10.9	Proposed Health and safety Measures	278	
10.10	Budget for Environmental Protection	279	
11	SUMMARY & CONCLUSION	281	
11.1	Overall justification for the implementation of project	281	
11.2	Explanation on how adverse effects will be mitigated	281	
12	DISCLOSURE OF CONSULTANTS	283	
12.1	Brief Profile of HubertEnviro Care Systems (P) Limited (HECS)	283	
12.2	Strengths of HECS	283	
12.3	QCI-NABET - EIA Accreditation	283	
12.4	Copy of QCI NABET Accreditation	284	

List of Tables

Table 1-1 Ultimate Pit Dimensional Details	45
Table 1-2 Reserves of Proposed Quarry	45
Table 1-3 Boundary Coordinates of the Project	46
Table 2-1 Project Summary	108
Table 2-2 Land Use Details of the Lease Area	109
Table 2-3 Granite Quarry Reserves	110
Table 2-4 Yearwise Production Details	110
Table 2-5 Waste Generation Details	110
Table 2-6 Project Cost	117
Table 2-7 Water requirement breakup	123
Table 2-8 Power Requirements	123
Table 2-9 Lists of Machineries	124
Table 2-10 Manpower Details	124
Table 2-11 Municipal Solid Waste Generation & Management	125
Table 2-12 Hazardous Waste Management	125
Table 3-1 Environmentally Sensitive Areas within 15km from Project Boundary	130
Table 3.2 Soil Types in PIA District	144
Table 3-3 Geomorphology Pattern of the Study Area	146
Table 3.4 Land Use Pattern of the Study Area	150
Table 3-5 Climatological Summary– Dharmapuri (1991-2020)	157
Table 3-6 Meteorology Data for the Study Period (February 2025 to April 2025)	158
Table 3-7 Details of Ambient Air Quality Monitoring Locations	160
Table 3-8 Analytical Methods for Analysis of Ambient Air Quality Parameters (NAAQ)	162
Table 3-9 Summary of the Average Baseline Concentrations of Pollutants	163
Table 3-10 Day and Night Equivalent Noise Levels	169
Table 3-11 Test Methods Used for the Analysis of Water Quality Parameters	173
Table 3-12 Designated Best Use Water Quality Criteria	174
Table 3-13 Details of Surface Water Sampling Locations	175
Table 3-14 Physicochemical Parameters of Surface Water Samples from the Study Area	177
Table 3-15 Details of Groundwater Quality Monitoring Locations	183
Table 3-16 Physico chemical analysis of Ground water samples from study area	185
Table 3-17 Soil Quality Monitoring Locations	189
Table 3-18 Physico Chemical parameters of soil samples from the study area	191
Table 3-19 Overall IUCN status floral species in and around the study area	194
Table 3-20 List of Mammals	197

Table 3.21 Schedules I species of Fauna	200
Table 3.22 Proposed budgetary allocation for scheduled-I conservation measures	201
Table 3-23 Social Indicators of Dharmapuri Districts	203
Table 3-24 Population profile within the study area	205
Table 3-25 Summaries of Employment and Livelihood within the study area	208
Table 3-26 Literates population and the percentage within the study area	213
Table 3-27 Summaries of Socio-economic indicators within the study area	216
Table 4-1 Ultimate Pit Dimension Details	218
Table 4-2 Sources of air pollution at quarry	219
Table 4-3 Overview of the Source Parameters	221
Table 4-4 Emission from Mining Equipment's	222
Table 4-5 Vehicular Source Emission details	222
Table 4-6 Emissions considered for mining	222
Table 4-7 Emission input for modelling.	223
Table 4-8 Predicted Top 10 Highest Concentrations Particulate Matter PM ₁₀	224
Table 4-9 Predicted Top 10 Highest Concentrations of Sulphur Dioxide	225
Table 4-10 Predicted Top 10 Highest Concentrations Nitrogen Oxide	226
Table 4-11 Total maximum GLCs from emissions	227
Table 4-12 Impact Due to Carbon Emission	227
Table 4-13 Climate Change and Temperature Rise	229
Table 4-14 Existing & proposed vehicular movement per Hour (Peak Hour) SH-60A	231
Table 4-15 Traffic Volume after Implementation of the Project	232
Table 4-16 Permissible Exposure in Cases of Continuous Noise (OSHA, Govt. of India)	233
Table 4-17 Impacts on Biodiversity	234
Table 4-18 Fugitive dust control in mine	239
Table 4-19 Mitigation for occupational health and public health	243
Table 4-20 Severity Criteria for Magnitude of Impacts	246
Table 4-21 Score ranges for Beneficial and Adverse Impacts	246
Table 4-22 Impact Matrix without EMP	247
Table 4-23 Impact Matrix with EMP	248
Table 5-1 Site Connectivity Details	252
Table 5-2 Alternative Technology Analysed	252
Table 6-1 Post Project Environmental Monitoring Program	254
Table 8-1 Required Manpower Details	265
Table 8-2 Proposed CER activity	266
Table 10-1 Proposed Controls for Land Environment	272

List of Figures

Figure 1-1 Google image of the Mine Lease Area with GP5 Co-ordinates	40
Figure 1-2 Schematic Diagram of Site Elevation and Ground Water Regime	47
Figure 1-3 Feasibility & Environmental Assessment Process	52
Figure 2-1 Location Map of the Leased Area	103
Figure 2-2 1km Radius Google Image of the Lease Area	104
Figure 2-3 5km Radius Google Image of the Lease Area	105
Figure 2-4 10km Radius Google Image of the Lease Area	106
Figure 2-5 Topo Map of the Study Area	107
Figure 2-6 Surface Plan of the Quarry	111
Figure 2-7 Geological Plan & Section of the Quarry	112
Figure 2-8 Yearwise Production/Development Plan for 5 years	113
Figure 2-9 Land Use and Afforestation Plan of the Quarry	114
Figure 2-10 Conceptual Plan & Section of the Quarry	115
Figure 2-11 Progressive Closure Plan of the Quarry	116
Figure 2-14 Schematic Diagram of Mining Process	118
Figure 3-1 Topo Map of the Study Area	129
Figure 3-2 Environmental Sensitive Areas-1 Covering within 15 km from Project Box	ındary135
Figure 3-3 Environmental Sensitive Areas-1 Covering within 15 km from Project Box	ındary136
Figure 3-4 Mineral Map of Dharmapuri District	140
Figure 3-5 Contour Map of the Study Area	142
Figure 3-6 Geology Map of Dharmapuri District, Highlighting the Project Site	144
Figure 3-7 Soil Map of Dharmapuri District, Highlighting the Project Site	145
Figure 3-8 Geomorphology Map of Study Area	148
Figure 3-9 Land Use Map of the Study Area	151
Figure 3-10 Hydrogeology Map of Dharmapuri District	153
Figure 3-11 Map of the Flood Zones in Tamil Nadu, Highlighting the Project Site	154
Figure 3-12 Map of the Wind & Cyclone Zones in Tamil Nadu, Highlighting the Project	t Site155
Figure 3-13 Seismicity Map of Tamil Nadu, Highlighting the Project Site	156
Figure 3-14 Wind Rose during February 2025 to April 2025	159
Figure 3-15 Atmospheric Inversion Level at the Project Site	160
Figure 3-16 Map Showing the Ambient Air Quality Monitoring Locations	161
Figure 3-17 Trends of Measured Ambient Concentrations in the Study Area	166
Figure 3-18 Map Showing the Noise Monitoring Locations	171
Figure 3-19 Man Showing the Surface Water Monitoring Locations	176

Figure 3-20 Depth to water level during Pre-Monsoon & Post Monsoon in Dharmapuri District	t
1	.82
Figure 3-21 Map showing the groundwater monitoring locations1	.84
Figure 3-22 Map showing the soil monitoring location1	.90
Figure 4-1 Wind rose diagram considered for dispersion modeling2	220
Figure 4-2 Predicted 24 Hrs GLC's of PM_{10} within 10km radius of the study area2	224
Figure 4-3 Predicted 24-Hrs' GLC's of SO_2 within 10 km Radius of the Study Area2	225
Figure 4-4 Predicted 24-Hrs' GLC's of NO_X within 10 km Radius of the Study Area2	226
Figure 4-5 Site Connectivity Map of the Study Area2	231
Figure 7-1 Identification of hazards in opencast mine2	258
Figure 10-1 Hierarchical System of the TAMIN2	71

List of Annexure

Annexure No	Name of the Annexure		
1	Precise Area Communication Letter		
2	Mining Plan Approval Letter		
3	Approved Mining Plan		
4	Sectional Plates		
5	Terms of Reference		
6	Other Quarry Photographs		
7	Fencing Photographs		
8	300m VAO Letter		
9	9 DFO Letter		
10	FMB Sketch		
11	Village Map		
12	A Register		
13	Adangal Copy		
14	RQP Certificate		

LIST OF ABBREVIATIONS

AAQ	Ambient Air Quality		
AAQM	Ambient Air Quality Monitoring		
AMSL	Above Mean Sea Level		
BGL	Below Ground Level		
СРСВ	Central Pollution Control Board		
CER	Corporate Environmental Responsibility		
EMC	Environmental Management Cell		
EMP	Environmental Management Plan		
GLC	Ground Level Concentration		
GO	Government Order		
ISO	International Organization for Standardization		
IUCN	International Union for Conservation of Nature		
O.B	O.B Over Burden		
S.B	Side Burden		
MoEF&CC	Ministry of Environment Forest & Climate Change		
NAAQS	National Ambient Air Quality Standards		
NABET	National Accreditation Board for Education and Training		
QCI	Quality Council of India		
SEIAA	A State Environmental Impact Assessment Authority		
SEAC	State Level Expert Appraisal Committee		
TNPCB	Tamil Nadu Pollution Control Board		
TWAD	Tamil Nadu Water Supply and Drainage Board		

Executive Summary

1. Project Description

The Proposed Jammanahalli Black Granite Quarry is over an extent of 6.59.5 Ha at S.F.No.83 (P) of Jammanahalli Village, Pappireddipatty Taluk, Dharmapuri District, and Tamil Nadu State. It is a government poramboke land.

TAMIN has obtained a lease for 20 years vide precise area communication letter No.4539479/MME.1/2023-1, Dated: 13.09.2023. The precise area communication letter is enclosed as **Annexure-1**. Accordingly, the Mining Plan has been approved by the Commissioner, Department of Geology and Mining, Guindy, Chennai, vide letter Rc. No.72/MM4/2023 dated 23.11.2023 for the proposed production capacity of 4,150m³ at 10% recovery of ROM 41,501m³ during the five years of the mining plan period. The mining plan approval letter is enclosed as **Annexure-2** and approved mining plan is enclosed as **Annexure-3**.

The ToR application was submitted to TN-SEIAA vide online proposal No. SIA/TN/MIN/525197/2025, dated: 22.02.2025 as the area of the proposed project is more than 5.00.0Ha. The proposal was appraised during the 549th SEAC meeting held on 07.04.2025 and the 822nd SEIAA meeting held on 15.05.2025 and the ToR was issued along with a public hearing vide Identification No.T025B0108TN5769635N, dated: 19.05.2025 under B1 Category, Schedule 1(a) Mining of Minerals as per EIA Notification 2006 and its subsequent amendments. The copy of ToR is enclosed as **Annexure-5**.

Based on the issued ToR, the draft EIA report will be submitted to the Tamil Nadu Pollution Control Board for conducting Public Hearing. After the completion of the Public Hearing, the querries raised and their compliance will be incorporated into the final EIA report, which will be submitted to the Tamil Nadu SEAC/SEIAA for appraisal and for seeking Environmental Clearance for the proposed project.

Table-1 Salient Features of the Project Site

Survey No	S.F.No.83 (Part)	
Village	Jammanahalli	
Taluk and District	Pappireddipatty Taluk, Dharmapuri District	
State	Tamil Nadu	
Toposheets No.	D44S8	
Latitude	12°00'33.8481"N to 12°00'45.4265"N	

Longitude	78°25'11.6284"E to 78°25'25.2777"E
Extent Area	6.59.5 На
Lease Period	20 years
Estimated Geological Reserves (ROM)m ³	4,09,500
Estimated Mineable Reserves (ROM) m ³	2,13,213
Proposed Production (RoM) m ³	41,501
Black Granite production @10% recovery m ³	4,150
Annual peak production in m ³	1,000
Depth of Mining	12m from top of the hill (Height of the hillock is 32m)
Method of Mining	Open cast semi mechanized method
Nearest NH/SH Roads	 ➤ SH-6A (Tiruvannamalai-Harur),~7.69 km, ENE ➤ NH-179A (Salem-Vaniyambadi),~ 2.89 km, ESE
Nearest Town	Harur,∼7km, NE
Nearest Railway Station	Thonganur,~10.17km, NW
Nearest Airport	Salem Airport,~45.20km, WSW
Project Cost	99.97 lakhs
Water Requirement	3.5KLD
Power Requirement	60kVA
Fuel Requirement	200 liters/day
Depth of Water Table	11.6m as per TWAD (TWAD- Dharmapuri - May 2024)

2. PROJECT DESCRIPTION

2.1 Method of Quarrying

The quarrying operation is being carried out by the open cast semi-mechanized method with the deployment of HEMM for development and production activities under Regulation106. The quarrying work is being carried out under the direct supervision of our statutory mining personnel of TAMIN as approved by the Directorate General of Mines Safety (DGMS) under MMR, 1961.

Reserves of Black Granite

The geological reserve of black granite was computed based on the geological plan & section as 4,09,500 m³. Mineable reserves have been computed as 2,13,213m³ after leaving the reserves locked up in safety barriers and benches based on the conceptual plan and sections. The effective(Saleable) mineable reserves have been worked out as 21,321m³ by recovering factor of 10%.

The total proposed production capacity is 4,150 m³ at 10% recovery of ROM 41,501m³. The annual peak production per year would be 1,000m³ at 10% recovery of ROM 9,999 m³.

Table-2 Ultimate Pit Dimensional Details

S. No	Description	Ultimate Pit Dimensions (m)		
		Length	Width	Depth
1	Тор	324.0	68.0	22.0
2	Bottom	193.0	22.50	33.0

Table-3 Available Reserves

S. No	Willeanie Reserves (ms)		Proposed Production at 10% recovery (m³)
1.	4,09,500	2,13,213	4,150

Table-4 Mine Year Wise Production

S. No	Year	ROM (m³)	Recovery @ 10% (m³)	Granite Waste @ 90 % (m³)
1	1stYear	6,003	600	5,403
2	2 nd Year	7,503	750	6,753
3	3 rd Year	8,500	850	7,650
4	4 th Year	9,496	950	8,546
5	5 th Year	9,999	1,000	8,999
	Total	41,501	4,150	37,351

2.2 Waste Management

The waste generated during the mining operation, i.e., over burden, side burden, granite rejects, and the non-recoverable/unsized boulders and rubble, etc., is around 64,962 m³ will be dumped in the suitable area of around 0.66.0 Ha which is already selected. The area of disposal of waste rock has been identified in southeast portion of the lease area. The unsold blocks are kept within the boundary of the country rock area. The dump will be maintained not exceeding 5m height and the slope angle will be at 45° from horizontal. The area and location of the waste

dump has been provided in Plate no. 8 of Sectional Plates and the same is enclosed as **Annexure-4.**

Table-5 Proposed Waste Generation

S. No	Year	Over Burden (m³)	Side Burden (m³)	Granite Rejects @ 90% (m³)
1	1stYear	6,320	580	5,403
2	2 nd Year	4,452	174	6,753
3	3 rd Year	4,539	401	7,650
4	4 th Year	7,012	2,339	8,546
5	5 th Year	1,314	480	8,999
	Total	23,637	3,974	37,351

2.3 Greenbelt Details

The total area for the proposed green belt is 0.06.5 Ha during first 5 years of the proposed quarrying activity. TAMIN is proposing to plant 825 trees which are proposed to plant within the 7.5m safety buffer zone mine lease area and in the proposed green belt area.

Table-6 Proposed Greenbelt Details

Year	No of trees proposed to be planted	Name of the species to be plant	Survival rate expected in %	No of trees expected to be grown
2025-26	825	Neem, pungam, vengai	80	660

2.4 Man power Requirement

Manpower details are given in below table.

Table-7 Manpower Details

S.No	Description	No of persons			
A	Technical/Mining Personnel				
1	Geologist/Agent (M.sc Qualified)	1			
2	Mine Manager (Holder of Manager Certificate of Competency under MMR, 1961)				
3	Mining Mate cum Blaster 1				
4	Machinery operator 6				
5	Diesel Mechanic 1				
В	Workers				
1	Skilled	1			
2	Semi- Skilled 9				
3	Un-skilled	10			
	Total	30			

2.5 List of Equipment

The list of Equipment is given in below table.

Table-8 List of Machineries

S. No	Machinery	Capacity	Numbers
1	Excavator	300 LC	1
2	Compressor	400 cfm	2
3	Dumpers	25 Tonnes	2
4	Diamond wire saw	30 m³/day	1
5	Jack Hammers (32mm dia.)	1.2 to 6m	6
6	Diesel Generator	125 kVA	1
7	Tractor Mounted Air Compressor	-	1

2.6 Land Use Pattern

Land Use Pattern of the Mining Lease area is given in below Table-9.

Table-9 Land Use Pattern of the Mining Lease area

S.No	Description	Present area (Ha)	Proposed Mining Plan Period (Ha)	Area at the end of the life of mine (Ha)
1.	Mining Area		0.78.0	2.20.5
2.	Waste Dump		0.66.0	1.74.0
3.	Office Infrastructure	0.01.0		0.01.0
4.	Foot path	0.14.0		0.14.0
5.	Afforestation		0.06.5	0.27.5
6.	Unutilized Area	6.44.5	4.94.0	2.22.5
	Total	6.59.5	6.44.5	6.59.5

3. IMPACTS AND MITIGATION MEASURES

Impacts due to Mining Activity

Various environmental impacts which have been identified due to the mining operations are discussed in the following sections. The environmental parameters most commonly affected by mining activities are:

3.1. Land Environment

Impacts

Potential impacts envisaged due to mining operations on land environment are

- The topsoil and bushes observed in the hill slides over the dyke will be removed completely. Hence the top hill ridge will be excavated which will interrupt the aesthetic view of the locality.
- The proposed quarrying operation will alters the hill lock slope and natural drainage pattern.
- Due to the proposed mining activity, a pit will be created over the hill lock and left open with the approximate dimension as follows.

Table-10 Ultimate Pit Dimension

C No	Decomination	Average Ultimate Pit Dimensions (m)				
S. No	Description	Length	Width	Depth		
1	Тор	324.0	68.0	22.00		
2	Bottom	193.0	22.50	33.00		

- The Total waste (Granite waste + Over Burden + Side Burden) to be generated during the five years of mining plan period will be around 64,962m³. These wastes are proposed to be dumped on the South East side of lease area.
- Usage of chemicals like Rock Breaking Powder (Ca (OH)₂) for secondary blasting, fuel and lubricants used for machineries will affect the soil quality and fertility.
- Generation of hazardous and non-hazardous wastages.
- Creation of infrastructure facilities like office building, rest shelter, first-aid centre, toilets and other service facilities.

Mitigation Measures

- Good housekeeping and best practices of waste handling shall be adopted to eliminate/minimize the risks of soil contamination.
- The wastes generated will be stored in temporary storage facility and disposed through nearby municipal disposal bins. Waste oil generated from quarry machineries will be disposed through TNPCB authorized dealers.
- Dust suppression using water tankers.
- Greenbelt around infrastructure within the mine lease area and along the periphery of the mine lease area by using native plants.
- Proper fencing will be provided around the mine lease area.

3.2 Air Environment

Impacts on Air Environment

Source

The major sources of air pollution due to mining operations are DG sets, Machineries and Vehicular transportation. The activities causing air pollution due to the mining operations will be excavation, drilling, blasting and transportation. The sources of air emission are given below in **Table-11**.

Table-11 Sources of air pollution at quarry

S. No	Source of emission	Pollutant
1.	Excavation of Granite	PM
2.	Operation of diesel driven equipment	Gaseous Emission
3.	Transportation of product	PM,NO _x ,CO

Impacts

- Due to mining activity, Air pollution will cause respiratory problems.
- Air pollution will affect nearby ecosystems, vegetation, livestock habitats and water sources.

Mitigation measures

The mitigation measures due to the proposed mining activity for air environment are given below.

Table-12 Dust control measures in quarry

S. No	Activities	Control Measures			
1	Drilling	 Adopting wet drilling method Drilling machine should be provided with dust extractors 			
2	Blasting	 Use of control blasting technique Water spray before blasting Usage of Rock breaking powder (Ca(OH)₂) Usage of Wire saw cutting method 			
3	Loading	➤ Water spray on granite material before loading			
4	Transportation of material	 Covering of the trucks/dumpers to avoid spillage Water spray on the haul roads before and after transportation Maintenance of haul road Speed of vehicles will be limited upto 25km/hr Development of a green belt of suitable width on both sides of haul road 			

3.2.1 Air Quality Modeling

Total maximum GLCs from emissions are as given below **Table-13**.

Table-13 Total maximum GLCs from emissions

Pollutant	Max. Base Line Conc. (μg/m³)	Estimated Incremental Conc. (µg/m³)	Total Conc. (μg/m³)	NAAQ standard
PM	57.72	2.05	59.77	100
SO ₂	15.01	0.12	15.13	80
NO _X	25.87	0.96	26.83	80

The maximum ground level concentration observed due to mining activities and traffic movement through Air Modeling for PM, SO_2 and NO_x are $57.72\mu g/m^3$, $15.01\mu g/m^3$ and 25.87 $\mu g/m^3$ respectively.

3.3 Transportation of Material

Impacts

The granite will be transported through existing road by tippers and approximately 2 times per week materials will be transported. The traffic load was observed on NH-179A Connecting Salem – Vaniyambadi. The vehicular movement for the proposed project is given in **Table-14**.

Table-14 Traffic Volume after Implementation of the Project

For the Road	Volume of Traffic	Volume (V)	Road Capacity (C)	V/C Ratio	LOS Category*	Traffic Classification
Existing	9014	11970	35000	0.34	"A"	Free Flow Traffic
After implementation	9018	11985	35000	0.34	"A"	Free Flow Traffic

*LOS (Level of Service) categories are A-Free Flow, B- Stable Traffic Flow, C- Restricted Flow, D-High Density Flow, E- Unstable flow, F- Forced or breakdown flow

Due to propose project there will be slight increment in the vehicle movement but the level of service (LOS) anticipated will be Free Flow Traffic.

Mitigation Measures

- Covering of the trucks/dumpers to avoid spillage
- Water spray on the haul roads before and after transportation
- Maintenance of haul road
- Speed control on vehicles
- Development of a green belt of suitable width on both sides of haul roads.

3.4 Water Environment

Impacts

Impacts envisaged due to wastewater generation during mining operations are

- Wastewater generated from the mines can pollute surface water and groundwater, which can harm wildlife and human health.
- Runoff from mining wastewater can devastate surrounding vegetation.
- Explosive blasting in a mine can cause groundwater to seep to lower depths or connect aquifers, exposing them to contamination by toxic heavy metals.

Mitigation Measures

Surface Water Pollution Control Measures

- Construction of garland drains of suitable size around mine area and dumps to prevent rain water descent into active mine areas.
- Construction of baffle wall or trenches nearby water bodies to prevent runoff water from mines.
- The dumping will be provided with slopes and covered with grasses, shrubs, etc to prevent erosion.

Ground Water Pollution Control Measures

- The domestic sewage of 1.2 KLD will be disposed through septic tank followed by soak pit.
- Regular monitoring of water levels and quality in the existing open wells and bore well
 in the vicinity will be carried out.

3.5 Rain Water Harvesting

Impacts

Impacts envisaged due to rainwater on mining operations are

- Heavy rainfall can cause high water levels at a mining site, which can damage equipment and threaten worker safety.
- Rainwater can carry pollutants from a mining site into nearby water bodies; these
 pollutants can include heavy metals, acids, and other substances that can contaminate the
 water.
- When it rains, the loosened topsoil can be washed away, carrying sediments that pollute water bodies.

Mitigation Measures

- Construct barriers at suitable intervals along the path of the drains to restrict the flow of water.
- Construction of baffle wall or trenches nearby water bodies to prevent runoff water from mines.
- Provide necessary overflow arrangement to maintain the natural drainage system.
- The rainwater will be diverted by garland drains to the sump area within the mine lease. The stored water will be used for agriculture activities and for dust suppression purpose.

3.6 Noise Environment

Impact

The main sources of noise in the mine are as follows:

- Drilling
- Blasting
- Loading & unloading of minerals.
- Transportation vehicles

Mitigation Measures

Following mitigation measures should be taken to control noise pollution

- Workers will be provided with earmuffs, ear plugs etc.
- All vehicles and machinery will be properly lubricated and maintained regularly.
- Speed of the vehicles entering and leaving the quarrying lease will be limited to 25 kmph.
- Unnecessary use of horns by the drivers of the vehicles shall be avoided.
- Controlled blasting with proper spacing, burden and stemming will be maintained.
- Usage of NONEL Blasting (Non-Electric Detonator).
- Usage of Diamond Wire-saw cutting method.
- The blasting will be carried out during favorable atmospheric condition.

3.7. Vibration due to mining activity

Impacts

Due to mining activities, the following impacts of vibration are envisaged as follows:

- Structural damage to infrastructure facilities within the mine lease area.
- Ground Subsidence
- Vibrations cause human health impacts such as fatigue, muscle strain, joint pain, sleep disturbances, cardiovascular problems etc.

Mitigation Measures

- No primary blasting will be used for granite quarry operations. Only secondary controlled blasting techniques will be used.
- Usage of NONEL Blasting.
- Proposed peripheral green belt will be developed in 7.5m safety zone around the quarry.
- All vehicles and machinery will be properly lubricated and maintained regularly.
- Periodical health checkup will be done for the workers.

3.8 Biological Environment

Impacts

Impacts on biodiversity are given below.

Table-15 Impacts on Biodiversity

S. No	Activity	Examples of aspects	Examples of biodiversity impact
1	E as al'as	11.12	Loss of habitat, introduction of plant
1	Excavation	Land clearing	diseases, Siltation of water courses
			Disruption of water courses ,impacts on
2	Blasting, Digging	Dust, noise ,vibration, water	aquatic ecosystems due to changes in
	and hauling	pollution	hydrology and water quality
3	Wasta dumning	Clearing, water and soil	Loss of habitat, soil and water
3	Waste dumping	pollution	contamination, sedimentation.
4	Air emissions	Air pollution	Loss of habitat or species
			Encouragement of pests, disease
5	Waste disposal	Oil and water pollution	transfer, contamination of groundwater
			and soil
			Habitat loss or fragmentation, water
6	Access roads	Land clearing	logging upslope and drainage shadows
7	Water supply	Water abstraction or mine dewatering	Loss or changes in habitat or species composition

Mitigation Measures

- To reduce the adverse effects on flora/fauna due to deposition of dust generation from mining operations, water sprinkling and water spraying systems will be ensured in all dust prone areas to arrest dust generation.
- Development of greenbelt around the mine lease area.

3.9 Impacts on Occupational Health due to project operations

Impacts

The following occupational health issues are observed due to mining operations.

- Exposure to chemicals
- Airborne hazards
- Dust
- Noise and vibration
- High temperatures and humidity
- Manual handling

Mitigation Measures

The mitigation measures of occupational health and safety is given below.

Table-16 Mitigation for occupational health and safety

S.No	Activity	Mitigation measures
1	Excavation	 Planned excavation, avoid haphazard mining
2	Drilling and blasting	In addition, the operators and other workers should be provided with masks, helmets, gloves and earplugs.
3	Safety zone	 Provisions for a buffer zone between the local habitation and the mine lease in the form of a green belt of suitable width. Restricted entry, use of sirens and cordoning of the lasting area are some of the good practices to avoid accidents.
4	Overburden stabilization	 Accidents are known to happen due to overburden collapse. Therefore, slope stabilization and dump stability are critical issues for safety and environment. Proper measures will be taken care.
5	Worker's health surveillance	 Health survey programmes for workers and local community. Regular training and awareness of employees to be conducted to meet health and safety objectives.

4. PROJECT COST & ESTIMATED TIME OF COMPLETION

4.1. Project Cost

The estimated project cost is given below **Table-17**.

Table-17 Project cost

S. No	Description of the Cost	Amount in Rs.	
A. Fixed Cost			
1	Land Cost	Nil. Because Govt. land	
2	Labour shed	50,000/-	

3	Sanitary facilities	50,000/-
4	Fencing Cost	1,25,000/-
	Total	2,25,000/-
В	. Operational Cost	
1	Jack Hammers	1,98,000/-
2	Compressor	19,82,000/-
3	Diamond wire saw	4,87,000/-
4	Diesel General	4,00,000/-
5	Excavators	6,00,000/-
6	Tippers	58,00,000/-
7	Drinking water facilities for the labours	50,000/-
8	Safety kits	50,000/-
	Total Operational Cost	95,67,000/-
C	. EMP Cost	
1	Afforesation	30,000/-
2	Water Sprinkling	50,000/-
3	Water Quality test	25,000/-
4	Air Quality test	25,000/-
5	Noise/Vibration test	25,000/-
6	CSR activities	50,000/-
	Total EMP Cost	2,05,000/-
	Total Cost of the Project (A+B+C)	99,97,000/- (Say 1 Crore)

4.2. Proposed schedule for approval and implementation

The time schedule for the completion of the proposed mining project is given in the below as,

Table-18 Project schedule

Particulars	Time Schedule
Submission of Draft EIA/EMP to TNPCB for Public Hearing	August 2025
Conduction of Public Hearing	October 2025
Submitting final EIA/EMP	December 2025
Presentation to SEAC and Obtaining EC	January 2026

The project will be implemented after obtaining EC from SEIAA and CTO from PCB.

4.3 CER Activity

Based on O.M F.No. 22-65/2017-IA.III 2.0% of the Project cost need to be spent for CER activities i.e., Rs. 2.0 Lakhs need to be spent for the CER activity. However, TAMIN is proposing for Rs. 4.0 Lakhs which is 4.0% of Project cost under CER activities for the Jammanahalli Government Higher Secondary School.

5. MINING CLOSURE PLAN

5.1 Progressive Mine Closure Plan

As a petro genetic character, the depth persistence of the black granite body in the mine lease area is beyond the workable limits. Based on the statutory provisions of mine safety rules and regulations the workable depth is proposed for 33m from top of the hill. However, in course of time there is a possibility of up gradation of technology for safe mining beyond 33m. Hence, it is proposed not to backfill the ultimate pit. The Pit boundaries shall be safely fenced with 7.5m buffer safety zone and rain water or seepage water stored in the pit will be used for agriculture purpose. Green belt development will be maintained in the 7.5m buffer safety zone. Garland drain will be constructed around the quarry area to prevent surface run off rain water entering to the pit. At the end of the life of mine, the mine closure plan will be prepared and submitted to the competent authority to obtain approval and the same will be implemented.

6. REHABILITATION AND RESETTLEMENT

There will be no Rehabilitation and Resettlement in this proposed project.

7. SITE ANALYSIS

Environmental sensitive such as water bodies, reserved forest, wildlife sanctuary, national park, human settlements and other ecological features are given below.

Environmentally/Ecologically Sensitive areas

The environmental sensitive areas covering an aerial distance of 15 km from the project boundary is given in below table.

Table-19 Lists of Waterbodies

S.No	Water bodies	Distance (~km)	Direction
1.	Turinjihalli Ar	0.57	NW
2.	Annamalaihalli Pond	1.26	NE
3.	Paraiyapatti Pudur Lake	1.68	SSE
4.	Lake near Krishnapuram	2.30	NNW
5.	Tenkaraikottai Lake	2.53	W

6.	Vaniyar River	2.74	SE
7.	Piniyar River	3.85	ESE
8.	Nambiyappatii Lake	3.97	ENE
9.	Karukkampatti River	4.04	ESE
10.	Panchalanagar Lake	4.53	WSW
11.	Alapuram Eri	5.73	SW
12.	Todddampatti Lake	5.74	ENE
13.	Varatta Ar	8.61	NE
14.	Sintalbadi Lake	10.04	NW
15.	Vallimadurai Reservoir	12.92	ESE

Table-20 List of Reserved Forests

S.No	Reserved Forest	Distance (~km)	Direction
1	Kavaramalai RF	3.18	W
2	Harur RF	5.14	NNE
3	Pallippatti RF	6.21	SE
4	Thombakal Ext RF	6.64	ESE
5	Morappur RF	9.17	NNE
6	Thombakal RF	9.53	SE
7	Kavaramalai Ext RF	11.55	W
8	Nochikuttai Ext RF	12.62	SSE
9	Kuttar RF	12.78	SSW
10	Veppampatti RF	13.04	Е
11	Veppampatti Ext RF	13.42	Е
12	Bothakkadu RF	13.61	SW
13	Poyyappatti RF	13.95	ENE
14	Nochikuttai RF	14.15	SSE
15	Karungal RF	14.59	ESE
16	Mavuttu RF	14.68	SSW

Table-21 Lists of nearby Habitations

S.No	Villages	Distance (~km)	Direction	Population
1	Annamalaihalli	0.66	NE	1,227
2	Jammanahalli	0.95	SSW	2,363
3	Vadakarai	1.08	NW	300
4	Tennagaram	1.25	WSW	100
5	Gopinathampatti	1.60	ESE	2,500

^{*} Few settlements are located near to the quarry.

8. BASELINE STUDY

8.1 Study Period

The baseline environmental surveys were carried out during **(February 2025 – May 2025)** within the study area.

8.2 Ambient Air Quality

Table-22 Summary of Ambient Air Quality Monitoring

S.No	Parameters (μg/m³)	Minimum	Maximum	NAAQ Standards
1.	$PM_{10} (\mu g/m^3)$	36.95	48.57	100
2.	$PM_{2.5} (\mu g/m^3)$	18.48	24.29	60
3.	SO ₂ (μg/m ³	7.13	12.63	80
4.	NO ₂ (μg/m ³)	14.26	21.77	80

The ambient air quality has been monitored at 8 locations for 13 parameters as per NAAQS, 2009 within the study area.

8.3 Noise Environment

Ambient noise levels were monitored using precision noise level meter in and around the project site at 8 locations during study period.

• In Residential area day time noise levels varied from 50.1 dB (A) to 53.9dB (A) and night time noise levels varied from 40.5 dB(A) to 43.7 dB(A) across the sampling stations. The field observations during the study period indicate that the ambient noise levels in Residential area are within the limit prescribed by CPCB for Residential area (55 dB (A) Day time & 45 dB (A) Night time).

• In Industrial Area day time noise levels was recorded as 60.3 dB(A) and the night time noise levels was recorded as 51.9 dB(A) among the sampling stations. The field observations during the study period indicate that the ambient noise levels are within the prescribed limit by CPCB (75 dB(A) Day time & 70 dB(A) Night time).

8.4 Water Quality

The prevailing status of water quality at 8 locations for surface water and 8 locations for ground water have been assessed during the study period. The standard methods prescribed in IS 2296:1992 were followed for sample collection, preservation and analysis in the laboratory for various physiochemical parameters.

8.4.1 Surface water quality

Table-23 Summary of Surface Water Quality Monitoring

S. No	Parameters	Minimum	Maximum	Designated Best Use Water Quality Criteria
1.	рН	7.12	7.94	A
2.	TDS (mg/l)	673	1149	-
3.	COD (mg/l)	48	92	-
4.	BOD (mg/l)	4	8	-
5.	Total Hardness(mg/l)	300	590	-

8.4.2 Ground Water Quality

Table-24 Summary of Ground Water Quality Monitoring

				IS 10500: 20	12 Standards
S.NO	Parameters	Minimum	Maximum	Acceptable	Permissible
				Limit	Limit
1.	рН	7.11	7.74	6.5 - 8.5	NR
2.	Chloride (mg/l)	529.52	900.7	250	1000
3.	Total Hardness (mg/l)	460	790	200	600
4.	TDS (mg/l)	1160	1775	500	2000

• It is observed that all the collected ground water samples meets the drinking water standards (IS 10500:2012) and can be used for drinking.

8.5 Soil Quality

Soil sampling was carried out at eight locations in the study area. The summary of the soil quality is given below.

Table-25 Summary of Soil Quality Monitoring

S.No	Parameters	Minimum	Maximum
1.	рН	6.83	7.86
2.	Electrical conductivity (μS/cm)	68.0	188.0

3.	3. Nitrogen (%)		0.0059	
4.	Phosphorus (mg/kg)	BLQ (LOQ 5.0)		
5.	Potassium (mEq/100g)	11.85 23.58		

9. WASTE HANDLING

9.1 Solid Waste Management

The municipal solid waste generation and management details are given in **Table-26**.

Table-26 Municipal Solid Waste Generation & Management

S. No	Type	Quantity Kg/day	Disposal method
1	Organic	8.1	Municipal bin including food waste
2	Inorganic	5.4	TNPCB authorized recyclers
	Total	13.5	

As per CPHEEO guidelines: MSW per capita/day =0.45

9.2 Hazardous Waste Management

The type of hazardous waste and the quantity generated are detailed in **Table-27**.

Table-27 Hazardous Waste Management

Waste Category No	Description	Quantity (L/Year)	Mode of Disposal
5.1	Waste Oil	3.0	Will be collected in leak proof containers and disposed to TNPCB authorized recyclers

10. POST PROJECT MONITORING

10.1 Post Project Environmental Monitoring

The Project proponent set up regular monitoring stations to assess the quality of the environment.

Table-28 Post Project Environmental Monitoring Program

S. No	Area of Monitoring	Number of Sampling Stations	Frequency of Sampling	Parameters to be Analyzed
1.	Meteorology	One	Hourly and Daily basis	Wind speed and direction, Temperature, Relative Humidity, Atmospheric pressure, Rainfall.
2.	Ambient Air Quality	2 Stations (one in up wind and one in downwind)	Twice a week:24 hourly period	PM_{10} , $PM_{2.5}$, SO_2 , and NO_2

3.	Noise	2 (one within core area and one in buffer area)	Once every season	Ambient Equivalent continuous Sound Pressure Levels (Leq) at day and Night time.
4	Exhaust from DG set	Stack of DG set	Quarterly	PM_{10} , $PM_{2.5}$, SO_2 , and NO_2
5	Soil	Two Locations within the Project Site	Yearly Once	Physico chemical properties, Nutrients, Heavy metals
6	Terrestrial Ecology	Within 10km around the project	Once in three years	Symptoms of injuries on plants
7	Surface/ Ground water quality	One surface and ground water sample near the site	Yearly Once	As per ISO 10500 Standard parameters and IS 2296:1992 Standards

11. CONCLUSION

The **proposed Jammanahalli Black Granite Quarry**, extending over 6.59.5 hectares, is anticipated to play a vital role in fostering socio-economic development in the surrounding villages. The project is expected to provide direct employment opportunities for nearly 30 individuals, thereby improving local livelihood options and contributing to an enhanced standard of living for the community.

From an environmental standpoint, possible impacts such as dust emissions, noise generation, and siltation due to surface run-off have been carefully evaluated. The project will adopt comprehensive mitigation measures to ensure that all activities remain within prescribed regulatory standards, thereby minimizing potential adverse effects on the environment.

To ensure pollution control and workplace safety, the following environmental management practices will be implemented on a routine basis:

- Water sprinkling on haul roads and drilling sites to minimize dust emissions.
- Greenbelt development and plantation around the quarry lease boundary to serve as dust barriers and to augment local biodiversity.
- Adoption of diamond wire saw cutting techniques, which significantly reduce noise, vibration, and fugitive dust compared to conventional blasting practices.
- Mandatory provision and use of personal protective equipment (PPE) to safeguard workers' health and safety.

Furthermore, under its Corporate Environmental Responsibility (CER) commitments, the project proponent will extend support toward strengthening local infrastructure, education, healthcare, and sanitation facilities. These initiatives are expected to generate substantial social and economic benefits for the nearby communities, reinforcing the project's positive contribution to regional development.

1 INTRODUCTION

1.1 Purpose of the Report

The proposed jammanahalli black granite quarry is over an extent of 6.59.5Ha at S.F.No.83 (Part), Jammanahalli Village, Pappireddipatti Taluk, Dharmapuri District, and Tamil Nadu State. It is a government poramboke land.

As per the EIA Notification, 2006 and its subsequent amendment S.O. 1886(E) dated 20th April 2022, the proposed mining project, with an area of 6.595 Ha, falls under the B1 category. As per the Hon'ble National Green Tribunal's order dated 13th September 2018 in O.A. No. 186 of 2016, and the MoEF&CC Office Memorandum F.No. L-11011/175/2018-IA-II (M) dated 12.12.2018, the requirement of EIA/EMP and Public Hearing for B1 category projects has been clarified.

Based on this, the ToR was obtained vide Identification No. TO25B0108TN5769635N, Dated: 19.05.2025. Accordingly, the EIA report has been prepared and the report will be submitted for Public Hearing. After the completion of the public hearing, the queries raised and their compliance will be incorporated into the final EIA report, which will be submitted to the Tamil Nadu SEAC /SEIAA for appraisal and for seeking Environmental Clearance for the proposed project.

1.2 Project Background

TAMIN has obtained lease for 20 years vide precise area communication letter No.4539479/MME.1/2023-1, Dated: 13.09.2023. Precise area communication letter is enclosed as **Annexure-1**. Accordingly, Mining Plan has been approved by the Commissioner, Department of Geology and Mining, Guindy, Chennai vide letter Rc. No.72/MM4/2023 dated 23.11.2023 for the proposed production capacity of 4,150m³ at 10% recovery of ROM 41,501m³ during the five years of mining plan period. The mining plan approval letter is enclosed as **Annexure-2** and approved mining plan is enclosed as **Annexure-3**.

The ToR application was submitted to TN-SEIAA vide online proposal No. SIA/TN/MIN/525197/2025, dated: 22.02.2025 as the area of the proposed project is more than 5.00.0Ha. The proposal was appraised during 549th SEAC meeting held on 07.04.2025 and 822nd SEIAA meeting held on 15.05.2025 and the ToR was issued along with public hearing vide Identification No.TO25B0108TN5769635N, dated: 19.05.2025 under B1 Category, Schedule 1(a) Mining of Minerals as per EIA Notification 2006 and its subsequent amendments. The copy of ToR is enclosed as **Annexure-5**.

Based on the issued ToR, the draft EIA report will be submitted to Tamil Nadu Pollution Control Board for conducting Public Hearing. After the completion of the Public Hearing, the querries

raised and their compliance will be incorporated into the final EIA report, which will be submitted to the Tamil Nadu SEAC/SEIAA for appraisal and for seeking Environmental Clearance for the proposed project.

1.3 Identification of Project & Project Proponent

1.3.1 Identification of the Project

The proposed jammanahalli black granite quarry is over an extent of 6.59.5 Ha located at S.F.83 (Part), Jammanahalli Village, Pappireddipatti Taluk, Dharmapuri District, Tamil Nadu State.

TAMIN is obtaining Environmental Clearance from SEIAA-Tamil Nadu. Since, the project falls under B1 Category, Schedule 1(a) Mining of Minerals as per MoEF&CC Notification and its amendment vide S. O. 1886 (E) dated; 20.04.2022.

1.3.2 Identification of the Project Proponent

Tamil Nadu Minerals Limited (TAMIN) (An Undertaking of Government of Tamil Nadu) has been established in the year 1978. It entered the international granite market in the year 1979 and has secured a steady market for dimensional blocks of black and other color materials in countries like Japan, Germany, Italy, Australia, UK, Switzerland, Holland, USA etc. TAMIN had started the Captive Graphite Mine in the year 1986.

TAMIN is only organization recognized by Bureau of Indian Standard for manufacture and supply of I.S. Sand all over the country. TAMIN has also been marketing granite cubes with sides measuring 6cm to 12cm. TAMIN has developed expertise in the mining of granite dimensional stones of different varieties including black granite (Dolerite), Kashmir white (Leptynite), Paradiso (Migmatite gneiss), Green onyx (Syenite - porphyry) Red wave (Pink Feldspathic gneiss) Colombo Juparana (Pegmatitic granite gneiss of migmatitic origin), Raw silk (Yellow Feldspathic Leptynite) and a number of other color granite varieties apart from other industrial minerals viz. quartz and feldspar, graphite, lime stone, silica sand, vermiculite, etc.

TAMIN has also set up industrial units for polishing processing the granite stones one each at Manali (Chennai), Madhepalli at Krishnagiri District and Melur at Madurai District. A Beneficiation plant for the beneficiation of graphite ore has been established close to Sivaganga Graphite mine. An exfoliation plant for the processing of vermiculite mineral at Sevathur village of Tirupathur district has also been established.

1.4 Brief Description of the Project

1.4.1 Nature and Size of the Project

The quarrying operation is being carried out by open cast semi-mechanized method with 6m bench height and 6m bench width along with deployment of HEMM for development and production activities under Regulation 106.

The Geological reserve of black granite was computed based on the geological plan & section as 4,09,500m³. Mineable Reserves have been computed as 2,13,213m³ after leaving the reserves locked up in safety barrier and benches based on the conceptual plan and sections, the effective(Saleable) mineable reserves have been worked out as 21,321m³ by applying the recovery factor 10%.

The total proposed production capacity is 4,150m³ at 10% recovery of ROM 41,501m³. The annual peak production per year would be 1,000m³ at 10% recovery of ROM 9,999m³. Total waste (Granite waste+Over Burden+Side Burden) to be generated during the five years of mining plan period will be around 64,962m³. These wastes are proposed to be dumped on the Southeast of the lease area.

Table 1-1 Ultimate Pit Dimensional Details

S. No	Description	Average Ultimate Pit Dimensions(m)			
5. NO	Description	Length	Width	Depth	
1	Тор	324.0	68.0	22.0	
2	Bottom	193.0	22.50	33.0	

Table 1-2 Reserves of Proposed Quarry

S. No	Geological Reserves (m³)	Mineable Reserves (m³)	Production Capacity at 10% Recovery (m³)
1	4,09,500	2,13,213	21,321

1.4.2 Location of the Project

The proposed project is over an extent of 6.59.5 Ha; the lease area is located at S.F.No.83 (Part) of Jammanahalli Village, Pappyreddypatty Taluk, Dharmapuri District, and Tamil Nadu State. Quarry lease area falls in the Survey of India Topo sheet no D44S8 and the area lies in the Eastern Longitude from 78°25'11.6284"E to 78°25'25.2777"E and Northern Latitude from 12° 00'33.8481"N to 12°00'45.4265"N. The quarry lease area is hillock with height of about 32m surrounded by plain lands. The altitude of the area is 432m AMSL (Above Mean Sea Level). The site co-ordinates of the mine lease area are tabulated in **Table 1-3**.

Table 1-3 Boundary Coordinates of the Project

S. No	Boundary mark point	Latitude (N)	Longitude(E)
1	BP1	12° 00' 38.2442"	78° 25' 25.2777"
2	BP2	12° 00' 33.8481"	78° 25' 23.0578"
3	BP3	12° 00' 35.7907"	78° 25' 21.0860"
4	BP4	12° 00' 38.6116"	78° 25' 15.9442"
5	BP5	12° 00' 39.4785"	78° 25' 13.4590"
6	BP6	12° 00' 44.3812"	78° 25' 11.6284"
7	BP7	12° 00' 44.9224"	78° 25' 12.3393"
8	BP8	12° 00' 45.1505"	78° 25' 12.2613"
9	BP9	12° 00' 45.4265"	78° 25' 13.2395"
10	BP10	12° 00' 44.3539"	78° 25' 15.8430"
11	BP11	12° 00' 42.2847"	78° 25' 20.8651"

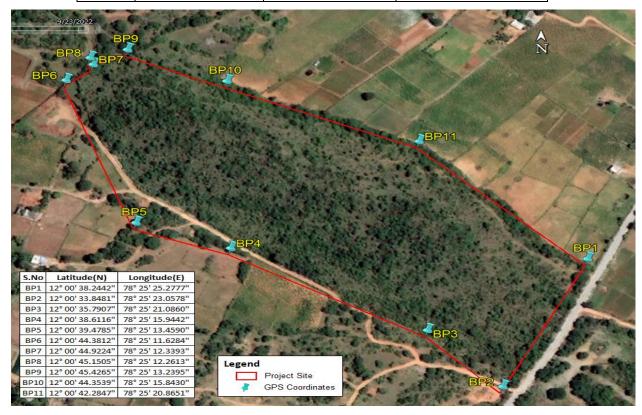


Figure 1-1 Google Image of the Mine Lease Area with GPS Co-ordinates

1.4.3 Site elevation and ground water depth

The Altitude of the proposed project site is 432m above MSL. Height of the hillock is 32m. The available ground water depth is 11.6m (As per TWAD) (TWAD- Dharmapuri - May 2024). The Pappireddypatti Taluk falls under over exploited category as per CGWB.

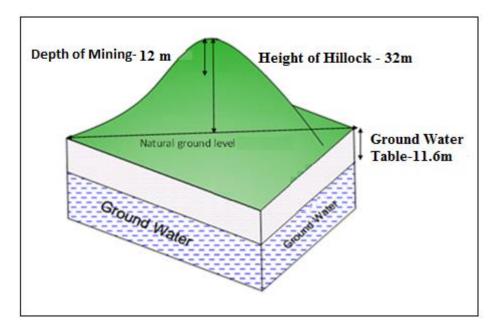


Figure 1-2 Schematic Diagram of Site Elevation and Ground Water Regime

1.5 EIA Study

As a part of compliance to the regulatory requirement i.e., to obtain Environmental Clearance from SEIAA-TN, TAMIN has appointed Environmental Consultant accredited by National Accreditation Board for Education and Training (NABET)-Quality Council of India (QCI), New Delhi. The project proponent assigned the work of undertaking field studies and preparation of EIA/EMP report under B1category as obtained Terms of Reference from SEIAA-TN to M/s Hubert Enviro Care Systems (P) Ltd. (HECS) Chennai. HECS is accredited by NABET, vide possession of Certificate No. NABET/EIA/24-27/RA 0335, Valid up to 31.03.2027.

1.6 EIA Cost

EIA study was undertaken by HECS for an amount of Rs.2,67,500/- .The base line monitoring was done by M/s. HECS lab, Chennai, an NABL and MoEF& CC Accredited Laboratory. NABL Certificate No: TC-12310 Dated: 25.09.2023 Valid Till 24.09.2025.

1.7 Importance of the Project to the Country and Region

Granite quarries play a significant role in India's economy and infrastructure development. Here are some key aspects highlighting the importance of granite quarries to India:

Economic Importance:

1. Employment: Granite quarries provide direct and indirect employment to thousands of people, contributing to the livelihoods of many families.

- 2. Revenue generation: Granite exports earn significant foreign exchange for India, boosting the country's economy.
- 3. GDP contribution: The mining and quarrying sector, including granite, contributes substantially to India's Gross Domestic Product (GDP).

Global Significance:

- 1. Export hub: India is a significant exporter of granite, catering to global demand, particularly from countries like China, the United States, and the Middle East.
- 2. Quality and diversity: Indian granite is renowned for its quality, color, and pattern variety, making it a preferred choice globally.

Overall, granite quarries contribute substantially to India's economic growth, infrastructure development, and social welfare, while also catering to global demand for this valuable natural resource.

1.8 Scope of the Study

The scope of the work mentioned includes an assessment study of proposed black granite quarry project and their impact on the region. This study puts forward the most effective ways to protect the environment from increasing pollution caused by the mining activities and recommendations for environmental-friendly development initiatives in the region.

An Environmental Impact Assessment (EIA) is an assessment of the possible impact, whether positive or negative that, the mining activities may have on the environment, together consisting of the natural, social and economic aspects, i.e., aiming at "Sustainable Development" due to the project activities.

This EIA report presents the existing baseline scenario and the assessment and evaluation of the environmental impacts that may arise during mining. This report also highlights the Environmental Monitoring Program during the operation phase of the project and the post mined management program. The generic structure of the EIA document will be as per the EIA Notification of the MoEF&CC dated 14th September 2006 and subsequent amendments. The basic structure of the report will be as under.

Chapter 1: Introduction

Introductory information is presented in this Chapter. The introduction chapter provides background to the project, project proponent and describes the objective of this document. The purpose and organization of the report is also presented in this chapter.

Chapter 2: Project Description

This chapter includes project description and infrastructure facilities delineating all the quarry operations and environmental aspect of the quarry activities.

Chapter 3: Description of the Environment

This chapter provides baseline environmental status of Environmental Components (Primary data) delineating meteorological details of the project site and surrounding area.

Chapter 4: Anticipated Environmental Impacts & Mitigation Measures

This chapter presents the analysis of impacts on the environmental and social aspects of the project as a result of establishment of plan and thereby suggesting the mitigation measures.

Chapter 5: Analysis of Alternatives (Technology and Sites)

This chapter includes the justification for the selection of the project site from Environmental point of view as well as from economic point of view.

Chapter 6: Environmental Monitoring Programme

This chapter will include the technical aspects of monitoring, the effectiveness of mitigation measures which will include the measurement methodologies, frequency, location, data analysis, reporting schedules etc,

Chapter 7: Additional Studies

This chapter will detail about the public consultation sought regarding the project. It will also identify the risks of the project in relation to the general public and the surrounding environment during quarry operation phase and thereby presents Disaster Management Plan, Social impact assessment and R&R action plans.

Chapter 8: Project Benefits

This chapter deals with improvement in physical and social infrastructures, employment potential and other tangible benefits.

Chapter 9: Environmental Cost Benefit analysis

Not recommended during scoping

Chapter 10: Environmental Management Plan

This is the key chapter of the report and presents the mitigation plan, covers the institutional and monitoring requirements to implement environmental mitigation measures and to assess their adequacy during project implementation.

Chapter 11: Summary and Conclusion

This chapter summarizes the information given in Chapters in this EIA/EMP report and the conclusion based on the environmental study, impact identification, mitigation measures and the environmental management plan.

Chapter 12: Disclosure of the Consultant

Names of consultants engaged in the preparation of the EIA/EMP report along with their brief resume and nature of consultancy rendered are included in this chapter

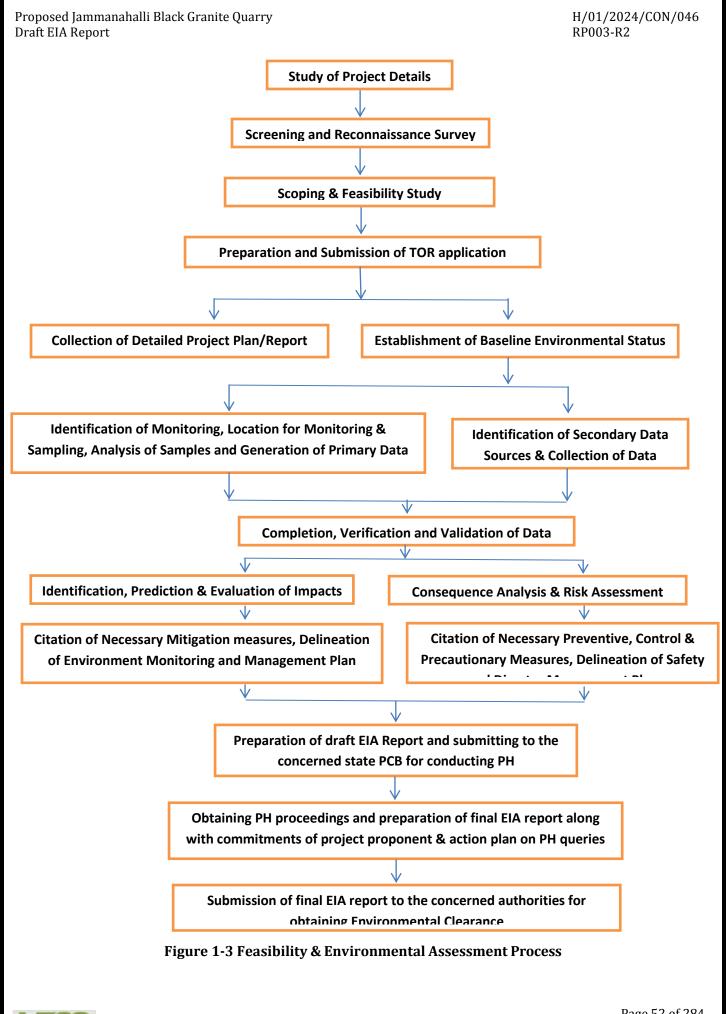
1.8.1 Objectives of the Study

- To ensure environmental considerations are explicitly addressed and incorporated into the development decision-making process.
- To anticipate and avoid, minimize or offset the adverse significant biophysical, social and other relevant effects of the above project proposal.
- To protect the productivity and capacity of natural systems and the ecological processes which maintain their respective functions.
- To promote development that is sustainable and optimizes resource use as well as management opportunities.
- To fully recognize the scope and requirements of the ToR and comply with the same.

The major objective of this study is to prepare a detailed Environmental Impact Assessment study within the study area i.e 10 km radius from the project

1.8.2 EIA Process

An Environmental Impact Assessment (EIA) is an assessment of the possible impact, whether positive or negative, that a proposed project may have on the environment, together consisting of the natural, social and economic aspects, i.e., aiming at "Sustainable Development" due to the project activities.


The EIA process followed for this EIA report is composed of the following stages:

- 1. Study of project information.
- 2. Screening & Scoping.
- 3. Environmental pre-feasibility study & application for approval of ToR.
- 4. Collection of detailed project management plan/report.

- 5. Baseline data collection.
- 6. Impact identification, Prediction & Evaluation.
- 7. Mitigation measures & delineation of EMP.
- 8. Risk assessment and safety & disaster management plan.
- 9. Review & finalization of EIA Report based on the ToR requirements.
- 10. Submission of EIA report for implementation of mitigation measures & EMP as well as necessary clearances from relevant Authority.

1.8.3 Legal Complicability

The following environmental acts/regulations besides the local zoning and land use laws of the States will govern the establishment and functioning of mining industry.

S.No	Acts/Rules				
1	The Environment Protection Act of 1986 amended in 2018				
2	Environmental Impact Assessment Notification 14 th Sep2006 and subsequent amendments time to time				
3	The Water (Prevention and Control of Pollution) Act, 1974 as amended in 1988				
4	The Water (Prevention and Control of Pollution) Cess Act, 1977, as amended in 2003				
5	The Air (Prevention and Control of Pollution) Act, 1981 as amended in 1987, 2014 and 2018.				
6	The Noise Pollution and Regulation Act: 2000 amended in 2010				
7	The Wildlife (Protection) Act, 1972 as amended in 1991, 1993, 2002, 2006 and 2013				
8	The Forest (Conservation) Act, 1980 as amended in 1988 and 1998				
9	The Public Liability Insurance Act, 1991, 1992 and 2015				
10	The Mines and Minerals (Regulation and Development) Act, 1957 as amended in 2016				
11	Circulars issued by the Director-General Mines Safety (DGMS)				
12	Contract Labor Regulation and Abolition Act 1970 amended in 2017				
13	The Motor Vehicles Act – 1989 as amended in 2022				
14	PESO – Explosives and handling of Hazardous Material: 1934 amended in 2021.				

1.8.4 Terms of Reference Compliance

SEAC Conditions - Site Specific

S.No	Terms of Reference	Compliance
1	A Cluster Management Committee (CMC)	There is only one existing quarry of same proponent located within 500m radius of the proposed
	shall be constituted including all the	project site. Hence, Cluster Management Committee is not required.
	mines in the cluster as Committee	
	Members for the effective management	
	of the mining operation in the cluster	
	through systematic & scientific approach	
	with appointment of statutory personnel,	
	appropriate environmental monitoring,	
	good maintenance of haul roads and	
	village/panchayat roads, authorized	
	blasting operation etc. The PP shall	
	submit the following details in the form	
	of an Affidavit during the EIA appraisal:	
	i) Copy of the agreement forming CMC.	
	(ii) The Organisation chart of the	
	Committee with defining the role of the	
	members	
	(iii) The 'Standard Operating Procedures'	
	(SoP) executing the planned activities.	

2	The Boundary pillars to be erected as per	The Boundary pillars will be	erected as	per the mine ru	les and th	ne evidence will be submitted
	the mine rules and the evidence should	along with the final EIA report.				
	be submitted along with the EIA report.					
3	Since waterbodies are situated nearby,	The impact of water environment is discussed in Chapter 4 , Section-4.7 .				
	the PP shall carry out the hydrological	The mitigation measures of wa	ater enviro	nment is discuss	ed in Cha r	oter 4, Section 4.25.
	study including the details of waterflow					
	pattern to determine the impacts of the					
	mining operation in the waterbodies.					
4	The details of enumeration of structures	The details of schools, college	s, primary	health centres a	re given ir	Chapter 3, Section 3.3, and
	including schools, colleges, primary	Table 3-1.				
	health centres should be submitted along					
	with the EIA report.					
5	The structures within the radius of (i) 50	The structures within the radi	us of (i) 50	m, (ii) 100 m, (ii	i) 200 m a	nd (iv) 300 m & upto 1km is
	m, (ii) 100 m, (iii) 200 m and (iv) 300 m	given below.				
	& upto 1km shall be enumerated with		S.No	Description	Count	
	details such as dwelling houses with			0-50m		
	number of occupants, whether it belongs		1	Shed	1	
	to the owner (or) not, places of worship,		2	50-100m Shed	2	
	industries, factories, sheds, etc. and spell		1	House	4	
	out the mitigation measures to be	100-200m				
	proposed for the protection of the above		1	Temple	1	
	structures, if any during the quarrying		2	Shed	8	
	operations.		3	House 200-300m	12	
	=			200-300III		

			l .		_	I
			1	Shed	3	
			2	House	12	
				300-500m		
			1	Temple	2	
			2	Shed	9	
			3	House	19	
				500m-1km		
			1	Temple	2	
			2	Shed	27	
			3	House	68	
6	The proponent shall furnish photographs	Site photographs and the fenci	ing photogi	aphs are enclose	ed as Anne	exure -7.
	of adequate fencing, garland drainage					
	built with siltation tank & green belt					
	along the periphery including					
	replantation of existing trees;					
	maintaining the safety distance between					
	the adjacent quarries & water bodies					
	nearby provided as per the approved					
	mining plan.					
7	The Proponent shall carry out Bio	The detailed biodiversity stud	dy has bee	n carried out a	nd the det	tails of list of flora and fauna
	diversity study as a part of EIA study and	species in the study area have	been discu	ssed in Chapter	3, Section	3.10 .
	the same shall be included in the Report.					
8	The PP shall prepare the EMP for the	e EMP details are discussed in Chapter-10 , Section 10.10 .				
	entire life of mine and also furnish the					
	sworn affidavit stating to abide the EMP					

	for the entire life of mine.	
9	The PP shall carry out the	The cumulative environmental impacts of the existing & proposed quarries are discussed in
	comprehensive studies on the	Chapter 4.
	cumulative environmental impacts of the	
	existing & proposed quarries which	
	included drilling & blasting, loading &	
	hauling on the surrounding village and	
	structures.	
10	The PP shall prepare a conceptual	Conceptual design of proposed quarry is discussed in Chapter 2, Section 2.8.3 .
	working plan accommodating the	
	inclusion of haul road accessibility	
	keeping the benches intact, by ensuring	
	the slope stability of the working	
	benches to be constructed and existing	
	quarry wall.	
11	The PP shall install the CCTV camera for	The CCTV camera photographic/video graphic evidence will be submitted along with the final EIA
	the continuous surveillance of mining	report.
	activity & furnish the	
	photographic/video graphic evidence	
	along with the EIA report.	

1.8.4.1 SEAC Standard Conditions

S.No	Terms of Reference	Compliance
1	In the case of existing/operating mines, a	
	letter obtained from the concerned AD	
	(Mines) shall be submitted and it shall	
	include the following:	
	(i) Original pit dimension	
	(ii)Quantity achieved Vs EC Approved	
	Quantity	
	(iii) Balance Quantity as per Mineable	
	Reserve calculated.	
	(iv) Mined out Depth as on date Vs EC	
	Permitted depth	Not applicable, as the proposed project is a fresh quarry.
	(v) Details of illegal/illicit mining	
	(vi)Violation in the quarry during the	
	past working.	
	(vii) Quantity of material mined out	
	outside the mine lease area	
	(viii) Condition of Safety zone/benches	
	(ix) Revised/Modified Mining Plan	
	showing the benches of not exceeding 6	
	m height and ultimate depth of not	
	exceeding 50m.	

2	Details of habitations around the
	proposed mining area and latest VAO
	certificate regarding the location of
	habitations within 300m radi from the
	periphery of the site.

The 300m radius VAO certificate enclosed as **Annexure-8**.

The proponent is requested to carry out a survey and enumerate on the structures located within the radius of (i) 50 m. (ii) 100m, (iii) 200 m and (iv) 300m (v) 500m shall be enumerated with details such as dwelling houses with number of occupants. Whether it belongs to the owner (or) not, places of worship. industries, factories sheds, etc with indicating the owner of the building, nature of construction, age of the building, number of residents, their profession and income, etc.

The structures within the radius of (i) $50 \, \text{m}$, (ii) $100 \, \text{m}$, (iii) $200 \, \text{m}$ and (iv) $300 \, \text{m}$ & upto $500 \, \text{m}$ are given in below

S.No	Description	Count				
0-50m						
1	Shed	1				
	50-100m					
2	Shed	2				
1	House	4				
	100-200m					
1	Temple	1				
2	Shed	8				
3 House		12				
	200-300m					
1	Shed	3				
2	House	12				
	300-500m					
1	Temple	2				
2	Shed	9				
3	House	19				

4	The PP shall submit a detailed	The hydrogeology report is being prepared by Government of Tamil Nadu Water Resources
	hydrogeological report indicating the	Department.
	impact of proposed quarrying operations	
	on the waterbodies like lake, water	However, the proposed mining activity is for a depth of 12m from the top of the hill. Ground
	tanks, etc are located within 1km of the	water table is available at 11.6mBGL ($Ref-TWAD$). Therefore, mining activities will not intersect
	proposed quarry.	with ground water table.
5	The proponent shall carry out Bio	
	diversity study through reputed	The detailed biodiversity study has been carried out and the details of list of flora and fauna
	Institution and the same shall be	species in the study area have been discussed in Chapter 3 , Section 3.10 .
	included in EIA report.	
6	The DFO letter stating that the proximity	
	distance of Reserve forests, protected	DFO letter is enclosed as Annexure -9.
	area, Sanctuaries, Tiger reserve etc., up	However, the details of Reserved Forest, Wildlife Sanctuaries within the study area are given in
	to a radius of 25km from the proposed	Chapter-3, Section 3.3 & Table 3-1.
	site.	
7	In the case of proposed lease in an	
	existing (or old) quarry where the	
	benches are not formed (or) partially	
	formed as per the approved Mining	Net analizable as the annual second second second
	Plan, the Project Proponent (PP) shall	Not applicable, as the proposed quarry is a fresh quarry.
	the PP shall carry out the scientific	
	studies to assess the slope stability of	
	the working benches to be constructed	

	and existing quarry wall, by involving	
	any one of the reputed Research and	
	Academic Institutions - CSIR-Central	
	Institute of Mining & Fuel Research /	
	Dhanbad, NIRM/Bangalore, Division of	
	Geotechnical Engineering-IIT-Madras,	
	NIT-Dept of Mining Engg, Surathkal,	
	and Anna University Chennai-CEG	
	Campus. The PP shall submit a copy of	
	the aforesaid report indicating the	
	stability status of the quarry wall and	
	possible mitigation measures during	
	the time of appraisal for obtaining the	
	EC.	
8	However, in case of fresh/virgin	
	quarries, the proponent shall submit a	As there is no proposal to mine beyond 12m depth from the top of the hill lock and the height of
	conceptual 'Slope stability plan' for the	
	proposed quarry during the appraisal	the hill lock is 32m AMSL. Since the proposed mining activity is from the top of the hill lock and the mine benches will be form as per the mining plan in accordance with Regulation 106 of the
	while obtaining the EC, when the depth	
	of the working is extended beyond 30m	MMR, 1961, the question of slope stability study does not arise.
	below ground level.	
9	The proponent shall furnish affidavit	
	stating that the blasting operation in the	Tamin will carried out the blasting operation in accordance with MMR 1961.
	L	ı

	proposed quarry is carried out by the	
	statuary component person as per the	
	MMR 1961 such as blaster, mining mate,	
	mine foremen, II/I class mines manager	
	appointed by the proponent.	
10	The PP shall present a conceptual design	
	for carrying out only controlled blasting	
	operation involving line drilling and	
	muffle blasting in the proposed quarry	
	such that the blast induced ground	The conceptual design of blasting operation is given in Chapter 2, Section 2.8.3.
	vibrations are controlled as well as no fly	
	rock travel beyond 30m from the blast	
	site.	
11	The EIA Coordinators shall obtain and	
	furnish the details of quarry/quarries	
	operated by the proponent in the past, in	The quarry photographs operated by the proponent in the past in other locations are enclosed as
	either the same location or elsewhere in	Annexure-6.
	the State with video and photographic	
	evidences.	
12	If the proponent has already carried out	
	the mining activity in the proposed	Not and both and a second and a feet and a second
	mining lease area after 15.01.2016, then	Not applicable, as the proposed project is a fresh quarry.
	the proponent shall furnish the following	

	details from AD/DD mines.	
13	What was the period of operation and	
	stoppage of the earlier mines with last	Net applicable as the graph and application for the graph arrange.
	work permit issued by the AD/DD	Not applicable, as the proposed project is a fresh quarry.
	mines?	
14	Quantity of minerals mined out.	
	a)Highest production achieved in any	
	one year	
	b) Detail of approved depth of mining	
	c) Actual depth of mining achieved	
	earlier	Not applicable, as the proposed project is a fresh quarry.
	d) Name of the person already minded	Not applicable, as the proposed project is a fresh quarry.
	out in that lease area	
	e) If EC and CTO already obtained, the	
	copy of the same shall be submitted	
	f) Whether the mining was carried out as	
	per the approved mine plan (or EC if	
	issued) with stipulated benches	
	All corner coordinates of the mine lease	• The boundary coordinates of the site is given in Table1-3 and Google image of the site
15	area superimposed on a high resolution	with GPS coordinates is given in Figure 1-1 .
15	Imagery/Topo sheet, topographic sheet,	 Topo map of the study area is given in Figure 3-1.
	geomorphology, lithology and geology of	Geomorphology of the study area is discussed in Chapter-3 , Section 3.4.8.1 and Figure

	the mining lease area should be provided. Such an imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone)	 3-8. Geology of the dharmapuri district is given in Chapter-3, Section 3.4.6. Land use and Land cover of the study area is discussed in Chapter-3, Section 3.4.9.1 and Figure 3-9. Ecological Features of the study area is given in Table 3-1 and Figure 3-2 & 3-3.
16	The PP shall carry out Drone video survey covering the cluster, green belt, fencing, etc.,	Drone video will be submitted during the final EC presentation. However, the site photographs & fencing photographs are enclosed as Annexure-7 .
17	The proponent shall fumish photographs of adequate fencing, green belt along the periphery including replantation of existing trees & safety distance between the adjacent quarries & water bodies nearby provided as per the approved mining plan	Site photographs and the fencing photographs are enclosed as Annexure-7 .

	The Project Proponent shall provide the				
	details of mineral reserves and mineable				
	reserves, planned production capacity,				
	proposed working methodology with				
18	justifications, the anticipated impacts of				
	the mining operations on the				
	surrounding environment, and the				
	remedial measures for the same.				

Total Reserves

S. No	Updated Geological Reserves	Updated Mineable Reserves	Proposed Production at 10% recovery (m³)
1	4,09,500	2,13,213	4,150

Yearwise Production

S.No	Year	ROM (m³)	Recovery@10% (m³)	Granite Waste @ 90 % (m³)
1	1stYear	6,003	600	5,403
2	2 nd Year	7,503	750	6,753
3	3 rd Year	8,500	850	7,650
4	4 th Year	9,496	950	8,546
5	5 th Year	9,999	1000	8,999
	Total	41,501	4,150	37,351

- Methodology of the proposed mining activity is given in **Chapter-2**, **Section 2.8**.
- Impacts and Mitigation measures due to proposed mining activity is given in **Chapter-4**.

The Project Proponent shall provide the Organization chart indicating the appointment of various statutory officials and other competent persons to be appointed as per the provisions of the

The organization chart hierarchy is discussed in **Chapter-10**, **Figure 10-1**.

19

	Mines Act 1952 and the MMR, 1961 for carrying out the quarrying operations scientifically and systematically in order to ensure safety and to protect the environment.	
20	The Project Proponent shall conduct the hydro-geological study considering the contour map of the water table detailing the number of groundwater pumping & open wells, and surface water bodies such as rivers, tanks, canals, ponds, etc. within 1 km (radius) along with the collected water level data for both monsoon and non-monsoon seasons from the PWD / TWAD so as to assess the impacts on the wells due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided.	The hydrogeology report is being prepared by Government of Tamil Nadu Water Resources Department. However, the proposed mining activity is for a depth of 12m from the top of the hill. Ground water table is available at 11.6mBGL (<i>Ref – TWAD</i>). Therefore, mining activities will not intersect with ground water table.
21	The proponent shall furnish the baseline data for the environmental and	The baseline data for the environmental and ecological parameters with regard to surface water / groundwater quality, air quality, noise monitoring, soil quality & flora / fauna including traffic /

	ecological parameters with regard to	vehicular movement study were conducted from February 2025 - April 2025 period are
	surface water/ground water quality, air	discussed in Chapter-3 .
	quality, soil quality & flora/fauna including traffic/vehicular movement study.	Ambient Air Quality details are provided in Chapter-3 , Section 3.6 . Noise monitoring locations are mentioned in Chapter-3 , Section 3.7 . Surface Water Quality Assessment is given in Chapter-3 , Section 3.8.1 . Ground Water Quality Assessment is given in Chapter-3 , Section 3.8.3 . Soil quality assessment is given in Chapter-3 , Section 3.9 . Biological Environment is given in Chapter-3 , Section 3.10 . The traffic / vehicular movement study are discussed in Chapter 4 and Section 4.6 .
22	The Proponent shall carry out the	
	Cumulative impact study due to mining operations carried out in the quarry specifically with reference to the specific environment in terms of soil health, biodiversity, air pollution, water pollution, climate change and flood control & health impacts. Accordingly, the Environment Management plan should be prepared keeping the concerned quanty and the surrounding habitations in the mind.	Detailed impact study has been carried out and the Impacts and mitigation measures in terms of soil health, biodiversity, air pollution, and water pollution were given in Chapter -4 . Environmental Management Plan & its Control Measures are provided in Chapter -10 .
23	Rain water harvesting management with	Rain water harvesting management details are provided in Chapter-4 , Section 4.7.1 and 4.25.3 .

	recharging details along with water	
	balance (both monsoon & non-monsoon)	
	be submitted.	
	Land use of the study area delineating	
	forest area, agricultural land, grazing	
	land, wildlife sanctuary, national park,	
	migratory routes of fauna, water bodies,	
	human settlements and other ecological	Land use of the study area is given in Chapter 3 and Section 3.4.9.1, Figure 3-9 & Table3-4.
24	features should be indicated. Land use	Land use plan of mine lease area is given in Chapter 2, Section 2.5 & Table 2-2 . Impacts and
	plan of the mine lease area should be	mitigation measures are given in Chapter 4.
	prepared to encompass preoperational,	
	operational and post operational phases	
	and submitted. Impact, if any, of change	
	of land use should be given.	
	Details of the land for storage of	
	Overburden/Waste Dumps (or) Rejects	The waste generation and the disposal were discussed in Chapter-2 , Section 2.8.9 .
25	outside the mine lease, such as extent of	Since the proposed project activity is a government poramboke land, Replace and Rehabilitation
25	land area, distance from mine lease, its	issues are not arise.
	land use, R&R issues, if any should be	issues are not arise.
	provided.	
	Proximity to Areas declared as 'Critically	
26	Polluted (or) the Project areas which	There is no critical polluted area within the study area.
	attracts the court restrictions for mining	

	operations, should also be indicated and	
	where so required. Clearance	
	certifications from the prescribed	
	Authorities, such as the TNPCB (or)	
	Dept. of Geology and Mining should be	
	secured and furnished to the effect that	
	the proposed mining activities could be	
	considered.	
	Description of water conservation	
	measures proposed to be adopted in the	Water Mitigation Measures are given in Chapter-4, Section 4.25.
27	Project should be given. Details of	Rain water harvesting management details are provided in Chapter 4 , Section 4.7.1 and 4.25.3 .
	rainwater harvesting proposed in the	Rain water harvesting management details are provided in chapter 4, section 4.7.1 and 4.23.3.
	Project, if any, should be provided.	
20	Impact on local transport infrastructure	Impact on local transport infrastructure due to the mining activity is discussed in Chapter 4,
28	due to the Project should be indicated.	Section 4.6.
	A tree survey study shall be carried out	
	(nos., name of the species, age, diameter	The detailed bio diversity study has been carried out and the details of list of flora and faunal
29	etc.,) both within the mining lease	
	applied area & 300m buffer zone and its	species in the study area have been discussed in Chapter – 3, Section 3.10.
	management during mining activity.	
	A detailed mine closure plan for the	
30	proposed project shall be included in	Mine closure plan is given in Chapter 2, Section 2.12.
	EIA/EMP report which should be site-	

	specific.						
31	As a part of the study of flora and fauna around the vicinity of the proposed site, the EIA coordinator shall strive to educate the local students on the importance of preserving local flora and fauna by involving them in the study, wherever possible.	The Importance of preserving local flora and fauna will be educated to the local students by the EIA coordinator.					
32	The purpose of Green belt around the project is to capture the fugitive emissions, carbon sequestration and to attenuate the noise generated, in addition to improving the aesthetics. A wide range of indigenous plant species should be planted as given in the appendix-I in consultation with the DFO, State Agriculture University. The plant species with dense/moderate canopy of native origin should be chosen. Species of small/medium/tall trees alternating	For plantation, native species with dense to moderate canopy cover will be prioritized to ensure ecological adaptability and effective environmental protection. A mixed plantation strategy will be adopted, incorporating small, medium, and tall tree species in combination with shrubs in an alternating pattern. This approach is expected to enhance biodiversity, provide effective dust and noise attenuation, and contribute to the aesthetic and ecological value of the quarry surroundings. No of trees					
	with shrubs should be planted in a mixed manner.	202 202		825	Neem, Pungan, Vilvam, Aathi, Panai	80%	660

33	Taller/one year old Saplings raised in appropriate size of bags, preferably ecofriendly bags should be planted as per the advice of local forest authorities/botanist/Horticulturist with regard to site specific choices. The proponent shall earmark the greenbelt area with GPS coordinates all along the boundary of the project site with at least 3 meters wide and in between blocks in an organized manner	As per committee recommendations, taller / one year old saplings raised in eco-friendly bags, will be planted in proper escapement as per the advice of local forest authorities / botanist / horticulturist with regard to sites specific choices. The proponent earmarked the green belt area of around 0.06.5Ha and it was provided in Annexure-4, Plate no.5.
34	A Disaster management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.	A detailed Disaster management plan is discussed in Chapter 7, Section 7.3.
35	A Risk Assessment and management Plan shall be prepared and included in the EIA/EMP Report for the complete life of the proposed quarry (or) till the end of the lease period.	A detailed Risk assessment and management plan is discussed in Chapter 7, Section 7.2.

apter 4, Section 4.15
ection 4.16 and 4.28.
om the mining activity.
er 3, Section 3.11.
i o, occuon o.ii.
om

	proposed to be provided by the Project			
	Proponent should be indicated. As far as			
	possible, quantitative dimensions may			
	be given with time frames for			
	implementation.			
	Details of litigation pending against the			
20	project, if any, with direction /order	There is no litigation pending against the proposed project.		
39	passed by any Court of Law against the			
	Project should be given.			
		Benefits of the Proposed Project		
	Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly	This proposed quarry will benefit to the local people by providing direct employment for		
		30 persons & indirect employment for 20 persons.		
		• The direct beneficiaries will be those who get employed in the mines as skilled and		
		unskilled workers.		
		Improvement in Per Capita Income.		
40		• The socio - economic conditions of the village will enhance due to this proposed project.		
	indicate environmental, social, economic,	• Necessary pollution control measures like water sprinkling, plantation, personal		
	employment potential, etc.	protective equipment and diamond wire saw cutting etc., will form regular practice in the		
		project.		
		Thus, the project is environmentally compatible, financially viable and would be in the		
		interest of construction industry thereby indirectly benefiting the masses.		
41	If any quarrying operations were carried	Not appliable as the proposed project is a fresh		
41	out in the proposed quarrying site for	Not applicable, as the proposed project is a fresh quarry.		

	which now the EC is sought, the Project	
	Proponent shall furnish the detailed	
	compliance to EC with the site	
	photographs which shall duly be	
	certified by MoEF&CC, Regional Office,	
	Chennai (or) the concerned DEE/TNPCB.	
	The PP shall prepare the EMP for the	
40	entire life of mine and also furnish the	The detailed EMP is provided in Chapter 10, Section 10.10 .
42	sworn affidavit stating to abide the EMP	The detailed EMP is provided in Chapter 10, Section 10.10 .
	for the entire life of mine.	
	Concealing any factual information or	
	submission of false/fabricated data and	
	failure to comply with any of the	
40	conditions mentioned above may result	All the information provided by the project proponent is factual and no false information has
43	in withdrawal of this Terms of	been submitted.
	Conditions besides attracting penal	
	provisions in the Environment	
	(Protection) Act, 1986.	

1.8.4.2 Standard Terms of Reference for Mining Minerals

S.No	Terms of Reference		Compliance				
	Year-wise production details since 1994 should be given, clearly stating the	453	It is a fresh lease quarry. The proponent has obtained lease for 20 years vide letter No. 4539479/MME.1/2023-1, dated: 13.09.2023 is enclosed as Annexure -1. The proposed yearwise production details are given below.				
	highest production achieved in any one year prior to 1994. It may also be		S. No	Year	ROM (m³)	Recovery @ 10% (m ³)	Granite waste @ 90% (m³)
1	categorically informed whether there		1	1stYear	6,003	600	5,403
	had been any increase in production		2	2 nd Year	7,503	750	6,753
	after the EIA Notification 1994 came into		3	3 rd Year	8,500	850	7,650
	force, w.r.t the highest production		4	4 th Year	9,496	950	8,546
	achieved prior to 1994.		5	5 th Year	9,999	1,000	8,999
	demeved prior to 155 ii		T	otal	41,501	4,150	37,351
	A copy of the document in support of the	A	A copy of the document issued by the Industries, Natural Resources (MME.1) Departmen				
2	fact that the Proponent is the rightful	Gov	vernmen	t of Tamil	l Nadu, vide L	etter No. 4539479/MME.1	1/2023-1 dated 13.09.2023,
	lessee of the mine should be given.	con	ıfirming	that TAMIN	is the rightful les	ssee of the mine, is enclosed	as Annexure -1 .
	All documents including approved mine						
3	plan, EIA and Public Hearing should be compatible with one another in terms of the mine lease area, production levels,	and	All documents including approved Mining plan, EIA and Public Hearing is compatible with on another in terms of the mine lease area, production levels, waste generation and its managemen mining technology etc., is in the name of TAMIN.				
	waste generation and its management, mining technology etc. and should be in						

	the name of the lessee.	
4	All corner co-ordinates of the mine lease area, superimposed in a High Resolution Imagery/ topo sheet, topographic sheet, geomorphology and geology of the area should be provided. Such a Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).	 The boundary coordinates of the site is given in Table1-3 and Google image of the site with GPS coordinates is given in Figure 1-1. Topo map of the study area is given in Figure 3-1. Geomorphology of the study area is discussed in Chapter-3, Section 3.4.8.1 and Figure 3-8. Geology of the dharmapuri district is given in Chapter-3, Section 3.4.6. Land use and Land cover of the study area is discussed in Chapter-3, Section 3.4.9.1and Figure 3-9. Ecological Features of the study area is given in Table 3-1 and Figure 3-2&3-3.
5	Information should be provided in Survey of India Topo sheet in 1:50,000 scale indicating geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.	 Topo map of the study area was prepared in 1:50,000 scale and given as Chapter-3, Figure 3-1. Geomorphology Map of study area is given in Figure 3-8. Geology of the dharmapuri district is provided in Chapter-3, Section 3.4.6. & Figure 3-6. Water bodies, streams and rivers and soil characteristics have been explained in Chapter-3.
6	Details about the land proposed for mining activities should be given with information as to whether mining confirms to the land use policy of the State; land diversion for mining should	4539479/MME.1/2023-1, dated 13.09.2023. Precise area communication letter is enclosed as

	have approval from State land use board	
	or the concerned authority.	
	It should be clearly stated whether the	
	proponent Company has a well laid down	
	Environment Policy approved by its	
	Board of Directors? I so, it may be spelt	
	out in the EIA Report with description of	
	the prescribed operating	
	process/procedures to bring into focus	
	any infringement/deviation/vibration of	TAMIN has a well laid down Environment Policy approved by its Board of Directors.
	the environmental or forest	Environmental Policy of TAMIN is given in Chapter -10, Figure 10-1.
7	norms/conditions? The hierarchical	Environmental Policy of TAMIN is given in Chapter -10, Figure 10-1.
	systems or administrative order of the	
	Company to deal with the environmental	
	issues and for ensuring compliances with	
	the EC conditions may also be given. The	
	system of reporting of non-compliances	
	/violations of environmental norms to	
	the Board of Directors of the Company	
	and /or stakeholders at large, may also	
	be detailed in the EIA Report.	
	Issues relating to Mine safety, including	➤ It is open cast semi mechanized mining and no underground mining will be done.
8	subsidence study in case of underground	Therefore, no subsidence study is required. Workable depth of mining will be 12m from

		mining and slope study in case of open		top of the hill.			
		cast mining, blasting study etc. should be	>	A detail regarding slop	e of the pit, drilli	ng and blasting is mentio	ned in Chapter-2 and
		detailed. The proposed safeguard		Section 2.8.			
		measures in each case should be	>	Safeguard measures are	e provided in Cha r	oter-10, Section 10.9.	
		provided.					
=		The study area will comprise of 10km	•	The study area of 10km	zone around the j	periphery of the mines lea	se area is considered.
		zone around the mine lease from lease	•	Life of mine is 22 years			
	9	periphery and the data contained in the	•	The production capacit	y, mineable capaci	ty, waste generation and o	other such details have
		EIA such as waste generation etc. should		been calculated for the	lease period of five	e years as per the approve	ed mining plan and also
		be for the life of the mine/lease period.		discussed in EIA in the	Chapter-2, Sectio	n 2.5, Table 2-3 ,Table 2	-4 and Table 2-5 .
-			Land u	se pattern of the study	area:		
		Land use of the study area delineating	Land u	se/land cover of study a	area is given in Ch	apter-3 and Section 3.4.	9.1, Table 3-4, Figure
		forest area, agricultural land, grazing	3-9.	•	J	-	
		land, wildlife sanctuary, national park,	Land use details of the quarry area:				
		migratory routes of fauna, water bodies,	A Land use detail of the quarry area is provided in Chapter -2, Section 2.5, and Table 2-2.				
		human settlements and other ecological			Dwagont avec	Dropogod Mining	Area at the end of
	10	features should be indicated. Land use	S.No	Description	Present area (Ha)	Proposed Mining Plan Period (Ha)	the life of mine
		plan of the mine lease area should be			()		(Ha)
		prepared to encompass preoperational,	1.	Mining Area		0.78.0	2.20.5
			2.	Waste Dump		0.66.0	1.74.0
		operational and post operational phases	3.	Office Infrastructure	0.01.0		0.01.0
		and submitted. Impact, if any, of change	4.	Foot path	0.14.0		0.14.0
		of land use should be given.	5.	Afforestation		0.06.5	0.27.5
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6	Unutilized Area	6115	4 0 4 0	2 22 5

6.

Unutilized Area

Total

6.44.5

6.59.5

4.94.0

6.44.5

2.22.5

6.59.5

11	Details of the land for any Over Burden dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, R & R issues, if any, should be given.	The waste generation details are given in Chapter-2, Table 2-5 & Disposal of waste is given in Chapter-2, Section2.8.9. There is no R&R issues.
12	A Certificate from the Competent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for representative of the State Forest Department to assist the Expert Appraisal Committees.	No forestland is involved in the proposed project site. The proposed quarry site is a government poramboke land & Additional Chief Secretary, Industries, Natural Resources (MME.1) Department, Secretariat, Chennai has been issued the Precise area communication letter by vide Letter Lr.No.4539479/MME.1/2023-1, dated: 13.09.2023 to grant lease for 20 years and is enclosed as Annexure-1.
13	State of forestry clearance for the broken up area and virgin forestland involved in	As the lease area is government poramboke land and there is no forestland involved.

the Project including deposition of net	
present value (NPV) and compensatory	
afforestation (CA) should be indicated. A	
copy of the forestry clearance should also	
be furnished.	
Implementation status of recognition of	
forest rights under the Scheduled Tribes	The area is not covered under Scheduled Tribes and other Traditional Forest Dwellers
and other Traditional Forest Dwellers	(Recognition of Forest Rights) Act, 2006. Hence, it is not applicable.
(Recognition of Forest Rights) Act, 2006	(Necognition of Porest Rights) Act, 2000. Hence, it is not applicable.
should be indicated.	
The vegetation in the RF/ PF areas in the	The details of the RF/ PF areas in the study area are given in Chapter-3 , Section 3.3 , Table 3-1
study area, with necessary details, should	and Figure 3-3.
be given.	and rigure 5-5.
A study shall be got done to ascertain the	
impact of the Mining Project on wildlife	
of the study area and details furnished.	
Impact of the project on the wildlife in	There are no protected wildlife sanctuaries within the study area. Hence, there will be no impact
the surrounding and any other protected	envisaged.
area and accordingly, detailed mitigative	
measures required, should be worked	
out with cost implications and submitted.	
Locations of National parks, Sanctuaries,	
Biosphere Reserves, Wildlife Corridors,	There are no National parks, Sanctuaries, Biosphere Reserves, Ramsar site, Tiger/Elephant
_	present value (NPV) and compensatory afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished. Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated. The vegetation in the RF/ PF areas in the study area, with necessary details, should be given. A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted. Locations of National parks, Sanctuaries,

	Ramsar site Tiger/ Elephant	Reserves within the study area.
	Reserves/(existing as well proposed), if	
	any, within 10km of the mine lease	The details of environmental sensitive areas covering within 15km from project boundary are
	should be clearly indicated, supported by	given in Chapter-3, Section 3.3 and Table 3-1.
	a location map duly authenticated by	
	Chief Wildlife warden. Necessary	
	clearance, as may be applicable to such	
	projects due to proximity of the	
	ecologically sensitive areas as mentioned	
	above, should be obtained from the	
	Standing Committee of National Board of	
	Wildlife and copy furnished.	
	A detailed biological study of the study	
	area [core zone and buffer zone (10km	
	radius of the periphery of the mine	
	lease)] shall be carried out. Details of	The details of Flora and fauna study are discussed in Chapter-3, Section 3.10. Also, the
	flora and fauna, endangered, endemic	conservation plan for the schedule-1 species with budgetary allocations was discussed in Table
18	and RET Species duly authenticated,	3-21 and Table 3-22.
	separately for core and buffer zone	
	should be furnished based on such	
	primary filed survey, clearly indicating	
	the schedule of the fauna present. In case	
	of any Schedule-I fauna found in the	

	study area, the necessary plan along with	
	budgetary provisions for their	
	conservation should be prepared in	
	consultation with State Forest and	
	Wildlife Department and details	
	furnished. Necessary allocation of funds	
	implementing the same should be made	
	as part of the project cost.	
	Proximity to Areas declared as "Critically	
	Polluted" or the Project areas likely to	
	come under the 'Aravali Range',	
	(attracting court restriction for mining	
	operations), should also be indicated and	
19	where so required, clearance	There is no critical polluted area within the study area.
19	certifications from the prescribed	There is no critical political area within the study area.
	Authorities, such as the SPCB or State	
	Mining Department should be secured	
	and furnished to the effect that the	
	proposed mining activities could be	
	considered.	
	Similarly, for coastal Projects, A CRZ map	
20	duly authenticated by one of the	Not applicable.
	authorized agencies demarcating LTL.	

	HTL, CRZ area, location of the mine lease w.r.t CRZ, coastal features such as mangroves, if any, should be furnished. (Note: The Mining Projects falling under CRZ would also need to obtain approval of the concerned Coastal Zone Management Authority)	
21	R&R Plan/compensation details for the Project Affected People (PAP) should be furnished. While preparing the R&R Plan, the relevant State/National Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs/Sts and other weaker sections of the society in the study area, a need based sample survey, family-wise, should be undertaken to access their requirements and action programmes prepared submitted accordingly, integrating the sectoral programmes of line departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area	The lease area is classified as Government Poramboke land. There is no Project Affected People (PAP) by the proposed mining activities. Hence, there is no need of R&R Plan. There is no human settlement in the allotted mine lease area. Socio economic study has been done and incorporated in Chapter-3 , Section 3.11 .

	will be shifted or not. The issues relating	
	to shifting of village(s) including their R	
	& R and socio-economic aspects should	
	be discussed in the Report.	
	One season (non-monsoon) [i.e March– May (Summer Season); October– December (Post Monsoon Season);	
	December (Post Monsoon Season); December-February (Winter Seasons)] primary baseline data on ambient air	
	quality as per CPCB Notification of 2009,	The primary baseline data monitored covered three (3) months i.e., from February 2025 – April
	water quality, noise level, soil nd flora	2025 and secondary data was collected from Government and Semi-Government organizations.
	and fauna shall be collected and the AAQ	
	and other data so compiled presented	Ambient Air Quality details are provided in Chapter -3, Section 3.6.
22	data-wise in the EIA and EMP report.	 Noise Monitoring details are mentioned in Chapter-3, Section 3.7.
	Site-specific meteorological data should	• Surface Water Quality Assessment is given in Chapter-3 , Section 3.8.1 .
	also be collected. The location of the	Ground Water Quality Assessment is given in Chapter-3 , Section 3.8.3 .
	monitoring stations should be such as to	Soil quality assessment is given in Chapter-3, Section 3.9.
	represent whole of the study area and	Biological Environment is given in Chapter-3, Section 3.10.
	justified keeping in view the pre-	
	dominant downwind direction and	
	location of sensitive receptors. There	
	should be at least one monitoring station	
	within 500m of the mine lease in the pre-	

	dominant downwind direction.					
	The mineralogical composition of PM10,					
	particularly for free silica, should be					
	given.					
	Air quality modelling should be carried	Total maximun	n GLCs from emissi	ons:		
	out for prediction of impact of the project					
	on the air quality of the area. It should	Pollutant	Max. Base Line	Estimated Incremental Conc.	Total Conc.	NAAQ
	also take into account the impact of		Conc. (µg/m³)	(μg/m³)	(μg/m³)	standard
	movement of Vehicles for transportation	PM	57.72	2.05	59.77	100
	of mineral. The details of the model used	SO ₂	15.01	0.12	15.13	80
	and input parameters used for modeling	NO _X	25.87	0.96	26.83	80
23	should be provided. The air quality	The details are p	orovided in Chapter	- 4, Section 4.3.2 and T	able 4-11.	
	contours may be shown on a location	Air Quality mod	delling results are g	given in Chapter-4, Se	ction 4.3.1, Table	4-8 to 4-10 and
	map clearly indicating the location of the	Figure 4-2 to Fi	igure 4-4.			
	site, location of sensitive receptors, if	Wind rose diagram considered for dispersion modeling is shown in Chapter-4 , Section 4.3.1				
	any, and the habitation. The wind roses	Figure 4-1.				
	showing pre-dominant wind direction	Traffic Volume after Implementation of the Project:				
	may also be indicated on the map.	The details are p	orovided in Chapter	-4, Section 4.6, and Ta	ble 4-14 & Table 4-1	15.
	The water requirement for the Project,					
	its availability and source should be	The water requi	rement for the proje	ct is addressed in Chap	ter-2 and Section 2.	9.1. Table 2-7.
24	furnished. A detailed water balance	The total water	requirement is sourc	ced from private tank su	ıppliers.	
	should also be provided. Fresh water					

	requirement for the Project should be	
	indicated.	
	Necessary clearance from the Competent	
25	Authority for drawl of requisite quantity	No ground water withdrawal to meet the water requirement is proposed. The total water
25	of water for the Project should be	requirement will be sourced from private tank suppliers.
	provided.	
	Description of water conservation	Water conservation measures are given in Chapter-4 , Section 4.25 .
	measures proposed to be adopted in the	Rainwater harvesting management details are provided in Chapter 4, Section 4.7.1 and
26	Project should be given. Details of	4.25.3.
	rainwater harvesting proposed in the	
	Project, if any, should be provided.	
	Impact of the Project on the water	
	quality, both surface and groundwater,	Impacts due to the proposed project on water environment and their mitigation measures are
27	should be assessed and necessary	discussed in Chapter-4 , Section 4.7 and 4.25 .
	safeguard measures, if any required,	
	should be provided.	
	Based on actual monitored data, it may	The hydrogeology report is being prepared by Government of Tamil Nadu Water Resources
	clearly be shown whether working will	Department.
	intersect groundwater. Necessary data	
28	and documentation in this regard may be	However, the proposed mining activity is for a depth of 12m from the top of the hill. Ground
	provided. In case the working will	water table is available at 11.6mBGL ($Ref - TWAD$). Therefore, mining activities will not intersect
	intersect groundwater table, a detailed	with ground water table.
	Hydro Geological Study should be	

	undertaken and Report furnished. The	
	Report inter-alia shall include details of	
	the aquifers present and impact of	
	mining activities on these aquifers.	
	Necessary permission from Central	
	Ground Water Authority for working	
	below ground water and for pumping of	
	ground water should be obtained and	
	copy furnished.	
	Details of any stream, seasonal or	
	otherwise, passing through the lease area	There is no any stream passing within the proposed mine lease area.
29	and modification/diversion proposed, if	There is no any stream passing within the proposed infine lease area.
	any, and the impact of the same on the	
	hydrology should be brought out.	
	Information on site elevation, working	Site Elevation: 432 AMSL
	depth, groundwater table etc. Should be	Height of the Hill: 32m
	provided both in ASML and bgl. A	Groundwater level is 11.6m depth (<i>Ref- TWAD</i>)
30	schematic diagram may also be provided	Proposed Depth of Mining is 12m from the top of the hillock is given in the Mining Plan as
	for the same.	enclosed as Annexure-3.
		Schematic Diagram of Site Elevation and Ground Water Regime is given in Chapter 1, Section
		1.4.3 and Figure 1-1 .
21	A time bound Progressive Greenbelt	The total area for the proposed green belt is 0.06.5 Ha during first 5 years of the proposed
31	Development Plan shall be prepared in a	quarrying activity. TAMIN is proposing to plant 825 trees are proposed to plant within the 7.5m

tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for greenbelt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution. Impact on local transport infrastructure

due to the Project should be indicated. Projected increase in truck traffic as a

result of the Project in the present road network (including those outside the Project area) should be worked out, safety buffer zone mine lease area and also in the proposed green belt area.

Proposed Greenbelt Details:

Year	No of trees proposed to be planted	Name of the species to be plant	Survival rate expected in %	No of trees expected to be grown
2025-26	825	Neem, pungam, vengai	80	660

Impacts and mitigation measures on transportation is given in **Chapter-4**, **Section 4.6 and 4.24**.

32

	indicating whether it is capable of	
	handling the incremental load.	
	Arrangement for improving the	
	infrastructure, if contemplated (including	
	action to be taken by other agencies such	
	as State Government) should be covered.	
	Project Proponent shall conduct Impact	
	of Transportation study as per Indian	
	Road Congress Guidelines.	
		Sanitation facilities, Shelters for Workers, Office Room and other facilities will be provided for the
	Details of the onsite shelter and facilities	mines workers. The details are provided in sectional plates and the same is enclosed as
33	to be provided to the mine workers	Annexure-4.
	should be included in the EIA Report.	
		Land use details of the quarry area are given in Chapter-2 , Section 2.5 , Table 2-2 .
	Conceptual post mining land use and	There will be no reclamation and restoration.
	Reclamation and Restoration of mined	It is proposed not to fill back the ultimate pit, in as much as good quantity of reserve is available
34	out areas (with plans and with adequate	below the workable depth.
	number of sections) should be given in	below the workable depth.
	the EIA report.	
	Occupational Health impacts of the	Occupational Health impacts & preventive measures details are given in Chapter-4 , Section 4.15
35	Project should be anticipated and the	and 4.28 .
33	proposed preventive measures spelt out	The EMP details are given separately as Chapter-10 along with EMP Cost details are provided in
	in detail. Details of pre-placement	The Limit details are given separately as chapter-10 along with Limit cost details are provided in

	medical examination and periodical	Section 10.10.
	medical examination schedules should be	
	incorporated in the EMP. The project	
	specific occupational health mitigation	
	measures with required facilities	
	proposed in the mining area may be	
	detailed.	
	Public health implications of the Project	
	and related activities for the population	Due to implementation of proposed environmental Management plan mentioned in this report no
	in the impact zone should be	significant public health implications are anticipated. Budgetary allocations on remedial
36	systematically evaluated and the	measures have been included in EMP Budget in Chapter 10 "Environmental Management Plan".
	proposed remedial measures should be	measures have been included in EMF budget in Chapter 10 Environmental Management Flan.
	detailed along with budgetary	
	allocations.	
	Measures of socio-economic significance	
	and influence to the local community	
	proposed to be provided by the Project	CER activity discussed in Chapter 8, Section 8.4 .
37	Proponent should be indicated. As far as	•
	possible, quantitative dimensions may be	Project Benefits are discussed in Chapter 8 .
	given with time frames for	
	implementation.	
20	Detailed Environmental Management	The detailed EMP was discussed in Chapter-10 along with EMP Cost details are provided in
38	Plan (EMP) to mitigate the	

environmental impacts which, should	Section 10.10.
inter-alia include the impacts of change	
of land use, loss of agricultural and	
grazing land, if any, occupational health	
impacts besides other impacts specific to	
the proposed Project.	
Public Hearing points raised and	
commitment of the Project Proponent on	Since the report is being prepared for submission for the Public Hearing, the points raised during
the same along with time bound action	the public hearing, along with the commitments made by the project proponent, will be
Plan with budgetary provisions to	incorporated into Chapter 7 – 'Additional Studies' of the Final EIA/EMP Report.
implement the same should be provided	
and also incorporated in the final	
EIA/EMP Report of the Project.	
Details of litigation pending against the	
project, if any, with direction/order	There is no litigation against the project.
passed by any Court of Law against the	There is no neighbor the project.
Project should be given.	
The cost of the Project (capital cost and	
recurring cost) as well as the cost	The project Cost is 99,97,000/- as addressed in Chapter-2 and Section 2.7 .
towards implementation of EMP should	The cost spent for EMP is discussed in Chapter -10 , Section 10.10 .
be clearly spelt out.	
A Disaster Management Plan shall be	
prepared and include in the EIA/EMP	Detailed Disaster management plan are provided in Chapter -7 and Section 7.3 .
	inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project. Public Hearing points raised and commitment of the Project Proponent on the same along with time bound action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project. Details of litigation pending against the project, if any, with direction/order passed by any Court of Law against the Project should be given. The cost of the Project (capital cost and recurring cost) as well as the cost towards implementation of EMP should be clearly spelt out. A Disaster Management Plan shall be

	Report.	
	Benefits of the Project if the Project is	
43	implemented should be spelt out. The	The benefit of the proposed project indicating environmental, social, economic, employment
	benefits of the project shall clearly	potential was discussed in Chapter- 8 .
	indicate environmental, social, economic,	potential was discussed in chapter- 6.
	employment potential, etc.	

1.8.4.3 SEIAA Standard Conditions

S.No	Terms of Reference	Compliance
Cluster Management Committee		
1	Cluster Management Committee, which must include all the proponents in the cluster as members including the existing as well as proposed quarry:	There is only one existing quarry of same proponent located within 500m radius of the proposed site. Hence, Cluster Management Committee is not required.
2	The members must coordinate among themselves for the effective implementation of EMP as committed including Green Belt Development, Water sprinkling, tree plantation, blasting etc	Cluster management committee is not required. However, TAMIN is a government organization will effectively implement the EMP as committed.
3	The List of members of the committee formed shall be submitted to AD Mines before the execution of mining lease and the same shall be	Since there is no cluster mines other than same proponent quarry, the cluster management committee is not applicable.

	updated every year to the AD/Mines	
4	Detailed Operational Plan must be submitted	
	which must include the blasting frequency with	
	respect to the nearby quarry situated in the	There is only one existing quarry of same proponent located within 500m radius of the
	cluster, the usage of haul roads by the	proposed site.
	individual quarry in the form of route map and	
	network.	
	The committee shall deliberate on risk &	
	emergency management plan, fire safety &	
	evacuation plan and sustainable development	The cluster management committee formation is not required. However, Risk
5	goals pertaining to the cluster in a holistic	management of the proposed mining project is discussed in Chapter 7, Section 7.2.
	inner especially during natural calamities like	Sp. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	intense rain and the mitigation measures	
	Considering the inundation of the cluster and	
	evacuation plan.	
	The Cluster Management Committee shall	The cluster management committee formation is not required. However, Environmental
	forms Environmental Policy to practice	management plan details are discussed in Chapter-10 .
	sustainable mining in a scientific and	
6	systematic manner in accordance with the law.	
0	The role played by the committee in	
	implementing the environmental policy	
	devised shall be given in detail in the EIA	
	report.	

	The committee shall furnish action plan	
	regarding the restoration strategy with respect	There is only one existing quarry of same proponent located within 500m radius of the
7	to the individual quarry falling under the	proposed site.
	cluster in a holistic manner.	
8	The committee shall deliberate on the health of the workers/staff involved in the mining as well as the health of the public in the vicinity.	There is only one existing quarry of same proponent located within 500m radius of the proposed site. Hence, Cluster Management Committee is not required. However, the health of the workers/staff involved in the mining as well as the health of the public discussed in Chapter -10 .
Impact	study of mining	
Agricul	ture & Agro Biodiversity	
	Impact on surrounding agricultural fields	The detailed impact and mitigation measures due to proposed mining activity on
9	around the proposed mining Area	surrounding agricultural fields are discussed in Chapter-4, Section 4.11 and Section
		4.29.
		4.29. Impact and mitigation measures of soil given in Chapter-4, Section 4.2 and Section
	Impact on soil flora & vegetation around the	Impact and mitigation measures of soil given in Chapter-4, Section 4.2 and Section
10	Impact on soil flora & vegetation around the project site	Impact and mitigation measures of soil given in Chapter-4 , Section 4.2 and Section 4.17.1 .
10		Impact and mitigation measures of soil given in Chapter-4 , Section 4.2 and Section 4.17.1 . Impact and mitigation measures of flora & fauna are given in Chapter-4 , Section 4.10 and
10		Impact and mitigation measures of soil given in Chapter-4 , Section 4.2 and Section 4.17.1 . Impact and mitigation measures of flora & fauna are given in Chapter-4 , Section 4.10 and Section 4.27 .
10		Impact and mitigation measures of soil given in Chapter-4 , Section 4.2 and Section 4.17.1 . Impact and mitigation measures of flora & fauna are given in Chapter-4 , Section 4.10 and Section 4.27 . Impact and mitigation measures due to proposed mining activity on surrounding
	project site	Impact and mitigation measures of soil given in Chapter-4 , Section 4.2 and Section 4.17.1 . Impact and mitigation measures of flora & fauna are given in Chapter-4 , Section 4.10 and Section 4.27 . Impact and mitigation measures due to proposed mining activity on surrounding agricultural fields are discussed in Chapter-4 , Section 4.11 and Section 4.29 .
10	project site Details of type of vegetations including no. of	Impact and mitigation measures of soil given in Chapter-4 , Section 4.2 and Section 4.17.1 . Impact and mitigation measures of flora & fauna are given in Chapter-4 , Section 4.10 and Section 4.27 . Impact and mitigation measures due to proposed mining activity on surrounding agricultural fields are discussed in Chapter-4 , Section 4.11 and Section 4.29 . In the proposed lease boundary, only Fabaceae and Malvaceae Shrubs are present. Hence,

	proposed mining area shall committed	
	mentioned in EMP	
12	The Environmental Impact Assessment should study the agro-biodiversity, agro-forestry, horti-cultural plantations, the natural ecosystem, the soil micro flora, fauna and soil seed banks and suggest measures to maintain the natural Ecosystem.	The details of Flora and fauna study are discussed in Chapter-3 , Section 3.10 . In addition, the conservation plan for the schedule 1 species with budgetary allocations was given in Table 3-22 .
13	Action should specifically suggest for sustainable management of the area and restoration of ecosystem for flow of goods and services.	The proponent to manage the surrounding environment and restore the ecosystem will follow all the essential environmental protective measures.
14	The project proponent shall study and furnish the impact of project on plantations in adjoining patta lands, Horticulture, Agriculture and livestock.	The detailed impacts and mitigation measures are discussed in Chapter 4 , Section 4.11 and 4.29 .
Forests	6	
15	The project proponent shall detailed study on impact of mining on Reserve forests free ranging wildlife.	Nearest reserved forest is Kavaramalai RF which at a distance of 3.18 km (W), so there is no any impact for free ranging of wildlife and remaining reserve forest details are given in Chapter 3, Table 3-1.
16	The Environmental Impact Assessment should study impact on forest, vegetation, endemic vulnerable and endangered indigenous flora	The impacts on Biological environment and mitigation measures are discussed in Chapter-4 , Section 4.10 and Section4.27 . The details of Flora and fauna study are discussed in Chapter 3 , Section 3.10 . Also, the conservation plans for the schedule 1

	and fauna.	species with budgetary allocations were discussed in Table 3-21 and 3-22 .
17	The Environmental Impact Assessment should study impact on standing trees and the existing trees should be numbered and action suggested for protection.	The impacts and mitigation measures of Biological environment is discussed in Chapter-4, Section 4.10 and Section4.27 Action suggested for protection: The total area for the proposed green belt is 0.06.5 Ha during first 5 years of the proposed quarrying activity. TAMIN is proposing to plant 825 trees, which are proposed to plant within the 7.5m safety buffer zone mine lease area and in the proposed green belt area.
18	The Environment Impact Assessment study impact on protected areas. Reserve Forests, National Parks. Corridors and life pathways, near project site.	There are no National parks, Biosphere Reserves, Wildlife Corridors; Tiger/ Elephant Reserves were located within 10km of the mine lease area. Nearest reserved forest is Kavaramalai RF which at a distance of 3.18 km (W), so there will be no any impact and remaining reserved forest details are given in Chapter 3, Table 3-1.
Water	Environment	
19	Hydro-geological study considering the contour map of the water table detailing the number of ground water pumping & open wells, and surface water bodies such as rivers, tank canals, ponds etc. within 1 km (radius) so as to assess the impacts on the nearby waterbodies due to mining activity. Based on actual monitored data, it may clearly be shown whether working will intersect groundwater.	The hydrogeology report is being prepared by Government of Tamil Nadu Water Resources Department. However, the proposed mining activity is for a depth of 12m from the top of the hill. Ground water table is available at 11.6m BGL (<i>Ref – TWAD</i>). Therefore, mining activities will not intersect with ground water table.

	Necessary data and documentation in this	
	regard may be provided, covering the entire	
	mine lease period.	
		Erosion control measures given in Chapter 4, Section 4.20 .
20	Erosion Control measures.	Green belt development is one the important control measure of erosion, which is
		discussed in Chapter 4, Section 4.27.1.
	Detailed study shall be carried out in regard to	
0.4	impact of mining around the proposed mine	The impacts due to proposed mining activity on nearby Villages, Water-bodies Rivers, &
21	lease area on the nearby Villages, Water-bodies	any ecological fragile area are discussed in Chapter -4 .
	Rivers, & any ecological fragile area.	
	The project proponent shall study impact on	The water body around the project site is seasonal and involves common aquatic fish and
22	fish habitats and the food WEB food chain in	flora. Therefore, it is not expected to have any significant effects on aquatic species or
	the water body and Reservoir.	their habitats.
	The project proponent shall study and furnish	The potential fragmentation impact of natural environment due to proposed mining
23	the details on potential fragmentation impact	activity is discussed in Chapter-4 , Section 4.31 .
	of natural environment, by the activities.	activity is discussed in chapter -4, section 4.51.
	The project proponent shall study and furnish	The water body surrounding the project site is seasonal, and only common aquatic fish
	the impact on aquatic plants and animals in	and flora are present. Therefore, the project is not expected to impact the ecological
2.4	water bodies and possible scars on the	character of aquatic plants and animals in the water bodies. Additionally, there are no
24	landscape, damages to nearby caves, heritage	nearby caves or heritage sites in the vicinity of the proposed site, so no impacts are
	site, and archaeological sites possible land	anticipated from the proposed activities.
	form changes visual and aesthetic impacts	andcipated from the proposed activities.
25	The Terms of Reference should specifically	The detailed base line study has been conducted and the soil quality monitoring locations

	study impact on soil health, soil erosion, the	& results are discussed in Chapter 3, Section 3.9.	
	soil physical, chemical components and	Impacts and mitigation measures are given in Chapter 4, Section 4.2 and Section 4.19 .	
26	microbial components. The Environmental Impact Assessment should study on wetlands, water bodies, rivers streams, lakes and farmer sites. The EIA shall include the impact of mining activity on the following: a) Hydrothermal/Geothermal effect due to destruction in the Environment. b) Bio-geochemical processes and its foot prints including Environmental stress. c) Sediment geochemistry in the surface streams.	The detailed impact and mitigation measures on water environment are discussed in Chapter-4, Section 4.7 & Section 4.25. The impact of Hydrothermal/Geothermal Environment is discussed in Chapter 4, Section 4.12 and Section 4.13. and the control measures are given in Section 4.30. Impact on Sediment Geochemistry in the Surface streams are discussed in Chapter 4, Section 4.14. and the control measures are given in Section 4.18.	
Energy			
28	The measures taken to control Noise, Air,		
	Water, Dust Control and steps adopted so	Environmental Impacts and Mitigation Measures are provided in Chapter-4 .	
	efficiently utilize the Energy shall be furnished.		
Climate	Climate Change		
29	The Environmental Impact Assessment shall	Operating a granite quarry can have several impacts on increasing carbon emissions and	
	study in detail the carbon emission and also	contributing to temperature rise, primarily through direct and indirect mechanisms.	
	suggest the measures to mitigate carbon	J : F :	
	emission including development of carbon	The proposed Granite Quarry has the potential to generate various GHG emissions,	

	sinks and temperature reduction including	including carbon dioxide (CO ₂), methane (CH ₄), nitrous oxide (N ₂ O), fluorinated gases,	
	control or other emission and climate	water vapour, and ozone. These emissions can arise from different phases of quarrying	
mitigation activities		operations, such as excavation, transportation, energy consumption, and land-use	
		changes. A detailed study has been conducted to analyse and mitigating these emissions	
		for minimizing environmental impact and promoting sustainable quarrying practices the	
		same has been discussed in Chapter- 4, Section 4.5 and 4.23.	
33	The Environmental Impact Assessment should	The operation of the proposed quarry can have various impacts on climate change,	
	study impact on climate change, temperature	temperature rise, pollution, and carbon stocks, both above and below the soil. A detailed	
	rise, pollution and above soil & below soil	study has been conducted the results are discussed in Chapter -4, Section 4.4 & 4.5 and	
	carbon stock soil health and physical, chemical	the mitigation measures are given in Section 4.22 and Section 4.23 .	
	& biological soil features.		
Mine C	Mine Closure Plan		
34	Detailed Mine Closure Plan covering the entire		
	mine lease period as per precise area	Mine Closure Plan is provided in Chapter -2, Section 2.12.	
	communication order issued.		
EMP			
35	Detailed Environment Management Plan along		
	with adaptation, mitigation & remedial		
	strategies covering the entire mine lease	The Environment Management Plan with budget allocation is discussed in Chapter-10 .	
	period as per precise area communication	The Environment Management Fian with budget anotation is discussed in Chapter-10.	
	order issued and the scope for achieving		
	SDGs.		
36	The Environmental Impact Assessment should	The EMP details are given in Chapter-10 , and budget for EMP is given in Section 10.10 .	

	hold detailed study on EMP with budget for	
	Green belt development and mine closure plan	
	including disaster management plan.	
Risk A	ssessment	,
37	To furnish risk assessment and management	
	plan including anticipated vulnerabilities	Risk Identification & Management are provided in Chapter-7 , Section 7.2 .
	during operational and post operational phases	Risk Identification & Management are provided in Chapter-7, Section 7.2.
	of Mining	
Disaster Management Plan		
38	To furnish disaster management plan and	
	disaster mitigation measures in regard to all	
	aspects to avoid reduce vulnerability to	
	hazards & to cope with disaster/untoward	
	accidents in & around the proposed mine lease	Disaster Management Plan is provided in Chapter -7, Section 7.3.
	areas due to the proposed method of mining	
	activity & its related activities covering the	
	entire mine lease period as per precise area	
	communication order issued.	
Others		
39	The project proponent shall furnish VAO	
	certificate with reference to 300m radius	The MAO could be an elected as Assessment O
	regard to approved habitations, schools.	The VAO certificate is enclosed as Annexure-8 .
	Archaeological sites. Structures, railway lines,	
L		i

	roads, water bodies such as streams, oda, vaari,	
40	canal, channel, river, lake pond, tank etc. As per the MoEF& CC office memorandum F.No.22-65/2017-IA III dated: 30.09.2020 and 20.10.2020 the proponent shall address the concerns raised during the public consultation and all the activities proposed shall be part of the Environment Management Plan	The draft EIA report for the proposed quarry will be submitted for the Public Hearing. After receiving the minutes from the TNPCB, the concerns raised during the Public Hearing will be incorporated into the final EIA report along with the corresponding compliance measures. The budget for the Environmental Management Plan (EMP) will be allocated based on the concerns raised during the Public Hearing, if applicable.
41	The project proponent shall study and furnish the possible pollution due to plastic and microplastic on the environment. The ecological risks and impacts of plastic & microplastics on aquatic environment and fresh water systems due to activities, contemplated during mining may be investigated and reported	No plastics are involved in the proposed project.

2 PROJECT DESCRIPTION

2.1 Description of the Project

The quarry operation is proposed to carry out by opencast semi mechanized method by formation of benches. Benches are proposed with a height of 6m & 6m width with vertical slopes. The topography of the applied area is a hilly terrain of about 32m surrounding by plain lands. The altitude of the area is 432 AMSL. The total proposed production capacity is 4,150m³ at 10% recovery of ROM 41,501m³. The annual peak production will be 1,000m³ at 10% recovery of ROM 9,999m³.

2.2 Type of Project

The project falls under B1 Category, Schedule 1(a) Mining of Minerals as per MoEF&CC notification 2006 and its subsequent amendments. The quarrying operation is being carried out by open cast semi-mechanized method with 6m bench height and 6m bench width along with deployment of HEMM for development and production activities under Regulation 106.

2.3 Need of the Project

The granite dimensional stone material by virtue of its pleasing color and texture and its best ability to take polishing and appealing look in polished product has attracted the consumers in the building construction and interior decoration industries. The domestic market capabilities have also been explored in recent periods. Bulk quantity of the blocks is produced and exported as raw blocks and some quantity is being processed at TAMIN's granite processing units and exported as value added finished products.

The earning source in the targeted area is limited, most of the people in and around the area depend upon the seasonal agriculture and much of the people migrate to nearby towns where good industries and factories are growing up. This project will provide direct employment for about 30 persons. This material is well known in the international supermarket of Granite, which will fetch a good fetch a good foreign exchange to the nation.

2.4 Location of the Project

The quarry is located at SF.No.83 (Part), Jammanahalli Village, Pappireddypatti Taluk, Dharmapuri District, Tamil Nadu State. Quarry lease area falls in the survey of India Topo sheet D44S8 and the area lies in the Eastern Longitude from 78°25'11.6284"E to 78°25'25.2777"E and Northern latitude from 12°00'33.8481"N to 12°00'45.4265"N. The quarry lease area is hillock with height of about 32m surrounded by plain lands. The altitude of the area is 432m AMSL (Above Mean Sea Level).

Location map of the lease area is given in **Figure 2-1.** 1km Radius Google image of the lease area is shown in **Figure 2-2.** 5km Radius Google image of the lease area is shown in **Figure 2-3.** 10km Radius Google image of the lease area is shown in **Figure 2-4**.

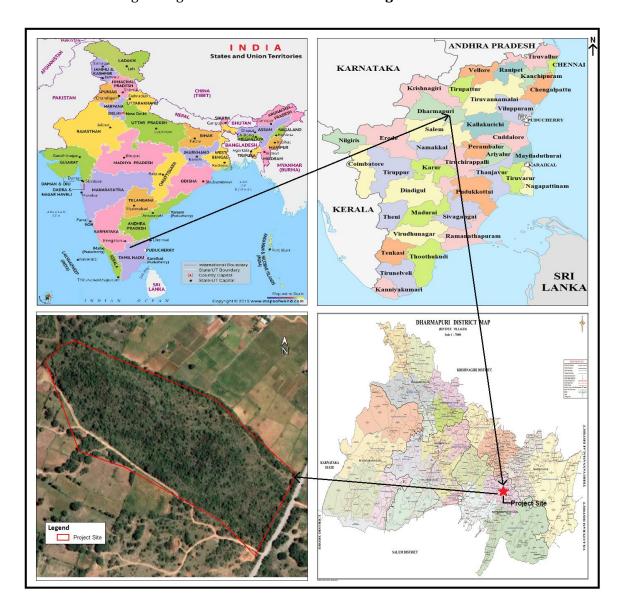


Figure 2-1 Location Map of the Leased Area

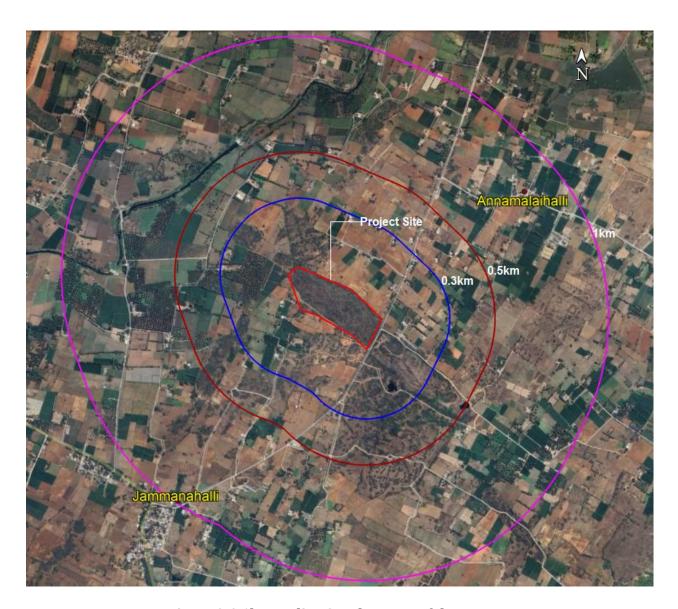


Figure 2-2 1km Radius Google Image of the Lease Area

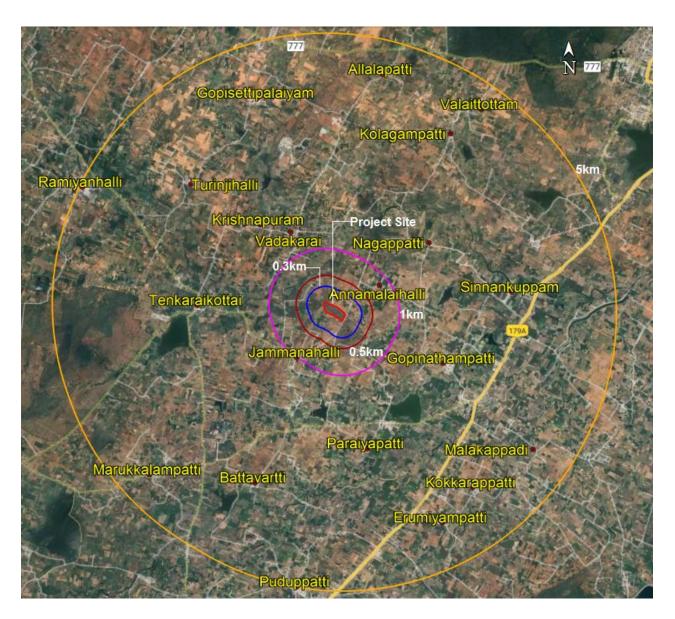


Figure 2-3 5km Radius Google Image of the Lease Area

Figure 2-4 10km Radius Google Image of the Lease Area

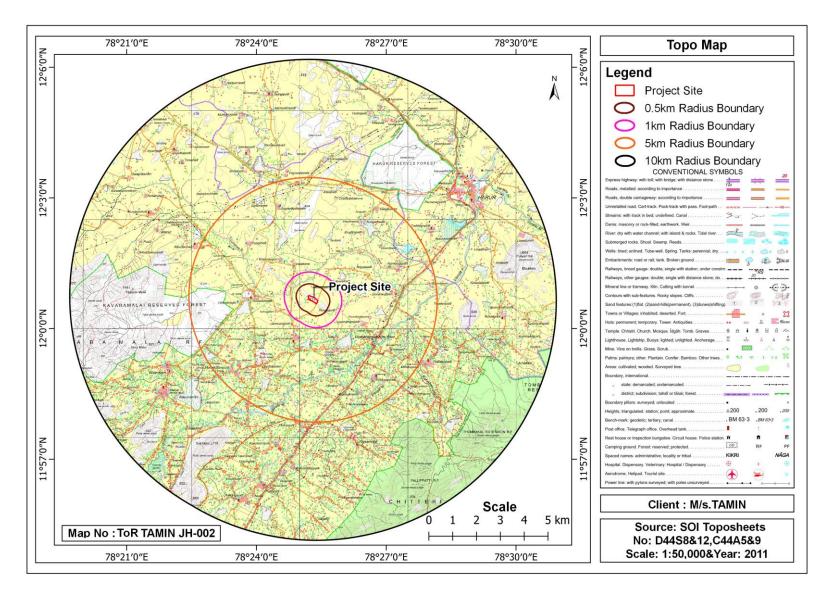


Figure 2-5 Topo Map of the Study Area

Table 2-1 Project Summary

S. No	Particulars	Details
1.	Project Location	S.F.No.83(Part), Jammanahalli Village, Pappireddypatti Taluk, Dharmapuri District, Tamil Nadu State.
2.	Land classification	Government Poramboke Land
3.	Extent of lease area (Ha.)	6.59.5
4.	Precise area communication	Precise area communication letter was granted vide Industries (MME.1) Department, Rc. No. 4539479/MME.1/2023-1, dated: 13.09.2023.
5.	Lease Period	20 years
6.	Estimated Geological Reserves (ROM) m ³	4,09,500
7.	Estimated Mineable Reserves (ROM) m ³	2,13,213
8.	Proposed production Capacity (m ³)	4,150
9.	Depth of Mining	12m from the top of hill
10.	Method of Mining	Open cast semi mechanized method
11.	Water Requirement (KLD)	3.5
12.	Source of Water	Private tankers
13.	Power requirement (kVA)	60
14.	Power Backup (DG set)Kva	1* 125
15.	Fuel requirements (Lts/Day)	200
16.	Direct Manpower (Nos)	30
17.	Municipal Solid Waste Generation (kg/day)	13.5
18.	Project Cost in Lakhs	99.97

2.5 Size or Magnitude of operation

The quarrying operation is being carried out by open cast semi-mechanized method with 6m bench height and 6m bench width along with deployment of HEMM for development and production activities under Regulation 106.

The Geological reserves of black granite have been computed based on the Geological Plan & Sections up to the economically workable average depth of 33m from the top of the hillock works out to 4,09,500m³. Mineable reserves have been computed as 2,13,213m³ after leaving the reserves locked up in safety barrier and benches based on the Conceptual Plan and sections, the effective (Saleable) mineable reserves have been worked out as 21,321m³ by applying the recovery factor 10%. The total proposed production capacity 4,150m³ is at 10% recovery of ROM 41,501m³. The annual peak production will be 1,000m³ at 10% recovery of ROM 9,999m³.

Total waste (Granite waste + Side Burden+Over Burden) to be generated during the five years of Mining Plan period will be around 64,962m³. These wastes are proposed to be dumped on the South East side of lease area. The Land use details of the lease area were summarized in **Table 2-2**.

Table 2-2 Land Use Details of the Lease Area

S.No	Description	Present area (Ha)	Proposed Mining Plan Period (Ha)	Area at the end of the life of mine (Ha)
1.	Mining Area		0.78.0	2.20.5
2.	Waste Dump		0.66.0	1.74.0
3.	Office Infrastructure	0.01.0		0.01.0
4.	Foot Path	0.14.0		0.14.0
5.	Afforestation		0.06.5	0.27.5
6.	Unutilized Area	6.44.5	4.94.0	2.22.5
	Total	6.59.5	6.44.5	6.59.5

Granite Quarry Reserves is given in **Table 2-3**. The yearwise production details are given in the **Table 2-4**. Total waste generation is given in **Table 2-5**. Surface Plan of the Quarry is given in **Figure 2-6**. Geological plan and cross section of the quarry is shown in **Figure 2-7**. The yearwise production and development details are given in the **Figure 2-8**. Land use and afforestation of the quarry is shown as **Figure 2-9**. Conceptual Plan of the quarry area is shown as **Figure 2-10**.

Table 2-3 Granite Quarry Reserves

S. No	Geological Reserves (m³)	Mineable Reserves (m³)	Proposed Production at 10% recovery (m³)
1.	4,09,500	2,13,213	4,150

Table 2-4 Yearwise Production Details

S. No	Year	ROM (m³)	Recovery @ 10% (m³)	Granite Waste @ 90 % (m³)
1	1 st Year	6,003	600	5,403
2	2 nd Year	7,503	750	6,753
3	3 rd Year	8,500	850	7,650
4	4 th Year	9,496	950	8,546
5	5 th Year	9,999	1000	8,999
	Total	41,501	4,150	37,351

Table 2-5 Waste Generation Details

S. No	Year	Over Burden (m³)	Side Burden (m³)	Granite Rejects @ 90% (m³)
1	1 st Year	6,320	580	5,403
2	2 nd Year	4,452	174	6,753
3	3 rd Year	4,539	401	7,650
4	4 th Year	7,012	2,339	8,546
5	5 th Year	1,314	480	8,999
	Total	23,637	3,974	37,351

Estimated Life of the Quarry:

• Mineable Reserves @10% recovery: 21,321m³

Annual Peak Production @10% recovery: 1,000m³

• Estimated Life of the Quarry = \sim 22 years

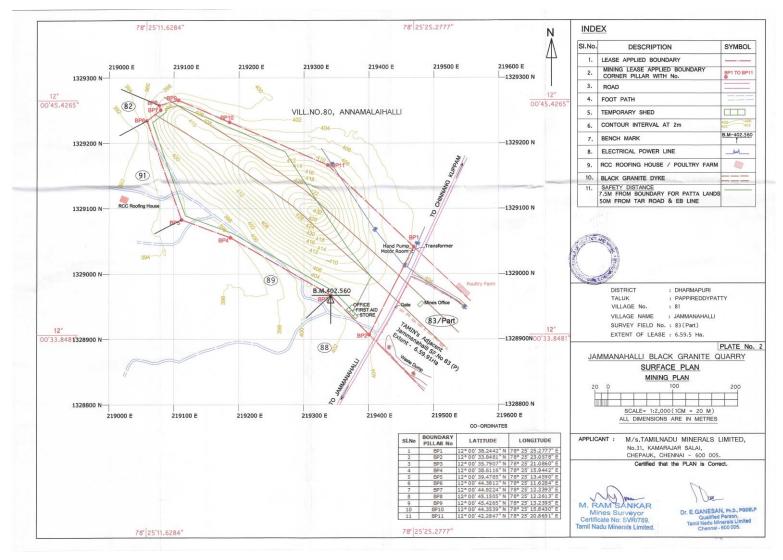


Figure 2-6 Surface Plan of the Quarry

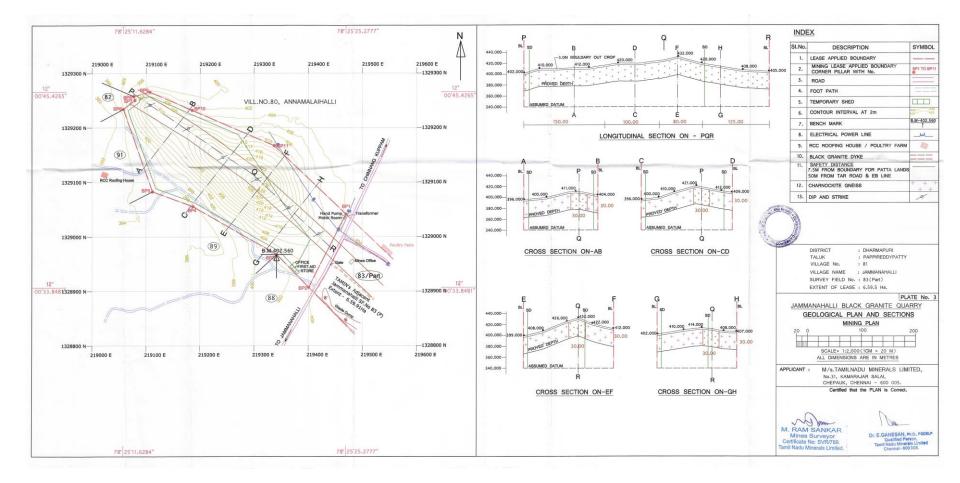


Figure 2-7 Geological Plan & Section of the Quarry

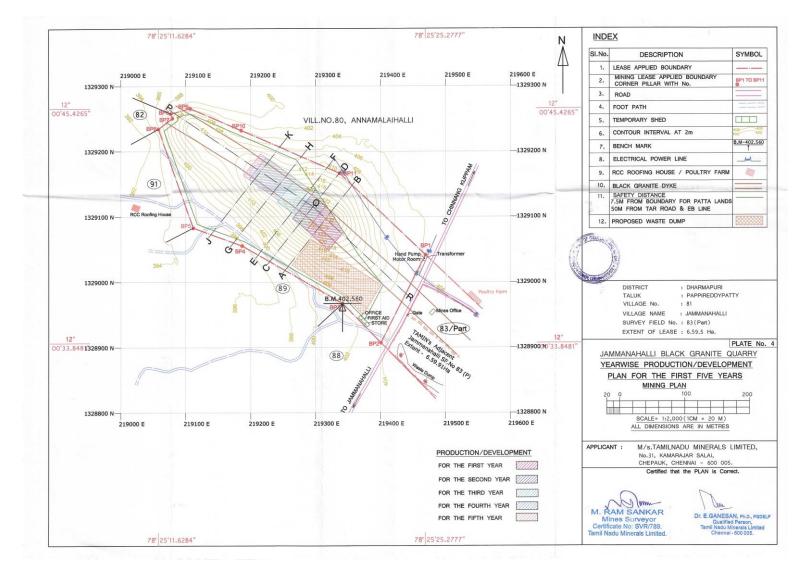


Figure 2-8 Yearwise Production/Development Plan for 5 years

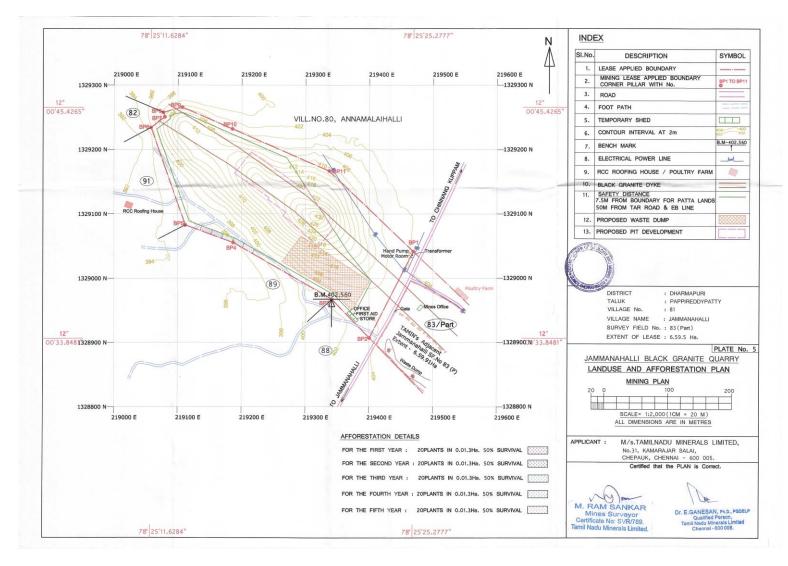


Figure 2-9 Land Use and Afforestation Plan of the Quarry

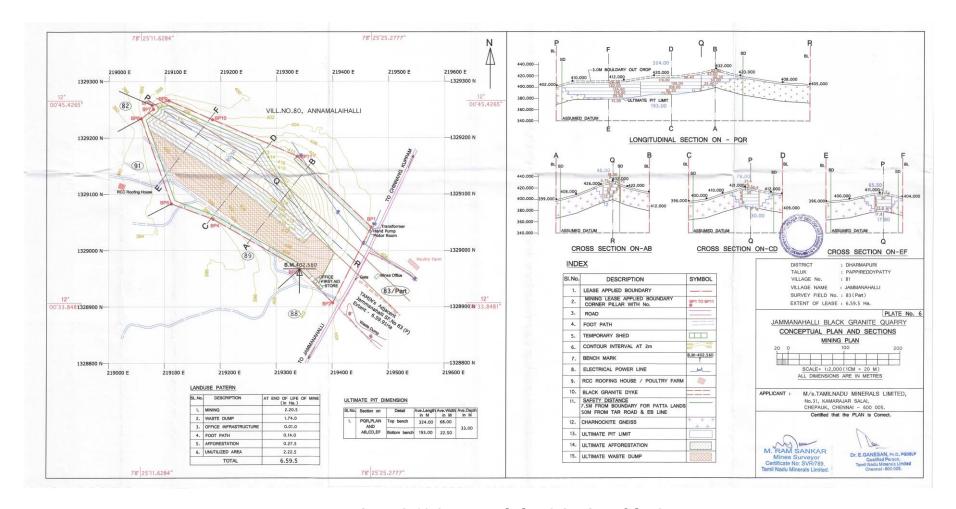


Figure 2-10 Conceptual Plan & Section of the Quarry

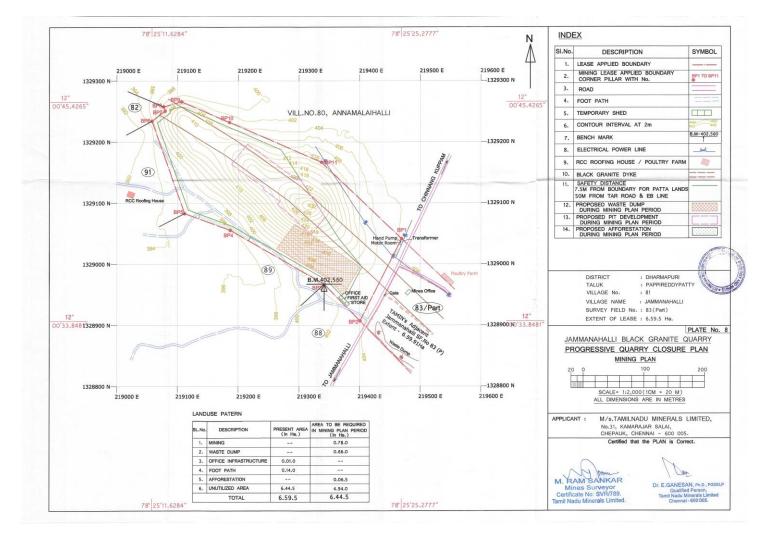


Figure 2-11 Progressive Closure Plan of the Quarry

2.6 Proposed Schedule for Approval and Implementation

The time schedule for the completion of the proposed mining project is given in the below as,

Particulars	Time Schedule
Submission of Draft EIA/EMP to TNPCB for Public Hearing	August 2025
Conduction of Public Hearing	October 2025
Submitting final EIA/EMP	December 2025
Presentation to SEAC and Obtaining EC	January 2026

The project will be implemented after Obtaining EC from SEIAA and CTO from PCB.

2.7 Project Cost

The project cost is summarized in **Table 2-6**.

Table 2-6 Project Cost

S. No	Description of the Cost	Amount in Rs.
A.	Fixed Cost	
1	Land Cost	Nil. Because Govt. land
2	Labour shed	50,000/-
3	Sanitary facilities	50,000/-
4	Fencing Cost	1,25,000/-
	Total	2,25,000/-
В.	Operational Cost	
1	Jack Hammers	1,98,000/-
2	Compressor	19,82,000/-
3	Diamond wire saw	4,87,000/-
4	Diesel General	4,00,000/-
5	Excavators	6,00,000/-
6	Tippers	58,00,000/-
7	Drinking water facilities for the labours	50,000/-
8	Safety kits	50,000/-
	Total Operational Cost	95,67,000/-
C. EN	MP Cost	
1	Afforestation	30,000/-
2	Water Sprinkling	50,000/-

3	Water Quality test	25,000/-
4	Air Quality test	25,000/-
5	Noise/Vibration test	25,000/-
6	CSR activities	50,000/-
Total EMP Cost		2,05,000/-
	Total Cost of the Project (A+B+C)	99,97,000/- (Say 1 Crore)

2.8 Technology & Process Description

2.8.1 Technology

Primary step of mining of minerals is the removal of the deposits from the ground. Once the minerals / ore are removed, additional preparation process is required to isolate the valuable minerals from their waste gangue minerals. There are two basic method of mining of minerals opencast and underground mining. The choice of method depends on the geologic, hydrological, geo-technical, geographic, economic, technological, environmental, safety, Socio - political and financial considerations. Schematic Diagram of Mining Process is given in **Figure 2-14**.

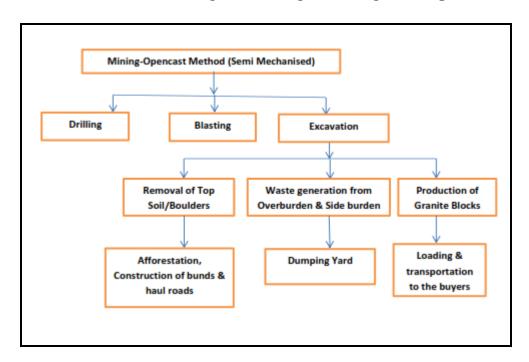


Figure 2-12 Schematic Diagram of Mining Process

2.8.2 Method of mining-Open Cast Mining

In accordance with Regulation 106 (2)(a) of the Metalliferous Mines Regulations 1961, in all open cast workings where the ore body forms hard rock, the working faces and sides should be adequately benched and sloped. A bench height not exceeding 6m and a bench width not less

than the height have to be maintained. The slope angle of such benches and sides should not exceed 60° from the horizontal. However, observance of these statutory provisions in granite dimensional stone mining is seldom possible due to the field difficulties and technical reasons as below:

- Recovery of the granite mineral is to be as undamaged rectangular dimensional blocks. In the attempt to level the benches and sides with the above statutory parameters haphazard blasting may be involved. In which case the commercial granite body may get spoiled due to the generation of blasting cracks.
- In the exercise of forming the benches with a 60° slope within the granite deposit, the portion confined within the 60° as well as its complementary part in the extricated block will become as mineral waste while shaping into rectangular blocks.
- The granite industry needs blocks as huge as few cubic meters volume with measurements up to 3m x 2m x 2m. Production of such huge blocks with a moving bench of 6m height is not possible. Production of such huge blocks in turn increases the recovery and reduces the mineral waste during dressing. Blocks of smaller size of certain varieties of granite are not marketable nowadays.
- Formation of too many benches with more height and the width equal to the height may lease to mineral lock up.
- Hence, in order to avoid granite waste and to facilitate economical and convenient mining operations, it is proposed to obtain relaxation to the provisions of Regulation 106 (2) (a) up to a bench parameter of 6m height and 3m width with vertical faces. Such a provision for relaxation of the Regulation has been provided within the regulation 106 (2) (a). Further, it is to be noteworthy that opencast granite mining operations with the above proposed bench parameters may not be detrimental to Mines Safety, since the entire terrain is made up of hard rock, compact sheets and possesses high stability on slopes even at higher vertical angles.

It is proposed not to backfill the pit in as much as good quantities of reserves are underlying the pits. The stockyard for the granite blocks produced and the dressing yard where the manual dressing and shaping of the blocks are carried out are located near the working pit in order to minimize the lead from the pit to the dressing yard and stock yard. A mine office, store room, first-aid room and workers rest shelter are provided within the lease area.

2.8.3 Process Description

- 1) Splitting of rock mass of considerable volume from the parent sheet rock carefully avoiding any kind of damage in the form of cracks adopting the following methods.
 - a) Diamond wire cutting along the horizontal as well as two vertical sides parallel to strike and dip direction and the third vertical face will be a free face is liberated by conventional serial blasting.
 - b) Separation of the horizontal (bottom) and the vertical (length side) planes by serial blasting simultaneously along the above two planes by using 32mm dia. blast holes charged with mild explosive like gun powder or detonating. The process continued aiming at the liberation of huge volume of the granite body from the parent sheet rock is called 'Primary Cutting'.

The 'Secondary Splitting' into required size involves long hole drilling upto the bottom of the separated block along the required planes for which mostly rock breaking powder or expansion mortar is used for splitting. It is chemically called as 'Calcium Hydroxide' Ca(OH)₂.

3) Removing the defective portions and dressing into the useful dimensional blocks are done manually using feather and wedges and chiselling respective by the labourers who are skilled in this work.

The defect free rectangular shaped dimensional stones as consumers are produced by the method described as above, which is constantly supervised by experienced Mining Geologist and Mining Engineer.

The waste materials generated during mining activity includes the rock fragments of different angularity formed during the removal of naturally defective and uneconomical portions of the deposits and the working waste formed during dressing of the extricated blocks. During the five years of Mining Plan period such waste materials are proposed to be dumped on the south east portion of the lease hold area.

2.8.4 Drilling & Blasting

The blasting parameters in the mining of granite dimensional stones are entirely different from that of industrial minerals, since the basic purpose for the use of explosives in both the cases are entirely different. In the rough stone minerals, maximum fragmentation and crushing of the ore is essential, whereas in the granite mining, the granite stones are to be extricated intact, without any damage on both the extricated part and the parent rock body.

The portion to be extricated from the parent rock body is free in all planes by adopting different methods. Only mild explosives such as detonating cord, ordinary detonators etc will be used for the production of granite blocks. The blast holes of 32mm diameter are drilled up to the bottom of the horizontal plane all along the required planes without deviations.

Conventional 32 mm dia blast holes are drilled perfectly parallel to each other at 20 to 25cm intervals without any hole deviations, all along the required plane of splitting. The holes are drilled up to a depth of few centimeters above the required horizontal plane. Sub grade drilling is not necessary, since the splitting will be affected up to a further distance of few centimeters from the drill hole on blasting. Sub grade drilling may affect the underlying granite deposit.

Explosives such as gelatin, delay detonators etc. may also be used occasionally at places further away from the granite deposit for certain development works such as forming approach roads to the working faces below ground level for forming flat surfaces to be used as dumping yard etc.

The explosives required for this mine is obtained from the authorized licensed dealer for which necessary permission will be obtained from the concerned authority. Now, as a latest method of NONEL blasting is used. The blasting will be under the direct supervision of the statutory persons of TAMIN.

The secondary splitting into required size involves along hole drilling up to the bottom of the separated block along the required planes for which mostly rock breaking powder is used for splitting. It is chemically called as Calcium Hydroxide Ca (OH)₂.

Now-a-days the splitting the rock from the parent rock is done by using diamond wire sawing, which largely reduces the use of explosives in granite mining. Many adverse effects of blasting are avoided and hence the recovery will be substantially increased by diamond wire cutting. Hence it is proposed to deploy one diamond wire saw machine in this mine.

2.8.5 Loading & Transportation

The mode of transport of the granite blocks produced and marketed is by road of various consumer destinations and granite processing units located at different parts of the country. The blocks approved for export market are shipped through Chennai / Tuticorin Harbours to various countries.

2.8.6 Exploration

A number of valuable data for economical mining of the granite stone in this area have been known.

- 1. Occurrence of the Black granite stone is economically viable quality and quantity has been established by geological mapping and visual examination by mining geologist experiences in granite mining which have been proved by actual mining practice.
- 2. The depth persistence of the granite stone is proved beyond the workable limits of depth of 12m from the surface level and the top surface of the granite body works.
- 3. The recovery of the saleable granite stones has been established as 5% from the visual exploration and from the data available by actual mining practices during the past mining in this area.

2.8.7 Storage of Explosives

The applicant will engage an authorized explosive agency to carry out the small amount of blasting as such no storage of explosives is envisaged for this proposal. The blasting will be supervised by DGMS authorized Mines Foreman / Mines Manager.

2.8.8 Mine Drainage

The lease applied area is hillock 32m height with slope. Through the area receives scanty rainfall, the ground water level is at 11.6m depth. The Production faces are operated at shallow depths. During the rainy seasons, the surface run of water and the gorund water are collected in sump and dewatered to nearby agricultural field with the help of 10HP motors.

2.8.9 Disposal of Waste

The waste generated during the mining operation i.e., over burden, side burden, granite rejects and the non-recoverable/un sized boulders and rubbles etc is around 64,962m³, will be dumped in the suitable area of around 0.06.5Ha which is already selected. The area of disposal waste rock has been identified in southeast portion of the lease area. The unsold blocks are kept within the boundary on the country rock area. The dump will be maintained not exceeding 5m height and the slope angle will be at 45° from horizontal.

2.8.10 Top Soil Management

Topsoil will be properly stacked at earmarked dump site with adequate measures. It will be used for growing plants along the fringes of the site roads and reclamation of external dump and backfilled area. The topsoil stockpiles will be low height and will be grassed to retain fertility. Besides these topsoil stacks there will be temporary stacks near the excavation area and area to be reclaimed which will be made use of concurrent lying without bringing the topsoil to the soil stack near the OB dump.

2.8.11 Stabilization of Dump

As the waste generation in the mine includes hard rock fragments of considerable size and irregular shape with varying angularity, the waste dump will be stable on its own even at higher slopes of the sides. However, suitable variety of soil will be identified and brought from outside and used for increasing the stability of the sides of the waste dumps and also for planting trees over the dumps in a phased manner.

2.9 Other Requirements

2.9.1 Water Requirement

The total water requirement is 3.5 KLD. The total water requirement will be met through private tankers. The granite quarry will not produce toxic effluent in the form of solid, liquid or gas. No wastewater will be generated during quarry operation except domestic sewage. Domestic sewage will be disposed to septic tank followed by soak pit. Septic tank will be cleaned periodically.

Table 2-7 Water requirement breakup

S. No	Description	Water Requirement(KLD)
1	Drinking &Domestic purpose	1.5
2	Wire Saw Cutting	0.5
3	Dust suppression	1.0
4	Green Belt	0.5
	Total	3.5

2.9.2 Sewage Generation

The domestic sewage of 1.2 KLD will be disposed through septic tank followed by soak pit.

2.9.3 Power & Fuel Requirement

The Power and Fuel requirement details are given in **Table 2-8.**

Table 2-8 Power Requirements

S. No	Description	Power Required
1	Power requirement (kVA)	60
2	Power Backup (DG set)	1*125kVA
3	Fuel requirements (Lts/Day)	200

2.9.4 List of Equipments

The list of Equipments is given in **Table 2-9**.

Table 2-9 Lists of Machineries

S. No	Machinery type	Numbers	Capacity	Motive power
1	Jack Hammar (32mm dia.)	6	1.2 to 6m	Compressed air
2	Compressor	2	400 psi	Diesel Drive
3	Tractor Mounted air Compressor	1	-	Diesel Drive
4	Diamond wire saw	1	30m³ /day	Diesel Generator
5	Diesel Generator	1	125 kVA	Diesel
6	Excavator	1	300Lc	Diesel
7	Dumper	2	25Tonnes	Diesel

2.9.5 Man power Requirement

Manpower details are given in **Table 2-10**.

Table 2-10 Manpower Details

S.No	Details	Numbers	
A	Technical/Mining Personnel		
1	Geologist/Agent (M.sc Qualified)	1	
2	Mine Manager (Holder of Manager Certificate of Competency under MMR, 1961	1	
3	Mining Mate cum Blaster	1	
4	Machinery operator	6	
5	Diesel Mechanic	1	
В	B Workers		
1	Skilled	1	
2	Semi- Skilled	9	
3	3 Un-skilled		
Total	Total 30		
Indire	Indirect Manpower 20		

2.10 Infrastructure Facilities

Store room, office room and first-aid room facilities will be provided.

2.11 Description of Mitigation Measures Incorporated into the Project to Meet the Environmental Standards

From an environmental perspective, this phase is of paramount significance due to its potential to invoke long-term impacts. The adverse effects that are likely to occur during operational phase of the project are: Air Pollution (gaseous emissions), Sewage generation, Noise generation, Solid waste generation etc.

2.11.1 Solid Waste Management

The municipal solid waste generation and management details are given in **Table 2-11**.

Table 2-11 Municipal Solid Waste Generation & Management

S.No	Туре	Quantity Kg/day	Disposal Method
1	Organic	8.1	Municipal bin including food waste
2	Inorganic	5.4	TNPCB authorized recyclers
	Total	13.5	

As per CPHEEO guidelines: MSW per capita/day =0.45

2.11.2 Hazardous Waste Management

The type of hazardous waste and the quantity generated are detailed in **Table 2-12**.

Table 2-12 Hazardous Waste Management

Ca	Waste tegory No	Description	Quantity (L/Year)	Mode of Disposal
	5.1	Waste Oil	3.0	Will be collected in leak proof containers and disposed to TNPCB authorized agencies.

2.12 Progressive Mine Closure Plan

As a petrogenetic character, the depth persistence of the black granite body in the area is beyond the workable limits. However, it is very difficult to operate granite dimensional stone mine economically below an average depth of 33m by observing the statutory provisions of mine safety rules and regulations. Hence, in the proposed mining plan, only 33m average depth has been envisaged as 'Workable depth' for safe and economic mining.

However, it is proposed not to back fill the ultimate pit, in as much as good quantity of reserves is available below the workable depth of 33m and there is possibility of technology of up gradation in granite mining for greater depths in course of time for safe mining at economic cost

beyond 33m depth. The pit boundaries shall be securely fenced to prevent entry by the public and cattle, and the area maybe used for agricultural purposes once the pit is filled with underground seepage water or rainwater.

2.13 Assessment of New and Untested Technology for the Risk of Technological Failure

The technology used for mining is made by TAMIN in house there would not be any changes in the Mining. The mining technology is tried & tested method, and therefore there is no risk of technological failure. In addition to this, the TAMIN is being processed to take care of any technological failures.

3 DESCRIPTION OF ENVIRONMENT

The environment of region is characterized by diverse natural and anthropogenic features, including landforms, water resources, vegetation and human settlements. It exhibits a mix of ecological habitats, ranging from agricultural lands to natural ecosystems, supporting a variety of flora and fauna. Climatic conditions, soil characteristics, and water availability play a significant role in shaping the environmental dynamics of the area. Understanding these baseline environmental conditions is crucial for assessing potential project impacts and planning sustainable development measures. This chapter depicts the establishment of baseline for various environmental components, as identified in and around the proposed project. This chapter depicts the establishment of baseline for valued environmental components, as identified in and around the proposed project of "Proposed jammanahalli black granite quarry" over an extent of 6.59.5 Ha in S.F. No. 83 (Part) Jammanahalli Village, Pappireddypatti Taluk, Dharmapuri District, Tamil Nadu by M/s. Tamil Nadu Minerals Limited. The primary baseline data has been generated by M/s. Hubert Enviro Care Systems (P) Ltd, Chennai, a MoEF&CC approved and National Accreditation Board for Testing and Calibration Laboratories (NABL) accredited environmental testing laboratory for the following terrestrial environmental components. NABL Certificate No: TC-12310 Dated: 25.09.2023 Valid Till 24.09.2025.

3.1 Study Area

About 10 km radius from the proposed project site has been designated as the Project Impact/Influence Area (PIA) for assessing the baseline environmental conditions and potential impacts associated with the project. The core study area is the project area and its immediate surroundings to the tune of 1km radius from the boundary. The PIA covers parts of parts of Jammanahalli Village in Pappireddypatti Taluk, Dharmapuri District, and Tamil Nadu State. This PIA was subjected to monitor for 3 months duration starting from the month from **February 2025 to April 2025.** The data collected during the monitoring period are considered as primary baseline data. The key points of the PIA are given below:

PIA Area	:	10km radius from the periphery of the project site
Village	:	Jammanahalli
Taluk	:	Pappireddypatti
District	:	Dharmapuri
State	:	Tamil Nadu
Monitoring Duration	:	February 2025 to April 2025

3.2 Description of the Study Area

As outlined in Chapter 1, M/s. Tamil Nadu Minerals Limited. Proposed jammanahalli black granite quarry over an extent of 6.59.5 Ha in S.F. No. 83 (Part) Jammanahalli Village, Pappireddypatti Taluk, Dharmapuri District, and Tamil Nadu. The topographic map of the study area is provided in Figure 3.1. The present study involves a comprehensive analysis of land use, topography, geology, water resources, biodiversity and demographic patterns. Methodologies adopted for the assessment include field surveys, remote sensing, GIS mapping and data collection from secondary sources such as government reports (CGWB, DCHB etc)and published data from portals. These methods ensure a systematic and detailed evaluation of the project area, laying the groundwork for identifying environmental sensitivities and proposing appropriate mitigation measures. An overview of the study area, with reference to its physical characteristics, is presented in the following sections to provide a clear understanding before detailing the prevailing environmental conditions.

Meteorology : Refer Section 3.5

Ambient Air Quality : Refer Section 3.6

Ambient Noise Levels : Refer Section 3.7

Water Quality- Surface Water & Groundwater

Quality

Soil Quality : Refer Section 3.9

Ecology : Refer Section 3.10

Socio Economic Status : Refer Section 3.11

Refer Section 3.8

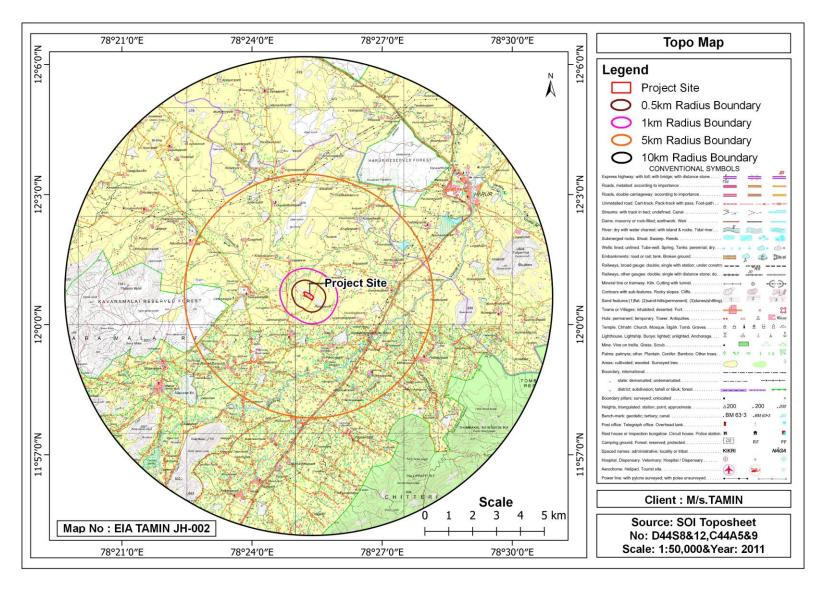


Figure 3-1 Topo Map of the Study Area

3.3 Environmentally/Ecologically Sensitive areas

The National Environment Policy (2006) defined the Eco-Sensitive Areas "as areas/zones with identified environmental resources having incomparable values which require special attention for their conservation" because of its landscape, wildlife, biodiversity, historical and natural values. This section details with the environmentally sensitive areas present within the project site and surrounding environs. It included national parks, state forest, essential habitats etc. The environmental sensitive areas covering an aerial distance of 15 km from the project boundary is given in **Table 3-1**, **Figure 3-2** and **Figure 3-3**. Due to the complexity of the environmental features, which are difficult to represent clearly on a single map, the sensitive areas are shown in two separate maps (**Figure 3-2** and **Figure 3-3**).

Note: This split is purely for representation purposes and does not indicate any classification or division of the study area.

Table 3-1 Environmentally Sensitive Areas within 15km from Project Boundary

S.No	Areas	Distance & Direction from project boundary				
1	Monuments	Nill				
2	Heritages	S.No 1	Heritages Thenkarai Fort (Ruined)	Distance (~kr	n) Direction W	
		1	Thenkarar Fore (Runieu)			
		S.No	Water bodies	Distance (~km)	Direction	
		1	Turinjihalli Ar	0.57	NW	
		2	Annamalaihalli Pond	1.26	NE	
2	Water bodies.	3	Paraiyapatti Pudur Lake	1.68	SSE	
		4	Lake near	2.30	NNW	
			Krishnapuram	2.30	ININVV	
		5	Tenkaraikottai Lake	2.53	W	
		6	Vaniyar River	2.74	SE	

	7	Piniyar River	3.85	ESE				
	8	Nambiyappatii Lake	3.97	ENE				
	9	Karukkampatti River	4.04	ESE				
	10	Panchalanagar Lake	4.53	WSW				
	11	Alapuram Eri	5.73	SW				
	12	Todddampatti Lake	5.74	ENE				
	13	Varatta Ar	8.61	NE				
	14	Sintalbadi Lake	10.04	NW				
	15	Vallimadurai Reservoir	12.92	ESE				
	S.No	Reserved Forest	Distance (~km)	Direction				
	1	Kavaramalai RF	3.18	W				
	2	Harur RF	5.14	NNE				
	3	Pallippatti RF	6.21	SE				
	4	Thombakal Ext RF	6.64	ESE				
	5	Morappur RF	9.17	NNE				
	6	Thombakal RF	9.53	SE				
	7	Kavaramalai Ext RF	11.55	W				
3. Reserved Forest	8	Nochikuttai Ext RF	12.62	SSE				
	9	Kuttar RF	12.78	SSW				
	10	Veppampatti RF	13.04	Е				
	11	Veppampatti Ext RF	13.42	Е				
	12	Bothakkadu RF	13.61	SW				
	13	Poyyappatti RF	13.95	ENE				
	14	Nochikuttai RF	14.15	SSE				
	15	Karungal RF	14.59	ESE				
	16	Mavuttu RF	14.68	SSW				

		S.No	Hospitals	Distance (~km)	Dire	ection		
		1	Chinnakuppam Government Primary Health Centre	3.40		Е		
		2	Erukkampatti Government	3.43]	NE		
		3	Primary Sub Health Centre Ramiyanahalli Government Primary Health Centre	4.73	W	'NW		
				Distance		_		
		S.No	Government Buildings	(~km)	Dire	ection		
		1	Parayapatti Village Administrative Office	1.98	S	SSE		
4.	Manmade	2	Gopinathampatti Panchayat office	2.19	E	ESE		
4.	Manmade	3	Harur Taluk Office	8]	NE		
		S.No	Colleges	Distance (~km)	Dire	ection		
		1	Indian College of Education for Women	3.11		E		
		2	ERK Group of Institutions	3.97	5	SSE		
		3	AMS Annai Education instituions	4.37	E	ENE		
		S.No	Religious Plac	es			tance km)	Direction
		1	Thambikalaiyan Temple			0	.16	N
		2	Arulmigu Theepanji Amman T				.45	W
		3	Singarathoppu Shri Muniyapp				0.8	WNW
		4	Annamalaihalli Shri Mariyamı	nan Temple		0	.86	NE

5	Kattu Mariyamman Temple	0.95	SSW
6	Sri Ramar Temple	1.48	E
7	Vadagarai vartharaja perumal Temple	1.98	NNW
8	Shri Kalyana Ramar Temple	2.43	W
9	Our Lady of Mount Carmel Church	2.94	W
10	Om Shakthi Temple Malagapadi	4.17	ESE
11	Sri Lakshmi Narashima and Lord Sri	5.07	NNW
	Ranganatha Temple	3.07	ININVV
12	Pachaiyamman Temple	5.45	SSW
13	Angalaamman Temple	7.2	NE
14	Kaaniyamman Temple	7.34	S
15	Harur Masjid	7.83	NE
16	Karia Perumal Temple	7.85	ENE
17	Pattalamman Temple	10.57	NW
18	Singaravelan Thoppu Muniswaran Temple	11.41	NNW

S.No	Industries	Distance (~km)	Direction
1	Subramanya Siva Co-op Sugar Factory	2.62	SW
2	Ponguru blue metals	2.83	NNW
3	Amman Granites	8.4	ENE
4	Varalakshmi Starch Industries Pvt Ltd	13.34	SSW

S.No	Schools	Distance (~km)	Direction
1	Vadagarai Government Middel School	1.13	NW
2	Jammanahalli Government Higher Secondary School	1.56	SSW

		3	3 Nagapatti Government Panchayat Union Primary School				2	NE
		4	Gopinathampatti Go Primary School	vernment Panchay	at Union		2.15	ESE
		5	Chinnankuppam Go	vernment High Sch	ool		3.77	ENE
5	State/National boundaries/Wildlife Sanctuaries	Nil	Nil					
		S. No	Description		Distance (~	km)	Direction	n
		1	Nearest Road - Na	gapatti Rd	0.01		Е	
	Nearest Highway/Railway/Town	2	SH-6A (Tiruvanna	ımalai-Harur)	7.69		ENE	
6	Nearest Highway/Railway/Town and city	3	NH-179A (Salem-	Vaniyambadi)	2.89	9 ESE		
	and city	4	Nearest Town-Ha		7	NE		
		5	Nearest Railway Station-Thonganur 10.1			NW		
		6	DC Office - Dharm	apuri	31.35		WNW	
7	Nearest Airport	>	Salem Airport (Dome	estic) at a distance o	of ~ 45.20km	towar	ds WSW	
		S.No	Villages	Distance (~km)	Direction	Popu	lation	
		1	Annamalaihalli	0.66	NE	1,	.227	
	March Shares Inc.	2	Jammanahalli	0.95	SSW	2,	363	
8	Near by villages and Population	3	Vadakarai	1.08	NW	3	300	
			Tennagaram	1.25	WSW		100	
			Gopinathampatti	1.60	ESE	2,	500	
		* Few s	ettlements are located r	near to the quarry.				
9	Defence installations		Nill					

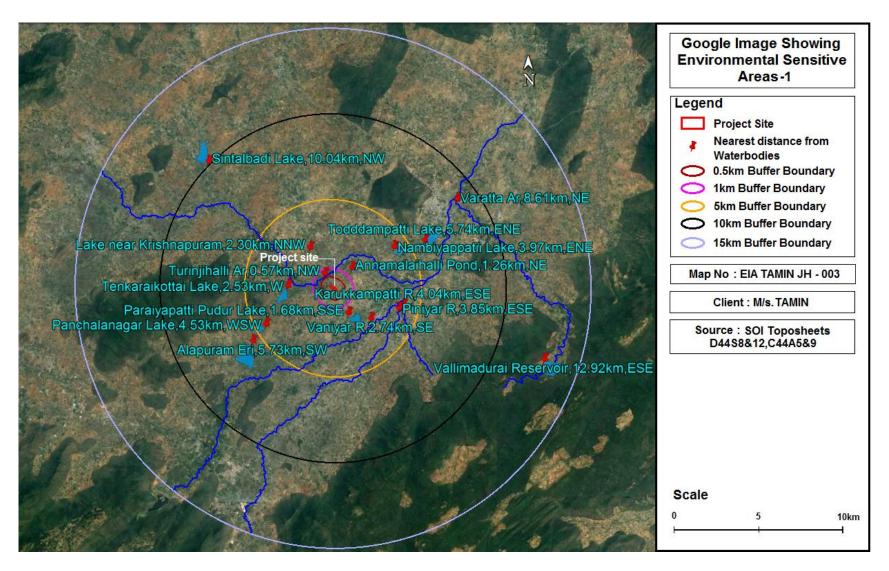


Figure 3-2 Environmental Sensitive Areas-1 Covering within 15 km from Project Boundary

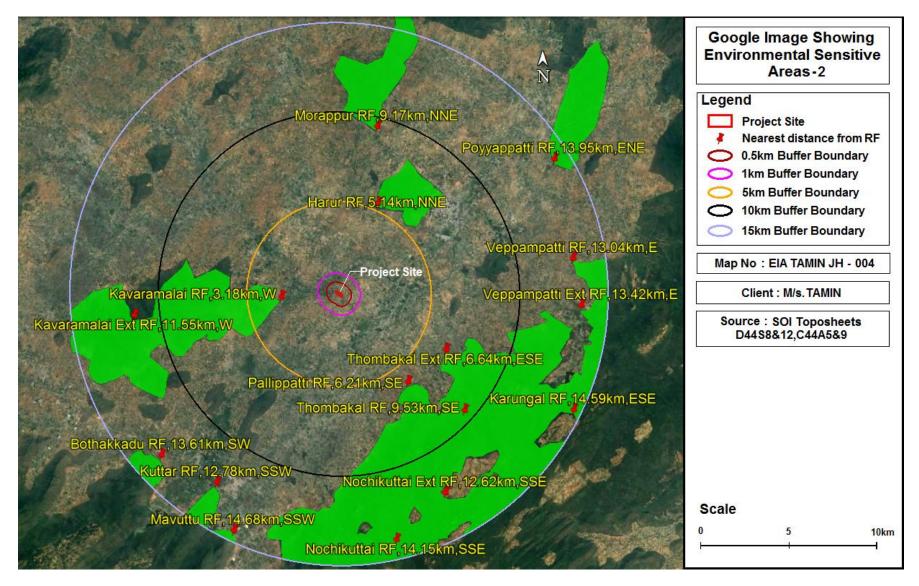


Figure 3-3 Environmental Sensitive Areas-1 Covering within 15 km from Project Boundary

3.4 Physical Conditions of PIA district

The physical conditions provide a comprehensive overview of its geographical and environmental attributes. This section provides a general overview of the physical conditions of the PIA district, with specific references to the study area wherever applicable. The physical conditions are discussed as under:

- District profile
- Climatic conditions
- Natural resources
- Physiographic features Drainage, Geomorphology, Land use, Geology etc.

3.4.1 PIA District Profile

Dharmapuri district lies between 11° 47′ and 12° 33′ of Northern latitude and 77° 02′ and 78° 40′30″ of Eastern longitude. This district is bounded on the north by Krishnagiri district, on the east by Tiruvannamalai districts, on the south by Salem district, and on the west by Karnataka's Chamarajanagar district. The total geographical area of the district is 4,497 sq kms, i.e. 3.46% of Tamil Nadu. This district is placed at 14th rank in comparision to other districts in terms of area in Tamil Nadu. It is located 297 kms away from chennai and 126 kms away from Bangalore. Neighbouring cities like Bangalore, Mysore, Tumkur, Chittoor, Tirupathi, Thrissur, Palakkad, Puducherry also lie within a 300 kms radius.

Source: https://censusindia.gov.in/nada/index.php/catalog/45399

(**Ref**: Directorate of Census Operations-Tamil Nadu, "District Census Handbook 2011, Dharmapuri District", Series-34 Part XII-A)

3.4.2 Climatic Conditions

Dharmapuri district is situated in the Western Agro climatic zone. The climate of the Dharmapuri district is generally normal and warm. The district has 37°C and the mean daily minimum temperature of about 25°C in the plains. The district temperature is a gradual decrease of both day and night from June to December, when the mean daily maximum is about 30°C and the mean daily minimum about 19°C in the plains.

April and May are the hottest months in the year with a highest temperature being 38°C in April. The climate becomes cool in December and continues up to February, touching a minimum of 17°C in January. The climate of the district on the whole is slightly humid.

In summer, the wind is hot and uncomfortable. From December to February, the wind is very cold. The district gets rainfall from both south-west and north-west monsoons. During the monsoon season, the climate is pleasant.

Source: https://censusindia.gov.in/nada/index.php/catalog/45399

(**Ref**: Directorate of Census Operations-Tamil Nadu, "District Census Handbook-2011, Dharmapuri District", Series-34 Part XII-A).

3.4.3 Natural Resources of PIA District

3.4.3.1 Forest Resources

Dharmapuri district has tropical forests. Generally, these forest have short shrubs and throne plants. The whole district is predominantly covered with forests. Spider valley located near Hogenakkal is home for many wild animals. The district falls in the migratory path of elephants. Man and elephant conflicts are most common in these parts. Many tribal communities depend on these forests. Vathalmalai, a mountain hamlet on top of Servarayan hill chain has suitable conditions to cultivate coffee and jack fruit. Wild boars and spotted deers are commonly seen in Morappur and Harur forest region. Gaurs sometimes stroll near villages around Bommidi region. Thoppurghat section has one of the scenic highways surrounded by mountains and forests. For a massive tree planting program to increase tree cover in the district, the Environmental and Forest Department has planted 60,000 seedlings in public places, Government institutions, Industries, Schools, Colleges and roads in Harur taluks. Dharmapuri and Harur are the two forest divisions in this district.

Source: https://censusindia.gov.in/nada/index.php/catalog/45399

Ref: Directorate of Census Operations-Tamil Nadu, "District Census Handbook 2011, Dharmapuri District", Series-34 Part XII-A

3.4.3.2 Agricultural Resources

The district economy is mainly agrarian in nature. Nearly 70% of the work force is dependent on agriculture and allied activities. The district is one among the most backward and drought prone area in the State. To achieve the food production target, various schemes are being implemented for the benefit of the farmers and those are System of Rice Intensification, Pulses production and development, Initiative for nutritional security through intensive millets promotion and Rain fed area development programme in Dharmapuri district. The Agricultural Engineering Department is implementing a number of development programmes throughout the district. These can be classified as follows:

- 1. Land Development Scheme
- 2. Minor Irrigation Scheme

- 3. Soil Conservation works in Tribal Area (Integrated Tribal Development Programme)
- 4. Agricultural Mechanization (Farm Mechanization)
- 5. National Agricultural Development Programme (NADP)
- 6. Run off Management Programme
- 7. Artificial recharge ground water scheme
- 8. IAMWARM (Irrigated Agriculture Modernization and Water bodies Restoration Management)

The important food grains in the district are paddy, cholam, cumbu, ragi and samai. The major pulses cultivated are redgram, greengram, blackgram, horsegram, bengalgram and cowpea. The other commercial crops like cotton, chilly, sugarcane, turmeric, tamarind and coriander are also cultivated in Dharmapuri district.

Source: https://censusindia.gov.in/nada/index.php/catalog/45399

Ref: Directorate of Census Operations-Tamil Nadu, "District Census Handbook 2011, Dharmapuri District", Series-34 Part XII-A

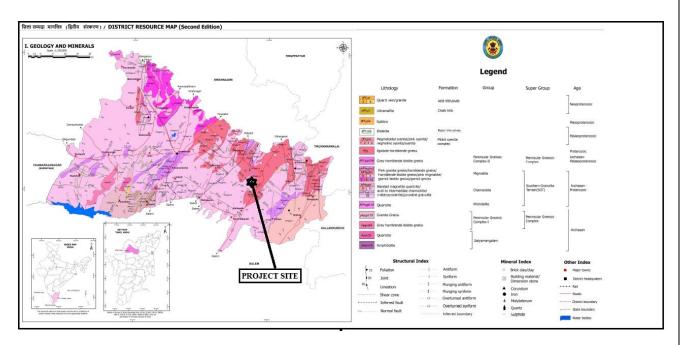
3.4.3.3 Mineral Resources

Dharmapuri district is endowed with size able reserves of granite. The following table shows the various mining and quarrying units in each taluks of the district during 2010-11.

		No of Mining Quarrying Units							
S.No	Name of the taluk	Quartz	Sand	Rough stone	Black granite	Grey granite			
1	Dharmapuri	-	-	20	1	0			
2	Pennagaram	3	-	3	5	0			
3	Harur	-	3	23	4	-			
4	Pappireddipatti	-	1	11	3	0			
5	Palakkodu	-	1	17	6	1			
	Total	3	5	74	19	1			

Source: District Statistical Handbook, 2010-11

High quality black granite is present in this district. Quartz is available at Kendiganapalli Village of Pennagaram Taluk, A.Velampatti of Harur taluk and Pethathampatti of Pappireddipatti Taluk. Another high value mineral available in this district is Molybdenum, it was discovered near Harur by the Ministry of Mines in 2001. It is the only source of the minerals in India. The ability of molybdenum to withstand extreme temperatures without significantly expanding or softening makes it useful in


applications involving intense heat, including the manufacture of aircraft parts, electrical contacts, industrial motors and filaments. The following table shows the minerals available in the district and its quantity during 2010-11.

S.No	Name of the minerals	Quantity	Value
1.	Rough stone jelly	10,069	35,14,725
2.	Black granite	16,518.502	46,72,580
3.	Quartz	4,652	93,040

Source: District Statistical Handbook, 2010-11

Source: https://censusindia.gov.in/nada/index.php/catalog/45399

(**Ref**: Directorate of Census Operations-Tamil Nadu, "District Census Handbook-2011, Dharmapuri District", Series-34 Part XII-A). The mineral map of Tamilnadu is shown in the **Figure 3-4**.

Source: https://www.gsi.gov.in/webcenter/portal/OCBIS/pages_pageMAPS/pageMapsSeries

Figure 3-4 Mineral Map of Dharmapuri District

3.4.4 Topography of the PIA District

The district is situated in the northwestern part of Tamil Nadu. Dharmapuri is located on one of the geographically important area in south India. The whole district is surrounded by hills and forests. The terrain of Dharmapuri is of rolling plains type. The district is mostly dry and ground water resources are stated to below. Land area is mostly rainfed and farmers do dry land cultivation. This district is elevated at 450 metres above mean sea level. Dharmapuri is one among the districts of Tamil Nadu, where forest covers an area of 1621.86 sq.kms.

Source: https://censusindia.gov.in/nada/index.php/catalog/45399

Ref: Directorate of Census Operations-Tamil Nadu, "District Census Handbook 2011, Dharmapuri District", Series-34 Part XII-A

3.4.4.1 Topography of the Study Area

The project site is located in a relatively flat terrain area with fewer close-packed contour lines, indicating gentle slopes. Areas with dense contour lines, especially toward the southwest and southeast, represent steeper terrain or hills (e.g., near Obilinayakkanpatti and Nagalur). Elevated regions are observed towards the:

- Southwest corner (up to 900 m elevation)
- Southeast corner (ranging from 400 m to 800 m)

The central region, especially within a 1–5 km radius of the project site, appears to be moderate to low elevation (likely between 400–500 meters). The topographical variation of the study site and its surrounding area, within a 10 km radius from the site's periphery, is depicted in the contour map in **Figure 3-5.**

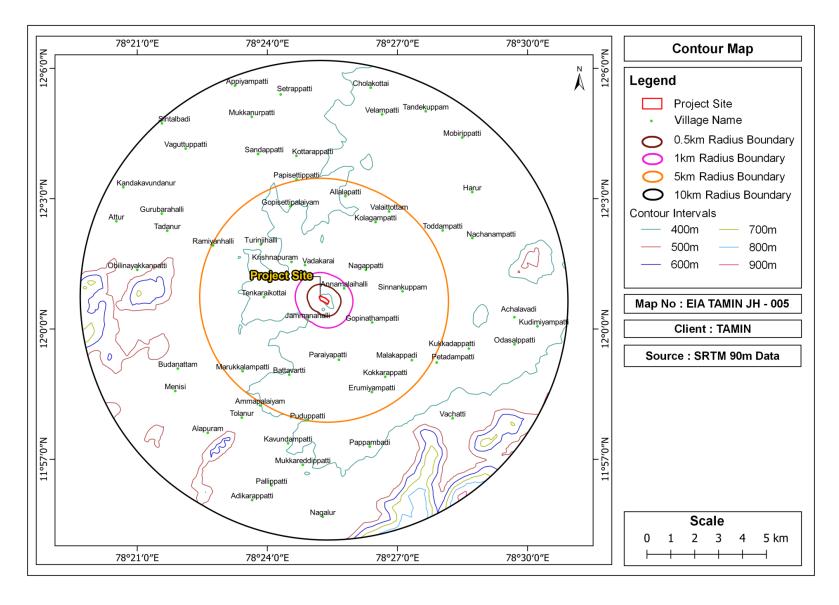
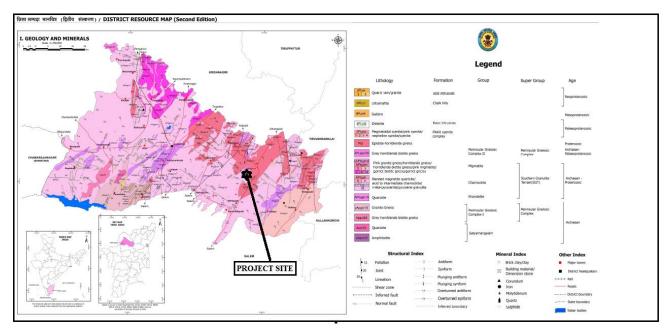


Figure 3-5 Contour Map of the Study Area

3.4.5 Drainage Pattern in the PIA district

Dharmapuri district is drained by Cauvery and Ponnaiyar rivers and their tributaries. Cauvery river flows along the south western boundary of the district. It flows in an easterly direction up to Bellgundla and then takes a more or less southerly course till it reaches the Stanley Reservoir. The Doddahalla and the Chinnar are important tributaries of Cauvery river in the district. Ponnaiyar is the major river draining the district and is ephemeral in nature. It originates from Nandhi hills in Karnataka, enters Tamil Nadu west of Bagalur and flows almost in a south easterly direction till it reaches Daddampatti from where it takes an easterly course. Pambar, Vaniyar and Kallar are the important tributaries of Ponnaiyar draining the eastern part of the district whereas the Chinnar and Markandeya Nadhi drain the northern part of the district.

Source: https://censusindia.gov.in/nada/index.php/catalog/45399


Ref: Directorate of Census Operations-Tamil Nadu, "District Census Handbook 2011, Dharmapuri District", Series-34 Part XII-A

3.4.6 Geology in the PIA District

Geologically Dharmapuri District is covered by crystalline rocks of Archaean age. The entire district is underlain by hard crystalline rocks of Archaean age comprising of various rock types such as Gneiss, Charnockite, etc., The Gneissic type of crystalline formation is found in the north and north eastern part of the district. Shoolagiri, Hosur, Denganikottai and Kelamangalam areas are covered by Granitic 4 Gneiss. Veppanapalli, Krishnagiri and parts of Kaveripaattinam areas are covered by peninsular Gneiss. Bargur, part of Kariamangalam, Palacode, Pochampalli and Uthangarai are covered by Biotite Gneiss. Part of Harur, Uthangarai and Morappurareas are covered by foliated gneiss. Charnockite occurs in the southern part of the district, covering part of Palacode, part of Morappur, Pappireddipatti, part of Dharmapuri, Pennagaram and Nallampalli. Quartzites are found in patches in Denganikottai block. Dolerite dykes varying from few feet to few miles in length cut across the country rock in this district. Alluvial deposits such as sand, silt, clay and gravels which are transported sediments by the river Ponnaiyar and Chinnar are found on either side of the river courses. These formations are overlying the hard rock's as a thin layer. In Dharmapuri district, weathered thickness ranges from 8 m to 15 m bgl. And jointed formation ranges from 15 m to 60 m in general. The strike direction is generally North East - South west, dipping towards south east. Geological map of Dharmapuri district is given in **Figure 3-6**

Source: https://nwm.gov.in/sites/default/files/Notes%20on%20Dharmapuri%20District.pdf

Source: https://www.gsi.gov.in/webcenter/portal/OCBIS/pages-pageMAPS/pageMapsSeries

Figure 3-6 Geology Map of Dharmapuri District, Highlighting the Project Site

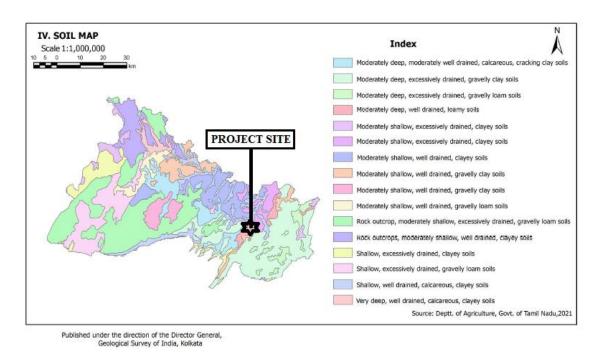
3.4.7 Soils in the PIA District

The district has a wide range of soil types. In general, the soil in the district is quite loose and fresh with its colour varying from red to dark brown. The soils are mostly in-situ in nature, lateritic, earthy and pale reddish in colour. The soil has low nitrogen and phosphate content with marked variations between different taluks. Different types of the soils such as black or mixed loams, red ferruginous and gravel are found in the district. The black or red loam is very fertile due to its moisture absorbing character, which is found in Dharmapuri taluk. Red and sandy soil are seen in Harur taluk. Lateritic and sandy coastal alluvium soils are found in almost all blocks. Considerable stretches of good loam and black soil are found in Dharmapuri district. Soil map of Dharmapuri district is given in **Figure 3.7.**

Table 3.2 Soil Types in PIA District

Type of Soil	Places in the District
Lateritic Soil	Harur
Black Soil	Dharmapuri, Palacode, Pappireddipatti
Sandy Coastal Alluvium	Dharmapuri, Harur, Palacode
Red Sandy Soil	Pennagaram, Palacode, Harur

Source: District Statistical Handbook, 2010-11


Source: https://censusindia.gov.in/nada/index.php/catalog/45399

Ref: Directorate of Census Operations-Tamil Nadu, "District Census Handbook 2011, Dharmapuri District", Series-34 Part XII-A

The district has a wide range of soil types. The soils are mostly in-situ in nature, lateritic, earthy and pale reddish in colour. The soil has low nitrogen and phosphate content with marked variations between different taluks. The soil types found in the district are mainly fine clayey/loamy calcareous, gravelly and sandy soils with poor drainage. Clayey soils have high specific water retention capacity but poor in supporting agriculture. The rate of infiltration is very low for clayey sand, sandy clay, sand and gravel and for weathered rock, fractured and jointed rock, it varies from 0.2 to 0.5 cm/hr. The black or red loam is very fertile due to its moisture absorbing character, which is found in Dharmapuri taluk. Red and sandy soil are seen in Harur taluk.

Source: https://www.gsi.gov.in/webcenter/portal/OCBIS/pages_pageMAPS/pageMapsSeries

Source: https://www.gsi.gov.in/webcenter/portal/OCBIS/pages_pageMAPS/pageMapsSeries

Figure 3-7 Soil Map of Dharmapuri District, Highlighting the Project Site

3.4.8 Geomorphology of PIA District

Dharmapuri district forms part of the upland plateau region of Tamil Nadu with many hill ranges and undulating plains. The western part of the district between Pennagaram and Denkanikottai has hill ranges of Mysore Plateau with a chain of undulating hills. The southern boundary of the district is occupied by the Shevaroy hill ranges. The plains occupying the central, eastern and southern parts of the district have an average elevation of 488 m. above Mean Sea Level. The Plateau region along the western boundary and the northwestern part of the district has an average elevation of 914 m. above Mean Sea Level.

The prominent geomorphic units identified in the district through interpretation of Satellite imagery are 1) Structural Hills 2) Inselberg 3) pediments 4) Buried pediments 5) Shallow Buried Pediments 6) Plateau 7) Flood plain and 8) Bazada Zone.

Source: https://censusindia.gov.in/nada/index.php/catalog/45399

(**Ref**: Directorate of Census Operations-Tamil Nadu, "District Census Handbook 2011, Dharmapuri District", Series-34 Part XII-A)

3.4.8.1 Geomorphology of the Study Area

Total geographical area of the study area is 326.95 Sq.Km. The Geomorphology pattern of the study area is given in **Table 3-3.** The corresponding spatial map depicting Geomorphology of the study area is given in **Figure 3-8.**

Table 3-3 Geomorphology Pattern of the Study Area

S.No.	Description	Area (Sq.Km)	Area (Acres)	Area (Hectares)	Percentage (%)
1	Denudational Origin-Pediment- PediPlain Complex	275.41	68055.1881	27541	84.24
2	Structural Origin-Highly Dissected Lower Plateau	14.93	3689.27765	1493	4.57
3	Denudational Origin-Moderately Dissected Hills and Valleys	4.06	1003.2463	406	1.24
4	Denudational Origin-Low Dissected Hills and Valleys	7.40	1828.577	740	2.26
5	Waterbodies	6.89	1702.55345	689	2.11
6	Anthropogenic Origin- Anthropogenic Terrain	0.21	51.89205	21	0.06

Proposed Jammanahalli Black Granite Quarry Draft EIA Report

H/01/2024/CON/046 RP003-R2

7	Structural Origin-Moderately Dissected Hills and Valleys	16.96	4190.9008	1696	5.19
8	Structural Origin-Low Dissected Hills and Valleys	1.09	269.34445	109	0.33
	Total	326.95	80790.98	32695	100.00

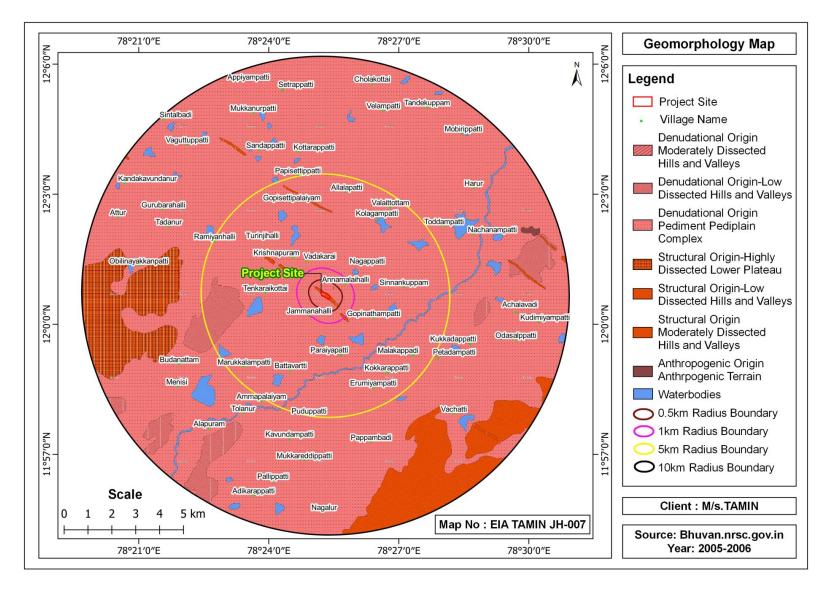


Figure 3-8 Geomorphology Map of Study Area

3.4.9 Land Use & Land Cover of the PIA District

Definition

A delineable area of the earth's terrestrial surface, embracing all attributes of the biosphere immediately above or below this surface, includes:

- Near surface climate,
- Soil and terrain forms,

Surface hydrology including shallow lakes, rivers, marshes and swamps, near-surface sedimentary layers and associated ground water and geo hydrological reserves, plant and animal populations, Human settlement pattern and physical results of past and present human activity (terracing, water storage or drainage structures, roads, buildings, etc.

Land Use (LU)

Territory characterized according to its current and future planned functional dimension or socioeconomic purpose (e.g. residential, industrial, commercial, agricultural, forestry, recreational).

Land Cover (LC)

Physical and biological cover of the earth's surface including artificial surfaces, agricultural areas, forests, (semi) natural areas, wetlands, waterbodies.

Classification Scheme

There are three levels of classification, viz., Level-I, Level-II, Level-III. Based on NRSC-2012, Level-I consists of 8 classes, Level-II consists of 31 classes, and Level-III consists of 54 classes. In this EIA, Level-III classification in 1:50000 scale is adopted.

LULC classification through Satellite Image

For preparation of LULC, Resourcesat-2 LISS III satellite image is used. This satellite operates in a sunsynchronous orbit at an altitude of 817 km. It takes 101.35 minutes to complete one revolution around the earth and complete about 14 orbits per day. The entire earth is covered by 341 orbits during a 24-day cycle. The LISS-3 sensor covers a 140-km orbital swath at a spatial resolution of 24 meters with a 24-day repeat cycle. False Color Composite (FCC) images of the study area was prepared using bands 4 (NIR) 3 (Red), and 2 (Green) and discrimination of features were made by visual interpretation (on screen) using these images and Survey of India toposheet. The interpretation key was based on the relationships between ground features and image elements like, texture, tone, shape, location and pattern.

3.4.9.1 Land use land cover for the study area

The land use pattern of the study area is **326.95** Sq.Km given in **Table 3-4**. Land use map of the study area is given in **Figure 3-9**.

Table 3.4 Land Use Pattern of the Study Area

SL. No.	Descriptions	Area (Sq.km)	Area (Acres)	Area (Hectares)	Percentage (%)
1.	Crop land	226.68	56013.76	22668	69.33
2.	Deciduous	41.70	10304.28	4170	12.75
3.	Fallow	26.45	6535.93	2645	8.09
4.	Rural	6.93	1712.44	693	2.12
5.	Tanks / Lakes / Ponds	6.93	1712.44	693	2.12
6.	Scrub land	6.62	1635.84	662	2.02
7.	Barren rocky	4.58	1131.74	458	1.40
8.	Urban	3.61	892.05	361	1.10
9.	River / Stream / Canals	1.39	343.48	139	0.43
10.	Plantation	0.88	217.45	88	0.27
11.	Forest Plantation	0.82	202.63	82	0.25
12.	Evergreen / Semi Evergreen	0.24	59.31	24	0.07
13.	Mining	0.12	29.65	12	0.04
	Total	326.95	80790.98	32695	100.00

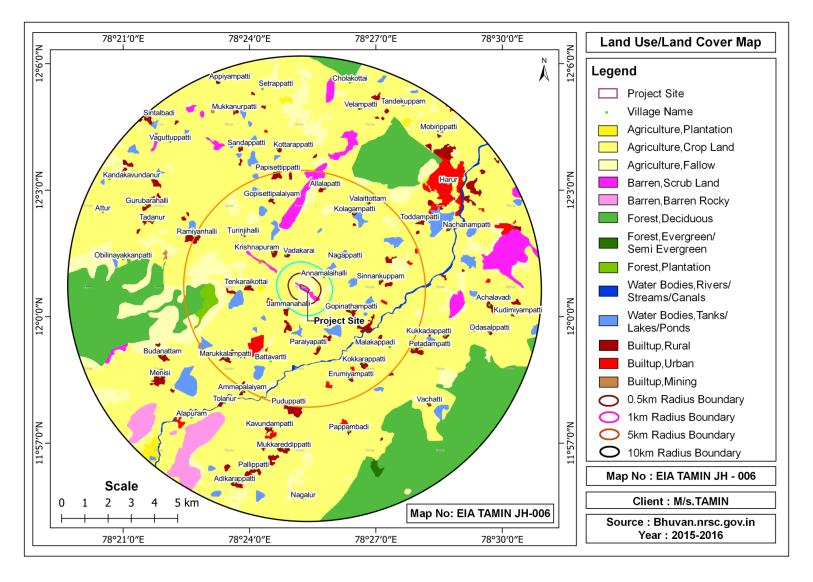


Figure 3-9 Land Use Map of the Study Area

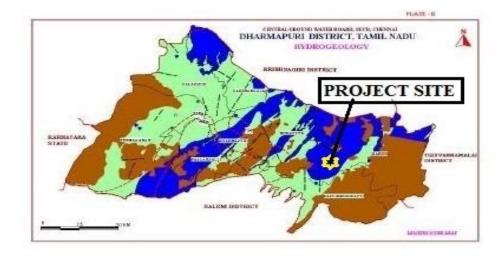
3.4.10 Hydrogeology of PIA DistrictProfile

The district is underlain by Archaean Crystalline formations with recent alluvial deposits of limited areal and vertical extents along major rivers. (Plate-II). The important aquifer systems in the district are constituted by i) unconsolidated & semi-consolidated formations and (ii) weathered and fractured crystalline rocks.

In the areas underlain by crystalline rocks, occurrence of ground water is essentially limited to zone of weathering and fracturing. Generally the hard rock aquifers are heterogeneous in nature, which is indicated by the variations in lithology, structure and texture. Ground water occurs under phreatic condition in the weathered mantle and semi confined to confined condition in the fracture and fissured zones of these rocks. Thickness of weathered material varied widely from less than 1m bgl to more than 20m bgl.

The Alluvium with intervening crystalline outcrops are noticed as patches west of Dharmapuri, and Papireddipatti areas. The ground water occurs under water table to semi-confined conditions. The discharge ranges from 10 to 20 m/day.

The yield of large diameter wells in the district, tapping the weathered mantle of crystalline rocks ranges from $150\text{-}200 \text{ m}^3\text{/day}$ and are able to sustain pumping for 2 to4 hours per day. The yield of large diameter wells tested in crystalline rocks ranges from 150 to 200 m³/day for drawdown of 1 to 3 m. The yield characteristics of wells vary considerably depending on the topographic set-up, litho logy and nature of weathering. The transmissivity of weathered formations computed from pumping test data using empirical methods range from 12 to $22\text{m}^2\text{/day}$. The specific capacity in the fissured formation ranges from 2.89 to 153.74 lpm/m/dd. In the porous formation the specific capacity values vary from 6.31 to 28.7 lpm/m/dd.


The yield of bore wells drilled down to a depth of 36 to 200 m bgl, by various state agencies mainly for domestic purposes. The discharge ranged from 2 to 33 lps. The yield of successful bore wells drilled down to a depth of 200 m bgl during the groundwater exploration programme of Central Ground Water Board ranged from 1 to 12lps. The aquifer and well parameters of the wells show wide variation, both in crystalline and sedimentary formations.

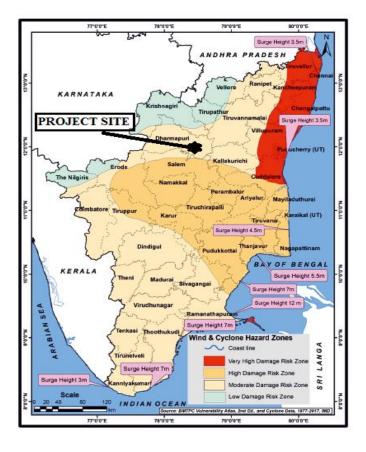
The depth to water level in the district varied between 5.27 and 16.70 m bgl during premonsoon (Plate-III) and varied between 2.47 and 11.32 m bgl during postmonsoon (Plate-IV). The seasonal fluctuation shows a rise in water level, which ranges from 3.71 to 7.06 m bgl. The piezometric head varied between 2.66 to 20.06m bgl (May 2006) during pre monsoon and 1.19 to 14.57 m bgl during post monsoon.

Source: http://cgwb.gov.in/sites/default/files/2022-10/dharmapuri.pdf

(**Ref**: Government of India Ministry of Water Resources Central Ground Water Board South Eastern Coastal Region Chennai, "District Ground Water Brochure Dharmapuri District")

Source: https://cgwb.gov.in/District Profile/TamilNadu/Krishnagiri.pdf

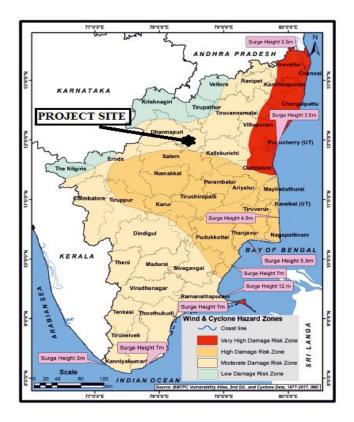
Figure 3-10 Hydrogeology Map of Dharmapuri District



3.4.11 Natural Hazards in PIA District

The Hazard may be termed as any event / object / rivers /industries / earthquake / fire / building / excess or deficit of rainfall which can cause a potential damage to a population / Animals / property / environment etc., an analysis involving occurrence magnitude, volume of hazards and the impact caused by such hazards gives a proper direction to prepare a plan to deal with such eventualities.

- (i) As per Map of the Flood Zones in Tamil Nadu shown in Figure 3.11, study area falls in
 Moderate damage risk zone.
- (ii) As per Map of the Wind & Cyclone Zones in Tamil Nadu shown in **Figure 3.12**, **study** area falls in Moderate damage risk zone


Source: https://spc.tn.gov.in/policy/tamil-nadu-state-disaster-management-policy-2023/

(Source: NRSC)

Figure 3-11 Map of the Flood Zones in Tamil Nadu, Highlighting the Project Site

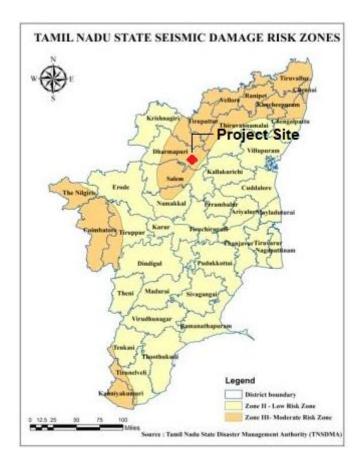
(Source: NRSC)

Figure 3-12 Map of the Wind & Cyclone Zones in Tamil Nadu, Highlighting the Project Site

3.4.12 Seismicity

The entire Indian landmass, susceptible to different levels of earthquake hazard, has broadly been classified into four distinct seismic Zones, referred to as Zones II to IV as per the Seismic Zoning Map of India contained in IS 1893:2002 (Part-1). As per the Foreword to the Seismic Code IS 1893:2002, the general basis of the zones are

- **Zone V:** Covers the areas liable to seismic intensity IX and above on MSK (1964) Intensity Scale. This is the most severe seismic zone and is referred here as Very High Damage Risk Zone.
- **Zone IV:** Gives the area liable to MSK VIII. This zone is second in severity to zone V. This is referred here as High Damage Risk Zone.
- Zone III: The associated intensity is MSK VII. This is termed here as Moderate Damage Risk Zone.
- **Zone II:** The probable intensity is MSK VI or less. This zone is referred to as Low Damage Risk Zone.


The Vulnerability Atlas of India (BMTPC, 2019) presents a series of National and State-level maps earthquake hazard, wherein the earthquake hazard risk for Tamil Nadu has been

classified into two categories. As per the Vulnerability Atlas, the area in Tamil Nadu that falls into seismic (MSK Intensity Scale) zones is as below:

- Zone II Low Damage Risk Zone (MSK VI or less)
- Zone III Moderate Damage Risk Zone (MSK VII)

The Earthquake hazard map of Tamil Nadu is shown in **Figure 3.13**. Based on the Seismic Damage Risk Zones, **the study area falls in the Zone III- Moderate Damage Risk Zone (MSK VII)**.

(Source: TNSDMA)

Figure 3-13 Seismicity Map of Tamil Nadu, Highlighting the Project Site

3.5 Establishment of Baseline for Valued Environmental Components

3.5.1 Air Environment

Baseline ambient air quality assessment gives the status in the vicinity of site and is an indispensable part of environmental impact assessment studies. Significant changes, in predominant winds and weather conditions are observed in winter, summer and post-monsoon seasons apart from the local topographic influences. The baseline status of air environment in the study area is assessed through a systematic air quality surveillance programme.

3.5.2 Meteorological Conditions

The regional air quality is influenced by the meteorology of that region. The principal weather parameters that influence the concentration of the air pollutants in the surroundings are wind speed, wind direction and temperature. The meteorological data is useful for proper interpretation of the baseline data.

3.5.3 Meteorological Data Collection

Available secondary data pertaining to the meteorological parameters was obtained from the IMD Climatological tables. In addition, baseline meteorological data was generated during the study period (**February 2025 to April 2025**). The methodology adopted for monitoring surface observations is as per the standard norms laid down by Bureau of Indian Standards (BIS) i.e. IS:8829 and Indian Meteorological Department (IMD).

3.5.4 General Meteorological Scenario based on IMD Data

The nearest India Meteorological Department (IMD) station to the project site is the Meteorological Observatory located at Dharmapuri, approximately 33 km away in the WNW direction from the site. The Climatological data of Dharmapuri is (Latitude: 12° 08′ N; Longitude: 78°02′ E) published by the IMD, based on daily observations at 08:30 and 17:30 hour IST for a 30 year period (1991-2020), is presented in the following sections on the meteorological conditions of the region. The monthly variations of the relevant meteorological parameters are reproduced in **Table 3-5**.

Table 3-5 Climatological Summary- Dharmapuri (1991-2020)

	Temp (°C) Mean		Rainfall		Relative Humidity (%)		Vapour Pressure hPa		Mean Wind	Predominan t Wind Directions (From)*	
Month	Dail y Max.	Dail y Min.	Total (mm)	No. of day s	08:3 0	17:3 0	08:3 0	17:3 0	Speed (Kmph)	08:3	17:3 0
Jan	29.7	17.7	49	0.3	81	50	20.1	18.1	5.1	NE	Е
Feb	32.7	18.9	64	0.2	75	41	20.9	17.9	5.0	NE	Е
Mar	35.8	20.8	123	0.9	68	33	22.3	17.3	4.6	NE	E
Apr	36.8	23.8	177.5	2.8	68	38	25.5	20.0	4.3	SW	Е
May	36.5	24.5	297.0	6.6	66	48	25.9	23.5	5.3	SW	SW
Jun	34.2	23.9	233.6	3.9	67	52	24.7	23.3	6.7	SW	SW
Jul	33.2	23.4	246.4	4.1	69	56	24.2	23.5	6.8	SW	SW
Aug	32.5	23.1	291.8	6.2	73	58	24.5	24.0	6.2	SW	W
Sep	32.3	22.6	359.4	7.0	76	61	25.6	24.9	4.7	SW	SW
Oct	30.7	21.9	462.6	9.7	82	71	25.6	25.6	3.7	NE	Е
Nov	29.0	20.4	436.5	6.5	83	69	23.7	23.4	4.3	NE	Е
Dec	27.9	18.3	184.5	2.7	82	62	20.8	20.0	4.8	NE	Е

Month	Temp (°C) Mean		Rainfall		Relative Humidity (%)		Vapour Pressure hPa		Mean Wind	Predominan t Wind Directions (From)*	
Month	Dail y Max.	Dail y Min.	Total (mm)	No. of day s	08:3 0	17:3 0	08:3	17:3 0	Speed (Kmph)	08:3	17:3 0
Max.	36.8	24.5	462. 6	9.7	83	71	25.9	25.6	6.8	Anr	ıual
Min.	27.9	17.7	49	0.2	66	33	20.1	17.3	3.7	Predo	minan
Annua l Avg	32.7	21.6	-	-	74	53	23.6	21.8	5.1	t w direct	ind tion is
Annua l Total	-	-	1446	50. 8	ı	ı	-	1	-	North	ı East

As per the above IMD climatological Data given in **Table 3-5**, the observations drawn are as follows

- Highest Daily maximum temperature is 36.8°C and the lowest daily minimum temperature is 17.7°C were recorded in the months of April and January respectively.
- Maximum and minimum relative humidity of 83% and 33% were recorded in the months of November and March respectively.
- Maximum and minimum rainfall of 462.6 mm and 49 mm was recorded in the months of October & Feburary respectively.
- Maximum and minimum Mean wind speed is 6.8 Km/hr and 3.7 Km/hr was recorded in the months of August and October respectively. Annual Wind predominant direction is North East.

3.5.5 Meteorological data during Study Period

The site specific meteorological data for three months from **February 2025 to April 2025** and is presented in **Table 3-6**. These data's are obtained from secondary sources and processed in AERMET to plot wind rose diagram for the study period is given in **Figure 3-14**. Other data included for AERMET were daily wind speed, wind direction, temperature, relative humidity, air pressure, precipitation and solar radiation recorded during the period. AERMET reformats meteorological data so that it can be used as input for AERMOD model.

Table 3-6 Meteorology Data for the Study Period (February 2025 to April 2025)

S.No	Parameter	Observation
1	Temperature	Max. Temperature: 38°C
		Min. Temperature: 18°C
		Avg. Temperature: 31.28°C
2	Average Relative Humidity	51.96%
3	Average Wind Speed	2.16m/s
4	Predominant Wind Direction	South East to Northwest

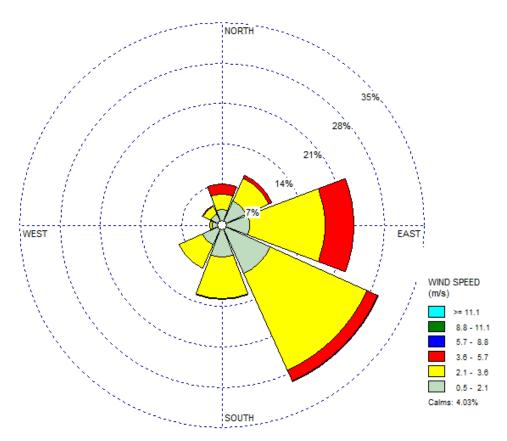


Figure 3-14 Wind Rose during February 2025 to April 2025

3.5.6 Atmospheric Inversion

Atmospheric inversion level at the project site was monitored; the results observed at the site during the study period are as follows

Average atmospheric temperature: 31.28°C

Average Relative humidity: 51.96%

• Average Wind speed: 2.16m/s

The daily inversion level calculated based on the average temperature and average wind speed at the project site and the maximum inversion height is derived by the graph plotted based on the average temperature and average wind speed. The daily inversion level at the project site varies from 59 to 1534 m during 12 AM to 11 PM, the maximum recorded at 1534 m during April 2025. This is shown in the following **Figure 3-15.**

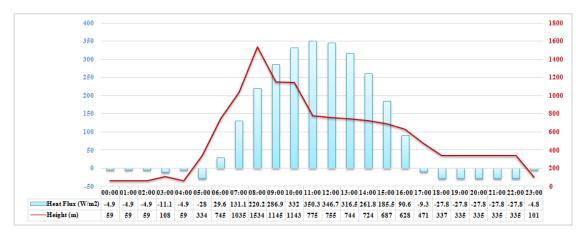


Figure 3-15 Atmospheric Inversion Level at the Project Site

3.6 Ambient Air Quality

The selection criteria for monitoring locations are based on the following:

- Topography/Terrain
- Meteorological conditions
- Residential and sensitive areas within the study area
- Representatives of regional background air quality/pollution levels and
- Representation of likely impacted areas

3.6.1 Ambient Air Quality Monitoring Stations

To evaluate the baseline air quality of the study area, Eight (08) monitoring locations have been identified as per annual wind predominance of Dharmapuri from IMD data (1991-2020). The wind predominance during study period (February 2025 to April 2025) is North East. AAQ monitoring locations are selected based on Annual wind predominance (NE) as per Table 3-6, the details of the locations are given in Table 3-7 and map showing the AAQ monitoring locations is given in Figure 3-16.

Table 3-7 Details of Ambient Air Quality Monitoring Locations

Station Code	Location	Type of Wind	Distance (~km)	Azimuth Directions
AAQ1	Near Project Site	-	0.09	NNE
AAQ2	Annamalaihalli	u/w	0.88	NE
AAQ3	Gopinathampatti	c/w	2.17	ESE
AAQ4	Paraiyapatti	c/w	2.39	S
AAQ5	Near Jammanahalli	d/w	0.35	SW
AAQ6	Marukkalampatti	d/w	4.44	SW
AAQ7	Tenkaraikottai	c/w	2.23	W
AAQ8	Gopisettipalaiyam	c/w	3.98	NNW

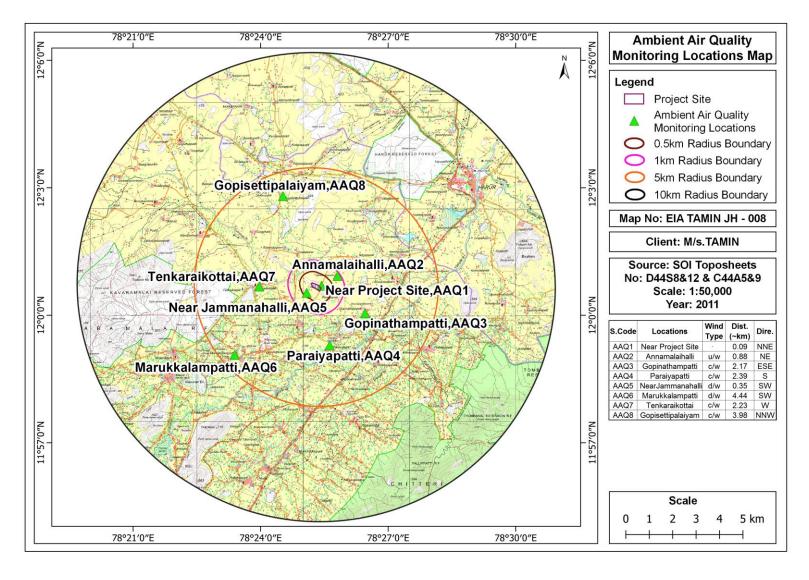


Figure 3-16 Map Showing the Ambient Air Quality Monitoring Locations

3.6.2 Ambient Air Quality Monitoring Techniques and Frequency

Ambient air quality was monitored twice in a week for One (01) season (shall cover 12 weeks), i.e. during (**February 2025 to April 2025**). PM_{10} , $PM_{2.5}$, SO_2 , NO_x , CO, Pb, O3, NH_3 , C_6H_6 , $C_{20}H_{12}$, As, Ni was monitored. Sampling was carried out as per Central Pollution Control Board (CPCB) monitoring guidelines at each location. Analytical methods used for analysis of parameters are given in **Table 3-8**.

Table 3-8 Analytical Methods for Analysis of Ambient Air Quality Parameters (NAAQ)

S. No	Parameters	Analytical method	NAAQ sta 20		Sampling Time
1	Sulphur Dioxide (SO ₂), µg/m ³	IS:5182(Part-2):2001	50 (Annual)	80 (24 Hours)	24 Hours
2	Nitrogen Dioxide (NO ₂), μg/m ³	IS: 5182 (Part - 6): 2006	40 (Annual)	80 (24 Hours)	24 Hours
3	Particulate Matter (PM _{2.5}), µg/m ³	IS: 5182 (Part – 23): 2006	40 (Annual)	60 (24 hours)	24 Hours
4	Particulate Matter (PM_{10}) , $\mu g/m^3$	IS:5182 (Part- 23): 2006	60 (Annual)	100 (24 hours)	24 Hours
5	CO, mg/m ³	IS:5182(Part-10):1999	2 (8 hours)	4 (1hour)	8 Hours
6	Pb, μg/m ³	IS:5182(Part-22):2004	0.5 (Annual)	1 (24 hours)	24 Hours
7	O ₃ , μg/m ³	IS 5182 Part 9: 1974	100 (8hours)	180 (1hour)	8 Hours
8	NH ₃ , μg/m ³	IS 5182 Part 25: 2018	100 (Annual)	400 (24 hours)	8 Hours
9	Benzene, μg/m³	IS 5182 Part 11: 2006	5 (Annual)	5 (Annual)	24 Hours
10	Benzo (a) pyrene, ng/m ³	IS 5182 Part 12 : 2004	1 (Annual)	1 (Annual)	24 Hours
11	Arsenic, ng/ m ³	HECS/AA/SOP/019,Issue No:01,Issue Date :16.12.:2016: 2016	6 (Annual)	6 (Annual)	24 Hours
12	Nickel, ng/ m ³	HECS/AA/SOP/009,issue No.01,Issue Date :16.12:2016: 2016	20 (Annual)	20 (Annual)	24 Hours
13	Free Silica	NIOSH Manual- Method 7601			8 hours

Table 3-9 Summary of the Average Baseline Concentrations of Pollutants

			Locations									
Parameters	Conc.	NAAQ Standard s	Near Project Site	Annamalaiha Ili	Gopinathamp	Paraiyapatti	Near Jammanahall i	Marukkalam patti	Tenkaraikott ai	Gopisettipala iyam		
	Min.		32.82	30.81	38.83	AAQ4 36.82	39.41	AAQ6 40.50	36.41	AAQ8 34.49		
D14 6	Max.	100	46.77	43.91	55.34	52.48	56.17	57.72	51.88	49.15		
PM ₁₀ Conc. (μg/m³)	Avg.	(24 Hours)	39.35	36.95	46.56	44.16	47.26	48.57	43.66	41.36		
	98th 'tile	nours	46.50	43.66	55.01	52.17	55.84	57.38	51.58	48.86		
	Min.		16.41	15.41	19.41	18.41	19.71	20.25	18.20	17.24		
PM _{2.5} Conc.	Max.	60	23.38	21.96	27.67	26.24	28.08	28.86	25.94	24.57		
(μg/m³)	Avg.	(24 Hours)	19.68	18.48	23.28	22.08	23.63	24.29	21.83	20.68		
	98th 'tile		23.25	21.83	27.51	26.09	27.92	28.69	25.79	24.43		
	Min.		6.84	5.95	8.71	8.36	9.49	10.53	8.05	7.59		
SO ₂ Conc.	Max.	80	9.75	8.47	12.41	11.91	13.53	15.01	11.47	10.82		
(μg/m³)	Avg.	(24 Hours)	8.21	7.13	10.45	10.03	11.39	12.63	9.66	9.11		
	98th 'tile		9.69	8.42	12.34	11.84	13.45	14.92	11.41	10.75		
NO ₂ Conc.	Min.	80	13.68	11.89	17.42	16.72	17.64	18.15	16.10	15.18		
(μg/m³)	Max.	(24 Hours)	19.49	16.95	24.82	23.82	25.13	25.87	22.94	21.63		

						Loca	tions			
Parameters	Conc.	NAAQ Standard s	Near Project Site	Annamalaiha Ili	Gopinathamp atti	Paraiyapatti	Near Jammanahall i	Marukkalam patti	Tenkaraikott ai	Gopisettipala iyam
			AAQ1	AAQ2	AAQ3	AAQ4	AAQ5	AAQ6	AAQ7	AAQ8
	Avg.		16.41	14.26	20.89	20.05	21.15	21.77	19.31	18.21
	98th 'tile		19.38	16.85	24.68	23.69	24.99	25.72	22.81	21.51
Lead (Pb) (μg/m³)	Avg.	1 (24 hour)	BLQ (LOQ 0.002)	BLQ (LOQ 0.002)	BLQ (LOQ 0.002)	BLQ (LOQ 0.002)	BLQ (LOQ 0.002)	BLQ (LOQ 0.002)	BLQ (LOQ 0.002)	BLQ (LOQ 0.002)
Carbon monoxide (CO) (mg/m³)	Avg.	4 (1hour)	0.22	0.21	0.36	0.32	0.38	0.40	0.29	0.26
Ozone O ₃ (μg/m ³)	Avg.	180 (1hour)	10.56	13.20	12.03	11.86	12.13	12.46	11.08	10.88
Benzene (C_6H_6) (µg/m ³)	Avg.	5(A nnual)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)
Benzo (a) Pyrene (C ₂₀ H ₁₂ (a)), (ng/m ³)	Avg.	1 (Annual)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)
Arsenic (As) (ng/m³)	Avg.	6 (Annual)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)
Nickel as Ni (ng/m³)	Avg.	20 (Annual)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)	BLQ (LOQ 2)
Ammonia (NH ₃) (μg/m ³)	Avg.	400 (24 hour)	5.94	6.14	7.86	7.12	8.06	8.31	6.99	6.24
TVOC (ppm)	Avg.	-	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)	BLQ (LOQ 0.1)
AQI Value	-	-	39	37	47	44	47	49	44	41

			Locations								
Parameters	Conc.	NAAQ Standard s	Near Project Site	Annamalaiha Ili	Gopinathamp atti	Paraiyapatti	Near Jammanahall i	Marukkalam patti	Tenkaraikott ai	Gopisettipala iyam	
			AAQ1	AAQ2	AAQ3	AAQ4	AAQ5	AAQ6	AAQ7	AAQ8	
AQI Category	-	-	Good	Good	Good	Good	Good	Good	Good	Good	

Note: BDL (Below detection limit), DL (Detection limit), BLQ (Below Limit Of Quantification), LOQ (Limit of Quantification

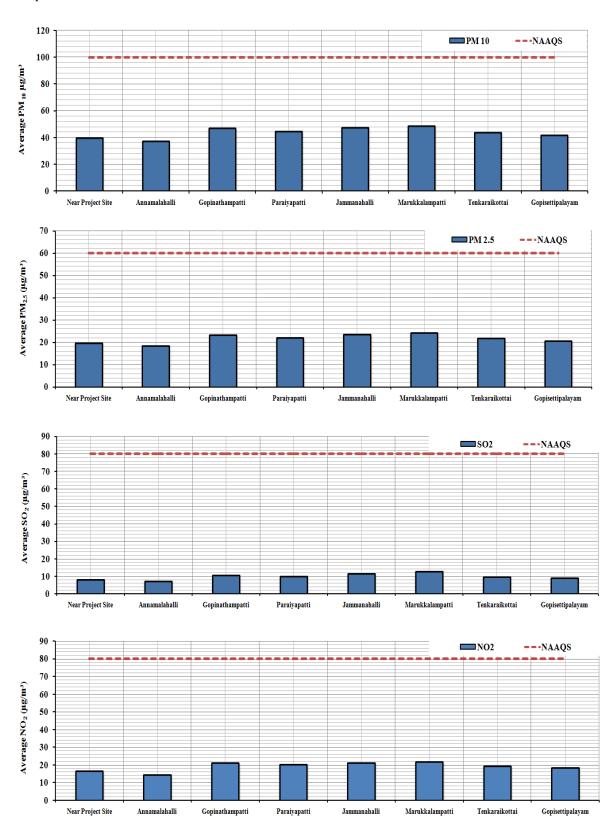


Figure 3-17 Trends of Measured Ambient Concentrations in the Study Area

3.6.2.1 Results and Discussions

The variations of the pollutants Particulate matter <10 micron size (PM_{10}), Particulate matter <2.5 micron size ($PM_{2.5}$), Sulphur Dioxide (SO_2), Nitrogen Dioxide (NO_2), Carbon Monoxide (SO_2), Lead (Pb), Ozone (SO_3), Benzene (SO_4), Benzo (a) pyrene (SO_4), Arsenic (SO_4), Nickel (SO_4), Ammonia (SO_4), TVOC are compared with National Ambient Air Quality Standards (SO_4), MoEF&CC Notification, November 2009. Ambient Air Quality Monitoring Data (SO_4), MoEF&CC Notification, November 2009. Ambient Air Quality Monitoring Data (SO_4), MoEF&CC Notification in the study areas were given in **Table 3.9** and trends of measured ambient concentration in the study areas were graphically represented in **Figure 3-17**.

The ambient air quality has been monitored at 8 locations as per NAAQS, 2009 within the study area. The results obtained are summarised as below:

- The average baseline levels of PM_{10} vary from $36.95\mu g/m^3$ to $48.57 \mu g/m^3$.
- The average baseline levels of $PM_{2.5}$ vary from $18.48\mu g/m^3$ to $24.29 \mu g/m^3$.
- The average baseline levels of SO_2 vary from 7.13 μ g/m³ to 12.63 μ g/m³.
- The average baseline levels of NO₂ vary from 14.26 μg/m³ to 21.77μg/m³

It is observed that ambient air quality levels at all locations are within prescribed CPCB standards.

3.7 Noise Environment

The prevailing ambient noise level at a particular location is nothing but the resultant (total) of all kinds of noise sources existing at various distances around that location. The ambient noise level at a location varies continuously depending on the type of surrounding activities.

Ambient noise levels have been established by monitoring noise levels at Eight (08) locations in and around 10Km distance from project area during the study period using precision noise level meter. The noise monitoring locations in the study area were selected after giving due consideration to the various land use categories. The land use categories include commercial, residential, rural and sensitive areas. Noise levels were recorded on an hourly basis for one complete day at each location using pre- calibrated noise levels. Map showing noise monitoring locations is **Figure 3-18**.

3.7.1 Results and Discussions

Based on the recorded hourly noise levels at each monitoring location, the day equivalent (Ld) and night equivalent (Ln) were calculated;

The Central Pollution Control Board constituted a Committee on Noise Pollution Control. The Committee recommended noise standards for ambient air and for automobiles, domestic

appliances and construction equipment, which were later notified in Environment (Protection) Rules, 1986 as Table given below

S.NO	Code	Category	Day time (Ld)	Night time (Ln)
1.	Α	Industrial Area	75	70
2.	В	Commercial Area	65	55
3.	С	Residential Area	55	45
4.	D	Silence Zone	50	40

Source: https://cpcb.nic.in/noise-pollution-rules/

Ref: Noise Pollution (Regulation and Control) Rules, 2000

Ld: Average noise levels between 6:00 hours to 22.00 hours

Ln: Average noise levels between 22.00 hours to 6.00 hours

The day and night equivalent noise levels are given in **Table 3-10**.

Note:

- Day time shall mean from 6.00a.m to 10.00 p.m.
- Night time shall mean from 10.00 p.m. to 6.00a.m
- Silence Zone is an area comprising not less than 100 meters around hospitals, educational institutions, courts, religious places and any other area which is declared as such by the competent authority.
- Mixed categories of area may be declared as one of the four above mentioned categories by the competent authority.
- dB(A) L_{eq} denotes the time weighted average of the level of sound in decibels on scale A
 which is relatable to human hearing.
- *L_{eq}: It is an energy mean of the noise level over a specific period.

Table 3-10 Day and Night Equivalent Noise Levels

S.	Location	Location	Distance (~km) from	Azimuth	Noise level i	in dB(A) Leq	CPCB St	andard	Environmental	
No	Location	Code	Project boundary	Direction	Day	Night	Lday (Ld)	LNight (Ln)	Setting	
1	Project Site	N1	Within t	he Site	60.3	51.9	75	70	Industrial Area	
2	Annamalaihalli	N2	0.66	NNE	50.1	40.5	55	45	Residential Area	
3	Nagappatti	N3	2.10	NE	51.4	41.2	55	45	Residential Area	
4	Gopinathampatti	N4	1.81	ESE	53.1	43.0	55	45	Residential Area	
5	Paraiyappati	N5	2.37	SSE	53.4	43.3	55	45	Residential Area	
6	Jammanahalli	N6	0.92	SW	52.8	42.4	55	45	Residential Area	
7	Tenkaraikottai	N7	2.22	W	53.9	43.7	55	45	Residential Area	
8	Vadakarai	N8	1.36	NNW	52.1	42.0	55	45	Residential Area	

3.7.1.1 Observations

It is observed that the day equivalent and night equivalent noise levels at all locations are within prescribed CPCB standards.

- In Residential area day time noise levels varied from 50.1 dB (A) to 53.9dB (A) and night time noise levels varied from 40.5 dB(A) to 43.7 dB(A) across the sampling stations. The field observations during the study period indicate that the ambient noise levels in Residential area are within the limit prescribed by CPCB for Residential area (55 dB (A) Day time & 45 dB(A) Night time).
- In Industrial Area day time noise levels was recorded as 60.3 dB(A) and the night time noise levels was recorded as 51.9 dB(A) among the sampling stations. The field observations during the study period indicate that the ambient noise levels are within the prescribed limit by CPCB (75 dB(A) Day time & 70 dB(A) Night time).

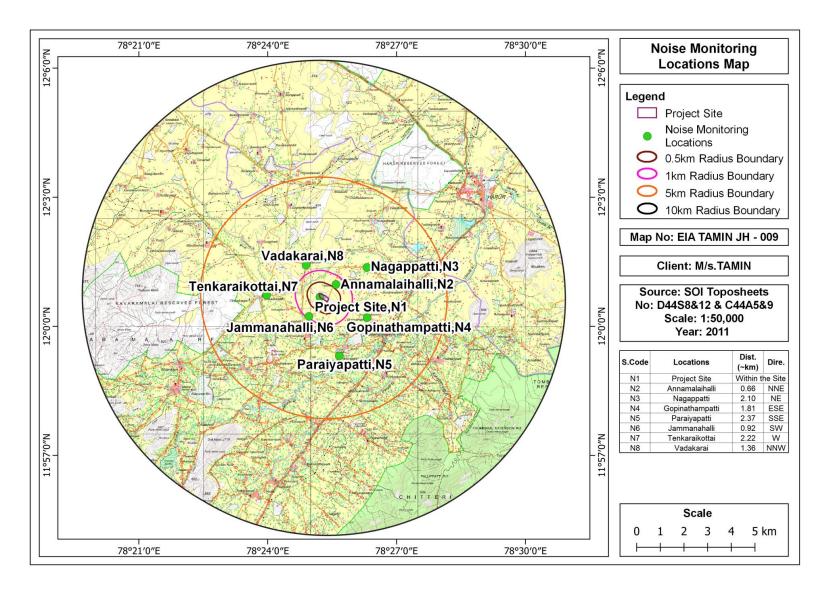


Figure 3-18 Map Showing the Noise Monitoring Locations

3.8 Water Environment

The water environment encompasses both surface water and groundwater as vital components of Earth's hydrological cycle. Surface water refers to water found in rivers, lakes and reservoirs, which is easily accessible and plays a crucial role in supporting ecosystems, agriculture and human activities. On the other hand, groundwater is water stored beneath the Earth's surface in aquifers, often tapped for drinking water and irrigation. Both sources are interconnected and essential for maintaining ecological balance. Water quality monitoring and assessment can be used to determine ambient water quality, the extent and causes of a water quality problem or to measure the effectiveness of best management practices being implemented in water system. Monitoring helps to determine the trends in the quality of the aquatic environment and the impact due to the release of contaminants, other anthropogenic activities or by waste treatment operations (impact monitoring).

3.8.1 Surface Water Resources

The district is part of the composite east flowing river basin "Between Cauvery and Ponnaiyar as per the Irrigation Atlas of India. The detailed characteristic features of these rivers are explained in **section 3.4.5**.

Source: http://cgwb.gov.in/sites/default/files/2022-10/dharmapuri.pdf

(**Ref**: Government of India Ministry of Water Resources Central Ground Water Board South Eastern Coastal Region Chennai, "District Ground Water Brochure Dharmapuri District").

3.8.2 Surface Water Quality Assessment

Water quality monitoring and assessment can be used to determine ambient water quality, the extent and causes of a water quality problem, or to measure the effectiveness of best management practices being implemented in water system. Monitoring helps to determine the trends in the quality of the aquatic environment and the impact due to the release of contaminants, other anthropogenic activities, and/or by waste treatment operations (impact monitoring). To establish the baseline status of water environment, the representative sampling locations for surface water within a radial distance of 10Km from project site have been selected as per CPCB guidelines of Water Quality Monitoring through an adequate survey of the project area. Test methods used for the analysis of water quality parameters is given in **Table 3-11**. Designated Best Use Water Quality Criteria is given in the **Table 3-12**. Details of the water sampling and map of sampling location are given in **Table 3-13** and **Figure 3-19**. Physicochemical Parameters of Surface water samples from the study area given in **Table 3-14**.

Table 3-11 Test Methods Used for the Analysis of Water Quality Parameters

S.No	Parameters	Test Method
1.	Colour	IS 3025 Part 4: 2021
2.	Odour	IS 3025 Part 5: 2018
3.	Temperature	IS 3025 Part 9: 1984
4.	рН	IS 3025 Part 11: 2022 (Electrometric Method)
5.	Oil & Grease	IS 3025 Part 39: 2021
6.	Electrical Conductivity	IS:3025 Part 14: 2013
7.	Dissolved Oxygen	IS 3025 Part 38: 1989
8.	Turbidity	IS 3025 Part 10: 1984
9.	Total Dissolved Solids	IS 3025 Part 16: 1984
10.	Total Suspended Solids	IS 3025 Part 17 : 1984
11.	NH ₃ -N	IS 3025 Part 34 Sec 2: 2021
12.	Nitrate as NO ₂	IS 3025 Part 34 Sec 3 : 2021
13.	Nitrate as NO ₃	APHA 23rd edition Method 4500 NO3B: 2017
14.	Total Phosphorous	IS 3025 Part 31 Sec 1: 2022
15.	BOD	IS 3025 Part 44: 1993
16.	COD	IS 3025 Part 58: 2006
17.	Potassium K	IS 3025 Part 45: 1993
18.	Sodium Na	IS 3025 Part 45: 1983
19.	Calcium as Ca	IS 3025 Part 40: 1991(EDTA Titrimetric Method)
20.	Magnesium as Mg	IS 3025 Part 46: 1994 (Volumetric Method using EDTA)
21.	CO ₃	IS 3025 Part 51: 2001
22.	HCO ₃	IS 3025 Part 51: 2001
23.	Total Hardness	IS 3025 Part 21: 2009
24.	Chloride as Cl	IS 3025 Part 32: 1988 (Argentometric Method)
25.	Sulphate as SO ₄	IS 3025 Part 24 Sec 1: 2022
26.	Boron as B	IS 3025 Part 57: 2021 (Curcumin Method)
27.	Fluorides as F	APHA 23rd edition Method 4500 F-B,D: 2017
28.	Iron as Fe	IS 3025 Part 53: 2003
29.	Copper as Cu	USEPA 200.8 : 1994
30.	Chromium as Cr	USEPA 200.8: 1994
31.	Nickel as Ni	USEPA 200.8 : 1994

S.No	Parameters	Test Method
32.	Lead as Pb	USEPA 200.8 : 1994
33.	Cadmium as Cd	USEPA 200.8 : 1994
34.	Zinc as Zn	USEPA 200.8 : 1994
35.	Mercury as Hg	USEPA 200.8 : 1994
36.	Arsenic as As	USEPA 200.8 : 1994
37.	Cyanide as CN	IS 3025 Part 27 sec 1: 2021
38.	Faecal Coliform	IS 1622 : 1981
39.	Total Coliform	IS 1622 : 1981

Table 3-12 Designated Best Use Water Quality Criteria

S.No	Designated-Best-Use	Class of water	Criteria
1.	Drinking Water Source without conventional treatment but after disinfection	A	 Total Coli forms Organism MPN/100ml shall be 50 or less pH between 6.5 and 8.5 Dissolved Oxygen 6mg/l or more Biochemical Oxygen Demand 5 days 20C 2mg/l or less
1.	Outdoor bathing (Organised)	В	 Total Coli forms Organism MPN/100ml shall be 500 or less pH between 6.5 and 8.5 Dissolved Oxygen 5mg/l or more Biochemical Oxygen Demand 5 days 20C 3mg/l or less
2.	Drinking water source after conventional treatment and disinfection	С	 Total Coli forms Organism MPN/100ml shall be 5000 or less pH between 6 to 9 Dissolved Oxygen 4mg/l or more Biochemical Oxygen Demand 5 days 20C 3mg/l or less
3.	Propagation of Wild life and Fisheries	D	 pH between 6.5 to 8.5 Dissolved Oxygen 4mg/l or more Free Ammonia (as N) 1.2 mg/l or less

Proposed Jammanahalli Black Granite Quarry
Draft EIA Report

H/01/2024/CON/046 RP003-R2

			1. pH between 6.0 to 8.5
	Irrigation, Industrial		2. Electrical Conductivity at 25C micro mhos/cm
4.	Cooling, Controlled Waste	Е	Max.2250
	disposal		3. Sodium absorption Ratio Max. 26
			4. Boron Max. 2mg/l

Table 3-13 Details of Surface Water Sampling Locations

S.No	Location Code	Location	Distance in km	Direction
1	SW1	Nambiyappatti Lake	4.13	ENE
2	SW2	Piniyar River	4	ESE
3	SW3	Vaniyar River	2.92	SE
4	SW4	Paraiyapatti Pudur Lake	1.79	SSE
5	SW5	Panchalanagar Lake	4.54	WSW
6	SW6	Tenkaraikottai Lake	2.54	W
7	SW7	Turinjihalli Ar	0.77	WNW
8	SW8	Lake near Krishnapuram	2.33	NNW

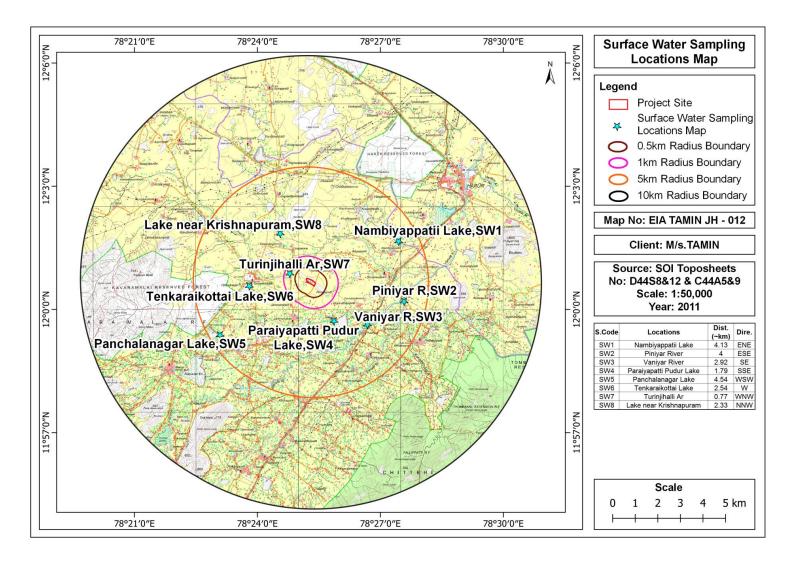


Figure 3-19 Map Showing the Surface Water Monitoring Locations

Table 3-14 Physicochemical Parameters of Surface Water Samples from the Study Area

S. No	Parameter	Unit	Nambiyappatti Lake	5 MS Piniyar River	S Vaniyar River	Paraiyapatti Pudur A Lake	אבר Panchalanagar יי Lake	Tenkaraikottai S Lake	Turinjihalli Ar	Krishnapuram
1.	Colour	Hazen	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)
2.	Odour	-	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
3.	Temperature	°C	27.3	26.9	26.8	27.2	27.3	27.2	27.6	27.2
4.	рН	-	7.82	7.12	7.48	7.89	7.81	7.88	7.94	7.84
5.	Electrical Conductivity (as EC)	μS/cm	1971	1590	1477	1615	1699	1669	1247	1314
6.	Dissolved Oxygen (as DO)	mg/l	6.0	6.2	6.2	5.9	5.8	5.9	5.7	5.8
7.	Turbidity	NTU	5	4	5	4	3	3	4	7
8.	Total Suspended Solids (as TSS)	mg/l	11	9	11	9	7	7	9	12
9.	Total Dissolved Solids (as TDS)	mg/l	1143	890	827	872	917	901	673	723
10.	Ammonical Nitrogen (as NH ₃ -N)	mg/l	0.24	0.44	0.32	0.25	0.20	0.19	0.31	0.23
11.	Nitrite (as NO ₂)	mg/l	BLQ (LOQ:0.00 5)	BLQ (LOQ:0.00 5)	BLQ (LOQ:0.00 5)	BLQ (LOQ:0.00 5)	BLQ (LOQ:0.00 5)	BLQ (LOQ:0.00 5)	BLQ (LOQ:0.00 5)	BLQ (LOQ:0.00 5)
12.	Nitrate as (NO ₃)	mg/l	6.3	5.9	5.65	6.54	5.12	4.06	4.02	5.81

S. No	Parameter	Unit	Nambiyappatti Lake	Piniyar River	Vaniyar River	Paraiyapatti Pudur Lake	Panchalanagar Lake	Tenkaraikottai Lake	Turinjihalli Ar	Lake near Krishnapuram
			SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 8
13.	Total Phosphorous as P (as P)	mg/l	0.011	0.015	0.0023	0.0018	0.0010	0.0016	0.0021	0.0020
14.	Biochemical Oxygen Demand (as BOD)	mg/l	6	4	4	6	7	5	8	5
15.	Chemical Oxygen Demand (as COD)	mg/l	72	48	52	68	64	72	92	60
16.	Potassium (as K)	mg/l	36	28	24	26	21	19	20	18
17.	Sodium (as Na)	mg/l	152	116	102	104	198	206	116	120
18.	Calcium (as Ca)	mg/l	156.31	128.26	124.25	132.26	84.17	88.18	64.13	96.19
19.	Magnesium (as Mg)	mg/l	48.6	41.31	38.88	43.74	26.73	19.44	34.02	21.87
20.	Carbonate as (CO ₃)	mg/l	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)	BLQ (LOQ:1.0)
21.	Total Alkalinity	mg/l	160	180	190	210	190	190	210	170
22.	Total Hardness (as TH)	mg/l	590	490	470	510	320	300	300	330
23.	Chloride (as Cl)	mg/l	460.24	341.47	291.98	306.83	351.37	341.47	207.85	254.39
24.	Sulphate (as SO ₄₎	mg/l	159.6	93.4	98.3	98.6	88.9	81.3	73.4	76.34
25.	Boron (as B)	mg/l	BLQ (L 0Q:0.1)	BLQ (L 0Q:0.1)	BLQ (L 0Q:0.1)	BLQ (L 0Q:0.1)	BLQ (L 0Q:0.1)	BLQ (L 0Q:0.1)	BLQ (L 0Q:0.1)	BLQ (L OQ:0.1)
26.	Fluorides (as F)	mg/l	0.62	0.41	0.38	0.64	0.58	0.49	0.68	0.53

S. No	Parameter	Unit	Nambiyappatti Lake	Piniyar River	Vaniyar River	Paraiyapatti Pudur Lake	Panchalanagar Lake	Tenkaraikottai Lake	Turinjihalli Ar	Lake near Krishnapuram
			SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 8
27.	Iron (as Fe)	mg/l	0.14	0.089	0.11	0.080	0.076	0.054	0.069	0.16
28.	Copper (as Cu)	mg/l	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)
29.	Chromium (as Cr)	mg/l	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)
30.	Nickel (as Ni)	mg/l	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)
31.	Lead (as Pb)	mg/l	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)
32.	Cadmium (as Cd)	mg/l	BLQ (LOQ: 0.001)	BLQ (LOQ: 0.001)	BLQ (LOQ: 0.001)	BLQ (LOQ: 0.001)	BLQ (LOQ: 0.001)	BLQ (LOQ: 0.001)	BLQ (LOQ: 0.001)	BLQ (LOQ: 0.001)
33.	Zinc (as Zn)	mg/l	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)	BLQ (LOQ: 0.01)
34.	Mercury (as Hg)	mg/l	BLQ (LOQ: 0.0005)	BLQ (LOQ: 0.0005)	BLQ (LOQ: 0.0005)	BLQ (LOQ: 0.0005)	BLQ (LOQ: 0.0005)	BLQ (LOQ: 0.0005)	BLQ (LOQ: 0.0005)	BLQ (LOQ: 0.0005)
35.	Arsenic (asAs)	mg/l	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)	BLQ (LOQ: 0.005)
36.	Cyanide (as CN)	mg/l	BLQ(LOQ: 0.01)	BLQ(LOQ: 0.01)	BLQ(LOQ: 0.01)	BLQ(LOQ: 0.01)	BLQ(LOQ: 0.01)	BLQ(LOQ: 0.01)	BLQ(LOQ: 0.01)	BLQ(LOQ: 0.01)
37.	Faecal Coliform	MPN/ 100 ml	38	12	15	30	24	30	42	30
38.	Total Coliform	MPN /100 ml	131	71	83	124	112	129	161	120

S. No	Parameter	Unit	Nambiyappatti Lake	Piniyar River	Vaniyar River	Paraiyapatti Pudur Lake	Panchalanagar Lake	Tenkaraikottai Lake	Turinjihalli Ar	Lake near Krishnapuram
			SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 8
39.	Oil and Grease	mg/l	BLQ (LOQ:4.0)	BLQ (LOQ:4.0)	BLQ (LOQ:4.0)	BLQ (LOQ:4.0)	BLQ (LOQ:4.0)	BLQ (LOQ:4.0)	BLQ (LOQ:4.0)	BLQ (LOQ:4.0)

Note: BLQ – Below the Limit of Quantification; LOQ – Limit of Quantification

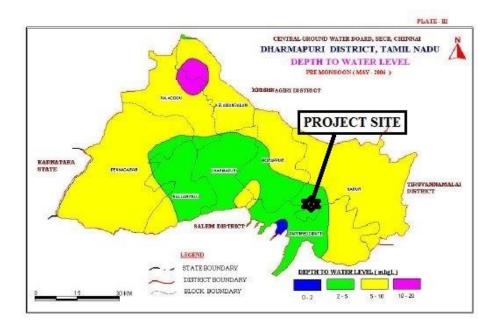
3.8.2.1 Results and Discussions

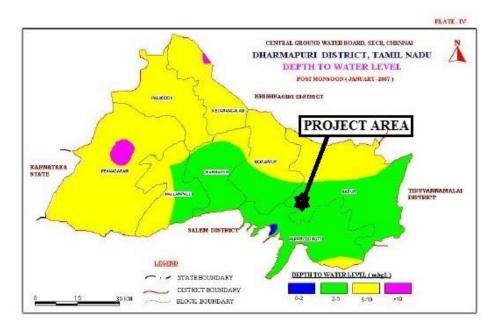
Surface water sample results are discussed below:

- pH of the collected surface water samples varies between 7.12 to 7.94 which is within the limit.
- The TDS value of collected surface water sample ranges from 673 mg/l to 1143 mg/l.
- The Total hardness value of the collected surface water sample ranges between 300 mg/l to 590 mg/l.
- BOD value of surface water varies from 4 mg/l to 8 mg/l.
- COD value of surface water varies from 48 mg/l to 92 mg/l.

Surface water standards (IS 2296:1992) given in **Table 3-15**.

3.8.3 Groundwater resources


The groundwater availability in an area is governed by various natural factors like rainfall, geomorphological feature, geological set up and hydrogeological conditions. In addition to that ground water withdrawal component from storage and recharge components from irrigation also affects the groundwater balance. Rainfall is the major source of recharge for groundwater. The average rainfall is greater than the potential evapotranspiration during seven months in a year from May to November, indicating water surplus for effective recharge to the groundwater regime during these months.


The estimation of groundwater resources for the district has shown that all block is under "Over Exploited" category. The shallow alluvial aquifers along Cauvery and Ponnaiyar rivers serve as an important source of drinking water irrigation development for Dharmapuri district. Dug wells are the most common ground water abstraction structures used for irrigation in the district. The yield of dug wells range from 150 to 200 m³/day in weathered crystalline rocks and 20 to 200 m³/day in Recent alluvial formations along major drainage courses. Depth of water level in Pre monsoon season for project site **is 2 to 5 mbgl** and depth of water level in Post monsoon season is **2 to 5 mbgl**. Depth to water level during Pre Monsoon & Post Monsoon for project site in Dharmapuri, Tamil Nadu, is given in **Figure 3.20**.

Source: http://cgwb.gov.in/sites/default/files/2022-10/dharmapuri.pdf

Ref: Government of India Ministry of Water Resources Central Ground Water Board South Eastern Coastal Region Chennai, "District Ground Water Brochure Dharmapuri District"

Source: http://cgwb.gov.in/sites/default/files/2022-10/dharmapuri.pdf

Figure 3-20 Depth to water level during Pre-Monsoon & Post Monsoon in Dharmapuri
District

Depth of water level in the project site during pre-monsoon ranges from >2 -5 m bgl, and during the post monsoon period ranges from >2 -5 m bgl.

3.8.3.1 Groundwater Quality Assessment

Measuring groundwater quality is essential for ensuring its safety and suitability for drinking, agriculture and industrial use. Various physical, chemical and biological parameters determine

groundwater quality, affecting human health and environmental sustainability. Parameters such as pH, electrical conductivity, TDS, turbidity and temperature influence the overall water characteristics, while chemical components like nitrates, fluoride, chloride, sulphate, and heavy metals impact its safety. Contaminants from natural sources or human activities, such as industrial waste, agricultural runoff and improper waste disposal can degrade groundwater quality. Baseline monitoring helps identify contamination, assess water usability and implement corrective measures to prevent health risks and environmental damage.

Comparing groundwater quality with Indian Standards (IS 10500) ensures it meets the prescribed limits for safe consumption and usage. The IS standards define acceptable limits for parameters like pH, TDS, total hardness, nitrate, fluoride and heavy metals like lead, arsenic and cadmium, which should be minimal or absent. Parameters such as iron, copper, and zinc, though essential in trace amounts, can be harmful at higher concentrations. Comparing measured values with IS standards helps in assessing water safety, identifying pollution sources and implementing appropriate treatment methods to ensure groundwater remains a reliable resource.

In this study, a total of Eight (08) groundwater monitoring locations were identified for assessment in different villages around the project site based on the usage by the nearby settlements/ villages in the study area. The groundwater results are compared with the desirable and permissible water quality standards as per IS 10500 (2012) for drinking water. Groundwater quality monitoring locations and results are given in **Table 3-15** and **Table 3-16**. Map showing the groundwater monitoring locations are given in **Figure 3-21**

Table 3-15 Details of Groundwater Quality Monitoring Locations

S.No	Location	Location Code	Distance in Km	Direction
1	Near Project Site	GW1	0.24	W
2	Nagappatti	GW2	2.06	NE
3	Annamalaihalli	GW3	0.70	ENE
4	Gopinathampatti	GW4	2.17	ESE
5	Paraiyapatti	GW5	2.39	S
6	Jammanahalli	GW6	0.96	SSW
7	Tenkaraikottai	GW7	2.23	W
8	Vadakarai	GW8	1.39	NNW

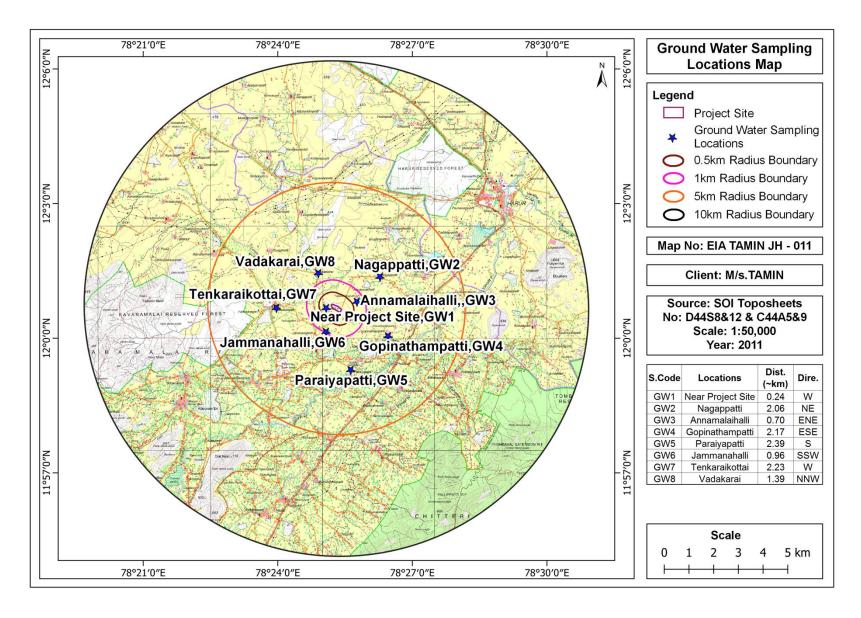


Figure 3-21 Map showing the groundwater monitoring locations

Table 3-16 Physico chemical analysis of Ground water samples from study area

S. N O	Parameters	Unit	Standar	ng water 'd (IS): 2012)	Near Project Site	Nagappatti	Annamalaihalli	Gopinathampatti	Paraiyapatti	Jammanahalli	Tenkaraikottai	Vadakarai
			Accept able Limit	Permissi ble Limit	GW 1	GW 2	GW 3	GW 4	GW 5	GW 6	GW 7	GW 8
1	Colour	Hazen	5	15	BLQ (LOQ: 1.0)							
2	Odour	-	Agreea ble	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e
3	pH at 25°C	-	6.5-8.5	No relaxatio n	7.11	7.55	7.30	7.74	7.61	7.23	7.66	7.39
4	Taste	-	Agreea ble	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e	Agreeabl e
5	Turbidity	NTU	1	5	BLQ (LOQ: 0.1)							
6	Total dissolved solids	mg/l	500	2000	1160	1690	1385	1767	1775	1170	1566	1728
7	Boron(as B)	mg/l	0.5	1	BLQ (LOQ: 0.1)							
8	Calcium (as Ca)	mg/l	75	200	92.18	176.35	124.25	188.38	172.34	104.21	128.26	156.31
9	Chloride (as Cl)	mg/l	250	1000	529.52	786.86	673.04	870.9	900.7	529.5	757.2	851.2
10	Copper (as Cu)	mg/l	0.05	1.5	BLQ (LOQ: 0.01)							
11	Fluoride (as F)	mg/l	1.0	1.5	0.38	0.61	0.42	0.78	0.54	0.47	0.58	0.64

S. N O	Parameters	Unit	Standar	ng water rd (IS): 2012)	Near Project Site	Nagappatti	Annamalaihalli	Gopinathampatti	Paraiyapatti	Jammanahalli	Tenkaraikottai	Vadakarai
			Accept able Limit	Permissi ble Limit	GW 1	GW 2	GW 3	GW 4	GW 5	GW 6	GW 7	GW 8
12	Iron (as Fe)	mg/l	0.3	No relaxatio n	0.027	0.049	0.054	0.081	0.045	0.037	0.063	0.058
13	Magnesium (as Mg)	mg/l	30	100	55.89	65.61	65.79	77.76	82.62	65.71	80.19	65.61
14	Manganese (as Mn)	mg/l	0.1	0.3	BLQ (LOQ: 0.05)							
15	Nitrate (as NO ₃)	mg/l	45	No relaxatio n	10.1	12.3	13.4	15.1	15.3	12.4	14.7	15.6
16	Sulphate (as SO ₄)	mg/l	200	400	100.36	152.47	110.26	118.37	121.21	130.52	119.3	124.58
17	Total hardness (as CaCO ₃)	mg/l	200	600	460	710	581	790	770	530	650	660
18	Zinc (as Zn)	mg/l	5	15	BLQ (LOQ: 0.01)							
19	Cadmium (as Cd)	mg/l	0.003	No relaxatio n	BLQ (LOQ: 0.001)							
20	Cyanide (as CN)	mg/l	0.05	No relaxatio n	BLQ (LOQ :0.01)	BLQ (LOQ: 0.01)						
21	Lead (as Pb)	mg/l	0.01	No relaxatio	BLQ (LOQ:							

S. N O	Parameters	Unit	Standar	ng water rd (IS): 2012)	Near Project Site	Nagappatti	Annamalaihalli	Gopinathampatti	Paraiyapatti	Jammanahalli	Tenkaraikottai	Vadakarai
			Accept able Limit	Permissi ble Limit	GW 1	GW 2	GW 3	GW 4	GW 5	GW 6	GW 7	GW 8
				n	0.005)	0.005)	0.005)	0.005)	0.005)	0.005)	0.005)	0.005)
22	Mercury (as Hg)	mg/l	0.001	No relaxatio n	BLQ (LOQ: 0.0005)							
23	Nickel (as Ni)	mg/l	0.02	No relaxatio n	BLQ (LOQ: 0.01)							
24	Arsenic (as As)	mg/l	0.01	0.05	BLQ (LOQ: 0.005)							
25	Chromium (as Cr)	mg/l	0.05	No relaxatio n	BLQ (LOQ: 0.01)							
26	Electrical Conductivity at 25°C	μS/cm	NA	NA	2189	3188	2613	3333	3349	2208	2954	3261
27	Total Suspended Solids	mg/l	NA	NA	BLQ (LOQ: 2.0)							
28	Phosphorous (as P)	mg/l	NA	NA	BLQ (LOQ: 0.02)							
29	Potassium(as K)	mg/l	NA	NA	19	30	24	32	29	17	28	25
30	Sodium (as Na)	mg/l	NA	NA	244	342	280	340	354	220	320	384

S. N O	Parameters	Unit	Standar	ng water 'd (IS): 2012)	Near Project Site	Nagappatti	Annamalaihalli	Gopinathampatti	Paraiyapatti	Jammanahalli	Tenkaraikottai	Vadakarai
			Accept able Limit	Permissi ble Limit	GW 1	GW 2	GW 3	GW 4	GW 5	GW 6	GW 7	GW 8
31	Carbonate	mg/l	NA	NA	BLQ (LOQ: 1.0)							
32	Total Alkalinity	mg/l	NA	NA	135	160	110	160	120	105	150	130
33	Nitrite (as NO ₂)	mg/l	NA	NA	BLQ (LOQ: 0.005)							

Note: BLQ – Below Limit of Quantification; LOQ – Limit Of Quantification; NR – No Relaxation

3.8.3.2 Results and Discussions

A summary of analytical results are presented below:

- ➤ The pH of the collected ground water sample ranges from 7.11 to 7.74.
- ➤ The concentrations of Chloride in the collected ground water sample ranges from 529.52 to 900.7 mg/l.
- TDS value of the collected ground water sample varies from 1160 mg/l to 1775 mg/l.
- Total hardness of the collected ground water sample ranges from 460 mg/l to 790 mg/l.
- ➤ The concentrations of Sodium in the collected ground water sample ranges from 220 mg/l to 384 mg/l.

3.9 Soil Quality

Measuring soil quality is crucial for maintaining environmental sustainability and ecosystem health. Soil quality is determined by physical, chemical and biological properties which influence plant growth, water retention and microbial activity. Soil monitoring helps understand the regional soil characteristics in and provide background knowledge about implementing suitable measures if required. Comparing soil quality with standards ensures its suitability for various land uses. A total of eight (08) soil sampling locations were identified for assessment in various villages surrounding the project site based on land use patterns in the study area. Soil quality monitoring locations & results are given in **Table 3-17** & **Table 3-18**. Map showing the soil monitoring locations are given in **Figure 3-22**.

Table 3-17 Soil Quality Monitoring Locations

S.No	Location	Location Code	Distance in Km	Direction
1	Project Site	S1	Within the Site	
2	Annamalaihalli	S2	0.66	NNE
3	Nagappatti	S3	2.10	NE
4	Gopinathampatti	S4	1.81	ESE
5	Paraiyapatti	S5	2.37	SSE
6	Jammanahalli	S6	0.92	SW
7	Tenkaraikottai	S7	2.22	W
8	Vadakarai	S8	1.36	NNW

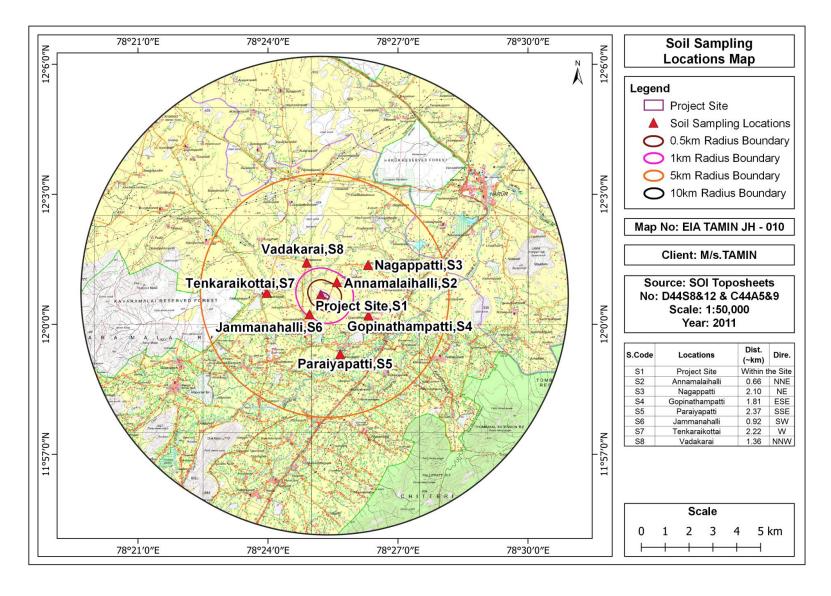


Figure 3-22 Map showing the soil monitoring location

Table 3-18 Physico Chemical parameters of soil samples from the study area

S. No	Parameters	Units	Project Site	Annamalaihalli	Nagappatti	Gopinathampatti	Paraiyapatti	Jammanahalli	Tenkaraikottai	Vadakarai
			S1	S2	S 3	S4	S5	S6	S7	S8
1.	Soil Texture	-	Silt Loam	Silt Loam	Loam	Loam	Loam	Loam	Loam	Loam
2.	Sand	%	30.7	34.3	40.1	35.7	33.2	39.1	33.6	36.2
3.	Clay	%	16.4	14.4	21.9	14.4	18.5	26.4	19.1	24.6
4.	Silt	%	52.9	51.3	38.0	49.9	48.3	34.5	47.3	39.2
5.	рН	•	6.83	7.14	7.50	7.78	7.86	7.31	7.49	7.67
6.	Electrical conductivity (as EC)	μS/cm	188.0	147.5	97.0	80.7	69.0	88.3	68.0	84.0
7.	Phosphorous (as P)	μg/g	BLQ (LOQ:5.0)	BLQ (LOQ:5.0)	BLQ (LOQ:5.0)	BLQ(LOQ:5.0)	BLQ(LOQ:5.0)	BLQ(LOQ:5.0)	BLQ(LOQ:5.0)	BLQ(LOQ:5.0)
8.	Potassium (as K)	mEq/100g	11.85	13.07	19.48	18.97	17.18	23.58	17.94	20.76
9.	Boron (as B)	mg/kg	BLQ(LOQ: 0.1)	BLQ(LO Q: 0.1)	BLQ(LO Q: 0.1)	BLQ(LO Q: 0.1)	BLQ(LO Q: 0.1)	BLQ(LO Q: 0.1)	BLQ(LO Q: 0.1)	BLQ(LO Q: 0.1)
10.	Nitrogen (as N)	%	0.0010	0.0019	0.0059	0.0023	0.0031	0.0051	0.0033	0.0038
11.	Porosity	-	0.48	0.48	0.45	0.44	0.44	0.45	0.44	0.44
12.	Water Holding Capacity	%	35.2	33.4	28.6	30.6	33.4	29.4	26.4	29.2
13.	Chromium (as Cr)	mg/kg	BLQ (LOQ: 0.1)	BLQ(LO Q: 0.1)						
14.	Cadmium (as Cd)	mg/kg	BLQ (LOQ: 0.1)	BLQ(LO Q: 0.1)						
15.	Manganese (as Mn)	mg/kg	5.11	4.99	3.89	3.18	3.01	3.91	3.09	3.24
16.	Nickel (as Ni)	mg/kg	BLQ(LOQ: 0.1)	BLQ(LO Q: 0.1)						
17.	Selenium (as Se)	mg/kg	BLQ(LOQ:	BLQ(LO						

S. No	Parameters	Units	Project Site	S Annamalaihalli	S Nagappatti	S Gopinathampatti	ନ ମ Paraiyapatti	95 Jammanahalli	ر Tenkaraikottai	S Vadakarai
			0.1)	Q: 0.1)	Q: 0.1)	Q: 0.1)	Q: 0.1)	Q: 0.1)	Q: 0.1)	Q: 0.1)
18.	Zinc (as Zn)	mg/kg	0.54	0.50	0.48	0.33	0.45	0.37	0.30	0.34
19.	Copper (as Cu)	mg/kg	0.24	0.21	0.37	0.24	0.35	0.21	0.21	0.25
20.	Organic Carbon	%	0.83	0.79	0.52	0.44	0.32	0.54	0.59	0.41
21.	Organic Matter	%	1.44	1.37	0.91	0.77	0.56	0.94	1.03	0.72
22.	Exchangeable Calcium (as Ca)	mEq/L	8.03	9.08	8.78	7.34	8.13	9.03	8.78	7.63
23.	Exchangeable Magnesium (as Mg)	mEq/L	4.28	6.42	5.84	4.77	5.18	6.50	5.84	5.18
24.	Available Sodium (as Na)	mg/kg	187.2	201.9	197.4	167.1	178.6	199.7	198.6	164.1
25.	Cation Exchange Capacity (as CEC)	mEq/100g	2.03	2.54	2.23	1.98	2.16	2.55	2.40	2.16
26.	Iron (as Fe)	mg/kg	1.98	1.88	2.18	1.39	1.79	2.82	1.16	1.42
27.	Infiltration Rate	-	1.1	0.99	0.75	0.70	0.68	0.72	0.66	0.70
28.	Bulk Density	gm/cm ³	0.95	0.94	1.01	1.03	0.98	1.01	1.01	0.99
29.	Moisture	%	2.93	2.91	4.83	3.84	3.74	4.89	4.75	4.53
30.	Sodium Absorption ratio (as SAR)	Square root of (millimole/ litre)	3.277	3.139	3.168	2.951	2.999	3.105	3.184	2.817

Note: BLQ – Below Limit of Quantification; LOQ – Limit Of Quantification

3.9.1 Results and Discussions

Summary of analytical results

- The pH of the soil samples ranged from 6.83 to 7.86.
- Conductivity of the soil samples ranged from 68.0 to $188.0 \mu S/cm$.
- Nitrogen content ranged from 0.0010% to 0.0059%.
- Phosphorous ranged from BLQ (LOQ 5.0) μg/kg.
- Potassium content ranges from 11.85 mEq/100g to 23.58 mEq/100g.

3.10 Biological Environment

An ecological study of the ecosystem is essential to understand the impact of industrialization and urbanization on existing flora and fauna of the study area. Studies on various aspects of ecosystem play an important role in identifying sensitive issues for under taking appropriate action to mitigate the impact, if any. The biological study was under taken as a part of the EIA study report to understand the present status of ecosystem prevailing in the study area, to compare it with past condition with the help of available data, to predict changes in the biological environment as a result of present activities and to suggest measures for maintaining its health. Secondary information was collected to study the flora & fauna in 10 km radius. Some of the information was gathered from the local habitants. All the collected data were classified to interpret the impact of pollution on the flora and fauna of that region. All the available information was recorded about the wild plants and cultivated crop plants.

During secondary information, following aspects were considered for ecological studies:

- Assessment of present status of flora and fauna;
- ❖ Identification of rare and endangered species of plants and animals (if any);
- ❖ Identification of ecologically sensitive areas within the study area;
- ❖ Assessment of migratory route of wildlife (if any); and
- Assessment of Aquatic Ecology with specific reference to aquatic birds and plankton resources.

3.10.1 Methodology

Terrestrial investigations for flora and fauna records were collected by secondary information like research article, periodicals, floras and forest checklist.

3.10.1.1 Floral Study

Plants species were identified based on their specific diagnostics characters of family, genus and species using available floral, other related literature.

Besides the identification of plant species, information was collected on the vernacular names and uses of plants made by local inhabitants.

3.10.1.2 Faunal Study

- ❖ Secondary information collected from published government data etc.
- ❖ List of the endangered and endemic species as per the schedule of The Wildlife Protection Act, 1972.
- ❖ Emphasis is given to identify avifauna and mammals to determine the presence and absence of Schedule-1 species, listed in The Wildlife Protection Act 1972, as well as in Red List of IUCN.

3.10.2 Floristic composition within the study area

For secondary information based on a total 112 species found in the study area. The detailed list of plant species found in each quadrat provided **Table 3-19**.

Table 3-19 Overall IUCN status floral species in and around the study area

S.No	Species	Family	Common Name	Habit	IUCN
1.	Abrus precatorius	Fabaceae	Kundumani	Shrub	NA
2.	Abutilon indicum	Malvaceae	Perun thuthi	Shrub	NA
3.	Acacia catechu	Mimosaceae	Karai	Tree	LC
4.	Acacia nilotica	Mimosaceae	Karuvelam	Tree	LC
5.	Acacia planifrons	Mimosaceae	Kodaivelam	Tree	NA
6.	Acalypha indica	Euphorbiaceae	Kuppaimeni	Herb	NA
7.	Acanthospermumhispidum	Compositae		Herb	NA
8.	Achyranthes aspera	Amaranthaceae	Nayurivi	Herb	NA
9.	Aegle marmelos	Rutaceae	Vilvam	Tree	NA
10.	Aerva lanata	Amaranthaceae	Peelai, Sirupeelai	Shrub	NA
11.	Aerva persica	Amaranthaceae	Perumpeelai	Shrub	NA
12.	Aeschynomene americana	Fabaceae		Herb	NA
13.	Aeschynomene aspera	Fabaceae	Thakkai	Shrub	NA
14.	Ageratum conyzoides	Compositae	Poom pillu	Herb	NA
15.	Ailanthus excelsa	Simaroubaceae	Perumaram	Tree	
16.	Alysicarpus vaginalis	Fabaceae		Herb	
17.	Alloteropsiscimicina	Poaceae		Grass	NA
18.	Alternanthera sessilis	Amaranthaceae	Ponnanganni	Herb	NA
19.	Anisomeles indica	Labiatae		Herb	NA
20.	Annona squamosa	Annonaceae	Seetha	Tree	NA
21.	Arachis hypogaea	Fabaceae	Verkadalai	Herb	NA
22.	Argemone mexicana	Papaveraceae	Braman Thandu	Herb	NA
23.	Aristida adscensionis	Poaceae		Grass	NA
24.	Aristida hystrix	Poaceae		Grass	NA
25.	Aristolochiabracteolata	Aristolochiaceae	Aduthinnappalai	Herb	NA

S.No	Species	Family	Common Name	Habit	IUCN
26.	Azadiracta indica	Meliaceae	Vembu	Tree	
27.	Barleria acuminata	Acanthaceae		Shrub	NA
28.	Barlerialongiflora	Acanthaceae		Shrub	NA
29.	Barlerianoctiflora	Acanthaceae		Shrub	NA
30.	Boerhaviadiffusa	Nyctaginaceae	Mookarattai	Herb	NA
31.	Boerhaviaerecta	Nyctaginaceae	Seemaimookarattai	Herb	NA
32.	Carica papaya	Caricaceae	Pappali	Tree	NA
33.	Carissa carandas	Apocynaceae	Kalaa, Perun kala	Shrub	NA
34.	Cassia fistula	Caesalpiniaceae	Kondrai	Tree	NA
35.	Celosia argentea	Amaranthaceae	Pannaikeerai	Herb	NA
36.	Cissus quadrangularis	Vitaceae	Pirandai	Shrub	NA
37.	Citrullus colocynthis	Cucurbitaceae	Peikkumatti	Herb	NA
38.	Citrus aurantifolia	Rutaceae	Elumichai	Tree	NA
39.	Cleome viscosa	Capparidaceae	Nai kadugu	Herb	NA
40.	Coccinia grandis	Cucurbitaceae	Kovai	Climber	NA
41.	Croton bonplandianum	Euphorbiaceae	Rail poondu	Herb	NA
42.	Cucumis sativus	Cucurbitaceae	Vellarikkaai	Climber	NA
43.	Eleocharis acutangula	Cyperaceae		Sedge	NA
44.	Eragrostis tenella	Poaceae		Grass	NA
45.	Euphorbia antiquorum	Euphorbiaceae	Sadura-kalli	Tree	NA
46.	Euphorbia hirta	Euphorbiaceae	Ammanpacharisi	Herb	NA
47.	Euphorbia indica	Euphorbiaceae	Ammanpacharisi	Herb	NA
48.	Evolvulusalsinoides	Convolvulaceae	Vishnukarandi	Herb	NA
49.	Ficus benghalensis	Moraceae	Aala maram	Tree	NA
50.	Ficus religiosa	Moraceae	Arasu	Tree	NA
51.	Fimbristylis ovata	Cyperaceae	-	Sedge	NA
52.	Glinuslotoides	Molluginaceae	Siruseruppadai	Herb	NA
53.	Gynandropsisgynandra	Capparidaceae	Nal vaelai, Vaelai	Herb	NA
54.	Hedyotis aspera	Rubiaceae	-	Herb	NA
55.	Heliotropium indicum	Boraginaceae	Thaelkodukku	Herb	NA
56.	Hibiscus surattensis	Malvaceae		Undershrub	NA
57.	Hybanthusenneaspermus	Violaceae	Orilaithamarai	Herb	NA
58.	Hygrophilaschulli	Acanthaceae	Neermulli	Herb	NA
59.	Hyptissuaveolens	Labiatae		Shrub	NA
60.	Indigofera aspalathoides	Fabaceae	Sivanaarvaembu	Herb	NA
61.	Indigofera linnaei	Fabaceae	-	Herb	NA
62.	Indigofera tinctoria	Fabaceae	Avuri, Neeli	Herb	NA
63.	Ipomoea pes-caprae	Convolvulaceae	Attukkal	Creeper	NA
64.	Jasminum sambac	Oleaceae	Malli	Shrub	NA
65.	Jatropha curcas	Euphorbiaceae	Kaatu-amanakku	Shrub	NA
66.	Jatropha gossypifolia	Euphorbiaceae	Kaatu-amanakku	Shrub	NA
67.	Justicia adhatoda	Acanthaceae	Adathodai	Shrub	NA
68.	Justicia simplex	Acanthaceae	-	Herb	NA

S.No	Species	Family	Common Name	Habit	IUCN
69.	Kylinga bulbosa	Cyperaceae	-	Sedge	NA
70.	Lagenaria siceraria	Cucurbitaceae	Surakkaai	Climber	NA
71.	Lantana camara	Verbenaceae	Unnichedi	Shrub	NA
72.	Leucaena leucocephala	Mimosaceae	Soundil	Tree	NA
73.	Leucas aspera	Labiatae	Thumbai	Herb	NA
74.	Ludwigia perennis	Onagraceae		Herb	NA
75.	Martynia annua	Martyniaceae	ThaelKodukku	Herb	NA
76.	Melia azedarach	Meliaceae	Malai vaembu	Tree	NA
77.	Merremia hederacea	Convolvulaceae		Herb	NA
78.	Nyctanthes arbor-tristis	Nyctanthaceae	Parijaatham	Tree	NA
79.	Ocimumamericanum	Labiatae	Ganjaankorai	Herb	NA
80.	Pavonia odorata	Malvaceae	Peramutti	Herb	NA
81.	Pedalium murex	Pedaliaceae	Perunerunji	Herb	NA
82.	Phyllanthus acidus	Euphorbiaceae	Aranelli	Tree	NA
83.	Phyllanthus amarus	Euphorbiaceae	Kizha-nelli	Herb	NA
84.	Phyllanthus emblica	Euphorbiaceae	Nelli, Muzhunelli	Tree	NA
85.	Phyllanthus reticulatus	Euphorbiaceae	Inkipazham	Shrub	NA
86.	Pithecellobium dulce	Mimosaceae	Kodukkaaipuli	Tree	NA
87.	Plumbago zeylanica	Plumbaginaceae	Chitthiragam	Herb	NA
88.	Polygala javana	Polygalaceae		Shrub	NA
89.	Pongamia pinnata	Fabaceae	Punga maram	Tree	NA
90.	Portulaca oleracea	Portulacaceae	Kari keerai	Herb	NA
91.	Prosopis juliflora	Mimosaceae	Velikkaathaan	Tree	NA
92.	Psidium guajava	Myrtaceae	Коууа	Tree	NA
93.	Punica granatum	Punicaceae	Madhulai	Shrub	NA
94.	Ricinus communis	Euphorbiaceae	Amanakku	Shrub	NA
95.	Rivea hypocrateriformis	Convolvulaceae	Boodhikeerai	Climber	NA
96.	Ruellia tuberosa	Acanthaceae		Herb	NA
97.	Sansevieria roxburghiana	Dracaenaceae	Marun	Herb	NA
98.	Senna auriculata	Caesalpiniaceae	Avaram	Shrub	NA
99.	Senna occidentalis	Caesalpiniaceae	Peiyavarai	Tree	NA
100.	Sesamum indicum	Pedaliaceae	Ellu	Herb	NA
101.	Sida acuta	Malvaceae	Malai thangi	Herb	NA
102.	Sida cordata	Malvaceae	Pazhampaasi	Herb	NA
103.	Sida cordifolia	Malvaceae	Nilatutthi	Herb	NA
104.	Solanum americanum	Solanaceae	Manatakkali	Herb	NA
105.	Solanum melongena	Solanaceae	Kathiri	Herb	NA
106.	Solanum torvum	Solanaceae	Chundai	Shrub	NA
107.	Solanum trilobatum	Solanaceae	Thoodhuvalai	Climber	NA
108.	Solanum virginianum	Solanaceae	Kandankathiri	Herb	NA
109.	Spermacocehispida	Rubiaceae	Nathaichoori	Herb	NA
110.	Spermacoceocymoides	Rubiaceae		Herb	NA
111.	Tamarindus indica	Caesalpiniaceae	Puliyamaram	Tree	NA

S.No	Species	Family	Common Name	Habit	IUCN
112.	Tephrosia purpurea	Fabaceae	Kozhinji	Undershrub	NA

LC- Least Concern, NT- Near Threatened, EN- Endangered, NE-Not Evaluated, DD -Data Deficient, VU-Vulnerable, IUCN- International Union for Conservation of Nature

3.10.3 Faunal composition of the stusy area

Based on the secondary source data, a total of 106 faunal species were recorded from the study area, comprising 77 species of birds, 5 species of mammals, 19 species of butterflies, and 5 species of reptiles. Among these, bird species were the most dominant group, representing a wide range of families and ecological roles. The butterfly diversity also indicates a healthy ecosystem with various flowering plants. The presence of mammals and reptiles further confirms the availability of suitable terrestrial habitats. A list of fauna reported from secondary the study area is given in **Table 3.20**.

Table 3-20 List of Mammals

S.No	Scientific Name	Common Name Family		IUCN	WPA
Birds					
1.	Accipiter badius	Shikra	Accipitridae	LC	Sch I
2.	Acridotheres tristis	Common Myna	Sturnidae	LC	-
3.	Actitis hypoleucos	Common Sandpiper	Scolopacidae	LC	-
4.	Alcedo atthis	Common kingfisher	Alcedinidae	LC	-
5.	Amaurornis phoenicurus	White breasted waterhen	Rallidae	LC	-
6.	Anas acuta	Northern Pintail	Anatidae	LC	-
7.	Anastomus oscitans	Asian Openbill	Ciconiidae	LC	-
8.	Anhinga melanogaster	Oriental Darter	Anhingidae	LC	-
9.	Anser indicus	Bar-headed Goose	Anatidae	LC	-
10.	Anthus rufulus	Paddyfield pipit	Motacillidae	LC	-
11.	Apus affinis	House Swift	Apodiformes	LC	-
12.	Ardea alba	Great Egret	Ardeidae	LC	-
13.	Ardea cinerea	Grey Heron	Ardeidae	LC	-
14.	Ardeola grayii	Indian Pond Heron	Ardeidae	LC	-
15.	Argya malcolmi	Large Grey Babbler	Leiothrichida e	LC	-
16.	Bubulcus ibis	Cattle Egret	Ardeidae	LC	-
17.	Calidris minuta	Little Stint	Scolopacidae	LC	-
18.	Centropus sinensis	Greater Coucal	Cuculidae	LC	-
19.	Ceryle rudis	Pied kingfisher	Alcedinidae	LC	-
20.	Ciconia episcopus	Asian Woolly-necked Stork	Ciconiidae	NT	-
21.	Cinnyris asiaticus	Purple Sunbird	Nectariniidae	LC	-
22.	Columba livia	Rock Pigeon	Columbidae	LC	-
23.	Copsychus saularis	Oriental Magpie Robin	Muscicapidae	LC	-
24.	Coracias benghalensis	Indian roller	Coraciidae	LC	-

S.No	Scientific Name	Common Name	Family	IUCN	WPA
25.	Corvus splendens	House Crow	Corvidae	LC	-
26.	Dicrurus macrocercus	Black Drongo	Dicruridae	LC	-
27.	Egretta garzetta	Little Egret	Ardeidae	LC	-
28.	Egretta gularis	Western Reef-Heron	Ardeidae	LC	-
29.	Elanus caeruleus	Black-winged Kite	Accipitridae	LC	-
30.	Eudynamys scolopaceus	Asian Koel	Cuculidae	LC	-
31.	Euodice malabarica	Indian silverbill	Estrildidae	LC	-
32.	Haliastur indus	Brahminy Kite	Accipitridae	LC	Sch I
33.	Halcyon smyrnensis	White-throated kingfisher	Alcedinidae	LC	-
34.	Himantopus himantopus	Black-winged Stilt	Recurvirostri dae	LC	-
35.	Lanius schach	Long-tailed Shrike	Laniidae	LC	-
36.	Limosa lapponica	Bar-tailed Godwit	Scolopacidae	NT	-
37.	Lonchura punctulata	Scaly-breasted Munia	Estrildidae	LC	-
38.	Merops orientalis	Green Bee-eater	Meropidae	LC	-
39.	Microcarbo niger	Little cormorant	Phalacrocorac idae	LC	-
40.	Milvus migrans	Black Kite Accipitridae		LC	-
41.	Motacilla maderaspatensis	White browed Wagtail Motacillidae		LC	-
42.	Mycteria leucocephala	Painted Stork	Ciconiidae	NT	-
43.	Numenius arquata	Eurasian Curlew	Scolopacidae	NT	-
44.	Nycticorax nycticorax	Black-crowned Night- Heron	Ardeidae	LC	-
45.	Ocyceros birostris	Indian Grey Hornbill	Bucerotidae	LC	-
46.	Orthotomus sutorius	Common tailorbird	Cisticolidae	LC	-
47.	Ortygornis pondicerianus	Grey francolin	Phasianidae	LC	-
48.	Pavo cristatus	Peafowl	Phasianidae	LC	Sch I
49.	Passer domesticus	House Sparrow	Passeridae	LC	-
50.	Pelecanus philippensis	Spot-billed Pelican	Pelecanidae	NT	-
51.	Phalacrocorax carbo	Great Cormorant	Phalacrocorac idae	LC	-
52.	Phalacrocorax fuscicollis	Indian Cormorant	Phalacrocorac idae	LC	-
53.	Platalea leucorodia	Eurasian Spoonbill	Threskiornith idae	LC	-
54.	Plegadis falcinellus	Glossy Ibis Threskiornith idae		LC	-
55.	Prinia inornata	Plain prinia	Cisticolidae	LC	-
56.	Prinia socialis	Ashy Prinia	Cisticolidae	LC	-
57.	Pseudibis papillosa	Red-naped Ibis Threskiornith idae		LC	-
58.	Psittacula krameri	Rose-ringed Parakeet	Psittaculidae	LC	-
59.	Pycnonotus cafer	Red-vented Bulbul	Pycnonotidae	LC	-
	·	J	1 -		i

S.No	Scientific Name Common Name		Family	IUCN	WPA
60.	Saxicoloides fulicatus	Indian Robin	Muscicapidae	LC	-
61.	Spatula clypeata	Northern Shoveler	Anatidae	LC	-
62.	Sterna hirundo	Common Tern	Laridae	LC	-
63.	Sternula albifrons	Little Tern	Laridae	LC	-
64.	Streptopelia chinensis	Spotted Dove	Columbidae	LC	-
65.	Streptopelia decaocto	Eurasian collared dove	Columbidae	LC	-
66.	Streptopelia senegalensis	Laughing Dove Columbidae		LC	-
67.	Sturnia pagodarum	Brahminy Starling	Sturnidae	LC	-
68.	Tachybaptus ruficollis	Little Grebe	Podicipedidae	LC	-
69.	Thalasseus bengalensis	Lesser Crested Tern	Laridae	LC	-
	Threskiornis	Black-headed Ibis	Threskiornith	NT	-
70.	melanocephalus		idae		
71.	Tringa erythropus	Spotted Redshank	Scolopacidae	LC	-
72.	Tringa glareola	Wood Sandpiper	Scolopacidae	LC	-
73.	Tringa ochropus	Green Sandpiper	Scolopacidae	LC	-
74.	Tringa stagnatilis	Marsh Sandpiper	Scolopacidae	LC	-
75.	Tringa totanus	Common Redshank	Scolopacidae	LC	-
76.	Vanellus indicus	Red-wattled Lapwing	Charadriidae	LC	-
	Van allua malahaniana	Yellow-wattled	Charadriidae	LC	-
77.	Vanellus malabaricus	Lapwing			
Mamı	mals				
1	Eurambulua nannantii	Five striped Palm	Sciuridae	LC	-
1.	Funambulus pennantii	squirrel			
2.	Urva edwardsii	Indian grey mongoose	Herpestidae	LC	-
3.	Rattus argentiventer	Field Rat	Muridae	LC	-
4.	Lepus nigricollis	Indian hare	Leporidae	LC	-
5.	Sus scrofa	Wild boar	Suidae	LC	-
Butte	rfly				
1.	Euthalia nais	Baronet	Nymphalidae	NT	-
2.	Tirumala limniace	Blue tiger	Nymphalidae	LC	-
3.	Belenois aurota	Pioneer	Pieridae	LC	-
4.	Euploea core	Common crow	Nymphalidae	LC	-
5.	Catopsilia pomona	Common Emigrant	Pieridae	NT	-
(Melanitis leda	Common evening	Nymphalidae	LC	-
6.	Meianicis ieaa	brown			
7.	Eurema hecabe	Common grass yellow	Pieridae	LC	-
8.	Delias eucharis	Common jezebel	Pieridae	NT	-
9.	Phalanta phalantha	Common leopard	Nymphalidae	LC	-
10.	Papilio demoleus	Common lime	Papilionidae	NT	-
11.	Papilio polytes	Common mormon	Papilionidae	NT	-
12.	Hypolimnas misippus	Danaid eggfly	Nymphalidae	LC	-
13.	Hypolimnas bolina	Great eggfly	Nymphalidae	NT	-
14.	Junonia atlites	Grey pansy	Nymphalidae	NT	-
15.	Junonia lemonias	Lemon pansy	Nymphalidae	NT	-

S.No	Scientific Name	Common Name	Family	IUCN	WPA
16.	Catopsilia pyranthe	Mottled Emigrant	Pieridae	NT	-
17.	Pseudozizeeria maha	Pale Grass Blue	Lycaenidae	NT	-
18.	Junonia almana	Peacock pansy	Nymphalidae	LC	-
19.	Danaus chrysippus	Plain tiger	Nymphalidae	LC	-
Repti	les				
1.	Calotes versicolor	Oriental Garden lizard	Agamidae	LC	-
2.	Ptyas mucosa	Indian Rat Snake	Colubridae	LC	Sch I
3.	Daboia russelii	Russels Viper	Viperidae	LC	-
4.	Psammophilus dorsalis	Peninsular Rock Agama	Agamidae	LC	-
5.	Xenochrophis piscator	Checkered keelback	Colubridae	LC	-

LC- Least Concern, NT- Near Threatened, EN- Endangered, NE-Not Evaluated, DD -Data Deficient, VU-Vulnerable, IUCN- International Union for Conservation of Nature

3.10.4 Conservation Plan for Schedule 1 Species

As per the secondary survey, the following three species listed under Schedule I of the Wildlife (Protection) Act, 1972, were observed. The conservation plan will primarily focus on the protection and restoration of habitats critical to these Schedules I species.

S.No **Category Common Name Species Name IUCN** WPA, 1972 1. Birds Shikra Accipiter badius LC Schedule I 2. Birds **Brahminy Kite** Haliastur indus LC Schedule I 3. Birds Peafowl Pavo cristatus LC Schedule I 4. LC Reptiles Indian Rat Snake Ptyas mucosa Schedule I

Table 3.21 Schedules I species of Fauna

The budgetary provision has been made for implementation of wildlife conservation measures. The PP will allocate Rs.4 Lakhs towards the conservation plan for implementing the following activities with the help of and in consultation with the Forest Department.

- Bird species Shikra, Brahminy Kite and Peafowl
- **Capacity Building:** Capacity building program on protection would be of high significance. Creation of awareness among local people as well as employees about the importance of protecting the habitat and foraging grounds.
- **Anti-Poaching Plan:** Poaching being one of the causes for depletion of wildlife in general and it being one of the main reasons for the poor faunal assemblage, it is necessary to increase protection for the RET species. The people living in the surrounding area should be rewarded for timely information about disturbing and/or poaching of the bird more specifically the threatened species.
- **Habitat Improvement:** Sufficient food, water resources, vegetation cover, and breeding sites must be available at the release location.

• Development of Wetland Habitat:

- 1. The edges and the periphery of the water sources shall be planted with native tree species that can provide habitat for perching and nesting for the aquatic birds species.
- 2. Provision of veterinary care and cages for injured or sick deformed birds with the help of and in consultation with the forest department.

• Reptile Species - Indian Rat Snake

- 1. As the species are hunted for their meat, skins, and for use in medicine, awareness campaigns to be carried out among village communities, focusing on local schools for protection of the species.
- 2. Habitat improvement to be carried out near the forest area with the help of and in consultation with the forest department.

Good Practices:

- Project Proponent I will be bound by rules and regulation of Wildlife (Protection) Act, 1972 of India and any others rule and guidelines, stipulated by the State Government.
- State Forest Department will be consulted for development of greenbelt within the project site. Further unauthorized pesticides / toxic materials will not be used for plant species.
- Project Proponent will not plant any alien and/or invasive species in the project site, which may spread in the forest areas.
- Employees will be made aware of presence of a few threatened and Schedule species in the area and legal consequences of hunting, poaching of animals and harvesting of forest produces.
- The proponent has proposed a sum of Rs. 4,00,000/-for the "Schedule I species" conservation plan under the following heads:

Table 3.22 Proposed budgetary allocation for scheduled-I conservation measures

Work / Activity	Description	Year 1 (₹)	Year 2 (₹)	Year 3 (₹)	Year 4 (₹)	Year 5 (₹)
Habitat Improvement Programme	Plantation-250 tree plants/Year (@ 200/- per plant)	50,000	50,000	50,000	50,000	50,000
Awareness Programs in Villages	Village meetings, school-level campaigns, IEC material preparation and distribution	10,000	10,000	10,000	10,000	10,000

Water Tank	Small water tank -20 in number @ 5000/- per tank(4 no's/year)	20,000	20,000	20,000	20,000	20,000
Total- Rs.4,00,000		80,000	80,000	80,000	80,000	80,000

References:

- https://ebird.org/species/shikra1/IN-TN-DH
- https://ebird.org/species/brakit1/IN-TN-DH
- https://ebird.org/species/compea/IN-TN-DH
- IUCN Red List of Threatened Species. Version (2013). International Union for Conservation of Nature.
- Petrie M, Krupa A, Burke T (1999). Peacocks lek with relatives even in the absence of social and environmental cues. Nature. 401 (6749):155–157.Bibcode, Natur.401.155P. doi:10.1038/43651.
- Pavo cristatus, ADW. https://animaldiversity.org/accounts/IndianPeafowl,RedList. https://www.iucnredlist.org/species/22679435/92814454.
- List of Birds: Ali, S. (2002). The Book of Indian Birds (13th Revised Edition). Oxford University Press, New Delhi, 326pp.
- List of Butterflies: Kehimkar I. The Book of Indian Butterflies. Bombay Natural History Society, 2008, 497.
- List of Mammals: Kamalakannan, M.& P.O.Nameer (2019). A checklist of mammals of Tamil Nadu, India. Journal of Threatened Taxa 11(8): 13992–14009; https://doi.org/10.11609/jott.4705.11.8.13992–14009.
- List of Reptiles: Aengals, R., Sathish Kumar, V.M., Palot, M.J. & Ganesh, S.R. (2018). A Checklist of Reptiles of India. 35 pp. Version 3.0. Online publication is available at www.zsi.gov.in (Last update: May 2018)
- Vajravelu, E., & Rathakrishnan, N. C. (2024). A Contribution to the Flora of Dharmapuri District Madras State. *Nelumbo*, 9(1-4), 31–48.
 https://doi.org/10.20324/nelumbo/v9/1967/76052
- Gamble, J.S. and C.E.C. Fischer. 1915-1935. Flora of Presidency of Madras, Adlard and Son, London. pp. 1-3.
- Nair, N.C. and A.N. Henry. 1983. Flora of Tamil Nadu, India. Series 1, Vol. 1, Botanical Survey of India, Southern Circle, Coimbatore. 1-184.
- Henry, A.N., Chithra, V.N. and Balakrishnan, P. (1989) Flora of Tamil Nadu India. Series
 1: Analysis. Vol. III. Botanical Survey of India, Coimbatore.

3.11 Socio Economic profile

Dharmapuri district having a population of 1,50,6843 consists of 7,74,303 male populations and 7,32,540 female populations.

Source:http://censusindia.gov.in/2011census/dchb/DCHB-A/33/3301-PART-A-DCHB-DHARMAP
<a href="http://censusindia.gov.in/2011census/dchb/DCHB-A/33/3301-PART-A-DCHB-DHARMAP-A-DC

(**Ref**: Directorate of Census Operations-Tamil Nadu, "District Census Handbook-2011, Dharmapuri District", Series-34 Part XII-A)

3.11.1 Socio Economic Aspects

A socio-economic study was undertaken in assessing aspects which are dealing with social and cultural conditions, and economic status in the study area. The study provides information such as demographic structure, population dynamics, infrastructure resources, and the status of human health and economic attributes like employment, per-capita income, agriculture, trade, and industrial development in the study area. The study of these characteristic helps in identification, prediction and evaluation of impacts on socio-economic and parameters of human interest due to proposed project developments. The parameters are:

- Demographic structure
- Infrastructure Facility
- Economic Status
- Health status
- Cultural attributes
- Awareness and opinion of people about the project and Industries in the area.

The following **Table 3-23** provides the certain important social indicators of Krishnagiri districts in Tamil Nadu.

Table 3-23 Social Indicators of Dharmapuri Districts

S.No	Social Indicators	Dharmapuri District	Unit
1	Decadal growth rate %	16.34	%
2	Urban population %	17.3	%
3	Sex ratio	946	-
4	0-6 age group %	10.02	%
5	Population density (Persons per square Km)	335	Persons per square Km
6	Scheduled caste population %	16.30	%
7	Scheduled tribe population %	4.18	%
8	Literacy rate %	68.50	%
9	Work Participation rate %	49.9	%

Proposed Jammanahalli Black Granite Quarry
Draft EIA Report

H/01/2024/CON/046 RP003-R2

10	Main Workers %	86.90	%
11	Marginal Workers %	13.10	%
12	Cultivators %	26.80	%
13	Agricultural labourers %	35.59	%
14	Workers in household industries %	2.04	%
15	Other workers %	35.57	%

Source: https://censusindia.gov.in/nada/index.php/catalog/1146

(**Ref**: Census of India 2011 - Series 34 - District Census Handbook Tamil Nadu, Part A – Dharmapuri).

3.11.2 Social Economic Profile of the study area

The villages and towns covering 10 km radius from the boundary of the project site is taken for the study. There are 65 villages in the study area of Pappireddipatti and Harur talus of Dharmapuri district. The population of the study area is 1,37,728 as per 2011 Census. The projected population is 1,60,315. The family size is 4. The area is rural and people depend on agriculture and its allied activities. **Table 3-24** shows the list of locations which comes under the study area.

Table 3-24 Population profile within the study area

S. No	Name	Households	Total Population	Male	Female	Children below 6	Scheduled Caste	Scheduled Tribe			
0 to 5 Km											
Pappir	eddipatti Taluk- Dharmapuri district										
1.	Allalapatty	115	479	248	231	53	376	0			
2.	Annamalaihalli	340	1227	634	593	112	28	0			
3.	Chinnankuppam	303	1139	551	588	103	294	4			
4.	Devarajapalayam	762	2737	1342	1395	257	1006	614			
5.	Erumiyampatty	498	1925	959	966	226	1355	7			
6.	Gopalapuram	325	1122	573	549	114	126	0			
7.	Gopichettipalayam	132	406	202	204	48	0	0			
8.	Jammanahalli	637	2363	1168	1195	224	761	0			
9.	Kadaranampatty	22	83	44	39	4	83	0			
10.	Kokkarapatty	593	3013	1700	1313	225	268	40			
11.	Kolagampatty	804	3057	1547	1510	304	968	0			
12.	Malagapadi	246	940	486	454	99	258	12			
13.	Nambippatti	448	1947	1022	925	195	907	10			
14.	Naranapuram	386	1465	753	712	162	25	0			
15.	Parayapatti	1045	4612	2467	2145	387	616	51			
16.	Peddur	210	897	454	443	116	896	0			
17.	Puludiyur	182	676	355	321	61	40	7			
18.	Rameyanahalli	765	2859	1430	1429	283	239	0			
19.	Sikkampatti	55	182	91	91	28	0	0			
20.	Tenkaraikottai	1337	5142	2603	2539	585	1017	49			
21.	Thurinihalli	198	660	330	330	70	12	118			
6 to 10											
Pappir	eddipatti Taluk- Dharmapuri district										

22	A. Pallipatti	1160	4156	2096	2060	365	1605	766
23	Adigarapatty	1092	3957	2004	1953	371	1487	19
24	Alapuram	1360	4784	2444	2340	493	939	14
25	Ammapalayam	134	522	269	253	66	3	254
26	Annamalaipatty	137	520	265	255	59	241	0
27	Balasamudram	64	238	123	115	25	172	0
28	Basuvapuram	923	3383	1706	1677	343	1542	232
29	Chintalpadi	1429	5448	2713	2735	536	2606	167
30	Gurubarahalli	546	1990	970	1020	157	973	0
31	Irulapatty	789	2921	1481	1440	286	226	707
32	Kavandampatty	522	2007	1009	998	167	817	12
33	Mekalanayakanahalli	42	159	78	81	12	0	0
34	Menasi	1555	5280	2641	2639	540	1213	4
35	Mookkareddipatti	578	2186	1065	1121	195	766	320
36	Obilinayakkanahalli	202	675	337	338	51	46	263
37	Pallipatti	876	3684	1942	1742	315	584	9
38	Pappambadi	510	1965	1009	956	141	357	133
39	Pethasamudram	211	729	374	355	64	139	0
40	Pethathampatti	1015	4137	2088	2049	408	2593	6
41	Pudupatti	822	3242	1665	1577	313	601	25
42	Thadhanur	297	1086	550	536	98	649	0
43	Thinnahalli	153	554	282	272	46	26	0
44	Vachathi	250	1032	517	515	96	6	951
Harur 7	Taluk -Dharmapuri district	T	T	T				
45	Achalvadi	808	2907	1436	1471	269	527	51
46	Agraharam	279	1007	526	481	102	258	5
47	Dodampatty	545	1874	953	921	174	204	3
48	Ellepudayampatti	534	2066	1074	992	200	832	0
49	Harur (TP)	6607	25469	12543	12926	2559	6169	178

50	Kalladipatti	121	454	229	225	38	31	0
51	Kottarapatty	78	268	134	134	13	0	0
52	Kudumiyampatty	368	1429	713	716	183	447	49
53	Mobirippatti	417	1594	798	796	152	613	1
54	Mookanurpatti	129	438	213	225	43	6	0
55	Morasapatti	117	466	217	249	55	346	1
56	Nachanampatty	85	271	135	136	21	8	0
57	Pachanampatty	352	1353	673	680	163	118	12
58	Sandappatti	209	760	368	392	97	33	4
59	Setrapatti	101	361	179	182	24	0	0
60	Soriyampatti	301	1197	633	564	148	915	0
61	Sundangipatti	183	745	366	379	80	186	0
62	Tandekuppam	407	1618	828	790	215	712	4
63	Thadampatti	209	841	426	415	123	451	0
64	Thambichettipatti	105	416	208	208	35	11	1
65	Velampatti	163	608	336	272	50	0	0
	Total	36188	137728	69575	68153	13547	38733	5103

(Source: Census 2011)

3.11.2.1 Employment and Livelihood within study area

Majority of population in the study area comes under other working categories. As agriculture cannot be a main sustenance for most of farmers, they have dual professions. Farming is mostly seasonal, they involve in other livelihood activities like business, non-agriculture labour, agriculture labour and other service sectors. Fragmentation of landholding leads to adopt to have additional occupation. During our field visit, we could observe a greater number of women in the workforce in different activities.

Over the past few decades, women's participation in the workforce has significantly increased, leading to a more substantial contribution to household income.

Several factors contribute to this shift:

- 1. **Increased Workforce Participation**: More women are pursuing higher education and entering a wider range of professions. This has led to higher earning potential and greater financial contributions to families.
- 2. **Economic Necessity**: In many households, dual incomes are necessary to maintain a desired standard of living or to meet financial obligations.
- 3. **Changing Social Norms**: Attitudes toward gender roles have evolved, leading to a more equitable distribution of financial responsibilities within households.

Summaries of employment and livelihood within the study are given in **Table 3-25**.

Table 3-25 Summaries of Employment and Livelihood within the study area

	Name			0	Agriculture Workers				Household Industry		Other Workers	
S. No		Total Workers	Main Workers		Cultivators		Agri. Labourers		Workers		Other Workers	
					Main	Marginal	Main	Marginal	Main	Marginal	Main	Marginal
0 to 5	Km											
Pappi	Pappireddipatti Taluk- Dharmapuri district											
1.	Allalapatty	204	199	5	55	0	58	5	0	0	86	0
2.	Annamalaihalli	737	735	2	196	0	443	2	21	0	75	0
3.	Chinnankuppam	565	556	9	98	1	249	4	10	3	199	1
4.	Devarajapalayam	1550	1530	20	469	3	908	11	8	0	145	6
5.	Erumiyampatty	1049	1037	12	211	1	661	9	5	1	160	1

			Main Workers			Agricultur	e Worke	rs	Household Industry		Other Workers	
S. No	Name	Total Workers		Marginal Workers	Cult	ivators	Agri. L	abourers		orkers	Otner	workers
					Main	Marginal	Main	Marginal	Main	Marginal	Main	Marginal
6.	Gopalapuram	664	579	85	240	4	194	57	8	0	137	24
7.	Gopichettipalayam	256	252	4	146	1	56	0	4	0	46	3
8.	Jammanahalli	1330	1317	13	207	4	718	4	24	2	368	3
9.	Kadaranampatty	39	39	0	26	0	8	0	0	0	5	0
10.	Kokkarapatty	1304	1247	57	502	3	433	7	7	2	305	45
11.	Kolagampatty	1669	1631	38	766	2	641	11	17	2	207	23
12.	Malagapadi	580	576	4	376	1	162	3	0	0	38	0
13.	Nambippatti	983	783	200	274	14	331	153	16	3	162	30
14.	Naranapuram	744	727	17	420	4	148	12	7	0	152	1
15.	Parayapatti	1833	1751	82	385	5	495	39	12	1	859	37
16.	Peddur	530	514	16	13	0	467	14	0	1	34	1
17.	Puludiyur	409	388	21	129	6	134	9	9	0	116	6
18.	Rameyanahalli	1636	1556	80	589	4	520	25	23	0	424	51
19.	Sikkampatti	119	119	0	103	0	3	0	0	0	13	0
20.	Tenkaraikottai	2661	1725	936	586	170	911	474	14	79	214	213
21.	Thurinihalli	420	420	0	175	0	177	0	0	0	68	0

						Agricultur	e Worke	ers		usehold	041	XA7 1
S. No	Name	Total Workers	Main Workers	Marginal Workers	Cult	ivators	Agri. Labourers			dustry orkers	Otner	Workers
					Main	Marginal	Main	Marginal	Main	Marginal	Main	Marginal
6 to 1	0 Km											
Pappi	reddipatti Taluk- Dha	rmapuri di	strict									
22.	A. Pallipatti	2286	2232	54	582	3	1199	16	31	4	420	31
23.	Adigarapatty	2341	2261	80	1119	12	738	38	35	7	369	23
24.	Alapuram	2705	2658	47	744	15	1488	15	45	0	381	17
25.	Ammapalayam	340	276	64	120	2	125	59	3	2	28	1
26.	Annamalaipatty	311	288	23	145	16	98	6	1	0	44	1
27.	Balasamudram	146	146	0	62	0	60	0	0	0	24	0
28.	Basuvapuram	1913	1837	76	644	2	933	59	3	0	257	15
29.	Chintalpadi	2955	2796	159	1143	9	827	98	35	8	791	44
30.	Gurubarahalli	1105	472	633	328	84	9	492	1	10	134	47
31.	Irulapatty	1583	1426	157	516	10	602	137	11	0	297	10
32.	Kavandampatty	1196	1177	19	344	3	657	5	12	0	164	11
33.	Mekalanayakanahalli	97	95	2	69	0	16	2	0	0	10	0
34.	Menasi	3030	2884	146	1048	34	1322	76	30	1	484	35
35.	Mookkareddipatti	1178	1152	26	284	3	621	12	8	0	239	11

						Agricultur	e Worke	rs	Household Industry		Other Workers	
S. No	Name	Total Workers	Main Workers	Marginal Workers	Cult	ivators	Agri. Labourers			orkers	Otner	workers
					Main	Marginal	Main	Marginal	Main	Marginal	Main	Marginal
36.	Obilinayakkanahalli	451	449	2	242	0	184	2	1	0	22	0
37.	Pallipatti	1637	1478	159	323	5	711	127	33	6	411	21
38.	Pappambadi	1088	923	165	304	7	419	131	6	1	194	26
39.	Pethasamudram	472	464	8	100	1	254	1	1	0	109	6
40.	Pethathampatti	2358	2290	68	497	9	1450	32	17	3	326	24
41.	Pudupatti	1797	1787	10	294	1	764	0	76	0	653	9
42.	Thadhanur	600	588	12	155	3	217	4	5	0	211	5
43.	Thinnahalli	337	252	85	139	14	65	53	3	2	45	16
44.	Vachathi	565	557	8	237	2	273	3	0	0	47	3
Harur	Taluk - Dharmapuri o	listrict										
45.	Achalvadi	1600	1364	236	553	27	383	109	20	12	408	88
46.	Agraharam	569	544	25	258	3	125	12	3	1	158	9
47.	Dodampatty	853	689	164	257	22	186	122	11	4	235	16
48.	Ellepudayampatti	1247	1245	2	606	0	453	1	7	0	179	1
49.	Harur (TP)	9697	8565	1132	750	47	1162	282	133	67	6520	736
50.	Kalladipatti	288	285	3	239	0	35	2	2	0	9	1

						Agricultur	e Worke	rs		usehold	Other Workers	
S. No	Name	Total Workers	Main Workers	Marginal Workers	Cult	ivators	Agri. L	abourers		dustry orkers	otner	workers
					Main	Marginal	Main	Marginal	Main	Marginal	Main	Marginal
51.	Kottarapatty	166	151	15	97	2	27	9	5	1	22	3
52.	Kudumiyampatty	813	703	110	161	22	447	79	2	2	93	7
53.	Mobirippatti	675	590	85	106	3	204	61	4	0	276	21
54.	Mookanurpatti	262	259	3	170	0	37	1	0	0	52	2
55.	Morasapatti	282	281	1	67	0	204	1	0	0	10	0
56.	Nachanampatty	169	168	1	134	0	11	0	0	0	23	1
57.	Pachanampatty	540	377	163	77	18	52	25	21	1	227	119
58.	Sandappatti	391	377	14	153	4	71	8	11	0	142	2
59.	Setrapatti	226	226	0	192	0	7	0	1	0	26	0
60.	Soriyampatti	684	661	23	141	3	401	5	10	5	109	10
61.	Sundangipatti	406	395	11	74	1	232	1	7	8	82	1
62.	Tandekuppam	938	767	171	252	13	361	116	14	14	140	28
63.	Thadampatti	581	464	117	142	3	266	26	2	1	54	87
64.	Thambichettipatti	288	270	18	176	0	48	14	0	1	46	3
65.	Velampatti	412	407	5	362	0	17	5	3	0	25	0
	Total	70860	64957	5903	20372	626	25478	3086	798	255	18309	1936

(Source: Census 2011)

3.11.2.2 Educational Infrastructure within study area

The study area has good Pre-Primary, primary, middle and secondary education infrastructure. The people around the study area are well connected to educational infrastructures. The following **Table 3-26** shows the literate and the percentage within the study area.

Table 3-26 Literates population and the percentage within the study area

S.	Name	Total Population	Literates	Literates Population	Literates Population	% Literates						
No			Population	Male	Female							
0 to 5	0 to 5 Km											
Papp	Pappireddipatti Taluk -Dharmapuri district											
1.	Allalapatty	479	295	171	124	61.59						
2.	Annamalaihalli	1227	781	454	327	63.65						
3.	Chinnankuppam	1139	783	425	358	68.74						
4.	Devarajapalayam	2737	1630	911	719	59.55						
5.	Erumiyampatty	1925	1078	608	470	56.00						
6.	Gopalapuram	1122	667	396	271	59.45						
7.	Gopichettipalayam	406	215	126	89	52.96						
8.	Jammanahalli	2363	1582	895	687	66.95						
9.	Kadaranampatty	83	44	25	19	53.01						
10.	Kokkarapatty	3013	2189	1384	805	72.65						
11.	Kolagampatty	3057	1953	1084	869	63.89						
12.	Malagapadi	940	592	334	258	62.98						
13.	Nambippatti	1947	1220	724	496	62.66						
14.	Naranapuram	1465	873	494	379	59.59						
15.	Parayapatti	4612	3445	1960	1485	74.70						
16.	Peddur	897	468	272	196	52.17						

S. No	Name	Total Population	Literates Population	Literates Population Male	Literates Population Female	% Literates
17.	Puludiyur	676	504	284	220	74.56
18.	Rameyanahalli	2859	1931	1067	864	67.54
19.	Sikkampatti	182	106	65	41	58.24
20.	Tenkaraikottai	5142	3266	1872	1394	63.52
21.	Thurinihalli	660	483	272	211	73.18
6 to 1	0 Km					
Papp	ireddipatti Taluk- Dharmapuri	district				
22.	A. Pallipatti	4156	2779	1575	1204	66.87
23.	Adigarapatty	3957	2668	1513	1155	67.42
24.	Alapuram	4784	2903	1679	1224	60.68
25.	Ammapalayam	522	287	166	121	54.98
26.	Annamalaipatty	520	332	189	143	63.85
27.	Balasamudram	238	178	101	77	74.79
28.	Basuvapuram	3383	2069	1206	863	61.16
29.	Chintalpadi	5448	3598	2002	1596	66.04
30.	Gurubarahalli	1990	1413	778	635	71.01
31.	Irulapatty	2921	1776	1032	744	60.80
32.	Kavandampatty	2007	1325	732	593	66.02
33.	Mekalanayakanahalli	159	109	63	46	68.55
34.	Menasi	5280	3331	1916	1415	63.09
35.	Mookkareddipatti	2186	1393	750	643	63.72
36.	Obilinayakkanahalli	675	458	235	223	67.85
37.	Pallipatti	3684	2722	1571	1151	73.89
38.	Pappambadi	1965	1272	732	540	64.73
39.	Pethasamudram	729	463	258	205	63.51

S. No	Name	Total Population	Literates Population	Literates Population Male	Literates Population Female	% Literates
40.	Pethathampatti	4137	2498	1431	1067	60.38
41.	Pudupatti	3242	1969	1117	852	60.73
42.	Thadhanur	1086	754	435	319	69.43
43.	Thinnahalli	554	335	191	144	60.47
44.	Vachathi	1032	592	331	261	57.36
Haru	r Taluk - Dharmapuri district					
45.	Achalvadi	2907	1923	1070	853	66.15
46.	Agraharam	1007	637	381	256	63.26
47.	Dodampatty	1874	1211	693	518	64.62
48.	Ellepudayampatti	2066	1276	731	545	61.76
49.	Harur (TP)	25469	18913	9932	8981	74.26
50.	Kalladipatti	454	258	143	115	56.83
51.	Kottarapatty	268	190	110	80	70.90
52.	Kudumiyampatty	1429	892	495	397	62.42
53.	Mobirippatti	1594	1152	637	515	72.27
54.	Mookanurpatti	438	284	166	118	64.84
55.	Morasapatti	466	280	145	135	60.09
56.	Nachanampatty	271	198	107	91	73.06
57.	Pachanampatty	1353	834	453	381	61.64
58.	Sandappatti	760	450	252	198	59.21
59.	Setrapatti	361	263	143	120	72.85
60.	Soriyampatti	1197	763	452	311	63.74
61.	Sundangipatti	745	456	242	214	61.21
62.	Tandekuppam	1618	1031	562	469	63.72
63.	Thadampatti	841	469	259	210	55.77

S. No	Name	Total Population	Literates Population	Literates Population Male	Literates Population Female	% Literates
64.	Thambichettipatti	416	268	148	120	64.42
65.	Velampatti	608	491	284	207	80.76
	Total	137728	91568	51231	40337	66.48

(Source: Census 2011)

3.11.2.3 Health facility within the study area

The majority of people visit nearby Hospitals/health services provided by the Government. The area has got good public health facilities at easily reachable distances. There was no major health issues reported in our survey. Even for any minor ailments, they contact medical facilities immediately as it is very accessible to them. The local transport facilities and the communication facilities are the main reasons to get immediate medical attention. The incidents of institutional delivery are high due to awareness, education, economic development, proximity to health delivery system. The Infant mortality rate and the maternal mortality rate have significantly reduced.

3.11.3 Summary

The Socioeconomic profile of the study area shows that the majority of people in the study area work in non-agricultural sector, however in rural area majority of the people in the rural area depends on agricultural sector. They have good educational infrastructures and the people in the study area are well connected to the educational infrastructures. The people in the study area are well connected to Government primary health centres and Primary health sub-centresshows the socio-economic indicators within the study area given in **Table 3-27**.

Table 3-27 Summaries of Socio-economic indicators within the study area

S. No	Particulars	0-10 km	Unit
1.	Number of villages in the Study Area	65	No's
2.	Total Households	36,188	No's
3.	Total Population	1,37,728	No's

Proposed Jammanahalli Black Granite Quarry	H/01/2024/CON/046
Draft EIA Report	RP003-R2

4.	Children Population (<6 Years Old)	13,547	No's
5.	SC Population	38,733	No's
6.	ST Population	5,103	No's
7.	Total Working Population	70,860	No's
8.	Main Workers	64,957	No's
9.	Marginal Workers	5,903	No's
10.	Cultivators	20,998	No's
11.	Agricultural labours	28,564	No's
12.	Household Industries	1,053	No's
13.	Other Workers	20,245	No's
14.	Literates	91,568	No's

(Source: Census 2011)

4 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

4.1 Details of Investigated Environmental impacts due to project location, possible accidents, project design, project construction, regular operations, final decommissioning or rehabilitation of a completed project

The impacts due to mining operation and its mitigation measures adopted are detailed in this chapter. The opencast mining operations involve development of benches, approach roads, haul roads, blasting, excavation and handling & transportation of materials operations cause environmental problems such as degradation of land, air, water, soil, also affecting the biological and socio-economic environment of the study area. So, adequate control measures will be implemented to mitigate the adverse environmental impacts caused due to mining operation. Various environmental impacts, which have been identified due to the mining operation of the proposed project, are discussed in the following sections. The environmental parameters most commonly affected by mining activities are:

- Land Environment
- Air Environment
- Noise Environment
- Water Environment
- Biological Environment
- Socio-Economic Environment

4.2 Impact of Land Environment

Potential impacts envisaged due to mining operations on land environment are,

- The topsoil and bushes observed in the hill slides over the dyke will be removed completely. Hence the top hill ridge will be excavated which will interrupt the aesthetic view of the locality.
- The proposed quarrying operation will alters the hillock slope and natural drainage pattern.
- Due to the proposed mining activity, a pit will be created over the hill lock and left open with the approximate dimension as follows.

Table 4-1 Ultimate Pit Dimension Details

C No	Description	Average Ultimate Pit Dimensions (m)			
S. No	Description	Length Width Depth			
1	Тор	324	68	33	

Proposed Jammanahalli Black Granite Quarry
Draft EIA Report

H/01/2024/CON/046
RP003-R2

2 Bottom	193	22.50	
----------	-----	-------	--

- The Total waste (Granite waste + Over Burden + Side Burden) to be generated during the five years of mining plan period will be around 64,962m³. These wastes are proposed to be dumped on the Southeast side of lease area.
- Usage of chemicals like Rock Breaking Powder (Ca(OH)₂) for secondary blasting, fuel and lubricants used for machineries will affect the soil quality and fertility.
- Generation of hazardous and non-hazardous wastages.
- Creation of infrastructure facilities like office building, rest shelter, first-aid centre, toilets and other service facilities.

4.3 Impact of Air Environment

Source

The major sources of air pollution due to mining operations are DG sets, Machineries and Vehicular transportation. The activities causing air pollution due to the mining operations will be excavation, drilling, blasting and transportation. The sources of air emission are detailed below in **Table 4-2**.

Table 4-2 Sources of air pollution at quarry

S. No	Source of emission	Pollutant
1.	Excavation of Granite	PM
2.	Operation of diesel driven equipment	Gaseous emission
3.	Transportation of product	PM

Impacts

- Due to mining activity, Air pollution will cause respiratory problems.
- Air pollution will affect nearby ecosystems, vegetation, livestock habitats and water sources.

4.3.1 Meteorological Data

The meteorological data for three months, i.e. from **February 2025 to April 2025** was considered for the study. Data included for AERMET were daily wind speed, wind direction, temperature, relative humidity, air pressure, precipitation, and solar radiation recorded during the period. AERMET reformats meteorological data so that it can be used as input for AERMOD model. Meteorology considered for modeling is shown below.

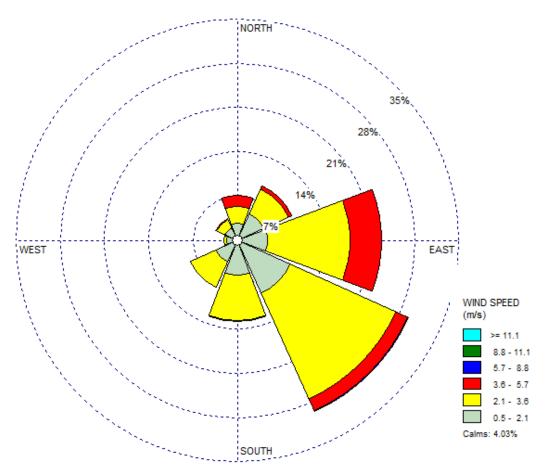


Figure 4-1 Wind rose diagram considered for dispersion modeling (February 2025 to April 2025)

AERMET Process

For the 3 phase AERMET processing of the meteorological data, specifications of the land use in the area are required to determine the terrain roughness for modeling. The land use was characterized for in and around the site. The surface characteristics for the site and surroundings were selected and used to calculate the Albedo, Bowen ratio and surface roughness parameter. The meteorological data were processed in the AERMET software to generate wind flow pattern & to generate surface meteorological data and profile meteorological data in a prescribed format that can be fed to AERMOD for modeling.

AERMOD Process

AERMOD Software Version 8.0.5 was used for air dispersion modeling and is applicable to a wide range of buoyant or neutrally buoyant emissions up to a range of 50 km. In addition to more straight forward cases, AERMOD is also suitable for complex terrain and urban dispersion scenarios.

AERMOD is a steady-state plume model. In the Stable Boundary Layer (SBL), it assumes the concentration distribution to be Gaussian in both the vertical and horizontal. In the Convective Boundary Layer (CBL), the horizontal distribution is also assumed to be Gaussian, but the vertical distribution is described with a bi-Gaussian probability density function (pdf). This behavior of the concentration distributions in the CBL was demonstrated by Willis and Deardorff (1981) and Briggs (1993). Additionally, in the CBL, AERMOD treats "plume lofting," whereby a portion of plume mass, released from a buoyant source, rises to and remains near the top of the boundary layer before becoming mixed into the CBL. AERMOD also tracks any plume mass that penetrates into the elevated stable layer, and then allows it to re-enter the boundary layer when and if appropriate. For sources in both the CBL and the SBL, AERMOD treats the enhancement of lateral dispersion resulting from plume meander. The emissions mainly generated from the mining activities are Blasting, Drilling, Scrapping, Excavation, Loading, Unloading, and transportation etc. Machinery like compressors and jack hammers are used for Drilling are estimated and used as inputs for the air dispersion modeling as shown in **Table 4-4** to **Table 4-7**.

Maximum incremental value for SO_2 , NO_x and PM are shown in **Figure 4-2 to Figure 4-4** and Top 10 highest Ground Level Concentration (GLC) obtained from modeling are given in **Table 4-8 to Table 4-10** respectively.

Emission Calculations

Each mining activity is a source of emission and the estimation of emissions depends on parameters such as meteorological, topographic conditions and material characteristics. It is necessary to calculate the qty of emissions for work or a source on site to the atmosphere. The following emission formulas are used to calculate the emission rate for the different emission source.

Table 4-3 Overview of the Source Parameters

S. NO	Description	Symbol	Quantity
1	Moisture Content (%)	m	1.64
2	Silt Content (%)	S	6
3	Production / Day (Tonn/Day)		7.6083
4	Waste Dumping Area (Sq.Km)	a	0.0066
5	Open Pit Area (Sq.Km)	Aa	0.0078

Source:

Emission Estimation Technique Manual for Mining and Processing of Non-Metallic Minerals by NPI, Nov 1999

Determination of the emission rate from various opencast mining operations, S. K. CHAULYA*, M. K. CHAKRABORTY, etc. Al. *Water, Air, and Soil Pollution 140: 21–55, 2002.*

Chaulya, S., 2006. Emission rate formulae for surface iron mining activities. *Environmental Modeling Assessment*, Issue 11, pp. 361-370.

EPA. August, 2004. Section 11.19.2, Crushed Stone Processing and Pulverized Mineral Processing. In: Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Fifth Edition, AP-42. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. Research Triangle Park, North Carolina.

Emission dispersion models

Each mining activity is a source of emission and the estimation of emissions depends on parameters such as meteorological, topographic conditions and material characteristics. The emission factors for $PM_{2.5}$, which is particulate matter of $2.5\mu m$ or less in diameter, were not available in literature.

Table 4-4 Emission from Mining Equipment's

			Stack Details			Emissions (g/s)			
Source	Fuel used	No of Stack	Height (m) AGL	Dia (m)	Temp (°C)	Exit Velocity (m/s)	PM	SO _x	NO _x
125 KVA DG	Diesel	1	3	0.3	180	10	5.81E- 03	5.38E- 03	8.16E- 02

Table 4-5 Vehicular Source Emission details

Course	Emission (g/s)			
Source	PM	NO _x		
4 Wheeler (1 no.)	6.94E-05	6.94E-04		
Heavy Duty Vehicles (2 no.)	1.11E-04	1.94E-02		
Total	1.81E-04	2.01E-02		

Table 4-6 Emissions considered for mining

Activities	PM Emission rate
Wet Drilling (g/s)	1.60E-07
Haulage (g/s)	4.16E-05

Waste Dumping (g/s)	2.32E-06
Open Pit (g/s.m²)	1.08E-07

Table 4-7 Emission input for modelling

Activities	PM	SO ₂	NO _x
Line Source (Haul Road) (g/s)	4.16E-05	-	-
Area Source (Open Pit) (g/s.m²)	1.08E-07	-	-
Area Source (Waste Dumping) (g/s)	2.32E-06	-	-
Point Source (DG) (g/s)	5.81E-03	5.38E-03	8.16E-02
Point Source (Drilling) (g/s)	1.60E-07	-	-
Line Source (Vehicle)(g/s)	1.81E-04	-	2.01E-02

Note:

- a. Since emission factors are available for PM_{10} the following assumptions are made for PM_{10} and $PM_{2.5}$ estimation
 - 60% of PM₁₀ is considered as PM_{2.5}

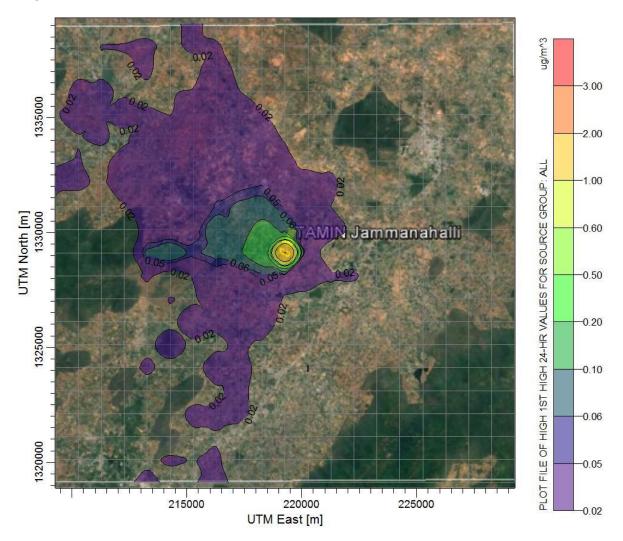


Figure 4-2 Predicted 24 Hrs GLC's of PM_{10} within 10km radius of the study area Table 4-8 Predicted Top 10 Highest Concentrations Particulate Matter PM_{10}

S.NO	UTM coordi	nates (m)	Conc.	Distance from Centre of the	Direction from project
	E	N	(μg/m³)	project (km)	Centre
1.	219271	1329115	2.05064	Project Site	Project Site
2.	218271	1329115	0.18283	1.00	W
3.	218271	1330115	0.13646	1.41	NW
4.	214271	1329115	0.09524	5.00	W
5.	217271	1329115	0.09292	2.00	W
6.	216271	1330115	0.08666	3.16	WNW
7.	219271	1330115	0.08486	1.00	N
8.	218271	1331115	0.07464	2.23	NNW
9.	216271	1329115	0.069	3.00	W
10.	213271	1329115	0.067	6.00	W

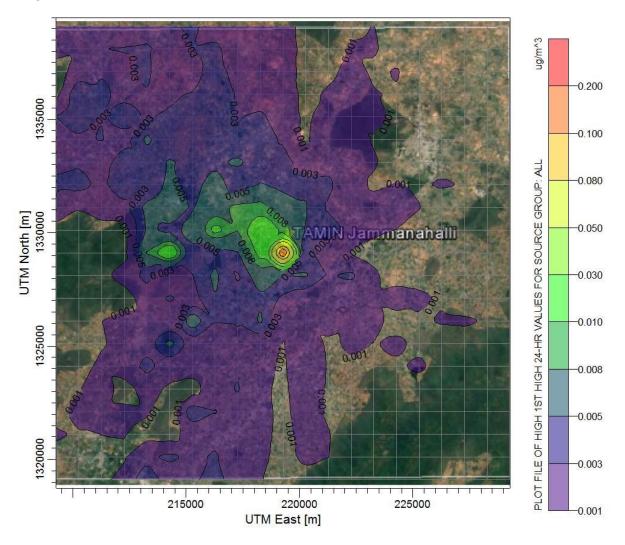


Figure 4-3 Predicted 24-Hrs' GLC's of SO₂within 10 km Radius of the Study Area

Table 4-9 Predicted Top 10 Highest Concentrations of Sulphur Dioxide

S.NO	UTM coord	linates (m)	Conc.	Distance from Centre of the	Direction from project
	E	N	(μg/m³)	project (km)	Centre
1.	219271	1329115	0.12568	Project Site	Project Site
2.	214271	1329115	0.01426	5.00	W
3.	218271	1330115	0.01375	1.41	NW
4.	218271	1329115	0.01124	1.00	W
5.	216271	1330115	0.01119	3.16	WNW
6.	219271	1330115	0.00952	1.00	N
7.	218271	1331115	0.00917	2.23	NNW
8.	217271	1331115	0.00885	2.82	NW
9.	213271	1329115	0.00824	6.00	W
10.	217271	1330115	0.00811	2.23	WNW

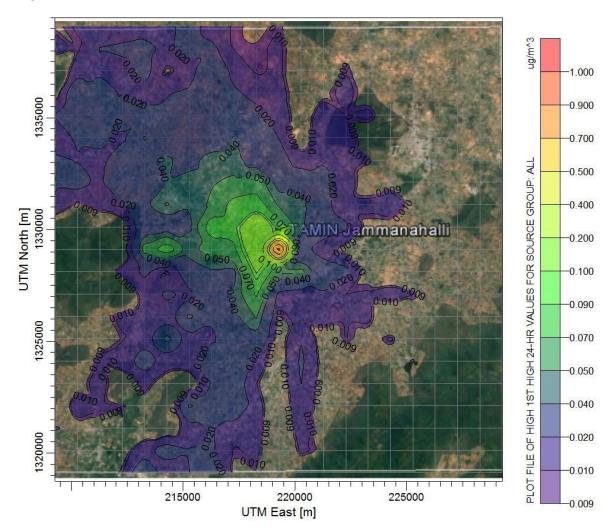


Figure 4-4 Predicted 24-Hrs' GLC's of NO_X within 10 km Radius of the Study Area Table 4-10 Predicted Top 10 Highest Concentrations Nitrogen Oxide

S.NO	UTM coordi	nates (m)	Conc.	Distance from Centre of the	Direction from project
3.NO	E	N	(μg/m³)	project (km)	Centre
1.	219271	1329115	0.96169	Project Site	Project Site
2.	218271	1330115	0.16294	1.41	NW
3.	218271	1329115	0.14424	1.00	W
4.	218271	1328115	0.10244	1.41	SW
5.	216271	1330115	0.08588	3.16	WNW
6.	214271	1329115	0.08502	5.00	W
7.	218271	1331115	0.08198	2.23	NNW
8.	217271	1330115	0.0819	2.23	WNW
9.	219271	1330115	0.08051	1.00	N
10.	217271	1331115	0.07889	2.82	NW

4.3.2 Conclusion

The total increase in concentrations above baseline increase is summarized in the below **Table 4-11**.

Table 4-11 Total maximum GLCs from emissions

Pollutant	Max. Base Line Conc. (μg/m³)	Estimated Incremental Conc. (μg/m³)	Total Conc. (μg/m³)	NAAQ standard
PM	57.72	2.05	59.77	100
SO_2	15.01	0.12	15.13	80
NO_X	25.87	0.96	26.83	80

4.4 Impact due to Carbon Emission

The proposed Quarry has the potential to generate various GHG emissions, including carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), fluorinated gases, water vapour, and ozone. These emissions can arise from different phases of quarrying operations, such as excavation, transportation, energy consumption, and land-use changes. A detailed study has been conducted to analyse and mitigating these emissions for minimizing environmental impact and promoting sustainable quarrying practices.

Impacts on Above and Below Soil Carbon Stock

Above Soil Carbon Stock: Deforestation and soil disturbance reduce above ground carbon stocks by releasing stored carbon from vegetation into the atmosphere.

Below Soil Carbon Stock: Soil erosion and disturbance associated with quarrying activities lead to the loss of soil organic carbon, compromising soil fertility and ecosystem health.

Operating a granite quarry can have several impacts on increasing carbon emissions and contributing to temperature rise, primarily through direct and indirect mechanisms. The key impacts are identified as:

Table 4-12 Impact Due to Carbon Emission

S.No	Activity	Impacts /Consequences	Mitigation Measures	
		The continuous operation	Implementing energy-	
	Operation of Heavy	of such machinery results in	efficient technologies	
1	Machinery and	the direct release of CO_2	and practices, such as	
1	Equipment-Direct	into the atmosphere,	using low-emission	
	Emissions	contributing to increased	equipment or	
		carbon emissions.	transitioning to cleaner	

	Energy-intensive	The combustion of fossil fuels releases CO_2 and	fuels, can help reduce direct emissions from machinery. Transitioning to renewable energy sources, such as solar
2	processes, such as drilling, cutting, and transportation of granite materials	other GHGs, contributing to indirect emissions associated with quarry operations.	can reduce indirect emissions associated with energy consumption in quarry operations.
3	Land-Use Changes and Deforestation	Deforestation results in the release of carbon stored in trees and soil into the atmosphere, thereby contributing to increased carbon emissions. Additionally, the loss of vegetative cover reduces the area's capacity to sequester carbon through photosynthesis.	Plantation in and around the quarry area can help offset carbon emissions and restore ecosystem functions.
4	Soil Disturbance, Excavation and Carbon Loss	Soil disturbance disrupts the natural carbon cycle by accelerating the decomposition of organic matter, releasing carbon dioxide into the atmosphere. Moreover, soil erosion reduces the soil's ability to retain carbon, further exacerbating carbon loss.	Implementing sustainable land management practices, such as minimizing soil disturbance and erosion control measures, can help preserve soil and reduce carbon loss.
5	All Operations-Impacts on Microclimate and	Quarry operations can alter local microclimates	Plantation in and around the quarry area

Temperature	and contribute to	can mitigate
	temperature rise in the	temperature rise and
	surrounding areas.	restore ecosystem
	Removal of vegetation and	balance.
	exposure of bare rock	
	surfaces can increase	
	surface temperatures	
	through the absorption and	
	retention of solar	
	radiation. Additionally, the	
	heat generated by	
	machinery and equipment,	
	as well as dust emissions	
	from quarrying activities,	
	can contribute to localized	
	temperature increases	

4.5 Impact on climate change, temperature rise, pollution

The proposed quarry will have various impacts on climate change, temperature rise, pollution, and carbon stocks, both above and below the soil. A detailed study has been conducted the results are given below.

Table 4-13 Climate Change and Temperature Rise

S.No	Activity	Impacts /Consequences	Mitigation Measures
1	Operation of Heavy Machinery and Equipment – Direct Emissions	Quarrying activities involving machinery, diesel vehicles, and energy consumption emit greenhouse gases (GHGs) such as carbon dioxide (CO ₂) and methane (CH ₄), contributing to climate change.	Adopt energy-efficient technologies and practices to reduce energy consumption and associated GHG emissions in quarry operations. Transition to renewable energy sources such as solar power to power quarry operations, minimizing reliance on fossil fuels. The other mitigation measures given in the previous point.

2	Deforestation	Clearing vegetation for quarry operations releases stored carbon into the atmosphere, leading to reduced carbon sequestration capacity and contributing to climate change.	Greenbelt development will restore vegetation cover and sequester carbon, offsetting emissions from deforestation and land-use changes. Restore degraded areas within and around the quarry site to enhance carbon sequestration and biodiversity conservation.
3	Alteration of land cover and soil composition	Alteration of land cover and soil composition can disrupt local microclimates, affecting temperature, humidity, and precipitation patterns in the surrounding area.	Implement soil conservation measures such as erosion control, reclamation and soil stabilization to preserve soil carbon and maintain ecosystem integrity. Minimize soil disturbance during quarry operations to reduce carbon loss from soils and prevent erosion.

4.6 Impacts due to Transportation

The Granite is transported to consumer directly as per buyer's requirement. The granite will be transported through existing road by tippers and approx. no. of trips required is 2 times per week. This minimum trip does not create impact on existing transportation. The traffic study has been conducted in the NH-179A connecting Salem – Vaniyambadi located 2.89km away from the project site in which is located in ESE direction. The traffic study was conducted for 1 hour in Peak hour of observation day. The vehicular movement for the proposed project is given in **Table 4-14**.

Figure 4-5 Site Connectivity Map of the Study Area

Table 4-14 Existing & proposed vehicular movement per Hour (Peak Hour) SH-60A

S. No	Type of Vehicle	Existing vehicle	Existing PCU	Propos ed vehicles	Propos ed PCU	Total vehicles after project implement ation	PCU Factors IRC (SP 41)	Total PCU after project implemen tation
1	2 wheeler	4150	3113	0	0	4150	0.75	3113
2	3 wheelers	826	991	0	0	826	1.2	991
3	4 wheelers / cars	1942	1942	0	0	1942	1	1942
4	truck/Lo rry	959	3548	4	15	963	3.7	3563
5	agricultu ral tractor	51	204	0	0	51	4	204
6	light emission vehicle	1086	2172	0	0	1086	2.0	2172
	Total	9,014	11,970	4	15	9,018	-	11,985

Table 4-15 Traffic Volume after Implementation of the Project

For the Road	Volume of Traffic	Volume (V)	Road Capacity (C)	V/C Ratio	LOS Category*	Traffic Classification
Existing	9014	11970	35000	0.34	"A"	Free Flow Traffic
After implementation	9018	11985	35000	0.34	"A"	Free Flow Traffic

^{*}LOS (Level of Service) categories are A-Free Flow, B- Stable Traffic Flow, C- Restricted Flow, D-High Density Flow, E- Unstable flow, F- Forced or breakdown flow.

Due to propose project there will be slight increment in the vehicle movement but the level of service (LOS) anticipated will be Free Flow Traffic.

4.7 Impact of Water Environment

Impacts envisaged due to wastewater generation during mining operations are,

- Wastewater generated from the mines can pollute surface water and groundwater,
 which can harm wildlife and human health.
- Runoff from mining wastewater can devastate surrounding vegetation.
- Explosive blasting in a mine can cause groundwater to seep to lower depths or connect aquifers, exposing them to contamination by toxic heavy metals.

4.7.1 Rainwater Harvesting

Impacts

Impacts envisaged due to rainwater on mining operations are

- Heavy rainfall can cause high water levels at a mining site, which can damage equipment and threaten worker safety.
- Rainwater can carry pollutants from a mining site into nearby water bodies; these
 pollutants can include heavy metals, acids, and other substances that can contaminate
 the water.
- When it rains, the loosened topsoil can be washed away, carrying sediments that pollute water bodies.

4.8 Impact of Noise

Source

The main sources of noise in the mine are as follows:

- Drilling
- Blasting
- Transportation vehicles

Loading & unloading of minerals.

Impacts

Due to mining activity, Noise pollution will cause hearing loss, cardiovascular problems, sleep disturbances, stress and anxiety to the workers

4.8.1 Noise due to Mining Activity

The noise levels in the working environment will be maintained within the standards prescribed by Occupational Safety and Health Administration (OSHA). These standards were established with the emphasis on reducing the hearing loss. The permissible limits, as laid down by OSHA, are presented in **Table 4-16**.

Table 4-16 Permissible Exposure in Cases of Continuous Noise (OSHA, Govt. of India)

S.No	Sound Level (dB A)	Continuous Duration (Hours)
1	85	8
2	88	4
3	91	2
4	94	1
5	97	0.5
6	100	0.25

4.9 Impact of Vibration

Source

The main sources of vibration in the proposed mine are as follows:

- Drilling
- Blasting
- Loading & unloading of minerals.
- Transportation vehicles

Impacts

Due to mining activities, the following impacts of vibration are envisaged as follows:

- Structural damage to infrastructure facilities within the mine lease area.
- Ground Subsidence
- Vibrations cause human health impacts such as fatigue, muscle strain, joint pain, sleep disturbances, cardiovascular problems etc.

4.10 Impact on Biological Environment

The impacts on biological environment is given in the below table.

Table 4-17 Impacts on Biodiversity

S. No	Activity	Examples of aspects	Examples of biodiversity impact						
1	Extraction	Land clearing	Loss of habitat, introduction of plant diseases, Siltation of water courses						
2	Blasting, Digging and hauling	Dust, noise ,vibration, water pollution	Disruption of water courses ,impacts on aquatic ecosystems due to changes in hydrology and water quality						
3	Waste dumping	Clearing, water and soil pollution	Loss of habitat, soil and water contamination, sedimentation.						
4	Air emissions	Air pollution	Loss of habitat or species						
5	Waste disposal	Oil and water pollution	Encouragement of pests, disease transfer, contamination of groundwater and soil						
6	Building power lines	Land clearing	Loss or fragmentation of habitat						
7	Provision of accommodation	Land clearing, soil and water pollution, waste generation	Loss of habitat, sewage disposal and disease impacts						
8	Access roads	Land clearing	Habitat loss or fragmentation, water logging upslope and drainage shadows down slope						
9	Population growth	Land clearing or increased hunting	Loss of habitat or species, stress on local and regional resources, pest introduction, clearing						
10	Water supply (potableor industrial)	Water abstraction or mine dewatering	Loss or changes in habitat or species composition						

4.11 Impact on Agricultural, Forestry & Traditional Practices

We have observed some agricultural lands surrounding the proposed mine lease area. The major cultivation practices are

- Sorgum
- Millet
- Groundnut
- Coconut

The following livestock details near to the proposed mine lease area and within the study area are

Cattle:

- 1. Indigenous breeds:
 - Ongole

- Kangeyam
- Pulikulam

2. Crossbreed varieties:

- Jersey
- Holstein Friesian

Small Ruminants:

- 1. Sheep:
- Mecheri
- Vembur
- Nali
- 2. Goats:
- Tellicherry
- Osmanabad

Poultry:

- Backyard poultry (desi birds)
- Commercial broilers
- Layers

Other Livestock:

- Buffalo (Murrah, Surti)
- Horses and Ponies
- Donkeys
- Rabbits
- Pigs

Mild impacts could occur around the mine pits and along transport route within a radius of 100m in the form of dust and air emissions. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly.

4.12 Hydrothermal Effect due to the Proposed Project

- Changes in groundwater flow and quality: Open-cast mining can alter groundwater flow patterns, leading to changes in water quality and potentially contaminating nearby water sources.
- Increased surface runoff: Removal of vegetation and soil can increase surface runoff, leading to erosion and sedimentation in nearby water bodies.
- Acid mine drainage (AMD): Exposure of sulfide-bearing rocks can lead to AMD, which can contaminate surface and groundwater with heavy metals and acidity.

 Mining operations can release heated water into nearby water bodies, altering aquatic ecosystems.

4.13 Geothermal Effects due to the Proposed Project

- Heat generation: Mining operations can generate heat through mechanical and chemical reactions, potentially altering local geothermal gradients.
- Subsidence and land deformation: Open-cast mining can lead to subsidence and land deformation, affecting local heat transfer and groundwater flow.
- Geochemical changes: Mining can alter geochemical reactions, potentially releasing greenhouse gases (e.g., CO₂, CH₄) and affecting local geothermal conditions.
- Thermal impact on ecosystems: Changes in soil temperature and moisture can impact local ecosystems, potentially altering plant and animal distributions.

4.14 Impact on Sediment Geochemistry in the Surface streams

- Acid Mine Drainage (AMD): Mining can expose sulfide-bearing rocks, leading to AMD, which can acidify surface streams and mobilize heavy metals.
- Increased turbidity: Mining-related sedimentation can increase stream turbidity, reducing light penetration and affecting aquatic plant growth.
- Changes in sediment grain size: Mining can alter the grain size distribution of sediments, potentially affecting stream morphology and aquatic habitats.
- Decreased nutrient availability: Mining can lead to decreased nutrient availability in streams, affecting aquatic productivity.
- Increased salinity: Mining can increase stream salinity due to the release of salts and minerals.
- Microbial community disruption: Mining can disrupt microbial communities in streams, affecting nutrient cycling and ecosystem function.
- Increased dissolved solids: Mining can increase dissolved solids, such as sulfate, chloride, and fluoride.
- Changes in redox conditions: Mining can alter redox conditions, affecting the speciation and mobility of metals.

4.15 Impacts on Occupational Health

- Continuous drilling, blasting, and excavation generate dust containing respirable particulate matter (RPM) and crystalline silica, leading to respiratory diseases such as silicosis, bronchitis, and other pulmonary disorders.
- Noise and vibration from blasting, drilling, and heavy machinery can cause hearing loss, sleep disturbance, and stress-related illnesses.

- Exposure to diesel exhaust, chemical rock-breaking agents, lubricants, and fuel residues may result in skin irritation, eye problems, and long-term systemic effects.
- Workers are at risk of accidents from machinery operations, slope failures, and fly-rock during blasting.

4.16 Impacts on Public Health

- Dust dispersion into nearby habitations can increase respiratory problems like asthma, coughing, and lung infections.
- Noise and ground vibrations may cause sleep disturbance, mental stress, and general discomfort among local communities.
- Water pollution from mining waste, chemical usage, or fuel leakage can deteriorate water quality, increasing gastrointestinal diseases.
- Open mine pits can lead to water stagnation, providing breeding grounds for mosquitoes and other vectors, thereby increasing risks of malaria, dengue, and other vector-borne diseases.

4.17 Project Measures for Minimizing and/or offsetting Adverse Impacts Identified

4.17.1 Land Degradation Control Measures

- Dust suppression on exposed areas using water tankers and automatic sprinkling systems
- Contour overburden dump to minimize erosion
- Plantation using native plant sapling.
- Compliance with mine decommissioning plan.
- Drainage control structures like garland drain to be made around OB dump area to avoid water flow during monsoon below the OB dump.
- Leveling, grading and drainage arrangement for top of OB dumps.
- Topsoil to be stored in small heaps (5m high) at appropriate moisture content with proper vegetation.
- Top soil shall be used in afforestation work, as early as possible.
- Top soil will be removed & stored on the inner boundary of the mining lease area. To
 improve its quality, soil stabilizers shall be mixed and leguminous plantation will be
 done over these stacks.
- After complete extraction of estimated reserves of granite. The deeper working pits, after completion of Mining/Quarrying left as it is which would serve as water ponds / water reservoirs.
- The quarried pits after the end of the life of lease will be fenced to prevent inherent

entry of public and cattle's.

- Management plan for topsoil utilization and conservation.
- Progressive year-wise green belt development inside and outside the lease area.
- The DG set are provided with stacks of adequate height so as to disperse the emanating flue gases containing suspended particulate matters, oxides of sulphur and nitrogen without affecting the ground level concentrations.

4.18 Mitigation Measures of Impact on Sediment Geochemistry

- Implementation of sedimentation ponds and water treatment systems
- Monitoring of water and sediment quality
- Use of best management practices (BMPs) to minimize erosion and sedimentation

4.19 Land Environment Mitigation Measures

Mitigation Measures

- Good housekeeping and best practices of waste handling shall be adopted to eliminate/minimize the risks of soil contamination.
- The wastes generated will be stored in temporary storage facility and disposed through nearby municipal disposal bins. Waste oil generated from quarry machineries will be disposed through TNPCB authorized dealers.
- Dust suppression using water tankers.
- Greenbelt around infrastructure within the mine lease area and along the periphery of the mine lease area by using native plants.
- Proper fencing will be provided around the mine lease area

4.20 Erosion Control Measures

- Re-vegetation of unused areas to prevent erosion.
- Mulching or seeding of disturbed areas.
- Installation of sedimentation ponds and silt traps.
- Diversion of water flows to prevent erosion.
- Regular monitoring of water quality and sediment loads.
- Check dams or sedimentation basins.
- Riprap or rock armor to protect against water erosion.
- Gabions or wire mesh to stabilize slopes.
- Culverts and drainage systems.

- Terracing or benching to reduce slope length.
- Soil nailing or ground anchoring.

4.21 Air Environment Mitigation Measures

The mitigation measures due to the proposed mining activity for air environment are given below.

Table 4-18 Fugitive dust control in mine

S. No	Activities	Control Measures
1	D. 211	Adopting wet drilling method
1	Drilling	Drilling machine should be provided with dust extractors
		Use of control blasting technique
		Water spray before blasting
2	Blasting	Usage of Rock breaking powder (Ca(OH) ₂)
		Usage of Wire saw cutting method
3	Loading	➤ Water spray on granite material before loading
		Covering of the trucks/dumpers to avoid spillage
		> Water spray on the haul roads before and after
		transportation
4	Transportation of material	Maintenance of haul road
	materiai	Speed of vehicles will be limited upto 25km/hr
		> Development of a green belt of suitable width on both sides
		of haul road

4.22 Mitigation measures to address these impacts may include development of Carbon Sinks

Carbon sinks are natural or artificial systems that absorb and store carbon dioxide (CO_2) from the atmosphere, helping to mitigate climate change by reducing the concentration of greenhouse gases. There are several options for carbon sinks, each with varying degrees of effectiveness and feasibility. Some common carbon sink options include:

- Implementing vegetation and afforestation programs to restore vegetative cover and sequester carbon.
- Adopting sustainable land management practices to minimize soil disturbance and erosion, thereby preserving soil carbon.
- Incorporating carbon offset projects, such as reforestation initiatives or carbon capture and storage (CCS) technologies, to offset emissions generated by quarry operations.
- Install renewable energy sources such as solar, in lieu of operating DGs, for non-

quarrying operations.

- Expand afforestation (planting trees on lands that historically lacked forests) and reforestation (restoring degraded forests) efforts to enhance carbon sequestration and biodiversity conservation.
- Healthy soils have the capacity to store significant amounts of carbon in the form of
 organic matter. Implementing sustainable land management practices such as no-till
 agriculture, cover cropping, and agroforestry can enhance soil carbon sequestration
 and improve soil health, wherever possible.

4.23 Mitigation Measures of Climate Change & Temperature

- Implement vegetation and afforestation programs to restore vegetation cover and sequester carbon, offsetting emissions from deforestation and land-use changes.
- Adopt energy-efficient technologies and renewable energy sources like solar or wind power to reduce emissions from quarry operations and minimize environmental impact.
- Implement soil conservation measures such as erosion control, reclamation, and soil stabilization to preserve soil carbon and maintain ecosystem integrity.
- Install dust suppression systems, sedimentation ponds, and water treatment facilities to mitigate air and water pollution from quarrying activities.
- Implement habitat restoration and conservation measures to protect biodiversity and ecosystem services affected by quarry operations.
- Engage with local communities, stakeholders, and regulatory authorities to address concerns, promote transparency, and ensure sustainable quarrying practices.

By implementing these mitigation measures, it is possible to minimize the environmental impacts of the proposed quarry, reduce carbon emissions, preserve ecosystem health, and promote sustainable development in the region.

4.24 Mitigation Measures for Impacts due to Transportation

Proper mitigation measures are practiced during mining activities to control air pollution are as follows:

- Covering of the trucks/dumpers to avoid spillage
- Water spray on the haul roads before and after transportation
- Maintenance of haul road
- Speed control on vehicles

Development of a green belt of suitable width on both sides of haul roads

4.25 Water Environment Mitigation Measures

4.25.1 Surface Water Pollution Control Measures

- ➤ Construction of garland drains of appropriate size around the mine area and dumps to prevent rainwater from entering active mining zones.
- Construction of baffle wall or trenches nearby water bodies to prevent runoff water from mines.
- ➤ The dumping will be provided with slopes and covered with grasses, shrubs, etc to prevent erosion.

4.25.2 Ground Water Pollution Control Measures

- ➤ The domestic sewage of 1.2 KLD will be disposed through septic tank followed by soak pit.
- ➤ Regular monitoring of water levels and quality in the existing open wells and bore well in the vicinity will be carried out.

4.25.3 Rain Water Harvesting

Mitigation Measures

- Construct barriers at suitable intervals along the path of the drains to restrict the flow of water.
- Construction of baffle wall or trenches nearby water bodies to prevent runoff water from mines.
- Provide necessary overflow arrangement to maintain the natural drainage system.
- The rainwater will be diverted by garland drains to the sump area within the mine lease.
 The stored water will be used for agriculture activities and also for dust suppression purpose

4.26 Noise Environment Mitigation Measures

The following mitigation measures should be taken to control noise pollution:

- ➤ Controlled blasting with proper spacing, burden and stemming will be maintained, to reduce noise emission.
- All vehicles and machinery will be properly lubricated and maintained regularly.
- > Speed of the vehicles entering and leaving the quarrying lease will be limited to 25 kmph.
- Unnecessary use of horns by the vehicle drivers shall be avoided
- ➤ Minimum quantity of detonating fuse will be consumed by using alternatively excel non- electrical initiation system.

- Provision of sound insulated chambers for the workers deployed on machines.
- A thick green belt will be provided in phased manner around the periphery of the mine and on both sides of haul roads to attenuate noise.
- Usage of NONEL Blasting (Non-Electric Detonator).
- ➤ Usage of Rock breaking powder (Ca(OH)₂) for secondary splitting.
- ➤ Personal Protective Equipment (PPE) like ear muffs/ear plugs will be provided to the operators of HEMM and persons working near HEMM and reducing the exposure time of workers to the higher noise levels.

4.27 Biological Environment Mitigation Measures

- > To reduce the adverse effects on flora/fauna status that are found in project area due to deposition of dust generating from mining operations, water sprinkling and water spraying systems will be ensured in all dust prone areas to arrest dust generation.
- > Greenbelt development will be done all along the periphery of the mine lease area and haul roads.
- Renovation of ponds
- Construction of check dams and water holes

4.27.1 Green Belt Development

The green belt plantation programme will be continued till the end of the mining operation in the area. In framing out this programme on a sustainable and scientific base, due consultation and coordination with the forest department will be sought.

The project proponent has started to plant green belt species including neem, vilvam, panai around the periphery of the project site as recommended in ToR. The proposed green belt plan is given below.

Year	No of trees proposed to plant	Name of the species to be plant	Survival rate expected	No of trees expected to grow
2025-26	825	Neem, Vilvam, Aathi & Panai	80%	660

The total area for the proposed green belt is 0.06.5 Ha during 5 years of the proposed quarrying activity TAMIN is proposing to plant 825 trees are proposed to plant within the 7.5m safety buffer zone mine lease area and also in the proposed green belt area.

The objectives of the green belt cover will cover the following,

Noise absorption.

- Reuse of waste water.
- Prevention of soil erosion
- Ecological restoration
- ➤ Aesthetic, biological and visual improvement of area due to improved vegetative and plantation covers.
- > Green belt around mine, dumps, etc
 - Tall growing, closely spaced, evergreen trees native to the area
 - Easy, quick early growth and establishment
 - Trees with high foliage density, leaves with larger leaf area
 - Attractive appearance with both good flowering and fruit bearing
 - Bird and insect attracting species
 - Suitable green cover with minimal maintenance

Avenue Trees:

- Trees with conical canopy and with attractive flowering
- Trees with medium spreading branches to avoid obstruction to the traffic
- Trees with branching at 10 feet and above.

4.28 Mitigate Measures for Occupational Health and Public Health

The mitigation measures for occupational health & public health are as follows,

Table 4-19 Mitigation for occupational health and public health

S. No	Activity	Mitigation measures
1	Excavation	Planned excavation, avoid haphazard mining
		> Driller should be equipped with a closed cabin to reduce
		exposure to noise and dust. Adpoting wet drilling method to
		reduce adverse impacts.
		> Implement regular water sprinkling and dust suppression
	Drilling and	systems to minimize particulate emissions.
2	blasting	> Provide personal protective equipment (PPE) such as masks,
		earplugs, helmets, and safety boots to all workers.
		> Adopt controlled blasting techniques and restrict blasting to
		daytime hours to minimize noise and vibration impacts.
		➤ Provisions for a buffer zone between the local habitation and
		the mine lease in the form of a green belt of suitable width.
3	Safety zone	> Restricted entry, use of sirens and cordoning of the blasting
		area are some of the good practices to avoid accidents.

		Accio	ents are known to happen due to overburden collapse.
4	Overburden	> Ther	efore, slope stabilization and dump stability are critical
	stabilization	issue	s for safety and environment.
		Cond	uct periodic health check-ups and maintain medical
		reco	ds for all mine workers.
5	Workers health surveillance	➤ Heal	h survey programmes for local community.
	sui veniance	Regu	ar training and awareness of employees to be conducted
		to m	et health and safety objectives.

4.29 Mitigation Measures due to the Impact on Agriculture

Mitigation Measures on agriculture and horticulture crops.

- The main objective of the green belt is to provide a barrier between the source of pollution and the surrounding areas.
- In order to compensate the loss of vegetation cover, it is suggested to carry out afforestation program mainly inside and outside of the lease area in different phases.
- Mine approach roads are sprayed with water 3 times a day to control dust. Thus, the damage to the nearby farmlands is controlled.
- A green belt will be created in 7.5 m safety zone around the quarry to contain the dust from the quarry and prevent the dust from spreading to the adjacent agricultural land.
- Transportation of material will be carried out during day time and material will be covered with tarpaulin
- The speed of tippers plying on the haul road will be limited to < 20 km/hr to avoid generation of dust.

4.30 Mitigation Measures of Hydrothermal and Geothermal Effects

- Water management planning and implementation
- Rehabilitation and reclamation of mined land
- Implementation of AMD prevention and treatment technologies
- Energy efficiency and renewable energy integration
- Geotechnical monitoring and subsidence management
- Ecological restoration and biodiversity conservation

4.31 Assessment of Potential Fragmentation Impacts on the Natural Environment

Due to the mining activity, there may be breakup of continuous natural habitats into smaller, isolated patches, which may adversely affect local biodiversity, ecological connectivity, and wildlife movement.

Impacts:

- Habitat Impacts Due to mining activity, there will be possibility of disrupt the continuity of natural vegetation, water bodies, or wildlife corridors in the project area and its surroundings.
- Flora and Fauna Impacts Due to mining activity, there will be possibility of impacts to the presence of native plant species, faunal habitats and endangered species.
- Soil and Hydrological Impacts Due to mining activity, the change in land-use could alter natural drainage patterns or groundwater recharge, thereby indirectly fragmenting ecosystems.

Mitigation Measures:

- Greenbelt and buffer plantation along the quarry lease boundary to serve as ecological barriers and improve habitat continuity.
- Progressive reclamation of mined-out areas using native plant species to restore ecological balance.
- Surface runoff and drainage management to prevent siltation of nearby natural habitats.
- Monitoring program to periodically evaluate ecological conditions and effectiveness of mitigation strategies.

4.32 Irreversible and Irretrievable commitments of environmental components

Irreversible and Irretrievable commitments of environmental components are not envisaged in the proposed project.

4.33 Assessment of Significance of Impacts

This chapter comprises the information regarding the identified beneficially or adversely environmental impacts due to possible aspects predicted because of location of the plant, expected / predicted accidents scenario, conceptualization of project, preconstruction & construction activities and due to operation of machineries/equipment. Environmental aspect-impact relationship will be identified and quantified with its scale of magnitude and scale of importance, accordingly significance of impact will be determined along with mitigation measures.

The impact assessment essentially consists of three steps:

- 1. Impact Identification
- 2. Impact Predictions
- 3. Impact Analysis for determination of significance of impacts

Here, impact assessment has been done based on Leopold Matrix in which each action and its

potential in creating impact is expressed in terms of its magnitude and importance. For quantitative representation, both magnitude & importance are represented by values as described below:

4.34 Scale of Importance

Importance of an interaction is related to its significance, or an assessment of probable consequences of anticipated impact. It ranges from 1 to 10; with 10 representing a very important interaction and 1 of relatively low.

4.35 Scale of Magnitude

Impact score or magnitude ranges from 0-5 with positive and negative values, depending upon the impact rising out of the project activity.

Table 4-20 Severity Criteria for Magnitude of Impacts

S. No	Category	Description of category	Im	pact		
3. NO	Category	Description of category	Adverse	Beneficial		
1	No impact	-	0	0		
2	No appreciable impact	Short term reversible	-1	1		
3	Significant impact	Long term reversible	-2	2		
4	Major impact	Irreversible but of lesser extent	-3	3		
5	High impact	Irreversible but of medium extent	-4	4		
6	Permanent impact	Severe irreversible impact	-5	5		

Score of each of the component is to be multiplied by "Importance factor" and totals core is to be obtained by summation of products. Score ranges of impact evaluation based on matrix score is given below

Table 4-21 Score ranges for Beneficial and Adverse Impacts

S. No	Total score	Outcome
1	+ve / -ve	Beneficial impact / adverse impact
2	0-300	No appreciable Beneficial impact / adverse impact
3	300-600	Appreciable but reversible adverse impact-mitigation measures are
		needed
4	600-900	Significant adverse impacts: most of the impacts are reversible.
1	000 700	Mitigation measures are crucial.
5	900-1200	Major adverse impacts; most of the impacts are reversible. Alternative
3	900-1200	site selection to be considered.
6	>1200	Permanent irreversible impact; alternatives to the project need to be
	/1200	explored

Table 4-22 Impact Matrix without EMP

		Ai	ir qua	lity	Noise & Vibration			Surface water				Groun watei		Soi	il qua	lity	Flor	a & fa	una		and u			Socio onom		Impact score
S.No	Environmental components likely to be affected	Magnitude	Importance	(M * I)	Magnitude	Importance	(M * I)	Magnitude	Importance	(M * I)	Magnitude	Importance	(M * I)	Magnitude	Importance	(M * I)	Magnitude	Importance	(M * I)	Magnitude	Importance	(M * I)	Magnitude	Importance	(M * I)	(Sum of M * I)
1	Site clearance and removal of vegetation	-	-	0	1	-	0	-	-	0	-	-	0	-3	5	-15	-1	4	-4	-4	6	-24		-	0	-43
2	Drilling and blasting operation	-5	8	-40	-5	8	-40	-	-	0	-	-	0	-4	-6	24	-1	4	-4	-2	7	-14	-	ı	0	-74
3	Dust generation due to mining activity	-5	8	-40	-	-	0	-3	5	-15	-	-	0	-	-	0	-2	4	-8	-	-	0	-5	6	-30	-93
4	Loading & Unloading of granite	-4	7	-28	-3	6	-18	-	-	0	-	-	0	-2	4	-8	-1	3	-3	1	1	0	-2	4	-8	-65
5	Fall in pit, Accidents, fall of side walls etc.	ı	-	0	-	ı	0	-	ı	0	ı	-	0	ı	-	0	-4	6	-24	-2	4	-8	-3	5	-15	-47
6	Change in Topography and slopes	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-3	6	-18	-	-	0	-18
7	Granite Resource Depletion	-	-	0	-	-	0	-	-	0	-	-	0	-3	8	-24	-	-	0	-2	8	-16	-	-	0	-40
8	Stacking and handling of Mineral Rejects and Overburden	-2	5	-10	-	-	0	-	-	0	-	-	0	-3	6	-18	-	-	0	-2	7	-14	-	-	0	-42
9	Noise generation due to vehicular movement	-	-	0	-3	5	-15	-	-	0	-	-	0	-	-	0	-1	4	-4	-	-	0	-2	4	-8	-27

10	Usage of DG sets	-2	5	-10	-2	5	-10	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-20
11	Sewage Generation	-	-	0	-	-	0	-3	6	-18	-2	6	-12	-3	5	-15	-	-	0	-	-	0	-	-	0	-45
12	Consumption of water	-	-	0	-	-	0	-1	5	-5	-2	5	-10	-	-	0	1	-	0	-	-	0	-1	2	-2	-17
13	Employment opportunities	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	3	6	18	18
14	Greenbelt development	2	7	14	2	7	14	-	-	0	•	-	0	2	4	8	2	5	10	2	4	8	-	1	0	46
	Total impact score	-16	40	-114	-11	31	-69	-7	16	-38	-4	11	-22	-16	26	-48	-8	30	-37	-13	42	-86	-10	27	-45	-459

Interpretation:

Based on assumption of importance and magnitude, the final impact score without EMP is -459 which concludes that the proposed project has, "Appreciable but reversible adverse impact-mitigation measures are needed".

Table 4-23 Impact Matrix with EMP

CN	Environmental			Noise & Vibration			Surface water			Ground water			Soil quality			Flora & fauna				and u		ec	Socio onom		Impact score	Mitigation	
S.No	components likely to be affected	Magnitud e	Importan ce	(M * I)	Magnitud e	Importan ce	(M * I)	Magnitud e	Importan ce	(M * I)	Magnitud e	Importan ce	(M * I)	Magnitud e	Importan ce	(M * I)	Magnitud e	Importan ce	(M * I)	Magnitud e	Importan ce	(M * I)	Magnitud e	Importan ce	(M * I)	(Sum of M * I)	Measures
1	Site clearance and removal of vegetation	-	-	0	-	-	0	-	-	0	-	-	0	-2	5	-10	-1	4	-4	-2	6	-12	-	-	0	-26	Development of green belt
2	Drilling and blasting operation	-3	8	-24	-3	8	-24	-	-	0	-	-	0	-2	-6	12	-1	4	-4	-2	7	-14	-	-	0	-54	1. Ensure to use PPEs and well-maintained vehicles 2. Regular Water Sprinkling 3. Safe blasting zones are kept around the

																											periphery of the quarry
3	Dust generation due to mining activity	-2	8	-16	-	-	0	-1	5	-5	-		0	1	•	0	-1	4	-4	-	-	0	-1	3	-3	-23	Water Sprinkling to control dust emission
4	Loading & Unloading of granite	-3	7	-21	-2	6	-12	-	-	0	-	-	0	-	-	0	-1	3	-3	-	-	0	-2	4	-8	-44	1. Dust filter mask to be provided to all workers 2. Vehicles will be covered by Tarpaulin sheets 3. Speed limits of vehicles will be maintained
5	Fall in pit, Accidents, fall of side walls etc.	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-1	6	-6	-1	4	-4	-1	5	-5	-15	Proper fencing and PPE's will be provided.
6	Change in Topography and slopes	-	-	0	-	-	0	-	-	0	-	-	0	1	-	0	-	-	0	-2	5	-10	-	-	0	-10	Mine closure plan will be implemented after completion of mining activity.
7	Granite Resource Depletion	-	-	0	-	-	0	-	-	0	-	-	0	-2	8	-16	-	-	0	-2	8	-16	-	-	0	-32	Deletion of granite has positive & negative impacts. Even though it plays a vital role in improvement of country's economic development.

Proposed Jammanahalli Black Granite Quarry Draft EIA Report H/01/2024/CON/046 RP003-R2

8	Stacking and handling of Mineral Rejects and Overburden	-1	5	-5	-	-	0	-	-	0	-	-	0	-2	6	-12	-	-	0	-2	7	-14	-	-	0	-31	1. Garland drains will be provided to prevent the back flow of OB material into nearby water bodies. 2. Granite rejects will be dumped into southeast side of the quarry
9	Noise generation due to vehicular movement	-	-	0	-1	5	-5	-	-	0	-	-	0		-	0	-1	4	-4	-	-	0	-1	4	-4	-13	1. All vehicles and machinery will be properly lubricated and maintained regularly. 2. Speed of the vehicles entering and leaving the quarrying lease will be limited to 25 kmph.
10	Usage of DG sets	-2	5	-10	-1	5	-5	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-15	The DG set are provided with stacks of adequate height so as to disperse the emanating flue gases containing suspended particulate matters, oxides of sulphur and nitrogen

Proposed Jammanahalli Black Granite Quarry Draft EIA Report H/01/2024/CON/046 RP003-R2

																											without affecting the ground level concentrations.
11	Sewage Generation	-	-	0	-	-	0	-1	6	-6	-1	6	-6	-	-	0	-	-	0	-	-	0	-	-	0	-12	Sewage will be disposed in soak pit Garland drains are provided
12	Consumption of water	-	-	0	-	-	0	-1	5	-5	-1	5	-5	-	-	0	-	-	0	-	-	0	-1	1	-1	-11	Water requirement will be met by private tankers Rain water management will be provided
13	Employment opportunities	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	3	6	18	18	Employment will be provided to local workers
14	Greenbelt development	2	7	14	2	7	14	-	-	0	-	-	0	-	,	0	2	5	10	-	-	0	-	-	0	38	1. The plantation will be developed around 7.5m safety zone of the quarry. 2. Plants are chosen to provide aesthetic, ecological and economical value.
	Total impact score	-9	40	-62	-5	31	-32	-3	16	-16	-2	11	-11	-8	13	-26	-4	30	-15	-11	37	-70	-3	23	-3	-235	

Interpretation: Based on the assumption of importance and magnitude, the final impact score with the implementation of mitigation measures is -235, which concludes that the proposed project has, "No appreciable beneficial impact / adverse impact".

5 ANALYSIS OF ALTERNATIVES

5.1 Introduction

The Proposed jammanahalli black granite quarry is over an extent of 6.59.5 Ha located in S.F.No.83, located at Jammanahalli Village, Pappireddypatty Taluk, and Dharmapuri District.

5.2 Selection & Description of each alternatives with its adverse impacts

Alternative site is not considered, since the project is site specific because of the availability of mineral in this location. The total geological reserves of black granite is 4,09,500 m³.

5.3 Site Connectivity

The site connectivity details are given in **Table 5-1**.

Table 5-1 Site Connectivity Details

Nearest State Highway	SH-6A (Tiruvannamalai-Harur), ~ 7.69 km, ENE
Nearest National Highway	NH-179A (Salem-Vaniyambadi), ~ 2.89 km, ESE
Nearest Railway Station	Thonganur Railway Station, ~ 10.17 km, NW
Nearest Town	Harur, ~ 7 km, NE

5.4 Technology Alternatives

The various alternative technologies adopted in quarry operations are given below

Table 5-2 Alternative Technology Analysed

S.No	Activity involved in mining Operation	Technology	Impact						
1.	Cutting	Burner Cutting	Adverse level of Noise						
1.	Cutting	Wire saw Cutting	No adverse impact to environment						
		Manual Drilling using jack hammer	Dust emission and Noise						
		Wet drilling	Negligible dust emission						
2.	Drilling	Tamrac - Machine	Negligible dust emission and						
۷.		Drilling	Noise						
		Wagon Drill	Dust emission and Noise						
		LD Bore	Dust emission						
		PRD Drilling	Negligible dust emission						
		Conventional Blasting	Noise						
		Muffle Blasting	Mininmal Noise impact						
3.	Blasting	Rock Breaking							
3.	Diastilig	Powder or Expansive	Nogligible impact on noice						
		Mortar for secondary	Negligible impact on noise						
		breaking							

6 ENVIRONMENTAL MONITORING PROGRAMME

6.1 Introduction

Environmental monitoring is an essential tool for sustainable development & ensuring effective implementation of environmental management plan & mitigation measures adopted. The monitoring schedules are planned for systematic study of various pollution levels with respect to air and water qualities, noise levels, etc. to ensure that they conform to the standards laid down by Environmental Protection Act and various Central and State Pollution Control Board Limits. The various methodologies and frequency of studies of all environmental quality parameters also conform to norms laid down by MOEF& CC, CPCB and SPCB in this respect.

The Project proponent will be overseeing/reviewing following activities:

- > To observe the implementation of environmental control measures.
- ➤ To ensure implementation of planned plantation programme with monitoring of survival rate, etc.
- > To keep monitoring records properly for submission of periodical returns to statutory authorities and for checking by them.
- > To evaluate periodically the performance of existing pollution control equipment and systems for taking prompt action in this respect to rectify the defects.
- ➤ Conducting safety audits and programmes to create safety awareness in workers/staff.
- Monitoring of dumps and benches for slope stability, monitoring of OB dumps, laying of check dams, garland drains around the dumps and excavated areas and their regular maintenance for de-silting.
- To study the effects of project activities on the environment.
- ➤ To interact and liaise with State and Central Government Departments.
- > To take immediate preventive action in case of some unforeseen environmental pollution attributable to the project.
- ➤ Imparting training on safety and conduct safety drills to educate employees.
- To ensure that firefighting equipment, etc, are kept in ready-to-use condition.

For each of the environmental attributes, the monitoring plan specifies the parameters to be monitored, location of monitoring sites, frequency and duration of monitoring and it denotes the applicable standards, implementation and supervising responsibilities.

6.2 Technical Aspects of Post Project Environmental Monitoring Program

The summarized forms of post monitoring details are presented in **Table 6-1**.

Table 6-1 Post Project Environmental Monitoring Program

S. No	Area of Monitoring	Number of Sampling Stations	Frequency of Sampling	Parameters to be Analyzed	Monitoring Budget Per Year (Rs)
1.	Meteorology	One	Hourly and Daily basis	Wind speed and direction, Temperature, Relative Humidity, Atmospheric pressure, Rainfall.	1000
2.	Ambient Air Quality	2 Stations (one in up wind and one in downwind)	Twice a week:24 hourly period	All the 12 parameters as per NAAQ Standards	6000
3.	Noise	2 (one within core area and one in buffer area)	Once every season	Ambient Equivalent continuous Sound Pressure Levels (Leq) at day and Night time.	1300
4	Exhaust from DG set	Stack of DG set	Quarterly	PM ₁₀ , SO ₂ , NO _x & CO	2000
5	Soil	Two Locations within the Project Site	Yearly Once	Physico chemical properties, Nutrients and Heavy metals	4500
6	Terrestrial Ecology	Within 10km radius around the project	Once in three years	Flora & Fauna	20000
7	Surface/ Ground water quality	One surface and ground water sample near the site	Yearly Once	As per ISO 10500:2012 & IS 2996:1992 Standard parameters	2500
Total				37,300	

6.3 Measurement Methodologies

The monitoring schedules are planned for systematic study of various pollution levels with respect to air and water qualities, noise levels, etc. to ensure that they conform to the standards laid down by Environmental Protection Act and various Central and State Pollution Control Board Limits. The various methodologies and frequency of studies of all environmental quality parameters also conform to norms laid down by MOEF, CPCB and SPCB in this respect.

6.4 Emergency procedures on reporting & documentation

All the necessary reports and documents shall be prepared complying with the statutory rules & regulations. Proper and due care shall be taken to adhere to the laid down rules and regulation by the government. Regular and periodic record shall be kept in order to ensure easier,

comparable and brisk review and projection of past, present and future performances. Also, the management shall ensure to prepare separate records for water, wastewater, solid waste, air, emission, regularly and periodically in order to provide better and smooth vigilance.

The management shall look into the fact that as soon as the preparation of reports gets over it shall be forwarded to the concerned authority with due care for the purpose of reviewing. Adhering to the rules and regulations the management shall ensure that the outcome of the reports and the conclusions been drawn shall be prepared as per the laid down regulations and procedures. No breach of any convention shall be availed.

These reports/documents shall be regularly and periodically reviewed and any changes/discrepancies found in mitigation measures/ operation/ management/ technology shall be brought into notice instantaneously and all possible corrective actions shall be taken to match the discrepancies been witnessed.

7 ADDITIONAL STUDIES

7.1 Public Consultation

The proposed project is categorized as 'B1' category Schedule 1(a) as per EIA Notification 2006 and its amendments thereafter. The total area of the quarry is 6.59.5 Ha.

However, the proposed project falls under 'B1' category, Schedule 1(a), Public Hearing is Mandatory. So, EIA report has been prepared as per the obtained ToR vide. Identification No.TO25B0108TN5769635N, dated 19.05.2025. Draft EIA report will be submitted for Public Hearing (PH). After PH, the minutes obtained will be incorporated in the EIA report along with action plan by the proponent. Final EIA will be submitted to TN-SEAC for further appraisal of the project and obtaining Environment Clearance.

7.2 Risk Identification & Management

7.2.1 Introduction

Mining and allied activities are associated with several potential hazards both to the employees and the public at large. A worker in a mine should be able to work under conditions that are adequately safe and healthy. At the same time the environmental conditions should be such as not to impair his working efficiency. The various safeguards to be taken to ensure the safety of the mine and that of employees are provided in the Mines Act, 1952. Risk involves the occurrence or potential occurrence of some accidents consisting of an event or sequence of events. The risk assessment study covers the following:

- Identification of potential hazard areas.
- ➤ Identification of representative failure cases.
- ➤ Visualization of the resulting scenarios in terms of fire (thermal radiation) and explosion.
- Assess the overall damage potential of the identified hazardous events and theimpact zones from the accidental scenarios
- > Assess the overall suitability of the site from hazard minimization and disaster mitigation point of view
- Furnish specific recommendations on the minimization of the worst accidentpossibilities.
- ➤ Preparation of broad DMP, On-site and Off-site Emergency Plan.
- Occupational Health and Safety Plan.

The complete mining will be carried out under the management control and direction of a qualified mine manager holding a first class manager'scertificate of competency. Moreover,

mining staff will be sent to refresher courses from time to time to keep them alert. However, following natural/industrial hazards may occur during norml operation:

- Accident due to explosives
- Accident due to heavy mining equipment; and
- ➤ In order to take care of above hazard/disasters, the following control measures will be adopted.
- ➤ All safety precautions and provisions of the Mine Act, 1952, the MMR 1961 and the Mines Rules, 1955 will be strictly followed during all mining operations
- Entry of unauthorized persons will be prohibited
- > Firefighting and first-aid provisions in the mines office complex and mining area;
- Provisions of all the safety appliances such as safety boot, helmets, goggles etc. will be made available to the employees and regular check for their use
- Training and refresher courses for all the employees working in hazardous premises; Under mines rules all employees of mines will have to undergo the training at a regular interval
- Working of mine, as per approved plans and regularly updating the mine plans;
- Cleaning of mine faces will be regularly done
- ➤ Handling of explosives, charging and blasting will be carried out by competent persons only.
- > Regular maintenance and testing of all mining equipment as per manufacturer's guidelines.
- Suppression of dust on the haulage roads
- ➤ Increasing the awareness of safety and disaster through competitions, posters and other similar drives.
- For any type of above disaster, a rescue team will be formed by training the mining staff with specialized training.

7.2.2 Identification of Hazards in Open Cast Mining

There are various factors, which can cause disaster in the mines. These hazards are as follows:

- Drilling
- Blasting
- Overburden handling
- Heavy Machinery

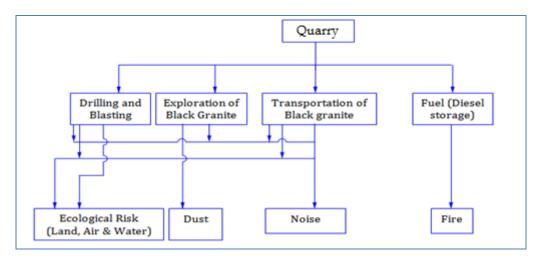


Figure 7-1 Identification of hazards in opencast mine

7.2.2.1 Drilling

Drilling is an important activity in mining. This activity releases particulate matter into the air and noise in the vicinity of the operation. The particulate matter/dust can be arrested by employing dust extractor, wet or dry type. The usage of standard drill bits also reduces the dust formation. The noise is also arrested by the usage of dust extractors. The compressors which feed the compressor air to the drilling jackhammers can be covered in acoustic enclosures which reduce the dust and noise. The hard strata will be excavated after drilling and blasting. Drilling will be done with jack hammers up to 1.2 to 1.5 m depth having a diameter of 30-32 mm.

7.2.2.2 Blasting

Most of the accidents from blasting occur due to the projectiles, as they may sometimes go even beyond the danger zone, mainly due to overcharging of the shot-holes as a result of certain special features of the local ground. Flying rocks are encountered during initial and final blasting operations. Vibrations also lead to displacement of adjoining areas. Dust and noise are also problems commonly encountered during blasting operations.

- ➤ The damaging impacts on environment are evident noise, gas, and flyrock and ground vibration.
- The last factor is most important for safety of constructions, buildings and various natural objects in the vicinity of mining area.
- > The ground vibration parameters, crucial for safety of endangered objects have a significant correlation with charge weight and distance of blasting.
- This study tried to associate the main vibration parameter, particle velocity with blasting parameters and properties of vibration medium.

7.2.2.3 Precautionary Measures to Avoid Accidents Due to Blasting

- The provisions laid down in the MMR 1961 related to Blasting shall strictly be followed. However, some of the main provisions are written here
- > The Wire saw and rock breaking powder will be utilized extensively to reduce the requirement for blasting.
- > The blasting will be done under supervision of blaster/mine mate/mine foreman/mine manager
- > Shots shall not be fired except during the hours of daylight.
- ➤ The holes charged on any particular day shall be fired on the same day.
- Adequate blasting shelters or other protection shall be provided at mines.
- > The shot-firer shall give sufficient warning by effective signals over the entire area falling within a radius of danger zone.
- Multi-shot exploder shall be used. A shot-firer will fire maximum 120 Shots.
- ➤ During the approach and progress of electrical storm, adequate precautions shall be taken.

7.2.2.4 Overburden Handling

Over burden and side burden dump may cause landslides. High side burden dump created at the quarry edge may cause sliding of the side burden dump or may cause failure of the pit slope due to excessive loading, thereby causing loss of life and property.

7.2.2.5 Heavy Machinery

Most of the accidents during transport of dumpers, trucks, proclaim, ripper dozers and other heavy vehicles are often attributable to mechanical failures and human errors.

7.2.2.6 Precautionary Measures to Prevent Accidents due to Trucks and Dumpers

- ➤ All transportation within the main working shall be carried out directly under the supervision and control of the management.
- The vehicles must be maintained in good conditions and checked thoroughly at least once a week by the competent person authorized for the purpose by the Management.
- Road signs shall be provided at each and every turning point especially for the guidance of the drivers.
- > To avoid danger while reversing of vehicles especially at the embankment and tipping points, all areas for reversing of lorries should as far as possible be made man free. A statutory provision of the fences, constant education, training etc. will go a long way in reducing the incidents of such accidents.

- Generally, oversize rocks shall be dealt with in the pit by secondary blasting.
- ➤ A Load consisting of large rocks must not be over the edge. This is unsafe and may damage equipment.
- > The movement of the dumpers will be governed under the Code of Traffic rule, this is already formulated & implemented.

7.2.2.7 Storage of Explosives

The explosive requirement of the quarry operation is minimal. The blasting requirement will be carried out using contractors approved by the Controller of Explosives. No Explosive storage is envisaged in this quarry.

7.2.2.8 Safety Measures at the quarry

- Adequate care has been taken in deciding the size of the bench for the working pit.
- ➤ The benches are properly sloped at an angle of 60 degree to avoid any spillage of benches.
- Adequate drainage system at the top of the pit and also on the benches shall be made to prevent erosion of the benches.
- ➤ Garland drains around the periphery for storm water drainage will protect the quarries.

7.3 Disaster Management Plan

The disaster management plans aimed to ensure safety of life, protection of environment, protection of installation, restoration of production and salvage operations in this same order of priorities. For effective implementation of the disaster management.plan, it should be widely circulated and personnel training through rehearsals/drills. The objectives of the disaster management plan are to make us of the combined resources of the mining operation and the outside services to achieve the following:

- > Effect the rescue and medical treatment of casualties
- Safeguard other people
- Minimize damage to property and the environment
- ➤ Initially contain and ultimately bring the incident under control
- Identify any dead
- Provide for the needs of relatives
- Provide authoritative information to the news media
- Secure the safe rehabilitation of affected area
- Preserve relevant records and equipment for the subsequent inquiry into the cause and circumstances of the emergency

➤ In effect, it is to optimize operational efficiency to rescue rehabilitation and render medical help and to restore normalcy.

7.3.1.1 Emergency Organization (EO)

It is recommended to setup an emergency organization. A senior executive (Mine Manager) who has control over the affairs of the mine would be heading the emergency organization. He would be designated as site controller. As per the general organization chart, in the mines, the Mines Foreman would be designated as the Incident Controller (IC). The incident controller would be reporting to the site controller. Emergency coordinators would be appointed who would undertake the responsibilities like firefighting, rescue, rehabilitation, transport and provide essential and support services.

7.3.1.2 Emergency Communication (EC)

Whoever notices an emergency situation such as fire, growth of fire etc. would inform the Mines Foreman. The Mines Foreman would appraise the site controller. Site Controller verifies the situation from the incident controller takes a decision about an impending on site emergency. Simultaneously, the emergency warning system would be activated on the instructions of the site controller.

In order to handle disaster/emergency situations, the following personnel shall deal with the disaster/Emergency

- Mines Manager-site controller
- Mines Forman-incident controller
- ➤ Mine mate –Fire controller
- Senior most Driver-Transport coordinator
- Senior most operator- Medical coordinator

7.3.1.3 Emergency Services

This includes the fire-fighting system, first aid center, etc. Alternate sources of power supply for operating fire pumps, communication with local bodies, fire brigade etc. will also be clearly identified. Adequate number of external and internal telephone connections shall be installed.

- 1. Fire Protection System
- 2. Off Site Emergency Plan

7.3.1.4 Fire Protection System

The fire protection system for the project maintained will consist of Portable hand appliances of suitable types/capacities for extinguishing small fires in selected mine areas, storages areas such as that of Diesel, Explosives, etc.

7.3.1.5 Off-Site Emergency Plan

The offsite emergency plan defining the various steps to tackle any offsite emergencies, which may affect surrounding areas of the project, has to be prepared after due finalizing discussion in this respect with local Panchayat official, Revenue officials and District Collector. As per this off site plan, in case of any off site emergencies, actions have to be promptly initiated to deal with the situation in consultation with Collector and other revenue officials.

7.3.1.6 Water Quality Management

The ground water quality in the region indicates neutral range with pH values. Most of the analytical results for ground and surface water showed parameter concentrations well within the permissible limits. Garland drains will be provided all along the periphery of the mining pit and along the toes of the side burden dumps. These drains will be aligned in such a way that all the surface drainage water will be carried away from the mining zone to settling tanks.

The mining pit's catchment water will be coursed to the main sump and used for dust suppression and green belt development & plantation activities.

7.3.1.7 Mines Seepage Water

The experience of mining during past three years suggests a very little, almost negligible seepage of water in the mining pit. It will be collected in a well guarded pond / sump for settling of solids. The treated water will be used for dust suppression on working faces, haul roads and dump surfaces.

7.3.1.8 Air Quality Management

Ambient air quality was monitored twice in a week for One (01) season (shall cover 12 weeks), i.e., during Pre-Monsoon season (**February 2025-April 2025**). PM₁₀, PM_{2.5}, SO₂, NOx, Pb, NH₃, C6H6, C₂₀H₁₂, As, Ni, were monitored. Sampling was carried out as per Central Pollution Control Board (CPCB) monitoring guidelines at each location.

The following precautions have been considered for a batement of air pollution in the black granite mine area:

- ➤ Water sprinkling shall be carried out at the active working faces, on all haul-roads and the dump surfaces.
- Regular cleaning and removal of spillage black granite from haul roads and weighbridge areas.
- Proper and regular maintenance of mining equipments.

Development of comprehensive green belt around overburden dumps to reduce fugitive dust emissions in order to create clean and healthy environment.

7.3.1.9 Solid waste Management

As is stated earlier, mining will be carried out by opencast semi-mechanized method using conventional mining equipments i.e., hydraulic excavators / shovels and dumpers combination with ancillary mining equipment like compressor, wire cutting machine, generator etc.

The mine waste in the mine includes the over lain unrecoverable boulders / rock fragments and rubbles generated as granite rejects during the production works and the waste fragments generated during development works will be utilized for forming approach road and dumping yard purposes. Adequate space has been identified within the lease applied area for dumping such waste material on barren land covered with soil.

7.3.1.10 Stabilization of Dump

As the waste generation in the mine includes hard rock fragments of considerable size and irregular shape with varying angularity, the waste dump will be stable on its own even at higher slopes of the sides. However, suitable variety of soil will be identified and brought from outside and used for increasing the stability of the sides of the waste dumps and also for planting trees over the dumps in a phased manner.

7.3.1.11 Mine Drainage

The lease-applied area is hillock 32m height with slope. Through the area receives scanty rainfall, the ground water level is at 11.6m depth. The Production faces are operated at shallow depths. During the rainy seasons, the surface run of water and the ground water are collected at one point called as sump and dewatered nearby agricultural field with the help of 10HP oil engines.

7.3.1.12 Disposal of Waste

The Mine waste in the mine includes the over burden, side burden, rock fragments and rubbles generated as mineral rejects during production works and the country rock fragments generated during development works as approach road formation, formation of dumping yard

sites etc., During the first five years of mining plan period, such waste material are proposed to be dumped along the southeast portion part of the lease area where it comprises of country rock terrain.

7.3.1.13 Top Soil Management

Topsoil will be properly stacked at earmarked dumpsite with adequate measures. It will be used for growing plants along the fringes of the site roads and reclamation of external dump and backfilled area. The topsoil stockpiles will be low height and will be grassed to retain fertility. Besides these topsoil stacks there will be temporary stacks near the excavation area and area to be reclaimed which will be made use of for concurrent lying without bringing the topsoil to the soil stack near the OB dump.

7.3.1.14 Disposal of Mining Machinery

Mining operations are planned to be operated using Company owned machinery. The company has its own Excavators, Mining Tippers, compressors; wire saw machine, jack hammers, and other mining equipment. These machines are complaint to the RTO conditions and CPCB conditions. Further, the company also operates a central workshop at Salem, to cater to major repairs/Rectifications of company Equipment.

These machineries are written off and disposed on completion of their normal life as per the set guidelines of the Government and TAMIN Board. The surplus machinery in working order, will be transferred to Company's other projects.

7.3.1.15 Other Infrastructure

Mine office, store room, first-aid room etc, will be provided on semi-permanent structures within the lease applied area.

7.3.1.16 Safety & Security

The water ponds developed in the reclaimed areas shall be properly fenced for safety. The water from these ponds is likely to be potable and shall be used for human & cattle consumption and for agriculture purposes.

7.3.2 Social Impact Assessment R & R Action plan

There will be no Rehabilitation and Resettlement in this proposed project.

8 PROJECT BENEFITS

8.1 Benefits in the Physical Infrastructure

Carrying out various developmental works in the nearby region based on the need of the locals.

8.2 Benefits in the Social Infrastructure

- Improvement in Per Capita Income.
- The socio economic conditions of the village will be enhanced due to the proposed project, hence the project should be allowed after considering all the parameters.
- It can thus be concluded that the project is environmentally compatible, financially viable and would be in the interest of construction industry thereby indirectly benefiting the masses.

8.3 Employment potential- Skilled, Semi-Skilled and Unskilled

- The quarry activity will provide job opportunities, which will help them to develop economically
- The quarrying activities provide employment to the 30 No's of local people.
- The direct beneficiaries will be those who get employed in the mines as skilled and unskilled workers.

Table 8-1 Required Manpower Details

S.No	Description	No of persons
A	Technical/Mining Personnel	
1	Geologist/Agent (M.sc Qualified)	1
2	Mine Manager (Holder of Manager Certificate of Competency under MMR, 1961	1
3	Mining Mate cum Blaster	1
4	Machinery operator	6
5	Diesel Mechanic	1
В	Workers	
1	Skilled	1
2	Semi- Skilled	9
3	Un-skilled	10
	Total	30

8.4 CER activity

Based on O.M F.No. 22-65/2017-IA.III dated: 01.05.2018, 2.0% of the Project cost need to be spent for CER activities i.e., Rs. 2 Lakhs. However, TAMIN is proposing for Rs. 4 Lakhs which is

4.0% of Project cost under CER activities for the Jammanahalli Government Higher Secondary School.

Table 8-2 Proposed CER activity

S.No	CER Activities for Jammanahalli Government Higher Secondary School	Amount in Lakhs
1.	Developing Drinking water facility within the school premises	1.0
2.	Toilet facilities for Government School	2.0
3.	Providing Library facility	0.5
4.	Greenbelt development within the school premises	0.5
	Total	4.0

8.5 Other tangible benefits

The proposed mine is likely to have other tangible benefits as given below.

- Indirect employment opportunities to local people in contractual works like construction of infrastructural facilities, transportation, sanitation, for supply of goods and services to the mine and other community services.
- Additional housing demand for rental accommodation will increase
- Cultural, recreation and aesthetic facilities will also improve
- Improvement in communication, transport, education, community development and medical facilities and overall change in employment and income opportunity
- The State Government will also benefit directly from the proposed mine, through increased revenue from royalties, CESS, DMF, GST etc.

Proposed Jammanahalli Black Granite Quarry
Draft EIA Report

H/01/2024/CON/046 RP003-R2

9 ENVIRONMENTAL COST & BENEFIT ANALYSIS

(Not recommended during scoping stage)

10 ENVIRONMENTAL MANAGEMENT PLAN

10.1 Description of the administrative aspects of ensuring that mitigative measures are implemented and their effectiveness monitored, after approval of the EIA Management Plan

The Environmental Management Plan for Jammanahalli Black Granite Quarry identifies the principles, procedures and methods that will be used to control and minimize the environmental imapocts for the proposed project.

10.2 EMP structure and organization

10.2.1 Environment Policy of TAMIN

Tamil Nadu Minerals Ltd, believes that good safety, Health & Pollution control practices contribute to individual well-being and organization morale. Our commitment to Safety, Health and Environment stretch beyond statutory obligations and we are committed to manage and continually improve the overall safety, Health and Environmental performance.

We M/s Tamil Nadu Minerals Ltd are committed to ensure that:

We develop safe working methods and practices, with as objective of no injuries and accidents at the work place and provide a safe work place for our employees, contractors and other who perform their duties. We shall provide adequate Health care to our employees, and create processes to reduce the adverse effect of the operations on the health of the employees.

- We provide safety appliances and continuous training in safety to our employees and contract workmen to ensure safe production and achieve the target of zero accidents. We are committed to supporting actions aimed at increase in employees" safety outside work hours.
- ➤ We protect the environment by control and prevention of pollution and promote green environment.
- ➤ We continuously evaluate and improve our conduct and carryout regular audit, analysis and studies to eliminate potential concerns and continuously improve upon our Safety, Health and Environmental standards.
- We communicate our Safety, Health and Environmental Policy to all our employees" contractors and to the public for better understanding and practice.
- Management has knowledge of relevant issues regarding Safety, Health and Environment and provides a foundation for setting objectives and targets.

Management shall fulfill its responsibility to inform, educate and motivate employees and others to understand and comply with this policy and applicable laws.

> M/s. Tamil Nadu Minerals Ltd shall use its resources in order to live up to this policy and thereby promote our business.

Besides, the company has formulated well-planned and integrated Environmental policies as shown below:

M/s Tamil Nadu Minerals Ltd is committed to welfare and development needs of the society around it.

- All rules and conditions prescribed in the Indian Mines Act, Metalliferrous Mines Regulation etc., will be adopted to ensure risks-free and safe mining operations. All personal protective devices supplied to workers and staff should be used while they work in the mines and any violation in this respect will be dealt with inflict of warnings first, followed subsequently by punitive punishments including fines and ultimately dismissal, if repeated continuously.
- Any infringement / violation of any rule or unsafe mining operations should be reported to Mines Manager / Mine Foremen /Mine Mate/ Blaster who will take immediate corrective measures for avoiding major disasters. The report will ultimately reach the Board of Directors through upwardly hierarchical communicative channels from the lowest level to superior levels in quick time bound duration.
- The Agent and the Mines Manager should exercise overall control over entire mining and connected operations and all infringements / violations on any count pertaining to unsafe operations, environmental degradation, etc., should be brought to the notice of the Board of Directors. Remedial measures for such violations and deviations should be taken by the Mines Manager to avoid any hazards or disasters in the mine and nearby areas. The persons responsible for such violations will be punished through appropriate disciplinarily penal actions.
- The EC conditions and stipulations will be strictly followed by all supervisory staff of the mine, and will co-ordinate in various issues like prescribed environmental monitoring schedules, vibration monitoring studies during blasting, green belt development, management of dumps etc.
- ➤ Penal actions will be taken by the company in cases of continuous negligence resulting in violations deviations in this respect.

Proposed	Jammanahalli Black Granite Quarry
Draft EIA	Report

H/01/2024/CON/046 RP003-R2

➤ A time schedule of once in 15 days for review of all operational factors as mentioned above is in force, for proper and quick corrective actions. Hierarchical System of the TAMIN is shown in **Figure 10-1**.

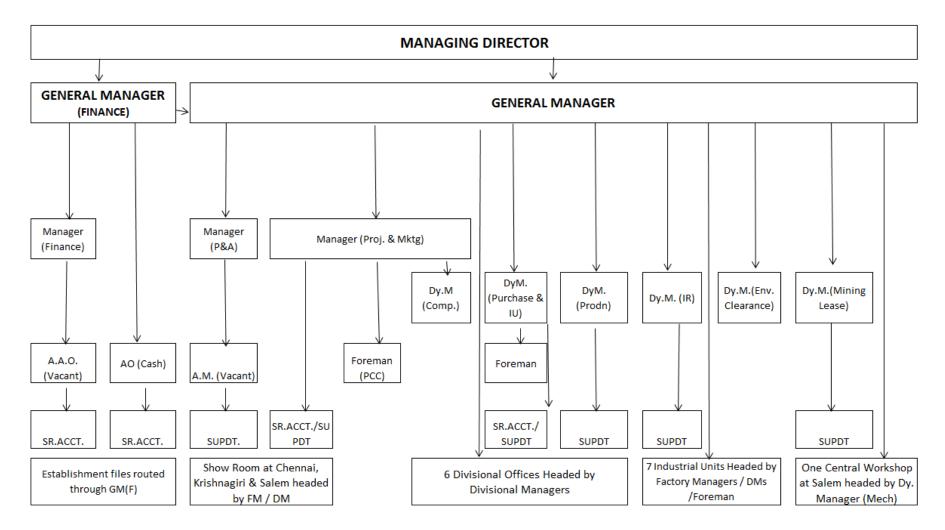


Figure 10-1 Hierarchical System of the TAMIN

Description of the Administration and Technical Setup Environment Management

The Environment Monitoring Cell will ensure effective implementation of environment management plan and to ensure compliance of environmental statutory guidelines through Mine Management Level of the proposed quarry.

The said team will be responsible for:

- Analysis of the water and air samples collected through external laboratory
- Monitoring of the water/ waste water quality, air quality and solid waste generated
- ➤ Implementation and monitoring of the pollution control and protective measures/ devices which shall include financial estimation, ordering, installation of air pollution control equipment, waste water treatment plant, etc.,
- > Co-ordination of the environment related activities within the project as well as with outside agencies
- ➤ Collection of health statistics of the workers and population of the surrounding villages
- Green belt development
- > Monitoring the progress of implementation of the environmental monitoring programme
- ➤ Compliance to statutory provisions, norms of State Pollution Control Board, Ministry of Environment and Forests and the conditions of the environmental clearance as well as the consents to establish and consents to operate.

10.3 Land Environment Management

Landscape of the area will be changed due to the quarrying operation, restoration of the land by converting the quarry pit into temporary reservoir and the remaining part of the area (un utilized areas, infrastructure, haul Roads) will be utilized for greenbelt development. Aesthetic of the Environment will not be affected. After completion of the quarry operation, a thick plantation will be developed under greenbelt development programme.

Table 10-1 Proposed Controls for Land Environment

Control	Responsibility
Designing vehicle wash-down system so that all washed water is captured and passed through grease and oil separators.	Mines Manager
Re fuelling will be carried out in a safe location, away from	Mine Foreman & Mining
vehicle movement pathways	Mate
No external dumping i.e., outside the project area	Mine Foreman

Greenbelt on dumps and its maintenance	Environment Officer
Garland drains with catch pits to be provided all around the project area to prevent run off affecting the surrounding lands.	Environment Officer
The periphery of Project area will be planted with thick plantation to arrest the fugitive dust, which will also act as acoustic barrier.	Mines Manager
Thick plantation using native flora spices will be carried out on the backfilled area.	Mines Manager
There will be formation of a small surface water body in the mined-out area, which can be used for watering the greenbelt at the conceptual stages.	Environment Officer

10.3.1 Ground Vibration and Fly Rock Control

Table 10-2 Proposed Management Controls for Ground Vibration & Fly Rocks

Control	Responsibility
Controlled blasting using NONEL will be carried as per standards	Mines Manager
of DGMS.	
Drilling and blasting during initial stage will be carried under the	Mines Manager
supervision of qualified persons	
Proper stemming of holes should be carried out with	
statutory competent qualified blaster under the supervision of	Mines Manager
statutory mines manager to avoid any anomalies during blasting	
Prior to blasting within 500 meters of the lease boundary,	
establish a fly rock exclusion zone within adjacent properties and	Environment Officer
check with landholders that the area is not occupied by humans,	
blast clearance zones are applied for all blasts.	

10.4 Soil Management

Granite Waste Management

The waste generated during the mining operation i.e., side burden, granite rejects and the non-recoverable/un sized boulders and rubbles etc, will be dumped in the suitable area already selected. The total generation of waste will be 64,962 m³. The area of disposal waste rock has been identified in south east portion of the lease area. The unsold blocks are kept within the boundary on the country rock area.

Table 10-3 Proposed Controls for Soil Management

Control	Responsibility
The dump slopes will be planted with deep rooting shrubs, grasses and creepers for stabilizing them	Environment Officer
Garland drains are to be paved around the dump area to arrest possible wash off in the rainy seasons	Mines Manager
Surface run-off from the surface dumps via garland drains will be diverted to the mine pits	Mine Foreman & Mining Mate
The backfilled area shall be covered with the soil for green belt development	Environment Officer
Design haul roads and other access roads with drainage systems to minimize concentration of flow and erosion risk	Environment Officer
keeping records of mitigation of erosion events, to improve on management techniques	Environment Officer
The overall slope of the dump is maintained at angle of repose not exceeding 45° from horizontal	Mines Manager
The retaining wall has to be made to arrest the waste dump spills	Mines Manager
A monitoring map with information including their GPS coordinates, erosion type, intensity, and the extent of the affected area, as well as existing control measures and assessment of their performance	Environment Officer
Empty sediment from sediment traps Maintain, repair or upgrade garland drain system	Environment Officer
Test soils for pH, EC, chloride, exchangeable cations, particle size and water holding capacity	Mines Manager

10.5 Water Management

Water is a key component in mining projects as it is required for, and affected by, mining activities. Effective water management is important for a variety of reasons including: uninterrupted operation of the mine, compliance with operational permissions and applicable legislation, and minimization of effects on the receiving environment.

This section focuses on actions for avoidance, mitigation, and control, as well as a water management monitoring program –

- ➤ To protect water-related resources, and avoid harmful impacts;
- ➤ To supply and retain water for mine operations;
- ➤ To define water-related environmental control structures; and
- > To manage water to ensure that any discharges are following the applicable water

quality levels and guidelines.

Table 10-4 Proposed Management Controls for Water management

Control	Responsibility
To maximize the reuse of pit water for water supply	Mines Manager
Temporary and permanent garland drain will be constructed to contain the catchments of the mining area and to divert runoff from undisturbed areas through the mining areas.	Environment Officer
Natural drains/nallahs/brooklets outside the project area should not be disturbed at any point of mining operations.	Mines Manager
Mine pit water is used for dust suppression and greenbelt development utilization of mine pit water is optimal and effective ways	Environment Officer
Ensure there is no process effluent generation or discharge from the project area into water bodies	Environment Officer
Domestic sewage generated from the project area will be disposed in septic tank and soak pit system	Mines Manager
Fast growing grasses, small plants and bushes will be grown on the overburden dumps to control soil erosion and siltation	Mines Manager
Retention walls and garland drains will be constructed around toe of waste dumps to arrest silt wash off from dumps during monsoon	Environment Officer
Rainwater harvesting measures will be adopted in the project area and in nearby villages to maintain and enhance the ground water table of the area	Environment Officer
Regularly assess and modify Water Management Plan to adapt to changing work plans and site conditions	Environment Officer
Familiarize all site personnel with the purpose and content of the Water Management Plan, and their responsibilities in its implementation	Environment Officer
Water management and sediment control structures and facilities will be regularly inspected and maintained according to the monitoring schedules	Environment Officer
Monthly or after rainfall, inspection for performance of water management structures and systems	Environment Officer
Conduct ground water and surface water monitoring for parameters specified by State Pollution Control Board (SPCB)	Mines Manager

10.6 Air Quality Management

The proposed mining activity would result in the increase of particulate matter concentrations due to fugitive dust. Daily water sprinkling on the haul roads, approach roads in the vicinity would be undertaken and will be continued as there is possibility for dust generation due to truck mobility. It will be ensured that vehicles are properly maintained to comply with exhaust emission requirements.

Table 10-5 Proposed Controls for Air Environment

Control	Responsibility
Generation of dust during excavation is minimized by water sprinkling on working face.	Mines Manager
Develop thick Greenbelt with tall growing trees and thick foliage cover all along the boundary of the project (7.5 Meter Buffer Zone) to arrest dust spreading outside the project area and to be maintained. This plantation cover will also act as an acoustic barrier.	Environment Officer
Daily maintenance of haul roads and daily water sprinkling to minimize the generation of fugitive dust due to movement of heavy earth moving machineries on it.	Mines Manager
Handle the waste from the mine pit to respective dumps and backfilling during closure process, fugitive dust is anticipated. This fugitive emission can be controlled by well-maintained machineries, well maintained haul roads water sprinkling on haul roads twice a day. Besides it is also advised not to handle the waste during high windy periods	Mines Manager & Environment Officer
Wet drilling procedure drills with dust extractor system to control dust generation during drilling at source itself to be implemented	Environment Officer
Plantation will be carried out on surface dumps, backfilled area and top benches of the mined out area	Environment Officer
Water reservoir will be developed in the left over mined out pit, which will serve as additional surface water resources for the nearby villages	Environment Officer
Maintenance as per operator manual of the equipment and machinery in the mines to minimizing air pollution and noise generation	Mines Manager
Over loading of trucks should be avoided	Mines Manager
All the mining equipment and trucks has been controlled with emission norms	Environment Officer
The village roads used for mineral transport will be maintained weekly and monthly basis to avoid fugitive dust emissions	Mines Manager
Dust mask are provided to the workers working in high dust generating areas and continue to provide the same	Mines Manager
Weekly and Monthly maintenance of deployed machineries, to reduce gaseous emission	Mines Manager
Ambient Air Quality Monitoring carried out in the project area and in surrounding villages to access the impact due to the mining activities and the efficacy of the adopted air pollution control measures	Environment Officer
Monitor meteorological conditions (temperature, wind, rainfall)	Environment Officer

10.7 Noise Management

There will be intermittent noise levels due to vehicular movement, trucks loading, drilling and blasting and cutting activities. No mining activities are planned during night time.

Table 10-6 Proposed Controls for Noise Management

Control	Responsibility
A thick greenbelt to be developed all along the Buffer Zone (7.5 Meters) of the project area to attenuate the noise and the same will be maintained	Mines Manager
Plantation activities to be carried out on surface dumps and infrastructure facilities, these plantations will help in attenuating the noise levels	Environment Officer
Preventive maintenance of mining machinery and replacement of worn-out accessories to control noise generation	Mines Manager
Deployment of mining equipment with an inbuilt mechanism to reduce noise	Environment Officer
Provision of earmuff / ear plugs to workers working in noise prone zones in the mines	Environment Officer
Provision of effective silencers for mining machinery and transport vehicles	Environment Officer
Controlled blasting technologies are adopted by using NONEL to minimize noise from blasting	Mines Manager
Annual ambient noise level monitoring to be carried out in the project area and in surrounding villages to access the impact due to the mining activities and the efficacy of the adopted noise control measures. Additional noise control measures will be adopted if required as per the observations during monitoring	Environment Officer
Undertake noise or vibration monitoring in response to a complaint (from any sensitive receptor).	Mines Manager
Change the burden and spacing by altering the drilling pattern and/or delay layout, or altering the hole inclination during initial stage of operation.	Mines Manager
If a noise or vibration complaint is received, follow the complaints and inquiries.	Environment Officer
Undertake noise or vibration monitoring half yearly	Environment Officer

10.8 Occupational Safety & Health Management

Occupational safety and health are very closely related to productivity and good employeremployee relationship. The main factors of occupational health in mines are fugitive dust and noise and vibration. Safety of employees during mining operation and maintenance of mining equipment will be taken care as per Mines Act 1952 and Rule 29 of Mines Rules 1955. To avoid

any adverse effect on the health of workers due to dust, noise and vibration sufficient measures have been provided.

Medical Surveillance and Examinations

Identifying workers with conditions that may be aggravated by exposure to dust & noise and establishing baseline measures for determining changes in health.

- Evaluating the effect of noise on workers
- ➤ Enabling corrective actions to be taken when necessary
- Providing health education

The health status of workers in the mine shall be regularly monitored under an occupational surveillance program. Under this program, all the employees are subjected to a detail's medical examination at the time of employment. The medical examination covers the following tests under mines act 1952.

- General Physical Examination and Blood Pressure
- X-ray Chest and ECG
- Sputum test
- Detailed Routine Blood and Urine examination

The medical histories of all employees will be maintained in a standard format annually. Thereafter, the employees will be subject to medical examination annually. The above tests keep upgrading the database of medical history of the employees.

10.9 Proposed Health and safety Measures

- Providing a clean working environment that is conductive to safety & health annually
- > Employee involvement and commitment in the implementation of health and safety guidelines
- ➤ Implementing safety and health management system and assessing the effectiveness through periodic audits
- > Setting of safety and health objectives based on comprehensive strategic plans and measure performance against these plans
- Provision of necessary standard personal protective equipment's (PPE)
- ➤ Ensuring that all employees at all levels receive appropriate training and are competent to carry out their duties and responsibilities.
- ➤ Provision of rest shelters for mine workers with amenities like drinking water, fans, toilets urinals, canteen etc..

- Rotation of workers exposed to noisy areas.
- ➤ Daily dust suppression on haul roads by water sprinkling and proper housekeeping to prevent fugitive dust emission in to the air.
- ➤ Provision of First-aid facility at the mine office

10.10 Budget for Environmental Protection

Adequate budget provision has been made by TAMIN for the execution of Environmental Management Plan. Environmental Management cost is given in **Table 10-7**.

Table 10-7 Environmental Management Cost

Parameters	Mitigation Measure	Capital cost (INR)	Recurring Cost
	Compaction, gradation and drainage on both sides for Haulage Road	65,950	65,950
	Fixed Water Sprinkling Arrangements + Water sprinkling by own water tankers	8,00,000	50,000
	Muffle blasting – To control fly rocks during blasting	-	5,000
Air Environment	Wet drilling procedure / latest eco- friendly drill machine with separate dust extractor unit	1,50,000	15,000
	No overloading of trucks/tippers/tractors	-	5,000
	Stone carrying trucks will be covered by tarpaulin	-	10,000
	Enforcing speed limits of 20 km/hr within ML area	5,000	500
	Regular monitoring of exhaust fumes as per RTO norms	0	5,000
	Regular sweeping and maintenance of approach roads for at least about 200 m from ML Area	-	1,31,900
	Installing wheel wash system near gate of quarry	50,000	20,000
Noigo	Provision for Portable blaster shed	50,000	2,000
Noise Environment	NONEL Blasting will be practiced to control Ground vibration and fly rocks	0	65,000
Waste	Waste management (Spent Oil, Grease etc.,)	25,000	20,000
Management	Installation of dust bins	5,000	2,000
Mine Closure	Progressive closure activity-Surface runoff management (Provision for Garland drain)	65,950	5,000

	Progressive closure activity barbed wire fencing to quarry area will be provisioned	13,19,000	10,000
Implementation of EC, Mining Plan & DGMS Condition	Progressive closure activity greenbelt development -100 trees per one hectare	1,65,000	24,750
	Size 6' X 5' with blue background and white letters as mentioned in MoM Appendix II by the SEAC TN	10,000	1,000
	Air, water, Noise and Soil quality Sampling every 6 months for compliance report of EC conditions	0	50,000
	Workers will be provided with Personal Protective Equipment's	1,20,000	30,000
	Health check up for workers will be provisioned	0	30,000
	First aid facility will be provided	0	13,000
	Slope stability Action plan	2,00,000	0
	Mine will have safety precaution signages, boards.	10,000	2,000
	No parking will be provided on the transport routes. Separate provision on the bottom of the hill will be made for vehicles /HEMMs. Flaggers will be deployed for traffic management	3,29,750	10,000
	Installation of CCTV cameras in the mines and mine entrance	30,000	5,000
	Implementation as per Mining Plan and ensure safe quarry working	-	7,80,000
Conservation Measures	Conservation Measures for Scheduled I species	4,00,000	-
	Total	38,00,650	13,58,100

In order to implement the environmental protection measures, an amount of Rs.38,00,650/- as capital cost and recurring cost of Rs.13,58,100/- will be utilised.

11 SUMMARY & CONCLUSION

11.1 Overall justification for the implementation of project

An Environmental Impact Assessment Study has been carried out and assessed for the proposed project, based on the ToR and baseline quality data collected for the study area. Identification and anticipation of the potential environmental impacts due to the proposed project with a delineation of appropriate impact mitigation measures in an Environmental Management plan is provided in the EIA report.

The marginal impacts that might be caused by the proposed activity will be mitigated by the pollution control and environmental management measures. In a true and a larger sense, in view of the considerable benefits from the project with no major impacts, the proposed project is said to be more beneficial to the country.

The EMP implemented for the proposed project will include:

- Soil Pollution and Control Management
- Air Pollution control and Management
- Noise Control and Management
- Solid and Hazardous Waste Management
- Water Pollution Control and Management

In order to effectively implement the EMP, an environmental management system will be formulated.

11.2 Explanation on how adverse effects will be mitigated

The baseline study carried out for the study area indicates that all the physical, chemical and biological characteristics of the environmental attributes in the surrounding area are well within the permissible limits.

Based on this environmental assessment, the possible impacts during both pre-project and post-project phase are anticipated and the necessary adequate control measures are formulated to meet the statutory compliances.

Follwing mitigation measures are proposed for the project:

- Usage of diamond wire saw cutting method instead of blasting
- ➤ Usage of Rock breaking powder (Ca (OH)₂) to avoid secondary splitting by blasting.
- Usage of NONEL Blasting (Non-Electric Detonator) for controlled primary blasting.
- ➤ Greenbelt around infrastructure within the mine lease area and along the periphery of the mine lease area by using native plants.

- > Construction of garland drains of suitable size around mine area and dumps to prevent rain water descent into active mine areas.
- Proper fencing will be provided around the mine lease area to avoid rock rolling and trespassing.
- ➤ Personal Protective Equipment (PPE) like ear muffs/ear plugs will be provided to the operators of HEMM and persons working near HEMM and reducing the exposure time of workers to the higher noise levels.
- > To reduce the adverse effects on flora/fauna status that are found in project area due to deposition of dust generating from mining operations, water sprinkling and water spraying systems will be ensured in all dust prone areas to arrest dust generation.

Also as discussed in **Chapter 10** - proper Environment Management Cell will be formed for the proper monitoring and implementation of Environment Management Plan and to ensure compliance of Environmental Statutory Guidelines. The Proposed Team of Environment Management cell will be responsible for Management of Monitoring and compliance activities on all aspects of environment including land, water and air. With very minimal impacts, the project positively leads to commercial business opportunities, employment opportunities, increased revenue and infrastructural development. Thus, this project may kindly be granted Environmental Clearance.

12 DISCLOSURE OF CONSULTANTS

In order to assess the potential environmental impacts due to the proposed project at Survey No: 83 (Part) Jammanahalli Village, Pappireddypatty Taluk, Dharmapuri District, Tamil Nadu State to undertake EIA study. The nature of consultancy service rendered covers terrestrial environmental assessment.

12.1 Brief Profile of HubertEnviro Care Systems (P) Limited (HECS)

Hubert Enviro Care Systems (P) Limited is a leading Environmental Management Company and service provider serving as a catalyst for environmental protection in the industrial & service sectors.

Enviro care Systems was started in 1997 as a proprietor company. In the year 2004, Enviro Care Systems became a Private Limited Company and registered as Hubert Enviro Care Systems (P) Limited.

Across two decades of operation, we have developed into a matured corporate house to meet client's requirements to provide products and services of Global standards at the most competitive price within committed schedule of time.

We have full-fledged office and laboratory at Chennai, Mangalore, Trivandrum & Hyderabad.

12.2 Strengths of HECS

Number of Employees as on till date

Consultancy	42
Laboratory	100
Projects	29
Operation & Maintenance	999
Total No of Employees	1170

12.3 QCI-NABET - EIA Accreditation

Consultancy	Hubert Enviro Care Systems Pvt. Ltd., Chennai		
NABET Certificate No	NABET/ EIA/ 24-27/ RA 0335 Valid up to 31.03.2027		
MoEF Reg. Lab	F. No. LB/99/7/2021-INST LAB-HO-CPCB-HO/ Pvt./8984		

12.4 Copy of QCI NABET Accreditation

National Accreditation Board for Education and Training

Certificate of Accreditation

Hubert Enviro Care Systems, Chennai

A-21, III Phase, Thiru Vi Ka Industrial Estate- 600032

The organization is accredited as Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant Organization, Version 3: for preparing EIA/EMP reports in the following Sectors-

S.No	Sector Description	Sector (as per)		C-4
	Sector Description	NABET	MoEFCC	Cat.
1.	Mining of minerals including opencast / underground mining		1 (a) (i)	А
2.	Offshore and onshore oil and gas exploration, development & production		1 (b)	A
3.	River Valley projects	3	1 (c)	A
4.	Thermal power plants	4	1 (d)	A
5.	Mineral beneficiation	7	2 (b)	A
6.	Metallurgical industries (ferrous & non-ferrous)	8	3 (a)	A
7.	Cement plants	9	3 (b)	A
8.	Petroleum refining industry	10	4 (a)	Α
9.	Pesticides industry and pesticide specific intermediates (excluding formulations)		5 (b)	А
10.	Petro-chemical complexes	18	5 (c)	A
11.	Petrochemical based processing		5 (e)	A
12.	Synthetic organic chemicals industry		5 (f)	A
13.	Industrial estates/ parks/ complexes/areas, export processing Zones (EPZs), Special Economic Zones (SEZs), Biotech Parks, Leather Complexes		7 (c)	А
14.	Bio-medical waste treatment facilities		7(d a)	В
15.	Ports, harbours, break waters and dredging	33	7 (e)	А
16.	Highways,	34	7 (f)	В
17.	Common Effluent Treatment Plants (CETPs)	36	7 (h)	В
18.	Common Municipal Solid Waste Management Facility (CMSWMF)	37	7 (i)	В
19.	Building and construction projects	38	8 (a)	В
20.	Townships and Area development projects	39	8 (b)	В

Note: Names of approved EIA Coordinators and Functional Area Experts are mentioned in RAAC minutes dated May 31, 2024, posted on QCI-NABET website.

The Accreditation shall remain in force subject to continued compliance to the terms and conditions mentioned in QCI-NABET's letter of accreditation bearing no QCI/NABET/ENV/ACO/24/3292 dated June 25, 2024. The accreditation needs to be renewed before the expiry date by Hubert Enviro Care Systems, Chennai following due process of assessment.

Issue Date June 25, 2024

Valid up to March 31, 2027

Mr. Ajay Kumar Jha (Sr. Director, NABET)

Certificate No.
NABET/EIA/24-27/RA 0335

Prof (Dr.) Varinder S Kanwar (CEO-NABET)

For the updated List of Accredited EIA Consultant Organizations with approved Sectors please refer to QCI-NABET website.

Further details may be seen on the following URL: www.hecs.in.

